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Abstract. Assume G is a connected reductive algebraic group defined over an
algebraic closure K = Fp of the finite field of prime order p > 0. Furthermore,
assume that F : G→ G is a Frobenius endomorphism of G. In this article we give
a formula for the value of any F-stable character sheaf of G at a unipotent element.
This formula is expressed in terms of class functions of GF which are supported
on a single unipotent class of G. In general these functions are not determined,
however we give an expression for these functions under the assumption that
Z(G) is connected, G/Z(G) is simple and p is a good prime for G. In this case
our formula is completely explicit.

1. Introduction

1.1. Throughout this article G will denote a connected reductive algebraic group
defined over an algebraic closure K = Fp of the finite field of prime order p > 0.
Furthermore F : G→ G will denote a Frobenius endomorphism defining an Fq-rational
structure G := GF. If H is a finite group then we will denote by Cent(H) the space of
all class functions f : H → Q` where ` 6= p is a prime and Q` is an algebraic closure of
the field of `-adic numbers.

1.2. In [Lus85] Lusztig has defined a set Ĝ of G-equivariant Q`-perverse sheaves on
G known as character sheaves. These geometric objects have a conjectural relationship
to the irreducible characters of G. Through this relationship one sees that the character
theory of G is intimately related to the geometry of G. Let A ∈ Ĝ be an F-stable charac-
ter sheaf, i.e. there exists an isomorphism φA : F∗A→ A, then Lusztig has associated to
A and φA a class function χA,φA ∈ Cent(G) whose definition depends heavily upon the
choice of the isomorphism φA. In this article we consider the following problem.

Problem 1.3. Given g ∈ G can we explicitly determine χA,φA(g)?

1.4. For every character sheaf A ∈ Ĝ we assume fixed an appropriately chosen iso-
morphism φA : F∗A → A, when one exists, such that the resulting set of functions
B = {χA,φA} is an orthonormal basis of Cent(G). The problem considered here is moti-
vated by Lusztig’s conjecture, mentioned above, which is stated in [Lus84a]. Specifically,
Lusztig conjectures an explicit description for the change of basis matrix between B and
Irr(G) (the set of all irreducible characters of G). Thus, having a solution to Problem 1.3
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together with a solution to Lusztig’s conjecture would provide us with a method for
determining the values of the irreducible characters of G. In fact, to prove Lusztig’s
conjecture one already requires a detailed understanding of the values of the functions
in B (see for instance [Lus86; Sho97]).

1.5. In this article we will consider Problem 1.3 when the element g ∈ G is unipotent.
Let us denote by NG the set of all pairs (O, E ) where O is a unipotent conjugacy class
of G and E is a G-equivariant local system on O. This set is partitioned into subsets
I [L, ν] called blocks where L 6 G is a Levi complement of a parabolic subgroup of G
and ν ∈ NL is a cuspidal pair. The map (O, E ) 7→ (F−1(O), F∗E ) defines a natural action
of F on the set NG, compatible with the blocks, and we denote by N F

G the elements fixed
under this action. If ι ∈ I [L, ν] ∩N F

G then we may, and will, assume that F(L) = L and
ν ∈ N F

L .
For any ι ∈ I [L, ν]F we have a corresponding irreducible character Eι ∈ Irr(WG(L))

where WG(L) = NG(L)/L is the relative Weyl group of L. Note that F induces an
automorphism of WG(L), hence an action on the set Irr(WG(L)). This correspondence
gives a bijection I [L, ν]F → Irr(WG(L))F. Furthermore, if ι = (O, E ) then we have a
corresponding class function Yι ∈ Cent(G) which is supported only on OF.

Assume now that A ∈ Ĝ is an F-stable character sheaf whose support contains
unipotent elements (c.f. 2.1). Then there exists an F-stable Levi subgroup L, a cuspidal
pair ν = (O0, E0) ∈ N F

L and a tame F-stable local system L on Z◦(L) such that A is a
summand of the induced complex indG

L (AL ) where

AL = IC(O0Z◦(L), E0 b L )[dimO0 + dim Z◦(L)] ∈ L̂F.

The summands of the induced complex indG
L (AL ) are in bijective correspondence with

the set of irreducible characters Irr(WG(L, L )) where WG(L, L ) 6 WG(L) is the sta-
biliser of L . If A ∈ Ĝ corresponds to E ∈ Irr(WG(L, L )) then we have A is F-stable
if and only if E is fixed by F. With this we may state our main result (which is stated
precisely in Theorem 7.7).

Theorem. For any unipotent element u ∈ G we have

χA,φA(u) = ∑
ι′,ι∈I [L,ν]F

〈Ẽι, IndWG(L).F
WG(L,L ).F(Ẽ)〉WG(L).F(−1)aι q(dim G+aι)/2Pι′,ιYι′(u).

Here aι ∈ Z is an integer associated to ι (c.f. 6.19) and Ẽι is the restriction to the coset WG(L).F
of an extension of Eι to WG(L)o 〈F〉 (similarly for Ẽ). These extensions are determined by (and
determine) the choice of isomorphisms defining the functions χA,φA and Yι′ . Furthermore (Pι′,ι)

is a block of a matrix which is computable by a general algorithm (see [Lus85, Theorem 24.4]).

1.6. If the support of the character sheaf A does not contain unipotent elements then
χA,φA(u) = 0 for all unipotent elements u ∈ G, hence our result covers all F-stable
character sheaves. The functions Yι′ are not quite the functions considered in [Lus85,
§24]. Here we must scale the functions in [Lus85] by a factor coming from a certain
linear character introduced by Bonnafé in [Bon04]. This linear character is known in
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almost all cases, in particular in the case when Z(G) is connected and p is a good prime
for G (see 5.7).

1.7. All terms in the above formula are explicitly computable, except the functions
Yι′ . In Theorem 9.4 we give an explicit formula for these functions whenever Z(G) is
connected, G/Z(G) is simple and p is a good prime. Thus under these assumptions
our formula is completely explicit and computable. Note that this does not exhaust all
cases where these functions are known to be computable. For instance, using Shoji’s
results in [Sho07] one could obtain a similar statement when G is a special orthogonal
or symplectic group (if p 6= 2 then in this situation Bonnafé’s linear character is also
known by work of Waldspurger - see [Bon04, Example 6.3] and [Bon05, Errata]). In
the appendix we include results concerning Lusztig–MacDonald–Spaltenstein induction
in finite groups extended by an automorphism, which cyclically permutes isomorphic
factors. We hope this to be useful in determining the coset multiplicities occurring in
the theorem.

1.8. Our work here is inspired by (and is a generalisation of) that of Lusztig in
[Lus86]. In particular, if F is a split Frobenius endomorphism and L is contained in an
F-stable parabolic subgroup of G then this result is due to Lusztig (see [Lus86, 2.6(e),
3.2(a), 4.9(a)]). It is our hope to give, in the future, an explicit solution to Lusztig’s con-
jecture relating the characteristic functions of character sheaves to irreducible characters
in the case that Z(G) is connected, G/Z(G) is simple and p is a good prime for G. In
particular, we would like to obtain a result similar to that of [Lus86, Theorem 7.2] with-
out restriction on the characteristic. Combining such a result with Theorems 7.7 and 9.4
would then give a wholly explicit way to determine the values of irreducible characters
at unipotent elements for such groups. This article may be seen as a first step towards
that goal.

Remark 1.9. Much of this work originally appeared in the preprint [Tay13a] (for in-
stance see [Tay13a, 8.6]). In [Tay13a] it is assumed throughout that Z(G) is connected,
G/Z(G) is simple and p is a good prime but it became apparent to the author that
most of the arguments go through unchanged in the general case. Shortly after this
Digne–Lehrer–Michel released a preprint [DLM14] concerning Kawanaka’s generalised
Gelfand–Graev representations and values of irreducible characters at unipotent ele-
ments. Upon releasing this current article it was communicated to the author by François
Digne that Digne–Lehrer–Michel had also independently obtained Theorem 7.7 (see
[DLM14, Theorem 4.1(ii)]).

Although we achieve the same result, the methods used are quite different. Our
approach is as follows. The functions on the left and right hand sides of Theorem 7.7
are the characteristic functions of certain underlying complexes. In [Lus86] Lusztig
constructs an isomorphism between these complexes. We then deduce Theorem 7.7
by determining explicitly what happens to the Frobenius endomorphism under this
isomorphism. The approach of Digne–Lehrer–Michel involves working exclusively at
the level of characteristic functions. In particular, they obtain the result by rephrasing
the problem in terms of generalised Green functions using Lusztig’s character formula
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[Lus85, Theorem 8.5] and the language of [DLM03].
We end by noting that to obtain an explicit formula for the values of characteristic

functions of character sheaves at unipotent elements one needs a statement like Theo-
rem 9.4. To obtain such a statement one must be particularly careful about how one
chooses the isomorphism φA of an F-stable character sheaf A. The work of Bonnafé
[Bon04] is also crucial in dealing with the case where the character sheaf is induced
from a Levi subgroup which is not the complement of an F-stable parabolic subgroup.

Acknowledgments: The author gratefully acknowledges financial support from ERC
Advanced Grant 291512. He would like to thank Geordie Williamson and Sebastian
Herpel for useful conversations and Gunter Malle for his notes on an early version of
this paper. Finally, we thank the referee for their useful remarks.

2. Conventions

Perverse Sheaves

2.1. Given a variety X over K we denote by DX = D b
c (X, Q`) the bounded derived

category of Q`-constructible sheaves on X. Furthermore we denote by M X the full sub-
category of DX whose objects are the perverse sheaves on X. Assume H is a connected
algebraic group acting on X then we take the statement A ∈ DX is H-equivariant to
be defined as in [Lus85, §1.9]. If X is itself a connected algebraic group then, unless
otherwise explicitly stated, we take X-equivariance to be with respect to the natural
conjugation action of X on itself.

We will refer to an element A ∈ DX as a “complex”. Recall that we may construct
for any i ∈ Z the ith cohomology sheaf H i A of the complex A, which is a Q`-sheaf.
Given any element x ∈ X we then denote by H i

x A the corresponding stalk of H i A. For
any A ∈ DX we call supp(A) := {x ∈ X | H i

x A 6= 0 for some i ∈ Z} the support of
A. If ϕ : X → Y is a morphism then we denote by ϕ∗ : DY → DX the inverse image
functor, ϕ∗ : DX → DY the right derived direct image functor and ϕ! : DX → DY the
right derived direct image functor with compact support. If ϕ is smooth with connected
fibres of dimension d then we denote by ϕ̃ the shifted inverse image ϕ∗[d] (c.f. [Lus85,
§1.7]).

2.2. Assume X ⊆ Y is a subvariety then for any A ∈ DY we denote by A|X the
complex i∗A ∈ DX where i : X ↪→ Y is the inclusion map (we call this the restriction of
A to X). Assume now that X is a smooth open dense subset of its closure X and that L

is a local system on X (by which we mean a locally constant Q`-constructible sheaf with
finite dimensional stalks) then L [dim X] ∈M X is a perverse sheaf on X. We denote by
IC(X, L )[dim X] ∈ M X the intersection cohomology complex determined by L which
is an element of M X extending L [dim X], i.e. we have IC(X, L )|X ∼= L . We may freely
consider this as an element of M Y by extending IC(X, L )[dim X] to Y by 0 on Y− X
and we will do so without explicit mention.
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2.3. For convenience we recall here the following base change isomorphism (see
[Lus85, (1.7.5)]). Assume X, Y, Z and W are varieties over K and that we have a com-
mutative diagram of morphisms

X Y

Z W

f

φ

g

ψ

such that φ and ψ are smooth with connected fibres of common dimension. Then we
have an isomorphism f! ◦ φ̃ = ψ̃ ◦ g! of functors DY → DZ. In particular if every fibre
of φ and ψ is simply a point then we have f! ◦ φ∗ = ψ∗ ◦ g!.

Finite Groups

2.4. Assume A is a Q`-algebra then the statement “M is an A-module” will mean
that M is a finite dimensional left A-module. For any two A-modules M and M′ we
will denote by HomA(M, M′) the space of all A-module homomorphisms f : M →
M′. We will denote by Irr(A) a set of representatives for the isomorphism classes of
simple A-modules. If G is a finite group and A is the group algebra Q`G then A-
modules will be assumed to be either left or right modules, as appropriate, and we will
write HomG(M, M′) for HomA(M, M′). Similarly we will write Irr(G) for Irr(A) which
we will also identify with the set of irreducible characters determined by the simple
modules.

2.5. Assume now that φ : G → G is an automorphism and let us denote by G̃ the
semidirect product Go 〈φ〉 where 〈φ〉 6 Aut(G) is the cyclic subgroup generated by the
automorphism φ. Let H 6 G be a subgroup and let g ∈ G be such that φ(gHg−1) = H
then H is a normal subgroup of H̃ = H〈(φ(g), φ)〉 6 G̃ and we denote by H.φg the
set {(hφ(g), φ) ∈ G̃ | h ∈ H} (note that we identify H with its image H × {1} in G̃).
Furthermore we denote by Cent(H.φg) the Q`-vector space of functions f : H.φg → Q`

which are invariant under conjugation by H. We can define on Cent(H.φg) an inner
product 〈−,−〉H.φg : Cent(H.φg)×Cent(H.φg)→ Q` by setting

〈 f , f ′〉H.φg =
1
|H| ∑

h∈H
f (hφ(g), φ) f ′(hφ(g), φ),

where : Q` → Q` is a fixed automorphism such that ω = ω−1 for every root of unity
ω ∈ Q

×
` . We may also define a Q`-linear map IndG.φ

H.φg : Cent(H.φg) → Cent(G.φ) by
setting

(IndG.φ
H.φg f )(x, φ) =

1
|H| ∑

y∈G
(y−1xφ(y),φ)∈H.φg

f (y−1xφ(y), φ).

2.6. For any x ∈ G we will denote by ad x : G → G the automorphism given by
ad x(h) = xhx−1 for all h ∈ G. As the composition φ ad g is an automorphism of G
we may form, as before, the semidirect product G o 〈φ ad g〉. The restriction of φ ad g
to H is also an automorphism of H so we have H o 〈φ ad g〉 is naturally a subgroup



6

of G o 〈φ ad g〉. We may now define a surjective homomorphism of groups ψg : G o
〈φ ad g〉 → G̃ given by

ψg(h, φi ad φ1−i(g) · · · φ−1(g)g) = (hφ(g)φ2(g) · · · φi(g), φi)

for any i ∈N. The restriction of ψg defines a bijection G.φ ad g→ G.φ (resp. H.φ ad g→
H.φg) which respects the action of G (resp. H) by conjugation. In particular ψg induces
isometries Cent(G.φ) → Cent(G.φ ad g) and Cent(H.φg) → Cent(H.φ ad g) and carries
the induction map IndG.φ

H.φg to IndG.φ ad g
H.φ ad g.

3. Character Sheaves

Recall our assumption that G is any connected reductive algebraic
group defined over an algebraic closure K = Fp of the finite field
of prime characteristic p > 0. Also F : G → G is a Frobenius
endomorphism of G.

3.1. We assume fixed an F-stable Borel subgroup B0 6 G and maximal torus T0 6 B0

(the assumption of F-stability will not be needed until Section 6). Let ΦG be the roots
of G with respect to T0 then we will denote by ∆G ⊆ Φ+

G ⊆ ΦG the set of simple and
positive roots determined by T0 6 B0. We will denote by (WG, S) the Coxeter system
of G where WG = WG(T0) = NG(T0)/T0 is the Weyl group with respect to T0 and
S = {sα | α ∈ ∆G} is the set of reflections determined by ∆G.

If T is a torus then we denote by S(T) the set of (isomorphism classes) of rank 1
local systems L on T such that L ⊗m is isomorphic to Q

×
` for some m coprime to p

(we call such a local system tame). The Weyl group WG acts naturally on T0 and this in
turn gives us an action on S(T0) by L 7→ (w−1)∗L ; we denote the corresponding set
of orbits by S(T0)/WG. Associated to each such local system L Lusztig has defined a
set of character sheaves ĜL (see [Lus85, Definition 2.10]), which depends only on the
WG-orbit of L . The set of character sheaves on G is then defined to be

Ĝ =
⊔

L∈S(T0)/WG

ĜL ,

whose elements are irreducible G-equivariant objects in M G. We will denote by K0(G)

the subgroup of the Grothendieck group of M G spanned by the character sheaves of
G. We then define a bilinear form (− : −) : (K0(G)⊗Q`)× (K0(G)⊗Q`) → Q` by
setting

(A : A′) =

1 if A ∼= A′,

0 otherwise.

for all A, A′ ∈ Ĝ.
3.2. We will denote by Z the set of all pairs (L, P) such that P is a parabolic sub-

group of G and L 6 P is a Levi complement of P. We then define Zstd to be the subset
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consisting of all standard pairs (L, P), i.e. P contains B0 and L is the unique Levi com-
plement of P containing T0 (note that every pair in Z is conjugate to a pair in Zstd). By
projecting onto the first factor of Z (resp. Zstd) we obtain the set of Levi (resp. standard
Levi) subgroups L (resp. Lstd).

Assume now that (L, P) ∈ Z and let A0 ∈M L be an L-equivariant perverse sheaf on
L. In [Lus85, §4.1] Lusztig has associated to A0 a complex indG

L⊆P(A0) ∈ DG, which we
call the induced complex. We recall the construction of this complex following [Lus85,
§4.1]. Consider the following diagram

L X̂ X̃ Gπ σ τ (3.3)

where we have

X̂ = {(g, h) ∈ G×G | h−1gh ∈ P} X̃ = {(g, hP) ∈ G× (G/P) | h−1gh ∈ P}

π(g, h) = π̂P(h−1gh) σ(g, h) = (g, hP) τ(g, hP) = g

where π̂P : P → L is the canonical projection map. Since A0 is L-equivariant there
exists a canonical perverse sheaf D on X̃ such that π̃A0 = σ̃D (c.f. 2.1). We then define
indG

L⊆P(A0) = τ!D.
3.4. We say a character sheaf A ∈ Ĝ is non-cuspidal if there exists a pair (L, P) ∈ Z

(with P 6= G) and a character sheaf A0 ∈ L̂ such that A is a direct summand of the
induced complex indG

L⊆P(A0); otherwise we say A is cuspidal. Lusztig has shown that
if A0 ∈ L̂ then indG

L⊆P(A0) is semisimple and contained in M G (see [Lus85, Proposition
4.8(b)]). Furthermore for any A ∈ Ĝ there exists a pair (L, P) ∈ Z and a cuspidal
character sheaf A0 ∈ L̂ such that A occurs as a direct summand of indG

L⊆P(A0) (see
[Lus85, Theorem 4.4]).

Let us now fix a pair (L, P) ∈ Z such that there exists a cuspidal character sheaf
A0 ∈ L̂. By [Lus85, Proposition 3.12] we have A0 is isomorphic to an intersection
cohomology complex IC(Σ, E )[dim Σ] where Σ ⊂ L is the inverse image under L 7→
L/Z◦(L) of an isolated conjugacy class and E is a local system on Σ. From the proof
of this result we know that (Σ, E ) is a cuspidal pair in the sense of [Lus84b, Definition
2.4]. Of particular interest to us will be the special case where supp(A0) ∩ Luni 6= ∅,
where for any connected reductive algebraic group H we denote by Huni the variety of
unipotent elements. Assume this is so then there exists a triple (O0, E0, L ) consisiting
of: a unipotent conjugacy class O0 ⊂ L, a cuspidal local system E0 on O0 and a local
system L ∈ S(Z◦(L)) such that A0 is isomorphic to

AL := IC(Σ, E0 b L )[dim Σ] (3.5)

where Σ = O0Z◦(L). Here we consider E0 b L as a local system on O0 × Z◦(L) which
we identify with the open subset O0Z◦(L) ⊆ O0Z◦(L) under the multiplication mor-
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phism in L. With all of this we may now define a map

(L, P,O0, E0, L ) −→ indG
L⊆P(AL ) (3.6)

From this point forward Σ will always denote the variety O0Z◦(L)
where O0 ⊂ L is a unipotent conjugacy class supporting a cuspi-
dal local system.

3.7. Let A ∈ Ĝ be a character sheaf which occurs as a direct summand of the induced
complex indG

L⊆P(A0) (where A0 ∈ L̂ is still assumed to be cuspidal) then by [Lus86, §2.9]
we have

supp A =
⋃

x∈G

x(supp A0)UPx−1 (3.8)

where UP 6 P is the unipotent radical of P. In particular we have supp A ∩Guni 6= ∅
if and only if supp A0 ∩ Luni 6= ∅. Hence if we are only interested in character sheaves
whose support contains unipotent elements then we need only concern ourselves with
those character sheaves occurring in an induced complex of the form given in (3.5). We
end our discussion of induced complexes with the following lemma which gives some
facts concerning the inverse image of an induced complex.

Lemma 3.9. We denote by H a connected reductive algebraic group and by P a parabolic sub-
group of H with Levi complement L. Furthermore we assume that G is a connected reductive
algebraic group and i : G→ H is a bijective morphism of varieties.

(a) For any A0 ∈ L̂ we have

i∗ indH
L⊆P(A0) = indG

i−1(L)⊆i−1(P)(i
∗A0).

Furthermore any character sheaf A ∈ Ĥ is cuspidal if and only if i∗A ∈ Ĝ is cuspidal.

(b) Let us also assume that G = H and L = i(L) then any isomorphism φ : i∗A0 → A0

induces an isomorphism

φ̃ : i∗ indH
L⊆i(P)(A0)→ indH

L⊆P(A0).

Proof. Firstly, by [Hum75, §24.1 - Proposition B], we have i induces a bijection between
the Borel subgroups of G and H so this implies that Q := i−1(P) is a parabolic subgroup
of G with Levi complement M := i−1(L). For any object � introduced in 3.2 we write
�H

L⊆P (resp. �G
M⊆Q) to indicate that it is defined with respect to indH

L⊆P (resp. indG
M⊆Q).

We now have a diagram

M X̂G
M⊆Q X̃G

M⊆Q G

L X̂H
L⊆P X̃H

L⊆P H

i

πG
M⊆Q

i

σG
M⊆Q

i

τG
M⊆Q

i

πH
L⊆P σH

L⊆P τH
L⊆P
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where the vertical maps are the obvious actions of i. The squares of the above diagram
are clearly commutative. Let D be the canonical perverse sheaf on X̃H

L⊆P satisfying
π̃H

L⊆P A0 = σ̃H
L⊆PD. The fibres of πH

L⊆P and πG
M⊆Q have the same dimension, as do the

fibres of σH
L⊆P and σG

M⊆Q, therefore we have i∗D satisfies π̃G
M⊆Qi∗A0 = σ̃G

M⊆Qi∗D because
the inverse image is contravariant. By definition we have indH

L⊆P(A0) = (τH
L⊆P)!D and

indG
M⊆Q(i∗A0) = (τG

M⊆Q)!i∗D so the first part of the lemma follows if we can show
the equality i∗(τH

L⊆P)!D = (τG
M⊆Q)!i∗D but this is just 2.3. The conclusion concerning

cuspidality is an immediate consequence of the first part, which proves (a).
We now prove (b). Let Q = i(P) then collapsing the notation �H

L⊂P simply to �P we
have a diagram

L X̂P X̃P H

L X̂Q X̃Q H

i

πP

i

σP

i

τP

i

πQ σQ τQ

with commutative squares. Let K (resp. K′) be the canonical perverse sheaf on X̃P (resp.
X̃Q) satisfying π̃P A0 = σ̃PK (resp. π̃Q A0 = σ̃QK′). Now π̃Pφ defines an isomorphism
π̃Pi∗A0 → π̃P A0 and using the commutativity of the above diagram we may view this
as an isomorphism σ̃Pi∗K′ → σ̃PK. As σP is smooth with connected fibres we have σ̃P

is a fully faithful functor (see [Lus85, 1.8.3]), hence there exists a unique isomorphism
φ′ : i∗K′ → K such that π̃Pφ = σ̃Pφ′. Using the arguments above we see that φ̃ = (τP)!φ

′

gives the required isomorphism. �

4. The Space of Unipotently Supported Class Functions

4.1. Let NG denote the set of all pairs ι = (O, E ) where O is a unipotent conjugacy
class of G and E is an irreducible G-equivariant local system on O. We denote by
N 0

G ⊆ NG the subset consisting of those pairs (O, E ) such that E is a cuspidal local
system on O (see [Lus84b, Definition 2.4]); we call the elements of N 0

G cuspidal pairs.
Given a pair ι we will denote the class O by Oι and the local system E by Eι.

Let us denote by M̃G the set of all pairs (L, ν) consisting of a Levi subgroup L ∈ L
and a cuspidal pair ν ∈ N 0

L . We have G acts naturally on M̃G by conjugation and we
denote by [L, ν] the orbit containing (L, ν). We also denote by MG the set of all such
orbits. Recall that in [Lus84b, Theorem 6.5] Lusztig has associated to every pair ι ∈ NG

a unique orbit Cι ∈ MG.

For each ι ∈ NG we will now choose a representative (Lι, νι) ∈ Cι

with Lι ∈ Lstd. For convenience, we will assume that if ι, ι′ ∈ NG

satisfy Cι = Cι′ then (Lι, νι) = (Lι′ , νι′).

In [Lus84b] it was shown that we have a disjoint union

NG =
⊔

[L,υ]∈MG

I [L, υ] where I [L, υ] = {ι ∈ NG | (Lι, υι) ∈ [L, υ]}.
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We call I [L, υ] a block of NG. If ν ∈ N 0
L is cuspidal then WG(L) = NG(L)/L is a Coxeter

group (see [Lus84b, Theorem 9.2(a)]) and we have a bijection

I [L, ν]←→ Irr(WG(L)) (4.2)

for all [L, ν] ∈ MG, which we denote ι 7→ Eι. This is known as the generalised Springer
correspondence. If L is a torus then ν is simply the pair consisting of the trivial class
and the trivial local system, in which case this bijection is the classical Springer corre-
spondence and we call I [L, ν] the Springer block.

4.3. To describe the correspondence in (4.2) we will need to recall a description of
semisimple objects in M G following [Lus84b, 3.7]. Let K ∈ M G be semisimple and
let A = End(K) be the endomorphism algebra of K, by which we mean the algebra
HomM G(K, K) in the category M G. Assume E is any finite dimensional A-module
then we define

KE = HomA(E, K) ∈M G. (4.4)

To see that this is an object of M G we can construct this in the following way. Let us
pick a presentation Am ϕ→ An → E → 0 of the module E. Applying HomA(−, K) and
using the fact that we have an isomorphism K ∼= HomA(A, K) of A-modules we get a
diagram

0 HomA(E, K) HomA(An, K) HomA(Am, K)

0 KerM G(ϕ∗) Kn Km

∼= ∼=

ϕ∗

∼=
ϕ∗

(4.5)

with exact rows (ϕ∗ is the map induced by ϕ and the vertical arrows are A-module
isomorphisms). The A-module homomorphism ϕ∗ is also a morphism in M G because
M G is Q`-linear and the kernel exists because M G is an abelian category. Hence
HomA(E, K) ∼= Ker(ϕ∗) ∈ M G as desired. Now KE is a simple object of M G if and
only if E is a simple A-module and we have a canonical isomorphism

⊕
E∈Irr(A)

(E⊗ KE) ∼= K (4.6)

in M G given by e⊗ f 7→ f (e) in each summand.
4.7. Let L ∈ L be a Levi subgroup and let ν = (O0, E0) ∈ N 0

L be a cuspidal pair
then following [Lus86, 2.3] we define for any local system L ∈ S(Z◦(L)) a semisimple
perverse sheaf KL ∈ M G in the following way. We define an open subset Σreg =

O0 · Z◦(L)reg ⊆ Σ where Z◦(L)reg = {z ∈ Z◦(L) | C◦G(z) = L} and we denote by Y the
locally closed smooth irreducible subvariety of G given by ∪x∈GxΣregx−1. We have the
following diagram

Σ Ŷ Ỹ Yα β γ
(4.8)
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where

Ŷ = {(g, x) ∈ G×G | x−1gx ∈ Σ} Ỹ = {(g, xL) ∈ G× (G/L) | x−1gx ∈ L}

α(g, x) = x−1gx β(g, x) = (g, xL) γ(g, xL) = g.

Since the local system E0 is L-equivariant there exists a canonical local system Ẽ0 on Ỹ
such that β∗Ẽ0 = α∗(E0 b Q`) (see [Lus85, 1.9.3]). Let δ : Ỹ → Z◦(L) be the map given by
δ(g, xL) = (xgx−1)ss (where hss is the semisimple part of h for all h ∈ G) then L̃ = δ∗L

is a local system on Ỹ hence so is Ẽ0⊗ L̃ . By [Lus84b, 3.2] we have γ is a Galois covering
so γ∗ = γ! because γ is finite (hence proper), which means γ∗(Ẽ0 ⊗ L̃ ) = γ!(Ẽ0 ⊗ L̃ )

is a semisimple local system on Y. We now define KL ∈ M G to be the complex
IC(Y, γ∗(Ẽ0 ⊗ L̃ ))[dim Y]. With this we have defined a map

(L,O0, E0, L ) −→ KL (4.9)

4.10. Let us keep the notation of 4.7. We denote by NG(L, L ) the set of all elements
n ∈ NG(L) such that (ad n)∗L is isomorphic to L , where ad n : G → G is the con-
jugation morphism given by (ad n)(g) = ngn−1 for all g ∈ G. Clearly L is a normal
subgroup of NG(L, L ) and we denote the quotient group NG(L, L )/L by WG(L, L ).
Let us denote by AL the endomorphism algebra of the semisimple perverse sheaf KL .
By [Lus86, §2.4(a)] there exists a set of basis elements {Θv | v ∈WG(L, L )} ⊂ AL such
that the map v 7→ Θv defines a canonical algebra isomorphism

Q`WG(L, L ) ∼= AL . (4.11)

Let us now assume that L = Q` then we denote AL simply by A and KL by K. In
this case we have WG(L, L ) = WG(L) hence A is isomorphic to Q`WG(L). Using the
description given in 4.3 we have E 7→ KE = HomWG(L)(E, K) gives a bijection between
simple WG(L)-modules and the simple summands of K (up to isomorphism). Fur-
thermore by [Lus84b, Theorem 6.5] we have for each E that there exists a unique pair
ι ∈ I [L, ν] satisfying

KE|Guni
∼= IC(Oι, Eι)[dimOι + dim Z◦(L)].

The composition of the maps E 7→ KE 7→ ι then gives the bijection in (4.2). We
will denote by Kι ∈ DG the extension by 0 of the complex KE|Guni . Clearly we have
supp(Kι) ⊆ Guni.

Remark 4.12. In [Lus84b, 3.4] the definition of NG(L, L ) includes the condition that
(ad n)(Σ) = Σ. However this is automatically satisfied in our situation by [Lus84b,
Theorem 9.2(b)].

4.13. We now end this section by explicitly describing how KL is related to
indG

L⊆P(AL ) (for this we follow [Lus84b]). Here we assume (L, P) ∈ Z and ν =

(O0, E0) ∈ N 0
L . Recalling the notation of 3.2 we wish to describe the complex D. To do
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this we first observe that

π̃AL = IC(X̂′, π∗(E0 b L ))[dim Σ + dim G + dim UP]

where UP is the unipotent radical of P and X̂′ = π−1(Σ) = {(g, h) ∈ G×G | h−1gh ∈
Σ ·UP}. Note that for l ∈ L we have π−1(l) = {(g, h) ∈ G×G | h−1gh ∈ l ·UP} hence
the fibres of π have dimension dim G + dim UP.

Let us fix a set of coset representatives {h1, . . . , hk} of P in G then we define j : X̃ → X̂
by setting j(g, hP) = (g, hi) where 1 6 i 6 k is the unique index such that h ∈ hiP. By
the construction in [Lus85, 1.9.3] we see that

D = j∗ IC(X̂′, π∗(E0 b L ))[dim Σ + dim G + dim UP − dim P] = IC(X̃′, E0 b L )[dim X̃′]

where X̃′ = j−1(X̂′) = {(g, hiP) ∈ G×G/P | h−1
i ghi ∈ Σ ·UP} and E0 b L = j∗π∗(E0 b

L ). Note that the equality dim X̃′ = dim Y = dim G−dim P +dim Σ +dim UP is given
in the proof of [Lus84b, Lemma 4.3(a)].

Let Y and Ỹ be as in 4.7 then by [Lus84b, Lemma 4.3(b)] we have τ(X̃′) = Y hence
τ−1(Y) ⊂ X̃′ ⊂ X̃. Furthermore, by [Lus84b, Lemma 4.3(c)], the map (g, hL) → (g, hP)
defines an isomorphism κ : Ỹ → τ−1(Y). As τ−1(Y) ⊂ X̃′ we have D|τ−1(Y)

∼=
E0 b L |τ−1(Y)[dim X̃′] and κ∗(E0 b L |τ−1(Y))

∼= Ẽ0 ⊗ L̃ (see [Lus84b, 4.4]) hence

(τ!D)|Y = τ!(Dτ−1(Y))
∼= γ∗κ

∗(E0 b L |τ−1(Y)[dim X̃′]) ∼= γ∗(Ẽ0 ⊗ L̃ )[dim Y].

Here we have applied 2.3 to obtain τ! = id∗ ◦τ! = γ! ◦ κ∗ = γ∗ ◦ κ∗ where the last equality
follows from the fact that γ is proper. With this we have the following result of Lusztig.

Proposition 4.14 (Lusztig, [Lus84b, Proposition 4.5]). The complex τ!D is a perverse sheaf
and is canonically isomorphic to IC(Y, γ∗(Ẽ0 ⊗ L̃ ))[dim Y]. In particular indG

L⊆P(AL ) and
KL are canonically isomorphic in M G.

Remark 4.15. Note that Proposition 4.14 implies that indG
L⊆P(AL ) does not depend

upon the choice of parabolic P containing L so in this situation we will simply write
indG

L (AL ) when convenient.

5. Bases of the Endomorphism Algebra A

5.1. Assume L ∈ L is a Levi subgroup supporting a cuspidal pair (O0, E0) ∈ N 0
L

then we denote by K the image of (L,O0, E0, Q`) under the map in (4.9) and by A
the endomorphism algebra of K. As was mentioned in (4.11) Lusztig has defined an
isomorphism between A and the group algebra Q`WG(L) by specifying a set of basis
elements {Θv | v ∈ WG(L)} ⊂ A. However, in [Bon04, §6.A] Bonnafé has defined
an alternative basis {Θ′v | v ∈ WG(L)} ⊂ A which also defines such an isomorphism.
In this article we will need to use both bases and we recall here results of Bonnafé
concerning the relationship between the two.
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We now assume that u0 ∈ O0 is a fixed unipotent element. If L
and O0 are F-stable then we assume that u0 ∈ OF

0 .

5.2. Assume v ∈ WG(L) then by [Bon04, eq. (5.4)] we may find a representative
v̇ ∈ NG(L) ∩ C◦G(u0) and we will assume that all such representatives are chosen in
this way. Let us recall the notation of 4.7. For any v ∈ WG(L) we have by [Lus84b,
Theorem 9.2(b)] that there exists an isomorphism θv : E0 b Q` → (ad v̇)∗(E0 b Q`) which
we assume fixed. This isomorphism induces an isomorphism θ̂v : Ẽ0 → γ∗v Ẽ0 where
γv : Ỹ → Ỹ is given by γv(g, xL) = (g, xv̇−1L) (see the proof of [Lus84b, Proposition
3.5]). By definition we have γvγ = γ hence γ∗ θ̂v defines an endomorphism of γ∗Ẽ0. As
K is the intersection cohomology complex IC(Y, γ∗Ẽ0) we may then define Θv to be the
unique endomorphism of K extending γ∗ θ̂v.

By [Lus84b, Theorem 9.2(d)] there is a unique isomorphism θv for each v ∈ WG(L)
such that Θv induces the identity on H −dim Y

u (K) where u is any element of the induced
unipotent class IndG

L (O0) (see [Lus84b, Corollary 7.3(a)]). With this choice we have

v 7→ Θv (5.3)

defines the required algebra isomorphism Q`WG(L) → A. Assume now that L is a
local system on Z◦(L). Let KL be the image of (L,O0, E0, L ) under the map in (4.9) and
let AL be the endomorphism algebra of KL then from the discussion in [Lus86, 2.3] we
have an embedding of algebras AL ↪→ A which corresponds under (5.3) to the natural
embedding Q`WG(L, L ) ↪→ Q`WG(L). In particular the restriction of (5.3) to WG(L, L )

defines the isomorphism mentioned in (4.11).

Remark 5.4. Assume L and O0 are F-stable. It is clear to see that if v̇ ∈ NG(L)∩ C◦G(u0)

is a representative for v ∈ WG(L) then v̇−1 ∈ NG(L) ∩ C◦G(u0) is a representative of v−1

and F(v̇) ∈ NG(L) ∩ C◦G(u0) is a representative of F(v).

5.5. In [Bon04, §6.A] Bonnafé shows that for every v ∈ WG(L) there exists an iso-
morphism θ′v : E0 → (ad v̇)∗E0 which induces the identity at the stalk of u0. Clearly this
also defines an isomorphism E0 b Q` → (ad v̇)∗(E0 b Q`) which induces the identity
at the stalk of any element u0z where z ∈ Z◦(L); we will also denote this by θ′v. As
is described in 5.2 this isomorphism determines a unique endomorphism Θ′v of K and
by [Bon04, Proposition 6.1] we have the map v 7→ Θ′v defines an algebra isomorphism
Q`WG(L) → A. The following result describes the relationship between the two sets of
basis elements for A.

Proposition 5.6 (Bonnafé, [Bon04, Corollary 6.2]). There exists a linear character γG
L,u0
∈

Irr(WG(L)) such that Θ′v = γG
L,u0

(v)Θv and so θ′v = γG
L,u0

(v)θv for all v ∈WG(L).

5.7. As is remarked in [Bon04, Remark 6.4] the linear character γG
L,u0

is known ex-
plicitly in almost all cases. Assume that Z(G) is connected and p is a good prime for
G. By the reduction arguments given in [Bon04, §4.A, §4.B, Corollary 7.3] it is sufficient
to describe this character when G is an adjoint simple group. If G is of type An or of
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exceptional type then L is either G or a torus and so γG
L,u0

is the trivial character (see
[Bon04, Corollary 6.9]). When G is of type Bn, Cn or Dn then in general γG

L,u0
is not

the identity. However, this character is described by work of Waldspurger [Wal01] as is
explained in [Bon04, Example 6.3] (see also [Bon05, Errata]).

6. Rational Structures

6.1. We say a character sheaf A ∈ Ĝ is F-stable if we have an isomorphism φA :
F∗A → A in DG and we denote by ĜF ⊆ Ĝ the set of all F-stable character sheaves
of G. Clearly this isomorphism induces a map H iF∗A → H i A for each i ∈ Z and
hence a map H i

x F∗A → H i
x A for each x ∈ G; we denote both these maps again by

φA. If x ∈ G = GF then φA induces an automorphism of the stalk H i
x A because

H i
x F∗A = H i

F(x)A = H i
x A. For each such A and φA we then define the characteristic

function χA,φA : G → Q` by setting

χA,φA(g) = ∑
i
(−1)i Tr(φA, H i

g A)

for all g ∈ GF. Note that this characteristic function depends upon the choice of isomor-
phism φA. If A is an element of ĜF then we will choose φA to satisfy the properties in
[Lus85, §25.1]. With such a choice the resulting characteristic function χA,φA has norm
1; the choice of φA is unique up to scalar multiplication by a root of unity.

6.2. The Frobenius endomorphism acts on the setNG by ι 7→ F−1(ι) := (F−1(Oι), F∗Eι),
where F∗Eι is the inverse image of Eι under F. We say ι is F-stable if F−1(Oι) = Oι and
F∗Eι is isomorphic to Eι (we also denote this by ι = F−1(ι)); we denote the subset of
all F-stable pairs by N F

G. The Frobenius also acts on the set M̃G, hence also on MG,
by (L, ν) 7→ (F−1(L), F−1(ν)). We say (L, ν) is F-stable if F−1(L) = L and F−1(ν) = ν

and we denote by M̃F
G the subset of all F-stable pairs (similarly for MF

G). Note that
the map NG → MG is compatible with the actions of F so that we have an induced
map N F

G → MF
G (c.f. [Lus85, 24.2]). Assume (L, P) ∈ Zstd is such that N 0

L 6= ∅ then
by the classification of cuspidal local systems (see [Lus84b, §10-15]) we have F(L) = L
and F(P) = P. In particular any orbit [L, ν] ∈ MF

G may be represented by an F-stable
standard Levi subgroup.

Twisted Levi Subgroups

6.3. We now wish to choose for each F-stable character sheaf A ∈ ĜF satisfying
supp(A) ∩Guni 6= ∅ a distinguished isomorphism φA : F∗A → A. To do this we will
adapt an idea of Lusztig from [Lus86, §3.3 - §3.4] and [Lus85, §10.3]. Firstly let us
assume that (L, P) ∈ Zstd is a standard pair such that N 0

L 6= ∅ and A0 = AL
ν ∈ L̂ is a

cuspidal character sheaf satisfying (A : indG
L A0) 6= 0 (see 3.4 and Lemma 3.9). Using the

argument in [Lus85, §10.5] together with Lemma 3.9 we see that there exists x ∈ G such
that xL is F-stable and B0 = (ad x−1)∗A0 ∈ x̂L is an F-stable cuspidal character sheaf
satisfying (A : indG

xL B0) 6= 0 (we may then assume that A is a summand of indG
xL B0).
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6.4. Let us assume that (L, P) ∈ Zstd is a standard pair such that ν = (O0, E0) ∈ N 0
L

and L ∈ S(T0) is a local system. For every v ∈ WG(L) we fix an element gv ∈ G such
that g−1

v F(gv) = F(v̇−1) where v̇ ∈ NG(L) is as in 5.2. If v is the identity in WG(L) then
we will assume for convenience that v̇ = gv is the identity in G (this clearly satisfies the
assumption of 5.2). We now define

Lv = gv L Pv = gv P Ov = gvO0 Σv = OvZ◦(Lv) Ev = (ad g−1
v )∗E0 Lv = (ad g−1

v )∗L .

Through the isomorphism ad g−1
v : Lv → L we may identify the action of the Frobenius

endomorphism F on Lv with the action of Fv on L defined by Fv(l) = F(v̇−1lv̇) for all
l ∈ L. Clearly we have an isomorphism of abstract groups ad g−1

v : LF
v → LFv and

(ad g−1
v )∗ induces a bijective correspondence between L̂Fv and L̂F

v . In particular, assume
B ∈ L̂Fv and ψ : F∗v B → B is a fixed isomorphism then ψ′ : F∗B′ → B′ is also an
isomorphism where ψ′ = (ad g−1

v )∗ψ and B′ = (ad g−1
v )∗B. From the definitions we

have the corresponding characteristic functions are related by χB′,ψ′ = χB,ψ ◦ ad g−1
v .

Let us denote by Dv the complex IC(Σv, Ev b Lv)[dim Σv] (see (3.5)). From the dis-
cussion in 6.3 we need only concern ourselves with summands of indG

Lv
(Dv) where Dv

is F-stable. Clearly we have

F∗Dv = IC(F−1(Σv), F∗Ev b F∗Lv)[dim Σv]

hence we may, and will, assume that ν ∈ N F
L and F∗Lv ∼= Lv (see [Lus84b, Theorem

9.2(b)]). As we have an equivalence F∗Lv ∼= Lv ⇔ F∗v L ∼= L we see that the existence
of an isomorphism F∗Lv ∼= Lv is equivalent to v−1 being contained in the subset

ZG(L, L ) = {n ∈ NG(L) | ad(n)∗F∗L ∼= L }/L ⊂WG(L). (6.5)

In particular we will assume that ZG(L, L ) is non-empty. Note that ZG(L, L )x =

ZG(L, L ) for any x ∈WG(L, L ), hence ZG(L, L ) is a union of right cosets of WG(L, L )

in WG(L).
If S 6 G is any F-stable torus and F ∈ S(S)F is any F-stable local system then

we may choose a distinguished isomorphism β : F∗F → F by the condition that the
morphism induced by β at the stalk of the identity element 1 ∈ SF is the identity
morphism. In particular this defines an isomorphism ϕv

1 : F∗Lv → Lv for each v−1 ∈
ZG(L, L ).

Relative Weyl Groups

6.6. For the following we refer to [Bon04, Proposition 1.12] and the references therein
(in particular [How80]). Let us denote by ΦL ⊆ ΦG the root system of L with respect
to T0. We will denote by VG the R-subspace of R⊗Z X(T0) spanned by ΦG and by
VL ⊆ VG the R-subspace spanned by ΦL. Let ∆L ⊂ ∆G be the set of simple roots of L
with respect to T0 6 B0 ∩ L then we denote by ∆L the set ∆G − ∆L. For each α ∈ ∆L let
Mα ∈ Lstd be the standard Levi subgroup of G whose simple roots are ∆L ∪ {α} with
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respect to T0 6 B0 ∩Mα then the group WMα(L) contains a unique non-trivial element
which we denote by sL,α. For every α ∈ ∆L we have sL,α acts on the quotient space
VL = VG/VL as a reflection sending α + VL to −α + VL. We will also use ∆L to denote
the image {α +VL | α ∈ ∆̃L} of ∆L in VL. Taking I = {sL,α | α ∈ ∆L} we have (WG(L), I)

is a Coxeter system with corresponding root system ΦL ⊂ VL obtained as the image of
∆L under the action of WG(L). Note that if Φ+

L ⊂ ΦL is the positive system of roots
determined by ∆L then we have Φ+

L = ΦL ∩ {α + VL | α ∈ Φ+}.
For any root α ∈ ΦL we denote by nα ∈ NG(L) a representative for the reflection

sα ∈WG(L) of α. We now consider the following subgroup

RG(L, L ) = 〈sα ∈WG(L) | α ∈ ΦL and ad(nα)
∗L ∼= L 〉

of WG(L, L ). Clearly this is a reflection subgroup of WG(L) and the defining condition
does not depend upon the choice of representative nα. In particular there exists a root
system Ψ ⊂ ΦL such that RG(L, L ) is the reflection group of Ψ. Taking Ψ+ = Ψ ∩Φ+

L

we have Ψ+ is a system of positive roots in Ψ which determines a unique set of Coxeter
generators J ⊆ RG(L, L ).

6.7. Assume n ∈ NG(L, L ) then for any v−1 ∈ ZG(L, L ) we have an isomorphism

(ad F−1
v (n))∗L ∼= (ad F−1

v (n))∗(Fv)
∗L = F∗v (ad n)∗L ∼= F∗v L ∼= L ,

in particular as L is Fv-stable this shows that Fv induces an automorphism Fv :
WG(L, L ) → WG(L, L ). Assume w−1 ∈ ZG(L, L ) is the unique element of minimal
length in its right coset w−1RG(L, L ) with respect to the length function of (WG(L), I)

(see [Lus84a, Lemma 1.9(i)]). This element is uniquely determined in its coset by the
condition that w−1 ·Ψ+ ⊂ Φ+. In particular, for such an element, Fw is an automorphism
of WG(L, L ) which restricts to an automorphism of the Coxeter system (RG(L, L ), J).
Taking RG(Lw, Lw) (resp. Jw) to be the image of RG(L, L ) (resp. J) under ad gw we
have (RG(Lw, Lw), Jw) is a Coxeter system and F induces an automorphism of this
Coxeter system. Note that this automorphism depends upon the choice of the element
w ∈ ZG(L, L ).

Remark 6.8. Assume Z(G) is connected and G/Z(G) is simple then by [Sho95, I -
5.16.1, II - 4.2] and [Lus84a, 8.5.13] we have WG(L, L ) = RG(L, L ) is a reflection sub-
group of WG(L). Furthermore ZG(L, L ) is a single right coset of WG(L, L ) in WG(L),
hence the element w chosen above is unique. It is well known that if Z(G) is discon-
nected then these statements do not hold (for instance when L is a torus).

Isomorphisms for Local Systems

6.9. We now consider how to choose an isomorphism F∗Ev → Ev for any v ∈WG(L).
First we will choose an isomorphism ϕ0 : F∗E0 → E0 such that the induced isomorphism
(E0)u → (E0)u at the stalk of any element u ∈ OF

0 is q(dim(L/Z◦(L))−dimO0)/2 times a map
of finite order. Following [Lus90, 9.3] we define an isomorphism ϕv

0 : F∗Ev → Ev in
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the following way. Let K be the image of (L,O0, E0, L ) under the map in (4.9) and
let A be its endomorphism algebra (c.f. 4.10). The basis element θF(v) of A defines
an isomorphism θF(v) : E0 → (ad F(v̇))∗E0. Taking the inverse image of θF(v) along
ad g−1

v ◦ F we see that we obtain a new isomorphism

(ad g−1
v ◦ F)∗θF(v) : F∗Ev → (ad g−1

v )∗F∗E0.

Moreover the isomorphism ϕ0 induces an isomorphism

(ad g−1
v )∗ϕ0 : (ad g−1

v )∗F∗E0 → Ev.

We will now take ϕv
0 to be the composition (ad g−1

v )∗ϕ0 ◦ (ad g−1
v ◦ F)∗θF(v) (note that by

our assumption on gv we have ϕv
0 = ϕ0 if v = 1). If v−1 ∈ ZG(L, L ) then we can define

a unique isomorphism φDv : F∗Dv → Dv with the property that the restriction of φDv to
Σv coincides with ϕv

0 b ϕv
1 (c.f. 6.4).

Remark 6.10. Note that the integer dim(L/Z◦(L)) − dimO0 is not even in general.
Hence our construction above depends upon a choice of q1/2 in Q`. However, if Z(G) is
connected and p is a good prime then this is an integer by the classification of cuspidal
pairs (see [Lus84b]).

Remark 6.11. Here, we have not quite followed the setup of [Lus85] because we have
scaled the map of finite order, chosen in [Lus85, 24.2], by a power of q. When following
[Lus85] we must then adjust all terms by this scalar, which the reader may check that
we do.

Isomorphisms for Induced Complexes

6.12. Assume v−1 ∈ ZG(L, L ) and let us denote by Kv the image of (Lv,Ov, Ev, Lv)

under the map in (4.9). We now consider how to choose an isomorphism F∗Kv → Kv.
Recalling the construction in 4.7 we see that the isomorphisms ϕv

0 : F∗Ev → Ev and
ϕv

1 : F∗Lv → Lv naturally induce isomorphisms ϕ̃v
0 : F∗Ẽv → Ẽv and ϕ̃v

1 : F∗L̃v → L̃v

hence an isomorphism ϕ̃v
0 ⊗ ϕ̃v

1 : F∗Ẽv ⊗ F∗L̃v → Ẽv ⊗ L̃v. Clearly the variety Y of 4.7 is
stable under F (because Lv is stable under F) so we have

F∗Kv = IC(Y, F∗γ∗(Ẽv ⊗ L̃v))[dim Y] = IC(Y, γ∗F∗(Ẽv ⊗ L̃v))[dim Y]

because γ∗ = γ! and F∗γ! = γ!F∗ (see 4.7 and 2.3). We may now define a unique
isomorphism φ : F∗Kv → Kv by specifying that φ|Y coincides with γ∗(ϕ̃v

0 ⊗ ϕ̃v
1).

Isomorphisms for Character Sheaves

6.13. Let Kv and φ : F∗Kv → Kv be as in 6.12. By Proposition 4.14 we may assume
that any summand A of indG

Lv
(Dv) is a summand of Kv ∼= indG

Lv
(Dv). In particular, if

Av is the endomorphism algebra of Kv then A = Kv,E = (Kv)E for some simple Av-
module E (c.f. 4.3). By adapting the construction in [Lus85, §10.3] we will show how



18

φA is determined from φ. Let us denote by σ : Av → Av the algebra automorphism
given by σ(θ) = φ ◦ F∗θ ◦ φ−1 where F∗θ : F∗Kv → F∗Kv is the induced map. For any
Av-module E we denote by Eσ the module obtained from E by twisting the action with
σ−1 (c.f. A.1). For each such E we then have an induced isomorphism of Av-modules

F∗A = HomA(E, F∗Kv)→ HomA(Eσ, Kv)

given by f 7→ φ ◦ f . Here F∗Kv is an A-module under the action θ · k = (F∗θ)(k) for all
k ∈ F∗Kv and the first equality is seen to hold by the construction given in (4.5).

Assume we have an Av-module isomorphism ψE : E → Eσ then φA : F∗Kv,E →
Kv,E, given by φA( f ) = φ ◦ f ◦ ψE, is an isomorphism of Av-modules which defines an
isomorphism in DG under the construction in (4.5). We now need only observe that
when Kv,E is simple, hence E is simple, all such isomorphisms occur in this way. To see
this note that any non-zero f ∈ HomAv(E, Kv) gives an isomorphism E ∼= Im( f ), because
E is a simple module, so ψE = f−1 ◦ φ−1 ◦ φA ◦ f is determined by φA. This discussion
shows that choosing the isomorphism φA is equivalent to choosing the isomorphism ψE.

Let us recall Lusztig’s basis {Θy | y ∈ WG(Lv, Lv)} for the endomorphism algebra
Av (c.f. 5.2). From their definition one may readily check that the basis elements of Av

satisfy σ(Θy) = ΘF−1(y) for all y ∈ WG(Lv, Lv). Let W̃G(Lv, Lv) denote the semidirect
product WG(Lv, Lv)o 〈F〉 where 〈F〉 is the finite cyclic group generated by the auto-
morphism F. We can extend E to a W̃G(Lv, Lv)-module Ẽ by letting F−1 act as ψE under
the isomorphism in (4.11). In this way we see that choosing φA is equivalent to choosing
an extension Ẽ ∈ Irr(W̃G(Lv, Lv)) of E.

Remark 6.14. Assume W is a finite Weyl group, (W, T) is a finite Coxeter system and
φ : W → W is an automorphism stabilising T. For any φ-stable irreducible character
χ ∈ Irr(W)φ Lusztig has systematically defined a non-canonical extension of χ to the
semidirect product W̃ o 〈φ〉 (see [Lus85, 17.2]). Throughout this article we will refer to
this extension as Lusztig’s preferred extension or simply the preferred extension.

Assume now that v = w, where w−1 ∈ ZG(L, L ) is as in 6.7,
and RG(Lw, Lw) = WG(Lw, Lw) is a Coxeter group then F is an
automorphism of the Coxeter system (WG(Lw, Lw), Jw) (c.f. 6.6).
In this situation we will assume that ψE is chosen such that Ẽ is
Lusztig’s preferred extension of E.

Passing from Twisted to Split Levis on the Trivial Local System

6.15. Assume, only for this section, that L = Q`. Let Kv be the image of
(Lv,Ov, Ev, Lv) under the map in (4.9) and let ψv : F∗Kv → Kv be the isomorphism
defined in 6.12. We will denote by K the image of (L,O0, E0, L ) under the map in
(4.9). We wish to define an isomorphism φv : F∗K → K which is related (through
ΘF(v)) to the isomorphism ψv. Recall that in 6.9 and 6.12 we have defined isomorphisms
φ : F∗K → K, ϕ0 : F∗E0 → E0, ϕ1 : F∗L → L and ϕ̃0 : F∗Ẽ0 → Ẽ0 (simply take v = 1 in
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the constructions). With this we obtain isomorphisms

ϕv,0 := θF(v)(ϕ0 b ϕ1) : F∗(E0 b Q`)→ (ad v̇)∗(E0 b Q`)

ϕ̃v,0 := θ̃F(v) ϕ̃0 : F∗Ẽ0 → γ∗v Ẽ0

by composing with the endomorphism defined in 5.2. As in 6.12 we define the isomor-
phism φv to be the unique extension of the isomorphism γ∗ ϕ̃v,0. It is clear from the
construction that we have φv = ΘF(v)φ and furthermore using the exact same argument
as in [Lus85, (10.6.1)] we have for each g ∈ G and i ∈ Z that

Tr(φv, H i
g K) = Tr(ΘF(v)φ, H i

g K) = Tr(ψv, H i
g Kv). (6.16)

Assume now that KE is the F-stable summand of K parameterised by the irreducible
character E ∈ Irr(WG(L))F (c.f. 4.10). By 6.13 we have an isomorphism φE : F∗KE → KE

defined by φ and the choice of extension Ẽ. Replacing φ by φv in the construction of
6.13 we see that the isomorphism φE is replaced by φv

E = ΘF(v)φE. Note that we have a
bijection

Irr(WG(L))F = Irr(WG(L))Fv → Irr(WG(Lv))
F, (6.17)

induced by the isomorphism ad gv. We will denote by Kv,E the summand of Kv which is
parameterised by E′ ∈ Irr(WG(Lv))F corresponding to E under (6.17). By 6.13 we have
an isomorphism ψv

E : F∗Kv,E → Kv,E whose definition depends upon ψv and an extension
Ẽ′ of E′. We may, and will, assume that the restriction of Ẽ′ to the coset WG(Lv).F
coincides with the restriction of Ẽ to the coset WG(L).F under the correspondence in
2.6. Arranging things in this way, and using (6.16), we then have for each g ∈ G and
i ∈ Z that

Tr(φv
E, H i

g KE) = Tr(ΘF(v)φE, H i
g Kι) = Tr(ψv

E, H i
g Kv,E). (6.18)

Bases of the Space of Unipotently Supported Class Functions

6.19. Before we continue we define here two integer values associated to a pair ι ∈
NG. Recall that [Lι, νι] ∈ MG is the orbit such that ι ∈ I [Lι, νι] (c.f. 4.1). Let us denote
νι by (O0, E0) then we attach to ι the integers

aι = −dimOι − dim Z◦(Lι),

bι = (dim G− dimOι)− (dim Lι − dimO0).

We now consider how the above isomorphisms determine a canonical isomorphism
F∗Eι → Eι for an arbitrary pair ι = (Oι, Eι) ∈ N F

G. Recall from [Lus84b, Theorem 6.5(c)]
that the complex Kι (c.f. 4.10) is such that H aι(Kι)|Oι

∼= Eι. Assume ι corresponds
to E ∈ Irr(WG(Lι))F under the generalised Springer correspondence. In 6.15 we have
defined an isomorphism φv

E : F∗KE → KE (for each v ∈WG(Lι)) which naturally induces
an isomorphism φv

ι : F∗Kι → Kι by the definition of Kι. We similarly obtain an induced
isomorphism F∗H aι(Kι)|Oι

→H aι(Kι)|Oι
hence an isomorphism ϕv

ι : F∗Eι → Eι. Setting
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v = 1 gives the required canonical isomorphism. Following [Lus85, 24.2.2] we define,
for every v ∈ WG(Lι), an isomorphism ψv

ι by the condition that ϕv
ι = q(dim G+aι)/2ψv

ι .
Note that we are using Remark 6.11 and the fact that bι = aι + dim supp Kι. This latter
statement follows from the fact that dim supp Kι = dim Y where Y is as in 4.13.

6.20. Let us assume that to every element ι ∈ NG we have associated an element
vι ∈ WG(Lι) such that this assignment is constant on blocks (i.e. vι = vι′ if ι and ι′

are contained in the same block of NG). Following [Lus85, §24.2] we associate to each
F-stable pair ι ∈ N F

G a unipotently supported class function of G by setting

Xv
ι (g) = (−1)aι q−(dim G+aι)/2χKι,φv

ι
(g),

for all g ∈ G (where φv
ι is as in 6.15). Here we simply write v for vι with the meaning un-

derstood from the context. Furthermore for each ι ∈ N F
G we define a second unipotently

supported class function of G by setting

Yv
ι (g) =

Tr(ψv
ι , (Eι)g) if g ∈ OF

ι ,

0 otherwise,

for all g ∈ G (where ψv
ι is as in 6.19). The sets Y∗ = {Yv

ι | ι ∈ N F
G} and X ∗ = {Xv

ι | ι ∈
N F

G} are bases for the subspace CentU(G) of unipotently supported class functions of G
(see [Lus85, 24.2.7]). In particular for each ι, ι′ ∈ N F

G there exists an element Pι′,ι ∈ Q`

such that
Xv

ι = ∑
ι′∈N F

G

Pι′,ιYv
ι′ .

The matrix (Pι′,ι)ι′,ι∈N F
G

is precisely the matrix considered in [Lus85, §24] and is com-
putable by the algorithm described in the proof of [Lus85, Theorem 24.4]. We recall that
the following property of the coefficients Pι′,ι holds

Pι′ ι = 0 if I [Lι, νι] 6= I [Lι′ , νι′ ]. (6.21)

From now on the following assumption is in place. If A ∈ ĜF

is a character sheaf satisfying supp(A) ∩Guni 6= ∅ then we as-
sume the isomorphism φA : F∗A→ A to be chosen as in 6.13. If
ι ∈ N F

G is any F-stable pair and v ∈WG(Lι) then we assume the
isomorphism φv

ι : F∗Kι → Kι to be as in 6.19.

7. Restricting Character Sheaves to the Unipotent Variety

7.1. Let us carry forward the setup of the previous section. We will denote by KL
w

the image of (Lw,Ow, Ew, Lw) under the map in (4.9), where w ∈ WG(L) is as in 6.7.
Furthermore, we assume A = (KL

w )E = KL
w,E is the summand of KL

w parameterised by
E ∈ Irr(WG(Lw))F (c.f. 4.3). Setting L = Q` we obtain a new complex which we denote
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simply by Kw. If f ∈ Cent(G) is a class function then we denote by f |Guni ∈ CentU(G) the
extension by 0 of the restriction to Guni. Recall from 6.20 that X ∗ is a basis of CentU(G)

then we have
χA,φA |Guni = ∑

ι∈N F
G

m(A, ι, φv
ι )χKι,φv

ι

for some coefficients m(A, ι, φv
ι ) ∈ Q`. We will assume that the element vι chosen in 6.20

is w when ι is contained in the block I [L, ν] (ν = (O0, E0)). It is the purpose of this
section to describe the coefficients m(A, ι, φv

ι ). We will do this following the method in
[Lus86], in particular we will now recall the sequence of isomorphisms constructed in
[Lus86, §2.6].

7.2. Assume (Lw, Q) ∈ Z then we will denote by indG
Lw⊆Q(AL ) the image of

(Lw, Q,Ow, Ew, Lw) under the map in (3.6). Let D be the similarly named complex
defined in 3.2 then by the discussion in 4.13 we have D = IC(X̃′, Ew b Lw)[dim X̃′].
Setting L = Q` we obtain new complexes which we respectively denote by D0 and
indG

Lw⊆Q(A0). Recall the notation of 4.13 and let i : Yuni ↪→ Y be the natural inclusion of
the unipotent elements contained in Y. We have a commutative diagram

O0 X̂′uni X̃′uni Yuni

Σ X̂′ X̃′ Y

i

π

i

σ

i

τ

i

π σ τ

where X̃′uni = τ−1(Yuni) and X̂′uni = σ−1(X̃′uni). For X̃′uni and X̂′uni we have the action
of i is given by the natural action on the first factor. We will denote by Z̃′uni ⊂ X̃′uni the
subvariety given by {(g, hQ) ∈ Guni ×G/Q | h−1gh ∈ ΣUQ} and by ı̃ : Z̃′uni ↪→ X̃′uni the
inclusion map. It is clear that we have an isomorphism ψ : i∗(E0 b L ) → i∗(E0 b Q`) of
local systems and as π ◦ ı̃ ◦ j (c.f. 4.13) commutes with i we have an induced isomorphism

ψ′ = ı̃∗ j∗π∗(ψ) : i∗ ı̃∗E0 b L → i∗ ı̃∗E0 b Q`,

which in turn induces an isomorphism

ψ′′ : i∗ ı̃∗D = IC(X̃′uni, i∗ ı̃∗E0 b L )[dim X̃′]→ IC(X̃′uni, i∗ ı̃∗E0 b Q`)[dim X̃′] = i∗ ı̃∗D0.

According to [Lus84b, 6.6] we have (τ!D)|Yuni
= τ!i∗ ı̃∗D and (τ!D0)|Yuni

= τ!i∗ ı̃∗D0 hence
τ!(ψ

′′) gives an isomorphism δQ : indG
Lw⊆Q(AL )|Guni → indG

Lw⊆Q(A0)|Guni in DGuni (c.f.
[Lus86, §2.6(c)]). Note that 2.3 does not apply here because i is a closed immersion.

7.3. For each pair (Lw, Q) ∈ Z we will denote by

λL ,Q : indG
Lw⊆Q(AL )|Guni → KL

w |Guni and λQ : indG
Lw⊆Q(A0)|Guni → Kw|Guni

the restrictions to Guni of the canonical isomorphisms described by Proposition 4.14.
Putting these isomorphisms together with δQ we can now define an isomorphism

ε := λQ ◦ δQ ◦ λ−1
L ,Q : KL

w |Guni → Kw|Guni ,
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(c.f. [Lus86, §2.6(a)]). We claim that ε does not depend upon the choice of parabolic
subgroup Q used to define it. Firstly, from the construction above, it is clear that δQ

does not depend upon the choice of Q hence we need only show that the same is true
of λQ and λL ,Q. However, using the construction in 4.13 we see that this follows from
the commutative diagram

Ỹ τ−1
Q (Y)

Ỹ τ−1
R (Y)

id

κQ

µ

κR

where (Lw, R) ∈ Z and µ(g, hQ) = (g, hR). This statement is implicitly used in [Lus86,
§2.6].

7.4. Let v ∈ WG(Lw, Lw) then we denote by v̇ ∈ NG(Lw, Lw) a representative of
v. Following [Lus86, §2.6(d)] we associate to each v ∈ WG(Lw, Lw) isomorphisms
θ̃L ,v : indG

Lw⊆v̇Pw
(AL ) → indG

Lw⊆Pw
(AL ) and θ̃v : indG

Lw⊆v̇Pw
(A0) → indG

Lw⊆Pw
(A0) in the

following way. Recall the notational conventions introduced in the proof of Lemma 3.9.
Denote by ϕv : X̃G

Lw⊂v̇Pw
→ X̃G

Lw⊂Pw
the isomorphism given by ϕv(g, hv̇Pw) = (g, hv̇Pw).

By 2.3 we have (τG
Lw⊂v̇Pw

)! ϕ
∗
v = id∗(τG

Lw⊂Pw
)! = (τG

Lw⊂Pw
)! so we take θ̃L ,v and θ̃v to be the

isomorphisms induced by ϕv. Using the definition of θv one can check that we have a
commutative diagram

KL
w |Guni indG

Lw⊆v̇Pw
(AL )|Guni indG

Lw⊆v̇Pw
(A0)|Guni Kw|Guni

KL
w |Guni indG

Lw⊆Pw
(AL )|Guni indG

Lw⊆Pw
(A0)|Guni Kw|Guni

θv

λ−1
L ,v

θ̃L ,v

δv

θ̃v

λv

θv

λ−1
L ,1 δ1 λ1

where λL ,v = λL ,v̇Pw and λv = λv̇Pw . In particular this shows that the isomorphism ε is
an isomorphism of WG(Lw, Lw)-modules (recall that ε does not depend upon the choice
of parabolic subgroup used to define it).

We now wish to check that the isomorphism ε respects the action of the Frobenius
endomorphism. In other words let φw

L : F∗KL
w → KL

w and φw
Q`

: F∗Kw → Kw be the
isomorphisms defined in 6.12 then we wish to show that ε ◦ φw

L = φw
Q`
◦ F∗ε. Recall that

in 6.9 we fixed isomorphisms F∗AL → AL and F∗A0 → A0 and that by Lemma 3.9
these respectively induce isomorphisms ψL ,Q : F∗ indG

Lw⊆F(Q)(AL ) → indG
Lw⊆Q(AL )
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and ψQ : F∗ indG
Lw⊆F(Q)(A0)→ indG

Lw⊆Q(A0). With this we have a commutative diagram

F∗(KL
w |Guni) KL

w |Guni

F∗(indG
Lw⊆F(Q)(AL )|Guni) indG

Lw⊆Q(AL )|Guni

F∗(indG
Lw⊆F(Q)(A0)|Guni) indG

Lw⊆Q(A0)|Guni

F∗(Kw|Guni) Kw|Guni

φw
L

F∗λ−1
L ,F(Q) λ−1

L ,Q

ψL ,Q

F∗δF(Q) δQ

ψQ

F∗λF(Q) λQ
φw

Q`

hence ε commutes with the isomorphisms φw
L and φw

Q`
as desired (note that we have

used here that F(Guni) = Guni).
7.5. We now arrive at our ultimate isomorphism (c.f. [Lus86, §2.6(e)]). For any simple

WG(Lw, Lw)-module E we will denote by Ê the induced module IndWG(Lw)
WG(Lw,Lw)

(E). Let
Kw,Ê = (Kw)Ê be as in (4.4) then for any such E we can define a WG(Lw, Lw)-module
isomorphism X : KL

w,E|Guni → Kw,Ê|Guni by taking the composition

KL
w,E|Guni = HomWG(Lw,Lw)(E, KL

w |Guni)

∼= HomWG(Lw,Lw)(E, Kw|Guni)

∼= HomWG(Lw,Lw)(E, HomWG(Lw)(Q`WG(Lw), Kw))|Guni

∼= HomWG(Lw)(Q`WG(Lw)⊗ E, Kw)|Guni

= Kw,Ê|Guni .

Here we have used ε and the standard isomorphisms given by (2.6) and (2.19) of [CR81].
Chasing through the isomorphisms we can see that

X ◦ φKL
w,E
◦ F∗ f = φw

Q`
◦ F∗X ◦ F∗ f ◦ (1⊗ ψE)

for all f ∈ KL
w,E|Guni .

Using (6.18) and the fact that the modules Q`WG(Lw) ⊗ Eσ and (Q`WG(Lw) ⊗ E)σ

are isomorphic as WG(Lw)-modules we see that we have an equality

χA,φA |Guni = ∑
ι∈I (L,ν)F

〈Ẽι, IndWG(Lw).F
WG(Lw,Lw).F

(Ẽ)〉WG(Lw).FχKι,φw
ι

. (7.6)

Note that in the above we assume that Ẽι and Ẽ are the restrictions of the extensions to
the appropriate coset. In particular we have proved (c.f. 2.6) that

m(A, ι, φv
ι ) =

〈Ẽι, IndWG(L).F
WG(L,L ).Fw−1(Ẽ)〉WG(L).F if ι ∈ I [L, ν]

0 otherwise,
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for all ι ∈ N F
G. Note that, as in (6.17), we identify the sets of irreducible characters

Irr(WG(L))F and Irr(WG(Lw))F. Combining this with the statements of 6.20 we obtain
our main result.

Theorem 7.7. We have the following equality of class functions

χA,φA |Guni = ∑
ι′,ι∈I [L,ν]F

〈Ẽι, IndWG(L).F
WG(L,L ).Fw−1(Ẽ)〉WG(L).F(−1)aι q(dim G+aι)/2Pι′,ιYw

ι′ .

Remark 7.8. Note that the equality (7.6) echoes a similar equality which is known to
hold for almost characters (see for instance [AA07, Lemme 6.1]).

8. Split Elements and Lusztig’s Preferred Extensions

From now until the end of this article we assume that Z(G) is
connected, G/Z(G) is simple and p is a good prime for G.

8.1. To make the formula in Theorem 7.7 computationally explicit we must now
show how to compute the functions Yw

ι . In [Sho87, Remark 5.1], assuming F is a split
Frobenius endomorphism, Shoji has defined the notion of a split unipotent element.
However, there is also a notion of split unipotent element when F is not split which
we would like to recall here. All the statements of this section are due to the combined
efforts of Hotta–Springer, Beynon–Spaltenstein and Shoji. To give the definition we must
first prepare some preliminary notions and notation.

8.2. Given a unipotent element u ∈ G we denote by BG
u the variety of Borel sub-

groups of G containing the unipotent element u and we denote its dimension dimBG
u

by du. The corresponding `-adic cohomology groups with compact support Hi
c(B

G
u ) :=

Hi
c(B

G
u , Q`) are modules for the direct product AG(u) ×WG which are zero unless

i ∈ {0, . . . , 2du} (in fact i must be even). Note that we take the (AG(u)×WG)-module
structure to be the one described by Lusztig in [Lus81, §3] (this agrees with the gener-
alised Springer correspondence given in [Lus84b]). This differs from the original module
structure given by Springer in [Spr78] but one is translated to the other by composing
the WG-action with the sign character (see [Hot81, Theorem 1]).

Assume now that u ∈ G is fixed by F then F stabilises BG
u hence we have an induced

action of F in the compactly supported cohomology which we denote by F• : H•c (BG
u )→

H•c (BG
u ). Let ψ ∈ Irr(AG(u)) be an irreducible character then we denote by H•c (BG

u )ψ

the ψ-isotypic component of the module H•c (BG
u ). Springer’s main result (see [Spr78,

Theorem 1.13]) shows that either H2du
c (BG

u )ψ is 0 or a simple (AG(u) ×WG)-module
isomorphic to ψ⊗ Eu,ψ (this is the classical formulation of the Springer correspondence).

8.3. Let σ : WG →WG denote the automorphism induced by F; note that σ stabilises
the set of Coxeter generators S so that σ induces an automorphism of (WG, S) (c.f. 3.1).
We now define what it means for a unipotent element u ∈ G to be split. This definition
will be well-defined up to G-conjugacy. We will do this on a case by case basis as follows.



25

(i) G not of type E8 and σ the identity. We say u ∈ GF is split if F stabilises every
irreducible component of BG

u . [BS84; HS77; Sho82; Sho83]

(ii) G of type E8. If q ≡ 1 (mod 3) then we define split elements as in case (1). If
q ≡ −1 (mod 3) then for each F-stable class O we define an element u ∈ OF to be
split if it satisfies the condition of (1) unless O is the class E8(b6) in the Bala–Carter
labelling (see [Car93, pg. 177]). For this class we say u ∈ OF is split if the restriction
of F• to H2du(Bu)ψ is qdu · id for each irreducible character ψ of AG(u) ∼= S3 which
is not the sign character. [BS84, §3 - Case (V)]

(iii) G of type An and σ of order 2. We define any unipotent element u ∈ GF to be
split.

(iv) G of type Dn and σ of order 2. Let Gad denote SO2n(K)/Z(SO2n(K)), which is an
adjoint group of type Dn. Let π : SO2n(K) → Gad be the natural projection map
and let us fix an adjoint quotient α : G → Gad. We assume that SO2n(K) and Gad

are endowed with Frobenius endomorphisms so that the morphisms π and α are
defined over Fq. We say u ∈ G is split if (π−1 ◦ α)(u) is a split unipotent element
as defined in [Sho07, 2.10.1]. Note that there can only be one unipotent element in
the preimage of α(u) under π.

(v) G of type D4 and σ of order 3. We say u ∈ GF is split if it satisfies the condition of
(1) with respect to the Frobenius endomorphism F3. [Sho83, §4.24]

(vi) G of type E6 and σ of order 2. Let F0 : G → G be a Frobenius endomorphism
which induces the identity on WG and is such that F2

0 = F2. In [BS84, §4] Beynon–
Spaltenstein define a bijection between the set of GF-conjugacy classes of unipotent
elements and the set of GF0-conjugacy classes of unipotent elements, which is
uniquely characterised by three properties. We say a unipotent element u ∈ GF is
split if it is contained in a GF-conjugacy class which is in bijective correspondence
with a split GF0-conjugacy class under Beynon–Spaltenstein’s bijection.

Remark 8.4. In (iv) we have used an adjoint quotient α : G → Gad to define the notion
of split unipotent element. We claim that this does not depend upon the choice of α

up to G-conjugacy. Assume α′ is another adjoint quotient of G defined over Fq then
there exists t ∈ T0 such that α′ = α ◦ ad t (see [Ste99, 1.5]). To prove the claim it suffices
to show that we may take t ∈ TF

0 . Now α′, α, ad t and F are bijections on Guni (the
set of unipotent elements), hence the condition F ◦ α′ = α′ ◦ F implies ad(t−1F(t)) is
the identity on Guni. This implies t−1F(t) centralises a regular unipotent element so by
[DM91, Lemma 14.15] we must have t−1F(t) ∈ Z(G) as it is semisimple. By the Lang–
Steinberg theorem (applied inside the connected group Z(G)) there exists z ∈ Z(G) such
that t−1F(t) = z−1F(z) so F(tz−1) = tz−1. Thus we have α′ = α′ ◦ ad z−1 = α ◦ ad tz−1

so we are done.

As the irreducible components of BG
u have the same dimension (see [Spa82, I, Propo-

sition 1.12]) they form a basis for H2du
c (BG

u ). In particular (i) is equivalent to saying that
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F• acts as qdu times the identity on H2du
c (BG

u ). With this we see that the references given
above show that every F-stable unipotent conjugacy class O ⊂ G contains a split unipo-
tent element. Before continuing we recall the following properties of split elements.

Lemma 8.5. Assume O is an F-stable unipotent conjugacy class of G then the split elements
contained in OF form a single G-conjugacy class.

Proof. Assume G is of type An then this is trivial as AG(u) is trivial. If G is of type
Bn, Cn or Dn then this is clear from the definition (see [Sho07, §2.7, §2.10]). If G is of
exceptional type then this is noted by Benyon–Spaltenstein in [BS84, §3]. The only case
not explicitly dealt with is (v), however this is easily checked. �

Lemma 8.6. If u ∈ G is a split unipotent element then F acts trivially on AG(u).

Proof. If G is of classical type then the action of F on AG(u) is always trivial (see for
instance the proof of [Tay13b, Proposition 2.4]). Assume now that G is of exceptional
type then from [BS84] one sees that Beynon–Spaltenstein start with an element satisfying
this property then show that it is split, hence this certainly holds. �

8.7. Let us denote by W̃G the semidirect product WG o 〈σ〉 where 〈σ〉 6 Aut(WG)

is the cyclic group generated by σ. Assume u ∈ GF is a split unipotent element and
ψ ∈ Irr(AG(u)) then we consider the cohomology group E = H2du

c (BG
u )ψ as a WG-

module. If E is σ-stable then (by Lemma 8.6) we may consider H2du
c (BG

u )ψ as a W̃G-
module which we denote by Ẽ (see [Sho07, §4.1] and [Sho83, 3.9, 3.10]). The Frobenius
then acts as qdu σ on H2du

c (BG
u )ψ. In particular Ẽ is an extension of E and it is our

purpose to now describe this extension (for which we recall the notion of preferred
extension introduced in Remark 6.14).

Proposition 8.8. Assume u ∈ GF
uni is a split element then the action of ±σ on Ẽ makes this the

preferred extension of E. The sign is always positive unless G is of type E8, q ≡ −1 (mod 3)
and u is contained in the class E8(b6).

Proof. The case of type An (resp. E6) follows from [HS77, Lemma 3.2] (resp. [BS84, §4])
together with [GM00, Proposition 2.23]. Note that the Springer correspondence we have
described in (4.2) differs from that in [HS77] by tensoring with the sign character. The
cases of type Dn with σ of order 2 and D4 with σ of order 3 are given by [Sho07, Theorem
4.3(ii)] and [Sho83, §4.24] respectively. Finally the case of E8 follows from the discussion
in [BS84, §3, Case (V)]. �

9. Computing Functions in Good Characteristic

9.1. We will now show how the functions Yw
ι occuring in Theorem 7.7 can be com-

puted using the notion of split unipotent elements. In particular, we must show how to
determine the trace of ψv

ι on the stalk (Eι)u for a unipotent element u ∈ OF
ι . We will start

by considering the case where u is a split unipotent element. Note that the isomorphism
ψv

ι (c.f. 6.19) is determined once we have chosen the isomorphism ϕ0 : F∗E0 → E0 fixed
in 6.9.
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We assume that the element u0 ∈ OF
0 chosen in Section 5 is a

split unipotent element. Furthermore, we assume that the iso-
morphism ϕ0 : F∗E0 → E0 is chosen such that the induced
map (E0)u0 → (E0)u0 at the stalk of the split element u0 is
q(dim(L/Z◦(L))−dimO0)/2 times the identity (note that O0 cannot be
the class E8(b6)).

With these assumptions we may now prove our final result, which follows the line of
argument given in [Lus86, 3.4] and [Sho97, Lemma 3.6].

Proposition 9.2. If G is of type E8 then assume q ≡ 1 (mod 3). For any F-stable pair ι ∈ N F
G

and v ∈ WG(Lι) the map (Eι)u → (Eι)u induced by φv
ι for some (any) split element u ∈ OF

ι

is ±γG
Lι,u0

(F(v))q(dim G+aι)/2 times the identity. The sign is positive unless G is of type E8,
q ≡ −1 (mod 3) and Oι is the class E8(b6) in which case the sign is negative.

Proof. Let K be the image of (L,O0, E0, Q`) under the map in (4.9) and let φ : F∗K → K
be the isomorphism defined in 6.12. We denote by ϕu the isomorphism H aι

u (K) →
H aι

u (K) induced by Θ′F(v)φ. By Proposition 5.6 it suffices to show that ϕu is±q(dim G+aι)/2

times the identity, where the sign is positive unless G is of type E8, q ≡ −1 (mod 3)
and Oι is the class E8(b6).

First of all let us note that under the isomorphism in (4.6) we have

⊕
E∈Irr(A)

(E⊗ F∗KE) ∼= F∗K
⊕

E∈Irr(A)
(E⊗H aι

u (KE)) ∼= H aι
u (K).

Both of these isomorphisms are given in the same way as (4.6) by noticing that F∗KE =

HomA(E, F∗K) and H aι
u (KE) = HomA(E, H aι

u (K)). Assume E ∈ Irr(WG(L))F then,
under the isomorphism in (4.6), the restriction of Θ′F(v)φ to the summand isomorphic to
E ⊗ KE corresponds to the isomorphism ψ−1

E ⊗ (Θ′F(v)φA) (where ψE and φA are as in
6.13). With this in mind it is enough to show that ϕu acts on an A-submodule of H aι

u (K)
isomorphic to E as q(dim G+aι)/2 times ψ−1

E (resp. −ψ−1
E if Oι is E8(b6) and q ≡ −1

(mod 3)).
To prove this we follow the argument of [Sho97, Lemma 3.6] which in turn is a

modification of the arguments in [Lus86]. Let P 6 G be a parabolic subgroup of G such
that P = LιUP is a Levi decomposition of P. As ι ∈ N F

G is F-stable we may assume
Lι and P are F-stable. We define Zu to be the variety {xP ∈ G/P | x−1ux ∈ O0UP}
and similarly we define Ẑu to be the variety {x ∈ G | x−1ux ∈ O0UP}. Now, we have
two natural morphisms ψu : Ẑu → Zu, resp. λu : Ẑu → O0, given by ψu(x) = xP and
λu(x) = (O0-component of x−1ux ∈ O0UP). Given this we define a local system Êι on
Zu by the condition that ψ∗uÊι = λ∗uE0.

As mentioned in 6.19, we have bι = aι +dim supp Kι hence by [Lus85, 24.2.5] we have
an isomorphism Φ : H aι

u (K)→ Hbι
c (Zu, Êι) (where this is the cohomology with compact

support of Zu with coefficients in the local system Êι). Note that we have a commutative
diagram
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Zu Ẑu O0

Zu Ẑu O0

πv π̂v

ψu λu

ad v̇

ψu λu

where πv and π̂v are defined by πv(x) = xv̇−1 and π̂v(xP) = xv̇−1P. Let ϕ0 : F∗E0 → E0

be as in 6.9 then the composition θ′F(v)ϕ0 : F∗E0 → (ad v̇)∗E0 is an isomorphism such that
the induced isomorphism at the stalk of our fixed split element u0 ∈ OF

0 is the identity
(c.f. 5.5). This isomorphism induces an isomorphism ϕ̂0 : F∗Êι → π∗v Êι which in turn
induces a linear map ϕ̂0 of Hbι

c (Zu, Êι) satisfying Φ ◦ ϕu = ϕ̂0 ◦Φ. With this we see that
we are left with showing that ϕ̂0 acts on an A-submodule of Hbι

c (Zu, Êι) isomorphic to E
as q(dim G+aι)/2 times ψ−1

E (resp. −ψ−1
E if Oι is E8(b6) and q ≡ −1 (mod 3)).

Assume Lι is a torus so that ι is in the Springer block then (O0, E0) = ({1}, Q`) and
Zu can be canonically identified with BG

u . Furthermore we have Êι is simply the constant
sheaf and ϕ̂0 induces the identity at every stalk of Êι. Hence the statement is simply that
of Proposition 8.8 so we are done in this case. The case where Lι = G (i.e. ι is cuspidal)
is trivial so we are left only with the case where Lι is neither G nor T0. For this to be
the case we must have G is of type Bn, Cn or Dn but these cases are dealt with by Shoji
in [Sho07, Theorem 4.3] (see also the reduction arguments given in [Sho06, 1.5]). Note
that to apply this theorem we need the fact that θ′F(v)ϕ0 induces the identity at the stalk
of the split element u0 ∈ OF

0 . �

9.3. With this we may now give a precise description of the function Yw
ι for all

ι ∈ I [L, ν]F. Let us fix a split element u ∈ OF
ι then we denote by AG(u) the finite

component group CG(u)/C◦G(u) of the centraliser of u. Recall that we have a natural
bijection between G-equivariant local systems on Oι and Irr(AG(u)) (see [Sho88, pg.
74]). In particular Eι determines a unique irreducible character χι ∈ Irr(AG(u)). As
F acts trivially on AG(u) (c.f. Lemma 8.6) we have the orbits of G acting on OF

ι by
conjugation are in bijection with the conjugacy classes of AG(u). For each a ∈ AG(u) we
denote by ua ∈ OF

ι an element corresponding to a under this bijection. Now, combining
Lemma 8.6 and Proposition 9.2 and [Sho06, 1.3] we obtain our final result.

Theorem 9.4. For any g ∈ G we have

Yw
ι (g) =

±γG
Lι,u0

(F(w))χι(a) if g ∼G ua ∈ OF
ι ,

0 otherise,

where the sign is positive unless G is of type E8, q ≡ −1 (mod 3) and Oι is the class E8(b6).
Note that we write g ∼G ua to denote that g is G-conjugate to ua.

A. Finite Groups and Cosets of Automorphisms

A.1. Assume G is a finite group and φ : G → G is an automorphism then we recall
the notation of 2.5 (in particular G̃ = G o 〈φ〉). If V is a G-module then we denote by
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Vφ the module obtained from V by twisting with φ. In other words, if · denotes the
original action of Q`G on V then we obtain Vφ by defining a new action ? given by
g ? v = φ(g) · v for all g ∈ Q`G and v ∈ V (here φ is naturally extended to Q`G by
linearity). We say V is φ-stable if we have an isomorphism σ : V → Vφ of G-modules.
Note that the choice of σ defines a G̃-module structure on V by setting φ · v = σ(v) for
all v ∈ V and all such possible extensions are obtained in this way. Assume χ (resp. χ̃)
is the character of G (resp. G̃) afforded by V then we call χ̃ the σ-extension of χ.

For any two elements x, y ∈ G we say x and y are φ-conjugate, and write x ∼φ y,
if there exists z ∈ G such that x = z−1yφ(z). We denote by ClG,φ(x) the equivalence
class of x under ∼φ, called the φ-conjugacy class of x, and H1(G, φ) the set of all such
equivalence classes. Finally we write CG,φ(x) = {g ∈ G | g−1xφ(g) = x} for the φ-
centraliser of x ∈ G; clearly we have |G| = |CG,φ(x)| · |ClG,φ(x)| by the orbit-stabiliser
theorem. When φ = id then we write ClG(x) (resp. CG(x)) for ClG,φ(x) (resp. CG,φ(x)).
We recall here the following lemma which is left as an easy exercise for the reader.

Lemma A.2. The natural bijection G → G.φi restricts to an injective map ClG,φi(x) →
ClG̃(x). Furthermore, when i = 1 this map is a bijection.

Lusztig–Macdonald–Spaltenstein Induction and Cyclic Automorphisms

A.3. Let t be an indeterminate over Q` and let V be a G-module. For any irreducible
character χ ∈ Irr(G) we will denote by PV

χ (t) the Molien series of χ (see [GP00, §5.2.2]
for a definition). There then exist unique integers γV

χ ∈N and bV
χ ∈N0 such that

PV
χ (t) = γV

χ · tbV
χ + higher powers of t.

We call bV
χ the b-invariant of χ. For any natural number d ∈ N0 we will denote by

IrrV(G | d) the set {χ ∈ Irr(G) | γV
χ = 1 and bV

χ = d}.
We will denote by U the H-module V/ FixH(V) where FixH(V) = {v ∈ V | h · v = v

for all h ∈ H}. Following [GP00, §5.2.8] we may define a map jG
H : IrrU(H | d) →

IrrV(G | d), called the j-induction, by setting jG
H(χ) to be the unique irreducible character

ψ ∈ Irr(G) satisfying:

• 〈IndG
H(χ), ψ〉 = 1 and

• bV
ψ = bU

χ .

(see [GP00, Theorem 5.2.6]). Note that for arbitrary finite groups this induction map was
introduced by Lusztig–Spaltenstein in [LS79]. When there is no confusion concerning
the module V we will simply suppress the superscript V in the notation.

A.4. We now consider the special case where G = G1 × · · · × Gn, with all factors
isomorphic, and φ cyclically permutes the factors. In other words φ(g1, . . . , gn) =

(φn(gn), φ1(g1), . . . , φn−1(gn−1)) where φi : Gi → Gi+1, for 1 6 i 6 n − 1, and φn :
Gn → G1 are isomorphisms. We then have the homomorphism

ψi := φi−1 · · · φ1φn · · · φi : Gi → Gi
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is an automorphism of Gi satisfying φiψi = ψi+1φi for all 1 6 i 6 n− 1 and φnψn = ψ1φn.
Assume χ ∈ Irr(G)φ is a φ-stable character then we necessarily have χ = χ1 b · · ·b χn

where χi ∈ Irr(Gi)
ψi is ψi-stable and χi = χi+1 ◦ φi for all 1 6 i 6 n− 1 and χn = χ1 ◦ φn.

In particular, we have a natural bijection between the sets Irr(G)φ and Irr(Gi)
ψi . With

this in mind we have the following easy lemma.

Lemma A.5. The natural inclusion map : G1 → G (i.e. g = (g, 1, . . . , 1)) induces a bijection
H1(G1, ψ1)→ H1(G, φ) such that |CG1,ψ1(g)| = |CG,φ(g)|.

A.6. We now assume that V = V1 ⊕ · · · ⊕ Vn is a G-module such that Vi 6= 0 is a
Gi-module and V = Vi ⊕ FixGi(V) for all 1 6 i 6 n. Consequently we have FixG(V) =

FixGi(Vi) = 0 for all 1 6 i 6 n. Furthermore we assume that V is φ-stable and that there
exists an isomorphism σ : V → Vφ with the following properties. There exist Q`-vector
space isomorphisms σi : Vi → Vi+1, for 1 6 i 6 n− 1, and σn : Vn → V1 such that

σ(v1, . . . , vn) = (σn(vn), σ1(v1), . . . , σn−1(vn−1)) and σi(gi · vi) = φi(gi) · σi(vi)

for all gi ∈ Gi and vi ∈ Vi. Each linear map τi := σi−1 · · · σ1σn · · · σi is then an isomor-
phism Vi → (Vi)ψi satisfying σiτiσ

−1
i = τi+1 for all 1 6 i 6 n − 1 and σnτnσ−1

n = τ1.
The isomorphism σ (resp. τi) then makes V (resp. Vi) a G̃-module (resp. G̃i := G o 〈ψi〉-
module) as in A.1. Finally we will assume that there exists a σ-invariant basis B =

B1 ⊕ · · · ⊕ Bn of V, where Bi is a basis of Vi. In particular we have σi(Bi) = Bi+1 for all
1 6 i 6 n− 1 and σn(Bn) = B1 and τi(Bi) = Bi for all 1 6 i 6 n.

A.7. Let E = E1 b · · ·b En be a φ-invariant simple G-module such that the character
χ afforded by E is contained in Irr(G | d)φ. Here Ei denotes a simple Gi-module and we
write χi ∈ Irr(Gi)

ψi for the character afforded by Ei, which must necessarily be contained
in Irr(Gi | d/n)ψi (see [GP00, Exercise 5.2]). As E is φ-invariant there exists a family of
Q`-vector space isomorphisms δi : Ei → Ei+1, for 1 6 i 6 n− 1 and δn : En → E1 such
that

δi(gi · vi) = φi(gi) · δi(vi)

for all 1 6 i 6 n. These isomorphisms are uniquely determined up to scalar multiples.
As before, each linear map αi := δi−1 · · · δ1δn · · · δi is an isomorphism Ei → (Ei)ψi and
we denote by χ̃i the αi-extension of χi. Replacing the δi’s by scalar multiples we may,
and will, assume that χ̃i is the unique extension of χi satisfying bχ̃i = bχi (here the b-
invariants are taken with respect to the module Vi introduced in A.6). In other words
jG̃i
Gi
(χi) = χ̃i. We now define an isomorphism α : E→ Eφ by setting

α(v1 b · · ·b vn) = αn(vn) b α1(v1) b · · ·b αn−1(vn−1).

We call the α-extension χ̃ of χ the b-preferred extension of χ. With this we have the
following result concerning the j-induction.

Proposition A.8. Assume n is a prime number and χ ∈ Irr(G | d)φ. If χ̃ ∈ Irr(G̃) is the
b-preferred extension of χ then we have jG̃

G(χ) = χ̃.
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Proof. It suffices to show that bV
χ̃ = bV

χ . For this we recall the following result of Molien
(see [GP00, Proposition 5.2.4]) which states that

PV
χ̃ (t) =

1
|G̃| ∑

g∈G̃

χ̃(g−1)

detV(idV −t · ϕg)

where ϕg : V → V is the map defined by the action of g. The term in the sum is constant
on G̃-conjugacy classes. Therefore, using Lemma A.2 and splitting up along cosets we
have

PV
χ̃ (t) =

1
[G̃ : G]

∑
φi∈〈φ〉

∑
x∈H1(G,φi)

χ̃((x; φi)−1)

|CG,φi(x)| · detV(idV −t · ϕ(x;φi))
, (A.9)

where here the sum is taken over a set of representatives from the equivalence classes
H1(G, φi).

When i = 1 it follows from Lemma A.5 that we need only compute this term on
elements of the form x where x ∈ G1. After suitably ordering the basis B considered in
A.6 (and identifying linear maps with matrices) we have

ϕ(x;1) =


A

Im
. . .

Im

 and ϕ(1;φ) =


B

. . .

B
B


where Im denotes the m×m identity matrix and m is the common dimension of the Vj’s.
Here A and B are m×m matrices; in fact B is a permutation matrix. With this we have

det(idV −t · ϕ(x;φ)) = det



Im −t · AB
Im −t · B

Im
. . .
. . . −t · B

−t · B Im


= det(Im − tn · ABn).

Now det(Im − tn · ABn) is simply detV1(idV1 −tn · ϕ(x;ψ1)). Hence, using Lemma A.5, we
can deduce that

∑
x∈H1(G1,ψ1)

χ̃((x; φ)−1)

|CG,φ(x)| · detV(idV −t · ϕ(x;φ))
= ∑

x∈H1(G1,ψ1)

χ̃1((x; ψ1)
−1)

|CG1,ψ1(x)| · detV1(idV1 −tn · ϕ(x;ψ1))

(A.10)
Let us now consider the remaining cosets for the automorphism φi. If i = nk for some

k ∈N then we have φi = ψk
1× · · · ×ψk

n. If this is not the case then, as n is prime, we have
φi is exactly of the form considered in A.4 and the induced automorphism on Gm, for any
1 6 m 6 n, is precisely ψi

m. In particular we may apply the previous argument to this
case to obtain that the statement in (A.10) holds with φ replaced by φi and ψ1 replaced by
ψi

1. Putting this together, and using the fact that {ψn
1 , ψ2n

1 . . . , ψnk
1 } = {id, ψ1, . . . , ψk−1

1 }
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we get that

PV
χ̃ (t) =

1
n

[
(n− 1)PV1

χ̃1
(tn) + PV

λ (t)
]

where λ is the restriction of χ̃ to the subgroup Go 〈φn〉 6 G̃. Observe that as λ restricted
to G is χ we must have bV

λ > bV
χ . From this it follows that bV

χ̃ = bV
λ = bV

χ because bV1
χ̃1

= bV1
χ1

and the b-invariants are compatible with direct products. �

Remark A.11. The setup here may seem contrived but this situation occurs naturally
when G is a Weyl group and V is the natural module. In this case the invariant basis
considered in A.6 is given by a set of simple roots for the underlying root system of G.
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