Start Time: 09:00 on Monday 1st June 2015. End Time: 17:00 on Friday 12th June 2015.

Guidance:

- Answer as many questions as possible.
- You may use any result stated in the course as part of your answers, including those given without proof. However, you should indicate in your solution when you use such a result.
- The statement of any question on this exam may be used as part of the solution to any other question.

Notation: The following notation and assumptions will be in force throughout the questions.

- *K* will denote an algebraically closed field whose characteristic will be denote by char(*K*). Unless stated otherwise this field is chosen arbitrarily, without any further assumptions.
- Any variety will be assumed to be a variety over K. In particular, Aⁿ will denote affine n-space Kⁿ and Mat_n(K) will denote the space of all square n × n matrices whose entries are contained in K, which may be identified with A^{n²}.
- For any variety X we denote by K[X] the affine algebra of X. If x ∈ X then we denote by
 T_x(X) = Der_K(K[X], K_x) the tangent space of X at x. If X ⊆ Aⁿ is an algebraic set, then
 we denote by

$$\mathfrak{T}_{X}(X) = \{ v \in \mathbb{A}^{n} \mid d_{X}(f)(v) = 0 \text{ for all } f \in \mathbf{I}(X) \} \subseteq \mathbb{A}^{n}$$

the heuristic tangent space of X at x.

- If G is a group then we will denote by e ∈ G the identity element. In particular, we denote by T_e(G) the tangent space at the identity of an algebraic group G.
- For any $n \ge 1$ we define

$$Q_n = \begin{bmatrix} 0 & 1 \\ & \ddots & \\ 1 & 0 \end{bmatrix} \in \operatorname{Mat}_n(K) \quad \text{and} \quad J_{2n} = \begin{bmatrix} 0 & Q_n \\ -Q_n & 0 \end{bmatrix} \in \operatorname{Mat}_{2n}(K).$$

We then have the classical groups

$$GL_n(K) = \{A \in Mat_n(K) \mid det(A) \neq 0\},\$$

$$SL_n(K) = \{A \in Mat_n(K) \mid det(A) = 1\},\$$

$$Sp_{2n}(K) = \{A \in GL_n(K) \mid A^T J_{2n}A = J_{2n}\},\$$

and assuming that $char(K) \neq 2$ we then also have the special orthogonal group

$$SO_n(K) = \{A \in SL_n(K) \mid A^TQ_nA = Q_n\}.$$

Question 1.

- (a) Let R be a commutative ring with 1. Show that every prime ideal of R is a radical ideal.
- (b) Let $f \in K[X_1, ..., X_n]$ be an irreducible polynomial. Show that $\mathbf{I}(\mathbf{V}(f)) = \langle f \rangle$ and deduce that $\mathbf{V}(f)$ is irreducible.
- (c) Assuming that det $\in K[X_{ij} | 1 \leq i, j \leq n]$ is an irreducible polynomial show that $GL_n(K)$ and $SL_n(K)$ are connected.

Question 2. Let G be a connected algebraic group and N a finite normal subgroup. Show that N lies in the center of G.

Question 3. Let $G = GL_n(K)$.

- (a) Show that the determinant function det : $G \rightarrow K$ is regular.
- (b) Consider the determinant as a function det : $Mat_n(K) \to K$. Compute the differential $d_e(det) : Mat_n(K) \to K$ at the identity using the heuristic approach.

Question 4. Show that $SL_2(K)$ and $Sp_2(K)$ are isomorphic as algebraic groups.

Question 5. For both abelian connected 1-dimensional algebraic groups \mathbb{G}_a , \mathbb{G}_m determine:

- (a) the automorphism group of the variety,
- (b) the automorphism group of the algebraic group and
- (c) the module of differentials, giving a generator.

Moreover, are the Lie algebras $\text{Lie}(\mathbb{G}_a)$ and $\text{Lie}(\mathbb{G}_m)$ isomorphic? Justify your answer.

Question 6. Show that any unipotent element of an affine algebraic group has:

- (a) finite order if char(K) > 0,
- (b) infinite order if char(K) = 0.

[Hint: any unipotent matrix in $U_n(K) \leq GL_n(K)$ is of the form e + n for some nilpotent matrix n.]

Question 7. Let $G = SL_n(K)$ and let $D \leq G$ be the subgroup of diagonal matrices.

(a) Show that the tangent space of D at the identity is

$$\mathfrak{T}_e(D) = \{(a_{ij}) \in \operatorname{Mat}_n(K) \mid a_{ij} = 0 \text{ if } i \neq j \text{ and } \sum_{i=1}^n a_{ii} = 0\}.$$

(b) Let U, resp., U⁻, be the subgroup of uni-upper, resp., uni-lower, triangular matrices. Let φ : U⁻ × D × U → G be the product map defined by φ(v, t, u) = vtu. Show that the differential d_eφ is injective. [You may use the fact that d_eμ(x, y) = x + y for any (x, y) ∈ 𝔅_e(G) ⊕ 𝔅_e(G), where μ : G × G → G is the product map given by μ(g, h) = gh.]

(c) Show that we have

$$\mathfrak{T}_e(G) = \{ A \in \mathsf{Mat}_n(K) \mid \mathsf{tr}(A) = 0 \},\$$

where tr : $Mat_n(K) \rightarrow K$ is the trace.

(d) Deduce a formula for the dimension of G in terms of n.

Question 8. Let G be the symplectic group $Sp_4(K)$. Give 6 generators of the vanishing ideal $I(G) \subseteq K[X_{ij} | 1 \leq i, j \leq 4]$ and show that

$$\mathfrak{T}_e(G) = \{A \in \mathsf{Mat}_4(K) \mid J_4A = -A' J_4\}.$$

Deduce the dimension of G and describe, in short, why the Lie algebra of G is a subalgebra of the Lie algebra $Mat_4(K)$ with the usual bracket [A, B] = AB - BA.

Question 9. Show that $SL_2(K)$ is generated by the subgroups

$$U = \left\{ \begin{bmatrix} 1 & c \\ 0 & 1 \end{bmatrix} \middle| c \in K \right\} \quad \text{and} \quad U^{-} = \left\{ \begin{bmatrix} 1 & 0 \\ c & 1 \end{bmatrix} \middle| c \in K \right\}.$$

Question 10. Assume that char(K) $\neq 2$ and let us fix an element $\omega \in K$ such that $\omega^2 = -2$.

- (a) Show that $\mathfrak{T}_e(SL_n(K)) \subseteq Mat_n(K)$ is a $GL_n(K)$ -space, where the action is given by conjugation.
- (b) Prove that there exists a unique homomorphism of algebraic groups $\varphi : SL_2(K) \rightarrow SO_3(K)$ such that

$$\varphi \begin{bmatrix} 1 & c \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & \omega c & c^2 \\ 0 & 1 & -\omega c \\ 0 & 0 & 1 \end{bmatrix} \quad \text{and} \quad \varphi \begin{bmatrix} 1 & 0 \\ c & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ -\omega c & 1 & 0 \\ c^2 & \omega c & 1 \end{bmatrix}.$$

(c) Determine the image and kernel of φ . [You may assume here that SO₃(K) is connected.]

[Hint: (b). For the existence, find an appropriate basis for the action in (a).]

Question 11. Let X be an affine variety and for any $x \in X$ let $\mathfrak{m}_x \subseteq K[X]$ be the maximal ideal of functions vanishing at x. Any $D \in T_x(X)$ maps \mathfrak{m}_x to 0, hence induces a linear map $\widetilde{D} : \mathfrak{m}_x/\mathfrak{m}_x^2 \to K$. Show that the map $D \mapsto \widetilde{D}$ defines a K-linear isomorphism $T_x(X) \to (\mathfrak{m}_x/\mathfrak{m}_x^2)^*$.

Question 12. Let k be any field and A a commutative k-algebra. Let $\mathcal{D} = \text{Der}_k(A, A)$.

(a) Check that \mathcal{D} is a Lie algebra with the Lie bracket given by $[D, D'] = D \circ D' - D' \circ D$ for all $D, D' \in \mathcal{D}$.

Suppose char(k) = p > 0 and set Ad $D = [D, -] : D \to D$ so that

$$(\operatorname{Ad} D)(D') = [D, D']$$

for all $D' \in \mathcal{D}$. Show that:

- (b) $D^p \in \mathcal{D}$,
- (c) $(\operatorname{Ad} D)^p = \operatorname{Ad} D^p$.

Question 13. Prove that we have an isomorphism $\operatorname{Aut}(\mathbb{D}_n) \cong \operatorname{GL}_n(\mathbb{Z})$ of abstract groups. [Hint: the automorphism group of \mathbb{Z}^n is $\operatorname{GL}_n(\mathbb{Z})$.]

Question 14. Denote by $K^* \subseteq \mathbb{A}^1$ the set $\mathbb{A}^1 - \{0\}$ and by X the disjoint union $\{0_1\} \sqcup K^* \sqcup \{0_2\}$, i.e., $0_1 \neq 0_2$ in X. We define two bijections $\phi_1, \phi_2 : \mathbb{A}^1 \to X$ by setting

$$\phi_i(x) = \begin{cases} x & \text{if } x \in \mathcal{K}^* \\ 0_i & \text{if } x = 0. \end{cases}$$

We endow X with the topology generated by the images of the open sets in \mathbb{A}^1 through ϕ_1 and ϕ_2 , i.e., the topology generated by the set $\{\phi_1(U), \phi_2(U) \mid U \subseteq \mathbb{A}^1 \text{ is an open set}\}$.

- (a) Describe the open and closed sets of X.
- (b) Argue that ϕ_1 and ϕ_2 are continuous maps $\mathbb{A}^1 \to X$ and that X is a quasi-compact topological space.
- (c) Let \mathcal{O} be the sheaf of regular functions of the affine variety \mathbb{A}^1 . Show that the direct image sheaves $\mathcal{O}_1 = (\phi_1)_*(\mathcal{O})$ and $\mathcal{O}_2 = (\phi_2)_*(\mathcal{O})$ are equal. In other words, for any open set $U \subseteq X$ a K-valued function f on U lies in \mathcal{O}_1 if and only if it lies in \mathcal{O}_2 . Conclude that X is a prevariety with this sheaf of functions.
- (d) Show that X is not a variety.