
Instructor: Jay Taylor

Math 517B - Group Theory (Spring 2017) Exercise Sheet 3

Assume G is an abstract group with an automorphism F : G → G. We will assume that O is a
G-set with a map F ′ : O → O such that

(F1) F ′(g · x) = F (g) · F ′(x).

At this point we do not assume thatO is transitive. For each element x ∈ O we denote by [x ]G = {g·x |
g ∈ G} the corresponding G-orbit. Note the condition (F1) ensures that GF = {g ∈ G | F (g) = g}
acts on the set OF ′ = {x ∈ O | F ′(x) = x}.

Exercise 3.1. For any element x ∈ O set TG(x, F ′) = {g ∈ G | g · F ′(x) = x}. Show that the
following hold:

(a) if g ∈ TG(x, F ′) then TG(x, F ′) = StabG(x)g, i.e., TG(x, F ′) is a coset of the stabiliser,

(b) if g ∈ TG(x, F ′) and h ∈ StabG(x) then h ? g = hgF (h)−1 ∈ TG(x, F ′).

Conclude that ? defines an action of StabG(x) on TG(x, F ′), which we call F -conjugation. The orbits of
this action are called F -conjugacy classes and the set of all such orbits is denoted by H1(F, TG(x, F ′)).

Exercise 3.2. Let us denote by L : G → G the map defined by L (g) = g−1F (g). Show that for any
x ∈ O the following are equivalent:

(a) F ′([x ]G) = [x ]G ,

(b) TG(x, F ′) 6= ∅.

Furthermore, show that the following are equivalent:

(c) [x ]G ∩ OF
′ 6= ∅,

(d) TG(x, F ′) ∩L (G) 6= ∅.

[Remark: this gives a motivation for why one might consider the Lang–Steinberg map L .]

Exercise 3.3. Show that the map L : G → G is never surjective if G is finite. [Hint: consider G/GF .]

Exercise 3.4. Assume the G-action on O is transitive and fix an element x0 ∈ O. Assume x1, x2 ∈ OF
′

are F ′-fixed elements and let g1, g2 ∈ G be such that xi = gi ·x0. Show that the following are equivalent:

(a) x1 and x2 are in the same GF -orbit,

(b) L (g1) and L (g2) are in the same StabG(x0)-orbit.

Conclude that the map OF ′ → TG(x0, F
′) defined by g · x0 → L (g) induces a well defined bijection

OF ′/GF → H1(F, TG(x, F ′)) between the GF -orbits and the F -conjugacy classes.



Exercise 3.5. Assume x1, x2 ∈ O are in the same G-orbit, i.e., there exists an element g ∈ G such
that x2 = g · x1. We denote by φ : G → G the map defined by φ(h) = ghF (g−1). Show that the
following hold:

(a) φ restricts to a bijective map φ : TG(x1, F
′)→ TG(x2, F

′),

(b) φ(h ? e) = gh ? φ(e) for any h ∈ StabG(x1) and e ∈ TG(x1, F
′).

Conclude that φ defines a bijective map φ : H1(F, TG(x1, F
′))→ H1(F, TG(x2, F

′)).

Exercise 3.6. Let Õ denote the set of pairs (x, h) such that x ∈ O and h ∈ TG(x, F ′) 6= ∅. Show
that we have a G-action on Õ given by

g · (x, h) = (g · x, ghF (g−1)).

Furthemore, show that we have a bijection between the orbits of G acting on Õ and the orbits of GF

acting on OF ′ . [Remark: We’re not assuming here that the action is transitive.]

For the following exercise we need some notation. Assume n > 1 is an integer then we denote by
P(n) the set of partitions of n, i.e., the set of all sequences λ = (λ1, . . . , λk) such that λ1 > · · · >
λk > 0 and λ1 + · · ·+ λk = n. For each integer i > 1 and partition λ = (λ1, . . . , λk) ∈ P(n) we set

ai(λ) = |{1 6 j 6 k | λj = i}|.

We say i is a part of λ if ai(λ) > 0 and we call ai(λ) the multiplicity. We will need the subset

P0(n) = {λ ∈ P(n) | ai(λ) is even for all odd integers i > 1}.

In other words P0(n) are those partitions where each odd part, different from 1, occurs an even number
of times.

Exercise 3.7. Assume n > 1 is an integer and let G be the symmetric group Sn. If λ ∈ P(n) is a
partition of n then we have a corresponding conjugacy class Cλ ⊆ G such that the elements in Cλ have
cycle type λ. Moreover the map λ 7→ Cλ gives a bijection between P(n) and the conjugacy classes of
G. We consider the conjugacy class

O0 :=

C(2k) if n = 2k

C(2k ,1) if n = 2k + 1.

Every element of O0 is thus a product of k = bn/2c disjoint transpositions. With this we take
F : G → G to be the automorphism defined by F (g) = w0gw

−1
0 where w0 ∈ O0 is a fixed class

representative. We have G acts on itself by conjugation and (F1) is satisfied. Note, each conjugacy
class of G is clearly F -stable. Show that the following hold.

(a) For any w ∈ G we have L (g) ∩ TG(w, F ) 6= ∅ if and only if O0 ∩ CG(w) 6= ∅.

(b) For any integer 1 < m 6 n we have CF(m,1n−m) 6= ∅ if and only if m is even.

(c) We have CFλ 6= ∅ if and only if λ ∈ P0(n).



(d) Show that if λ ∈ P0(n) then CFλ is a single GF -conjugacy class. Hence the map λ 7→ CFλ defines
a bijection between P0(λ) and the set of GF -conjugacy classes.

[Hint: (b). If w ∈ C(m,1n−m) then CG(w) ∼= Cm ×Sn−m. (d). Show that if O0 ∩ CG(w) is non-empty
then it is a single CG(w)-conjugacy class. Remark: the group GF is isomorphic to the hyperoctohedral
group, which is the Weyl group of type Bk where k = bn/2c.]

From this point forward we assume G is a connected affine algebraic group and F is a
Steinberg endomorphism.

We will also assume that the following condition holds

(F2) StabG(x) 6 G is a closed subgroup of G for any x ∈ O.

In this case we want to improve the parameterisation given in 3.3 using the Lang–Steinberg theorem.

Exercise 3.8. Assume G acts transitively on O then OF ′ 6= ∅.

For any x ∈ O we define AG(x, F ′) = Stab◦G(x) \ TG(x, F ′) to be the set of cosets

Stab◦G(x)h ⊆ TG(x, F ′)

of the connected component Stab◦G(x) contained in TG(x, F ′). We have a natural surjective map
: TG(x, F ′)→ AG(x, F ′) defined by g = Stab◦G(x)g. In class we proved the following.

Lemma 3.9. The action ? of StabG(x) on TG(x, F ′) induces an action of StabG(x) on AG(x, F ′)

which factors through the finite component group AG(x) := Stab◦G(x)/StabG(x). We denote by
H1(F, AG(x, F ′)) the orbits of this AG(x)-action which we again call F -conjugacy classes.

Exercise 3.10. Show that the surjective map : TG(x, F ′)→ AG(x, F ′) induces a bijection

H1(F, TG(x, F ′))→ H1(F, AG(x, F ′)).

Conclude that if G acts transitively on O and StabG(x) is connected for some (any) x ∈ O then GF

acts transitively on OF ′ . [Hint: The hard part is surjectivity. Assume g1, g2 ∈ TG(x, F ′) are such that

Stab◦G(x)g2 = Stab◦G(x)gg1F (g−1)

for some g ∈ StabG(x) then g2 = ghg1F (g−1) for some h ∈ Stab◦G(x). Check that the StabG(x0)

is stable under F ′ = ιg1 ◦ F so that F ′ is a Steinberg endomorphism of Stab◦G(x0). Apply the Lang–
Steinberg theorem to F ′ in Stab◦G(x).]

Exercise 3.11. Assume G is a connected affine algebraic group with Steinberg endomorphism F :

G → G. In class we showed that F ′ = ιg ◦ F is also a Steinberg endomorphism where ιg : G → G

is the conjugation map defined by ιg(x) = gxg−1. Show that the fixed point groups GF and GF
′
are

isomorphic. [Hint: construct an element h ∈ G such that ιh ◦ F ′ = F ◦ ιh then ιh gives the desired
isomorphism.]



Exercise 3.12. Assume H,K 6 G are conjugate subgroups of G, i.e., K = gH for some element
g ∈ G. Furthermore, assume K is F -stable then n = L (g) satisfies nF (H) = H. Show that
ιg : G → G restricts to an isomorphism H → K satisfying ιg ◦ Fn = F ◦ ιg. Conclude that ιg restricts
to an isomorphism HFn → KF . [Remark: we have Fn : G → G is a Steinberg endomorphism and
ιg : GFn → GF is an isomorphism mapping HFn onto KF .]

Exercise 3.13. Assume G = GLn(F̄p) and F : G → G the standard Frobenius endomorphism defined
by F (xi j) = (xqij ). Moreover, we assume T0 6 G is the maximal torus of diagonal matrices and
WG(T0) = NG(T0)/T0. Show that F acts trivially on WG(T0). Conclude that the GF -conjugacy
classes of F -stable maximal tori of G are parameterised by the conjugacy classes of WG(T0) ∼= Sn.
The conjugacy classes of Sn are parameterised by cycle types and thus by partitions of n. If Tλ 6 G is
an F -stable maximal torus parameterised by an element in WG(T0) of cycle type λ show that we have

T Fλ
∼= Cqλ1−1 × · · · × Cqλk−1

where λ = (λ1, . . . , λk) and Cm denotes a cyclic group of order m. [Hint: use 3.12 and reduce to the
case of a single cycle, which we did in class.]


