
Bone repair is a subject of intensive
investigation in maxillofacial surgery.
Current approaches in bone reconstruc-
tive surgery use biomaterials, autografts
or allografts, although restrictions on all
these techniques exist. These restrictions
include donor site morbidity and donor
shortage for autografts26, immunologic
barriers for allografts and the risk of
transmitting infectious diseases. Numer-
ous artificial bone substitutes containing
metals, ceramics and polymers were
introduced to maintain bone function15.
However, each material has specific dis-

advantages, and none of these can per-
fectly substitute for autografts in current
clinical practice. One important reason
for the priority of tissue grafts over non-
living biomaterials is that they contain
living cells and tissue-inducing sub-
stances, thereby possessing biological
plasticity.

Craniofacial research is currently in
progress to develop cell-containing
hybrid materials and to create replace-
ment tissues that remain interactive after
implantation, imparting physiological
functions as well as structure to the tis-

sue or organ damaged by disease or
trauma3. Bone tissue engineering like in
most other tissue engineering areas
exploits living cells in a variety of ways
to restore, maintain or enhance tissue
functions51,56. There are three principal
therapeutic strategies for treating dis-
eased or lost bone in patients: (i) implan-
tation of freshly isolated or cultured bone
cells; (ii) implantation of a bone-like tis-
sue assembled in vitro from cells and
scaffolds and (iii) in situ tissue regenera-
tion. Cellular implantation means that
individual bone cells or small cellular
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aggregates from the patient or a donor
are injected directly into the damaged or
lost region with or without a degradable
scaffold. For tissue implantation, a com-
plete three-dimensional tissue is grown
in vitro using autologous or donor cells
within a scaffold, which has to be
implanted once it has reached ‘matur-
ity’54,63,86. For in situ regeneration, new
bone formation is induced by specific
scaffolds or external stimuli that are used
to stimulate the body’s own cells and
promote local tissue repair. Bone growth
by distraction osteogenesis is one classi-
cal example thereof61.

Extracorporal bone tissue engineering
requires the interaction of three biologi-
cal components: bone cells, growth fac-
tors and the extracellular scaffolds. For
engineering living tissues in vitro, cul-
tured cells are grown on two-dimen-
sional bioactive degradable biomaterials
that provide the physical and chemical
basis to guide their proliferation and dif-
ferentiation. In bioreactors outside the
body the biomaterial is assembled to a
complex three-dimensional scaffold40.
The assembly of cells into tissue substi-
tutes is a highly orchestrated set of
events that requires time scales ranging
from seconds to weeks and dimensions
ranging from 0.0001 to 10 cm. At the
moment the techniques are moving from
an experimental stage to the level of
clinical application. We will consider
extracorporal bone tissue engineering as
a new approach to generate artificial
materials used as substitutes and
implants for reconstructive surgery. The
review highlights the development of
cell-based approaches for tissue engi-
neering of bone, and offers perspectives
on future treatment concepts.

Cells used for tissue engineering

Bone contains a variety of different cell
types: vascular cells, marrow cells, pre-
osteoblasts, osteocytes, chondroblasts and
osteoclasts, all executing distinct cellular
functions to allow the bone to work as a
highly dynamic organ. Whereas all these
cells are necessary to build up a ‘real’
bone, limited cell sources are regarded to
be sufficient for engineering a ‘bone-like’
construct in vitro.

Osteoblasts

Bone tissue engineering requires at least
living osteoprogenitor cells or osteo-
blast-like cells. Fortunately, it is possible
to maintain and propagate various osteo-
blast-like cell types outside the human

body for prolonged periods. Principal
sources of cells for tissue engineering
include autologous and allogeneic cells.
Each category can be subdivided accord-
ing to whether the cells are adult or
embryonic stem cells capable of both
self-renewal and differentiation into a
variety of cell lineages. It has long been
known that bone has a vast capacity for
regeneration when autologous adult
osteoblast-like cells are used7. There are
no legal problems with their clinical use
and no problems of immune rejection
should be expected. Therefore, in cur-
rent clinical practice autologous osteo-
blast-like cells are the most desirable
cell source. However, these cells may be
insufficient to rebuild damaged bone tis-
sue in a reasonable time, and there are
also some questions about the senes-
cence of these cells.

Periosteal cells

A considerable number of cell divisions
is needed to bulk the tissue to its correct
size. Older studies regarded the ability
of cells to propagate in culture as a ser-
ious problem, because it was thought
that most adult tissues contained only a
minority of cells capable of effective
expansion. However, in numerous recent
investigations it has been shown that
bone cells proliferate in culture without
losing their viability. Cells located
within the periosteum and bone marrow
can differentiate into fibroblastic, osteo-
genic or reticular cells14,24,37,59,70,93.
Periosteum outgrowth techniques allow
also the propagation of osteoclastic cells
from monocytes located in the perios-
teum91. Periosteal-derived mesenchymal
precursor cells generate progenitor cells
committed to one or more cell lines with
an apparent degree of plasticity and
interconversion10,69,78,85. Outgrowth cul-
tures of periosteum pieces favour the
coculture of different cell types58. In
culture expanded bone marrow and peri-
osteum cells are able to heal a segmen-
tal bone defect after being reimplanted
and induce osteogenic tissue when
seeded into diffusion chambers7,42,67,73.

Marrow cells

The first cell-based approaches for tissue
engineering of bone used unfractioned
fresh autologous or syngeneic bone mar-
row41,72,99. Because bone marrow is
known to contain osteogenic precursors,
its use was perceived to have the poten-
tial to lead to effective bone regenera-
tion. Various preclinical investigations,

and a limited number of clinical studies,
have confirmed this to be true46,72,73.
Human bone marrow osteoprogenitors
can be isolated and enriched by using
selective markers88,89.

Despite the success that has been
obtained using fresh marrow transfer,
one biologic consideration limits its
widespread application. Frequently, it is
impractical to obtain sufficient amounts
of bone marrow with the requisite num-
ber of osteoprogenitor cells. The reduc-
tion of healthy bone marrow components
that occurs as a consequence of aging or
disease is accompanied by a diminution
of osteogenic precursors33,82. As the suc-
cess of the in vitro use of bone marrow
explants is critically dependent on the
transfer of sufficient numbers of these
progenitors, this approach may be least
applicable in those situations where it is
most needed. It was shown that osteopro-
genitors represent approximately 0.001%
of the nucleated cells in healthy adult
marrow18,44. Therefore, techniques cap-
able of selecting, expanding, and admin-
istering the progenitor cell fraction
would be of great clinical benefit.

Stem cells

In different approaches, mesenchymal
stem cells were harvested, expanded in
culture, and then induced to differentiate
into cells that are involved in the repair
of damaged bone80. Osteoprogenitor and
stem cells can be expanded in a reason-
able time, which permits their potential
use in tissue engineering14,18,47,49,60. The
primitive stem cells renewing bony struc-
tures have been given a variety of names
including connective tissue stem cells,
osteogenic cells43, stromal stem cells76,
stromal fibroblastic cells93 and mesench-
ymal stem cells19. No nomenclature to
date is entirely accurate based upon the
developmental origins or differentiation
capacities of these cells, but the latter
term, although defective, appears to be
in a favour at the moment.

The stem cell of bone tissue is a
hypothetical concept with only circum-
stantial evidence for its existence, and
indeed, there seems to be a hierarchy of
stem cells each with variable self-renewal
potentials. Bone cell populations may be
derived from all bone surfaces by a vari-
ety of techniques, including mechanical
disruption, explantation and enzyme
digestion94. Mesenchymal stem cells have
the capacity for extensive replication
without differentiation, and they possess
a multilineage developmental potential
allowing them to give rise to not only
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bone, but cartilage, tendon, muscle, fat
and marrow stroma. Their isolation is
generally based on density gradient cen-
trifugation and cell culturing techniques.
Techniques have been developed to allow
mesenchymal stem cells (MSC) to be cul-
tured and expanded in number without
undergoing differentiation18,68. The phe-
notype of the cells is stable throughout
culture and there is no loss in osteogenic,
chondrogenic or adipogenic potential18,80.
This expansion properties make MSCs a
principally useful source of progenitor
cells for tissue engineering of bone and
other mesenchymal derivatives. Many
attemps have been undertaken to opti-
mize procedures for the amplification and
differentiation of progenitor cells. Some
studies have indicated that mouse marrow
fibroblastic cells implanted locally or
injected systemically may home to the
bony site and persist to participate in
regenerative processes79,97.

Despite the various advantages of
using intrinsic stem cells over other
sources of cells, there is some debate as
to whether large enough populations of
differentiated cells can be grown in vitro
rapidly enough when needed clinically.
At present, stem cells are not able to dif-
ferentiate definitively and to mineralize
in a bone-like manner under in vitro con-
ditions47,81. This must be considered as a
severe limitiation for the use of stem cells
in extracorporal tissue engineering.
Genetic engineering to shape gene
expression profiles may be, therefore, a
future route for the use of allogeneic cells
in human tissue engineering, but this
approach is at the moment far away from
clinical application.

Much more basic research is neces-
sary to assess the full potential of cell
therapy to reconstitute bone mass. It is
expected that many future studies will
be directed toward the development of
gene therapy protocols employing gene
insertion strategies34. The concept that
members of the bone morphogenetic
proteins (BMP) and the transforming
growth factor-beta (TGF-beta) superfam-
ily will be particularly useful in this
regard has already been tested by many
investigators53,71.

Chondroblasts

Because endochondral bone formation,
and frequently fracture repair, proceeds
through a cartilaginous intermediate,
some investigators have suggested that
the transplantation of committed chon-
drocytes would also lead to bone regen-
eration10. VACANTI et al. compared the

ability of periosteal progenitors and
articular chondrocytes to effect bone
repair94. Periosteal cells from newborn
calves seeded on a scaffold and
implanted in critical sized calvarial
defects generated new bone. Specimens
examined at early times contained mate-
rial that grossly and histologically
appeared to be cartilage. The scaffold
seeded with chondrocytes also formed
cartilage. However, no endochondral
ossification was observed, since the
transplanted specimens remained in a
cartilaginous state. Therefore, chondro-
cytes proved ineffective as a cell-based
therapy for tissue engineering of bone.
Because mature cartilage is thought to
produce factors that inhibit angiogenesis,
implants seeded with committed chon-
drocytes may prevent the endochondral
cascade by preventing vascular invasion.
Cells derived from cartilage seem to be
committed to retain their phenotype and,
therefore, are unable to differentiate
towards hypertrophic chondrocytes. In
contrast, when precursor cells from the
periosteum are provided, their primitive
state allows them to proceed through the
entire chondrogenic lineage, ultimately
becoming hypertrophic chondrocytes.
The molecular basis for the difference in
the phenotypic potential of these differ-
ent cell types remains mysterious and is
an area under active investigation.

Vascular cells

The additional use of vascular cells offers
several theoretical advantages over
approaches of extracorporal bone tissue
engineering exploiting only bone cells as
a single cell type. As a cell-based strat-
egy, endothelial progenitor cell therapy
promises to deliver both substrate
(endothelial cells) and the cytokines and
growth factors important for cell/scaffold
ingrowth. Endothelial progenitor cells are
capable of homing to bone areas of neo-
vascularization, thus exerting their effects
in sites in need of new blood vessel
growth6. Moreover, because these cells
are ubiquitously present, they exhibit no
unfavourable site effects when trans-
planted autologously. This makes them
appealing components for bone tissue
engineering in order to promote synergis-
tic vasculogenesis and bone formation.

Since endothelial progenitor cells were
first described by ASAHARA et al. in 1997,
the number of published studies specifi-
cally addressing these cells has rapidly
increased5. The initial studies with
endothelial progenitor cells made signifi-
cant progress in defining the origin and

lineage of these cells. There is strong evi-
dence to suggest that they originate in the
bone marrow and are selectively recruited
to sites of neovascularization.

The relative ease of isolating and
expanding mature endothelial cells (from
explanted blood vessels) or endothelial
progenitor cells (from bone marrow)
makes them an attractive source of auto-
logous vascular cells for the generation
of a vascularized scaffold complex in
vitro. Some studies have demonstrated
that endothelial progenitor cells form
tubules in extracellular matrices in vitro
and are able to induce vascular invasion
by host tissue if implanted2,66. Although
those studies were not intended to opti-
mize the formation of vascular matrices
for tissue engineering, the findings are
encouraging in light of recent work
showing the potential of axial vessels to
vascularize cellular scaffolds in vitro
and in vivo22.

Endothelial progenitor cells may also
have a potential role in the formation of
complex tissue-engineered vascularized
bone constructs. Tissue-engineered bone
constructs may be fabricated by combin-
ing autologous vascular cells and bone
cells in an optimized scaffold structure.
Studies with various cell lines indicated
that patency rates were strongly corre-
lated with the amount of host cells
(smooth muscle cells and endothelial
cells) incorporated into the graft32,48,52,95.
Endothelial progenitor cells are an attrac-
tive source of cells to line such com-
plexes. It was shown that the success of
grafts seeded with endothelial progenitor
cells was significantly greater than that of
non-seeded grafts50. VACANTI et al.
demonstrated also an in vivo success with
the placement of synthetic materials com-
bined with autologous endothelial pro-
genitor cells94. An additional advantage
of endothelial progenitor cell use is the
potential of thrombus regression, which
has implications for the prevention and
treatment of microvascular failures, once
a tissue-engineered bone construct is
transferred into the host site. Ongoing
research with endothelial progenitor cells
should help to improve the ex vivo forma-
tion of a ‘mature’ bone construct and
give insight into the process of new blood
vessel formation in vivo. With our recent
understanding of the physiological roles
of endothelial cells, reseachers should
consider the importance of vasculogen-
esis in extracorporal bone tissue engineer-
ing, especially in light of the fact that
cell survival balanced by nutrition is one
of the main limiting steps in scaling up
bone constructs for clinical use.
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Cellular interactions on biomaterials

A crucial mainstay of bone tissue engi-
neering is the biomaterial from which
scaffolds are fashioned. The ideal bio-
material for a scaffold should selectively
interact with specific transmembrane
receptors expressed by osteoblasts and
osteocytes. The underlying material of
the scaffold guides the behaviour of
these target cells and plays a crucial role
in cell adhesion, proliferation, migration
and cellular differentiation64.

Implanted materials may be stable with
time or ultimately degrade in response to
matrix remodelling enzymes released by
the cells45. Whether or not a material is
biodegradable, its surface properties will
determine the clinical fate after implanta-
tion. Two different features have impact
on cellular responses towards the mate-
rial: the three-dimensional topography
and the physico-chemical properties of
the surface. The three-dimensional topo-
graphy can be conceptualized as the size,
the shape and the surface texture of the
material. Various studies demonstrated
that bone cells are sensitive to the gross
topography of the underlying mate-
rial25,31,39,55,69. The finding that the shape
of the substratum on which cells are
growing affects their morphology and
migration goes back at least to the 1930s,
but it was not until the development of
microfabrication methods that a wide
range of defined surface structures could
be generated on a micrometer scale36.
Initially, the nanoscale materials were
fabricated in silica or silicon by photo-
lithography, but new methods of casting
and embossing these surfaces have been
emerged in the meantime35,38.

Cells respond to the substrate topogra-
phy by adapting their orientation, move-
ment and attachment kinetics21,30,100,102.
It has been suggested that the micrometre
topography of a material alone deter-
mines whether the material will elicit an
osteoblastic or a fibroblastic cell reaction.
Some types of cells such as osteoblasts
react to features as small as 10 nm, indi-
cating their amazing ability to detect such
small features101. The growth of epitenon
in micrometer-sized grooves embossed
onto a biodegradable polymer was
exploited to aid tendon healing100.

Recent developments in nanotechnol-
ogy have enabled studies on the beha-
viour of cells in nanoscale dimensions.
Engineered microscopic surface struc-
tures allow the control of interfacial
forces with different effective ranges38.
Predictions of the response of a cell to
nanofeatures are at the moment difficult

and the effects are often still unex-
pected. Many of the interfacial force
effects average out when the scale of
structures exceeds approximately
300 nm. Patterned surfaces on the nan-
ometer scale are commonly produced
using either electron beam lithography,
microcontact printing, micromachining
or vapour deposition.

It was demonstrated that a given type
of cell reacts in very much the same way
to a structured topography whether this is
made out of silica or any one of a wide
range of polymers or even metals. These
materials are known to adsorb different
kinds of macromolecule differentially. It
seems that topography regulates the
orientation and assembly of cytoskeletal
components within the cell. Thus, it is
not surprising that many cell functions
can be related to topographical features.

Several other material properties have
also been proposed to guide the biologi-
cal response of adherent cells. From cell
culture experiments on different bioma-
terials it is known that the cellular beha-
viour of osteoblasts depends on the
propensity of the physico-chemical sur-
face, which can be described in terms of
surface charge and surface energy (wett-
ability)13,28. It was found that osteoblasts
are most likely influenced by the proper-
ties of the surface charge65. The zeta
potential of the surface is regarded as an
important factor regulating the biocom-
patibility of the material. It has been sug-
gested that the zeta potential of calcium
phosphate ceramics is directly related to
the surface reactivity governing osteocon-
ductivity. Measurements of protein synth-
esis on different biocomposites have
revealed that the amount of matrix pro-
tein production per cell is reduced on sur-
faces with low zeta potentials27,65.

The interfacial tension, or wettability,
is measured as a property of the interac-
tion forces (or adhesion forces) between
different materials and their interaction
with the cohesion forces within the mate-
rials4. Thus, if the cohesion forces direc-
ted into the material are higher than the
attraction forces to the other material,
there will be little or no physical interac-
tion. This property is only marginally
related to the charge density on the sur-
face and is thus not directly related to the
zeta potential. A material with a positive
or negative surface charge is assumed to
be hydrophilic, whereas a surface with a
neutral charge may be more hydrophobic
in character. Osteoblasts at the material
surface may alter their membrane poten-
tial by a low concentration of physiologi-
cal ions at the surface. For instance,

DEKKER et al. used gas plasma treatment
to change the wettability of polytetra-
fluoroethylene (PTFE) surfaces, but did
not alter the zeta potential29. MOLLER et al.
investigated the impact of wettabilities on
the attachment and proliferation kinetics
of osteoblasts and found no direct rela-
tionship65. Recent investigations have
revealed that a reduced synthesis of col-
lagen is often associated with low wett-
abilities of substrates87. These studies
have suggested that increasing amounts
of polar components improve cell attach-
ment and matrix synthesis on artificial
surfaces83.

The material composition was found
to have distinct effects on osteoblast
behaviour57,105. Differences in the pro-
tein and ion composition of the outer
most functional layer of a surface
clearly affect the cellular response,
although the exact mechanisms involved
are not fully understood20,39,65,84,87.
Because the chemical composition of
the ionleachable materials is changed
over time, the potential release of ions
should be considered affecting the survi-
val and growth of osteoblasts58.

Numerous in vitro studies have
demonstrated that the attachment of
osteoblasts in the first hours after seed-
ing differs significantly depending on
whether the surface is protein-coated or
not31,60. Among others, fibronectin and
vitronectin are known to facilitate the
adhesion of osteoblasts. These extracel-
lular proteins act as a bridging element
between artificial surfaces and osteo-
blasts. Especially, Arg-Gly-Asp (RGD)-
containing peptides exhibit strong effects
on osteoblast adhesion, matrix matura-
tion and mineralization84. Some studies
have suggested that in contrast to com-
mon convictions increasing the number
of adhesion contacts between cells and
the extracellular matrix may not always
be advantageous77. If too few adhesive
ligands are available, cells cannot get a
strong enough grip to enable them to
move. However, if there are too many
ligands, cells adhere so firmly that they
remain stuck in place. Thus, intermedi-
ate adhesion seems to be required for
optimal cell migration77.

Matrix mineralization

In the final stages of osteogenic differ-
entiation in vivo a mature mineralized
extracellular matrix is produced9,62,81,90.
There is still much discussion as to how
to achieve a ‘bone-like’ mineralization
under in vitro conditions. Mineral accu-
mulation found in the extracellular space
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between cells may be only an artificial
enrichment of calcium and phosphate
and may not alone be representative for
a bone-like apatite formation. Cell-
mediated mineralized scaffolds enhance
the mechanical stability of the construct
and are advantageous in most clinical
situations.

For the assessment of extracorporal
bone-like mineral formation in tissue
engineering the precise molecular nature
of the crystallization process has to be
elucidated98. It is known that newly
formed mineral results from the synthesis
of mineral spherites. It was demonstrated
that matrix vesicles serve as initial sites
of calcification in all skeletal tissues.
These are membrane-invested particles of
100 nanometer diameter, located within
the extracellular matrix104. These nodules
are typical in mineralizing tissues and
have been described at the mineralization
front of woven bone17, in mantle den-
tin90, circumpulpal dentin74,92, and miner-
alizing cartilage75. Mineral spherites have
been identified at the initiation sites of
mineral formation, suggesting that they
function as nucleation core complexes for
mineral formation103. In early studies,
mineralizing osteoid appeared predomi-
nantly in multilayered structures that
formed nodules after an extended period
of time11,12. Although calcium phosphate
crystals accumulate on different materi-
als, a ‘bone-like’ mineral formation has
not conclusively been demonstrated.
Most studies on this issue do not differ-
entiate between the precipitation of cal-
cium phosphate and the formation of
bone-like apatite structure81. For the
refinement of bone-like substitutes the
mineralization process has to be studied
in more detail.

Biomineralization of cultured osteo-
blast-like cells is initially associated
with cell surface globules, while in vivo
it is closely associated with mineralizing
matrix vesicle formation. The smallest
mineral globuli produced by osteoblasts
cultured on polystyrene surfaces have
sizes comparable to the matrix vesicles
found in bone tissue97,98. Size and crys-
tal structure of newly formed mineral
were found to be similar in matrix vesi-
cle-mediated mineralization in vivo and
in vitro. Whether the mineralization pro-
cess found in cell culture systems resem-
bles the physiological situation remains
a matter of controversy. When main-
tained under suitable culture conditions,
certain bone-derived cells form bone-
like nodules in cell culture96. There is
growing evidence that some cell types,
such as primary periosteal osteoblasts,

are able to differentiate terminally in
vitro. The addition of glucocorticoids,
ascorbic acid, beta-glycerophosphate or
bone morphogenetic proteins was shown
to induce matrix mineralization in differ-
ent bone cell cultures8,23. Recent data
from mineralization assays indicate that
at least some of the actions of the above
mentioned substances on matrix minera-
lization are dependent on the stage of
cellular differentiation16. Beta-glycero-
phosphate, for example, has frequently
been used as an exogenous phosphate
source for cultured osteoblasts to synthe-
tize mineralized material. It is a sub-
strate for the alkaline phosphatase which
precipitates calcium phosphate in the
presence of calcium salts and phosphate
esters. When b-glycerophosphate-stimu-
lated osteoblast-like cells are exposed to
higher than physiological levels of inor-
ganic phosphate, it causes dystrophic
mineralization rather than a bone-like
mineral formation is induced1. A col-
lagen associated bone-like extracellular
mineral formation on artificial surfaces
has not been demonstrated up to now,
most likely because collagen fibres do
not mineralizes under these conditions62.
This should be considered as a recent
problem of bone-like structure formation
in extracorporal tissue engineering.
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