Instructor: Jay Taylor

Math 517B - Group Theory (Spring 2017) Exercise Sheet 3

Assume G is an abstract group with an automorphism F : G — G. We will assume that O is a
G-set with a map F' : O — O such that

(F1) F(g-x) = F(g) - F'(x).

At this point we do not assume that O is transitive. For each element x € O we denote by [x]g = {g-x |
g € G} the corresponding G-orbit. Note the condition (F1) ensures that G = {g € G | F(g) = g}
acts on the set OF = {x € O | F'(x) = x}.

Exercise 3.1. For any element x € O set Tg(x,F') = {g € G | g- F/(x) = x}. Show that the
following hold:

(a) if g € Te(x, F') then Tg(x, F') = Stabg(x)g, i.e., Tg(x, F') is a coset of the stabiliser,
(b) if g € Tg(x, F') and h € Stabg(x) then hx g = hgF(h)™t € Tg(x, F").

Conclude that  defines an action of Stabg(x) on Tg(x, F’), which we call F-conjugation. The orbits of
this action are called F-conjugacy classes and the set of all such orbits is denoted by H*(F, Tg(x, F')).

Exercise 3.2. Let us denote by .Z : G — G the map defined by .#(g) = g~'1F(g). Show that for any
x € O the following are equivalent:

(a) F([xle) = X,
(b) Ts(x, F") # 0.
Furthermore, show that the following are equivalent:
(©) KlenOF #0,
(d) Te(x, F)NZ(G) #0.
[Remark: this gives a motivation for why one might consider the Lang—Steinberg map .Z ]
Exercise 3.3. Show that the map . : G — G is never surjective if G is finite. [Hint: consider G/GF ]

Exercise 3.4. Assume the G-action on O is transitive and fix an element xg € @. Assume x1, xo € OF
are F’-fixed elements and let g1, g» € G be such that x; = g;-xo. Show that the following are equivalent:

(a) x1 and x, are in the same G -orbit,
(b) Z(g1) and Z(go) are in the same Stabg(xp)-orbit.

Conclude that the map OF — Tg(xo, F’) defined by g - xo — Z(g) induces a well defined bijection
OF' JGF — HY(F, Tg(x, F')) between the G -orbits and the F-conjugacy classes.



Exercise 3.5. Assume x1,xo € O are in the same G-orbit, i.e., there exists an element g € G such
that xo = g - x;. We denote by ¢ : G — G the map defined by ¢(h) = ghF(g~'). Show that the
following hold:

(a) ¢ restricts to a bijective map ¢ : Tg(x1, F') = Tg(xa, F'),
(b) ¢(h*e)=9hx¢(e) for any h € Stabg(x1) and e € Tg(x1, F').
Conclude that ¢ defines a bijective map ¢ : H*(F, Tg(x1, F')) — HY(F, Tg(xa, F")).

Exercise 3.6. Let O denote the set of pairs (x, h) such that x € @ and h € Tg(x, F') # 0. Show
that we have a G-action on O given by

g-(x,h)=(g-x,ghF(g™)).

Furthemore, show that we have a bijection between the orbits of G acting on O and the orbits of GF
acting on OF'. [Remark: We're not assuming here that the action is transitive.]

For the following exercise we need some notation. Assume n > 1 is an integer then we denote by
P(n) the set of partitions of n, i.e., the set of all sequences A = (\q, ..., Ak) such that Ay > -+ >
Ak > 0and Ay + -+ + A = n. For each integer / > 1 and partition A = (Aq, ..., Ak) € P(n) we set

ai(A) ={1<y<k| N =1}
We say i is a part of X if a;(X\) > 0 and we call a;(\) the multiplicity. We will need the subset
Po(n) = {X € P(n) | aj(N\) is even for all odd integers i > 1}.

In other words Pp(n) are those partitions where each odd part, different from 1, occurs an even number
of times.

Exercise 3.7. Assume n > 1 is an integer and let G be the symmetric group &,. If A € P(n) is a
partition of n then we have a corresponding conjugacy class C, C G such that the elements in Cy have
cycle type A. Moreover the map A\ — Cy gives a bijection between P(n) and the conjugacy classes of
G. We consider the conjugacy class

C(2k) if n=2k
C(Qk’]_) |f n = 2k + 1

Oo =

Every element of Qg is thus a product of k = |n/2| disjoint transpositions. With this we take
F : G — G to be the automorphism defined by F(g) = Wogwo_1 where wyg € Qg is a fixed class
representative. We have G acts on itself by conjugation and (F1) is satisfied. Note, each conjugacy
class of G is clearly F-stable. Show that the following hold.

(a) For any w € G we have .Z(g) N Tg(w, F) # 0 if and only if Og N Cg(w) # 0.
(b) For any integer 1 < m < n we have C(Fm’ln,m) # () if and only if m is even.

(c) We have C§ # 0 if and only if X € Po(n).



(d) Show that if A € Po(n) then C¥ is a single G -conjugacy class. Hence the map X — Cf defines
a bijection between Py(\) and the set of GF-conjugacy classes.

[Hint: (b). If w € C(p,10-my then Co(w) = Cppy X & (d). Show that if Og N Cs(w) is non-empty
then it is a single Cg(w)-conjugacy class. Remark: the group G is isomorphic to the hyperoctohedral
group, which is the Weyl group of type By where k = |n/2] ]

From this point forward we assume G is a connected affine algebraic group and F is a
Steinberg endomorphism.

We will also assume that the following condition holds
(F2) Stabg(x) < G is a closed subgroup of G for any x € O.
In this case we want to improve the parameterisation given in 3.3 using the Lang—Steinberg theorem.
Exercise 3.8. Assume G acts transitively on O then OF # 0.

For any x € O we define Ag(x, F") = Stabg(x) \ Tg(x, F’) to be the set of cosets

Stab%(x)h C Tg(x, F')

of the connected component Stabg(x) contained in Tg(x, F'). We have a natural surjective map
T To(x, F') = Ag(x, F') defined by g = Stabg(x)g. In class we proved the following.

Lemma 3.9. The action  of Stabg(x) on Tg(x, F') induces an action of Stabg(x) on Ag(x, F')
which factors through the finite component group Ag(x) := Stabg(x)/Stabg(x). We denote by
HY(F, Ag(x, F")) the orbits of this Ag(x)-action which we again call F-conjugacy classes.

Exercise 3.10. Show that the surjective map = : Tg(x, F') — Ag(x, F’) induces a bijection
HY(F, To(x, F)) — HY(F, Ag(x, F")).

Conclude that if G acts transitively on O and Stabg(x) is connected for some (any) x € O then G
acts transitively on OF". [Hint: The hard part is surjectivity. Assume g1, ¢» € Tg(x, F') are such that

Stabg(x)gs = Stabg(x)gg1F (g™ ")

for some g € Stabg(x) then go = ghg1F(g~!) for some h € Stab%(x). Check that the Stabg(xo)
is stable under F’ = 14, o F so that F’ is a Steinberg endomorphism of Stabg(xo). Apply the Lang—
Steinberg theorem to F’ in Stabg(x).]

Exercise 3.11. Assume G is a connected affine algebraic group with Steinberg endomorphism F :
G — G. In class we showed that F/ = 140 F is also a Steinberg endomorphism where 1y : G — G
is the conjugation map defined by t4(x) = gxg~!. Show that the fixed point groups G* and G are
isomorphic. [Hint: construct an element h € G such that ¢, 0 F' = F oty then ¢, gives the desired
isomorphism.]



Exercise 3.12. Assume H, K < G are conjugate subgroups of G, i.e., K = 9H for some element
g € G. Furthermore, assume K is F-stable then n = Z(g) satisfies "F(H) = H. Show that
Lg : G — G restricts to an isomorphism H — K satisfying tg0 F; = F o14. Conclude that ¢4 restricts
to an isomorphism Hf» — KF. [Remark: we have F, : G — G is a Steinberg endomorphism and
Lg : GFr — GF is an isomorphism mapping H" onto K ]

Exercise 3.13. Assume G = GL,(F,) and F : G — G the standard Frobenius endomorphism defined
by F(xj) = (xg. . Moreover, we assume Tg < G is the maximal torus of diagonal matrices and
W5 (To) = Ng(To)/To. Show that F acts trivially on Wg(To). Conclude that the GF-conjugacy
classes of F-stable maximal tori of G are parameterised by the conjugacy classes of Wi (Ty) = &),.
The conjugacy classes of &,, are parameterised by cycle types and thus by partitionsof n. If T, < G is
an F-stable maximal torus parameterised by an element in W5 (Tg) of cycle type A show that we have

F~
Ty = th—l X oo X quk_l

where A = (A\q, ..., Ak) and Cp, denotes a cyclic group of order m. [Hint: use 3.12 and reduce to the
case of a single cycle, which we did in class.]



