Start Time: 09:00 on Monday 1st June 2015.
End Time: 17:00 on Friday 12th June 2015.

Guidance:

- Answer as many questions as possible.
- You may use any result stated in the course as part of your answers, including those given without proof. However, you should indicate in your solution when you use such a result.
- The statement of any question on this exam may be used as part of the solution to any other question.

Notation: The following notation and assumptions will be in force throughout the questions.

- K will denote an algebraically closed field whose characteristic will be denote by char(K). Unless stated otherwise this field is chosen arbitrarily, without any further assumptions.
- Any variety will be assumed to be a variety over K. In particular, \mathbb{A}^{n} will denote affine n space K^{n} and $\operatorname{Mat}_{n}(K)$ will denote the space of all square $n \times n$ matrices whose entries are contained in K, which may be identified with $\mathbb{A}^{n^{2}}$.
- For any variety X we denote by $K[X]$ the affine algebra of X. If $x \in X$ then we denote by $T_{x}(X)=\operatorname{Der}_{K}\left(K[X], K_{x}\right)$ the tangent space of X at x. If $X \subseteq \mathbb{A}^{n}$ is an algebraic set, then we denote by

$$
\mathfrak{T}_{x}(X)=\left\{v \in \mathbb{A}^{n} \mid d_{x}(f)(v)=0 \text { for all } f \in \mathbf{l}(X)\right\} \subseteq \mathbb{A}^{n}
$$

the heuristic tangent space of X at x.

- If G is a group then we will denote by $e \in G$ the identity element. In particular, we denote by $T_{e}(G)$ the tangent space at the identity of an algebraic group G.
- For any $n \geqslant 1$ we define

$$
Q_{n}=\left[\begin{array}{ccc}
0 & & 1 \\
& . & \\
1 & & 0
\end{array}\right] \in \operatorname{Mat}_{n}(K) \quad \text { and } \quad J_{2 n}=\left[\begin{array}{cc}
0 & Q_{n} \\
-Q_{n} & 0
\end{array}\right] \in \operatorname{Mat}_{2 n}(K)
$$

We then have the classical groups

$$
\begin{aligned}
\mathrm{GL}_{n}(K) & =\left\{A \in \operatorname{Mat}_{n}(K) \mid \operatorname{det}(A) \neq 0\right\}, \\
\mathrm{SL}_{n}(K) & =\left\{A \in \operatorname{Mat}_{n}(K) \mid \operatorname{det}(A)=1\right\}, \\
\mathrm{Sp}_{2 n}(K) & =\left\{A \in \mathrm{GL}_{n}(K) \mid A^{T} J_{2 n} A=J_{2 n}\right\},
\end{aligned}
$$

and assuming that $\operatorname{char}(K) \neq 2$ we then also have the special orthogonal group

$$
\mathrm{SO}_{n}(K)=\left\{A \in \mathrm{SL}_{n}(K) \mid A^{T} Q_{n} A=Q_{n}\right\}
$$

Question 1.

(a) Let R be a commutative ring with 1 . Show that every prime ideal of R is a radical ideal.
(b) Let $f \in K\left[X_{1}, \ldots, X_{n}\right]$ be an irreducible polynomial. Show that $\mathbf{I}(\mathbf{V}(f))=\langle f\rangle$ and deduce that $\mathbf{V}(f)$ is irreducible.
(c) Assuming that det $\in K\left[X_{i j} \mid 1 \leqslant i, j \leqslant n\right]$ is an irreducible polynomial show that $G L_{n}(K)$ and $\mathrm{SL}_{n}(K)$ are connected.

Question 2. Let G be a connected algebraic group and N a finite normal subgroup. Show that N lies in the center of G.

Question 3. Let $G=G L_{n}(K)$.
(a) Show that the determinant function det: $G \rightarrow K$ is regular.
(b) Consider the determinant as a function det : $\mathrm{Mat}_{n}(K) \rightarrow K$. Compute the differential $d_{e}(\operatorname{det}): \operatorname{Mat}_{n}(K) \rightarrow K$ at the identity using the heuristic approach.

Question 4. Show that $\mathrm{SL}_{2}(K)$ and $\mathrm{Sp}_{2}(K)$ are isomorphic as algebraic groups.

Question 5. For both abelian connected 1-dimensional algebraic groups $\mathbb{G}_{a}, \mathbb{G}_{m}$ determine:
(a) the automorphism group of the variety,
(b) the automorphism group of the algebraic group and
(c) the module of differentials, giving a generator.

Moreover, are the Lie algebras $\operatorname{Lie}\left(\mathbb{G}_{a}\right)$ and $\operatorname{Lie}\left(\mathbb{G}_{m}\right)$ isomorphic? Justify your answer.

Question 6. Show that any unipotent element of an affine algebraic group has:
(a) finite order if $\operatorname{char}(K)>0$,
(b) infinite order if $\operatorname{char}(K)=0$.
[Hint: any unipotent matrix in $U_{n}(K) \leqslant G L_{n}(K)$ is of the form $e+n$ for some nilpotent matrix n.]

Question 7. Let $G=S L_{n}(K)$ and let $D \leqslant G$ be the subgroup of diagonal matrices.
(a) Show that the tangent space of D at the identity is

$$
\mathfrak{T}_{e}(D)=\left\{\left(a_{i j}\right) \in \operatorname{Mat}_{n}(K) \mid a_{i j}=0 \text { if } i \neq j \text { and } \sum_{i=1}^{n} a_{i i}=0\right\}
$$

(b) Let U, resp., U^{-}, be the subgroup of uni-upper, resp., uni-lower, triangular matrices. Let $\varphi: U^{-} \times D \times U \rightarrow G$ be the product map defined by $\varphi(v, t, u)=v t u$. Show that the differential $d_{e} \varphi$ is injective. [You may use the fact that $d_{e} \mu(x, y)=x+y$ for any $(x, y) \in$ $\mathfrak{T}_{e}(G) \oplus \mathfrak{T}_{e}(G)$, where $\mu: G \times G \rightarrow G$ is the product map given by $\mu(g, h)=g h$.]
(c) Show that we have

$$
\mathfrak{T}_{e}(G)=\left\{A \in \operatorname{Mat}_{n}(K) \mid \operatorname{tr}(A)=0\right\},
$$

where $\operatorname{tr}: \operatorname{Mat}_{n}(K) \rightarrow K$ is the trace.
(d) Deduce a formula for the dimension of G in terms of n.

Question 8. Let G be the symplectic group $\mathrm{Sp}_{4}(K)$. Give 6 generators of the vanishing ideal $\mathbf{I}(G) \subseteq K\left[X_{i j} \mid 1 \leqslant i, j \leqslant 4\right]$ and show that

$$
\mathfrak{T}_{e}(G)=\left\{A \in \operatorname{Mat}_{4}(K) \mid J_{4} A=-A^{T} J_{4}\right\} .
$$

Deduce the dimension of G and describe, in short, why the Lie algebra of G is a subalgebra of the Lie algebra $\operatorname{Mat}_{4}(K)$ with the usual bracket $[A, B]=A B-B A$.

Question 9. Show that $S L_{2}(K)$ is generated by the subgroups

$$
U=\left\{\left.\left[\begin{array}{ll}
1 & c \\
0 & 1
\end{array}\right] \right\rvert\, c \in K\right\} \quad \text { and } \quad U^{-}=\left\{\left.\left[\begin{array}{ll}
1 & 0 \\
c & 1
\end{array}\right] \right\rvert\, c \in K\right\} .
$$

Question 10. Assume that $\operatorname{char}(K) \neq 2$ and let us fix an element $\omega \in K$ such that $\omega^{2}=-2$.
(a) Show that $\mathfrak{T}_{e}\left(\mathrm{SL}_{n}(K)\right) \subseteq \operatorname{Mat}_{n}(K)$ is a $\mathrm{GL}_{n}(K)$-space, where the action is given by conjugation.
(b) Prove that there exists a unique homomorphism of algebraic groups φ : $\mathrm{SL}_{2}(K) \rightarrow \mathrm{SO}_{3}(K)$ such that

$$
\varphi\left[\begin{array}{ll}
1 & c \\
0 & 1
\end{array}\right]=\left[\begin{array}{ccc}
1 & \omega c & c^{2} \\
0 & 1 & -\omega c \\
0 & 0 & 1
\end{array}\right] \quad \text { and } \quad \varphi\left[\begin{array}{ll}
1 & 0 \\
c & 1
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
-\omega c & 1 & 0 \\
c^{2} & \omega c & 1
\end{array}\right] .
$$

(c) Determine the image and kernel of φ. [You may assume here that $\mathrm{SO}_{3}(K)$ is connected.]
[Hint: (b). For the existence, find an appropriate basis for the action in (a).]
Question 11. Let X be an affine variety and for any $x \in X$ let $\mathfrak{m}_{x} \subseteq K[X]$ be the maximal ideal of functions vanishing at x. Any $D \in T_{x}(X)$ maps \mathfrak{m}_{x} to 0 , hence induces a linear map $\widetilde{D}: \mathfrak{m}_{x} / \mathfrak{m}_{x}^{2} \rightarrow K$. Show that the map $D \mapsto \widetilde{D}$ defines a K-linear isomorphism $T_{x}(X) \rightarrow\left(\mathfrak{m}_{x} / \mathfrak{m}_{x}^{2}\right)^{*}$.

Question 12. Let k be any field and A a commutative k-algebra. Let $\mathcal{D}=\operatorname{Der}_{k}(A, A)$.
(a) Check that \mathcal{D} is a Lie algebra with the Lie bracket given by $\left[D, D^{\prime}\right]=D \circ D^{\prime}-D^{\prime} \circ D$ for all $D, D^{\prime} \in \mathcal{D}$.

Suppose char $(k)=p>0$ and set $\operatorname{Ad} D=[D,-]: \mathcal{D} \rightarrow \mathcal{D}$ so that

$$
(\operatorname{Ad} D)\left(D^{\prime}\right)=\left[D, D^{\prime}\right]
$$

for all $D^{\prime} \in \mathcal{D}$. Show that:
(b) $D^{p} \in \mathcal{D}$,
(c) $(\operatorname{Ad} D)^{p}=\operatorname{Ad} D^{p}$.

Question 13. Prove that we have an isomorphism $\operatorname{Aut}\left(\mathbb{D}_{n}\right) \cong G L_{n}(\mathbb{Z})$ of abstract groups. [Hint: the automorphism group of \mathbb{Z}^{n} is $G L_{n}(\mathbb{Z})$.]

Question 14. Denote by $K^{*} \subseteq \mathbb{A}^{1}$ the set $\mathbb{A}^{1}-\{0\}$ and by X the disjoint union $\left\{0_{1}\right\} \sqcup K^{*} \sqcup\left\{0_{2}\right\}$, i.e., $0_{1} \neq 0_{2}$ in X. We define two bijections $\phi_{1}, \phi_{2}: \mathbb{A}^{1} \rightarrow X$ by setting

$$
\phi_{i}(x)= \begin{cases}x & \text { if } x \in K^{*} \\ 0_{i} & \text { if } x=0\end{cases}
$$

We endow X with the topology generated by the images of the open sets in \mathbb{A}^{1} through ϕ_{1} and ϕ_{2}, i.e., the topology generated by the set $\left\{\phi_{1}(U), \phi_{2}(U) \mid U \subseteq \mathbb{A}^{1}\right.$ is an open set $\}$.
(a) Describe the open and closed sets of X.
(b) Argue that ϕ_{1} and ϕ_{2} are continuous maps $\mathbb{A}^{1} \rightarrow X$ and that X is a quasi-compact topological space.
(c) Let \mathcal{O} be the sheaf of regular functions of the affine variety \mathbb{A}^{1}. Show that the direct image sheaves $\mathcal{O}_{1}=\left(\phi_{1}\right)_{*}(\mathcal{O})$ and $\mathcal{O}_{2}=\left(\phi_{2}\right)_{*}(\mathcal{O})$ are equal. In other words, for any open set $U \subseteq X$ a K-valued function f on U lies in \mathcal{O}_{1} if and only if it lies in \mathcal{O}_{2}. Conclude that X is a prevariety with this sheaf of functions.
(d) Show that X is not a variety.

