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Abstract. Assume G is a finite symplectic group Sp2n(q) over a finite field Fq

of odd characteristic. We describe the action of the automorphism group Aut(G)

on the set Irr(G) of ordinary irreducible characters of G. This description relies
on the equivariance of Deligne–Lusztig induction with respect to automorphisms.
We state a version of this equivariance which gives a precise way to compute the
automorphism on the corresponding Levi subgroup; this may be of independent
interest. As an application we prove that the global condition in Späth’s criterion
for the inductive McKay condition holds for the irreducible characters of Sp2n(q).

1. Introduction

1.1. The representation theory of finite groups is abound with many deep and fas-
cinating conjectures nicknamed local/global conjectures; the paradigm of these is the
McKay Conjecture. In a landmark paper [IMN07] Isaacs–Malle–Navarro showed that
the McKay Conjecture holds for all finite groups if a list of (stronger) conditions, jointly
referred to as the inductive McKay condition, holds for the universal covering group of
each finite simple group. We note that in the wake of [IMN07] several other major lo-
cal/global conjectures have also been reduced to checking certain inductive conditions.

1.2. Showing that these inductive conditions hold has revealed itself to be a difficult
problem. One of the main difficulties arises from the fact that one needs some knowl-
edge of how the automorphism group Aut(G), of a quasisimple group G, acts on the
set of irreducible characters Irr(G). When the simple quotient G/Z(G) is a group of
Lie type then this question has turned out to be surprisingly vexing considering the
large amount of machinery at our disposal. The main result of this paper gives a com-
plete solution to this problem when G = Sp2n(q) and q is a power of an odd prime.
Note that the corresponding statement when q is even is an easy consequence of known
results from Lusztig’s classification of irreducible characters [Lus84a], see also [DM90]
and [CS13].

1.3. In [Spä12, Theorem 2.12] Späth gave a version of the inductive McKay condition
which is specifically tailored to the finite groups of Lie type. There are several condi-
tions in this statement, some of which are global and some of which are local. As an
application of our result we show that the global condition concerning the stabilisers
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of irreducible characters of G under automorphisms holds for finite symplectic groups
over fields of odd characteristic, see Theorem 16.2. We note that Cabanes and Späth
[CS16] have recently shown the whole inductive McKay condition holds for the sym-
plectic groups, hence independently proving Theorem 16.2 using completely different
methods.

1.4. To state our result we need to introduce some notation. Let G be a connected
reductive algebraic group defined over an algebraic closure Fp of the finite field Fp of
prime order p. We assume F : G → G is a Frobenius endomorphism endowing G with
an Fq-rational structure GF. If G?F?

is a group dual to GF then to each semisimple
element s ∈ G?F?

we have a corresponding rational Lusztig series E(GF, s) ⊆ Irr(GF)

of irreducible characters. Moreover, we have Irr(GF) =
⊔

[s] E(GF, s) is a disjoint union
of these series where the union runs over all the G?F?

-conjugacy classes of semisimple
elements. As we will see, a particularly important role is played by those series E(GF, s)
for which s is a quasi-isolated in G?. We recall that this means CG?(s) is not contained
in any proper Levi subgroup of G?.

1.5. If Aut(GF) denotes the automorphism group of GF then we set σχ = χ ◦ σ−1 for
any σ ∈ Aut(GF) and χ ∈ Irr(GF); this defines an action of Aut(GF) on Irr(GF). The
automorphism group Aut(GF) is well known to be generated by inner, diagonal, field,
and graph automorphisms. In the case of diagonal automorphisms the action on Irr(GF)

is well understood by work of Lusztig [Lus88]. Moreover, in the case of symplectic
groups defined over a field of odd characteristic there are no graph automorphisms.
With this in place we may state our main result.

Theorem 1.6. Assume GF = Sp2n(q) with q odd. If σ ∈ Aut(GF) is a field automorphism
and χ ∈ E(GF, s) is an irreducible character, with s ∈ G?F?

quasi-isolated in G?, then we have
σχ = χ.

1.7. Let us now outline our strategy for proving Theorem 1.6; here we assume GF =

Sp2n(q). The series E(GF, s) is broken up into a disjoint union of Harish-Chandra series.
As part of their proof of the McKay conjecture for odd degree characters [MS16] Malle
and Späth have shown how to describe the action of σ on the constituents of a Harish-
Chandra series. This involves understanding the effect of σ on cuspidal characters and
on characters of the relative Weyl group. In the case of symplectic groups the crucial
point is to determine the action of σ on the cuspidal characters because the action of σ

on the characters of the relative Weyl group is quite simple to understand.
1.8. To understand the action on a cuspidal character χ ∈ E(GF, s) we use Kawanaka’s

generalised Gelfand–Graev representations (GGGRs). Specifically we choose a regular
embedding G → G̃ into a group with connected centre which is defined over Fq. The
cuspidal character χ then occurs in the restriction of a cuspidal character χ̃ ∈ Irr(G̃F).
Associated to χ̃ we have a corresponding wave front set O∗χ̃ ⊆ G̃, see [Kaw85; Lus92;
Tay16], which is an F-stable unipotent conjugacy class of G̃. Moreover to each rational
element u ∈ O∗Fχ̃ ⊆ G̃ we have a corresponding GGGR ΓG̃F

u .

1.9. It is known that the multiplicity of χ̃ in ΓG̃F

u is small, see [Tay16, 15.4] for a precise
statement. The key ingredient to our proof is that there exists an element u for which
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this multiplicity is 1. We note that for this statement to hold we require the assumption
that s is quasi-isolated. This crucial property allows us to relate the action of σ on χ to
the action of σ on the GGGRs of GF, which is easy to describe. In particular, we deduce
that σχ = χ is always fixed by σ. This, combined with the Harish-Chandra techniques
mentioned above, allows us to deduce the theorem for the whole series E(GF, s).

1.10. To analyse the effect of σ on the constituents of any Lusztig series we use the
fact that an irreducible character can be obtained as the Deligne–Lusztig induction of an
irreducible character from a Levi subgroup of GF. It is well known that Deligne–Lusztig
induction is equivariant with respect to isogenies, see [DM91, 13.22] for instance. In the
case of bijective isogenies one can give a shorter proof, such as that given by Bonnafé
in [NTT08, §2]. Unfortunately these statements are not sufficient for our purpose as
they do not allow us to control the type of the automorphism induced by the isogeny
upon restricting to the Levi subgroup. Here we obtain a version of the equivariance, for
bijective isogenies, which allows us to explicitly compute the resulting automorphism,
see Theorem 9.5 for a precise statement. This result may be of independent interest.
Using Theorem 9.5 we may reduce to the case of looking at irreducible characters of
Levi subgroups contained in a Lusztig series labelled by semisimple elements which are
quasi-isolated in the dual of the Levi; thus putting us in the setting of Theorem 1.6. We
apply precisely this process to prove the global part of Späth’s criterion for the inductive
McKay condition, see Theorem 16.2.

1.11. Let us now make some comments concerning possible generalisations of this
result to other series of groups. Our overall strategy is suited to tackling other series,
although some parts would arguably be more involved in other cases. For instance, un-
derstanding the action of automorphisms on Harish-Chandra series will be more com-
plicated because the structure of Levi subgroups is more complicated. The main prob-
lem in generalising to other series is proving the multiplicity 1 statement for GGGRs and
cuspidal characters mentioned above. With this in mind let G̃ be a connected reductive
algebraic group with connected centre whose quotient is G̃/Z(G̃) is simple. When the
quotient is of type Bn or Dn we have checked that this multiplicity 1 condition holds for
cuspidal characters, covering cuspidal characters in quasi-isolated series, except when
the centraliser CG̃?(s) has a twisted type A factor of large rank. In this case the analogue
of Proposition 14.4 can fail and so we cannot use this sufficient condition to obtain the
multiplicity 1 statement. We hope to settle this problem in the future.

1.12. The structure of the paper is as follows. In Section 3 we recall some general
statements showing how to describe the action of automorphisms on rational orbits
under the action of a connected reductive algebraic group equipped with a Steinberg
endomorphism. Sections 4 and 5 recall some fundamental results concerning isogenies
and duality. In Sections 6 to 9 we describe the basic equivariance statements needed
for reducing our study of automorphisms to Lusztig series labelled by quasi-isolated
semisimple elements. In Section 10 we consider regular embeddings. Note that the
results from these sections are well known but are not usually phrased in this language.
This rephrasing is critical as it facilitates our inductive argument; a similar approach is
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taken in [Lus84a]. The key result from these sections is Theorem 9.5, which gives the
equivariance of Deligne–Lusztig induction. We note that, up to this point, we have tried
to state these results in the widest possible generality as we feel they may be useful
elsewhere.

1.13. In Section 11 we show that GGGRs are equivariant with respect to Frobenius
endomorphisms and automorphisms of algebraic groups, see Proposition 11.10. At this
point we must assume that p is a good prime to ensure that the GGGRs are defined.
The crucial multiplicity 1 statement for cuspidal characters is proved in Section 14, see
Theorem 14.6. This uses the combinatorics of the generalised Springer correspondence
described in Section 13. We then prove our main result, Theorem 1.6, in Section 15, see
Theorem 15.9. In the final section we prove the global part of Späth’s criterion for the
inductive McKay condition.

Acknowledgments: We thank Gunter Malle and Britta Späth for their valuable com-
ments on an earlier version of this article. The author gratefully acknowledges the fi-
nancial support of an INdAM Marie-Curie Fellowship and grants CPDA125818/12 and
60A01-4222/15 of the University of Padova.

2. Notation

From this point forward p and ` will denote distinct prime num-
bers.

2.1. Let us assume G is a group and X is a (left) G-set with action map · : G×X → X.
The orbits of G acting on X will be denoted by X/G and if x ∈ X then we denote by
[x] ⊆ X the G-orbit containing x. For any subset Y ⊆ X we consider the centraliser
CG(Y) = {g ∈ G | g · y = y for all y ∈ Y} and normaliser NG(Y) = {g ∈ G | g · Y = Y}
of Y under the action of G; here g ·Y = {g · y | y ∈ Y}. Now assume φ is a map X → X
then we define sets

TG(Y, φ) = {g ∈ G | g · φ(Y) = Y},
ZG(Y, φ) = {g ∈ G | Y = φ(g ·Y)}.

The first set is nothing other than the usual transporter, which is either empty or a right
coset of NG(Y) in G. If we assume φ is a bijection then ZG(Y, φ) is either empty or a
left coset of NG(Y) in G. If H 6 NG(Y) is a subgroup of the normaliser then we denote
by H\TG(Y, φ), resp., ZG(Y, φ)/H, the right, resp., left, cosets of H in G contained in
TG(Y, φ), resp., ZG(Y, φ). For x ∈ X we set CG(x) = CG({x}), NG(x) = NG({x}),
TG(x, φ) = TG({x}, φ), and ZG(x, φ) = ZG({x}, φ).

2.2. If P(G) is the power set of G then we have an action of G on P(G) by setting
gS = gSg−1 for any g ∈ G and S ∈ P(G). If Y ∈ P(G) is a subset then CG(Y), NG(Y),
TG(Y, φ), and ZG(Y, φ) are defined with respect to this action unless otherwise specified.
We will also write Sg for g−1Sg. If H 6 G is a subgroup then we will denote by WG(H)

the section NG(H)/H.
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2.3. Ignoring any additional structure we will denote by Aut(G) the automorphism
group of G in the category of groups. Moreover, if g ∈ G is an element then we will
denote by ıg ∈ Aut(G) the inner automorphism defined by ıg(x) = gxg−1 for all x ∈ G;
this defines a homomorphism G → Aut(G). If φ : G → G is a homomorphism then
we will denote by Aut(G, φ) = CAut(G)(φ) 6 Aut(G) the subgroup of automorphisms
commuting with φ. Note that if Gφ = {g ∈ G | φ(g) = g} is the fixed point subgroup
then the natural inclusion Gφ → G induces a homomorphism Aut(G, φ)→ Aut(Gφ).

2.4. We assume chosen an algebraic closure Q` of the `-adic field Q`. Let us assume
now that G is a finite group then we will denote by Irr(G) the set of ordinary irreducible
characters χ : G → Q`. If φ : G → H is an isomorphism of finite groups then the map
Irr(G) → Irr(H) defined by χ 7→ φχ := χ ◦ φ−1 is a bijection. If M is a right, resp.,
left, Q`G-module then we denote by φ M, resp., Mφ, the vector space M viewed as a
Q`H-module by letting h ∈ H act as φ−1(h) on M. Note that if M affords the character
χ then φ M affords the character φχ. If φ is a conjugation map ıg then we will simply
write gχ, resp., g M, Mg, for φχ, resp., φ M, Mφ.

2.5. For any g ∈ G or h ∈ H we will denote by φg : G → H and hφ : G → H the
isomorphism φıg : G → H and ıhφ : G → H respectively. This is consistent with the
notation above. This may clearly lead to confusion over what φg(x) and hφ(x) stand
for when x ∈ G. To avoid confusion we will always write hφ(x) or φ(gx) for ıhφ(x) and
φıg(x) when we apply this map to elements.

2.6. If H = G in the above construction then the map Irr(G) → Irr(G) defined
by χ 7→ φχ defines a left action of Aut(G) on Irr(G). If G̃ is a group equipped with
a homomorphism ϕ : G̃ → Aut(G) then we define an action of G̃ on Irr(G) via the
induced action from Aut(G). Moreover, we denote by G̃χ 6 G̃ the stabiliser of χ under
this action.

3. Automorphisms and Rational Orbits

From this point forward K = Fp will denote a fixed algebraic
closure of the finite field Fp of cardinality p. Moreover, we will
write Gm, resp., Ga, for the set K \ {0}, resp., K, viewed as a
multiplicative, resp., additive, algebraic group.

3.1. Let G be a connected algebraic K-group. We will assume that G is endowed
with a Steinberg endomorphism F, i.e., an endomorphism for which some power of F is
a Frobenius endomorphism. We now assume that O is a set on which G acts transitively.
Moreover, we assume that O is equipped with a map F′ : O → O such that the following
hold:

(F1) F′(g · x) = F(g) · F′(x) for all g ∈ G and x ∈ O

(F2) the stabiliser StabG(x) 6 G of any point x ∈ O is a closed subgroup.

Note, this is the setup of [Gec03, 4.3.1]. With these assumptions the finite group GF acts
on the set of fixed points OF′ .
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3.2. We wish to now recall a parameterisation of the orbits OF′/GF. With this in
mind we denote by AG(x) the finite component group StabG(x)/ Stab◦G(x) of the sta-
biliser of x ∈ O. We will write : StabG(x)→ AG(x) for the natural projection map. As
G acts transitively on O we have the set TG(x0, F′) 6= ∅ for any x0 ∈ O and moreover
we have an action of StabG(x0) on TG(x0, F′) given by a · z = a−1zF(a). This induces an
action of AG(x0) on AG(x0, F′) = Stab◦G(x0)\TG(x0, F′) because for any a ∈ Stab◦G(x0)

and Stab◦G(x0)z ∈ AG(x0, F′) we have zF(a) ∈ Stab◦G(x0). We will denote the orbits
of this action by H1(F, AG(x0, F′)). Now, if g · x0 ∈ OF′ is an F′-fixed point then
g−1F(g) ∈ TG(x0, F′) and so we have a well defined map OF′ → AG(x0, F′) given by
g · x0 7→ g−1F(g) := Stab◦G(x0)g−1F(g). With this we have the following rephrasing of a
classical result, see [Gec03, 4.3.5] for instance.

Proposition 3.3. Assume x0 ∈ O then the map OF′ → AG(x0, F′) given by g · x0 7→ g−1F(g)
induces a bijection OF′/GF → H1(F, AG(x0, F′)).

Proof. Fix z ∈ TG(x0, F′) and let g0 ∈ G be such that g−1
0 F(g0) = z then x′0 = g0 · x0 ∈

OF′ is F′-fixed. It’s clear that we have an isomorphism ıg0 : AG(x0) → AG(x′0) and
F ◦ ıg0 = ıg0 ◦ zF so we have a bijection ıg0 : H1(zF, AG(x0))→ H1(F, AG(x′0)). It is easily
checked that the bijection τz : AG(x0) → AG(x0, F′) defined by τz(x) = xz induces a
bijection τz : H1(zF, AG(x0))→ H1(F, AG(x0, F′)). Now consider the sequence of maps

OF′/GF OF′/GF H1(F, AG(x′0)) H1(zF, AG(x0)) H1(F, AG(x0, F′))

[g · x0] [gg−1
0 · x′0] g0g−1F(gg−1

0 ) g−1F(g)F(g−1
0 )g0 g−1F(g)

ı−1
g0 τz

By [Gec03, 4.3.5] the second map is a bijection so we’re done. �

3.4. We will now, additionally, assume that φ ∈ Aut(G, F) is a bijective homomor-
phism of algebraic groups and φ′ : O → O is a bijection such that the following holds:

(φ1) φ′(g · x) = φ(g) · φ′(x) for all g ∈ G and x ∈ O,

(φ2) φ′ ◦ F′ = F′ ◦ φ′.

With these assumptions it is clear that the map φ′ permutes the set OF′/GF of rational
orbits. The following shows how one can understand the action of φ′ on these orbits;
the proof is easy and is left as an exercise for the reader.

Lemma 3.5. Assume g ∈ G is such that φ′(x0) = g · x0 and set z = g−1F(g) ∈ StabG(x0).
If ψ : AG(x0, F′) → AG(x0, F′) is the map induced by h 7→ g−1φ(h)gz for all h ∈ TG(x0, F′)
then the following diagram is commutative

OF′/G OF′/G

H1(F, AG(x0, F′)) H1(F, AG(x0, F′))

φ′

ψ
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Here the vertical arrows are given by the bijection in Proposition 3.3. In particular, if x0 is
φ′-fixed then the bijection in Proposition 3.3 is equivariant with respect to φ′ and φ.

Remark 3.6. We note that even if φ′ stabilises the rational orbit containing x0 it is not
necessarily true that φ′ fixes an element in that orbit.

4. Isogenies

4.1. Let (X, Φ, qX, qΦ) be a root datum, c.f., [Spr09, 7.4.1]. In particular, we have X and
qX are free Z-modules equipped with a perfect pairing 〈−,−〉 : X × qX → Z. Moreover,
Φ ⊆ X, resp., qΦ ⊆ qX, is a root system in the real vector space XR := X ⊗Z R, resp.,
qXR := qX ⊗Z R, and we have a bijection q : Φ → qΦ such that 〈α, qα〉 = 2 for all α ∈ Φ.
Associated to each root α ∈ Φ we have a corresponding reflection sα ∈ GL(XR) and
the subgroup W 6 GL(XR) generated by these reflections is the Weyl group of the root
datum. The sextuple R = (X, Φ, ∆, qX, qΦ, q∆) is called a based root datum if ∆ ⊆ Φ is a
simple system of roots and q∆ ⊆ qΦ is the image of ∆ under the bijection Φ → qΦ; note q∆
is then a simple system of roots in qΦ.

4.2. Assume now that R = (X, Φ, ∆, qX, qΦ, q∆) and R′ = (X′, Φ′, ∆′, qX′, qΦ′, q∆′) are
based root data. Recall that if ϕ ∈ Hom(X′, X) is a Z-module homomorphism then there
is a corresponding homomorphism qϕ ∈ Hom( qX, qX′) called the dual of ϕ. Specifically
we have qϕ is the unique homomorphism satisfying 〈ϕ(x), y〉 = 〈x, qϕ(y)〉 for all x ∈ X′

and y ∈ qX. We note that the map q : Hom(X′, X) → Hom( qX, qX′) is bijective and
contravariant. With this we have a p-isogeny ϕ : R′ → R of the based root data is a
homomorphism ϕ ∈ Hom(X′, X) such that the following hold:

(a) ϕ and qϕ are injective

(b) there exists a bijection b : ∆ → ∆′ and a map q : ∆ → {pa | a ∈ Z>0} such that for
any α ∈ ∆ we have ϕ(β) = q(α)α and qϕ(qα) = q(α)qβ where β = b(α).

We will denote by Isop(R′,R) the set of all p-isogenies ϕ : R′ → R. Moreover, we set
Isop(R) = Isop(R,R). The following is an easy consequence of the definition.

Lemma 4.3. The map q : Hom(X′, X) → Hom( qX, qX′) induces a bijection Isop(R′,R) →
Isop( qR, qR′).

4.4. Now assume G is a connected reductive algebraic K-group with Borel subgroup
B0 6 G and maximal torus T0 6 B0. We denote by G the triple (G, B0, T0). With respect
to T0 we have the root datum (X(T0), Φ, qX(T0), qΦ) of G. Here X(T0) = Hom(T0, Gm)

and qX(T0) = Hom(Gm, T0) are, respectively, the character and cocharacter groups of
T0 equipped with the usual perfect pairing defined by x(y(k)) = k〈x,y〉 for all k ∈ Gm,
x ∈ X(T0), and y ∈ qX(T0). If Φ ⊆ X are the roots of G with respect to T0 then associated
to each α ∈ Φ we have a corresponding 1-dimensional root subgroup Xα 6 G. The set
of all roots α ∈ Φ such that Xα 6 B0 is a positive system of roots which contains a
unique simple system of roots, say ∆. We then have R(G) = (X(T0), Φ, ∆, qX(T0), qΦ, q∆)
is a based root datum determined by the triple G.
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4.5. Let G = (G, B0, T0) and G ′ = (G′, B′0, T′0) be triples, as in 4.4, with correspond-
ing based root data R = R(G) and R′ = R(G ′). Recall that an isogeny φ : G → G′

between algebraic groups is a surjective homomorphism of algebraic groups with finite
kernel. We will denote by Iso(G,G ′) the set of all isogenies φ : G → G′ such that
φ(B0) = B′0 and φ(T0) = T′0. Moreover, if G = G ′ then we set Iso(G) := Iso(G,G).
Note that we have an action of T0 on Iso(G,G ′) given by t · φ = φ ◦ ı−1

t . Now, if
φ ∈ Iso(G,G ′) is an isogeny then we have induced maps X(φ) : X(T′0) → X(T0) and
qX(φ) : qX(T0) → qX(T′0) defined by X(φ)(x) = x ◦ φ and qX(φ)(y) = φ ◦ y respectively.
These maps are dual to each other, i.e., ~X(φ) = qX(φ). Moreover, X(φ) is a p-isogeny
R′ → R of the corresponding based root data and the map Iso(G,G ′) → Isop(R′,R)
defined by φ 7→ X(φ) is constant on T0-orbits.

4.6. Now assume F ∈ Iso(G) and F′ ∈ Iso(G ′) are Steinberg endomorphisms. We
will denote by Iso((G, F), (G ′, F′)) ⊆ Iso(G,G ′) those isogenies which commute with F
and F′, i.e., φ ◦ F = F′ ◦ φ. We also set Iso(G, F) = Iso((G, F), (G, F)). Moreover, we
denote by Isop((R′, F′), (R, F)) ⊆ Isop(R′,R) the set of p-isogenies commuting with
X(F) and X(F′). As before, we set Isop(R, F) = Isop((R, F), (R, F)). We will need the
following result known as the isogeny theorem, see [Ste99, 1.5] and [GM16, 1.4.23].

Theorem 4.7 (Chevalley). The map φ 7→ X(φ) induces a bijection Iso(G,G ′)/T0 → Isop(R′,R)
and a surjection Iso((G, F), (G ′, F′))→ Isop((R′, F′), (R, F)).

5. Duality

5.1. Let us assume that G = (G, B0, T0) and R = R(G) = (X, Φ, ∆, qX, qΦ, q∆) are
as in 4.4. By the existence theorem for reductive groups there exists a triple G? =

(G?, B?
0 , T?

0) with based root datum R? := R(G?) = (X?, ∆?, qX?, q∆?) such that we have
an isomorphism R? → qR of based root data. We say the pair (G,G?) is a dual pair
or that G? is dual to G. Specifically, if (G,G?) is a dual pair then we have a Z-module
isomorphism δ : X? → qX such that δ(∆?) = q∆ and qδ(∆) = q∆? where qδ : X → qX? is
the dual of δ. Now assume (G ′,G ′?) is another dual pair, so we have an isomorphism
δ′ : R′? → qR′ of based root data then we have the following easy lemma.

Lemma 5.2. The map ? : Hom(X′, X) → Hom(X?, X′?) defined by ϕ? = δ′−1 ◦ qϕ ◦ δ is
bijective and contravariant and maps Isop(R′,R) onto Isop(R?,R′?).

5.3. Let us assume G ′ = (G′, B′0, T′0) and G ′? = (G′?, B′?0 , T′?0 ). As in 4.5 we have an
action of T′?0 on Iso(G ′?,G?) and combining Lemma 5.2 with Theorem 4.7 we obtain a
bijection

Iso(G,G ′)/T0 → Iso(G ′?,G?)/T′?0 (5.4)

between the orbits. We say an isogeny σ? ∈ Iso(G ′?,G?) is dual to σ ∈ Iso(G,G ′) if
X(σ?) = X(σ)?, i.e., their orbits correspond under the bijection in (5.4). The following is
useful to note.

Lemma 5.5. If σ? ∈ Iso(G ′?,G?) is an isogeny dual to σ ∈ Iso(G,G ′) then σ is injective if and
only if σ? is injective. Moreover, if σ is injective, hence bijective, then σ?−1 is dual to σ−1.
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Proof. If φ : M → N is a homomorphism of Z-modules then we set Coker(φ) =

N/φ(M) and Coker(φ)p′ to be the quotient of Coker(φ) by its p-torsion submodule.
By [Bon06, 1.11] we have σ is injective if and only if Coker( qX(σ))p′ = 0 and sim-
ilarly σ? is injective if and only if Coker( qX(σ?))p′ = 0. From the definition of σ?

we easily see that qδ induces an isomorphism Coker(X(σ)) → Coker( qX(σ?)), hence
Coker(X(σ))p′

∼= Coker( qX(σ?))p′ . Moreover, by [GP11, 6.2.3], we have Coker(X(σ))

and Coker( qX(σ)) are finite groups in duality so Coker( qX(σ?))p′
∼= Coker(X(σ))p′ = 0 if

and only if Coker( qX(σ))p′ = 0. This proves the first statement.
Now assume σ is injective then so is σ?. As σ? is dual to σ we have δ′ ◦ X(σ?) =

qX(σ) ◦ δ but this implies qX(σ−1) ◦ δ′ = δ ◦ X(σ?−1) because qX(σ−1) ◦ qX(σ) = qX(σ−1 ◦
σ) = id

qX and X(σ?) ◦ X(σ?−1) = X(σ?−1 ◦ σ?) = idX. Hence X(σ?−1) = X(σ−1)? so
σ?−1 is dual to σ−1. �

5.6. We now consider duality in the presence of Steinberg endomorphisms. For this,
assume F ∈ Iso(G) and F′ ∈ Iso(G ′) are Steinberg endomorphisms then we assume
chosen isogenies F? ∈ Iso(G?) and F′? ∈ Iso(G ′?) dual to F and F′ respectively. The
isogenies F? and F′? are then also Steinberg endomorphisms and are Frobenius endo-
morphisms if F and F′ are, see [GM16, 1.4.17, 1.4.27]. If σ ∈ Iso((G, F), (G ′, F′)) is an
isogeny commuting with F and F′ then it follows from Theorem 4.7 that there exists
an isogeny σ? ∈ Iso((G ′?, F′?), (G?, F?)), commuting with F′? and F?, whose orbit corre-
sponds to that of σ under the bijection in (5.4). In this case we say σ? is dual to σ.

Levi Subgroups

5.7. For each subset I ⊆ ∆ we have a corresponding parabolic subgroup PI =

〈B0, X−α | α ∈ I〉 of G which has a Levi complement LI = 〈T0, X±α | α ∈ I〉; this
is a connected reductive algebraic group. The root system of LI is the parabolic sub-
system 〈I〉 ⊆ Φ generated by I. The intersection BI = LI ∩ B0 is a Borel subgroup
of LI so we obtain a triple LI = (LI , BI , T0) whose associated based root datum is
RI = (X, 〈I〉, I, qX, 〈qI〉, qI), where qI ⊆ q∆ is the images of I under the bijection ∆ → q∆ and
〈qI〉 ⊆ qΦ is the parabolic subsystem generated by qI. Recall that if P 6 G is any parabolic
subgroup with Levi complement L 6 P then there exists a unique subset I ⊆ ∆ such
that P = gPI and L = gLI for some g ∈ G.

5.8. To I we have a corresponding subset qI? := δ(I) ⊆ q∆? of simple coroots for the
dual G?. We then set I? ⊆ ∆? to be the unique set of roots mapping onto qI? under the
bijection ∆? → q∆?. As above we obtain a parabolic subgroup P?

I := PI? 6 G? with Levi
complement L?

I := LI? . If B?
I is the intersection L?

I ∩ B?
0 then L?

I = (L?
I , B?

I , T?
0) is dual to

LI = (LI , BI , T0) and the associated based root datum is R?
I = (X?, 〈I?〉, I?, qX?, 〈qI?〉, qI?),

with the notation as above. The isomorphism between the based root data is simply
given by δ : X? → qX.
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Weyl Groups

5.9. Let us denote by W, resp., W?, the Weyl group WG(T0), resp., WG?(T?
0), of G,

resp., G?. The natural map W → GL(X), resp., W? → GL(X?), is a faithful repre-
sentation of the Weyl group W, resp., W?, so we may view W, resp., W?, as a sub-
group of GL(X), resp., GL(X?). The anti-isomorphism ? : GL(X) → GL(X?) defined
by w? = δ−1 ◦ qw ◦ δ then maps W onto W?. Moreover, assume σ ∈ Iso(G,G ′) and
σ? ∈ Iso(G ′?,G?) are dual isogenies then these induce isomorphisms σ : W → W ′ and
σ? : W ′? → W?, where W ′ = WG′(T′0) and W ′? = WG′?(T′?0 ). With this we have the
following diagram is commutative

W W ′

W? W ′?

?

σ

?

σ?−1

where ? : W ′ →W ′? is the anti-isomorphism induced by δ′.
5.10. If I ⊆ ∆ is a subset then we have a corresponding parabolic subgroup WI 6W

generated by the reflections corresponding to the simple roots in I; this is the Weyl group
WLI (T0) of the Levi subgroup LI defined with respect to T0. The anti-isomorphism ?

maps the parabolic subgroup WI onto the parabolic subgroup of W? generated by the
reflections corresponding to the roots in I?.

6. Duality Between Tori and Lusztig Series

From this point forward we assume that G = (G, B0, T0) and
G? = (G?, B?

0 , T?
0) are dual triples, as in 5.1, and F ∈ Iso(G) and

F? ∈ Iso(G?) are dual Steinberg endomorphisms. Moreover, for
any element w ∈ W = WG(T0), resp., x ∈ W? = WG?(T?

0), we
assume chosen an element nw ∈ NG(T0), resp., nx ∈ NG?(T?

0),
representing w, resp., x.

6.1. For any w ∈ W we set Fw := Fnw : G → G. This is a Steinberg endomorphism
of G stabilising T0 so for any w ∈W we obtain a finite subgroup TFw

0 6 T0. We note that
the restriction of Fw to T0 does not depend upon the choice of representative nw used to
define it. We will denote by CG(T0, F) the set of all pairs (w, θ) consisting of an element
w ∈ W and an irreducible character θ ∈ Irr(TFw

0 ). The group W acts on CG(T0, F) via
z · (w, θ) = (zwF(z)−1, F(nz)θ). Now let us denote by C(G, F) the set of all pairs (T, θ)

consisting of an F-stable maximal torus T 6 G and an irreducible character θ ∈ Irr(TF).
Clearly the group GF acts on C(G, F) via g · (T, θ) = (gT, gθ). Given (w, θ) ∈ CG(T0, F)
we obtain an element (gw T0, gw θ) ∈ C(G, F) by choosing an element gw ∈ G such that
g−1

w F(gw) = F(nw). We then have the following well known lemma, see the proof of
[DM91, 13.13].

Lemma 6.2. The map CG(T0, F)/W → C(G, F)/GF defined by [w, θ] 7→ [gw T0, gw θ] is a
well-defined bijection.
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6.3. As above, for any w ∈ W? we set wF? := nwF? : G? → G?. Again, this is
a Steinberg endomorphism of G stabilising T?

0 so for any w ∈ W? we obtain a finite
subgroup T?wF?

0 6 T?
0 . We will denote by SG?(T?

0 , F?) the set of all pairs (w, s) consisting
of an element w ∈ W? and a semisimple element s ∈ T?wF?

0 . The group W? acts on this
set via z · (w, s) = (zwF?(z)−1, nz s). Similarly to before we denote by S(G?, F?) the set
of all pairs (T?, s) consisting of an F?-stable maximal torus T? 6 G? and a semisimple
element s ∈ T?F?

. The finite group G?F?
acts on S(G?, F?) via g · (T?, s) = (gT?, gs).

Given (w, s) ∈ SG?(T?
0 , F?) we obtain an element (gw T?

0 , gw s) ∈ S(G?, F?) by choosing
an element gw ∈ G? such that g−1

w F?(gw) = nw. Again, we then have the following well
known lemma.

Lemma 6.4. The map SG?(T?
0 , F?)/W? → S(G?, F?)/G?F?

defined by [w, s] 7→ [gw T?
0 , gw s]

is a well-defined bijection.

Lusztig Series

6.5. For any w ∈ W the Frobenius endomorphism Fw of T0 is dual to the Frobenius
endomorphism w?F? of T?

0 with respect to the isomorphism qδ : X → qX. Let us assume
chosen once and for all an isomorphism ı : (Q/Z)p′ → K× and an embedding  :
K× ↪→ Q`. As in [DM91, 13.11] we may define for any w ∈ W a group isomorphism
qδw : Irr(TFw

0 )→ T?w?F?

0 as follows. Given θ ∈ Irr(TFw
0 ) we choose an element χ ∈ X such

that  ◦ ResT0
TFw

0
(χ) = θ. Let n > 0 be such that X((w?F?)n) = pk, with k > 0, then we

set qδw(θ) = Nw?F?,n(qδ(χ)(ζ)) where ζ = ı(1/(pk − 1)) and Nw?F?,n : T?(w?F?)n

0 → T?w?F?

0

is the norm map, see [DM91, 11.9]. With this, the following lemma is easy.

Lemma 6.6. The map CG(T0, F)/W → SG?(T?
0 , F?)/W? defined by [w, θ] 7→ [w?, qδw(θ)] is a

bijection.

Corollary 6.7. We have a well-defined bijection

C(G, F)/GF → CG(T0, F)/W → SG?(T?
0 , F?)/W? → S(G?, F?)/G?F?

given by composing the bijections in Lemmas 6.2, 6.4 and 6.6.

6.8. Now, for any parabolic subgroup P 6 G with F-stable Levi complement L 6
P we have a Deligne–Lusztig induction map RG

L⊆P : Irr(LF) → Z Irr(GF) defined as
follows. Let U 6 P be the unipotent radical of the parabolic then we consider the variety
YG

U = {x ∈ G | x−1F(x) ∈ F(U)}. The group GF × (LF)opp acts on YG
U as a finite group

of automorphisms via (g, l) · x = gxl. By the functoriality of `-adic cohomology with
respect to finite morphisms this endows each compactly supported `-adic cohomology
group Hi

c(YG
U) with the structure of a (Q`GF, Q`LF)-bimodule. We then have

RG
L⊆P(χ) = ∑

i∈Z

(−1)i Tr(−, Hi
c(Y

G
U)⊗Q`LF Mχ),

where Mχ is a left Q`LF-module affording the character χ and Hi
c(YG

U) is the ith com-
pactly supported `-adic cohomology of the variety.
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6.9. With this we may define (rational) Lusztig series. For each pair (T, θ) ∈ C(G, F)
we have a corresponding Deligne–Lusztig virtual character RG

T (θ) := RG
T⊆B(θ) where

B is some Borel subgroup containing T (in this case RG
T⊆B does not depend upon the

choice of B). If [T?, s] ∈ S(G?, F?)/G?F?
corresponds to [T, θ] ∈ C(G, F)/GF under the

previous bijection then we denote the virtual character RG
T (θ) by RG

T?(s). Let s ∈ G?F?
be

a semisimple element then we define E(GF, s) to be the set of all irreducible characters
occurring in a Deligne–Lusztig virtual character RG

S?(t) with t a semisimple element
G?F?

-conjugate to s.

7. Lusztig Series and Isogenies

7.1. Let us assume that G ′ = (G′, B′0, T′0) and G ′? = (G′?, B′?0 , T′?0 ) are another set
of dual triples endowed with dual Steinberg endomorphisms F′ ∈ Iso(G′) and F′? ∈
Iso(G′?). Moreover, we assume σ ∈ Iso((G, F), (G ′, F′)) is an injective isogeny, i.e., a
bijective homomorphism, then σ restricts to an isomorphism of finite groups GF →
G′F

′
. In addition, we assume σ? ∈ Iso((G ′?, F′?), (G?, F?)) is an isogeny dual to σ then

this is also injective and induces an isomorphism of finite groups G′?F′? → G?F?
, c.f.,

Lemma 5.5. The following shows what happens to Lusztig series when identifying the
irreducible characters of GF and G′F

′
through σ.

Proposition 7.2. Assume s ∈ G?F?
is a semisimple element then σE(GF, s) = E(G′F′ , σ?−1(s)).

Proof. Let (T, θ) ∈ C(G, F) then by [DM91, 13.22] we have for any (T, θ) ∈ C(G, F)
that σRG

T (θ) = RG′
σ(T)(

σθ). If [T, θ] corresponds to [T?, s] ∈ S(G?, F?) under the bijection
in Corollary 6.7 then the statement follows if we can show that [σ(T), σθ] ∈ C(G′, F′)
corresponds to [σ?−1(T?), σ?−1(s)] ∈ S(G′?, F′?).

Let us assume that [T, θ] corresponds to [w, θ0] ∈ CG(T0, F)/W under the map in
Lemma 6.2 then by definition we have [T?, s] corresponds to [w?, s0] ∈ SG?(T?

0 , F?)/W?

under the map in Lemma 6.4 where s0 = qδw(θ0). It’s easy to check that [σ(T), σθ] corre-
sponds to [σ(w), σθ0] under the map in Lemma 6.2 and [σ?−1(T?), σ?−1(s)] corresponds
to [σ?−1(w?), σ?−1(s0)] under the map in Lemma 6.4. Hence, we need only show that
[σ(w), σθ0] is mapped onto [σ?−1(w?), σ?−1(s0)] under the map in Lemma 6.6.

By definition we have [σ(w), σθ0] is mapped onto [σ(w)?, qδ′w(
σθ0)] and σ(w)? =

σ?−1(w?), c.f., 5.9. Thus, it suffices to show that qδ′w(
σθ0) = σ?−1(s0). For this, as-

sume χ ∈ X satisfies  ◦ ResT0
TFw

0
(χ) = θ then  ◦ ResT′0

T′F
′σ(w)

0

(σχ) = σθ. Rewriting we

have σχ = X(σ−1)(χ) and by Lemma 5.5 we have qδ′ ◦ X(σ−1) = qX(σ?−1) ◦ qδ. From
this the statement follows easily from the description of the map qδ′w, c.f., 6.5, because
there is a common n > 0 such that X((w?F?)n) = pk = X′((σ?−1(w?)F′?)n) and
Nσ?−1(w?)F′?,n ◦ qX(σ?−1) = qX(σ?−1) ◦ Nw?F?,n. �

Remark 7.3. In [NTT08, Corollary 2.4] it is stated that if σ : G → G is a bijective
endomorphism of G commuting with F then σE(GF, s) = E(GF, σ?(s)). Unfortunately,
the definition of the dual σ? is not explicitly given in [NTT08] and the main part of the
proof of this statement is left to the reader so it is difficult to reconcile that statement
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with Proposition 7.2. To avoid any confusion we have decided to give a complete proof
of Proposition 7.2.

8. Twisted Induction and Lusztig Series

8.1. We will now rephrase the usual notions of Deligne–Lusztig induction and Lusztig
series in a way that is suited to our purpose. Our setup here is similar to that considered
in [Lus84a, 6.20] and [DM90]. For this, assume I ⊆ ∆ is a subset of simple roots and let
w ∈ ZW(LI , F). The corresponding Steinberg endomorphism Fw defined in 6.1 then sta-
bilises the Levi subgroup LI . Consider the variety YG

I,w = {x ∈ G | x−1F(x) ∈ F(nwUI)},
where UI 6 PI is the unipotent radical of the corresponding parabolic. Following
[Lus84a, 6.21] we define a map RG

I,w : Irr(LFw
I )→ Z Irr(GF) by setting

RG
I,w(χ) = ∑

i∈Z

(−1)i Tr(−, Hi
c(Y

G
I,w)⊗Q`L

Fw
I

Mχ),

where Mχ denotes a left Q`LFw
I -module affording the character χ. We refer to RG

I,w as
twisted induction.

8.2. Assume now g ∈ G is an element such that g−1F(g) = F(nw) and set P = gPI

and L = gLI . Clearly we have F ◦ ıg = ıg ◦ Fw and so ıg induces an isomorphism
LFw

I → LF of finite groups. The following relates RG
L⊆P and RG

I,w, where RG
L⊆P is the

Deligne–Lusztig induction map corresponding to L 6 P. We note the proof is similar to
that of [NTT08, 2.1].

Lemma 8.3. We have RG
I,w(χ) = RG

L⊆P(
gχ) for any χ ∈ Irr(LFw

I ).

Proof. If U 6 P is the unipotent radical of the parabolic then clearly U = gUI . An easy
calculation shows that the isomorphism of varieties φ : G → G, defined by φ(x) = xg,
maps YG

U isomorphically onto YG
I,w. Thus φ induces an isomorphism of vector spaces

Hi
c(YG

U) → Hi
c(YG

I,w) for each i ∈ Z. As φ(hxl) = hφ(x)lg for any h ∈ GF, x ∈ YG
U ,

and l ∈ LF, we have φ induces an isomorphism Hi
c(YG

U) → Hi
c(YG

I,w)
g of (Q`GF, Q`LF)-

bimodules. Hence, we obtain an isomorphism of left Q`GF-modules

Hi
c(Y

G
U)⊗Q`LF Mgχ

∼= Hi
c(Y

G
I,w)

g ⊗Q`LF
g Mχ

∼= Hi
c(Y

G
I,w)⊗Q`LFw

I
Mχ.

From this the statement follows immediately. �

Rational Lusztig Series

8.4. We wish to now define Lusztig series in an alternative way. For this, we will
need some alternative notation for Deligne–Lusztig virtual characters. If w ∈ W and
θ ∈ Irr(TFw

0 ) then RG
w (θ) := RG

∅,w(θ) is nothing other than a Deligne–Lusztig virtual
character. More precisely, if [T, θ′] ∈ C(G, F)/GF corresponds to [w, θ] under the bijec-
tion in Lemma 6.2 then RG

T (θ
′) = RG

w (θ) by Lemma 8.3. Now, if [w?, s] ∈ SG?(T?
0 , F?)/W?

corresponds to [w, θ] ∈ CG(T0, F)/W under the bijection in Lemma 6.6 then we will de-
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note by RG
w?(s) the virtual character RG

w (θ). Note that when we write RG
w?(s) we implicitly

assume that w? ∈ TW?(s, F?).
8.5. Let us now fix a semisimple element s ∈ T?

0 and let O be the G?-conjugacy class
of s. We will aditionally assume that TW?(s, F?) 6= ∅ or equivalently that F?(O) = O.
By Proposition 3.3 we have a bijection

OF?
/GF? → H1(F?, AG?(s, F?))

Now, the centraliser W?(s) = CNG? (T?
0)
(s)/T?

0 6 W? of s in W? contains the Weyl
group W?◦(s) = NC◦G? (s)(T

?
0)/T?

0 of C◦G?(s) as a normal subgroup and we will denote
by AW?(s, F?) the set of cosets W?◦(s)\TW?(s, F?). The group W?(s) acts on TW?(s, F?)

by F?-conjugation and this induces an action of AW?(s) := W?(s)/W?◦(s) on AW?(s, F?);
we denote the resulting set of orbits by H1(F?,AW?(s, F?)). A standard argument shows
that the map AW?(s, F?) → AG?(s, F?) defined by W?◦(s)w 7→ C◦G?(s)nw is a bijection
and, moreover, this induces a bijection H1(F?,AW?(s, F?)) → H1(F?, AG?(s, F?)). With
this we define for any a? ∈ AW?(s, F?) a set

E0(GF, s, a?) = {χ ∈ Irr(GF) | 〈χ, RG
w?(s)〉GF 6= 0 and W?◦(s)w? ∼F? a?},

where ∼F? denotes the equivalence relation induced by the action of AW?(s) via F?-
conjugacy. The following shows that this set is a Lusztig series.

Lemma 8.6. Assume t = gs ∈ G?F?
is such that g−1F?(g) ∈ AG?(s, F?) corresponds to

a? ∈ AW?(s, F?) then E(GF, t) = E0(GF, s, a?).

Proof. Let X denote the set of all pairs (T?, t′) consisting of a maximal torus T? 6 G?

and a semisimple element t′ ∈ T? such that t′ is G?-conjugate to s. The set X is a
G?-set via the action g · (T?, t′) = (gT?, gt′) and we have a map F′ : X → X defined
by F′(T?, t′) = (F?(T?), F?(t′)). This action is transitive, so we’re in the situation of 3.1.
Clearly x0 = (T?

0 , s) ∈ X and so we have a bijection X F′/GF → H1(F?, AG?(x0, F?)) as
in Proposition 3.3. The stabiliser of x0 is CNG? (T?

0)
(s) whose connected component is T?

0 .
As TG?(x0, F?) = TNG? (T?

0)
(x0, F?) we must have AG?(x0, F?) = TW?(s, F?). As before this

bijection is compatible with the W?(s)-action, resp., AG?(x0)-action, by F?-conjugation.
Hence we obtain a bijection H1(F?, TW?(s, F?)) → H1(F?, AG?(s, F?)). With this one
readily checks we have a commutative diagram

X F′/GF H1(F?, AG?(x0, F?)) H1(F?, TW?(s, F?))

OF/GF H1(F?, AG?(s, F?)) H1(F?,AW?(s, F?))

α β γ

where α(T?, t′) = t′, β(T?
0n) = C◦G?(s)n, and γ(w?) = W?◦(s)w?. The statement now

follows from the definitions. �

8.7. Let us denote by TG?(T?
0 , F?) the set of all pairs (s, a?) such that s ∈ T?

0 , TW?(s, F?) 6=
∅, and a? ∈ AW?(s, F?). The group W? acts on this set in the following way. Con-
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sider the conjugate s′ = nx? s with x? ∈ W? then we have CG?(s′) = nx? CG?(s) and
C◦G?(s′) = nx? C◦G?(s). In particular, we must have W?(s′) = x?W?(s) and W?◦(s′) =
x?W?◦(s). The map φ : TW?(s, F?) → TW?(s′, F?) defined by φ(w?) = x?w?F?(x?−1)

is a bijection which induces a well-defined bijection AW?(s, F?) → AW?(s′, F?) because
W?◦(s′) = x?W?◦(s). Moreover, this map is compatible with the actions of AW?(s) and
AW?(s′) by F?-conjugacy in the sense that φ(y? · w?) = (x?y?) · φ(w?). With this we
define a W?-action on TG?(T?

0 , F?) by setting

x? · (s, a?) = (nx? s, x?a?F?(x?−1)).

From the proof of Lemma 8.6, together with the usual disjointness statment for Lusztig
series, we thus conclude that we have a disjoint union

Irr(GF) =
⊔

[s,a?]∈TG? (T?
0 ,F?)/W?

E0(GF, s, a?).

Remark 8.8. We note that the orbits TG?(T?
0 , F?)/W? are in bijection with the G?F?

-
conjugacy classes of rational semisimple elements.

Geometric Series, Cells, and Families

8.9. For any s ∈ T?
0 we define a set

E0(GF, s) = {χ ∈ Irr(GF) | 〈χ, RG
w?(s)〉GF 6= 0 and w? ∈ TW?(s, F?)}.

Note that E0(GF, s) = ∅ unless TW?(s, F?) 6= ∅ and moreover we have

E0(GF, s) =
⊔

a?∈H1(F?,AW? (s,F?))

E0(GF, s, a?).

The set E0(GF, s) is a geometric Lusztig series. If W?(s) = W?◦(s) then AW?(s, F?) has
cardinality 1 and the geometric Lusztig series is a rational Lusztig series. In [, 16.4]
Lusztig has decomposed the group W?(s) as a disjoint union of two-sided Kazhdan–
Lusztig cells. Moreover, to each such cell C ⊆ W?(s) we have a corresponding family of
irreducible characters Irr(W?(s) | C) ⊆ Irr(W?(s)) and this yields a disjoint union

Irr(W?(s)) =
⊔

C⊆W?(s)

Irr(W?(s) | C).

We note that each family contains a unique special representation EC ∈ Irr(W?(s) | C),
see [Lus84a, 4.1.4] for the definition.

8.10. Let us fix an element w?
1 ∈ TW?(s, F?) then the map w?

1 F? defines an automor-
phism of W?(s) which permutes the two-sided Kazhdan–Lusztig cells and thus the fam-
ilies. We denote by W̃?(s) the semidirect product W?(s)o 〈w?

1 F?〉. If E ∈ Irr(W?(s))w?
1 F?

is a w?
1 F?-invariant irreducible character then we denote by Ẽ ∈ Irr(W̃?(s)) an extension

of E; this exists because the quotient W̃?(s)/W?(s) is cyclic. Associated to Ẽ we have a
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corresponding GF-class function

RG
T?

0
(Ẽ, s) =

1
|W?(s)| ∑

w?∈W?(s)
Ẽ(w?w?

1 F?)RG
w?w?

1
(s).

Moreover, if C ⊆W?(s) is a two-sided cell then we define a set

E0(GF, s,C) = {χ ∈ Irr(GF) | 〈χ,RG
T?

0
(Ẽ, s)〉GF 6= 0 and E ∈ Irr(W?(s) | C)w?

1 F?}.

As is explained in [Tay16, 14.7] this yields a disjoint union

E0(GF, s) =
⊔

C⊆W?(s)

E0(GF, s,C),

where the union is taken over all the w?
1 F?-stable two-sided cells.

Twisted Induction induces a Bijection

Definition 8.11. If A ⊆ G? is a subset containing a maximal torus of G? then we define
the Levi cover of A to be the intersection of all Levi subgroups of G? containing A.

8.12. Note that the Levi cover is a Levi subgroup of G? because A contains a maximal
torus of G? and the intersection of two Levi subgroups containing a common maximal
torus is a Levi subgroup, see [DM91, 2.1(i)]. Moreover, the Levi cover is clearly the
unique minimal Levi subgroup containing A with respect to inclusion. Hence, if s ∈ G?

is a semisimple element then this implies that s is quasi-isolated in the Levi cover of
CG?(s). Now, assume s ∈ T?

0 then the Levi cover contains T?
0 so it is conjugate to a

standard Levi subgroup L?
I , for some subset I ⊆ ∆, by an element of NG?(T?

0). In
particular, after possibly replacing s by an NG?(T?

0)-conjugate we may assume that the
Levi cover of CG?(s) is a standard Levi subgroup.

8.13. Let us continue our assumption that s ∈ T?
0 and the Levi cover of CG?(s) is a

standard Levi subgroup. If w? ∈ TW?(s, F?) then nw? F?(s) = s so nw? F?(CG?(s)) = CG?(s).
A subgroup L? 6 G? is a Levi subgroup containing T?

0 if and only if nw? F?(L?) is a Levi
subgroup containing T?

0 . Hence if L?
I is the Levi cover of CG?(s) then we must have

nw? F?(L?
I ) = L?

I , or equivalently w? ∈ TW?(L?
I , F?) = TW?(W?

I , F?). Hence, we have an
embedding TW?(s, F?) ↪→ TW?(W?

I , F?). Each element of TW?(W?
I , F?) may be factored

uniquely as a product x?w?
1 with x? ∈W?

I and w?
1 ∈ TW?(I?, F?), see the arguments used

in the proof of [DM91, 4.2]. Hence we have a bijection W?
I \TW?(W?

I , F?) → TW?(I?, F?)

and thus a well-defined map

AW?(s, F?)→W?
I \TW?(W?

I , F?)→ TW?(I?, F?), (8.14)

where the first map is given by W?◦(s)x? 7→W?
I x?.

Theorem 8.15 (Lusztig). Assume s ∈ T?
0 is a semisimple element such that TW?(s, F?) 6=

∅ and L?
I is the Levi cover of CG?(s) with I ⊆ ∆. Let w?

1 ∈ TW?(I?, F?) then the map
AW?

I
(s, w?

1 F?) → AW?(s, F?) given by a? 7→ a?w?
1 is a bijection and the map (−1)`(w1)RG

I,w1
:
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Irr(LFw1
I )→ Z Irr(GF) gives bijections

E0(L
Fw1
I , s)→ E0(GF, s) and E0(L

Fw1
I , s, a?)→ E0(GF, s, a?w?

1)

for any a? ∈ AW?
I
(s, w?

1 F?). Here ` : W → Z>0 denotes the length function of W determined
by the reflections associated to the simple roots ∆.

Proof. Let g ∈ G be such that g−1F(g) = F(nw1) and set P = gPI and L = gLI then L 6 P
is an F-stable Levi complement of the parabolic subgroup P. The anti-isomorphism
? : W → W? maps ZW(I, F) onto TW?(I?, F?), so the endomorphism Fw1 stabilises
BI and T0. In particular, if L = (L, gBI , gT0) then ıg ∈ Iso((LI , Fw1), (L, F)) is an
isomorphism. Dually, let us choose an element g? ∈ G? such that g?−1F?(g?) = nw?

1

and set P? := g?P?
I and L? := g?L?

I then L? 6 P? is an F?-stable Levi complement of
P?. Setting L? = (L?, g?B?

I , g?T?
0) we have the map ı−1

g? ∈ Iso((L?, F?), (L?
I , w?

1 F?)) is an
isomorphism dual to ıg.

Assume a? = W?◦(s)z? ∈ AW?
I
(s, w?

1 F?) and let t = ls ∈ L?w?
1 F?

I be a conjugate of s
with l ∈ L?

I such that l−1nw?
1 F?(l) = nz? . We then have a map

E0(L
Fw1
I , s, a?) = E(LFw1

I , t)
−◦ı−1

g−−−→ E(LF, ıg?(t))
RG

L⊆P−−→ E(GF, ıg?(t)) = E0(GF, s, a?w?
1).
(8.16)

The first and last identifications between Lusztig series is simply Lemma 8.6 together
with the computation

(g?l)−1F?(g?l) = l−1g?−1F?(g)F?(l) = l−1nw?
1
(n−1

w?
1
lnz?nw?

1
) = nz?nw?

1
.

The computation of the image of the first map is Proposition 7.2. It’s clear that L?

contains the centraliser CG?(ıg?(t)) so by [DM91, 13.25(ii)] we have (−1)`(w1)RG
L⊆P is a

bijection between the geometric Lusztig series labelled by ıg?(t). However, applying
[Bon06, Théorème 11.10] one easily concludes the same statement holds for the rational
Lusztig series. By Lemma 8.3 the map in (8.16) is nothing other than RG

I,w1
so the result

follows. �

9. Equivariance of Twisted Induction

We now assume that σ ∈ Iso(G, F) is a bijective isogeny and σ? ∈
Iso(G?, F?) is dual to σ, c.f., 5.3.

9.1. The following result gives the equivariance of twisted induction with respect to
bijective isogenies. We note that the corresponding result for Deligne–Lusztig induction
is well known, see for instance [DM91, 13.22] and [NTT08, Corollary 2.3]. Our version of
this statement has the added advantage that we can explicitly compute the correspond-
ing automorphism on the Levi subgroup. We note that our proof is similar in strategy
to that of [NTT08, Corollary 2.3].
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Proposition 9.2. Let I ⊆ ∆ be a subset of simple roots and let w ∈ ZW(LI , F). Assume z ∈W
is such that zσ(I) = I and zF(σ(w)z−1) = F(w) then there exists an element n ∈ NG(T0),
representing z ∈ W, such that nF(σ(nw)n−1) = F(nw). Moreover, if n ∈ NG(T0) is such an
element then nσ ∈ Iso(LI , Fw) restricts to an automorphism of LFw

I and for any χ ∈ Irr(LFw
I )

we have
σRG

I,w(χ) = RG
I,w(

nσχ).

Proof. By assumption we have nzF(σ(nw)n−1
z n−1

w ) ∈ T0 because σ(T0) = T0 and F(T0) =

T0. Applying the Lang–Steinberg theorem inside T0 to the Steinberg endomorphism Fw
we see that there exists an element s ∈ T0 such that

nzF(σ(nw)n−1
z n−1

w ) = s−1F(nwsn−1
w ),

which implies nF(σ(nw)n−1) = F(nw) where n = snz. This condition ensures that
nσ ◦ Fw = Fw ◦ nσ so nσ restricts to an automorphism of LFw

I .
We claim that the bijective morphism φ : G → G, defined by φ(x) = σ(x)n−1,

restricts to a bijective morphism of varieties YG
I,w → YG

I,w. Indeed, assume x ∈ YG
I,w then

(σ(x)n−1)−1F(σ(x)n−1) = nσ(x−1F(x))F(n−1) ∈ nσ(F(nwUI))F(n−1).

Clearly we have

σ(F(nwUI)) = F(σ(nw)Uσ(I)) = F(σ(nw)Uz−1(I)) = F(σ(nw)n−1UIn)

because σ(PI) = Pσ(I) and n represents z. Therefore, we must have

nσ(F(nwUI))F(n−1) = nF(σ(nw)n−1UI) = F(nwUI)

by the first part. This proves the claim.
A quick calculation shows that φ(gxl) = σ(g)φ(x)nσ(l) for any g ∈ GF, x ∈ YG

I,w, and
l ∈ LFw

I , from which we deduce that φ induces an isomorphism σ Hi
c(YG

I,w)
nσ → Hi

c(YG
I,w)

of (Q`GF, Q`LFw
I )-bimodules for any i ∈ Z. We may now argue as in Lemma 8.3 to

complete the proof. �

9.3. We wish to understand the effect of σ on a Lusztig series E0(GF, s, a?) with
s ∈ T?

0 and a? ∈ AW?(s, F?). After possibly replacing (s, a?) by a pair in the same
W?-orbit we may, and will, assume that the Levi cover of CG?(s) is a standard Levi
subgroup L?

I with I ⊆ ∆. By Proposition 7.2 and Lemma 8.6 we have σE0(GF, s, a?) =

E0(GF, σ?−1(s), σ?−1(a?)); note here we’ve used that F? and σ? commute. As we will
be interested in characters which are fixed by σ we will assume that σE0(GF, s, a?) =

E0(GF, s, a?). By 8.7 there thus exists an element x? ∈W? such that

(s, a?) = (n−1
x? σ?−1(s), x?−1σ?−1(a?)F?(x?)).

9.4. The exact same arguments that were used in 8.13 show that n−1
x? σ?−1(L?

I ) = L?
I .

Moreover, there exists an element y? ∈ W?
I such that y?−1x?−1σ?−1(I?) = I?. Let us set
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z? = x?y? then we have a bijection ψ : TW?(I?, F?) → TW?(I?, F?) given by ψ(w?) =

z?−1σ?−1(w?)F?(z?). Moreover, we have a commutative diagram

AW?(s, F?) TW?(I?, F?)

AW?(s, F?) TW?(I?, F?)

φ ψ

where the horizontal maps are given by (8.14) and the map φ is as in 8.7. In particular,
if a? ∈ AW?(s, F?)φ corresponds to w?

1 ∈ TW?(I?, F?) under the map in (8.14) then we
have z?−1σ?−1(w?

1)F?(z?) = w?
1 . By duality this implies that F−1(z)σ(w1)z−1 = w1 or,

equivalently, that zF(σ(w1)z−1) = F(w1). From z?−1σ?−1(I?) = I? we also get zσ(I) = I;
thus we are in the setting of Proposition 9.2 from which we obtain the following.

Theorem 9.5. Assume E0(GF, s, a?) is a σ-invariant Lusztig series; we will maintain the nota-
tion of 9.3 and 9.4. Let n ∈ NG(T0) be an element, representing z ∈W, such that nF(σ(nw1)n

−1) =

F(nw1) then we have bijections

E0(L
Fw1
I , s)→ E0(GF, s) and E0(L

Fw1
I , s, a?w?−1

1 )→ E0(GF, s, a?)

which are equivariant with respect to σ and nσ in the sense that

σRG
I,w1

(χ) = RG
I,w1

(nσχ)

for any χ ∈ E0(L
Fw1
I , s, a?w?−1

1 ).

Proof. The statement is simply Theorem 8.15 and Proposition 9.2. We only need to
check that the automorphism nσ of LFw1

I preserves the Lusztig series E0(L
Fw1
I , s, a?w?−1

1 ).
However, clearly σ?z? is dual to the isogeny nσ because n represents z so, as in 9.3, we
have

nσE0(L
Fw1
I , s, a?w?−1

1 ) = E0(L
Fw1
I , nz?−1 σ?−1(s), z?−1σ?−1(a?w?−1

1 )).

Note first that n−1
z? σ?−1(s) = n−1

y? s, because n−1
x? σ?−1(s) = s, and as σ?−1(w?−1

1 ) = F?(z?)w?−1
1 z?−1

we have

z?−1σ?−1(a?w?−1
1 ) = z?−1σ?−1(a?)F?(z?)w?−1

1

= y?−1a?F?(y?)w?−1
1

= y?−1(a?w?−1
1 )w?

1 F?(y?).

As y? ∈ W?
I this shows that the pair (n−1

z? σ?−1(s), z?−1σ?−1(a?w?−1
1 )) ∈ TL?

I
(T?

0 , w?
1 F?) is

in the same W?
I -orbit as (s, a?w?−1

1 ) ∈ TL?
I
(T?

0 , w?
1 F?). Thus, by 8.7, we have the Lusztig

series is preserved. �
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10. Regular Embeddings

10.1. We now assume that ι : G→ G̃ is a regular embedding, in the sense of [Lus88,
7]. In particular, G̃ is a connected reductive algebraic group with connected centre and
ι is a closed embedding such that the derived subgroup of the image ι(G) is the derived
subgroup of G̃. Moreover, we assume G̃ is equipped with a Steinberg endomorphism,
also denoted by F : G̃ → G̃, such that F ◦ ι = ι ◦ F. This means that ι restricts to an
embedding ι : GF → G̃F and the image ι(GF) is normal in G̃F. In what follows we
implicitly identify G with its image ι(G) in G̃. In this vein we denote by ResG̃F

GF(χ̃) the
character χ̃ ◦ ι for any character χ̃ of G̃F.

10.2. Given such a regular embedding we can construct a canonical triple G̃ =

(G̃, B̃0, T̃0) by setting B̃0 = B0Z(G̃) and T̃0 = T0Z(G̃). Clearly we have F ∈ Iso(G̃).
We assume fixed a triple G̃? = (G̃?, B̃?

0 , T̃?
0) dual to G and a Steinberg endomorphism

F? ∈ Iso(G̃?) dual to F. The embedding ι determines a surjective homomorphism
ι? : G̃? → G?, whose kernel is a central torus, satisfying F? ◦ ι? = ι? ◦ F?. We will
denote by W̃ = WG̃(T̃0) and W̃? = WG̃?(T̃?

0) the corresponding Weyl groups of G̃ and
G̃?. Note that ι, resp., ι?, induces an isomorphism W → W̃, resp., W̃? → W?, and we
will implicitly identify these groups through this isomorphism. With this we consider
the labelling sets TG?(T?

0 , F?) and TG̃?(T̃?
0 , F?) defined in 8.7.

Lemma 10.3. The map ι? induces a surjective map ι? : TG̃?(T̃?
0 , F?)→ TG?(T?

0 , F?).

Proof. Let s̃ ∈ T̃?
0 then we certainly have ι? induces an injective map TW̃?(s̃, F?) →

TW?(ι?(s̃), F?). As the centre of G̃ is connected we have CG̃?(s̃) = C◦
G̃?(s̃), see [DM91,

13.15(ii)], so W̃?(s̃) = W̃?◦(s̃) and ι?(W̃?(s̃)) = W?◦(ι?(s̃)). Hence ι? induces a map
AW̃?(s̃, F?)→ AW?(ι?(s̃), F?) so also a map TG̃?(T̃?

0 , F?)→ TG?(T?
0 , F?).

Assume (s, a?) ∈ TG?(T?
0 , F?) then as ι? is surjective there exists an element s̃ ∈ T̃?

0

such that ι?(s̃) = s. Let w? ∈ W?(s) be such that a? = W?◦(s)w? then nw? F?(s) = s
so s̃−1nw? F?(s̃) ∈ Ker(ι?). As Ker(ι?) is connected and central we have by the Lang–
Steinberg theorem that there exists an element z ∈ Ker(ι?) such that w?

F?(s̃z) = s̃z. This
shows the map is surjective. �

Remark 10.4. For any element s̃ ∈ T̃?
0 we have AW̃?(s̃, F?) is a singleton. Hence we have

a bijection between TG̃?(T̃?
0 , F?) and the F?-stable W̃?-orbits on T̃?

0 . As mentioned in 8.9
we thus have E0(G̃F, s̃, a?) = E0(G̃F, s̃) for any pair (s̃, a?) ∈ TG̃?(T̃?

0 , F?).

Lemma 10.5. Assume (s̃, a?) ∈ TG̃?(T̃?
0 , F?) and let ι?(s̃, a?) = (s, a?).

(a) If χ̃ ∈ E0(G̃F, s̃, a?) then each irreducible constituent of χ̃ is contained in the series
E0(GF, s, a?).

(b) If χ ∈ E0(GF, s, a?) then there exists a character χ̃ ∈ E0(G̃F, s̃, a?) such that χ is a
constituent of ResG̃F

GF(χ̃).

Proof. Let g ∈ G̃ be such that g−1F?(g) ∈ AG̃?(s̃, F?) corresponds to a? ∈ AW̃?(s̃, F?)

and set t̃ = g s̃ and t = ι?(t̃) = ι?(g)s. By Lemma 8.6 we have E(G̃F, t̃) = E0(G̃F, s̃) and
E(GF, t) = E0(GF, s, a?). The statement is now [Bon06, 11.17]. �
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11. Generalised Gelfand–Graev Representations (GGGRs)

From this point forward we assume that p is a good prime for
G and F is a Frobenius endomorphism endowing G with an Fq-
rational structure. Moreover, we assume that G is proximate in
the sense of [Tay16, 2.10]. Recall this means a simply connected
covering of the derived subgroup of G is a separable morphism.

11.1. If r = pa, with a > 0 an integer, then we denote by Fr : K → K the Frobe-
nius endomorphism defined by Fr(k) = kr; note that F1 is the identity. Moreover, we
define Frobr(G) ⊆ Iso(G) to be the set of all isogenies σ ∈ Iso(G) such that X(σ) = rτ

where τ : X(T0) → X(T0) is a finite order automorphism preserving the set of simple
roots ∆. Moreover, we set Frob(G) =

⋃
a>0 Frobpa(G). Any element of Frob1(G) is an

automorphism of G and any element of Frob(G) \ Frob1(G) is a Frobenius endomor-
phism. Moreover, up to composition with an inner automorphism, Frob(G) contains ev-
ery Frobenius endomorphism and automorphism of G. We write Frob(G, F) ⊆ Frob(G)
and Frobr(G, F) ⊆ Frobr(G) for the subset of isogenies commuting with F.

11.2. We will denote by g the Lie algebra of G which we define to be the set of all K-
derivations DerK(K[G], K), where K[G] is the affine algebra of G and K is considered as
a K[G]-module via f · k = f (1)k. We wish to now describe how an element σ ∈ Frob(G)
induces a corresponding map of the Lie algebra. First, let us assume σ ∈ Frobr(G) is a
Frobenius endomorphism, so r > 1, then there exists an Fr-subalgebra K[G]σ = { f ∈
K[G] | σ?( f ) = f r} ⊆ K[G], where σ∗ : K[G] → K[G] is the corresponding comor-
phism, such that the natural product map K⊗Fr K[G]σ → K[G] is an isomorphism. If
we set gσ(Fr) = Der(K[G]σ, Fr) then we have an isomorphism g ∼= K⊗Fr gσ(Fr). With
this isomorphism we can define a Frobenius endomorphism on g, which we also denote
by σ : g→ g. This endomorphism is of the form σ = Fr ⊗ ψ, where ψ : gσ(Fr)→ gσ(Fr)

is such that the corresponding comorphism ψ∗ : K[gσ(Fr)] → K[gσ(Fr)] is given by
ψ∗( f ) = f r. Note via this process we have F : G → G induces a Frobenius endomor-
phism F : g→ g.

11.3. Now if σ ∈ Frob1(G) is an automorphism then the differential dσ : g→ g is an
automorphism of the Lie algebra; we take this differential to be our induced map which
we will also sloppily denote by σ. If σ is a Frobenius endomorphism then the differential
dσ is 0; thus these two definitions of the induced map are different. We will denote by
qX(G) the set of all cocharacters λ : K× → G. To each such cocharacter λ ∈ qX(G) we
have a corresponding parabolic subgroup P(λ) with unipotent radical U(λ) and Levi
complement L(λ) = CG(λ(K

×)), see [Spr09, 8.4.5].
11.4. Let us denote by U ⊆ G the unipotent variety and by N ⊆ g the nilpotent

cone. A Springer isomorphism φspr : U → N is a G-equivariant isomorphism of va-
rieties, where the G-action on U is by conjugation and the G-action on N is via the
adjoint representation; this commutes with the Frobenius F. In [Tay16, 4.6] it is shown,
assuming that p is a good prime and G is proximate, that there exists a Springer isomor-
phism φspr : U → N whose restriction to each U(λ) is a Kawanaka isomorphism, in the
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sense of [Tay16, 4.1]. We will need the following slight modification of the statements in
[Tay16]; we omit the proof.

Proposition 11.5. We may assume φspr satisfies φspr ◦ σ = σ ◦ φspr for any σ ∈ Frob(G).

11.6. Now assume σ ∈ Frobr(G) then for any cocharacter λ ∈ qX(G) we define a new
cocharacter σ · λ ∈ qX(G) by setting

(σ · λ)(k) = σ(λ(F−1
r (k)))

for all k ∈ K×. We denote by qX(G)σ those cocharacters satisfying σ · λ = λ. Recall
that each cocharacter λ ∈ qX(G) determines a grading g = ⊕i∈Zg(λ, i) of the Lie al-
gebra. For each integer i > 0 we have a Lie subalgebra u(λ, i) = ⊕j>ig(λ, j) and a
corresponding closed connected subgroup U(λ, i) 6 U(λ) whose Lie algebra is u(λ, i).
The Levi subgroup L(λ) acts on g(λ, 2) and there is a unique open dense orbit which
we denote by g(λ, 2)reg. Moreover, if σ ∈ Frob(G) then we have σ(U(λ, i)) = U(σ · λ, i)
and σ(u(λ, i)) = u(σ · λ, i). In particular, if λ ∈ qX(G)σ then σ(U(λ, i)) = U(λ, i) and
σ(u(λ, i)) = u(λ, i).

11.7. Now assume u ∈ U F is a rational unipotent element and e = φspr(u) ∈ N F

is the corresponding rational nilpotent element. In [Tay16, §3] we have defined a set
of cocharacters D(G) ⊆ qX(G) which is invariant under the map λ 7→ σ · λ for any
σ ∈ Frob(G). Moreover, there exists an F-fixed cocharacter λ ∈ D(G)F, which is unique
up to GF-conjugacy, such that e ∈ g(λ, 2)reg. As above we have F(U(λ, 2)) = U(λ, 2)
and we wish to define a linear character ϕu : U(λ, 2)F → Q`. With this in mind let
κ : g× g → K be a G-invariant trace form which is not too degenerate in the sense
of [Tay16, 5.6]. We may assume that κ satisfies κ(σ(X), σ(Y)) = Fr(κ(X, Y)) for any
σ ∈ Frobr(G), see [SS70, I, 5.3] and [Tay16, 5.6]. Note that if σ ∈ Frob1(G) then the
invariance of κ under σ follows from the fact that it is a trace form. Let us furthermore
assume † : g → g is the map defined in [Tay16, 5.2]. This is then an Fr-opposition
automorphism, for any prime power r = pa > 1, in the sense of [Tay16, 5.1]. Moreover,
we have σ(X†) = σ(X)† for all X ∈ g and σ ∈ Frob(G).

11.8. We now assume chosen once and for all a fixed linear character χp : F+
p → Q

×
`

of the finite field Fp viewed as an additive group. For any power r of p we then obtain
a linear character χr : F+

r → Q
×
` defined by χr = χp ◦ TrFr/Fp where TrFr/Fp : Fr → Fp is

the field trace. We note that as TrFr/Fp ◦Fp = TrFr/Fp we have χr ◦ Fp = χr. With this we
define the linear character ϕu : U(λ, 2)F → Q` by setting

ϕu(x) = χq(κ(e†, φspr(x)))

for any x ∈ U(λ, 2)F. This is a linear character because the restriction of φspr to U(λ, 2)
is a Kawanaka isomorphism, see [Tay16, §4].

Definition 11.9. If IndGF

U(λ,2)F(ϕu) denotes the induction of the linear character then

ΓGF

u = q−dim g(λ,1)/2 IndGF

U(λ,2)F(ϕu)
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is the character of a representation of GF known as a generalised Gelfand–Graev represen-
tation (GGGR), see [Tay16, §5].

Proposition 11.10. For any rational unipotent element u ∈ U F and bijective isogeny σ ∈
Frob(G, F) we have σΓGF

u = ΓGF

σ(u). Furthermore, if u ∈ U F and σ(u) are GF-conjugate then
σΓGF

u = ΓGF

u .

Proof. We have σ(e) ∈ g(σ · λ, 2)reg and σ · λ ∈ D(G)F is F-fixed, because σ commutes
with F, so certainly

σ IndGF

U(λ,2)F(ϕu) = IndGF

σ(U(λ,2)F)(
σ ϕu) = IndGF

U(σ·λ,2)F(σ ϕu).

For any x ∈ U(σ · λ, 2)F we have

σ ϕu(x) = χq(κ(e†, φspr(σ
−1(x)))) = χq(κ(σ(e)†, φspr(x))) = ϕσ(u)(x),

where the last equalities follow from the properties of κ, φspr, †, and χq listed above. As
σ ∈ Frobr(G, F) is bijective and Fr-semilinear on g we see that g(λ, 1) and g(σ · λ, 1) have
the same dimension. From this we conclude that σΓGF

u = ΓGF

σ(u). The second statement

follows from the fact that ΓGF

u = ΓGF

gug−1 for any g ∈ GF, which follows easily from the

construction of ΓGF

u . �

12. Symplectic Groups

From this point forward we assume that G is the symplectic group
Sp2n(K) defined over K = Fp with p an odd prime. The underly-
ing alternating bilinear form defining Sp2n(K) is chosen to be that
of [Gec03, 1.3.15].

12.1. We set G = (G, B0, T0), where T0 6 B0 6 G are the maximal torus of di-
agonal matrices and Borel subgroup of upper triangular matrices respectively. A dual
triple G? = (G?, B?

0 , T?
0) is obtained by taking G? to be the special orthogonal group

SO2n+1(K), defined with respect to the underlying symmetric bilinear form given in
[Gec03, 1.3.15]. Moreover T?

0 6 B?
0 are again defined to be the maximal torus of diago-

nal matrices and Borel subgroup of upper triangular matrices respectively.
12.2. We assume Fp ∈ Iso(G) and F?

p ∈ Iso(G?) are the Frobenius endomorphisms
raising each matrix entry to the power p. Note that X(Fp) = p on X(T0) and X(F?

p ) = p
on X(T?

0) so these isogenies are dual. We now choose a regular embedding ι : G → G̃,
as in Section 10, with respect to Fp. We will use all the notation for G̃ and G̃? introduced
in Section 10.

12.3. To apply the results from the previous sections, in particular Theorem 9.5, we
need to choose for each element w ∈ W = WG(T0) a representative nw ∈ NG(T0). For
each simple reflection sα, with α ∈ ∆, we choose the representative given in [Gec03,
1.7.3]. For a general element w ∈ W we assume chosen a reduced expression s1 · · · sr,
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with each si a simple reflection, and then set nw = ns1 · · · nsr . Choosing the representa-
tives in this way we have Fp(nw) = nw for all w ∈W.

12.4. The Frobenius endomorphism Fp, resp., F?
p , generates a cyclic subgroup of

Aut(G̃) and Aut(G), resp., Aut(G̃?) and Aut(G?), all of whose non-identity elements
are Frobenius endomorphisms. Through ι, resp., ι?, we have the subgroup of Aut(G̃),
resp., Aut(G̃?), generated by Fp is mapped isomorphically onto the corresponding sub-
group of Aut(G), resp., Aut(G?). For each prime power r = pa > 1 we set Fr = Fa

p and
F?

r = F?
p

a; these are dual Frobenius endomorphisms. Moreover we fix a prime power q
and set F = Fq and F? = F?

q .
12.5. Now it’s clear that we have Fp ∈ Aut(G̃, F) so the cyclic subgroup generated by

Fp determines a subgroup D 6 Aut(G̃F), which is the subgroup of field automorphisms.
As Fp preserves GF we thus have D is mapped isomorphically onto a subgroup of
Aut(GF) via ι; we also denote this subgroup by D. The group GF is normal in G̃F and
we have an injective homomorphism G̃F/GFZ(G̃F) → Aut(GF) whose image consists
of the diagonal automorphisms of GF. We note that, according to [GLS98, 2.5.1], we
have Aut(GF) ∼= (G̃F/Z(G̃F))o D.

13. The Springer Correspondence

From this point forward we assume σ = Fr ∈ Iso(G, F) is as in
12.4.

13.1. To understand the effect of the automorphism σ on Kawanaka’s generalised
Gelfand–Graev representations we need to understand the unipotent conjugacy classes
of G. With this in mind let us denote by P1(2n) the set of all partitions λ = (1r1 , 2r2 , . . . ) `
2n such that r2i+1 ≡ 0 (mod 2) for each 1 6 i 6 n. To each unipotent element u ∈ U
one associates a partition λ ∈ P1(2n) which is given by the sizes of the Jordan blocks
in the Jordan normal form of u. The map U → P1(2n) sending u 7→ λ then induces
a bijection U/G → P1(2n), see [LS12, Corollary 3.6]. We will need the following two
lemmas concerning unipotent elements of G.

Lemma 13.2. If u ∈ U F is a rational unipotent element then σ(u) and u are GF-conjugate.

Proof. By the parameterisation in terms of the Jordan normal form it is clear that every
unipotent conjugacy class O ∈ U/G is Fp-stable. In particular, let O be the class contain-
ing u and fix an element u0 ∈ OFp then u0 is fixed by σ and F. Moreover, by [LS12, 7.1] we
may assume that Fp acts trivially on the component group AG(u0) = CG(u0)/C◦G(u0).
Applying Lemma 3.5 we conclude that σ(u) and u are GF-conjugate. �

Lemma 13.3. Let u ∈ U be a unipotent element whose G-conjugacy class is parameterised by
λ = (1r1 , 2r2 , . . . ) ∈ P1(2n) then we have AG̃(u) = CG̃(u)/C◦

G̃
(u) ∼= (Z/2Z)n(u)−δ(u) is

an elementary abelian 2-group where n(u) = |{i ∈ N | r2i 6= 0}| and δ(u) = 1 if r2i ≡ 1
(mod 2) for some i ∈N and δ(u) = 0 otherwise.

Proof. This follows from [LS12, Theorem 3.1] together with the fact that the natural map
AG(u)→ AG̃(u) is surjective with kernel given by the image of the centre Z(G). �
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13.4. Let r, s, n ∈ N0 and d ∈ Z be integers and set e = bd/2c = max{a ∈ Z |
a 6 d/2}. Following [LS85] we denote by X̃

r,s
n,d the set of all ordered pairs

(
A
B

)
of finite

sequences A = (a1, . . . , am+d) and B = (b1, . . . , bm) of non-negative integers such that
the following hold:

(a) ai − ai−1 > r + s for all 1 < i 6 m + d,

(b) bi − bi−1 > r + s for all 1 < i 6 m,

(c) b1 > s,

(d) ∑m+d
i=1 ai + ∑m

j=1 bj = n + r(m + e)(m + d− e− 1) + s(m + e)(m + d− e).

There is a natural shift operation X̃
r,s
n,d → X̃

r,s
n,d on this set defined by(

A
B

)
7→
(

0, a1 + r + s, . . . , am+d + r + s
s, b1 + r + s, . . . , bm + r + s

)

This induces an equivalence relation on X̃
r,s
n,d and we denote by X

r,s
n,d the resulting set of

equivalence classes. We will write the equivalence class containing
(

A
B

)
as
[

A
B

]
. We call

n the rank of
[

A
B

]
.

Remark 13.5. It is easily checked that the set X
0,0
n,d is naturally in bijection with the set

of all bipartitions of n, i.e., pairs of partitions whose entries sum to n.

13.6. We now recall that we have an addition of symbols ⊕ : X
r,s
n,d×X

r′,s′
n′,d → X

r+r′,s+s′
n+n′,d

defined as follows. If
[

A
B

]
∈ X

r,s
n,d and

[
A′
B′
]
∈ X

r′,s′
n′,d then after shifting we may assume

that |B| = |B′| = m and |A| = |A′| = m + d. With this we define[
A
B

]
⊕
[

A′

B′

]
=

[
a1 + a′1, . . . , am+d + a′m+d

b1 + b′1, . . . , bm + b′m

]
.

If d ∈ {0, 1} then the set X
r,s
0,d consists of a single element Λr,s

0,d; specifically Λr,s
0,0 =

[ ∅
∅
]

and Λr,s
0,1 =

[
0
∅
]
. Adding with these symbols clearly leaves the rank unchanged.

13.7. Assume k > 1 is an integer and let W ′k 6Wk denote the Weyl groups of type Dk

and Bk respectively. It is well known that we have a bijection X
0,0
k,1 → Irr(Wk) between

the bipartitions of k and the irreducible characters of Wk; we assume this bijection is the
one defined in [Lus84a, 4.5]. Now let us denote by Y

0,0
k,1 ⊆ X

0,0
k,1 the subset of symbols[

A
B

]
such that

m

∑
i=1

ai >
m

∑
i=1

bi.

where A = (a1, . . . , am) and B = (b1, . . . , bm). We then have an injective map Y
0,0
k,1 →

Irr(W ′k) defined by
[

A
B

]
→ ResWk

W ′k
(
[

A
B

]
). Note this map makes sense because

[
A
B

]
∈ X

0,0
k,1,

which we identify with Irr(Wk), and the restrictions are irreducible in this case.

Remark 13.8. Our choice of ordering for the symbols in Y
0,0
k,1 ensures that the b-invariant

of the character of Irr(W ′k) labelled by
[

A
B

]
∈ Y

0,0
k,1 is the same as that of the character of

Irr(Wk) labelled by
[

A
B

]
∈ X

0,0
k,1, see [GP00, 5.6.2].
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13.9. Let us denote by NG the set of all pairs (O, E ) consisting of a unipotent con-
jugacy class O of G and an irreducible G-equivariant local system E on O, taken up to
isomorphism. In [Lus84b], building on work of Springer, Lusztig has defined an injective
map Spr : Irr(W) → NG called the Springer correspondence. We may combinatorially
describe this map as follows. In [Lus84b, §12] Lusztig has defined a bijection

NG ←→ X1,1
n :=

⋃
d∈Z

d odd

X
1,1
n,d. (13.10)

Identifying NG with X
1,1
n we then have the image of Spr is the set X

1,1
n,1. Identifying

Irr(W) with X
0,0
n,1, as in 13.7, we have the map Spr is given by

Spr(X) = X⊕Λ1,1
0,1 (13.11)

for any X ∈ X
0,0
n,1.

Remark 13.12. Let NG̃ be defined for G̃ as NG is defined for G. The embedding
ι induces a bijection between the unipotent conjugacy classes of G and those of G̃.
Moreover, let O ⊆ G ⊆ G̃ be a unipotent conjugacy class with class representative
u ∈ O. The natural embedding CG(u) ↪→ CG̃(u) induces a surjective homomorphism
AG(u) → AG̃(u) between the corresponding component groups and thus an injective
map Irr(AG̃(u)) → Irr(AG(u)). This corresponds to an injective map between the iso-
morphism classes of G̃-equivariant irreducible local systems onO and the G-equivariant
irreducible local systems onO. In particular, we have ι defines an embeddingNG̃ ↪→ NG

and the image of Spr is contained in NG̃. The map Spr also defines the Springer corre-
spondence for G̃.

14. Cuspidal Characters in Quasi-Isolated Series

We now assume that s̃ ∈ T̃?
0 is such that ι?(s̃) is quasi-isolated in

G? and TW̃?(s̃, F?) 6= ∅.

14.1. Assume χ̃ ∈ Irr(G̃F) is an irreducible character. We recall that Lusztig has
defined a corresponding integer nχ̃ > 1 such that nχ̃ · χ̃(1) ∈ Z[q] is an integral poly-
nomial in q, c.f., [Lus84a, 4.26]. This is usually referred to as the generic denominator
of χ̃. Moreover, we have a corresponding F-stable unipotent conjugacy class O∗χ̃ ⊆ G̃
called the wave front set of χ̃, see [Kaw85; Lus92; Tay16]. If u ∈ O∗χ̃ then it is known
that nχ̃ divides |AG̃(u)|. We aim to show that, for certain cuspidal characters, we have
an equality nχ̃ = |AG̃(u)|. This numerical result will be crucial for showing that these
cuspidal characters are invariant under σ. We note that a statement similar to this has
been used by Geck in relation to cuspidal character sheaves, see [Gec99, 5.3].

14.2. To obtain this result we need to describe the possible sets E0(G̃F, s̃, C̃) which
contain a cuspidal character. By the classification of quasi-isolated semisimple elements,
see [Bon05, 4.11], we have s ∈ T?

0 is quasi-isolated in G? if and only if s2 = 1. In
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particular, if V = K2n+1 is the natural module for G? then we have C◦G?(s) is of type BaDb

where 2a + 1 = dim Ker(s− idV) and 2b = dim Ker(s + idV). Note that a + b = n and a
factor D1 should be considered empty. The centraliser CG̃?(s̃) is mapped isomorphically
onto the connected component C◦G?(s) via ι?, thus CG̃?(s̃) is connected of type BaDb.
With this we have the following well known result of Lusztig.

Lemma 14.3 (Lusztig). If the (geometric) series E0(G̃F, s̃) contains a cuspidal character then
a = e(e + 1) and b = f 2 for some non-negative integers satisfying either the condition e > 1 or
the condition f > 2 and the cuspidal character is unique. If χ̃ ∈ E0(G̃F, s̃, C̃) ⊆ E0(G̃F, s̃) is a
cuspidal character then the corresponding family Irr(WG̃?(s̃) | C̃) contains the special character[

0 1 · · · e− 1 e
1 2 · · · e

]
b

[
1 2 · · · f − 1 f
1 2 · · · f − 1

]
∈ X

0,0
a,1 ×Y

0,0
b,1.

Moreover, we have nχ̃ = 2e+ f−∆( f ) where ∆( f ) = 0 if f = 0 and ∆( f ) = 1 if f 6= 0.

Proof. Fix an element w?
1 ∈ TW̃?(s̃, F?) and a Jordan decomposition Ψs̃ : E0(G̃F, s̃) →

E0(CG̃?(s)w?
1 F?

, 1). By [Lus77, 7.8.2] we have χ̃ ∈ E0(G̃F, s̃) is cuspidal if and only if
Ψs̃(χ̃) is cuspidal. Now the unipotent character Ψs̃(χ̃) is a tensor product ψ̃′ b ψ̃′′ of
unipotent characters corresponding to the two factors of CG̃?(s)w?

1 F?
and we have Ψs̃(χ̃)

is cuspidal if and only if ψ̃′ and ψ̃′′ are cuspidal. The statement now follows from [Lus77,
8.2], see also [Lus77, 3.6.1] and [Lus84a, 8.1]. �

Proposition 14.4. Recall our assumption that ι?(s̃) = s is quasi-isolated in G?. If χ̃ ∈
E0(G̃F, s̃) is a cuspidal irreducible character and u ∈ O∗χ̃ is a representative of the wave front set
then we have nχ̃ = |AG̃(u)|.

Proof. We will denote by jW
?

WG̃? (s̃)
the j-induction of characters from WG̃?(s̃) to W? with

respect to the natural module of W?. Let E =
[

A
B

]
b
[

C
D

]
∈ X

0,0
a,1 ×Y

0,0
b,1 be the special

character of WG̃?(s̃) described in Lemma 14.3. Note that E is invariant under tensoring
with the sign character because it is contained in a cuspidal family, see [Lus84a, 8.1]. In
particular, jW

?

WG̃? (s̃)
(E⊗ sgn) = jW

?

WG̃? (s̃)
(E) and according to [Lus09, 5.3(b)] we have

jW
?

WG̃? (s̃)(E) =

[
A
B

]
⊕
[

C
D

]
. (14.5)

Combining this with the description of the map in (13.11) allows us to compute Spr(jW
?

WG̃? (s̃)
(E)) ∈

X
1,1
n,1.

The symbol Spr(jW
?

WG̃? (s̃)
(E)) corresponds to a pair (O, E ) ∈ NG under the map men-

tioned in (13.10) and O is precisely the wave front set O∗χ̃, see [Lus92, §10] and [Tay16,
§12]. Assume c0 6 c1 6 · · · 6 cs are the entries of the symbol Spr(jW

?

WG̃? (s̃)
(E)). If all these

entries are distinct then the partition parameterising O∗χ̃, c.f., 13.1, is obtained from the
sequence (2c0, 2c1− 2, . . . , 2cs − 2s) by removing any zero entries, see [GM00, §2.B]. The
general case is more complicated but we will not need it here, see [GM00, §2.B] for
details.
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Using the above we may now prove the statement. There are two cases to consider.
Firstly, assume 0 6 e < f and let k = f − e > 0 then by (13.11) and (14.5) we have
Spr(jW

?

WG̃? (s̃)
(E)) is the symbol

[ 0 1 ··· k−1 k k+1 ··· k+e−1 k+e

0 3 · · · 3k− 3 3k 3k + 4 · · · 3k + 4e− 4 3k + 4e
1 4 · · · 3k− 2 3k + 2 3k + 6 · · · 3k + 4e− 2

]

The unipotent class corresponding to this symbol is thus parameterised by the partition
λ = 2µ where

µ = (1, 1, 2, 2, . . . , k− 1, k− 1, k, k + 1, . . . , k + 2e)

As λ contains (k − 1) + (2e + 1) = e + f distinct even numbers and one such number
occurs an odd number of times we have nχ̃ = 2e+ f−1 = |AG̃(u)|, c.f., Lemmas 13.3
and 14.3.

Assume 0 6 f 6 e and let k = e − f > 0 then by (13.11) and (14.5) we have
Spr(jW

?

W?(s)(E)) is the symbol

[ 0 1 ··· k−1 k k+1 ··· k+ f−1 k+ f

0 3 · · · 3k− 3 3k 3k + 4 · · · 3k + 4 f − 4 3k + 4 f
2 5 · · · 3k− 2 3k + 2 3k + 6 · · · 3k + 4 f − 2

]

The unipotent class corresponding to this symbol is thus parameterised by the partition
λ = 2µ where

µ = (1, 1, 2, 2, ..., k, k, k + 1, . . . , k + 2 f )

As λ contains k + 2 f = e + f distinct even numbers and one such number occurs an
odd number of times if and only if f 6= 0 we have nχ̃ = 2e+ f−∆( f ) = |AG̃(u)|, c.f.,
Lemmas 13.3 and 14.3. �

Theorem 14.6. Assume (s, a?) ∈ TG?(T?
0 , F?) is such that s is quasi-isolated in G? then

σE0(GF, s, a?) = E0(GF, s, a?). Moreover, if χ ∈ E0(GF, s, a?) is a cuspidal character then
σχ = χ.

Proof. Firstly, as s2 = 1 we clearly have σ?(s) = s and as σ? acts trivially on W? we
see that σ? fixes (s, a?) ∈ TG?(T?

0 , F?); this implies σE0(GF, s, a?) = E0(GF, s, a?) by 9.3.
Now let (s̃, a?) ∈ TG̃?(T̃?

0 , F?) be such that ι?(s̃, a?) = (s, a?) and let χ̃ ∈ E0(G̃F, s̃) =

E0(G̃F, s̃, a?) be a character such that χ occurs in the restriction of χ̃, c.f., Section 10.
By [Bon06, 12.1] we have χ is cuspidal if and only if χ̃ is cuspidal. As χ̃ is the unique
cuspidal character contained in E0(G̃F, s̃), c.f., Lemma 14.3, we see that the cuspidal char-
acters contained in E0(GF, s, a?) are precisely the irreducible constituents of ResG̃F

GF(χ̃).
In particular, they are all conjugate under G̃F.

Let O = O∗χ̃ denote the wave front set of χ̃ and let u1, . . . , ur be representatives for
the G̃F-conjugacy classes contained in OF. We have a character of G̃F

Γ̃O = Γ̃u1 + · · ·+ Γ̃ur
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obtained by summing the corresponding characters of the GGGRs Γ̃ui := ΓG̃F

ui
. By [Tay13,

2.2, 2.4] we have F acts trivially on the component group AG̃(ui) for all 1 6 i 6 r. In
particular, by [Tay16, 15.4] we have

〈Γ̃O, χ̃〉G̃F =
|AG̃(ui)|

nχ̃
= 1

where the second equality follows from Proposition 14.4. As the Γ̃ui are characters there
must exist a unique GGGR Γ̃u = Γ̃ui , with 1 6 i 6 r, such that 〈Γ̃u, χ̃〉G̃F = 1.

The unipotent element u is contained in GF and we have a corresponding GGGR
Γu := ΓGF

u of GF. This GGGR has the property that Γ̃u = IndG̃F

GF(Γu) so consequently, by
Frobenius reciprocity,

1 = 〈Γ̃u, χ̃〉G̃F = 〈IndG̃F

GF(Γu), χ̃〉G̃F = 〈Γu, ResG̃F

GF(χ̃)〉GF .

In particular, the restriction ResG̃F

GF(χ̃) has a unique irreducible constituent χ0 such that
〈Γu, χ0〉GF = 1. It’s easily seen that σχ0 ∈ σE0(GF, s, a?) = E0(GF, s, a?) is also cuspidal
so is a constituent of ResG̃F

GF(χ̃). Moreover, we have

1 = 〈Γu, χ0〉GF = 〈σΓu, σχ0〉GF = 〈Γu, σχ0〉GF

by Proposition 11.10 and Lemma 13.2. As χ0 is uniquely determined by this property
we must have σχ0 = χ0.

If the restriction ResG̃F

GF(χ̃) is irreducible then we have χ0 = χ and we’re done, so
we may assume this is not the case. As GF is a symplectic group we thus have [G̃F :
G̃F

χ0
] = 2 so ResG̃F

GF(χ̃) = χ0 + gχ0, for some g ∈ G̃F \ G̃F
χ0

, and χ ∈ {χ0, gχ0}. Clearly
σ(gχ0) = σ(g)(σχ0) = gχ0 because σ must act trivially on G̃F/G̃F

χ0
so we’re done. �

15. Quasi-Isolated Series

15.1. We now wish to understand the effect of the field automorphism σ on a geo-
metric Lusztig series E0(GF, s) when s ∈ T?

0 is quasi-isolated in G?. We already know,
by Theorem 14.6, that σE0(GF, s) = E0(GF, s) and that any cuspidal character contained
in E0(GF, s) is σ-fixed. Using this we will now show that all the characters in E0(GF, s)
are σ-fixed. To do this we will use Harish-Chandra theory. With this in mind, let I ⊆ ∆
be an F-stable subset of simple roots then the corresponding parabolic and Levi sub-
groups LI 6 PI are F-stable. We have a corresponding Harish-Chandra induction map
RGF

I = RGF

LF
I⊆PF

I
which is defined to be the composition of inflation from LF

I to PF
I followed

by induction from PF
I to GF. Note, this coincides with the map RG

I,1 defined in 8.1.
15.2. If λ ∈ Irr(LF

I ) is a cuspidal irreducible character then we denote by E(GF, I, λ) ⊆
Irr(GF) the irreducible constituents of RGF

I (λ). Moreover, we denote by Cusp(GF) the
set of pairs (I, λ) consisting of an F-stable subset I ⊆ ∆ of simple roots and a cuspidal
character λ ∈ Irr(LF

I ). We define an equivalence relation ∼ on Cusp(GF) by setting
(I, λ) ∼ (J, µ) if there exists an element w ∈ WF such that w(I) = J and gλ = µ; where
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g ∈ NG(T0)F represents w. Note, such an element exists by the Lang–Steinberg Theorem
and satisfies gLI = Lw(I) = LJ . We then have a disjoint union

Irr(GF) =
⊔

[I,λ]∈Cusp(GF)/∼
E(GF, I, λ),

where the union runs over the corresponding equivalence classes. The sets E(GF, I, λ)

are called Harish-Chandra series.
15.3. By [Bon06, 11.10] it is known that any Lusztig series E0(GF, s, a?) is a disjoint

union of Harish-Chandra series. Thus, it suffices to show that for each Harish-Chandra
series E(GF, I, λ) ⊆ E0(GF, s) we have σE(GF, I, λ) = E(GF, I, λ) and, moreover, each
character in E(GF, I, λ) is σ-fixed. As σ(LI) = Lσ(I) and σ(PI) = Pσ(I) we clearly have
σRGF

I (λ) = RGF

σ(I)(
σλ). As σ is a split Frobenius endomorphism we have σ(I) = I so it

suffices to show σλ = λ. To do this, we need to describe the possible Harish-Chandra
series contained in E0(GF, s). This amounts to the following well known result.

Lemma 15.4. Assume s2 = 1 and (I, λ) ∈ Cusp(GF) satisfies E(GF, I, λ) ⊆ E0(GF, s) then
the derived subgroup of LI is L′I = Sp2k(K), where k = e(e + 1) for some e > 0. Moreover, we
have LI = L′I × Z◦(LI) and λ = ψ b θ with ψ ∈ E0(L′FI , s′) a cuspidal character, s′2 = 1, and
θ ∈ Irr(Z◦(LI)

F) satisfies θ2 = 1.

Proof. The Levi subgroup LF
I is a direct product ∏t

i=1 GLni(q) × Sp2k(q), embedded
diagonally in GF, with n = k + n1 + · · · + nt; see [Gec03, 1.7.3]. Moreover, the dual
group L?F?

I is also a direct product ∏t
i=1 GLni(q)× SO2k+1(q) embedded diagonally in

G?F?
. The fact that n1 = · · · = nt = 1 follows from [Lus77, 7.12] together with our

assumption that s2 = 1; the rest of the statement is easy. �

15.5. Let us continue with the notation and assumptions of Lemma 15.4. It follows
from Theorem 14.6 that σψ = ψ. Recall that if r is such that σ = Fr then we have
σθ = θr = θ because θ2 = 1 and p is odd. In particular, we have σλ = λ so σRGF

I (λ) =

RGF

I (λ). By [Gec93] and [Lus84a, 8.6], there exists an extension λ̃ ∈ Irr(NGF(LI , λ))

of λ to its stabiliser in NGF(LI). Clearly σ(NGF(LI , λ)) = NGF(LI , σλ) = NGF(LI , λ)

and so σλ̃ ∈ Irr(NGF(LI , λ)) is also an extension of λ. To study the action of σ on
E(GF, I, λ) we need to understand how σ acts on λ̃ and for this we need to understand
NGF(LI). We decompose LI as Z◦(LI)× L′I , as in Lemma 15.4. Recall that the group LI

embeds naturally in a subsystem subgroup M× L′I = Sp2(n−k)(K)× Sp2k(K) 6 G such
that Z◦(LI) is a maximal torus of M. This subgroup is F-stable and the corresponding
subgroup of F-fixed points is Sp2(n−k)(q)× Sp2k(q).

15.6. We claim that NGF(L) = L′FI ×NMF(Z◦(LI)). If I ⊆ ∆ is as in 15.5 then we have
WG(LI) is isomorphic to NW(WI)/WI , where WI 6 W is the corresponding parabolic
subgroup. Furthermore, this isomorphism is compatible with the induced actions of F.
As F acts trivially on W this implies that we have

NW(WI)/WI = (NW(WI)/WI)
F ∼= (NG(LI)/LI)

F ∼= NG(LI)
F/LF

I ,

where the last isomorphism holds because F is a Frobenius endomorphism and LI is
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connected, see [DM91, 3.13]. Now the group NW(WI)/WI is well known to be a Coxeter
group of type Bn−k, see [How80] for instance. From this the claim follows. We may now
prove the following.

Lemma 15.7. Any extension λ̃ ∈ Irr(NGF(LI , λ)) of λ satisfies σλ̃ = λ̃.

Proof. From 15.6 we see that the stabiliser NGF(LI , λ) is simply L′FI × NMF(Z◦(LI), θ) so
the extension λ̃ is of the form ψ b θ̃ where θ̃ ∈ Irr(NMF(Z◦(LI), θ)) is an extension of θ.
As σψ = ψ we need only show that σ θ̃ = θ̃. Now, as θ is a linear character so is θ̃ which
implies that θ̃ is a homomorphism. Each coset nZ◦(LI) ∈ WM(Z◦(LI)) is Fp-stable and
thus contains an Fp-fixed point. These coset representatives are then also σ-fixed and
F-fixed. This implies that NMF(Z◦(LI), θ) is generated by Z◦(LI)

F and a set of σ-fixed
representatives for the cosets NMF(Z◦(LI), θ)/Z◦(LI)

F. We can then conclude that θ̃ = θ

because σ θ̃(t) = σθ(t) = θ(t) = θ̃(t) for any t ∈ Z◦(LI)
F. �

15.8. We are now ready to prove the main result of this article. We note that by
Lemma 8.6 and 8.9 the statement given below is equivalent to the statement given in
Theorem 1.6.

Theorem 15.9. Recall our assumption that G is the symplectic group Sp2n(K) and p is odd.
Assume s ∈ T?

0 is quasi-isolated in G? then σχ = χ for all χ ∈ E0(GF, s).

Proof. It suffices to show that each element of a Harish-Chandra series E(GF, I, λ) ⊆
E0(GF, s) is fixed by σ. As discussed in 15.5 we have σλ = λ and by Lemma 15.7 any
extension λ̃ ∈ Irr(NGF(LI , λ)) of λ satisfies σλ̃ = λ̃. If WGF(LI , λ) = NGF(LI , λ)/LF

I then
we have a bijection Irr(WGF(LI , λ))→ E(GF, I, λ), denoted η 7→ RGF

I (λ)η , and by [MS16,
5.6] this bijection can be chosen such that

σRGF

I (λ)η = RGF

I (σλ)ση = RGF

I (λ)ση .

Note that the linear character denoted δλ,σ in [MS16, 5.6] is trivial in our case because
σλ̃ = λ̃ is both an extension of λ and σλ. The same argument as that used in 15.6 shows
that σ is the identity on WGF(LI , λ) so ση = η and the statement follows. �

16. On the Inductive McKay Condition

16.1. We now wish to show that the global portion of Späth’s criterion for the induc-
tive McKay condition holds for the irreducible characters of GF, see [Spä12, Theorem
2.12]. Specifically let us recall from 12.5 that the semidirect product G̃F o D acts on the
set of irreducible characters Irr(GF) and all automorphisms of GF appear in this action.
With this we have the following; recall the notation of 2.6.

Theorem 16.2. For any χ ∈ Irr(GF) we have (G̃F o D)χ = G̃F
χ o Dχ.

Proof. Let us assume that χ ∈ E0(GF, s, a?). We need to show that for any g ∈ G̃F and
σ ∈ D we have σgχ = χ if and only if gχ = χ and σχ = χ. Assume first that σ is such
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that σE0(GF, s, a?) 6= E0(GF, s, a?). For any g ∈ G̃F we have gχ ∈ E0(GF, s, a?) which
means σgχ ∈ σE0(GF, s, a?). As σgχ and χ are contained in different series we must have
σgχ 6= χ so there is nothing to check in this case.

Now assume σE0(GF, s, a?) = E0(GF, s, a?) then we are in the setup of Section 9. After
possibly replacing the pair (s, a?) ∈ TG?(T?

0 , F?) by another pair in the same W?-orbit we
may assume that the Levi cover of CG?(s) is a standard Levi subgroup L?

I . We can then
decompose L?

I as a product M?
C ×M?

A such that M?
C is a special orthogonal group and

M?
A is a product of general linear groups. Note that these general linear groups may be

tori, i.e., isomorphic to GL1(K). Correspondingly, in G, we have LI = MC ×MA where
MC is a symplectic group and MA is a direct product of general linear groups.

As F? acts trivially on ∆? we have TW?(I?, F?) = NW?(I?). Let us denote by J ⊆ ∆,
resp., K ⊆ ∆, the set of simple roots such that the root subgroups {X±α | α ∈ J}, resp.,
{X±α | α ∈ K}, generate the derived subgroup of MC, resp., MA. An easy argument
shows that for any element x? ∈ NW?(I?) we have x?(J?) = J? and moreover x? must fix
pointwise any root in J?; simply because J? admits no graph automorphisms. In fact,
for each element x? ∈ NW?(I?) we can find a representative nx? ∈ NG?(T?

0) ∩ CG?(M?
C).

This follows from the fact that L?
I is contained in a subgroup L̂?

I = M?
C× M̂?

A, where M̂?
A

is a full orthogonal group, together with [How80].
Now assume w?

1 ∈ TW?(I?, F?) and z? ∈ TW?(I?, F?) are as in 9.4. Choosing the
representatives as above means that we have L?w?

1 F?

I = M?F?

C ×M?w?
1 F?

A . In G we have LI

is contained in a subgroup L̂I = MC × M̂A, where M̂A is a symplectic group. This is a
subsystem subgroup as in 15.5. From our choice of representatives nw ∈ NG(T0), c.f.,
12.3, we see that for any element w ∈ ZW(I, F) = NW(I) we have nw ∈ NG(T0) ∩ M̂A 6

CG(MC). Therefore, we similarly have LFw1
I = MF

C ×MFw1
A .

If χ ∈ E0(GF, s, a?) then by Theorem 8.15 we have χ = (−1)`(w1)RG
I,w1

(ψ) for a unique
character ψ ∈ E0(L

Fw1
I , s, b?) where b? = a?w?−1

1 . Let us write the element s as a product
sCsA with sC ∈ M?

C ∩ T?
0 and sA ∈ M?

A ∩ T?
0 . We then have W?(s) = W?

J (sC)×W?
K(sA)

and W?◦(s) = W?◦
J (sC) ×W?

K(sA) because LK has a connected centre. This means we
can identify AW?(s) and AW?

J
(sC) and so also AW?(s, F?) and AW?

J
(sC, F?). With this in

mind we have
E0(L

Fw1
I , s, b?) = E0(MF

C, sC, b?)⊗ E0(M
Fw1
A , sA).

Here ⊗ denotes tensor product of characters. Moreover, we have used that the rational
and geometric Lusztig series of MFw1

A coincide, see 8.9.
With this we can decompose ψ uniquely as a tensor product ψC ⊗ ψA with ψC ∈

E0(MF
C, sC, b?) and ψA ∈ E0(M

Fw1
A , sA). Recall the element z ∈ W is such that z(I) =

zσ(I) = I. To apply Theorem 9.5 we must find an element n ∈ NG(T0) such that
nF(σ(nw1)n

−1) = nnw1 F(n−1) = nw1 . Inspecting the proof of Proposition 9.2 we easily
see that n may be chosen to lie in CG(MC) because nzF(σ(nw1)n

−1
z n−1

w1
) ∈ T0 ∩ M̂A 6

CG(MC) and this intersection is connected, which means the Lang–Steinberg theorem
can be applied to it. Assuming n is chosen in this way we have

σχ = χ⇔ σRG
I,w1

(ψ) = RG
I,w1

(ψ)⇔ nσψ = ψ⇔ σψC ⊗ nσψA = ψC ⊗ ψA.



33

By Theorem 15.9 we have σψC = ψC so σχ = χ if and only if nσψA = ψA.
Recall that any element of the quotient G̃F/GF can be represented by an element

t ∈ T̃F
0 . Assume t is such an element and let m ∈ T0 be such that mtnw1 t−1F(m−1) = nw1 .

Applying Theorem 9.5 we have

tχ = χ⇔ tRG
I,w1

(ψ) = RG
I,w1

(ψ)⇔ mtψ = ψ⇔ mtψC ⊗ mtψA = ψC ⊗ ψA.

It’s clear that mt induces a diagonal automorphism on MFw1
A but as this group is a

product of finite general linear and finite general unitary groups such an automorphism
must be inner. This means mtψA = ψA so we have tχ = χ if and only if mtψC = ψC.
Finally we have

tσχ = χ⇔ tσRG
I,w1

(ψ) = RG
I,w1

(ψ)⇔ mtnσψ = ψ⇔ mtψC ⊗ nσψA = ψC ⊗ ψA,

which holds if and only if mtψC = ψC and nσψA = ψA. This latter condition is equivalent
to tχ = χ and σχ = χ which completes the proof. �
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