Throughout K denotes an algebraically closed field and $n \geqslant 1$ is a positive integer.

Recall that for any integer $N \geqslant 1$ we denote by $\operatorname{Mat}_{N}(K)$ the set of all $N \times N$ matrices. As a K-vector space Mat $M_{N}(K)$ has dimension N^{2}, with a basis given by the elementary matrices $E_{i j}$ with $1 \leqslant i, j \leqslant N$. By $E_{i j}$ we mean the matrix whose only non-zero entry, which is equal to 1 , is contained in the i th row and j th column. Note that the multiplication of elementary matrices is given by the relation

$$
E_{i j} E_{k \ell}=\delta_{j k} E_{i \ell}
$$

where $\delta_{j k}$ is the Kronecker delta. We can also think of $\operatorname{Mat}_{N}(K)$ as a Lie algebra endowed with the standard Lie bracket, in this case we denote $\operatorname{Mat}_{N}(K)$ by $\mathfrak{g l}_{N}(K)$.

Throughout these exercises we will assume that $G=\operatorname{Sp}_{2 n}(K)$ is the finite symplectic group. You will find it particularly convenient to index the entries of a matrix $A \in$ Mat $_{2 n}(K)$ as follows

$$
A=\left[\begin{array}{cccccc}
a_{n, n} & \cdots & a_{n, 1} & a_{n,-1} & \cdots & a_{n,-n} \\
\vdots & & \vdots & \vdots & & \vdots \\
a_{1, n} & \cdots & a_{1,1} & a_{1,-1} & \cdots & a_{1,-n} \\
a_{-1, n} & \cdots & a_{-1,1} & a_{-1,-1} & \cdots & a_{-1,-n} \\
\vdots & & \vdots & \vdots & & \vdots \\
a_{-n, n} & \cdots & a_{-n, 1} & a_{-n,-1} & \cdots & a_{-n,-n}
\end{array}\right] .
$$

Recall that we have

$$
\operatorname{Sp}_{2 n}(K)=\left\{A \in \mathrm{GL}_{2 n}(K) \mid A^{T} \Omega_{2 n} A=\Omega_{2 n}\right\}
$$

where

$$
\Omega_{2 n}=\left[\begin{array}{cc}
0 & J_{n} \\
-J_{n} & 0
\end{array}\right] \quad \text { and } \quad J_{n}=\left[\begin{array}{lll}
& & 1 \\
& . & \\
1 & &
\end{array}\right]
$$

Moreover, we will assume that the Lie algebra of G is given by

$$
\mathfrak{g}=\left\{A \in \mathfrak{g l}_{2 n}(K) \mid A^{T} \Omega_{2 n}+\Omega_{2 n} A=0\right\}
$$

The fact that \mathfrak{g} contains the Lie algebra of G was Exercise 1.13.
Exercise 2.1. Check that $J_{n}^{2}=I_{n}$ and $\Omega_{2 n}^{2}=I_{2 n}$, where $I_{N} \in \mathfrak{g l}_{N}(K)$ is the identity matrix. Show that we have

$$
E_{i, j} \Omega_{2 n}=\operatorname{sgn}(j) E_{i,-j} \quad \text { and } \quad \Omega_{2 n} E_{i, j}=-\operatorname{sgn}(i) E_{-i, j}
$$

Here $\operatorname{sgn}(x)$ denotes the sign of an integer $x \in \mathbb{Z}$.

Exercise 2.2. Show that the intersection $G \cap D_{2 n}(K)$ is given by

$$
T_{0}:=\left\{\operatorname{diag}\left(t_{n}, \ldots, t_{1}, t_{1}^{-1}, \ldots, t_{n}^{-1}\right) \mid t_{i} \in \mathbb{G}_{m}\right\} .
$$

where we have

$$
\operatorname{diag}\left(t_{n}, \ldots, t_{1}, t_{1}^{-1}, \ldots, t_{n}^{-1}\right)=\sum_{i=-n}^{n} t_{i}^{\operatorname{sgn}(i)} E_{i, i}
$$

Prove that this is a maximal torus of G and show that $N_{G}\left(T_{0}\right) \leqslant N_{G L_{2 n}(K)}\left(D_{2 n}(K)\right)$. [Hint: any maximal torus of G is contained in a maximal torus of $\mathrm{GL}_{2 n}(K)$. Now consider centralisers of elements contained in T_{0}.]

Exercise 2.3. Show that the Weyl group $W_{G}\left(T_{0}\right)=N_{G}\left(T_{0}\right) / T_{0}$ is isomorphic to the subgroup of the symmetric group \mathfrak{S}_{X} on $X=\{-n, \ldots,-1,1, \ldots, n\}$ which preserves the pairs $\{(i,-i) \mid 1 \leqslant i \leqslant n\}$. Furthermore, show that there is no complement of T_{0} in $N_{G}\left(T_{0}\right)$, i.e., there exists no subgroup $N \leqslant N_{G}\left(T_{0}\right)$ such that $N_{G}\left(T_{0}\right)=N \ltimes T_{0}$. [Remark: A typical way to describe the isomorphism type of $W_{G}\left(T_{0}\right)$ is as the wreath product $C_{2} \imath \mathfrak{S}_{n}$, where $C_{2}=\{ \pm 1\}$ is the cyclic group of order 2 . Specifically $C_{2} \imath \mathfrak{S}_{n}$ is a semidirect product $\left(C_{2} \times \cdots \times C_{2}\right) \rtimes \mathfrak{S}_{n}$ of n copies of C_{2} with \mathfrak{S}_{n} acting by place permutation.]

Exercise 2.4. Let $t=\operatorname{diag}\left(t_{n}, \ldots, t_{1}, t_{1}^{-1}, \ldots, t_{n}^{-1}\right)$. For any $-n \leqslant i \leqslant n$ let $e_{i} \in X\left(T_{0}\right)$ denote the character given by

$$
e_{i}(t)= \begin{cases}t_{i} & \text { if } i>0 \\ t_{-i} & \text { if } i<0\end{cases}
$$

Note this means that $e_{i}=e_{-i}$. Show that $\left\{e_{1}, \ldots, e_{n}\right\}$ is a basis of $X\left(T_{0}\right)$. Moreover, check that for any $-n \leqslant i, j \leqslant n$ we have

$$
t E_{i, j} t^{-1}=\alpha_{i, j}(t) E_{i, j}
$$

where $\alpha_{i, j} \in X\left(T_{0}\right)$ is defined by $\alpha_{i, j}=\operatorname{sgn}(i) e_{i}-\operatorname{sgn}(j) e_{j}$.
Exercise 2.5. Show that the roots of G with respect to T_{0} are given by

$$
\Phi=\left\{\alpha_{i, j} \mid-n \leqslant i \neq j \leqslant n\right\} .
$$

Determine the cardinality of Φ and compute $\operatorname{dim} \mathfrak{g}$. [Hint: The torus T_{0} acts on more than one elementary matrix via the character $\alpha_{i, j}$. Consider linear combinations of these elementary matrices.]

Exercise 2.6. For each $\alpha \in \Phi$ construct a corresponding closed embedding $x_{\alpha}: \mathbb{G}_{a} \rightarrow G$ as in the lectures. By choosing appropriately normalised x_{α} 's describe the homomorphisms $\varphi_{\alpha}: \mathrm{SL}_{2}(K) \rightarrow G$. What is the kernel of φ_{α} ? Using this information describe completely the root datum of G with respect to T_{0}. Using this compute $\left|X\left(T_{0}\right) / \mathbb{Z} \Phi\right|$ and $\left|\check{X}\left(T_{0}\right) / \mathbb{Z} \check{\Phi}\right|$.

Exercise 2.7. If $B=B_{2 n}(K) \cap G$ show that

$$
B=\left\{\left.\left[\begin{array}{cc}
A & A J_{n} S \\
0 & J_{n} A^{-T} J_{n}
\end{array}\right] \right\rvert\, A \in B_{n}(K), S \in \operatorname{Mat}_{n}(K) \text { such that } S=S^{T}\right\} .
$$

Prove that this is a Borel subgroup of G containing T_{0}. Describe the corresponding simple and positive roots $\Delta \subseteq \Phi^{+} \subseteq \Phi$.

Exercise 2.8. Let $V=K^{2 n}$ then we have a natural representation $\rho: G \rightarrow G L(V)$. Show that the map $(-,-): V \times V \rightarrow K$ defined by $(v, w)=v^{\top} \Omega_{2 n} w$ is an alternating bilinear form on V. Note that $\rho(G)$ is precisely the stabiliser of $(-,-)$, i.e., for any $A \in G$ we have $(A v, A w)=(v, w)$. Recall that a subspace $W \subseteq V$ is called totally isotropic if $(v, w)=0$ for all $v, w \in W$. Show that each standard parabolic subgroup $\rho\left(P_{l}\right)$, with $I \subseteq \Delta$, is the stabiliser of a flag

$$
0 \subset V_{1} \subset V_{2} \subset \cdots \subset V_{r} \subset V
$$

where each V_{i} is a totally isotropic subspace of V. Conclude that the parabolic subgroups of G are precisely the stabilisers of such flags. [Hint: Pick an appropriate basis for V and construct the V_{i} out of this basis.]

Exercise 2.9. Maintaining the notation of the previous exercise show that for each standard Levi subgroup L_{I}, with $I \subseteq \Delta$, there exists a direct sum decomposition $V=V_{1} \oplus \cdots \oplus V_{r}$ such that $\rho\left(L_{1}\right)=\rho(G) \cap\left(G L\left(V_{1}\right) \times \cdots \times G L\left(V_{r}\right)\right)$. Describe the isomorphism type of L_{1}.

