

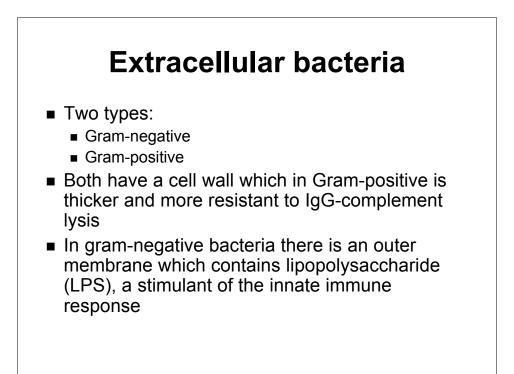
Response	Man	Mouse	
Th1 <i>IFN-γ</i>	lgG2	lgG2a, lgG3	
Th2 <i>IL-4</i>	lgG1, lgE	IgG1, IgG2b, IgE, IgA	

T-independent Ab responses

- IgM, IgG2 in man, IgM in mouse
- In man serum IgM 0.7-1.7 mg/ml, in mouse 0.2 mg/ml
- T-independent response develops only after 2 years of age
- At both mucosal surfaces and in circulation
- Directed primarily to polysaccharides, and is very important for control of capsular bacteria that cause pneumonia and meningitis. The multiple epitopes of the polysaccharide cross-links the surface Ig and turns on the B-cell.
- Unfortunately IgG2 does not opsonize and IgM is not as good as other subclasses, thus activation of the classical complement pathway is key in this response.

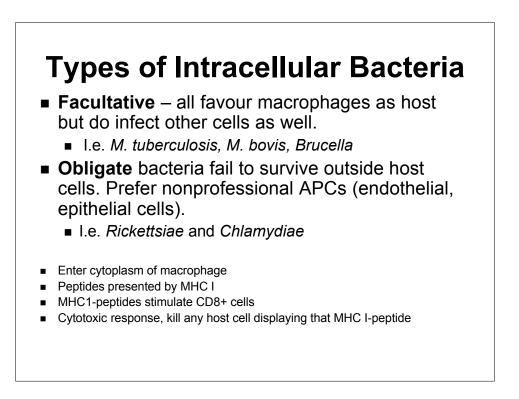
	Conventional and unconventional T cells in antibacterial immunity				
	Antigen -	presenting	molecule		
T-cells	Туре	Tissues	Polymorph ism	Ligand	Ligand loading
CD4	MHC II	Restricted APC	High	12–20mer peptide	Endosome
CD8	MHC la	Broad	High	9-mer	Cytosol
CD8	MHC lb	Broad	Low	N-f-met- 5-mer	Endosome cytosol
DN (CD8)	CD1	Restricted APC	Low	Lipid, lipoglycan	Endosome
DN (CD4)	CD1	Intermedi- ate	Low	Lipid, lipoglycan	?

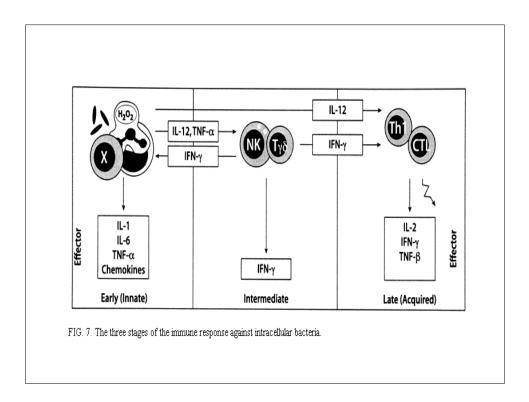
Importance of T-cells demonstrated in KO studies


Gene	Function	Primary deficiency	Secondary deficiency
RAG-1	Rearrange Ig, TCR	T and B cells	-
TCR-β	β Chain of TCR	$\alpha\beta$ T-cells	-
TCR-δ	δ Chain of TCR	γδ T-cells	-
β2microglobulin	Chain in MHCI	Surface MHCI	CD8+ T-cells
A β of MHCII	Chain in MHCII	Surface MHCII	CD4+ T-cells

Functions of conventional and unconventional T cells in antibacterial immunity

T-cells	In vivo function	Control of:
CD4αβ	IFNγ, CTL, help	Endosomal pathogens
CD8 $\alpha\beta$ (MHC Ia)	IFNγ, CTL	Cytosolic pathogens
CD8 $\alpha\beta$ (MHC lb)	IFNγ, CTL	Mycobacteria
DN αβ	IFNγ, CTL or IL-4, IFNγ	Endosomal and extra cellular
DN γδ	IFNγ, CTL	Endosomal and extra cellular


Alpha/Beta T-cells


- CD4+ Th1 and Th2 depending on bacteria.
- CD8+ cytotoxic
- Memory
- Bacteria can counteract CD4+ T-cell interaction via superantigens

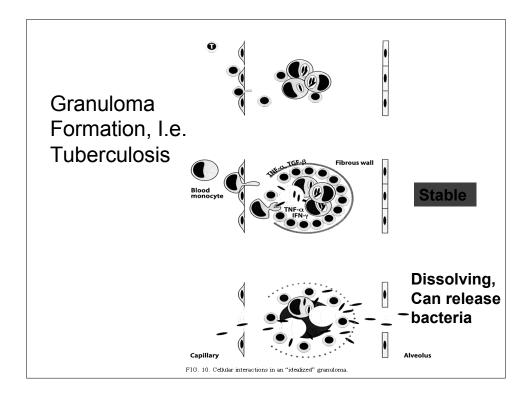
The location of bacterial replication influences the immune response

- Extracellular bacteria:
 - Ingested and killed by macrophage
 - Peptides presented by Class II
 - Class II-peptide stimulates CD4+ T-cells
 - Th1 cells (activate macrophages)
 - Th2 helper T-cells (stimulate B-cells, activate eosinophils). IgG or IgA production important in control of extracellular bacteria
 - Memory via either Th1 or Th2

CD8+ T cells in the Intracellular response Listeria monocytogenes

- Listeria monocytogenes infects macrophages and hepatocytes
- When L. monocytogenes moves from endosomes to the cytosol, they can process and present peptides via Class I
- Activated CD8+ T cells can kill the infected cells.
- Activated CD8 T-cells can produce IFN-γ and activate the macrophages to kill the *L. monocytogenes*
- CD8 Class I unrestricted response to a specific bacterial leader peptide *N-f-met*, presented by Class I-like, less polymorphic proteins.

Importance of CD8 cells in control of *L. monocytogenes*

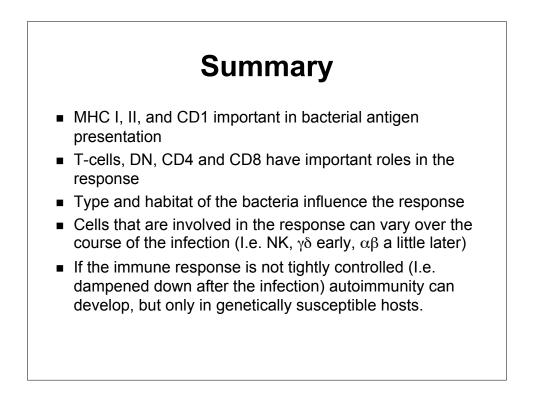

Mutant	CFU increase Day 4	CFU increase Day 21
RAG1-/-	>100	All dead
TCRβ-/-	100	100
TCRδ-/-	NS	NS
MHCII-/-	NS	NS
MHCI-/-	100	NS

of ii	D4 important in (ntracellular path Aycobacterium bovis	logens.
Mutant	Increase in CFU day 30	Increase in CFU day 90
RAG1-/-	100	All dead
TCRβ-/-	30	All dead
TCRδ-/-	NS	10
MHCII-/-	10	All dead
MHCI-/-	NS	10

CD4+ produce IFN-γ which activates the macrophage to kill the *M. bovis* BCG

Chronic Infection

- With intracellular infections the host can wall off the infected cells and form a granuloma
- Granuloma's are composed of infected phagocytes: A mixture of different T-cells, surrounded by a wall of primarily CD8 T-cells
- As the cells in the middle die due to necrosis, a caseous center forms.
- The whole lesion then becomes fibrotic and calcifies.
- This process prevents the infected cells from releasing the bacteria.


T-cell response- Gamma/delta

- Broad specificity: TCR Vγ9 and Vδ2 react both with a phospholigand on *M.tuberculosis* and group-A strept, but not strept D (MHC independent), 1-3% of lymphocytes
- Comprise ~4% of peripheral T-cells, but 14% of MALT T-cells, and even up to 40% of the T-cells in the colon, thus an important role in *mucosal defense*
- Key role in high dose TB (lung), *Listeria* (invariant TCR subset), *Chlamydia*
- These infections induce IFN_γ production by the γδ cells, which activate the macrophages

Host response -Autoimmunity

- If the bacteria have proteins with epitopes that are similar to the host cells, the induction of the specific immunity against the bacteria can lead to an autoimmune response. This is termed *molecular mimicry*.
- Bacteria can also cause host proteins to be modified (I.e. changes in CHO structures), which can then look foreign and lead to autoimmunity. This is called *altered self*.
- Bacterial infections can also lead to a change in location of a host protein from a "privileged" site (one protected from an immune reaction), resulting in autoimmunity.

Associations of infection with immune-mediated tissue damage			
Infection	HLA association	Consequence	
Group A Streptococcus	?	Rheumatic fever (carditis, polyarthritis)	
Chlamydia trachomatis	HLA-B27	Reiter's syndrome (arthritis	
Shigella flexneri, Salmonella typhimurium, Salmonellaen teriticiis, Yersinia enterocolitica, Campylobacter jejuni	HLA-B27	Reactive arthritis	
Borrelia burgdorferi	HLA-DR2, DR4	Chronic arthritis in Lyme disease	

