## Throughout $K$ denotes an algebraically closed field.

Exercise 1.1. Let $G$ be a linear algebraic group. Show that if $U \leqslant G$ is an abelian subgroup then $\bar{U} \leqslant G$ is also abelian.

Exercise 1.2. Let $f \in K\left[X_{1}, \ldots, X_{n}\right]$ be an irreducible polynomial. Show that $\operatorname{I}(V(\{f\}))=\langle f\rangle$ and deduce that $\mathrm{V}(\{f\})$ is irreducible. Conclude that $G L_{n}(K)$ and $S L_{n}(K)$ are connected.

Exercise 1.3. Let $\phi: X \rightarrow Y$ be a morphism between affine varieties. Show that if $\phi$ is injective then $\operatorname{dim}(X) \leqslant \operatorname{dim}(Y)$.

Exercise 1.4. Let $\mathscr{U}_{n}(K) \subseteq \operatorname{Mat}_{n}(K)$ denote the subset of unipotent matrices. Show that the following hold:
(a) $\mathscr{U}_{n}(K)$ is a Zariski closed subset of $\operatorname{Mat}_{n}(K)$,
(b) $\mathscr{U}_{n}(K)$ is irreducible.

Let $J_{n} \in \mathscr{U}_{n}(K)$ be a Jordan block of size $n \times n$ with every diagonal entry equal to 1 . Furthermore, let $X \subseteq \mathscr{U}_{n}(K)$ be the set of all matrices whose Jordan normal form is $J_{n}$. We call the elements of $X$ regular unipotent. Show that the following hold:
(c) $X$ is a Zariski open subset of $\mathscr{U}_{n}(K)$,
(d) $\operatorname{dim} \mathscr{U}_{n}(K)=n(n-1)$.
(Hint: (b). Let $\mathrm{U}_{n}(K) \leqslant \mathrm{GL}_{n}(K)$ be the subgroup of uni-upper triangular matrices. Consider the map $\mathrm{GL}_{n}(K) \times \mathrm{U}_{n}(K) \rightarrow \operatorname{Mat}_{n}(K) ;(P, A) \mapsto P^{-1} A P$. (c). One possibility is to write the condition $A \in X$ as a condition on the rank of $A$. (d). Consider the map $\mathrm{GL}_{n}(K) \rightarrow \operatorname{Mat}_{n}(K) ; P \mapsto P^{-1} J_{n} P$.)

Exercise 1.5. Let $G$ be an affine algebraic group over $K$. Assume $U, V \subseteq G$ are closed subgroups such that $G=U V$ and $U \cap V=\{1\}$. Show that:
(a) For every element $g \in G$ the map $U \times V \rightarrow G ;(u, v) \rightarrow u g v$ is injective. In particular, the map $U \times V \rightarrow G ;(u, v) \rightarrow u g v$ is injective.
(b) If $G$ is connected then so are $U$ and $V$.
(c) More generally $G^{\circ}=U^{\circ} V^{\circ}$.
(Hint: (b). The group $U^{\circ} \times V^{\circ}$ acts on $G$ via $(u, v) \cdot g=u g v^{-1}$.)
Exercise 1.6. Assume $X$ is a $G$-variety and $G$ acts with finitely many orbits. Show that if $Y \subseteq X$ is an irreducible closed subset of $X$ then there exists a unique $G$-orbit $\mathcal{O} \subseteq X$ such that $Y \cap \mathcal{O}$ is an open dense subset of $Y$.

Exercise 1.7. Assume $G$ is an affine algebraic group over $K$.
(a) Let $U, V \leqslant G$ be closed subgroups of $G$ with $V \leqslant N_{G}(U)$ or $U \leqslant N_{G}(V)$. Show that the subgroup $\langle U, V\rangle=U V \leqslant G$ is also closed and $\operatorname{dim}\langle U, V\rangle \leqslant \operatorname{dim} U+\operatorname{dim} V$.
(b) Show that if $K$ is uncountable and $\operatorname{dim} G>0$ then $G$ is also uncountable.
(c) Consider the matrices

$$
A=\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right] \quad \text { and } \quad B=\left[\begin{array}{cc}
0 & -1 \\
1 & 1
\end{array}\right]
$$

in $\mathrm{SL}_{2}(\mathbb{Z})$. Show that $A$ and $B$ have finite order but the product $A B$ has infinite order. Construct an example showing that the conclusion of (a) need not hold if one drops the assumption that either $V \leqslant N_{G}(U)$ or $U \leqslant N_{G}(V)$.
(Hint: (c). It is sufficient to show that $\mathrm{SL}_{2}(\mathbb{Z})=\langle A, B\rangle$ but this is not necessary.)
Exercise 1.8. Assume $T$ is a torus and let $N \leqslant T$ be a closed subgroup. Assuming that $T / N$ has the structure of a linear algebraic group then show $T / N$ is a torus.

Exercise 1.9. Let $G=\mathbb{D}_{n}$ and assume $n \geqslant 1$. Show that the following hold:
(a) $\bigcap_{\chi \in X(G)} \operatorname{Ker}(\chi)=1$,
(b) if $\psi: X(G) \rightarrow X(G)$ is a $\mathbb{Z}$-module automorphism then there exists a $K$-algebra automorphism $\tilde{\psi}: K[G] \rightarrow K[G]$ such that $\left.\tilde{\psi}\right|_{X(G)}=\psi$,
(c) there is an isomorphism $\operatorname{Aut}(G) \cong G L_{n}(\mathbb{Z})$ where $\operatorname{Aut}(G)$ denotes the automorphism group of $G$ as an algebraic group.

Exercise 1.10. Assume that $K=\overline{\mathbb{F}}_{p}$. If $G$ is a linear algebraic group over $K$ show that the following hold:
(a) every element of $G$ has finite order,
(b) $g \in G$ is semisimple if and only if the order of $g$ is coprime to $p$,
(c) $g \in G$ is unipotent if and only if the order of $g$ is a power of $p$.

Using this, prove the Jordan decomposition in this case. Furthermore, show that if $\phi: G \rightarrow H$ is a homomorphism of linear algebraic groups then $\phi\left(g_{s}\right)=\phi(g)_{s}$ and $\phi\left(g_{u}\right)=\phi(g)_{u}$.

Exercise 1.11. Assume $p \in \mathbb{A}^{n}$ and consider the differentiation operator $d_{p}: K\left[X_{1}, \ldots, X_{n}\right] \rightarrow$ $K\left[X_{1}, \ldots, X_{n}\right]$. If $f, g \in K\left[X_{1}, \ldots, X_{n}\right]$ check that

$$
d_{p}(f+g)=d_{p}(f)+d_{p}(g) \quad \text { and } \quad d_{p}(f g)=d_{p}(f) g(p)+f(p) d_{p}(g)
$$

Using this show that if $X \subseteq \mathbb{A}^{n}$ is a closed subset and $f_{1}, \ldots, f_{r} \in I(X)$ is a generating set of the vanishing ideal then for any $p \in X$ we have

$$
T_{p}(X)=\left\{v \in \mathbb{A}^{n} \mid d_{p}\left(f_{i}\right)(v)=0 \text { for all } 1 \leqslant i \leqslant r\right\} .
$$

Exercise 1.12. Recall that the determinant polynomial det $\in K\left[X_{i j} \mid 1 \leqslant i, j, \leqslant n\right]$ is given by

$$
\operatorname{det}=\sum_{\rho \in \mathfrak{S}_{n}} \operatorname{sgn}(\rho) X_{1 \rho(1)} \cdots X_{n \rho(n)} .
$$

Show that

$$
d_{1}(\operatorname{det})=\sum_{i=1}^{n} X_{i i},
$$

which is the trace polynomial.
Exercise 1.13. Recall that for an integer $n \geqslant 1$ we define matrices

$$
J_{n}=\left[\begin{array}{lll} 
& & 1 \\
& . & \\
1 & &
\end{array}\right] \quad \text { and } \quad \Omega_{2 n}=\left[\begin{array}{cc}
0 & J_{n} \\
-J_{n} & 0
\end{array}\right] .
$$

Moreover we then define the symplectic group

$$
G=\left\{A \in G L_{2 n}(K) \mid A^{T} \Omega_{2 n} A=\Omega_{2 n}\right\} .
$$

Show that we have

$$
T_{1}(G) \subseteq\left\{A \in \operatorname{Mat}_{2 n}(K) \mid A^{T} \Omega_{2 n}+\Omega_{2 n} A=0\right\} .
$$

Assuming equality holds conclude that $G$ acts on $T_{1}(G)$ by conjugation.

