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Abstract. These notes are designed to accompany a short series of talks given at the
University of Aberdeen in the second half session of the academic year 2009/2010. They will
try to give a rough overview of material in the area of Lie theory. The main focus will be on
structural properties of Lie theoretic objects such as abstract root systems, Weyl/Coxeter
groups, Lie algebras, linear algebraic groups and finite groups of Lie type. Few proofs are
given but references to proofs are given for all statements



Contents

1 Root Systems and Finite Reflection Groups 1
1.1 Motivation 1
1.2 Basic Definitions 2
1.3 A Presentation for W 4
1.4 Parabolic Subgroups and Chamber Systems 8
1.5 Coxeter Graphs, Dynkin Diagrams and Cartan Matrices 10

2 Lie Algebras 17
2.1 Basic Definitions and Introduction 17
2.2 Solvable and Nilpotent Lie Algebras 20
2.3 Testing for Solvability and Semisimplicity 22
2.4 The Lie Algebra sl(n,C) 24
2.5 Semisimple Complex Lie Algebras 25

3 Linear Algebraic Groups 31
3.1 Some Definitions and The Zariski Topology 31
3.2 Regular Maps and Linear Algebraic Groups 34
3.3 The Lie Algebra of a Linear Algebraic Group 40
3.4 The Root Datum of a Linear Algebraic Group 48
3.5 The Classification of Simple Linear Algebraic Groups 53

4 Finite Groups of Lie Type 57

5 Bibliographic Remarks & Acknowledgments 61

References 62



A Short Course in Lie Theory 1

1. Root Systems and Finite Reflection Groups

We will start these notes in a slightly unconventional place. We will start by introducing
the notion of an abstract root system and show how this simple idea underpins a large area
of pure mathematics. Standard references for the material in this section are [Bou02] and
[Hum90], also a less verbose treatment of crystallographic root systems is given in [EW06,
Chapter 11].

1.1. Motivation. We start with a little motivation for this slightly abstract concept. Most
group theorists upon hearing the question “what is it that you actually do?” will reach for
the little gem that is the dihedral group of order 8, which we shall refer to as D8. We like this
group simply because it is easy to draw a picture and explain the group actions via reflections
and rotations. We often draw a picture as in figure 1.

σ

τ

Figure 1. The Symmetry Group of the Square

We normally express D8 as a group given by generators and relations. We pick a reflection
and a rotation by π/2, as we have done in figure 1, then express D8 as

〈σ, τ | τ4 = σ2 = 1, στσ = τ−1〉.
However this group is generated simply by reflections. This is because the rotation τ can
be achieved as a product of two reflections which are adjacent by an angle of π/4. It is an
easy exercise to check that these two reflections will generate the whole of D8. In fact in the
dihedral group D2m we can describe any rotation by 2π/m as the product of two reflections
which are adjacent by an angle of π/m. Indeed it turns out that these two reflections will
generate the whole of D2m.

It is this property of D8 that we are really interested in. We are interested in finite reflection
groups or finite Coxeter groups.

Definition. We say a group G is a Coxeter group if it is isomorphic to a group given by a
presentation of the form

〈si | (sisj)mij = 1〉,
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where mii = 1 and mij > 2 for all i 6= j. If no relation occurs for a pair si, sj then we define
mij =∞.

These groups, or more importantly a subclass of these groups known as Weyl groups, are a
vital part of Lie theory. The class of Coxeter groups is quite large containing finite reflection
groups, affine Weyl groups, Hyperbolic Coxeter groups and so on. However it turns out that
every finite Coxeter group is a finite reflection group and indeed most of these are finite Weyl
groups. It is the finite Coxeter groups which we shall be interested in.

The way in which we will classify the finite reflection groups is by what is known as a root
system. We start by imagining the square in R2 such that it is centred at the origin. Now
in our example of D8 there are two reflections whose product give the rotation τ . In each of
these reflecting lines lies a vector in R2, which will be our root. We describe this situation
pictorially in figure 2.

α

β α+ β

2α+ β

Figure 2. The Root System B2.

1.2. Basic Definitions. Let V be a real Euclidean vector space endowed with Euclidean
inner product (·, ·). Throughout this section W will refer to a finite reflection group acting
on the vector space V . By this we mean W is a subgroup of GL(V ) generated by reflections.

Definition. A reflection in V is a linear map sα : V → V which sends a non-zero vector α
to its negative and fixes pointwise the hyperplane Hα = {λ ∈ V | λ ⊥ α} orthogonal to α.

We have a simple formula that expresses the action of sα on V . For all λ ∈ V we have that

(1) sαλ = λ− 〈λ, α〉α where 〈λ, α〉 =
2(λ, α)

(α, α)
.

Indeed this makes sense as we have sαα = α− 2α = −α and sαλ = λ⇔ (λ, α) = 0⇔ λ ⊥ α.
Note this now makes sense for all of V as V = Rα⊕Hα. Let λ, µ ∈ V then we have
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(sαλ, sαµ) =

(
λ− 2(λ, α)

(α, α)
α, µ− 2(µ, α)

(α, α)
α

)
,

= (λ, µ)− 2(µ, α)

(α, α)
(λ, α)− 2(λ, α)

(α, α)
(α, µ) +

4(λ, α)(µ, α)

(α, α)2
(α, α),

= (λ, µ).

Hence sα is an orthogonal transformation and so an element of O(V ) 6 GL(V ) the group of
all orthogonal transformations of V . It is also clear to see that sα is an element of order 2.
Therefore any finite reflection group will be a subgroup of the orthogonal group of V .

Let α be a non-zero vector in V and sα its associated reflection. Then sα determines
a reflection hyperplane Hα, as in the above definition of reflection, and a line Lα = Rα
orthogonal to this hyperplane.

Proposition 1.1. If t ∈ O(V ) and α is any non-zero vector in V then tsαt
−1 = stα. In

particular if w ∈W then swα belongs to W whenever sα does.

Proof. We have that (tsαt
−1)(tα) = tsαα = t(−α) = −tα therefore certainly we have tsαt

−1

sends tα to its negative. Now λ ∈ Hα ⇔ tλ ∈ Htα and as λ ∈ Hα we have 0 = (λ, α) = (tλ, tα).
Therefore we have (tsαt

−1)(tλ) = tsαλ = tλ whenever λ ∈ Hα. �

This proposition tells us that W permutes the set of all lines Lα by w(Lα) = Lwα. For example
in figure 2 we can see that the action of D8 will permute the four reflection hyperplanes on
the diagram. In turn the set of vectors {±α,±β,±(α + β),±(2α + β)} is stable under the
action of D8. It is this property of the vectors that we would like to encapsulate.

Definition. A root system is a finite set Φ ⊂ V of non-zero vectors such that:

(R1) Φ spans V ,
(R2) if α ∈ Φ then the only scalar multiples of α in Φ are ±α,
(R3) if α ∈ Φ then sαΦ = Φ.

Remark. The definition of root system is indeed a very flexible thing. For the most general
approach one may omit (R1) as in [Hum90, Section 1.2]. Often a fourth condition is added
and this is what we will define in section 1.5 to be a crystallographic root system. Sometimes
one may also remove (R2) from the definition of crystallographic root system, as in [Bou02].
However for now this definition is what is required.

Given a root system Φ of V we define the associated reflection group W to be the subgroup
of GL(V ) generated by all reflections sα such that α ∈ Φ. Note that W is necessarily finite.
This is because the only element to fix all elements of Φ is the identity. Therefore the natural
homomorphism of W into the symmetric group on Φ has trivial kernel and so W must be
finite.

So a root system is simply a collection of vectors in a Euclidean vector space. What would
be useful is if we had some notion of a basis for Φ as the order of Φ could be very large even
if the dimension of V is small. First we note that we can always endow a vector space with
a total order. Let λ1, . . . , λn be an ordered basis for V then we put a total order < on V by
the lexicographical ordering. This says that

∑
aiλi <

∑
biλi if and only if ak < bk where k is

the least index i for which ai 6= bi. We can now use this to define a notion of basis for Φ.
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Definition. Let Φ be a root system for V then a subset Φ+ ⊂ Φ is called a positive system
for Φ if it consists of all roots which are positive relative to some total ordering of V . Now
roots come in pairs {α,−α} therefore Φ is the disjoint union of Φ+ and Φ− = −Φ and we
call Φ− a negative system for Φ. Call a subset ∆ ⊂ Φ a simple system for Φ if ∆ is a vector
space basis of V and every element of Φ can be expressed as a linear combination of ∆ whose
coefficients are either all positive or all negative. We call the roots belonging to ∆ simple
roots for Φ and the associated reflections simple reflections.

Example. We recall figure 2. A root system, positive system, negative system and simple
system for R2 is given by

Φ = {±α,±β,±(α+ β),±(2α+ β)},
Φ+ = {α, β, α+ β, 2α+ β},
Φ− = {−α,−β,−α− β,−2α− β},
∆ = {α, β}.

Note that this is not in any way the only root system for R2. In fact each of the dihedral
groups D2m comes from a different root system for R2.

Now it is clear that we can always form a positive and negative system for Φ. To do this we
just fix a hyperplane of codimension 1 in V which contains no element of Φ and then label all
roots on one side of the hyperplane positive and on the otherside negative. However apriori
it is not clear that simple systems will exist but in fact they do.

Theorem 1.1. Let Φ be a root system and Φ+ be a positive system for Φ. Then Φ+ contains
a simple system for Φ and moreover this simple system is uniquely determined by Φ+.

Proof. See [Hum90, Theorem 1.3] �

Corollary 1.1. Let ∆ be a simple system for a root system Φ then (α, β) ≤ 0 for all α 6= β
in ∆.

From the proof of this theorem we obtain a very useful corollary, which is a constraint on
the geometry of the roots in the simple system. It tells us that the angles between roots in
a simple system are always obtuse. For example this tells us that in figure 2 we cannot have
that {2α+ β, α} is a simple system for Φ. However {2α+ β,−α} is a simple system for Φ.

Now a simple system forms a basis for the vector space V and hence the cardinality of a
simple system is an invariant of the root system.

Definition. Let Φ be a root system with simple system ∆. Then we say |∆| is the rank of
Φ.

For example in the case of D8 we have the root system Φ which admits D8 as a finite reflection
group has rank 2. In fact all dihedral groups are finite reflection groups associated to root
systems of rank 2. The converse statement is also true.

1.3. A Presentation for W . So far we have defined the finite reflection group W , asso-
ciated to a root system Φ, to be the subgroup of O(V ) generated by {sα}α∈Φ. However this
definition of W is not very practical as the cardinality of Φ can be very large with respect
to the order of W . In fact in the case of the dihedral groups we have the cardinality of Φ is
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equal to the order of W . Therefore we would like to find a more efficient presentation of W .
To do this we will first need a small lemma and theorem.

Lemma 1.1. Let Φ be a root system with positive system Φ+ and simple system ∆. Then
for any α ∈ ∆ we have sα permutes the set Φ+ \ {α}.

Proof. Let β ∈ Φ+ be such that β 6= α. We know that β =
∑

γ∈∆ cγγ where cγ > 0. Note that
the only multiples of α in Φ are ±α and so there is at least one γ ∈ ∆ such that cγ > 0. Now
sαβ ∈ Φ and by eq. (1) we have β − 〈α, β〉α ∈ Φ. The coefficients cγ for γ 6= α are unaffected
and hence are still all positive. Therefore this forces cα − 〈α, β〉 > 0 and so sαβ ∈ Φ+.
Therefore sα(Φ+ \ {α}) = Φ+ \ {α}. �

Theorem 1.2. Let Φ be a root system and let Φ+
1 , Φ+

2 be two positive systems in Φ with
associated simple systems ∆1, ∆2. Then there exists an element w ∈ W such that w(Φ+

1 ) =
Φ+

2 and hence w(∆1) = ∆2.

Proof. Let x = |Φ+
1 ∩ Φ−2 |. We will prove the statement by induction on x. If x = 0 then we

have Φ+
1 = Φ+

2 and so w = 1 is sufficient for the statement. Therefore we assume x > 0. Now
we cannot have ∆1 ⊂ Φ+

2 as this would imply Φ+
1 ⊂ Φ+

2 but we assumed x > 0. Hence there
exists a root α ∈ ∆1 ∩ Φ−2 .

Consider sα(Φ+
1 ). By lemma 1.1 we have sα(Φ+

1 ) = (Φ+
1 \ {α}) ∪ {−α} and so we have

|sα(Φ+
1 ) ∩ Φ−2 | = x − 1. By induction there exists w′ ∈ W such that w′sα(Φ+

1 ) = Φ+
2 . Let

w = w′sα then w(Φ+
1 ) = Φ+

2 as required. �

It is easy to verify the statement of lemma 1.1 in the case of D8 using figure 2. For a given
root system Φ with simple system ∆ we let W0 = 〈sα | α ∈ ∆〉. What we would like to show
is that W0 = W . For example, this would tell us that the dihedral groups are all generated
by precisely two reflections. First however we require a definition.

Definition. Let Φ be a root system with simple system ∆. For any β ∈ Φ we have that
β =

∑
γ∈∆ cγγ and we define the height of β to be ht(β) =

∑
γ∈∆ cγ .

Theorem 1.3. Let Φ be a root system with fixed simple system ∆. Then W is generated by
simple reflections, in other words W = W0.

Proof. Let β ∈ Φ+ and consider the set W0β ∩ Φ+. This will be a subset of Φ+ which is
non-empty as it at least contains β. Choose an element γ ∈ W0β ∩ Φ+ such that ht(γ) is
minimal amongst all such elements. We claim that γ ∈ ∆ is a simple root. We have that
γ =

∑
α∈∆ cαα such that cα > 0 and 0 < (γ, γ) =

∑
α∈∆ cα(γ, α) and so (γ, α) > 0 for at

least one α ∈ ∆. If γ = α then we’re done. If not then consider sαγ, which is positive by
lemma 1.1. Recall that (γ, α) > 0 and so by eq. (1) we obtain sαγ from γ by subtracting a
positive multiple of α. Therefore we have ht(sαγ) < ht(γ). However, as sα ∈ W0, we have
sαγ ∈W0β ∩ Φ+ and so sαγ contradicts the minimality of γ.

We have just shown that for any positive root β ∈ Φ+ there exists a w ∈ W0 and γ ∈ ∆
such that wβ = γ ⇒ β = w−1γ. Therefore the set of positive roots is contained in the W0

orbit of ∆, or in other words Φ+ ⊆W0∆. Assume β ∈ Φ− then −β ∈ Φ+ and so there exists
some w′ ∈ W0 and γ′ ∈ ∆ such that −β = w′γ′ ⇒ β = w′(−γ′) = (w′sγ′)γ

′. So we have
w′sγ′ ∈W0 and hence β ∈W0∆⇒ Φ− ⊆W0∆. Therefore Φ ⊆W0∆.

Let β ∈ Φ so sβ ∈ W . By the previous argument we have β = wα for some w ∈ W0 and
α ∈ ∆. By proposition 1.1 we have wsαw

−1 = swα = sβ ∈W0 and so W = W0. �
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Corollary 1.2. Let Φ be a root system with fixed simple system ∆ then given any β ∈ Φ
there exists an element w ∈W such that wβ ∈ ∆.

Remark. Let Φ be a root system with simple system ∆ = {α1, . . . , αn}. If we write w =
s1 · · · sr for some w ∈ W then we mean si = sαi for some αi ∈ ∆. Note that we are allowing
si = sj whenever j 6= i+ 1 or i− 1.

Let Φ be a root system with simple system ∆ of rank n and let {s1, . . . , sn} be the set of
all simple reflections. What we have just shown is that any element w ∈W can be expressed
as a product of these simple reflections. This leads us to a quite natural function for W .

Definition. We define a function ` : W → N called the length function such that `(1) = 0
and for all 1 6= w ∈W we have `(w) is the minimal number m such that w can be expressed as
a product of m simple reflections. We call an expression for w ∈W reduced if it is a product
of `(w) simple reflections.

Remark. Just from this definition, and what we have already established, we can now list
some basic properties of the length function.

• Clearly `(w) = 1 if and only if w = si for some 1 6 i 6 n.
• We have `(w) = `(w−1). This is because if w = s1 · · · sr then w−1 = sr · · · s1 and vice

versa.
• Recall that a reflection sα : V → V for some α ∈ ∆ is a linear operator on the vector

space V with det(sα) = −1. This means that for any w ∈ W we have det(w) =

(−1)`(w).
• Indeed if w ∈ W can be written as a product of r reflections then det(w) = (−1)r.

This means that if `(w) is even/odd then r must be even/odd. For w,w′ ∈W we have

(−1)`(ww
′) = det(ww′) = det(w) det(w′) = (−1)`(w)(−1)`(w

′) = (−1)`(w)+`(w′).

Hence we have if `(ww′) is even/odd then `(w) + `(w′) is even/odd. In particular if
w ∈ W is such that `(w) = r then for any α ∈ ∆ we have `(sαw) is either r + 1 or
r − 1.

Unfortunately as natural a concept as the length function is, it is not in general very
practical for proofs. Instead for all w ∈ W we define another integer n(w) to be the number
of positive roots α ∈ Φ+ such that w(α) ∈ Φ−. Recall that if α ∈ Φ is a simple root then by
lemma 1.1 we have n(sα) = `(sα) = 1, as sα only sends α to its negative. In fact it is true
in general that n(w) = `(w) for all w ∈ W . We will not prove this but we mention the key
result used in the proof of this statement known as the deletion condition.

Theorem 1.4 (Deletion Condition). Let w = s1 · · · sr be an expression of w ∈W as a product
of simple reflections. Suppose n(w) < r. Then there exist integers 1 6 j 6 k 6 r such that

w = s1 · · · ŝj · · · ŝk · · · sr,
where ˆ denotes an omitted simple reflection.

Proof. See [Car05, Theorem 5.15]. �

Remark. The deletion condition tells us that we can obtain a reduced expression for w ∈ W
from any given expression simply by removing simple reflections. There is a more enlightening
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version of the deletion condition known as the exchange condition. This can be found in
[Hum90, Section 1.7] and also a format of it is stated in [Gec03, Corollary 1.6.8].

The exchange condition says the following. Let w ∈ W have a reduced expression w =
s1 · · · sr. Consider a simple reflection s = sα, for some α ∈ ∆, such that `(sw) < `(w) then
sw = s1 · · · ŝi · · · sr for some 1 6 i 6 r and so w = ss1 · · · ŝi · · · sr. This says that in the
reduced expression for w a factor s is exchanged for a factor si.

Corollary 1.3. We have n(w) = `(w) for all w ∈W .

Proof. By definition we have n(w) 6 `(w) because every time we apply the reflection in a
reduced expression for w we either increase n(w) by 1 or do nothing. Therefore assume for a
contradiction that n(w) < `(w), then by the deletion condition we could find an expression
for w of length `(w)− 2. However `(w) was defined to be the length of a reduced expression
for w hence this is a contradiction. �

Remark. As a consequence of this corollary we have that for any w ∈W we have

w∆ = ∆⇔ wΦ+ = Φ+ ⇔ `(w) = n(w) = 0⇔ w = 1.

This means that the reflection group W acts simply transitively on the collection of simple
systems for Φ. In other words the action is transitive and free.

So what we now know is that the length of any element in W is in fact equal to the number
of positive roots made negative by w. Indeed it makes sense to now consider which elements
are maximal with respect to this property. Therefore these are all elements w ∈W such that
w(Φ+) = Φ−. In fact what can be shown is that given any root system with a fixed positive
system there is a unique element with this property, which we call the longest element or
longest word.

Proposition 1.2. Let Φ be a root system with associated reflection group W and simple
system ∆. The following are true.

(a) The maximal length of any element of W is |Φ+|.
(b) W has a unique element w0 with `(w0) = |Φ+|.
(c) w0(Φ+) = Φ−.
(d) w2

0 = 1.

Proof. By corollary 1.3 we have `(w) = n(w) and so `(w) 6 |Φ+| by definition of n(w).
We have that ∆ a simple system implies −∆ is a simple system coming from the positive
system Φ−. By theorem 1.2 we have there exists w0 ∈ W such that w0(Φ+) = Φ− and so
`(w) = n(w) = |Φ+|. Hence w0 is an element of maximal length.

Assume w′0 ∈ W is such that `(w′0) = n(w′0) = |Φ+|. Then w′0(Φ+) = Φ−. Let w =
(w′0)−1w0 then w(Φ+) = Φ+, which means `(w) = n(w) = 0 and so w = 1 ⇒ (w′0)−1w0 =
1⇒ w0 = w′0. Thus w0 is a unique element of maximal length. Finally we have w2

0(Φ+) = Φ+,
which means `(w2

0) = n(w2
0) = 0 and so w2

0 = 1 as required. �

Remark. A word of caution. Just because the longest element is an element of order 2 in W
does not mean it is a reflection. This can even be seen not to be true in our example of D8.

Finally with all these ingredients it is now possible to prove the following theorem that
gives a presentation for the finite reflection group W . We will not prove this theorem here
but instead reference locations to the standard proof which is attributed to Steinberg. The
following theorem tells us that W is in fact a finite Coxeter group.
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Theorem 1.5. Let Φ be a root system with fixed simple system ∆ = {s1, . . . , sn} and asso-
ciated reflection group W . Let mij denote the order of the element sisj for 1 6 i, j 6 n and
i 6= j. Then we have

W ∼= 〈si | s2
i = (sisj)

mij = 1 for i 6= j〉

Proof. See either [Hum90, Theorem 1.9] or [Car05, Theorem 5.18]. �

Example. We consider all the information of this section for the reflection group D8. Let us
fix the root system Φ and simple system ∆ = {α, β} as was specified in figure 2. Recall that
the product sβsα was the same as the rotation τ from figure 1, hence this product has order
4. Thus theorem 1.5 tells us that

D8 = 〈sα, sβ | (sαsβ)4 = s2
α = s2

β = 1〉.
In table 1 we give the description of the elements ofD8 in terms of the reflection and rotation

specified in figure 1 and also the presentation given above in terms of simple reflections from
figure 2. We have also listed the order of the element and if the element was a reflection we
have listed the unique positive root sent to its negative by that reflection.

Table 1. The Various Presentations of D8.

o(w) 1 2 2 4 4 2 2 2

Φ — α β — — 2α+ β α+ β —

〈sα, sβ〉 1 sα sβ sαsβ sβsα sαsβsα sβsαsβ sαsβsαsβ

〈σ, τ〉 1 σ τσ τ3 τ τ3σ τ2σ τ2

From this table it is clear to see that the element sαsβsαsβ or τ2 is the longest element.
Indeed it is easy to check that this element sends every positive root to its negative. Note
that we also have that sβsαsβsα is a reduced expression for the longest element.

1.4. Parabolic Subgroups and Chamber Systems. So far we have defined a certain
class of groups known as finite reflection groups. These are groups that act in a geomet-
ric way on a finite collection of roots in a vector space. In theorem 1.5 we have given a
presentation for these groups, which shows that they are finite Coxeter groups. Using this
presentation we would like to understand a little more about their subgroup structure and
extract some information from the underlying geometry. We start by introducing a special
class of subgroups.

Definition. Let Φ be a root system with simple system ∆ and associated set of simple
reflections S. For any subset I ⊆ S we define WI ⊆ W to be the subgroup of W generated
by all the simple reflections sα ∈ I and let ∆I := {α ∈ ∆ | sα ∈ I}. We call a subgroup of
the form WI a parabolic subgroup of W .

Remark. Note that if ∆ is a simple system for Φ then by theorem 1.2 any other simple system
is of the form w∆ for some w ∈ W . Hence if we have a parabolic subgroup WI with respect
to some simple system ∆ then replacing ∆ by w∆ will just replace WI by wWIw

−1.
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Example. Consider our running example of D8. The root system of this group has a simple
system given by ∆ = {α, β}. Therefore the possible subsets I are given by ∅, {sα}, {sβ},
{sα, sβ}. So in turn the possible parabolic subgroups are {1}, 〈sα〉, 〈sβ〉 and D8 itself.

Parabolic subgroups are important as they are themselves finite reflection groups. For
example, it will be shown later that the symmetric group is a finite reflection group and every
parabolic subgroup is a direct product of symmetric groups.

Lemma 1.2. Let Φ be a root system with fixed simple system ∆ and let S be the set of
associated simple reflections. Take a subset I ⊂ S and define VI := spanR(∆I) and ΦI =
Φ∩VI . Then ΦI is a root system in VI with simple system ∆I and with corresponding reflection
group WI .

Proof. It’s clear by definition that ΦI spans VI and hence (R1) is satisfied. Now as ΦI is a
subset of Φ then it’s clear that (R2) is satisfied. Clearly we have WI stabilises VI and so we
have that (R3) is satisfied. Hence ΦI is a root system for VI . Indeed as ∆ is a vector space
basis for V we have ∆I will be a vector space basis for VI and is clearly a simple system for
ΦI . Hence WI will be the associated reflection group of ΦI . �

Now having introduced these important subgroups of the reflection group we would like to
consider more closely the description of W acting on V . Let Φ be a root system of V and fix
a positive system Φ+ with simple system ∆. Now we recall that each root α ∈ Φ defines a
corresponding hyperplane Hα. In general V − ∪α∈ΦHα is not a connected topological space
and we call its connected components the chambers of W . Let C be a chamber then the walls
of C are all the hyperplanes Hα such that C ∩Hα has codimension 1 in V , where C denotes
the topological closure of C.

To each hyperplane Hα we can associate two open half spaces Aα and A′α where

Aα = {λ ∈ V | (λ, α) > 0}
and A′α = −Aα. Given a fixed simple system we can define a canonical chamber C1 =
∩α∈∆Aα, which we refer to as the fundamental chamber. We have C1 is open and convex as
it is the intersection of open convex sets. Let D1 = C1 be the topological closure of C1, this
is the intersection of closed half-spaces Hα ∪Aα. In other words

D1 = {λ ∈ V | (λ, α) > 0 for all α ∈ ∆}.
Recall from the remark after corollary 1.3 that W acts simply transitive on the collection

of simple systems for Φ. If we fix a simple system ∆ for Φ then we have a corresponding
chamber C1. If we then replace ∆ by w∆ for some w ∈ W we replace C1 by Cw := w(C1).
This gives us a geometric interpretation of the simply transitive action on simple systems.

Theorem 1.6. Let Φ be a root system with associated reflection group W . Then W acts
simply transitively on the collection of chambers. Furthermore the topological closure of a
chamber is a fundamental domain for the action of W on V .

Proof. See [Hum90, Theorem 1.12]. �

By a fundamental domain we mean that each λ ∈ V is conjugate under the action of W
on V to one and only point in D1. Given a fixed simple system ∆ we call the collection of
chambers a chamber system for Φ.
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Example. We consider our running example of D8. In figure 3 we indicate the chamber
system and the closure of the canonical chamber D1 with respect to our chosen simple system
in figure 2.

Hα Hβ

C1Csα

Csβ

Csβsα

Csαsβ

Csαsβsα

CsβsαsβCsαsβsαsβ

Hα Hβ

α

β

Figure 3. The Chamber System of B2 and Fundamental Domain D1.

1.5. Coxeter Graphs, Dynkin Diagrams and Cartan Matrices. Let Φ be a root
system of rank n with simple system ∆ = {α1, . . . , αn}. Let W be the associated reflection
group with set of generators S = {s1, . . . , sn} corresponding to the simple roots and let mij

be the order of the element sisj for i 6= j. Given the presentation of W given in theorem 1.5
we can see that W is determined up to isomorphism explicitly by the set S and the numbers
mij .

We wish to encode this information visually using a graph. We let the vertices of our graph
be in bijective correspondence with ∆ and join a pair of vertices corresponding to distinct
αi, αj ∈ ∆ by an edge whenever mij > 3. We will label such an edge by mij . We call this
labelled graph the Coxeter graph of W .

Example. Consider D8. This group has a presentation given by 〈s1, s2 | s2
1 = s2

2 = (s1s2)4 =
1〉. Therefore the associated graph of D8 is given by

4

Consider S4, the symmetric group on 4 symbols. It can be shown that this symmetric
group has the following Coxeter presentation

S4 = 〈(12), (23), (34) | ((12)(34))3 = ((23)(34))3 = 1〉.
Therefore we have the following associated Coxeter graph of S4.

3 3

The classification of the possible finite reflection groups relies heavily upon the associated
Coxeter graphs. It can be shown that if two finite reflection groups have the same Coxeter
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graphs then there is an isometry of their underlying vector spaces which induces an isomor-
phism of the reflection groups. Hence the Coxeter graph of a finite reflection group determines
it uniquely up to isomorphism, (see [Hum90, Proposition 2.1]).

Therefore we reduce the problem of classifying the finite reflection groups to one of classi-
fying the associated Coxeter graphs. We note that we need a notion of irreducibility before
we can carry out such a classification. In the spirit of using the Coxeter graph we make the
following definition.

Definition. A finite reflection group W is called irreducible if its associated Coxeter graph
is connected.

Theorem 1.7. If W is an irreducible finite reflection group then its associated Coxeter graph
is one from the list in figure 4. The label n on the first three types denotes the number of
vertices on the graph. To remove redundancies we assume in the case of I2(m) that m > 5.
Also any unlabelled edge is assumed to have label 3.

Proof. A nice succinct proof of this theorem can be found in [Hum90, Theorem 2.7]. Alter-
natively one can look at [Bou02, Chapter VI – Section 4 – Theorem 1] �

Indeed to each of these Coxeter graphs there does exist a root system and finite reflection
group. The finite reflection groups of types An,Bn,Dn and I2(m) have nice descriptions in
terms of groups that we already know. We usually refer to these as finite reflection groups
of classical type. However the groups E6,E7,E8,F4,H3 and H4 have slightly more quirky
descriptions and we refer to these as finite reflection groups of exceptional type. Lots of
information on these groups can be found in [Hum90, Chapter 2] and the plates in the back
of [Bou02].

In table 2 we give some basic information about the finite reflection groups of classical
type. As an example we will also construct the root system in type An and show how the
associated finite reflection group is given. Note that we denote the cyclic group of order 2 by
Z2.

Table 2. Information for Finite Reflection Groups of Classical Type.

An Bn Dn I2(m)

W Sn+1 Sn n Zn2 Sn n Zn−1
2 D2m

|W | n! 2nn! 2n−1n! 2m

|Φ| n(n+ 1) 2n2 2n(n− 1) 2m

Example (Type An (n > 1)). To gather information about this case we need to construct a
root system of rank n. This will be a root system of the real Euclidean vector space V ⊂ Rn+1

where

V =

{
(x1, . . . , xn+1)

∣∣∣∣∣
n∑
i=1

xi = 0

}
.

It is readily checked that this vector space is of dimension n. Let ε1, . . . , εn+1 be the standard
orthonormal basis of Rn+1 then it is a quick check to verify that ∆ = {ε1−ε2, ε2−ε3, . . . , εn−
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4

4

5

5

m

An (n > 1)

Bn (n > 2)

Dn (n > 4)

E6

E7

E8

F4

H3

H4

I2(m)

Figure 4. The Coxeter Graphs of Irreducible Finite Reflection Groups.

εn+1} is a basis for V . We define Φ to be the set of all λ ∈ V ∩ (Zε1 ⊕ · · · ⊕ Zεn+1) such
that ||λ||2 = 2. In fact this implies that every element of Φ is of the form εi − εj such that
1 6 i 6= j 6 n+ 1. Hence we have |Φ| = n(n+ 1) just as in table 2.

It’s easy to see that Φ will be a root system for V . Indeed it is a root system of rank n with
simple system given by ∆. In the case of A2 we have the associated finite reflection group is
S3
∼= D6. Note that the Coxeter graph of type A2 is the same as the Coxeter graph of I2(3).

Indeed this example tells us that we can realise the group D6 either as the symmetry group
of an equialateral triangle in R2 or as a symmetry group in R3.

It is now time to discuss our definition of root system introduced in section 1.2. So far
we have not mentioned anything about the lengths of the vectors in our root system. For
example in our case of D8 it is clear from figure 2 that the roots in our simple system are of
different lengths. To classify the finite reflection groups we associate to each Coxeter graph
a symmetric n× n matrix. During this process we force the length of each root to be of unit
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length. Of course rescaling the vectors in a root system does not stop it being a root system
and indeed does not change the associated finite reflection group. However we would like to
make a distinction between root systems where roots have different lengths.

Let V be a real Euclidean vector space and consider a subgroup G 6 GL(V ). We say G is
crystallographic if it stabilises a lattice L in V . By a lattice L we mean the Z span of a basis
of a real vector space. This leads us to the following definition.

Definition. Let V be a Euclidean vector space and Φ a root system for V . We say Φ is a
crystallographic root system if Φ also satisfies:

(R4) if α, β ∈ Φ then 〈β, α〉 ∈ Z.

Remark. By requiring that the values 〈β, α〉 are integers we are ensuring, by eq. (1), that all
roots in Φ are Z linear combinations of the simple system ∆. Therefore the Z span of ∆ is a
lattice which is stable under the action of the associated finite reflection group.

Definition. Let Φ be a crystallographic root system. Then we call the associated finite
reflection group W the Weyl group of Φ.

Proposition 1.3. Let Φ be a crystallographic root system and let ∆ = {αi}16i6n be a simple
system for Φ. Also let S = {si}16i6n be the associated simple reflections. We have for any
distinct α, β ∈ Φ that the angle θ between these two roots is such that

(2) θ ∈ {π/2, π/3, 2π/3, π/4, 3π/4, π/6, 5π/6}.
Consequently we have that the order of each element sisj is such that mij ∈ {2, 3, 4, 6} for all
i 6= j.

Proof. Let α, β ∈ Φ be any two roots. Recall that as V is a Euclidean vector space we have
(α, β) = ||α|| · ||β|| cos θ, where θ is the angle between the two vectors. By eq. (1) we have
that

〈β, α〉 = 2
(β, α)

(α, α)
= 2
||β||
||α||

cos θ ⇒ 〈α, β〉〈β, α〉 = 4 cos2 θ.

By (R4) we have that 4 cos2 θ is a non-negative integer. However 0 6 cos2 θ 6 1 and so we

must have cos2 θ ∈ {0, 1
4 ,

1
2 ,

3
4 , 1} ⇒ cos θ ∈ {0,±1

2 ,±
1√
2
,±
√

3
2 ,±1}. It’s easy to verify that

the only possible values of 0 < θ 6 π are the ones appearing in the list in eq. (2).
Consider αi, αj ∈ ∆ with i 6= j. We know that the reflection sisj 6= 1 acts on the plane

spanning αi and αj as a rotation through the angle θ = 2π/mij . Indeed the angle between
these two vectors is given by π/mij . By the list given in eq. (2) we can see that mij must
indeed be either 2, 3, 4 or 6. �

Corollary 1.4. The root systems of types H3,H4 and I2(m) for m = 5 or m > 7 are not
crystalographic.

Proof. Clear from the list in figure 4 using proposition 1.3. �

This corollary tells us that the dihedral groups are not crystallographic except for D2, D4,
D6, D8 and D12. These Weyl groups correspond to root systems of types A1, A1×A1, A2,
B2 and I2(6). In figure 5 we indicate a simple system for the root systems associated to the
dihedral groups D6, D8 and D12. Note that the entire root system can be obtained from
these diagrams by letting W act via reflections.
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Figure 5. The Crystallographic Root Systems of D6, D8 and D12.

Now we would like to classify the crystallographic root systems in a similar fashion to how
we classified the finite reflection groups. Although similar, this classification will be slightly
different. The Coxeter graphs will not be sufficient for this task as we would like to indicate
when two roots are of different lengths. To encode this information we will need the Dynkin
diagram of Φ. In any irreducible crystallographic root system it turns out that there are at
most two different root lengths. Therefore when there are two roots of different lengths we
refer to them as long and short roots.

Also we know by proposition 1.3 that the only possible labels on edges we require are 3, 4
or 6. Therefore in the Dynkin diagram of Φ instead of using labels we indicate these numbers
by joining two vertices with a single, double or triple bond. If two vertices joined by an edge
represent simple roots of different lengths then we indicate the distinction by placing an arrow
on the edge pointing to the short root.

Example. Consider our recurring example of D8. Now the root system Φ which has D8 as
its associated Weyl group has a simple system ∆ = {α, β} as specified in figure 2. Now it’s
easy to see from the diagram that β is the long root and α is the short root. Therefore we
have the associated Dynkin diagram of the root system is

α β

Theorem 1.8. Let Φ be an irreducible crystallogrphic root system then its associated Dynkin
diagram is one from the list given in figure 6. The label n on the first four types denotes the
number of vertices on the graph.

Proof. See the proof in [Hum78, Section 11.4] or alternatively see the proof given in [EW06,
Chapter 13]. �

We mentioned that to classify the finite reflection groups we associated to each Coxeter
graph a symmetric n × n matrix. Indeed to each Dynkin diagram of a crystallographic root
system we associate a uniquely specified matrix called the Cartan matrix. However we note
that this matrix is not symmetric.

Definition. Let Φ be a crystallographic root system with simple system ∆ = {α1, . . . , αn}.
Recall by (R4) that 〈αi, αj〉 is an integer for all i, j. We call the integers 〈αi, αj〉 Cartan
integers. The Cartan matrix associated to Φ is the n× n matrix (〈αi, αj〉)16i,j6n.
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An (n > 1)

Bn (n > 2)

Cn (n > 3)

Dn (n > 4)

E6

E7

E8

F4

G2

1 2 n − 2 n − 1 n

1 2 n − 2 n − 1 n

1 2 n − 2 n − 1 n

1 2 n − 3 n − 2

n − 1

n

1

2

3 4 5 6

1

2

3 4 5 6 7

1

2

3 4 5 6 7 8

1 2 3 4

1 2

Figure 6. The Dynkin Diagrams of Irreducible Crystallographic Root Systems.

The Cartan matrix depends on the ordering of the simple roots but this is not such a hardship.
In fact the important thing to realise is that the Weyl group acts simply transitively on the
collection of simple systems for Φ and so the Cartan matrix is independent of the choice
of ∆. In fact the Cartan matrix is a non-singular matrix which, like the Dynkin diagram,
characterises Φ completely.

Example. We have the Cartan matrices of the Weyl groups D6, D8 and D12 are given by[
2 −1
−1 2

] [
2 −2
−1 2

] [
2 −1
−3 2

]
.

It is the crystallographic root systems which underpin the structural information of Lie
theory. It is such that these diagrams encapsulate the structural information of complex
simple Lie algebras, simple Lie groups, simple linear algebraic groups and finite groups of Lie
type. Again detailed information about the construction of each of these root systems can be
found in [Hum90, Chapter 2] and the plates in the back of [Bou02].
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Remark. A word of caution. Exactly how one draws and labels the Dynkin diagrams is very
subjective. Here we have chosen to follow the description given in [Hum78, Theorem 11.4].
However this differs to the plates in [Bou02], which differs to the library in [GHL+96] and so
on.
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2. Lie Algebras

2.1. Basic Definitions and Introduction. Throughout this section we will assume, so
as not to over complicate things, that all vector spaces are finite dimensional.

Definition. A Lie algebra g is a vector space over a field K with an associated bilinear map
[·, ·] : g× g→ g, such that the following hold:

• [x, x] = 0 for all x ∈ g,
• [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0 for all x, y, z ∈ g.

Remark. We call the latter axiom of the above definition the Jacobi Identity. The idea of
this axiom is to be a replacement for associativity, as we do not have that a Lie algebra is an
associative algebra. We refer to the bilinear map [·, ·] as the Lie bracket of g.

Example.

(a) Let g be any vector space over any field K. Then we can endow g with the trivial
bracket operation [x, y] = 0 for all x, y ∈ g. We refer to this as an abelian Lie algebra.

(b) Let K = R and let g = R3. We define a product structure on g using the standard
vector product x∧y for all x, y ∈ g. In other words if x, y ∈ g such that x = (x1, x2, x3)
and y = (y1, y2, y3) then

[x, y] = (x2y3 − x3y2, x3y1 − x1y3, x1y2 − x2y1).

(c) Let V be any finite-dimensional vector space over a field K. We define the general
linear Lie algebra gl(V ) to be the vector space of all linear maps from V to V , endowed
with the commutator bracket

[x, y] = x ◦ y − y ◦ x for all x, y ∈ gl(V ).

(d) We now define a matrix analogue for the Lie algebra in example (c). Let K be any
field and let gl(n,K) be the vector space of all n × n matrices defined over K. Then
gl(n,K) is a Lie algebra with Lie bracket given by

[x, y] = xy − yx for all x, y ∈ gl(n, k),

i.e. the commutator bracket. Note that a basis for gl(n,K) as a vector space is given by
the n×n unit matrices eij which have entry 1 in the ijth position and zeros elsewhere.
We then see that the commutator bracket is given by

[eij , ek`] = δjkei` − δi`ekj ,
where δij is the Kronecker delta.

(e) Let K be any field and sl(2,K) = {x ∈ gl(2,K) | tr(x) = 0} ⊂ gl(2,K) be the vector
subspace of gl(2,K) whose elements have trace 0. Now if x, y ∈ sl(2,K) then we will
have [x, y] = xy − yx ∈ sl(2,K), hence the commutator bracket gives sl(2,K) a Lie
algebra structure. Assume K = C then as a vector space it can be shown that sl(2,K)
has a basis given by

e =

[
0 1
0 0

]
f =

[
0 0
1 0

]
h =

[
1 0
0 −1

]
.

These elements have Lie bracket relations [e, f ] = h, [h, f ] = −2f , [h, e] = 2e.
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(f) Let A be an associative algebra over a field K. Clearly A is a vector space over K
and we can give it the structure of a Lie algebra by endowing it with the commutator
bracket [x, y] = xy − yx for all x, y ∈ A.

Definition. Let g be a Lie algebra, then we define Z(g) := {x ∈ g | [x, y] = 0 for all y ∈ g}
to be the centre of the Lie algebra.

Definition. Let g be a Lie algebra and h ⊆ g a vector subspace of g. We can consider the
Lie bracket of h to be the restriction of the Lie bracket of g to h.

• We say h is a subalgebra of g if [h, h] ⊆ h, where [h, h] := span{[h1, h2] | h1, h2 ∈ h}.
• We say h is an ideal of g if [h, g] ⊆ h, where [h, g] := span{[h, g] | h ∈ h and g ∈ g}.

Example. For any field K we have that sl(2,K) ⊂ gl(2,K) is a Lie subalgebra and an
ideal of gl(2,K). This is because for all x, y ∈ gl(2,K) we have tr([x, y]) = tr(xy − yx) =
tr(xy)− tr(yx) = 0 and hence [x, y] ∈ sl(2, k).

Proposition 2.1. Let g be a Lie algebra and h ⊆ g an ideal of g. Consider the vector space
of cosets g/h = {x + h | x ∈ g}. We endow this vector space with the map [·, ·] : g/h → g/h
where

(3) [x+ h, y + h] = [x, y] + h.

Then g/h is again a Lie algebra called the quotient algebra with respect to h.

Proof. It is easy to check that the axioms of a Lie algebra hold for g/h. Therefore we only
have to check that the Lie bracket given in eq. (3) is well defined. Assume x+ h = x′+ h and
y + h = y′ + h for some x, x′, y, y′ ∈ g. Now this implies that there exists a, b ∈ h such that
x′ = a+ x and y′ = b+ y. Then

[x′, y′] = [a+ x, b+ y] = [a, b] + [a, y] + [x, b] + [x, y] ∈ [x, y] + h

as h is an ideal of g and hence [a, b], [a, y], [x, b] ∈ h. Therefore [x, y] + h = [x′, y′] + h and the
Lie bracket is well defined. �

Definition. Let g be a Lie algebra, then a derivation δ : g→ g is a linear map which satisfies
the Leibniz rule

δ([x, y]) = [δ(x), y] + [x, δ(y)] for all x, y ∈ g.

Now Der(g), the vector space of all derivations of g, is a Lie algebra whose Lie bracket is
given by the commutator bracket [δ1, δ2] = δ1 ◦ δ2 − δ2 ◦ δ1 for all δ1, δ2 ∈ Der(g). We define
a very important derivation known as the adjoint operator. Let x ∈ g then we define a map
adx : g→ g by adx(y) = [x, y] for all y ∈ g.

Claim. For any Lie algebra g we have adx ∈ Der(g) for all x ∈ g.

Proof. First of all we must show that adx is linear. For any α, β ∈ K and y, z ∈ g we have

adx(αy + βz) = [x, αy + βz] = α[x, y] + β[x, z] = α adx(y) + β adx(z).

Hence the map is linear. We now show that this map satisfies the Liebniz rule. For all y, z ∈ g
we have
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adx([y, z]) = [x, [y, z]] = −[y, [z, x]]− [z, [x, y]],

= [y, [x, z]] + [[x, y], z],

= [adx(y), z] + [y, adx(z)]. �

Definition. For any Lie algebra g we call a derivation δ ∈ Der(g) an inner derivation if
there exists an element x ∈ g such that δ = adx. Any derivation of g which is not an inner
derivation is called an outer derivation.

Note that the derivation adx is not to be confused with the adjoint homomorphism. We
define the adjoint homomorphism to be the map ad : g → gl(g) given by x 7→ adx for all
x ∈ g. However, for this to make sense we must define what we mean by a Lie algebra
homomorphism.

Definition. Let g1, g2 be Lie algebras defined over a common field K. Then a homomorphism
of Lie algebras ϕ : g1 → g2 is a linear map of vector spaces such that ϕ([x, y]) = [ϕ(x), ϕ(y)]
for all x, y ∈ g1. In other words ϕ preserves the Lie bracket.

Claim. The map ad : g→ gl(g) is a homomorphism of Lie algebras.

Proof. Clearly this map is linear by the linearity properties of the Lie bracket. Hence to show
this is a homomorphism we must show that ad[x,y] = [adx, ady] = adx ◦ ady − ady ◦ adx for all
x, y ∈ g. We do this by showing equivalence for all z ∈ g

ad[x,y](z) = [[x, y], z] = −[z, [x, y]],

= [x, [y, z]] + [y, [z, x]],

= adx([y, z])− ady([x, z]),

= (adx ◦ ady − ady ◦ adx)(z). �

Definition. A representation of a Lie algebra g is a pair (V, ρ) where V is a vector space
over K and ρ : g→ gl(V ) is a Lie algebra homomorphism.

Example.

(a) Take V to be any vector space over K and ρ = 0 to be the zero map. We call this the
trivial representation of g.

(b) The adjoint homomorphism of g is a representation of g with V = g and ρ = ad. We
call this the adjoint representation of g. Note that x ∈ ker ad ⇔ adx(y) = 0 for all
y ∈ g ⇔ [x, y] = 0 for all y ∈ g ⇔ x ∈ Z(g). Hence the adjoint representation is
faithful if and only if the centre of g is trivial.

Alternatively instead of thinking of representations we can also consider modules for a Lie
algebra g.

Definition. Let g be a Lie algebra over a field K. A g-module is a pair (V, ·) where V is a
vector space and · : g × V → V is a map satisfying the following conditions for all x, y ∈ g,
v, w ∈ V and λ, µ ∈ K.

• (λx+ µy) · v = λ(x · v) + µ(y · v),
• x · (λv + µw) = λ(x · v) + µ(x · w),
• [x, y] · v = x · (y · v)− y · (x · v).
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Example. Let g be a Lie algebra over a field K. Then the pair (g, [·, ·]) is itself a g−module.
Also given any submodule h ⊆ g we have [h, g] ⊆ g and so the pair (g, [·, ·]) is also a h-module.

Remark. As per usual with representation theory the language of modules and the language
of representations are just two ways of talking about the same thing. Given a representation
(V, ϕ) of a Lie algebra g we have (V, ·) is a g-module where we define x · v := ϕ(x)(v) for all
x ∈ g and v ∈ V . Likewise given any g-module (V, ·) we have (V, ψ) is a representation where
we define ψ(x) to be the map v 7→ x · v for all x ∈ g and v ∈ V .

2.2. Solvable and Nilpotent Lie Algebras. When we are dealing with groups we in-
troduce notions of simplicity, solvability, etc. to allow us to find some fundamental ‘building
blocks’. In the theory of Lie algebras we do a very similar thing and use the same terms as
in group theory.

Definition. Let g be a Lie algebra over a field K. We define a sequence of subspaces g(m) ⊆ g
called the derived series inductively by

g(0) = g g(m+1) = [g(m), g(m)] for m > 0.

We then say that the Lie algebra g is solvable if for some m > 0 we have g(m) = {0}.

Definition. Let g be a Lie algebra over a field K. We define a sequence of subspaces gm ⊆ g
called the lower central series inductively by

g0 = g gm+1 = [g, gm] for m > 0.

We then say that the Lie algebra g is nilpotent if for some m > 0 we have gm = {0}.

Remark. Note the analogy with groups where we take the bracket to be the group commutator
bracket, i.e. [x, y] = x−1y−1xy for all x, y ∈ G for some group G.

Let g be a Lie algebra with ideals h, f ⊆ g. Then their product [h, f] ⊆ g is also an ideal of
g. This is because for all [x, y] ∈ [h, f] and z ∈ g we have

[[x, y], z] = [x, [y, z]] + [y, [z, x]] ∈ [h, f].

Hence every subspace g(m), gm with m > 0 in the derived series and lower central series are
ideals. Therefore in both cases we have a descending series of ideals

g = g(0) ⊇ g(1) ⊇ g(2) ⊇ g(3) ⊇ · · · ,
g = g0 ⊇ g1 ⊇ g2 ⊇ g3 ⊇ · · · .

Example. Consider the subalgebra b(n,K) := {(xij) ∈ gl(n,K) | xij = 0 for i > j} ⊆
gl(n,K) of all upper triangular matrices. This Lie algebra is solvable but not nilpotent.
Consider the subalgebra n(n,K) := {(xij) ∈ gl(n,K) | xij = 0 for i > j} ⊆ gl(n,K) of all
strictly upper triangular matrices. This Lie algebra is nilpotent and solvable.

Example. Let g be a Lie algebra over a field K. Consider the centre of the Lie algebra Z(g).

It’s clear to see that the centre of a Lie algebra is abelian and so we have Z(g)(1) = Z(g)1 =
[Z(g), Z(g)] = {0} and so the centre is both solvable and nilpotent.

Proposition 2.2. Every nilpotent Lie algebra is solvable.
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Proof. Let g be a Lie algebra over a field K. It’s clear that g = g(0) ⊆ g0 = g. Assume for
induction that g(n) ⊆ gn for some n > 0, then it’s clear that

g(n+1) = [g(n), g(n)] ⊆ [g, gn] = gn+1.

Therefore if gk = {0} for some k > 0 then we have g(k) = {0}, which gives the desired
result. �

Theorem 2.1. Let g be a Lie algebra.

(a) If g is solvable and h ⊆ g is a subalgebra of g, then h is solvable.
(b) Let h be a Lie algebra. If g is solvable and ϕ : g → h is a surjective Lie algebra

homomorphism, then h is solvable.
(c) Let h ⊆ g be an ideal. Suppose that g/h and h are solvable, then g is solvable.
(d) Let h, f ⊆ g be solvable ideals of g, then h + f := {h + f | h ∈ h, f ∈ f} is a solvable

ideal of g.

Proof.

(a) As h ⊆ g it’s clear that h(i) ⊆ g(i) for all i > 0. For some m > 0 we have g(m) = {0} ⇒
h(m) = {0}. Therefore h is solvable.

(b) We want to prove by induction that ϕ(g(i)) = h(i) for all i > 0. If i = 0 then by

the surjectivity of ϕ we have ϕ(g) = ϕ(g(0)) = h(0) = h. Assume this holds true for

some i > 0. Now for any x ∈ h(i+1) we have x = [h1, h2] for some h1, h2 ∈ h(i).

By assumption we have there are g1, g2 ∈ g(i) such that ϕ(g1) = h1 and ϕ(g2) = h2.

Therefore x = [h1, h2] = [ϕ(g1), ϕ(g2)] = ϕ([g1, g2]) ∈ ϕ(g(i+1)). Therefore we have

ϕ(g(i+1)) = h(i+1) and we’re done.

Now if g is solvable then there exists an m > 0 such that g(m) = {0}. Hence by

above we have that ϕ(g(m)) = h(m) = {0} and so h is solvable.

(c) We have g/h is solvable and so there exists an m > 0 such that (g/h)(m) = {0}.
Consider the canonical homomorphism π : g → g/h defined by x 7→ x + h. Now π is

clearly surjective and so by part (b) we have g(i) + h = (g/h)(i) for all i > 0.

Now g(m) + h = h ⇔ g(m) ⊆ h and h is solvable so there exists n > 0 such that
h(n) = {0}. Therefore g(m+n) = (g(m))(n) ⊆ h(n) = {0} and so g is solvable.

(d) It is an easy check to verify that h+ f is an ideal. By the second isomorphism theorem,
(see [EW06, Theorem 2.2] ), we have (h + f)/h ∼= f/h ∩ f. As f is solvable we have the
image (h + f)/h is solvable by part (b). As h is also solvable we have h + f is solvable
by part (c). �

Remark. Note that parts (a) and (b) of theorem 2.1 hold for nipotent Lie algebras but parts
(c) and (d) do not hold. The following lemma is the closest approximation we can get.

Lemma 2.1. Let g be a Lie algebra such that g/Z(g) is nilpotent, then g is nilpotent.

Proof. A similar inductive proof as in part (b) of theorem 2.1 shows that (g/Z(g))i = gi+Z(g)
for each i > 0. Therefore (g/Z(g))m = {0} for some m > 0 means gm ⊆ Z(g) and so
gm+1 = [g, gm] ⊆ [g, Z(g)] = {0}. �

Definition. Let g be a Lie algebra. We say g is simple if g has no ideals other than {0} and
g.

Remark. Note that if g is an abelian Lie algebra such that {0} and g are the only ideals then
we must have g is 1-dimensional. We refer to this as the trivial simple Lie algebra.
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Example. The Lie algebra sl(2,C) is simple. Assume h ⊆ sl(2,C) is a non-zero ideal. Recall
from example (e) that {e, f, h} is a basis for sl(2,C), hence any non-zero element x ∈ h has
an expression of the form x = ae+ bh+ cf for some a, b, c ∈ C not all zero. Now we can see
that we have

[h, [e, [f, ae+ bh+ cf ]]] = [h, [e,−ah+ 2bf ]] = [h, 2ae+ 2bh] = 4ae,

[h, [e, ae+ bh+ cf ]] = [h,−2be+ ch] = −4be,

[e, [e, ae+ bh+ cf ]] = [e,−2be+ ch] = −2ce,

[f, [f, ae+ bh+ cf ]] = [f,−ah+ 2bf ] = −2af,

[h, [f, ae+ bh+ cf ]] = [h,−ah+ 2bf ] = 4bf,

[h, [f, [e, ae+ bh+ cf ]]] = [h, [e,−2be+ ch]] = [h, 2bh+ 2cf ] = −4cf.

So as at least one of a, b, c is non-zero and after scaling we have that {e, f} ⊆ h. However
clearly this means we have [e, f ] = h ∈ h and so as h contains a basis for sl(2,C) we must
have h = sl(2,C).

Definition. Let g be a Lie algebra. We say g is semisimple if it has no non-zero solvable
ideals. Equivalently we could say rad g = {0}, where rad g is the maximal solvable ideal of g
called the radical.

Proposition 2.3. Let g be a Lie algebra, then g/ rad g is semisimple.

Proof. Let h ⊆ g/ rad g be a solvable ideal. By the correspondence of ideals, (see [EW06,
Theorem 2.2]), there exists an ideal rad g ⊆ h ⊆ g such that h = h/ rad g. Now the radical is
solvable by definition and we assumed h/ rad g solvable. Therefore by part (c) of theorem 2.1
we have h is solvable, however the radical is maximal so we have h = rad g. �

This proposition gives us an idea of how to tackle the structure of Lie algebras. Given any
Lie algebra g we have rad g is solvable and g/ rad g is semisimple. Hence we can reduce the
problem down to studying an arbitrary solvable Lie algebra and an arbitrary semisimple Lie
algebra. In fact when our ground field is C we have nice answers to both of these questions.

2.3. Testing for Solvability and Semisimplicity. From the previous section we know
that we would like to know when g is semisimple or solvable. Working just from the definitions
this seems quite difficult but when our ground field is C we have effective solutions. From now
on all our Lie algebras are complex, so they are vector spaces over C. It turns out that given
a complex Lie algebra g we can detect solvability simply by looking at traces of derivations
adx for x ∈ g.

Definition. Let g be a complex Lie algbera. We define a symmetric bilinear form κ : g×g→ C

κ(x, y) := tr(adx ◦ ady),

for all x, y ∈ g, and call it the Killing form of g.

Remark. Recall that the trace satisfies the property tr y(xz) = tr(xz)y for all linear trans-
formations x, y, z of a vector space. Therefore we have tr([x, y]z) = tr(x[y, z]) and so
κ([x, y], z) = κ(x, [y, z]) for all x, y, z ∈ g. We refer to this property of the Killing form
as the associativity of the Killing form.
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Now this definition might seem a little strange but it comes from the fact that the theorems
for solvability are most easily proved when our Lie algebra is a subalgebra of gl(V ) for some
complex vector space V . Therefore to get an abstract Lie algebra to be a subalgebra of gl(V )
we use the adjoint representation, which is faithful when the Lie algebra is semisimple. In
fact we get that g is solvable if and only if ad g is solvable. Before stating the criterion for
solvability we state a useful fact about the Killing form.

Lemma 2.2. Let g be a complex Lie algebra and h ⊆ g an ideal of g. Let κh = κ|h×h denote
the restriction of the killing form to h then we have κh(x, y) = κ(x, y) for all x, y ∈ h.

Proof. Recall that if V is a finite dimensional vector space and W ⊆ V is a vector subspace
then for any map ϕ : V → V such that im(ϕ) ⊆ W we have tr(ϕ) = tr(ϕ|W ). Now if
x, y ∈ h then adx ◦ ady : g → g is such that im(adx ◦ ady) ⊆ h and so by the remark we have
κ(x, y) = κh(x, y). �

Theorem 2.2 (Cartan’s First Criterion). Let g be a complex Lie algebra, then g is solvable
if and only if κ(x, y) = 0 for all x ∈ g and y ∈ g′ := [g, g].

Proof. See [EW06, Theorem 9.6] or [Hum78, Theorem 5.1]. �

The Killing form can also be used to see when a complex Lie algebra is semisimple. In fact
this is known as Cartan’s second criterion.

Theorem 2.3 (Cartan’s Second Criterion). Let g be a complex Lie algebra, then g is semisim-
ple if and only if the Killing form κ is non-degenerate. In other words we have κ(x, y) = 0
for all y ∈ g if and only if x = 0.

Proof. See [EW06, Theorem 9.9] or [Hum78, Theorem 4.3]. �

From the initial statement it may not seem that Cartan’s second criterion is particularly
useful but in fact it gives a very useful characterisation of semisimplicity. For example,
let g be a complex Lie algebra and fix a basis {x1, . . . , xn} ⊆ g. The Killing form is a
symmetric bilinear form and hence we can calculate its associated symmetric matrix X =
(κ(xi, xj))16i,j6n with respect to the chosen basis of g. It’s clear that κ is non-degenerate
if and only if det(X) 6= 0. Therefore we can determine the semisimplicity of a complex Lie
algebra g by calculating the determinant of X.

Lemma 2.3. Let g be a semisimple complex Lie algebra. Then g = g1⊕ · · · ⊕ gr where gi for
1 6 i 6 r are simple ideals of g. In fact every simple ideal of g coincides with one of the gi.

Proof. Let h ⊆ g be an ideal, then it is a quick check to show that h⊥ := {x ∈ g | κ(x, y) =
0 for all y ∈ g} is also an ideal. We have that the restriction of the Killing form κh∩h⊥ is

identically zero and so by theorem 2.2 we have h∩ h⊥ ⊆ g is solvable and hence h∩ h⊥ = {0}
as g is semisimple. Therefore as dim h + dim h⊥ = dim g we must have g = h⊕ h⊥.

We prove this statement by induction on dim g. Assume g has no nonzero proper ideal,
then g is simple and we’re done. Otherwise let g1 ⊂ g be a minimal proper non-zero ideal
of g. By the previous remark we have g = g1 ⊕ g⊥1 . Now we have g1 is semisimple as any
solvable ideal of g1 is a solvable ideal of g. Hence g1 is simple as it was chosen to be minimal.
Clearly dim g1 6= 0 and so dim g⊥1 < dim g. Therefore by induction it is a direct sum of simple
ideals, say g⊥1 = g2 ⊕ · · · ⊕ gr. Hence we have g = g1 ⊕ g2 ⊕ · · · ⊕ gr as required.

Finally we show that the simple ideals are unique. Let h ⊂ g be a simple ideal then
[h, g] ⊆ h is also an ideal of h, which is non-zero because Z(g) ⊆ rad g = {0}, and so [h, g] = h.
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However [h, g] = [h, g1] ⊕ · · · ⊕ [h, gr] but [h, g] is simple so we must have just one summand
is non-zero, say this is [h, gi]. Then h ⊆ gi and h = gi because gi is simple. �

Example. Consider the following complex Lie algebra and its ideal

g =

{[
A B
0 C

] ∣∣∣∣A,C ∈ sl(2,C) and B ∈ gl(2,C)

}
⊆ gl(4,C),

h =

{[
0 B
0 0

] ∣∣∣∣B ∈ gl(2,C)

}
⊆ g.

We would like to consider the structure of this Lie algebra. We can see that h is in fact
a subalgebra of b(4,C) and hence, by part (a) of theorem 2.1, we have h is solvable. It is
an exercise to show that in fact h = rad g. Therefore by proposition 2.3 we have g/h is
semisimple. In fact it’s easy to see that

g/h ∼=
{[

A 0
0 C

] ∣∣∣∣A,C ∈ sl(2,C)

}
,

=

{[
A 0
0 0

] ∣∣∣∣A ∈ sl(2,C)

}
⊕
{[

0 0
0 C

] ∣∣∣∣C ∈ sl(2,C)

}
,

∼= sl(2,C)⊕ sl(2,C).

We have already seen that sl(2,C) is simple and so g/h decomposes as a direct sum of simple
ideals.

2.4. The Lie Algebra sl(n,C). We consider in detail the structure of the Lie algebra
sl(n,C) as it will be archetypical of the structure of all semisimple complex Lie algebras. We
first start by noting that sl(n,C) is a simple Lie algebra.

We have already seen the simplicity of sl(2,C) and in fact a generalisation of the argument
used there works for sl(n,C). We have {eij | 1 6 i 6= j 6 n}∪{eii−ei+1,i+1 | 1 6 i 6 n−1} is
a basis for the Lie algebra sl(n,C). Given any non-zero element in a non-zero ideal of sl(n,C)
we can multiply on the left and right by suitable basis elements of sl(n,C) to show that each
eij is in the ideal for i 6= j. Then by the relations of the Lie algebra we have the full basis of
sl(n,C) is contained in the ideal and so we have the ideal is in fact sl(n,C).

Now consider the subalgebra h = span{eii − ei+1,i+1 | 1 6 i 6 n − 1} of all diagonal
matrices, it’s clear that dim h = n − 1. Also it’s easy to see that [h, h] = 0 and so h is
an abelian Lie algebra. What we would like to do is decompose sl(n,C) as a direct sum
of h-modules. We recall that (sl(n,C), [·, ·]) can be viewed as a h-module. Now consider
h = λ1e11 + λ2e22 + · · ·+ λnenn ∈ h then λ1 + · · ·+ λn = 0. For any eij with i 6= j we have

(4) adh(eij) = [h, eij ] = λ1[e11, eij ] + · · ·+ λn[enn, eij ] = (λi − λj)eij .
Therefore for each 1 6 i 6= j 6 n we have the 1-dimensional vector subspace Ceij ⊂ sl(n,C)
gives us a h-submodule of sl(n,C). So we obtain the following decomposition

sl(n,C) = h⊕
⊕
i 6=j

Ceij .

Looking at eq. (4) we can see that {eij | i 6= j} will be a collection of eigenvectors for the
linear map adh : sl(n,C)→ sl(n,C) regardless of the choice of h ∈ h. However the associated
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eigenvalues λi − λj will depend on the choice of h ∈ h. What we would like is to be able to
talk about the collection of maps adh, for all h ∈ h, and their common eigenvectors. To do
this we introduce the following definition.

Definition. Let V be a vector space over a field K and consider a Lie subalgebra g ⊆ gl(V ).
We say a linear map λ : g→ K is a weight if the space

Vλ := {v ∈ V | x(v) = λ(x)v for all x ∈ g}
is non-zero. We call the space Vλ the associated weight space of λ.

Let h ∈ h be as before then we define coordinate maps εi : h → C by εi(h) = λi for each
1 6 i 6 n. Then rephrasing eq. (4) we have adh(eij) = (εi − εj)(h)eij . Therefore εi − εj is a
weight of sl(n,C) with associated weight space

sl(n,C)εi−εj = {x ∈ sl(n,C) | adh(x) = (εi − εj)(h)x for all h ∈ h} = Ceij .
Hence the decomposition given in eq. (4) is a decomposition of sl(n,C) into weight spaces
with respect to the adjoint action of the abelian Lie subalgebra h. The weights εi − εj are
elements of the dual vector space h?.

Let Φ = {εi − εj | 1 6 i 6= j 6 n} ⊆ h? be the collection of all weights for h. We define
specific elements αi = εi − εi+1 ∈ Φ for each 1 6 i 6 n− 1 and let ∆ = {αi | 1 6 i 6 n− 1}.
Now it’s clear that for any weight εi − εj ∈ Φ we have

εi − εj = ±(αi + αi+1 + · · ·+ αj−1),

where the sign depends on whether i < j or i > j. Let h?R = spanR(Φ) denote the real span
of Φ in h?. It is true that this is a real Euclidean vector space. We then have Φ is a root
system for h?R in the sense of section 1.2 with simple system ∆.

Remark. Note the similarities between the construction given here and the construction of
the root system of type An given in section 1.5

2.5. Semisimple Complex Lie Algebras. We use the discussion in section 2.4 to now
give the general structure theory of semisimple complex Lie algebras. Note that throughout
this section we will give very few proofs for the results that we state but we do indicate
locations for these proofs in [EW06] or [Hum78]. Now we would like to generalise the large
abelian Lie subalgebra defined in the case of sl(n,C). To do this we need a small discussion
about the Jordan decomposition.

Theorem 2.4 (Jordan Decomposition). Let V be a complex vector space and consider x ∈
EndV . Then there exists complex linear maps xs, xn ∈ EndV such that x = xs+xn = xn+xs
where xs is semisimple, (i.e. diagonalisable) and xn is nilpotent.

Proof. See [BR02, Theorem 4.3]. �

A very powerful result in the theory of semisimple complex Lie algebras is known as the
abstract Jordan decomposition. Given a semisimple complex Lie algebra g the adjoint rep-
resentation ad : g → gl(g) provides to each element x ∈ g an endomorphism adx ∈ gl(g).
By the Jordan decomposition we can decompose adx = (adx)s + (adx)n into a semisimple
and nilpotent part. What we would like to show is that this gives us a decomposition of the
element x ∈ g.
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Theorem 2.5 (Abstract Jordan Decomposition). Let g be a semisimple complex Lie algebra.
Each x ∈ g can be written uniquely as x = s + n for some s, n ∈ g where ads ∈ gl(g) is
semisimple, adn ∈ gl(g) is nilpotent and [s, n] = 0. We call such a decomposition the abstract
Jordan decomposition of x. Furthermore let (V, ϕ) be any representation of g. Suppose
x ∈ g has abstract Jordan decomposition x = s+ n, then the Jordan decomposition of ϕ(x) is
ϕ(x) = ϕ(s) + ϕ(n).

Proof. See [EW06, Theorems 9.15 and 9.16] or [Hum78, Section 5.4 and Theorem 6.4] �

Definition. Let g be a semisimple complex Lie algebra and let x ∈ g have abstract Jordan
decomposition x = s+ n. We say s ∈ g is the semisimple part of x and n ∈ g is the nilpotent
part of x. If n = 0 then we say x is semisimple and if s = 0 we say x is nilpotent.

We now continue with our discussion of the structure of semisimple complex Lie algebras.
The way we started to understand sl(n,C) in section 2.4 was to identify a large abelian Lie
subalgebra with certain desirable properties. We now define such a Lie subalgebra for any
semisimple complex Lie algebra.

Definition. Let g be a semisimple complex Lie algebra. Then a Lie subalgebra h ⊆ g is
said to be a toral subalgebra if h consists entirely of semisimple elements. We say h ⊆ g is a
maximal toral subalgebra of g if h is a toral subalgebra and maximal amongst all such toral
subalgebras with respect to inclusion.

Remark. Note that the classic approach to Lie algebras is to define a Cartan subalgebra of g.
This is a nilpotent subalgebra which is self normalising, i.e. is equal to its own normaliser in g.
In fact it is true that if g is a semisimple Lie algebra defined over an algebraically closed field
of characteristic zero then Cartan subalgebras and maximal toral subalgebras are the same
thing, (see [Hum78, Corollary 15.3]). We choose to work with maximal toral subalgebras as
it will fit in better with the theory later on.

Lemma 2.4. Any maximal toral subalgebra of a semisimple complex Lie algebra is abelian.

Proof. See [Hum78, Lemma 8.1]. �

We would like to follow the decomposition that we obtained for sl(n,C). Now for a semisim-
ple complex Lie algebra g we have that a maximal toral subalgebra h ⊆ g is abelian. Therefore
by definition {adh | h ∈ h} is a collection of commuting semisimple linear transformations
of g. By standard results in linear algebra, (see [BR02, Theorem 3.4]), we have that we can
simultaneously diagonalise this collection of linear transformations. This therefore allows us
to decompose g into a direct sum of weight spaces with respect to the adjoint action of h.

g =
⊕
α∈h?

gα where gα := {x ∈ g | adh(x) = α(h)x for all h ∈ h}.

Now we have the zero map in h? and so one of these weight spaces is the zero weight space
g0 = {x ∈ g | adh(x) = [h, x] = 0 for all h ∈ h}. However this is the same as the centraliser
of h in g which we denote Cg(h). Note that h ⊆ Cg(h) and in fact we have h = Cg(h). We do
not prove this fact here but instead refer to the proof in [Hum78, Proposition 8.2]. Now we
let Φ ⊆ h? be the set of non-zero weights in h?. We can now express the decomposition as

(5) g = h⊕
⊕
α∈Φ

gα.



A Short Course in Lie Theory 27

Lemma 2.5. Let g be a semisimple complex Lie algebra with weight space decomposition as
given in eq. (5). Then for α, β ∈ Φ we have

(a) [gα, gβ] ⊆ gα+β.
(b) κ(gα, gβ) = 0 if α+ β 6= 0.
(c) the restriction κh is non-degenerate.

Proof.

(a) Let x ∈ gα and y ∈ gβ. From the Jacobi identity we have

adh([x, y]) = [h, [x, y]] = [[h, x], y] + [x, [h, y]] = [α(h)x, y] + [x, β(h)y],

= α(h)[x, y] + β(h)[x, y],

= (α+ β)(h)[x, y].

Therefore [x, y] is an eigenvector for adh with weight α+ β and so [x, y] ∈ gα+β.
(b) We have α + β 6= 0 and so there exists h ∈ h with (α + β)(h) 6= 0. Let x ∈ gα and

y ∈ gβ then we have

α(h)κ(x, y) = κ([h, x], y) = −κ([x, h], y) = −κ(x, [h, y]) = −β(h)κ(x, y).

by the associativity of the Killing form. Therefore we have (α+ β)(h)κ(x, y) = 0. We
chose h such that (α+ β)(h) 6= 0 and so we must have κ(x, y) = 0.

(c) Recall from theorem 2.3 that κ is non-degenerate. Recall h = g0 and so by part (b)
we have κ(h, gα) = 0 for any α ∈ Φ. If x ∈ h is such that κ(x, h) = 0 then by eq. (5)
we have κ(x, g) = 0 but κ non-degenerate so x = 0 as required. �

This lemma provides us with the essential information we need regarding the weight space
decomposition given in eq. (5). We focus on part (c) of lemma 2.5, which tells us that κh is
non-degenerate. This allows us to use the Killing form to define an isomorphism between h
and h?. To ϕ ∈ h? we identify the unique element tϕ ∈ h satisfying ϕ(h) = κ(tϕ, h) for all
h ∈ h. In particular this says we can associate the set Φ ⊆ h? with the subset {tα | α ∈ Φ} ⊆ h.

Lemma 2.6. Let g be a semisimple complex Lie algebra and h ⊆ g a maximal toral subalgebra.
Let Φ ⊆ h? be the set of non-zero weights with respect to h. For each α ∈ Φ let eα ∈ gα be a
non-zero element of the weight space then there exists a non-zero element fα ∈ g−α such that
span{eα, fα, [eα, fα]} ⊆ g is isomorphic to sl(2,C). In fact hα = [eα, fα] ∈ span{tα} ⊆ h.

Proof. See [EW06, Lemma 10.5 and 10.6] or [Hum78, Proposition 8.3]. �

Example. Consider sl(3,C). Now we specify the information given in section 2.4 to the case
n = 3. The non-zero weights of the maximal toral subalgebra h are given as

α = ε1 − ε2 β = ε2 − ε3 α+ β = ε1 − ε3

and their negatives. Consider the weights ±(α + β) ∈ h?. We have the corresponding
weight spaces are gα+β = Ce13 and g−(α+β) = Ce31. Therefore we can choose the elements
eα+β ∈ gα+β and fα+β ∈ g−(α+β) to be e13 and e31 respectively. Therefore we have

eα+β =

0 0 1
0 0 0
0 0 0

 fα+β =

0 0 0
0 0 0
1 0 0

 hα+β = [eα+β, fα+β] =

1 0 0
0 0 0
0 0 −1


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Table 3. The Simple Complex Lie Algebras.

Type An Bn Cn Dn E6 E7 E8 F4 G2

Description sl(n+ 1,C) so(2n+ 1,C) sp(2n,C) so(2n,C) - - - - -

|Φ| n(n+ 1) 2n2 2n2 2n(n− 1) 72 126 240 48 12

dim h n n n n 6 7 8 4 2

dim g n(n+ 2) n(2n+ 1) n(2n+ 1) n(2n− 1) 78 133 248 52 14

and it’s easy to see that span{eα+β, fα+β, hα+β} ⊆ sl(3,C) is isomorphic to sl(2,C).

So every semisimple complex Lie algebra is built up out of subalgebras that are isomorphic
to sl(2,C). This makes the study of sl(2,C) incredibly important to the study of semisimple
complex Lie algebras. Indeed we can use the representation theory of sl(2,C) to deduce lots
of results about the structure of arbitrary semisimple complex Lie algebras. It turns out that
this fact allows us to show that one of the properties of the weight spaces from section 2.4
holds in general.

Proposition 2.4. Let g be a semisimple complex Lie algebra and let h ⊆ g be a maximal
toral subalgebra. Then for each non-zero weight α ∈ Φ ⊆ h? we have gα is 1-dimensional.

Proof. See [EW06, Proposition 10.9] or [Hum78, Proposition 8.4]. �

Corollary 2.1. If g is a semisimple complex Lie algebra with weight space decomposition as
in eq. (5) then we have dim g = dim h + |Φ|.
Proof. Clear by eq. (5) and proposition 2.4. �

Finally what we would like to do now is endow the vector space h? with a bilinear form.
Recall that we identified h with h? using the Killing form. This allows us to define, without
ambiguity, a map (·, ·) : h? × h? → C by

(α, β) = κ(tα, tβ)

for all α, β ∈ h?. Now as κ is symmetric and non-degenerate on h we have (·, ·) is symmetric
and non-degenerate on h?. Consider the set of all non-zero weights Φ ⊆ h?. We denote by h?R
the real span of Φ in h?.

Proposition 2.5. The form (·, ·) is a real valued inner product on h?R. Therefore h?R is a real
Euclidean vector space.

Proof. See [EW06, Proposition 10.15]. �

This is the final piece of information that we need to put the puzzle together. We can
now state the theorem which we have been suggestively hinting towards through notation
throughout this entire section.

Theorem 2.6. Let g be a semisimple complex Lie algebra with maximal toral subalgebra h.
Let Φ ⊆ h? be the set of all non-zero weights in h?. Then Φ is a crystallographic root system
for h?R as in the sense of section 1.5. We refer to the elements of Φ as the roots of g and
the 1-dimensional subspaces gα as the associated root spaces. We refer to the decomposition
given in eq. (5) as the root decomposition of g.
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Proof. See [Hum78, Theorem 8.5]. �

What this theorem tells us is that every semisimple complex Lie algebra contains a crys-
tallographic root system. Therefore we would hope that we could try and classify these Lie
algebras using the Dynkin diagrams we described in section 1.5.

Theorem 2.7. Let g be a semisimple complex Lie algebra and h ⊆ g a maximal toral sub-
algebra of g. The Dynkin diagram determined by the crystallographic root system Φ ⊆ h? is
independent of the choice of h. Furthermore g is simple if and only if the Dynkin diagram of
Φ is connected. In fact to each Dynkin diagram in figure 6 there exists a unique simple Lie
algebra, up to isomorphism, giving rise to it.

Proof. See [EW06, Chapter 14]. �

In table 3 we give information regarding each of the simple complex Lie algebras. Note
that in the table h denotes a maximal toral subalgebra of the simple complex Lie algebra g.
As in section 1.5 we refer to the Lie algebras of types An,Bn,Cn and Dn as being of classical
type. The Lie algebras of type E6,E7,E8,F4 and G2 are referred to as the Lie algebras of
exceptional type as they do not have any kind of description in terms of classical Lie algebras.
For information regarding the constructions of all these Lie algebras see [EW06, Chapters 12
and 13.2]

Remark. We make one closing remark for this section. Everything we have done during this
section has depended upon a choice of maximal toral subalgebra. However it is true that
given two maximal toral subalgebras h1, h2 ⊆ g of a semisimple complex Lie algebra g there
exists an inner automorphism ϕ of g such that ϕ(h1) = h2. Hence our choice of maximal toral
subalgebra is unique up to an inner automorphism of g. This is in general quite difficult to
prove but a proof is given in [Hum78, Corollary 16.4].
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3. Linear Algebraic Groups

Throughout this section K will denote an algebraically closed field, primarily either C or
Fp, where p > 0 is a prime. We also note that all algebras and modules will be commu-
tative. During the initial few sections almost no proofs will be given to the statements as,
unfortunately, the basics of the Zariski topology and algebraic geometry are not our main
goal. Instead we leave references to proofs in [Gec03]. The interested reader may also want
to examine [Hum75, Chapter I] for a more direct treatment of the algebraic geometry.

3.1. Some Definitions and The Zariski Topology. We start by recalling a fundamen-
tal theorem from commutative ring theory about polynomial rings defined over Noetherian
rings. Recall that a ring is Noetherian if and only if every ideal of the ring is finitely generated.

Theorem 3.1 (Hilbert’s Basis Theorem). Let R be a commutative ring with 1. If R is Noe-
therian and X is an indeterminate over R then the polynomial ring R[X] is also Noetherian.
In particular if K is a field then K[X1, . . . , Xn] is Noetherian.

Proof. See [Gec03, Theorem 1.1.1]. �

Definition. Let S ⊆ K[X1, . . . , Xn] be any subset of the polynomial ring in n variables. Then
the set

V(S) = {x ∈ Kn | f(x) = 0 for all f ∈ S} ⊆ Kn

is called the algebraic set defined by S. Conversely for any subset V ⊆ Kn we call the set

I(V ) = {f ∈ K[X1, . . . , Xn] | f(x) = 0 for all x ∈ V }
the vanishing ideal of V . The quotient K[V ] = K[X1, . . . , Xn]/I(V ) is called the affine
algebra of V . From this point on we denote the image of f ∈ K[X1, . . . , Xn] in K[V ], under
the canonical projection, by f .

Example.

(a) Consider the constant polynomials 1, 0 ∈ K[X1, . . . , Xn], i.e. these are the maps defined
by 1(x) = 1 and 0(x) = 0 for all x ∈ Kn. Then we have

V({1}) = {x ∈ Kn | 1(x) = 0} = ∅,
V({0}) = {x ∈ Kn | 0(x) = 0} = Kn.

Therefore ∅ and Kn are always algebraic sets. Note the choice of the constant poly-
nomial 1 is arbitrary. Any non-zero constant polynomial will give the empty set as an
algebraic set.

(b) Let x = (x1, . . . , xn) ∈ Kn be a single point. Considering the polynomials Xi − xi for
each 1 6 i 6 n we have

V({X1 − x1, . . . , Xn − xn}) = {x}
and so every singleton set {x} is an algebraic set.

Proposition 3.1. Let {Si}i∈I , with Si ⊆ K[X1, . . . , Xn], be a possibly infinite family of
subsets of the polynomial ring. Then we have
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V

(⋃
i∈I

Si

)
=
⋂
i∈I

V(Si).

Also for any S, T ∈ K[X1, . . . , Xn] we have V(ST ) = V(S) ∪V(T ).

Proof. For the first statement we have x ∈ V(∪i∈ISi) ⇔ f(x) = 0 for all f ∈ ∪i∈ISi ⇔ x ∈
V(Si) for all i ∈ I ⇔ x ∈ ∩i∈IV(Si). For the second statement we recall that ST = {st | s ∈
S, t ∈ T} then

V(ST ) = {x ∈ Kn | f(x) = 0 for all f ∈ ST},
= {x ∈ Kn | g(x)h(x) = 0 for all g ∈ S, h ∈ T},
= {x ∈ Kn | g(x) = 0 or h(x) = 0 for all g ∈ S, h ∈ T},
= V(S) ∪V(T ). �

Corollary 3.1. The collection of algebraic sets in Kn form the closed sets of a topology called
the Zariski topology. A subset X ⊆ Kn is open if Kn \X is closed.

Remark. It is easy to convince oneself that the following properties of I and V hold.

(a) For any subsets S1 ⊆ S2 ⊆ K[X1, . . . , Xn] we have V(S2) ⊆ V(S1).
(b) For any S ⊆ K[X1, . . . , Xn] we have S ⊆ I(V(S)).
(c) For any subsets V1 ⊆ V2 ⊆ Kn we have I(V2) ⊆ I(V1).
(d) For any subset V ⊆ Kn we have V ⊆ V(I(V )).

Now V and I can be seen as operators between the subsets of Kn and subsets of the poly-
nomial ring K[X1, . . . , Xn]. It would be tempting to say that these operators form bijections
between subsets of Kn and subsets of K[X1, . . . , Xn] but this is not the case. However if we
restrict our view point to a smaller class of subsets then we will in fact get a bijection.

Lemma 3.1. Let V ⊆ Kn be any subset then we have V(I(V )) = V where V is the topological
closure of V in the Zariski topology, in other words the intersection of all closed sets that
contain V .

Proof. We have that V ⊆ V(I(V )) for any subset V ⊆ Kn. Therefore as the topological
closure is minimal we have V ⊆ V ⊆ V(I(V )). Conversely suppose W ⊆ Kn is any closed set
containing V , then we write W = V(S) for some subset S ⊆ K[X1, . . . , Xn]. Recall that V ⊆
W ⇒ I(W ) ⊆ I(V ) and also S ⊆ I(V(S)) = I(W ) ⊆ I(V ). Therefore V(I(V )) ⊆ V(S) = W
as required. �

So for any algebraic set V we have V(I(V )) = V and so we can see that the operator I
takes injectively algebraic sets of Kn to ideals of K[X1, . . . , Xn]. It is natural to now ask the
question, given an ideal S ⊆ K[X1, . . . , Xn] what is I(V(S))? Or more to the point, when is
I surjective? The answer to this question is not intuitively obvious and is a result attributed
to Hilbert, (see [Gec03, Theorem 2.1.9]). He showed that given any ideal S ⊆ K[X1, . . . , Xn]

we have I(V(S)) =
√
S where

√
S = {f ∈ K[X1, . . . , Xn] | fm ∈ S for some m > 1} is the

radical of S. Therefore we have the operators I and V give inverse bijections between the
following sets

{V ⊆ Kn | V is an algebraic set} ←→ {S ⊆ K[X1, . . . , Xn] | S =
√
S is an ideal}.
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Definition. Let Z be a non-empty topological space. We say Z is reducible if we can write
Z = Z1 ∪ Z2 where Z1, Z2 ⊂ Z are proper non-empty closed subsets of Z. If this is not the
case then we say Z is irreducible. We say a non-empty subset Y ⊆ Z is irreducible if Y is
irreducible with the induced topology.

A topological space Z is called Noetherian if every chain of closed sets Z1 ⊇ Z2 ⊇ · · ·
terminates.

Remark. Note that if V ⊆ Kn is an algebraic set then the closed sets of the induced topology
on V are just the closed sets of Kn, in the Zariski topology, that are contained in V .

Proposition 3.2. Let V ⊆ Kn be a non-empty algebraic set.

(a) Then V is a Noetherian topological space with respect to the Zariski topology. In
particular we have a decomposition V = V1 ∪ · · · ∪ Vr, where the Vi are the maximal
closed irreducible subsets of V .

(b) We have V is irreducible in the Zariski topology if and only if I(V ) is a prime ideal.

Proof. See [Gec03, Proposition 1.1.11 and 1.1.12]. �

Example.

(a) Consider any singleton set {(x)} ⊆ Kn, then we have I({x}) = {f ∈ K[X1, . . . , Xn] |
f(x) = 0}. Clearly if fg ∈ I({x}) we have fg(x) = f(x)g(x) = 0 ⇒ f(x) = 0 or
g(x) = 0 and so I(V ) is a prime ideal. Therefore {x} is irreducible.

(b) Consider the algebraic set Kn = V({0}). Then we have I(Kn) = I(V({0})) =
√
{0}

by Hillbert’s Nullstellensatz. Now clearly if f ∈ K[X1, . . . , Xn] is such that fm = 0 for
some m > 1 then we have f(x)m = 0 for all x ∈ Kn but by induction we must have

f(x) = 0 and hence f = 0. Therefore we have
√
{0} = {0} and clearly {0} is a prime

ideal so Kn is irreducible.
(c) Consider the polynomial p(X1, X2) = X1X2 and the algebraic set V = {(x1, x2) ∈

K2 | p(x1, x2) = 0} ⊆ K2. Recall that as K is a field we have x1x2 = 0 ⇒ x1 = 0 or
x2 = 0. Now let f1(X1, X2) = X1 and f2(X1, X2) = X2 then we have

V = {(x1, x2) ∈ K2 | f1(x1, x2) = 0} ∪ {(x1, x2) ∈ K2 | f2(x1, x2) = 0}

and so V is reducible.

Remark. We comment that any irreducible topological space is also connected. However a
connected topological space need not be irreducible, an example of which is provided by
example (c) above.

We are now in the situation where we have a bijection between algebraic sets in Kn and
radical ideals of the associated polynomial ring. This is the view point of algebraic geometry.
On one side we have a very geometric setup and on the other side we have a purely algebraic
setup. So the idea is to try and work with the ideals in K[X1, . . . , Xn] to glean geometric
information about the algebraic sets of Kn.

However it turns out to be quite inconvenient to try and work with the ideals of polynomials
in K[X1, . . . , Xn] directly. Instead, given an algebraic set V ⊆ Kn we often choose to work
with the affine algebra K[V ]. Before we can progress further with this though we need some
more terminology and machinery.
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3.2. Regular Maps and Linear Algebraic Groups.

Definition. Let V ⊆ Kn and W ⊆ Km be two algebraic sets. We call ϕ : V → W a regular
map, (or morphism), if there exists f1, . . . , fm ∈ K[X1, . . . , Xn] such that

ϕ(x) = (f1(x), . . . , fm(x))

for all x ∈ V . We say ϕ is an isomorphism of algebraic sets if ϕ is a bijective regular map
whose inverse ϕ−1 is also a regular map.

Remark. Let ϕ : V → W be a regular map and V(S) ⊆ W be a closed set for some S ⊆
K[Y1, . . . , Ym]. Then we have ϕ−1(V(S)) = V({ψ ◦ ϕ | ψ ∈ S}) and so the preimage of any
closed set is closed, which means ϕ is continuous in the Zariski topology. Now let ϕ : V →W
be a regular map between two algebraic sets V ⊆ Kn and W ⊆ Km. Then in fact we get an
induced K-algebra homomorphism of the associated affine algebras ϕ∗ : K[W ]→ K[V ], given
by ϕ∗(f̄) = f̄ ◦ ϕ for all f ∈ K[W ].

Let us consider the special case of a regular map ϕ : V → K for some algebraic set V ⊆ Kn.
Then for some f ∈ K[X1, . . . , Xn] we have ϕ(x) = f(x) for all x ∈ V but how unique is this
f? Assume there is g ∈ K[X1, . . . , Xn] such that ϕ(x) = g(x) for all x ∈ V , then we have
f(x) = g(x) ⇒ (f − g)(x) = 0 for all x ∈ V . In other words f − g ∈ I(V ) and so the image
f̄ ∈ K[V ] is uniquely determined by ϕ. On the other hand given any f + I(V ) ∈ K[V ] we
get a well defined regular map ϕ : V → K by setting ϕ(x) = f(x) for all x ∈ V . Due to this
correspondence we will often refer to K[V ] as the ring of regular functions.

Proposition 3.3. Let ϕ : V → W be a regular map, then the assignment ϕ 7→ ϕ∗ gives a
bijection

{regular maps ψ : V →W} 1−1←→ {K-algebra homomomorphisms ψ∗ : K[W ]→ K[V ]}.
Indeed we have ϕ is an isomorphism of algebraic sets if and only if ϕ∗ is an isomorphism of
K-algebras.

Proof. See [Gec03, Proposition 1.3.4]. �

Remark. Note that the assignment ϕ 7→ ϕ∗ is contravariant functorial in the following sense.
Let ϕ1 : V → W and ϕ2 : W → X be regular maps then (ϕ1 ◦ ϕ2)∗ = ϕ∗2 ◦ ϕ∗1 and when
V = W we have id∗V = idK[V ].

Example. Let K = Fp for some prime p > 0. Consider the regular map ϕ : K→ K given by
ϕ(x) = xp. Now ϕ is clearly a regular map but the corresponding K-algebra homomorphism

ϕ∗ : K[X]→ K[X] given by X 7→ Xp is not surjective as X1/p 6∈ K[X]. Therefore we have ϕ
is not an isomorphism of algebraic sets, even though it is a field isomorphism.

Let V ⊆ Kn be an algebraic set then it’s not too difficult to show that the affine algebra
K[V ] is generated by the restrictions Xi|V of the coordinate maps to the algebraic set V . Now
to every point x ∈ V we can associate a K-algebra homomorphism

εx : K[V ]→ K
given by εx(f) = f(x) for all f ∈ K[V ]. We call εx the evaluation homomorphism. Indeed
the assignment x 7→ εx gives us a bijection V → HomK−alg(K[V ],K). Therefore V can be
reconstructed from its affine algebra and so in some sense these objects are linked, this leads
us to the following definition.
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Definition. Let V ⊆ Kn be an algebraic set and K[V ] be the associated affine algebra. We
refer to the pair (V,K[V ]) as an affine algebraic variety.

Remark. From now on we will usually refer to a set V as an affine variety with it assumed that
V is an algebraic subset of some sufficiently large Kn and K[V ] its associated affine algebra.

Note that this definition has a disadvantage in that our algebraic set is implicitly defined
as being embedded in some affine space, however this affine space is quite arbitrary. In fact
the arbitrariness of the affine space we embed into will prove useful later on. There does exist
a notion of an abstract affine variety which does not assume an embedding into affine space
but we shall not use it here. A definition, due to Steinberg, can be found in [Gec03, Definition
2.1.6].

Let V be an irreducible affine variety, then we would like to have a notion of size for
V . Now the affine algebra K[V ] is an integral domain and hence has an associated field of
fractions, which we denote K(V ). We can consider K ⊆ K(V ) as a field extension and consider
its transcendence degree, (in other words the minimal number of algebraically independent
elements of K(V ) over K). We then say that the dimension dimV of V is equal to the
transcendence degree of K ⊆ K(V ).

Example. Consider Kn as an affine variety. Its associated affine algebra is K[X1, . . . , Xn]
and we have the field of fractions to be K(X1, . . . , Xn). Therefore K ⊆ K(X1, . . . , Xn) has
transcendence degree n, which means Kn is an affine variety of dimension n.

We have now defined our desired notion of affine variety, introduced a way of relating two
such objects and given a notion of size. We would finally like to know a construction for
putting two such objects together.

Definition. Let V = V(S) ⊆ Kn and W = V(T ) ⊆ Km be affine varieties. We identify
Kn ×Km with Kn×m then we have V ×W ⊆ Kn+m is an algebraic set as

V ×W = {(v, w) ∈ Kn+m | f(v) = g(w) = 0 for all f ∈ S, g ∈ T} = V(S ∪ T ) ⊆ Kn+m.

Hence the direct product is an affine algebraic variety.

We define a regular map f · g : V ×W → K by (f · g)(v, w) = f(v)g(w) for all f ∈ K[V ]
and g ∈ K[W ]. Therefore the assignment (f, g) 7→ f · g from K[V ] × K[W ] → K[V ×W ]
is K-bilinear. By the universal property of the tensor product we have an induced mapping
K[V ]⊗K K[W ]→ K[V ×W ].

Proposition 3.4. Let V ⊆ Kn and W ⊆ Km be non-empty affine algebraic varieties.

(a) If V and W are irreducible, then V ×W is irreducible.
(b) We have K[V ×W ] ∼= K[V ]⊗K K[W ].
(c) We have dim(V ×W ) = dimV + dimW .

Proof. See [Gec03, Proposition 1.3.8]. �

We finally have enough tools to introduce the heart of our desired topic. However we
make a brief comment about the direct product V ×W before giving this definition. Now
V ×W is also a topological space, which we endow again with the Zariski topology, not the
product topology as you might imagine. In general there will be more closed sets in the
Zariski topology on V ×W than in the product topology.
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Figure 7. Product vs. Zariski Topology

Example. Consider affine 1-space, in this case R. Now every closed set in the Zariski topology
on R is a finite union of points. This is because every polynomial f(X) ∈ R[X] has a finite
number of solutions and every closed set is a finite union of closed sets. Now consider the
product topology on R × R which we identify with R2. Any curve, for example g(X,Y ) =
Y −X2 ∈ R[X,Y ], will define a closed set in the Zariski topology on R2.

In figure 7 we indicate a typical closed set in the product topology and a typical closed set
in the Zariski topology on R2. It’s easy to see that the curve cannot be constructed out of
finite unions and arbitrary intersections of closed sets in the product topology and so there
are more closed sets in the Zariski topology than the product topology.

Definition. A linear algebraic group G is an affine algebraic variety which also has the
structure of a group, such that the multiplication µ : G × G → G and inversion ι : G → G
maps are regular.

A map ϕ : G → H is called a homomorphism of algebraic groups if ϕ is a regular map of
affine varieties and a homomorphism of groups. Now ϕ is an isomorphism of algebraic groups
if it is a bijective group homomorphism which is also an isomorphism of affine varieties.

Remark. It’s very easy to see that any closed subgroup of a linear algebraic group will again
be a linear algebraic group. This is because the restrictions of the regular maps µ, ι to any
closed subset will again be regular.

Example.

(a) Consider the affine variety K as a group under addition, so the multiplication and
inversion maps are given by µ(x, y) = x + y and ι(x) = −x for all x, y ∈ K. Then
clearly K is a linear algebraic group, which we call the additive group of K and denote
Ga. The associated affine algebra of Ga is the polynomial ring K[X] and the induced K-
algebra homomorphisms µ∗ : K[X]→ K[X]⊗K[X] = K[X1, X2] and ι∗ : K[X]→ K[X]
are given by

µ∗(X) = X1 +X2 and ι∗(X) = −X.
It’s clear that dimGa = 1.

(b) Consider the subset K× = K \ {0} ⊆ K. Now at first this may not appear like a closed
set but we can see this by utilising the arbitrariness of the affine space we embed our
closed sets into. Identifying K×K with K2 we see that

K× ∼= {(x, y) ∈ K×K | xy = 1} ⊆ K×K
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is a closed subvariety of K2. Now we can consider K× as a group under multiplication,
so the multiplication and inversion maps are given by µ(x, y) = xy and ι(x) = x−1

for all x, y ∈ K×. Then it’s now clear that K× is a linear algebraic group, which we
call the multiplicative group of K and denote Gm. The associated affine algebra of
Gm is K[X,X−1] and the induced K-algebra homomomorphisms µ∗ : K[X,X−1] →
K[X1, X2, X

−1
1 , X−1

2 ] and ι∗ : K[X,X−1]→ K[X,X−1] are given by

µ∗(X) = X1X2 and ι∗(X) = X−1.

(c) Consider the set of all n × n matrices over K, which we denote Mn(K) = Kn × Kn.

Identifying Kn × Kn with Kn2
we see this is an algebraic set with associated affine

algebra K[Mn(K)] = K[Xij | 1 6 i, j 6 n]. Now let (apq), (brs) ∈ Mn(K) be matrices
then matrix multiplication is given by

µ((apq), (brs)) =

(
n∑
k=1

aikbkj

)
and so µ is clearly a regular map. The induced K-algebra homomorphism µ∗ :
K[Mn(K)]→ K[Xij ]⊗K[Xij ] is given by

µ∗(Xij) =
n∑
`=1

Xi` ⊗X`j for all 1 6 i, j 6 n.

Now we cannot define an inversion map on Mn(K) as not every matrix is invertible.
Therefore Mn(K) is not a linear algebraic group but instead we refer to it as a linear
algebraic monoid.

(d) Consider GLn(K) = {A ∈ Mn(K) | detA 6= 0} ⊆ Kn2
. Now again this does not look

like a closed set but we can play the same game with GLn(K) that we did with K×.
In other words we have

GLn(K) ∼= {(A, y) ∈Mn(K)×K | det(A)y − 1 = 0} ⊆ Kn2+1.

Now this is a closed set as we recall the determinant of a matrix can be expressed as

det =
∑
σ∈Sn

(−1)sgn(σ)X1σ(1) · · ·Xnσ(n) ∈ K[Xij | 1 6 i, j 6 n],

where Sn is the symmetric group on n letters. Hence det is a polynomial and so
GLn(K) is an algebraic set with associated affine algebra K[Xij , Y ]/I(GLn(K)) ∼=
K[X̂ij , 1/ det], where X̂ij are the restrictions of the coordinate functions to GLn(K).

Now we can define an inversion map ι : GLn(K) → GLn(K) by ι(A) = det(A)−1A′

where A′ is the matrix of cofactors. The matrix A′ is defined entirely in terms of
polynomials in the variables X̂ij and hence ι is a regular map. Therefore GLn(K) is a
linear algebraic group, which is irreducible of dimension n2.

(e) We consider the special linear group SLn(K) = {A ∈ Mn(K) | detA − 1 = 0} =
V({det−1}) ⊆Mn(K), which is clearly an affine variety. Therefore by our remark we
have SLn(K) 6 GLn(K) is a linear algebraic group. It can be shown that when K is
algebraically closed we have I(SLn(K)) = 〈det−1〉 and det−1 ∈ K[Xij ] is irreducible.
Therefore SLn(K) is irreducible and of dimension n2 − 1.
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(f) Let us assume for ease that charK 6= 2, for details on why see [Gec03, Example 1.3.16].
We consider the following matrices of Mn(K)

Jn =

 1

. .
.

1

 Ω2n =

[
0 Jn
−Jn 0

]
.

Then we can define the following algebraic sets contained in Mn(K) or M2n(K)

On(K) = {A ∈Mn(K) | ATJnA = Jn},
SOn(K) = On(K) ∩ SLn(K),

Sp2n(K) = {A ∈M2n(K) | ATΩ2nA = Ω2n}.

We have that these are called the orthogonal, special orthogonal and symplectic groups.
It’s easy to see that On(K) and Sp2n(K) are algebraic sets as matrix multiplication
is given by polynomials. Also SO2n(K) is an algebraic set as the intersection of two
algebraic sets is algebraic. Therefore as they are all closed subgroups of either GLn(K)
or GL2n(K) we have that they are linear algebraic groups. It is also true that SOn(K)
and Sp2n(K) are irreducible affine varieties.

The dimensions of these varieties are quite difficult to work out directly but it can be
shown that dim SO2n(K) = n(2n−1), dim SO2n+1(K) = n(2n+1) and dim Sp2n(K) =
n(2n + 1). One may notice some similarities between the dimensions of these linear
algebraic groups and the dimensions given in table 3.

(g) Finally one can also be convinced that the following subgroups of GLn(K) are also
linear algebraic groups:
• Dn 6 GLn(K) the subgroup of all diagonal matrices. This is isomorphic as an

algebraic group to Gm × · · · ×Gm, (n copies).
• Bn 6 GLn(K) the subgroup of all upper triangular matrices. In other words
{(aij) ∈ GLn(K) | aij = 0 for i > j}.
• Un 6 GLn(K) the subgroup of all unipotent matrices. In other words {(aij) ∈

GLn(K) | aij = 0 if i > j and aii = 1 for 1 6 i 6 n}.

Having given a list of examples of linear algebraic groups we would like to now know a little
bit more about their internal structure. In particular, if G is a disconnected linear algebraic
group then what can we say about the connected component that contains the identity of the
group? We will provide a nice answer to this question but first we need a small result about
images of regular maps.

Lemma 3.2. Let V ⊆ Kn, W ⊆ Km be two affine varieties and ϕ : V → W be a regular
map. Then if V is irreducible we have ϕ(V ) ⊆W is also irreducible.

Proof. To show ϕ(V ) is irreducible is equivalent to showing I(ϕ(V )) is a prime ideal by part

(b) of proposition 3.2. Consider f, g ∈ K[Y1, . . . , Ym] such that fg ∈ I(ϕ(V )). Therefore for
all x ∈ V we have f(ϕ(x))g(ϕ(x)) = 0 and so (f ◦ϕ)(g ◦ϕ) ∈ I(V ). However V is irreducible
so I(V ) is a prime ideal, which means either f ◦ ϕ ∈ I(V ) or g ◦ ϕ ∈ I(V ). Assume without
loss of generality that f ◦ϕ ∈ I(V ) then ϕ(V ) ⊆ V({f}) but clearly, as V({f}) is closed, this

means ϕ(V ) ⊆ ϕ(V ) ⊆ V({f})⇒ f ∈ I(V({f})) ⊆ I(ϕ(V )) and so we’re done. �
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Remark. Let G be a linear algebraic group, choose an element x ∈ G and consider the
maps λx : G → G and ρx : G → G given by λx(g) = µ(x, g) and ρx(g) = µ(g, x) for all
g ∈ G. Clearly λx is a regular map and as ρx is a composition of the multiplication map with
δ : G×G→ G×G given by δ(x, g) = (g, x) we have ρx is also a regular map.

In fact these are isomorphisms of the affine variety G with inverses λx−1 and ρx−1 . As these
maps are isomorphisms of the variety structure on G we can use these maps to transport
geometric and topological information from a single point to anywhere else in G.

Theorem 3.2. Let G be a linear algebraic group and let G◦ ⊆ G be an irreducible component
containing the identity of G. Then the following hold.

(a) G◦ is a closed normal subgroup of G of finite index and the cosets of G◦ are precisely
the irreducible components of G. In particular, the irreducible components of G are
disjoint, and G◦ is uniquely determined.

(b) Every closed subgroup of G of finite index contains G◦.
(c) G is irreducible if and only if G is connected in the Zariski topology.

Proof.

(a) Let X ⊆ G be an irreducible component of G which contains the identity. Then

XG◦ = µ(X ×G◦) ⊆ G is also a closed irreducible subset of G. Now 1 ∈ X∩G◦ means
X ⊆ XG◦ and G◦ ⊆ XG◦ but X,G◦ are maximal so we must have X = G◦ = XG◦.
Hence we have G◦ is unique. By this argument we also have G◦G◦ ⊆ G◦G◦ = G◦

and so G◦ is closed under multiplication. Finally recall that the inversion map is
an isomorphism of affine varieties and so ι(G◦) is also irreducible and contains the
identity, hence ι(G◦) = G◦, so G◦ is a subgroup of G.

We need to show that G◦ is normal. Recall that for any x ∈ G we have λx, ρx are
isomorphisms of affine varieties. Hence xG◦x−1 = (λx ◦ ρx−1)(G◦) is an irreducible
component of G containing the identity so must be G◦. Finally let X ⊆ G be an
irreducible component and let x ∈ G be such that x−1 ∈ X. Then we have ρx(X) = Xx
is an irreducible component containg the identity and so X = G◦x−1.

(b) Let H 6 G be a closed subgroup and let g1, . . . , gr ∈ G be right coset representatives
for G/H. As before ρgi(H) = Hgi is a closed subset of G. Now G◦ = G◦ ∩ G =
∪ri=1(G◦ ∩ Hgi) and G◦ irreducible means G◦ ∩ Hgi = G◦ ⇒ G◦ ⊆ Hgi for some
1 6 i 6 n. However G◦ contains the identity so we must have G◦ ⊆ H.

(c) Note it’s clear that G irreducible implies G connected. Assume, if possible, that G is
connected but not irreducible then we have G has a decomposition into the cosets of
G◦. However these cosets are disjoint and so this would imply G is not connected. �

If G is a linear algebraic group then we refer to the closed normal subgroup G◦ 6 G as
the connected component of G. Note that there are many connected components of a linear
algebraic group but only one contains the identity and hence is again a group. It is customary
to refer to a linear algebraic group as connected rather than irreducible. For example, from
our list above we have Ga, Gm, GLn(K), SLn(K), Dn, Bn and Un are all connected. We have
On(K) is connected if charK 6= 2. Also SOn(K) and Sp2n(K) are connected but this is quite
hard to see directly. Indeed they can shown to be connected as a consequence of having a
BN -pair, (see [Gec03, Section 1.7]).

We finally finish this section with a similar result which was obtained for Lie algebras.
Recall from section 2.5 that any Lie algebra can be embedded into the general linear Lie



40 Jay Taylor

algebra. In this way we defined the abstract Jordan decomposition for any Lie algebra. We
now obtain a similar result for linear algebraic groups.

Theorem 3.3. Let G be a linear algebraic group. Then there is an isomorphism of algebraic
groups between G and some closed subgroup of GLn(K), for some n.

Proof. See [Gec03, Corollary 2.4.4]. �

Definition. Let G be a linear algebraic group and ϕ an isomorphism of G onto some closed
subgroup of GLn(K). Now for any element x ∈ G we say

• x is semisimple if ϕ(x) is diagonalisable.
• x is unipotent if all eigenvalues of ϕ(x) are equal to 1.

Remark. The definitions given above are independent of the isomorphism ϕ.

Theorem 3.4 (Jordan Decomposition). Let G be a linear algebraic group. Then every ele-
ment x ∈ G has a unique decomposition x = xsxu such that xs, xu ∈ G are semisimple and
unipotent respectively.

Proof. See [Hum75, Theorem 15.3]. �

3.3. The Lie Algebra of a Linear Algebraic Group. Having introduced the notion
of a linear algebraic group we would like to find a way to simplify the problems that arise in
dealing with these objects. The way in which this simplification takes place is via linearisation.
Our aim is to show that to each linear algebraic group G there is an associated Lie algebra
which lives in the ‘tangent space’ of the identity. Indeed this Lie algebra is somehow a linear
approximation of a linear algebraic group.

We try and motivate geometrically what we are about to do. Consider a polynomial
f(X1, X2) ∈ K[X1, X2] which defines a curve V in K2. We would describe the tangent of this
curve at a point p = (p1, p2) ∈ K2 as the set of solutions to the linear polynomial

∂f

∂X1
(p)(X1 − p1) +

∂f

∂X2
(p)(X2 − p2).

Now this will be a straight line through p unless both partial derivatives vanish.
So in general let V ⊆ Kn be a non-empty affine variety with associated vanishing ideal

I(V ) and let us fix a point p = (p1, . . . , pn) ∈ V . Then for any f ∈ K[X1, . . . , Xn] we define a
linear polynomial

dp(f) =

n∑
i=1

∂f

∂Xi
(p)Xi ∈ K[X1, . . . , Xn].

For any point v = (v1, . . . , vn) ∈ Kn we consider the ‘line through p in the direction of v’
given by Lv = {p + tv | t ∈ K} ⊆ Kn. Then given our polynomial f we can consider the
Taylor expansion of f , as a function of t, around a point a ∈ K. In other words

f(p+ tv) = f(p+ av) + f ′(p+ av)(p+ tv − p− av) +O(t2),

= f(p+ av) + f ′(p+ av)v(t− a) +O(t2).

Now considering this expansion around the point a = 0 and taking the derivative of f to be
our associated linear polynomial dp(f) we get
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f(p+ tv) = f(p) + dp(f)(v)t+O(t2)⇒ dp(f)(v) ≈ f(p+ tv)− f(p)

t
.

Now we say Lv is a tangent line at p ∈ V if dp(f)(v) = 0 for all f ∈ I(V ).

Definition. Let V ⊆ Kn be a non-empty algebraic set. For a fixed point p ∈ V we define

Tp(V ) = {v ∈ Kn | dp(f)(v) = 0 for all f ∈ I(V )},
= {v ∈ Kn | Lv is a tangent line at p ∈ V },

to be the tangent space at p ∈ V .

Example. Consider the circle V ⊆ R2 defined by the polynomial f(X1, X2) = X2
1 +X2

2 −1 ∈
R[X1, X2]. It can be shown that the vanishing ideal for this curve is just I(V ) = 〈f〉 ⊆
R[X1, X2]. Now consider the point p = (0, 1) ∈ R2 then we have

dp(f) =
∂f

∂X1
(0, 1)X1 +

∂f

∂X2
(0, 1)X2 = 2X2.

Now we have dp(f)(v) = 0 if and only if v = (v1, 0) ∈ K2. Hence Tp(V ) is the straight line
defined by X2 = 0, which is as we would expect.

Remark. Let V ⊆ Kn be a non-empty algebraic set and assume I(V ) is generated by the
polynomials f1, . . . , fr ∈ K[X1, . . . , Xn]. Then we claim for some point p ∈ V that

Tp(V ) = {v ∈ Kn | dp(fi)(v) = 0 for all 1 6 i 6 r}.
Clearly we have ⊆ holds. Now for the reverse inclusion assume v ∈ Kn is such that dp(fi)(v) =
0 for all 1 6 i 6 r. Now any f ∈ I(V ) has an expression of the form f =

∑n
j=1 hjfj for some

hj ∈ K[X1, . . . , Xn]. Therefore we have

dp(f) =
n∑
j=1

dp(hjfj) =
n∑
j=1

(fj(p)dp(hj) + hj(p)dp(fj)) =
n∑
j=1

hj(p)dp(fj).

Hence we also have dp(f)(v) = 0 for all v ∈ V .

Example.

(a) Let V ⊆ Kn be a linear subspace then V is defined by linear polynomials f1, . . . , fm ∈
k[X1, . . . , Xn] with constant term zero. Note we take constant term zero as we must
have V contains 0 ∈ Kn. It can be shown that I(V ) = 〈f1, . . . , fm〉. The polynomials
are linear and so dp(f) = f for all f ∈ I(V ), which means Tp(V ) = V for all p ∈ V .
In particular dimV = dimTp(V ) for all p ∈ V .

In particular consider the case V = Kn, then it can be shown that I(V ) = {0} and
so Tp(Kn) = Kn for all p ∈ Kn.

(b) Let V = {p} ⊆ kn. Now it can be shown that I(V ) = 〈X1 − p1, . . . , Xn − pn〉. In this
case we only have to check the conditions for Tp(V ) on the generating polynomials.
So for each 1 6 i 6 n we have

dp(Xi − pi) =
∂

∂Xi
(Xi − pi)(p)Xi = 1(p)Xi = Xi.

So if dp(Xi − pi)(v) = 0 for each 1 6 i 6 n we must have v = 0. Therefore Tp({p}) =
{0} for all singletons {p} ⊆ kn.
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Now we have introduced the tangent space we would like to indicate the algebraic structure
that this space carries. We do this using the language of derivations.

Definition. Let A be a K-algebra and M an A-module, let the action of A on M be denoted
by a · m for all a ∈ A, m ∈ M . We say a K-linear map D : A → M is a derivation if D
satisfies the Liebniz rule

D(ab) = a ·D(b) + b ·D(a),

for all a, b ∈ A. We write DerK(A,M) for the space of all derivations from A to M .

Recall that we introduced the notion of a derivation for a Lie algebra in section 2.1. We
comment that this definition encapsulates the definition given previously. This is because
any Lie algebra over K can be turned into a K-algebra and we can take our module M to be
the Lie algebra itself.

Example. Consider the polynomial ring R := K[X1, . . . , Xn] and an R-module M such that
the action is given by r ·m for all r ∈ R, m ∈ M . Now for any derivation D ∈ DerK(R,M)
we have

D(f) =

n∑
i=1

∂f

∂Xi
·D(Xi).

To see this we note that, by the Liebniz rule, any derivation D is uniquely determined
by its action on a set of generators for R. Checking on two arbitrary generators, for some
1 6 i, j 6 n we have

D(Xk +X`) =

n∑
i=1

∂

∂Xi
(Xk +X`) ·D(Xi) = D(Xk) +D(X`),

D(XkX`) =

n∑
i=1

∂

∂Xi
(XkX`) ·D(Xi) = Xk ·D(X`) +X` ·D(Xi).

It is then an easy induction proof to show that this holds for any arbitrary collection of
generators. Consider R as an R-module then we have {∂/∂Xi}16i6n is a linearly independent
set of vectors in DerK(R,R). Hence DerK(R,R) is a free R-module of rank n with basis given
by the partial derivatives.

Let V ⊆ Kn be an affine variety and pick a point p ∈ V . We turn the field K into a module
for the affine algebra K[V ] by defining the action to be · : (f, α) 7→ f(p)α. We write Kp when
we consider K as a K[V ] module in this way.

Lemma 3.3. Let V ⊆ Kn be a non-empty affine variety and p ∈ V be any point. Then for any
v ∈ Tp(V ) we have a well define derivation Dv ∈ DerK(K[V ],Kp) given by Dv(f) = dp(f)(v)
for any f ∈ K[X1, . . . , Xn]. Furthermore, the map Ψ : Tp(V ) → DerK(K[V ],Kp) given by
v 7→ Dv is an isomorphism of K[V ]-modules.

Proof. Let R denote the polynomial ring K[X1, . . . , Xn] and let π : R→ K[V ] be the canonical
projection map. We start by confirming that the derivation Dv is well defined. Assume
f, g ∈ K[V ] such that f − g ∈ I(V ) then for any v ∈ Tp(V ) we have

Dv(f)−Dv(g) = dp(f)(v)− dp(g)(v) = dp(f − g)(v) = 0
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by the definition of Tp(V ). Hence Dv is well defined.

Now we have Dv(Xj) = vj for each 1 6 j 6 n and so the map Ψ is injective. Let

D ∈ DerK(K[V ],Kp) be a derivation then we have the composition D̃ = D ◦ π ∈ DerK(R,Kp)

is also a derivation. Let v = (v1, . . . , vn) = (D̃(X1), . . . , D̃(Xn)) ∈ Kn, then from the example
above we see that for all f ∈ R we have

D(f) = D̃(f) =
n∑
i=1

∂f

∂Xi
· D̃(Xi) = dp(f)(v).

For any f ∈ I(V ) we have f = 0 and so D(f) = dp(f)(v) = 0, which means v ∈ Tp(V ). Since

Dv(Xj) = vj = D(Xj) we have Dv = D. Therefore Ψ is surjective and we’re done. �

So we can identify the tangent space with the vector space of all derivations. This gives
us a much more algebraic view point for the tangent space of a variety at a point. What we
would now like to show is that DerK(K[V ],K1) has the extra structure of a Lie algebra. Then
using the isomorphism just given we would like to pass this structure to the tangent space
T1(V ). From this point on we will always identify DerK(K[V ],Kp) with the tangent space
Tp(V ).

Definition. Let V ⊆ Kn and W ⊆ Km be two non-empty affine varieties and let ϕ : V →W
be a regular map. Consider a point p ∈ V and then let q := ϕ(p) ∈W . Then the map

dpϕ : DerK(K[V ],Kp)→ DerK(K[W ],Kq)

defined by D 7→ D ◦ ϕ∗ is called the differential of ϕ.

Remark. If V = W and ϕ = idV then dp(idV ) is the identity map on DerK(K[V ],Kp) for all

p ∈ V . Also if we have another affine variety X ⊆ K` and another regular map ψ : W → Z
then we have dp(ψ ◦ ϕ) = dqψ ◦ dpϕ. Therefore if ϕ is an isomorphism of affine varieties with
inverse ϕ−1 we have dpϕ is an isomorphism of vector spaces with inverse dqϕ

−1.

Example. Let G be a linear algebraic group. Recall that, for any x ∈ G, we have the
regular map λx : G→ G given by g 7→ xg for all g ∈ G is an isomorphism of affine varieties.
Therefore by the remark we have dg(λx) : Tg(G)→ Txg(G) is an isomorphism of vector spaces.
In particular taking x = g−1 we have Tg(G) ∼= T1(G) for all g ∈ G.

Theorem 3.5. Let G ⊆ Mn(K) be a linear algebraic group and T1(G) ⊆ Mn(K) be the
corresponding tangent space at the identity.

(a) For A,B ∈ T1(G) we have [A,B] = AB−BA ∈ T1(G) and so T1(G) is a Lie subalgebra
of Mn(K) = gln(K).

(b) If H ⊆ Mn(K) is another linear algebraic group and ϕ : G → H is a homomorphism
of algebraic groups, then d1ϕ : T1(G)→ T1(H) is a homomorphism of Lie algebras.

Proof.

(a) We start by defining a product ? : K[G] × DerK(K[G],K1) → K[G]. Consider D ∈
DerK(K[G],K1) and f, g ∈ K[G], then we define f ? D ∈ K[G] by

(f ? D)(x) = D(λ∗x(f)) for all x ∈ G.
We claim that ?D : K[G]→ K[G] is a derivation, in other words fg ?D = f(g ?D) +
g(f ? D). We show this by evaluating at x ∈ G
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(fg ? D)(x) = D(λ∗x(f)λ∗x(g)) = λ∗x(f) ·D(λ∗x(g)) + λ∗x(g) ·D(λ∗x(f)),

= λ∗x(f)(1)D(λ∗x(g)) + λ∗x(g)(1)D(λ∗x(f)),

= f(x)(g ? D)(x) + g(x)(f ? D)(x),

= (f(g ? D) + g(f ? D))(x).

Now for any D,D′ ∈ DerK(K[G],K1) we define a map [D,D′] : K[G]→ K by

[D,D′](f) = D(f ? D′)−D′(f ? D) for f ∈ K[G].

Using the fact that ? D is a derivation it is easy to verify that [D,D′] is in fact an
element of DerK(K[G],K1). Therefore for all f, g ∈ K[G] we have

[D,D′](fg) = D(fg ? D′)−D′(fg ? D),

= D(f(g ? D′)) +D(g(f ? D′))−D′(f(g ? D))−D′(g(f ? D)),

= f(1)(D(g ? D′))−D′(g ? D)) + g(1)(D(f ? D′)−D′(f ? D)),

= f · [D,D′](g) + g · [D,D′](f).

Now we wish to use the isomorphism Ψ from lemma 3.3, given by P = (pij) 7→ DP ,

to pass this work to T1(G). Now any derivation DP is determined by DP (Xij) = pij
for 1 6 i, j 6 n. We need to identify the matrix in T1(G) associated with [DP , DP ′ ]
for P, P ′ ∈ T1(G). This will be achieved if we can show the following identity holds

[D,D′](Xij) =
n∑
i=1

(D(Xil)D
′(Xlj)−D′(Xil)D(Xlj)).

Now by the definition of [D,D′] we have that it’s action on Xij is determined entirely

by D(Xij), D
′(Xij), Xij ? D,Xij ? D

′. Therefore to verify the identity it is enough to
show that

Xij ? D =
n∑
l=1

XilD(Xlj) for all D ∈ DerK(K[G],K1).

Let x ∈ G and recall that (Xij ? D)(x) = D(λ∗x(Xij)). Evaluating the right hand

side of the identity at x gives us
∑n

l=1Xil(x)D(Xlj). Therefore the identity will hold
if

λ∗x(Xij) =

n∑
l=1

Xil(x)Xlj for all x ∈ G.

Evaluating the left hand side of this identity at y ∈ G we see
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λ∗x(Xij)(y) = Xij(xy) = Xij(µ(x, y)) = µ∗(Xij)(x, y),

=
n∑
l=1

(Xil ⊗Xlj)(x, y),

=
n∑
l=1

Xil(x)Xlj(y).

Therefore this identity holds and hence we’re done. For the statements involving µ∗

recall the description given in example (c) of section 3.2.
(b) We claim that for all D ∈ DerK(K[G],K1) and h ∈ K[H] we have

ϕ∗(h) ? D = ϕ∗(h ? d1ϕ(D)).

To show that this identity holds we evaluate both sides at an element x ∈ G. On the
left side we see (ϕ∗(h) ? D)(x) = D(λ∗x(ϕ∗(h))). On the right hand side we have

ϕ∗(h ? d1ϕ(D))(x) = (h ? d1ϕ(D))ϕ(x) = d1ϕ(D)(λ∗ϕ(x)(h)) = D(ϕ∗(λ∗ϕ(x)(h))).

Hence it is enough to check that λ∗x(ϕ∗(h)) = ϕ∗(λ∗ϕ(x)(h)) holds for all x ∈ G. Eval-

uating this identity on both sides at some y ∈ G we have

λ∗x(ϕ∗(h))(y) = (h ◦ ϕ ◦ λx)(y) = h(ϕ(xy)),

ϕ∗(λ∗ϕ(x)(h))(y) = (h ◦ λϕ(x) ◦ ϕ)(y) = h(ϕ(x)ϕ(y)) = h(ϕ(xy)).

Therefore the identity holds true. Finally we can now show that d1ϕ is indeed a
homomorphism of Lie algebras. Let D,D′ ∈ DerK(K[G],K1) and h ∈ K[H] then we
have

[d1ϕ(D), d1ϕ(D′)](h) = d1ϕ(D)(h ? d1ϕ(D′))− d1ϕ(D′)(h ? d1ϕ(D)),

= D(ϕ∗(h ? d1ϕ(D′)))−D′(ϕ∗(h ? d1ϕ(D))),

= D(ϕ∗(h) ? D′)−D′(ϕ∗(h) ? D),

= [D,D′](ϕ∗(h)),

= d1ϕ([D,D′])(h). �

Remark. Throughout this section we have followed the format of [Gec03]. Although the
author believes that this approach is the most concrete and easiest to understand it does not
yield the nicest proofs. If the reader feels these proofs are too technical they might like to
look at the proofs given in [Hum75, Section 9].

Example. Let V(S) ⊆ Kn be a non-empty algebraic set such that S ⊆ K[X1, . . . , Xn]. We
always have that S ⊆ I(V(S)) and so it’s clear to see that

T1(V(S)) ⊆ {v ∈ Kn | d1(f)(v) = 0 for all f ∈ S}.
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However to achieve the reverse inclusion usually involves some dimensional arguments and
indeed is not always true. In the examples that follow the reverse inclusion is always true but
we will not compute the dimensional arguments for simplicity.

(a) Consider the linear algebraic group Gm = K×. We recall that

K× = {(x, y) ∈ K×K | xy − 1 = 0} ⊆ K2.

In this case the tangent space will be the set of zeroes of the polynomial d(1,1)(XY −1).
Using standard formulas for differentiation we see

d(1,1)(XY − 1) = d(1,1)(XY ) = X(1, 1)d(1,1)(Y ) + Y (1, 1)d(1,1)(X) = Y +X.

Therefore we have

T1(K×) = {(x, y) ∈ K×K | x+ y = 0} ∼= K.
Note that this isomorphism is an isomorphism of Lie algebras. Therefore we have
T1(K×) is the trivial 1-dimensional Lie algebra.

(b) Consider the linear algebraic group SLn(K). We recall that

SLn(K) = {A ∈Mn(K) | det(A)− 1 = 0} ⊆ Kn2
.

Our aim is to calculate d1(det−1) but it’s easy to see that this will be equivalent to
calculating d1(det). First considering the partial derivatives of det we see

∂

∂Xrs
(det) =

∑
π∈Sn

sgn(π)
∂

∂Xrs
(X1π(1) · · ·Xnπ(n)),

=
∑
π∈Sn

sgn(π)

(
δsπ(r)

n∏
i=1
i 6=r

Xiπ(i)

)
.

Therefore examining the derivative of det we see

d1(det) =

n∑
r,s=1

∂

∂Xrs
(det)(In)Xrs,

=
∑
π∈Sn

sgn(π)

n∑
r,s=1

(
δsπ(r)

n∏
i=1
i 6=r

δiπ(i)

)
Xrs,

=
n∑

r,s=1

δsrXrs,

=
n∑
`=1

X``

We make a comment regarding the above calculation. The term
∏
i 6=r δiπ(r) is non-

zero if and only if π fixes n−1 points of {1, . . . , n}. However if π fixes n−1 points then
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it must fix n points and so π must be the identity in Sn. Therefore dp(det) = trace
and so we have

T1(SLn(K)) = {A ∈Mn(K) | trace(A) = 0} = sl(n,K)

(c) Consider the linear algebraic group GLn(K). We recall that

GLn(K) ∼= {(A, y) ∈Mn(K)×K | det(A)y − 1 = 0} ⊆ Kn2+1.

So we aim to calculate d(In,1)(det ·Y − 1) but using formal formulas for differentiation
it’s easy to see that we have

d(In,1)(det ·Y − 1) = d(In,1)(det ·Y ),

= det(In, 1)d(In,1)(Y ) + Y (In, 1)d(In,1)(det),

= Y + trace .

Therefore we see that

T1(GLn(K)) = {(A, y) ∈Mn(K)×K | trace(A) + y = 0} ∼= Mn(K) = gl(n,K).

Note that the isomorphism between T1(GLn(K)) and Mn(K) is an isomorphism of Lie
algebras.

(d) Consider the linear algebraic group Un 6 GLn(K) of all unipotent matrices. We
remember that this is the algebraic set defined by the polynomials

fii(X) = Xii − 1 gij(X) = Xij for all 1 6 i < j 6 n.

We want to work out the tangent space T1(Un) and so we calculate d1(fii) and d1(gij).
Therefore

d1(fii) =
n∑
j=1

∂

∂Xjj
(Xii − 1)(1)Xjj = Xii 1 6 i 6 n,

d1(gij) =
n∑

`,m=1

∂

∂X`m
(Xij)(1)X`m = Xij 1 6 i < j 6 n.

Hence the tangent space T1(Un) is the set of all matrices that vanish on these polyno-
mials. This gives us

T1(Un) = {A ∈Mn(k) | aij = 0 for 1 6 j 6 i 6 n} = n(n,K).

(e) Consider the linear algebraic group Dn 6 GLn(K) of all diagonal matrices. This is
isomorphic as an algebraic group to Gm × · · · ×Gm, (n copies). Therefore we will get
T1(Dn) ∼= T1(Gm)⊕ · · · ⊕ T1(Gm) = K⊕ · · · ⊕K. Therefore T1(Dn) is the abelian Lie
algebra of dimension n.
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3.4. The Root Datum of a Linear Algebraic Group. We wish study the whole col-
lection of linear algebraic groups but this is too complicated, much like trying to study all
finite groups is too complicated. Therefore we try and identify a class of linear algebraic
groups that is not so small that our theorems are not powerful but is not so big that it’s over
complicated. One may think that just restricting to connected linear algebraic groups would
be enough but this class is too big. Instead we restrict ourselves to what are known as the
connected reductive linear algebraic groups.

We note that if G is a linear algebraic group then we say G is solvable if it is solvable as
an abstract group. Likewise we say a closed subgroup H 6 G is normal if it is normal as an
abstract group.

Definition. Let G be a linear algebraic group. We define the radical of G to be the unique
maximal closed connected solvable normal subgroup of G, which we denote R(G). We define
the unipotent radical of G to be the unique maximal closed connected normal subgroup of G
all of whose elements are unipotent and we denote this Ru(G).

Now it’s clear that for any linear algebraic group G we have Ru(G) ⊆ R(G), indeed Ru(G)
is just all unipotent elements in R(G). We say G is reductive if Ru(G) = {1} and semisimple
if R(G) = {1}. Therefore any semisimple linear algebraic group is also reductive.

Example. We have GLn(K) is a connected reductive linear algebraic, which is not semisimple.
It is not so easy to see this with the information we have to hand. However it is known
that any closed connected solvable subgroup of GLn(K) is conjugate to a subgroup of Bn 6
GLn(K), (this is known as the Lie-Kolchin theorem). Hence we have R(GLn(K)) 6 Bn.
Now Bn is conjugate to B−n 6 GLn(K) the subgroup of all lower triangular matrices. This
means R(GLn(K)) 6 Bn ∩ B−n = Dn. However the radical must be normal, which gives us
that R(GLn(K)) is the set of all scalar multiples of the identity. Therefore R(GLn(K)) =
Z(GLn(K)) ∼= Gm. However the only unipotent element of Gm is the identity so we have
Ru(GLn(K)) = {1}.

What we have avoided mentioning so far is the idea of a quotient group. Indeed to really
understand the structure of linear algebraic groups we need to know that there is a sensible
way to consider the quotient by a normal subgroup. We won’t prove this here as it is not a
trivial statement.

Lemma 3.4. Let G be a linear algebraic group and N 6 G a closed normal subgroup. Then
the abstract group G/N has the structure of an affine variety and indeed is a linear algebraic
group.

Proof. See [Hum75, Theorem 11.5]. �

Definition. Let G be a linear algebraic group and B 6 G a subgroup of G. We say B is a
Borel subgroup if B is a closed connected solvable subgroup, which is maximal with respect
to inclusion amongst all such subgroups of G.

Let T be a linear algebraic group, then we say T is a torus if it is isomorphic as an algebraic
group to Gm × · · · ×Gm, for some finite number of copies. Let G be a linear algebraic group
and T 6 G a closed subgroup of G. Then we say T is a maximal torus of G if T is a torus
and maximal with respect to inclusion amongst all such subgroups of G.

Remark. A maximal torus is abelian and any abelian group is solvable. Hence any maximal
torus is a closed connected solvable subgroup and so must lie in some Borel subgroup.
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Now we have these basic notions we can discuss what the internal structure of an arbitrary
linear algebraic group is. We have the following chain of normal subgroups

G
(finite)

G◦
(semisimple)

R(G)
(torus)

Ru(G)
(unipotent)

{1}.

Now the labels on the lines describe the quotients. For example G/G◦ is a finite group,
G◦/R(G) is semisimple, etc. Note that G◦/Ru(G) is a connected reductive group and so this
picture suggests that an arbitrary connected reductive group is built out of a semisimple group
and torus. Indeed this is the case as if G is a connected reductive group we have G = G′Z(G)◦

where G′ is the derived subgroup of G and Z(G)◦ is the connected component of the centre.
This picture suggests that we can break down the study of arbitrary linear algebraic groups
to studies of these types of groups.

Example. Consider the linear algebraic group GLn(K). We have already seen that this group
is connected reductive. It is an exercise to show that [GLn(K),GLn(K)] = SLn(K) and that
Z(GLn(K))◦ = Dn. Therefore we have GLn(K) = SLn(K)Dn, where SLn(K) is semisimple
and clearly Dn is a torus.

Now much like a maximal toral subalgebra was important in the study of Lie algebras we
will have the maximal torus defined here will be important to the study of linear algebraic
groups. We give some very important facts about these subgroups, which we will not prove.

Theorem 3.6. Let G be a connected linear algebraic group, T 6 G a maximal torus of G
and B 6 G a Borel subgroup containing T .

(a) All Borel subgroups of G are conjugate.
(b) All maximal tori of G are conjugate.
(c) NG(B) = B.
(d) We have B = UT , such that U ∩ T = {1}, and U = Ru(B). Hence B is a semidirect

product of U and T .
(e) There exists a unique opposite Borel subgroup B− such that B ∩ B− = T . We also

have B− = U−T where U− = Ru(B−).
(f) We have NG(T )◦ = CG(T ) ⇒ NG(T )/CG(T ) is finite, (this is known as the rigidity

of tori).
(g) We have NG(T )/CG(T ) is always a Weyl group.
(h) If G is reductive then CG(T ) = T .

Proof. For part (a) see [Gec03, Theorem 3.4.3] or [Hum75, Theorem 21.3]. Note that this
proof requires knowledge of projective varieties which we have not introduced here. Part
(b) is a consequence of part (a) given in [Hum75, Corollary A - Section 21.3]. For part (c)
see [Hum75, Theorem 23.1]. For part (d) see [Gec03, Theorem 3.5.6]. For parts (f)-(h) see
[Hum75, Section 16]. �

Example. Consider the connected reductive group G = GLn(K). Now a standard Borel
subgroup of GLn(K) is given by the subgroup Bn and we have Bn = UnDn where

Bn =


? ? ?

? ?
?

 Un =


1 ? ?

1 ?
1

 Dn =


? ?

?

 .
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It’s an exercise to show that NGLn(K)(Bn) = Bn. Now the opposite Borel subgroup B−n =

U−n Dn is clearly going to be

B−n =


?? ?
? ? ?

 U−n =


1
? 1
? ? 1

 .

It’s obvious that Bn = B−n = Dn.
We have already seen that GLn(K) is a connected reductive group and CG(Dn) = Dn is

a maximal torus of GLn(K). We have NG(Dn)/Dn will be isomorphic to the group of all
n × n permutation matrices, which in turn is naturally isomorphic to the symmetric group
Sn which we have already seen to be a Weyl group.

We recall that in the Lie algebra setting we fixed a maximal toral subalgebra and de-
composed the Lie algebra with respect to the adjoint action. In this way we obtained a root
system for the Lie algebra. Indeed this is what we plan to describe for a linear algebraic group
but instead of a root system we will obtain a slightly more elaborate construction known as
a root datum.

Let G be a connected linear algebraic group and T 6 G a maximal torus. Then we consider
X(T ) = Homalg(T,Gm) to be the set of algebraic group homomorphisms from T to Gm. Now
we have X(T ) is naturally an additive group by letting

(χ1 + χ2)(t) = χ1(t)χ2(t) for all χ1, χ2 ∈ X(T ), t ∈ T.
Now if T ∼= Gm, as algebraic groups, then we have X(T ) = Homalg(Gm,Gm) ∼= Z, as abstract
groups. This is because any algebraic group homomorphism from Gm → Gm must be of the
form λ 7→ λm for some m ∈ Z. Therefore, in general, as T is isomorphic to n copies of Gm

we have

X(T ) ∼= Z⊕ · · · ⊕ Z.
In other words X(T ) is a free abelian group of rank n. We call X(T ) the character group of
T .

Now we let Y (T ) = Homalg(Gm, T ). Then we also have Y (T ) is naturally an additive group
by letting

(γ1 + γ2)(λ) = γ1(λ)γ2(λ) for all γ1, γ2 ∈ Y (T ), λ ∈ Gm.

By the same argument as before we see that in general Y (T ) ∼= Z⊕ · · · ⊕ Z is a free abelian
group of rank n. We call Y (T ) the cocharacter group of T . Now we can define a bilinear map

〈−,−〉 : X(T )× Y (T )→ Z,
which puts X(T ) and Y (T ) into duality as abelian groups. We note that given χ ∈ X(T ),
γ ∈ Y (T ) we have χ◦γ ∈ Homalg(Gm,Gm). Therefore for all λ ∈ Gm we have (χ◦γ)(λ) = λm

for some m ∈ Z. We then define our map by 〈χ, γ〉 = m. This map induces the required
isomorphisms of abelian groups

X(T ) ∼= Hom(Y (T ),Z) and Y (T ) ∼= Hom(X(T ),Z).

We now stipulate that G is a connected reductive linear algebraic group. We recall W =
NG(T )/T is a Weyl group. Now W acts on T by conjugation and we set tẇ = w−1tw for all
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t ∈ T , where ẇ is a representative in W for w ∈ NG(T ). Then this conjugation action induces
an action of W on the character and cocharacter groups of T by

wχ(t) = χ(tw) for all χ ∈ X(T ), t ∈ T,w ∈W,
γw(λ) = γ(λ)w for all γ ∈ Y (T ), λ ∈ K×, w ∈W.

We have T is contained in a Borel subgroup B, which decomposes as B = UT . Also T acts
on U by conjugation and we look for the minimal proper subgroups of U which are stable
under this action. These will all be connected unipotent subgroups of dimension 1, which are
isomorphic to the additive group Ga. Now T acts on each of these by conjugation and hence
we get a homomorphism T → Autalg(Ga). Now the only algebraic group automorphisms of
Ga are of the form λ 7→ µλ for µ ∈ K×, which means we have an isomorphism of abstract
groups Autalg(Ga) ∼= K×. Therefore the conjugation action of T gives us an element of X(T )
and we call these elements the positive roots.

Let Φ+ ⊆ X(T ) denote the set of all such elements. Then to each positive root α ∈ Φ+ we
have an associated 1–dim subgroup Uα ⊆ U , which we call the root subgroup associated to
α. We know that given any maximal torus T and Borel subgroup B containing T then there
exists a unique opposite Borel subgroup B− such that B ∩ B− = T . So what happens if we
play the exact same game with B−? We get a set of elements Φ− ⊆ X(T ) which we call the
negative roots. It turns out that α ∈ Φ+ if and only if −α ∈ Φ−. We let Φ = Φ+∪Φ− ⊆ X(T )
and call this the set of roots.

Example. We aim to illustrate these ideas with an example. Consider the linear algebraic
group GL3(K). We have a maximal torus T 6 GL3(K) and Borel subgroup B = UT 6
GL3(K) given by

B =


? ? ?

? ?
?

 U =


1 ? ?

1 ?
1

 T =


? ?

?

 ,

where stars indicate appropriate elements of K. It’s easy to see that there are three 1–
dimensional proper subgroups of U normalised by the action of T . These are

Uα =


1 λ 0

1 0
1

 Uβ =


1 0 0

1 λ
1

 Uα+β =


1 0 λ

1 0
1


where λ ∈ K.

We indicate how the root α ∈ X(T ) is obtained. Consider the conjugation action of T on
Uα then we haveµ1

µ2

µ3

1 λ 0
1 0

1

µ−1
1

µ−1
2

µ−1
3

 =

1 µ1µ
−1
2 λ 0
1 0

1

 .
Therefore if t = diag(µ1, µ2, µ3) ∈ T then α ∈ X(T ) is given by α(t) = µ1µ

−1
2 . Indeed a

similar calculation gives us β(t) = µ2µ
−1
3 and hence (α + β)(t) = α(t)β(t) = µ1µ

−1
3 . If we

define coordinate maps εi : T → Gm by εi(t) = µi then we have the positive and negative
roots are given by
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α = ε1 − ε2 −α = −ε1 + ε2,

β = ε2 − ε3 −β = −ε2 + ε3,

α+ β = ε1 − ε3 −α = −ε1 + ε3.

We then have that the corresponding negative root subgroups are

U−α =


1
λ 1
0 0 1

 U−β =


1

0 1
0 λ 1

 U−α−β =


1

0 1
λ 0 1


Note the resemblance to the descriptions of root systems given in the examples of sl(3,C)

in section 2.5 and the general case of An in section 1.5.

We now return to the general situation of G a connected reductive linear algebraic group.

Proposition 3.5. Given a pair of roots {α,−α} ⊆ Φ then the closed subgroup 〈Uα, U−α〉 6 G
is isomorphic as an algebraic group to either SL2(K) or PGL2(K) = GL2(K)/Z(GL2(K)).

Proof. This is mostly contained in [Hum75, Corollary 32.3]. �

Therefore we can find a surjective homomorphism ϕ : SL2(K)→ 〈Uα, U−α〉 such that{
ϕ

[
1 ?
0 1

]}
= Uα

{
ϕ

[
1 0
? 1

]}
= U−α

{
ϕ

[
λ 0
0 λ−1

]}
= T.

Therefore there is a homomorphism α∨ : Gm → T given by

α∨(λ) = ϕ

[
λ 0
0 λ−1

]
,

for all λ ∈ Gm. The element α∨ ∈ Y (T ) is called the coroot associated to α. Given a root α
we have its coroot α∨ is determined uniquely by the property 〈α, α∨〉 = 2. We write Φ∨ for
the collection of all coroots, which is a finite subset of Y (T ).

Example. We continue with our example of GL3(K). In this case it is easy to see the validity
of proposition 3.5 just by inspection. For each root α ∈ Φ we are looking for a homomorphism
α∨ ∈ Y (T ) such that 〈α, α∨〉 = 2. It is easy to verify this condition holds for the following
elements of Y (T ) and hence these are the coroots of the roots given previously.

α∨(λ) =

λ λ−1

1

 β∨(λ) =

1
λ

λ−1

 (α+ β)∨(λ) =

λ 1
λ−1


Remark. A word of caution. In the above example we have (α + β)∨ = α∨ + β∨ but this is
not true in general. In fact in Sp4(K) such a property does not hold.

Now to each root α ∈ Φ we can associate an element of the Weyl group in the following
way. Recall the map ϕ : SL2(K)→ 〈Uα, U−α〉 then we have the element

nα = ϕ

[
0 1
−1 0

]
∈ 〈Uα, U−α〉
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is such that nα ∈ NG(T ), which follows from the homomorphism property of ϕ. We obtain an
element of W by considering the image of nα under the canonical projection. Recall that W
acts on the character group and cocharacter group of T and indeed the action of this element
is given by

ṅα(χ) = χ− 〈χ, α∨〉α for all χ ∈ X(T ),

ṅα(γ) = γ − 〈α, γ〉α∨ for all γ ∈ Y (T ).

With all this construction in mind we can now give the definition of a root datum.

Definition. A quadruple (X,Φ, Y,Φ∨) is called a root datum if the following conditions are
satisfied.

(a) X and Y are free abelian groups of the same finite rank with a non-degenerate map
X × Y → Z denoted by (χ, γ) 7→ 〈χ, γ〉 which puts them into duality.

(b) Φ and Φ∨ are finite subsets of X and Y respectively and there is a bijection α 7→ α∨

from Φ to Φ∨, such that 〈α, α∨〉 = 2.
(c) For each α ∈ Φ the maps wα : X → X and wα∨ : Y → Y defined by

wα(χ) = χ− 〈χ, α∨〉α for all χ ∈ X(T ),

wα(γ) = γ − 〈α, γ〉α∨ for all γ ∈ Y (T ).

satisfy wα(Φ) = Φ and wα∨(Φ∨) = Φ∨.

If G is a connected reductive linear algebraic group and T 6 G is a maximal torus then the
quadruple (X(T ),Φ, Y (T ),Φ∨) as given above is a root datum. Note that everything we have
done so far seems to depend upon a choice of maximal torus and Borel subgroup but theorem
3.6 assures us that this choice is made only up to conjugation. Therefore we will usually just
write X and Y as the character and cocharacter groups unless we need to specifically refer to
a maximal torus. We end this section by stating a theorem which shows why the root datum
is of use.

Theorem 3.7. Let G be a connected reductive linear algebraic group and (X,Φ, Y,Φ∨) be a
root datum for G. Then we have G = 〈T,Uα | α ∈ Φ〉. If G is semisimple then G = 〈Uα |
α ∈ Φ〉.

Proof. See [Hum75, Theorem 27.3 and 27.5]. �

3.5. The Classification of Simple Linear Algebraic Groups.

Definition. Let G be a linear algebraic group. We say G is simple if G contains no proper
closed connected normal subgroups.

Remark. Note that this definition means that a simple linear algebraic group may not be
simple as an abstract group. Now SLn(K) is not always simple as an abstract group because
it can have a non-trivial centre. However this centre is finite, and hence disconnected, and so
SLn(K) is always a simple linear algebraic group. We also comment that any simple algebraic
group must be semisimple as the radical is a connected normal subgroup.

From what we have constructed in the previous section it may seem like there is a glimmer
of a root system in our root datum but it is possibly not clear exactly why. Let G be a linear
algebraic group with root datum (X,Φ, Y,Φ∨), then we have X is a Z-module. Indeed R is
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Table 4. The Simple Linear Algebraic Groups.

Type An Bn Cn Dn E6 E7 E8 F4 G2

|π| n+ 1 2 2 4 3 2 1 1 1

Gsc SLn+1(K) Spin2n+1(K) Sp2n(K) Spin2n(K) – – – – –

Gad PGLn+1(K) SO2n+1(K) PCSp2n(K) SO2n(K) – – – – –

also a Z-module and so we can consider the tensor product of these Z-modules XR := X⊗ZR.
We can then consider this as a real vector space, likewise we have YR := Y ⊗Z R is a real
vector space.

Above we described how the Weyl group W acts on the character group X and cocharacter
group Y . This action can be extended to an action of W on the real vector spaces XR and
YR by setting w(χ ⊗ λ) = wχ ⊗ λ and w(γ ⊗ λ) = γw ⊗ λ, for all χ ∈ X, γ ∈ Y , λ ∈ R.
The subset Φ ⊗ Z, (resp. Φ∨ ⊗ Z), will form a W -stable lattice in XR, (resp. YR). Indeed it
turns out that XR, (resp. YR), is a Euclidean vector space and Φ ⊗ Z, (resp. Φ∨ ⊗ Z), is a
crystallographic root system for XR, (resp. YR).

As every linear algebraic group contains a crystallographic root system for a real vector
space we would hope that we could classify the simple linear algebraic groups by the Dynkin
diagrams given in figure 6. Indeed given any simple linear algebraic group G we have that
there is a unique Dynkin diagram associated to G. However given a Dynkin diagram there
can be more than one simple linear algebraic associated to it.

What we would like is a method, purely using the root system, to distinguish between
the different simple linear algebraic groups that can arise. There is such a method and it is
motivated from the theory of Lie groups.

Recall that to the root datum (X,Φ, Y,Φ∨) we have an associated perfect pairing 〈−,−〉 :
X × Y → Z. We can extend this perfect pairing to the vector spaces XR, YR by defining
〈χ⊗ λ, γ ⊗ µ〉 = λµ〈χ, γ〉 for all χ ∈ X, γ ∈ Y and λ, µ ∈ R. We then define

Ω = {ω ∈ XR | 〈ω, α∨〉 ∈ Z for all α ∈ Φ}

to be the weight lattice of G, (where α∨ is associated with its canonical image α∨ ⊗ 1 in YR).
Let us denote the root lattice Φ⊗Z by ZΦ, then associating X with its canonical image in XR
we have a sequence of inclusions ZΦ ⊆ X ⊆ Ω. It turns out that the position of X between
the root lattice and the weight lattice uniquely determines a simple linear algebraic group.

Definition. Let (X,Φ, Y,Φ∨) be a root datum for a semisimple algebraic group, then we
define π = Ω/ZΦ to be the fundamental group of the root datum.

It can be shown that the order of the fundamental group is finite and so there are only
finitely many simple linear algebraic groups associated to each Dynkin diagram. In each type
we single out two specific cases. Let G be a simple linear algebraic group with root datum
(X,Φ, Y,Φ∨). If X = ZΦ then we say G is of adjoint type and we denote this group by Gad.
If X = Ω then we say G is of simply connected type and we denote this group by Gsc. In table
4 we give the order of the fundamental group in each type and indicate the simply connected
and adjoint groups in the classical cases.
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Although we have classified the simple linear algebraic groups we have not shown that
problems involving connected semisimple linear algebraic groups can be reduced to the case
of simples.

Theorem 3.8. Let G be a connected semisimple linear algebraic group then there exists
finitely many closed normal subgroups, which we label {Gi}16i6k. Now

(a) Each Gi is simple.
(b) If i 6= j then [Gi, Gj ] = {1}.
(c) G = [G,G]
(d) G = G1G2 . . . Gk
(e) Gi ∩G1 . . . Gi−1Gi+1 . . . Gk is finite for each i.

Proof. See [Hum75, Theorem 27.5]. �

Therefore every connected semisimple linear algebraic group is an almost direct product of
simple linear algebraic groups. So we can largely reduce the problem of studying linear
algebraic groups to simple linear algebraic groups.
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4. Finite Groups of Lie Type

Throughout this section we have K = Fp for some prime p > 0.
In the previous section we have shown how we can obtain a large collection of infinite groups

defined over algebraically closed fields of characteristic p. Now given the field K we have a
field automorphism σq : K → K given by σ(x) = xq, for some q = pa. This automorphism is
such that the fixed points Kσq = {x ∈ K | σq(x) = x} is isomorphic, as a field, to the finite
field Fq. What we would like to do is use this field automorphism to produce finite groups
from the linear algebraic groups we have constructed previously.

Definition. We define a regular map of the linear algebraic group GLn(K) by

Fq : GLn(K)→ GLn(K)

(aij) 7→ (aqij),

A standard Frobenius map of a linear algebraic group G is any map F : G → G such that
there exists an embedding θ : G→ GLn(K) which satisfies θ ◦F = Fq ◦ θ, for some q = pa. A
morphism F : G→ G is called a Frobenius map if for some m ∈ N we have Fm is a standard
Frobenius map.

Remark. This definition of Frobenius map is attributed to Carter, (see [Car93]), and while
practical gives quite a simplistic view of the Frobenius map. Indeed for a more sophisticated
view point see [DM91, Chapter 3] or [Gec03, Section 4.1] .

Lemma 4.1. Let G be a connected reductive linear algebraic group and F : G→ G a Frobenius
map. Then the fixed point group GF = {g ∈ G | F (g) = g} is finite.

Proof. Consider the standard Frobenius map Fq of GLn(K). We clearly have GLn(K)Fq =
GLn(Fq). In general given any closed subgroup G 6 GLn(K) we will have GFq 6 GLn(Fq).
Therefore if G is a linear algebraic group with standard Frobenius map F : G → G we have
Gθ◦F = GFq◦θ 6 GLn(Fq). Therefore Gθ◦F is finite, which gives us GF is finite. The result is
then clear. �

We now consider the simple linear algebraic groups that we constructed in the previous
section over K. The above suggests that by considering fixed points of Frobenius maps we
will obtain finite groups. Indeed, if G is a connected reductive linear algebraic group and
F : G→ G a Frobenius map then we call the finite group GF a reductive group.

However what we usually refer to are the finite groups of Lie type. These groups aren’t in
general fixed points of Frobenius maps but are obtained by taking a quotient of a reductive
group by a subgroup of its centre. There are four classes of reductive groups, which are the
Chevalley groups, Steinberg groups, Ree groups and Suszuki group. The Steinberg, Ree and
Suzuki groups are usually refered to as the twisted groups, the reason for this will become
clear shortly. By considering the fixed points of the simple linear algebraic groups in table 4,
under the standard Frobenius maps, we obtain what are known as the Chevalley groups.

Example. Consider the finite groups GLn(q), SLn(q) and PGLn(q) defined over the field Fq.
These are all reductive groups of type An−1 as they are the fixed point groups of the Frobenius
map Fq acting on GLn(K), SLn(K) and PGLn(K). Now consider the group PSLn(q), this is
not a reductive group. This is because if you try and construct PSLn(K) over an algebraically
closed field, what you get is PGLn(K). However we refer to PSLn(q) as a finite group of Lie
type.
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2An (n > 1)

2 Dn (n > 4)

2 E6

3 D4

2 B2

2 F4

2 G2

Figure 8. The Possible Graph Automorphisms of Dynkin Diagrams.

In fact Chevalley originally showed that to every complex simple Lie algebra there exists
an infinite family of finite simple groups defined over arbitrary q, (modulo four exceptions
when q = 2 or 3). He does this by using the root system of the Lie algebra to construct a
special basis, known as a Chevalley basis, which he transports to the structure of a group
using the exponential map. An example of such a finite simple group is PSLn(q) and we
consider these groups to be finite simple groups of Lie type. For more information on this see
[Car72, Chapter 4].

In fact all the simple groups that Chevalley obtained can be obtained in the following way.
Take a simple linear algebraic group of simply connected type and consider the finite fixed
point group under a standard Frobenius map. This group in general will not be a finite simple
group, (for example SLn(q)), but the quotient of this group by its centre is in general simple,
(for example PSLn(q)).

At the moment we have only discussed the Chevalley groups but there are many more
reductive groups. We recall that in the definition of Frobenius map we allowed for some power
of the map to be a standard Frobenius map. This means, if G is a connected reductive linear
algebraic group, we can take a standard Frobenius map and compose it with an automorphism
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Table 5. The Twisted Reductive Groups.

Type 2An
2 Dn

2 E6
3 D4

2 B2
2 F4

2 G2

p — — — — 2 2 3

Gsc SUn+1(q2) Spin−
2n(q) — — — — —

Gad PUn+1(q2) P(CO−
2n(q)0) — — — — —

of G, (which may only be an automorphism of the abstract group structure), to be obtain a
new Frobenius map. We give now some different kinds of automorphisms of linear algebraic
groups, and indicate when these are not automorphisms of varieties.

Inner: These are automorphisms given by conjugation, which are clearly regular maps
as multiplication and inversion are regular maps.

Field: We have already discussed these previously. Let σ be an automorphism of the
field K then we can extend this to an automorphism of the whole linear algebraic
group. Note that these automorphisms are not automorphisms of varieties, as we have
seen in the case of Fq : GLn(K)→ GLn(K).

Graph: This is an automorphism of the Dynkin diagram. We give a list of all possible
graph automorphisms in figure 8. In the cases of An, Dn, E6 and D4 we have these
graph automorphisms are automorphisms of varieties. However in the cases of B2, F4

and G2 we have they are not. The distinction is that in the latter three cases we have
the long and short roots are interchanged.

It can be shown that every Frobenius map is a composition of a standard Frobenius map
and one of the graph automorphisms given in figure 8. The groups 2An, 2 Dn, 2 E6 and 3 D4

are known as the Steinberg groups. The groups 2 F4, 2 G2 are known as the Ree groups and
2 B2 is called the Suzuki group, (note that there are two sporadic simple groups referred to
as Suzuki groups as well). We give partial information for these groups in table 5, namely
associations with classical groups and restrictions on primes for which they are defined. For
much more detailed information see [Car72] or [Car93, Section 1.19].

Example. We wish to indicate how the group U3(q2) is constructed from the group GL3(K).
We have already seen that GL3(K) has a root system of type A2, given relative to the maximal
torus of diagonal matrices. Therefore we are looking to implement a graph automorphism τ
such that τ(α) = β, where α and β are the two simple roots of GL3(K).

We realise the graph automorphism τ in the following way. Recall the Weyl group W ∼= S3

of GL3(K), then by proposition 1.2 there exists a unique element w0 ∈ W of longest length.
This element has a representative in NGL3(K)(T ) given by

ẇ0 =

0 0 1
0 1 0
1 0 0

 .
Let τ : GL3(K)→ GL3(K) be the map given by τ(x) = (x−t)ẇ0 , where x−t denotes the inverse
transpose of x and xẇ0 denotes conjugation. If s1, s2 are abstract generators associated to the
simple roots α, β of A2 then we have w0 = s1s2s1. It’s then easy to check using the diagram
in corollary 1.4 that w0 is such that w0α = −β and w0β = −α.
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Consider the following element of GL3(K)

t =

t1 t2
t3

 ,
in the maximal torus D3 6 GL3(K) for some t1, t2, t3 ∈ K×. Now what does it mean for t to
be a fixed point of the Frobenius map F = Fq ◦ τ?

t = (Fq ◦ τ)(t)⇒

t1 t2
t3

 = Fq

0 0 1
0 1 0
1 0 0

t−1
1

t−1
2

t−1
3

0 0 1
0 1 0
1 0 0

 ,
⇒

t1 t2
t3

 = Fq

t−1
3

t−1
2

t−1
1

 ,
⇒

t1 t2
t3

 =

t−q3

t−q2

t−q1

 .
So for t to be in the fixed point group of F we must have t1 = t−q3 , t2 = t−q2 and t3 = t−q1 ,

which implies t1 = tq
2

1 , t3 = tq
2

3 and tq+1
2 = 1. Therefore we have t1, t3 ∈ F×

q2
and t2 ∈ F×

q2
\F×q ,

so the entries in these matrices will belong to the finite field Fq2 .

In general the approach is to try and understand the reductive groups by obtaining infor-
mation from the linear algebraic group through the Frobenius map. This allows us to obtain
a lot of structural information from the linear algebraic group. For example, things like the
Weyl group and root datum exist in the reductive groups. Also we often pass information
regarding subgroups to the reductive groups. For example if G is a connected reductive linear
algebraic group and T is a maximal torus of G we say the fixed point group TF is a maximal
torus of GF . Now in general this will just be an abelian subgroup of GF and in fact all such
subgroups are not necessarily conjugate in GF .

We can in fact study connected reductive linear algebraic groups and their associated finite
groups by studying groups with a BN -pair or Tits system. It was Tits that introduced this
notion. In a connected reductive linear algebraic group we have that B and N refer to a Borel
subgroup and the normaliser of a maximal torus contained in B. For more information on
BN -pairs see [Gec03, Section 1.6].
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