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List of important predicates from
Chapter 5

hp[l] l is a half-plane
α[l1, l2] lines bounding half-planes l1 and l2 are coinci-

dent
par[l1, l2] lines bounding half-planes l1 and l2 are parallel
Γ[l1, l2, l3] lines bounding half-planes l1, l2 and l3 meet at a

single point
coor[l1, l2, l3] lines bounding half-planes l1, l2 and l3 form a co-

ordinate frame
�l1, l2� lines bounding half-planes l1 and l2 form a gen-

eral line pair
�l1, l2� .

=�l3, l4� lines bounding half-planes l1, l2, l3 and l4 form
general line pairs that determine the same point

add[l1, l2, l3, a, b, c] OA + OB = OC in reference to the coordinate
frame formed by lines bounding half-planes l1, l2
and l3

mult[l1, l2, l3, a, b, c] OA · OB = OC in reference to the coordinate
frame formed by lines bounding half-planes l1, l2
and l3

powern[l1, l2, l3, a, bn] OA
n

= OB in reference to the coordinate frame
formed by lines bounding half-planes l1, l2 and l3

τ j(P,Q)[l1, l2, l3,m] m is fixed with respect to the coordinate frame
formed by lines bounding half-planes l1, l2, l3

β[l, l1, l2, l3] the point determined by � l, l2� lies between
the points determined by �l, l1� and �l, l3�

See Chapter 5 for full explanation of the above.
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Abstract

A spatial logic is any formal language with geometric interpretation. Re-
search on region-based spatial logics, where variables are set to range over
certain subsets of geometric space, have been investigated recently within
the qualitative spatial reasoning paradigm in AI.
Building on the results from [Pra99] on spatial logics with convexity, we ax-
iomatised the theory of 〈ROQ(R2), conv,≤〉, where ROQ(R2) is the set of reg-
ular open rational polygons of the real plane; conv is the convexity prop-
erty and ≤ is the inclusion relation. We proved soundness and completeness
theorems. We also proved several expressiveness results. Additionally, we
provide a historical and philosophical overview of the topic and present con-
temporary results relating to affine spatial logics.

Mathematics Subject Classification: 03B70, 03A05, 03B10, 03F03, 52A01.

Keywords: spatial logic, convexity, axiomatisation.

6



Declaration

No portion of the work referred to in this thesis has been
submitted in support of an application for another degree or
qualification of this or any other university or other institute
of learning.

7



Copyright

(i) The author of this thesis (including any appendices and/or schedules
to this thesis) owns certain copyright or related rights in it (the ”Copy-
right”) and s/he has given The University of Manchester certain rights
to use such Copyright, including for administrative purposes.

(ii) Copies of this thesis, either in full or in extracts and whether in hard or
electronic copy, may be made only in accordance with the Copyright,
Designs and Patents Act 1988 (as amended) and regulations issued un-
der it or, where appropriate, in accordance with licensing agreements
which the University has from time to time. This page must form part
of any such copies made.

(iii) The ownership of certain Copyright, patents, designs, trade marks and
other intellectual property (the ”Intellectual Property”) and any repro-
ductions of copyright works in the thesis, for example graphs and ta-
bles (”Reproductions”), which may be described in this thesis, may not
be owned by the author and may be owned by third parties. Such In-
tellectual Property and Reproductions cannot and must not be made
available for use without the prior written permission of the owner(s)
of the relevant Intellectual Property and/or Reproductions.

(iv) Further information on the conditions under which disclosure, publica-
tion and commercialisation of this thesis, the Copyright and any Intel-
lectual Property and/or Reproductions described in it may take place
is available in the University IP Policy (see http://www.campus.man-
chester.ac.uk/medialibrary/policies/intellectual-property
.pdf), in any relevant Thesis restriction declarations deposited in the
University Library, The University Library’s regulations (see http://-
www.manchester.ac.uk/library/aboutus/regulations) and in The Uni-
versity’s policy on presentation of Theses.

8



Matce



Acknowledgements

”It was the best of times, it was the worst of times, it was the age of wisdom, it was the age
of foolishness, it was the epoch of belief, it was the epoch of incredulity, it was the season of
Light, it was the season of Darkness, it was the spring of hope, it was the winter of despair,
we had everything before us, we had nothing before us, we were all going direct to Heaven,
we were all going direct the other way.”

Charles Dickens, A Tale of Two Cities

First, I wish to thank my abecedarians in Poland.

I wish to thank George Wilmers for being very understanding of my short-
comings and for teaching me the word quixotic. I wish to thank my supervi-
sor, Ian Pratt-Hartmann for being strict and demanding with me. This thesis
would not have happened if it was not for him. If I can ever consider myself
a researcher, it is mainly thanks to you Ian.

I am grateful to all the researchers I had contact with during my studies in
Manchester. I wish to thank my colleagues from both the School of Mathe-
matics and the School of Computer Science: David Picado, Juergen Landes
and Aled Griffiths — to name just a few — for, sometimes long and heated,
discussions on many topics and a lot of support.

Special thanks should go to my friends with whom I shared lots of ups and
downs outside the academia. Especially, to Maja and Deborah for being there
for me, and helping me a lot, when things were not going all too well.

I would like to thank my mum, for enduring all this and for being a source
of constant support. Even if it took me some time to really appreciate all she
does.

Last but not least, thank you Manchester, it has been an amazing adventure.

10



1
Introduction

Introduction This thesis concerns region-based spatial logic with convex-
ity. What is spatial logic? Informally, spatial logic can be viewed as a formal
language with geometrical interpretation, where variables range over geo-
metrical entities and relation and function symbols are interpreted as geo-
metrical relations and functions. In terms of geometry, it encompasses inter
alia Euclidean geometry and topology. As an example consider a language
with two primitive symbols, one denoting a ternary betweenness relation on
points and the other denoting the relation ”the distance from point a to point
b is the same as the distance from point c to point d”. This is one of the first
spatial logics, investigated by Alfred Tarski (see [TG99]) and called by him
Elementary Geometry.

Although the name may be an invention of the early twenty-first century,
spatial logics have rich and diverse background. The origins of spatial logic
can be traced to the early developments in formal geometry. The first, and
still the best-known, formalisation of geometry was undertaken in the Ele-
ments by Euclid. It was the development of the tools of model theory and
formal logic in the first half of 20thcentury that allowed researchers to probe
the inferential and expressive power of geometry. The novelty of this ap-
proach consists in changing the focus from geometry itself to the language
that describes it. This allows one to describe several languages and compare
them in terms of expressivity and tackle the problem of their computational
complexity with mathematically precise tools.

Constructing a spatial logic If we were to custom-build a spatial logic, the
first problem we are going to face is the choice of underlying geometric space.
Many approaches have been studied, in most of them however either Rn for
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some n or some more general topological space is considered. The choice of
R3 comes to mind first, due to its proximity to the space of our every-day
experience. It proves a very hard object of study, hence often times R2 is
studied in lieu of R3. Obviously, given its use throughout mathematics and
computer science, there are perfectly good reasons to study R2 in its own
right.

Having set on the underlying geometric space, say X , we are faced with
another decision. Should the variables range over elements of X or some
subset S ⊆ 2X? In the first case we would be talking about point-based spatial
logics, in the second about region-based spatial logics. There are, obviously,
good reasons to study point-based spatial logics. After all, one can argue
that, since points are “atoms” of most geometric spaces, it seems reasonable,
to construct logical formalisms that mirror the granular nature of geometric
spaces. Also, it would seem that our intuitions about the space we inhabit
and which ultimately serves as a basis for any mathematical interpolation
is inherently point-based. However, many a mathematician has pondered
the ”strange” status of points. For example, points in Rn have no dimen-
sion (or are of 0-dimension) and yet they serve as the building blocks for all
other many-dimensional geometric entities. After all, in our day-to-day spa-
tial reasoning tasks we do not rely on points as the building blocks of nature.
It is rather regions that we reason with. Ultimately then, it might be the id-
iosyncrasies of Greek mathematical tradition, pinnacle of which was Euclid’s
Elements, enforced by centuries of repetition, that is to blame for our attach-
ment to points.

The development of automated computing that has begun in the last cen-
tury exposed yet more weaknesses of the point-based approach. Point-based
spatial logics are in many cases computationally heavy. One can also argue
that, since point-based approach is often connected with numerical, quanti-
tative approach, data handling processes are much more error-prone. This
led some researches to pursue alternative, region-based approach. This field
of study has become known as qualitative spatial reasoning (QSR). Qualita-
tive in this context means that all the primitive relations and functions are
of non-numerical nature. The hope was above all that this will make spatial
reasoning more tractable from the computational point of view. For example
consider a language with a single relation symbol C understood as the con-
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tact relation. Intuitively two sets are in contact if their boundaries share at
least one point. This spatial logic was investigated under many guises, most
notably within the qualitative spatial reasoning paradigm.

As we saw, there are compelling reasons to choose region-based approach
over the point-based one. The question arises now as to what sort of regions
should we consider? We could obviously decide to consider all S ⊆ 2X for
a given space X . Are there any reasons to consider a special class of regions
rather than give them all an equal footing? One such reason is the admittedly
vague notion of well-behavedness. In what follows we attempt to make this
notion more precise. (More technical treatment of the topic is to be found
in chapter 2 where all the terms used here are given proper mathematical
definitions.)

First of all to smooth out the reasoning with regions, we would like to
weed out as many ”special cases” as possible. Assuming we are working
with some topological space, this can be done by considering only regular
subsets of that space as plausible region-candidates. This gets rid of many a
”strange” set e.g. of fractal nature. In the next step we need to decide whether
we consider our regions to contain their boundaries or not. In the first case we
end up with regular closed sets and in the second case with regular open sets.
From a formal point of view, this is not an essential choice. In the remainder
we will consider mainly regular open variants (and everything we say can be
applied mutatis mutandis to the regular closed case). However, in describing
work done in the past we often use regular closed variant as well.

The class of all regular open subsets of some topological space is already
a good choice for the well-behaved regions. Apart from what has been men-
tioned already, by a well-known result the elements of the class of regular
open subsets of some topological space form a Boolean Algebra. That is, op-
erations of sum, product and complement of regular open sets conform to
the laws of Boolean Algebra. We can do better still. We can look inside this
class for some better region-candidates.

Note that in other areas of computer science, the approximation of real
life objects as polygons is nearly universal. The concept of polygons is widely
used in computational geometry. It is also employed in many practical appli-
cations, like virtual reality, computer vision or virtual production.1 We single

1We do not deal in detail with these approaches here. For more information please consult
[PS85] for a gentle introduction to computational geometry and [BZ01] for computer vision
and virtual manufacturing applications.
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out two classes: (regular open) polygons and (regular open) rational polygons.
The fact that it is countable, makes the second subclass especially interesting
from the point of view of computer science applications.

The choice of geometric space and either point- or region-based approach
dictates the choice of relations and functions that we are presented with.
Within the qualitative spatial reasoning paradigm, non-numerical predicates
on regions are considered, most notably contact and connectedness. Tradi-
tionally spatial logics over languages containing relation and function sym-
bols interpreted as relations and functions invariant under certain geometric
transformations (Euclidean, topological, etc.) are called accordingly as e.g.
Euclidean, topological (spatial) logic. We follow this convention here.2 For
example, consider an affine spatial logic constructed in the following manner.
Start with a language with two primitive symbols conv and≤ let them denote
the following predicates defined on regular open rational polygonal subsets
of R2. The symbol conv(a) is to be understood as ”region a is convex” and
the symbol a ≤ b as ”region a is a subset of region b”. It is an affine spatial
logic, since convexity is an affine-invariant property. This spatial logic is in
fact one that we are concerned the most with in this thesis.

The last choice made in constructing a spatial logic concerns the syntacti-
cal complexity of the language we want to use. It can be (most likely) first-
order logic, propositional logic or a higher-order system. Also, languages of
non-classical logics are sometimes considered.

Investigating spatial logics Having defined a spatial logic, we would like
to explore its capabilities. We list some of the ways of doing so, summarised
in the form of the following problems.

P1 How can we characterize the valid formulas of the spatial logic? That is,
what is the theory of a given spatial logic?

P2 What is the expressive power of a spatial language? In particular, given a
language, what other geometrical relations can we express in terms of
primitive relations in that language?

2We note, however, a slight ambiguity here. First of all a relation/function invariant un-
der one type of transformation can be nevertheless invariant under many others (e.g. triv-
ially, any relation invariant under affine transformation is also invariant under Euclidean
transformation). Secondly, a spatial logic can contain a combination of primitives invariant
under different transformations.
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P3 What is the computational complexity of a given spatial logic? Most first-
order logics are, for obvious reasons, undecidable. However, restrict-
ing attention to certain fragments of those logics, might prove useful in
terms of computational tractability.

All this gives rise to the interesting challenge of finding a spatial system
balanced between expressive power and undecidability (here the prime ex-
ample is Tarski’s elementary geometry). Spatial logics can be interesting from
a viewpoint of formal logic but there are also some more practical motiva-
tions for developing them. Most of the motivations come from computer sci-
ence. The research in the field of qualitative spatial reasoning, developed within
the area of Artificial Intelligence can serve as the first example. One approach
uses a family of region connection calculi in their formalisation of spatial in-
ference processes. Within qualitative paradigm no (numerical) information
is required as to the distance between objects (thought of as regions, rather
than points). Instead, their position is described by providing the qualita-
tive information — for example which region is a part of which other and
which regions are disjoint. We note in passing that Euclid himself does not
make any use of numbers in the description of geometrical properties, thus
his work might be interpreted as non-quantitative, yet point-based, in charac-
ter. The theory of spatial databases provides the second more practical moti-
vation for developing (region-based) spatial logic. In computer applications,
spatial data is frequently stored in the form of polygons or polyhedra (that
is, sets of points definable by Boolean combinations of linear inequalities).
Development in this area of research gave rise to the concept of a constraint
database.

Thesis structure The order of the presentation is as follows.

Chapter 2 contains the necessary mathematical background and notational
conventions.

Chapter 3 presents a historical and philosophical background of logical in-
vestigations of affine geometry.

Chapter 4 is a presentation of more contemporary region-based spatial log-
ics, both topological and affine.
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Chapter 5 contains the main contribution of this thesis — an axiom system
for spatial logics with convexity and inclusion predicates (thus deal-
ing with problem P1 regarding the investigations of the properties of a
given spatial logic) together with some expressiveness results (P2).

Chapter 6 concludes the thesis and deals with some open problems (e.g.
connected to P3).

We also include an index of chosen concepts and individuals mentioned
in the thesis.
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2
Mathematical Background

In this chapter we provide the reader with basic definitions and theorems
used throughout the report. For more details consult [End01] [CK73] or
[Mar01]. The basic notions used within set theory can be found in [Sup74].
When needed, specific references are provided in the respective sections.

We introduce the following notational conventions. We use

(i) boldface capital letters A, B, C etc. to denote points of a given mathemat-
ical space;

(ii) lowercase italicised letters (mostly) from a mid section of the alphabet l,
m, n etc. to denote lines and half-planes of a given mathematical space;

(iii) lowercase italicised letters from the end of the alphabet x, y, z etc. to
denote variables of a given language;

(iv) lowercase italicised letters from the beginning of the alphabet a, b, c etc.
to denote elements of a given domain;

(v) lowercase Greek letters α, β, γ etc. to denote formulas from a given lan-
guage;

(vi) uppercase Greek letters Σ, Γ, Ψ etc. to denote sets of formulas from a
given language.

All the above can be combined with super- and sub- script notation. We
reserve the right to change some of these conventions and to introduce new
ones as we go.

17



2.1. LOGIC

2.1 Logic

Let L be a (first-order) language.

Definition 2.1.1 (Signature). A signature Σ of L is a set of symbols given by
specifying the following data:

(i) a set of m-placed function symbols F (m ≥ 1);

(ii) a set of n-placed relation symbolsR (n ≥ 1);

(iii) a set of constant symbols C.

Note that any or all of the sets F ,R, C might be empty.

We often denote a (first-order) language with the signature Σ by LΣ. We
sometimes refer to certain restrictions of a given first-order language L: the
quantifier-free fragment, the existential fragment (not containing the univer-
sal quantifier — also dubbed constraint language — denoted LcΣ) and the uni-
versal fragment (not containing the existential quantifier).

Definition 2.1.2 (L-term). The set of L-terms is the smallest set Term such
that:

(i) c ∈ Term for each constant symbol c ∈ C;

(ii) each variable symbol vi ∈ Term, for i = 1, 2, . . .;

(iii) if t1, . . . , tn ∈ Term and f ∈ F , then f(t1, . . . , tn) ∈ Term, where n is the
arity of f .

Definition 2.1.3 (L-formula). We say that φ is an atomicL-formula if φ is either

(i) t1 = t2, where t1 and t2 are terms, or

(ii) R(t1, . . . , tm), where R ∈ R, and t1, . . . , tm are terms and m is the arity of
R.

The set of L-formulas is the smallest set Formula containing the atomic for-
mulas such that:

(i) if φ ∈ Formula, then ¬φ is in Formula,

18



2.1. LOGIC

(ii) if φ, ψ ∈ Formula, then φ ∧ ψ and φ ∨ ψ ∈ Formula, and

(iii) if φ ∈ Formula, then ∃vi
φ ∈ Formula.

By the scope of the quantifier in a formula φ we mean the part of φ contained
within a pair of brackets, leftmost of which is placed immediately after the
quantifier. We drop the bracketing if it is clear from the context. We say that
a variable vi occurs freely in a formula φ, or that vi is free in φ, if it is not
within the scope of any quantifier ∃vi,∀vi; otherwise we say that vi is bound.
We write φ(v0, . . . , vn) (often abbreviated to φ(v) to denote a formula φ whose
free variables form a subset of {v0, . . . , vn}. We use the letters x, y, z, . . ., pos-
sibly with the superscripts, to denote the variables.

We call an L-formula an L-sentence if it has no free variables.

Definition 2.1.4 (L-Structure). LetL be a language. AnL-structureM is given
by the following data:

(i) a non-empty set Mcalled the universe, domain or underlying set ofM;

(ii) a function fM : Mn →M for each n-ary f ∈ F ;

(iii) a set RM ⊆Mm for each m-ary R ∈ R;

(iv) an element cM ∈M for each c ∈ C.

We often write

M = 〈M, fM, RM, cM : f ∈ F , R ∈ R, c ∈ C〉.

We refer to fM, RM, cM as the interpretations of the symbols f,R, c. By abus-
ing the notation we will drop the superscript whenever it is clear from the
context that we are talking about interpretations. We will use the notation
A,B,M,N, etc. to refer to the underlying sets of the structures A,B,M,N ,
etc.

Definition 2.1.5 (Assignment). Let 〈x0, x1, . . .〉 be an infinite sequence of vari-
ables. An infinite sequence 〈a0, a1, . . .〉 of elements of M is called an M-
assignment. Intuitively, we think of elements of anM-assignment as assign-
ing the value ai to the free variable xi. Given a term t and model M, the
interpretation of t inM under the assignment 〈a0, a1, . . .〉 is defined in the ob-
vious way.
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2.1. LOGIC

Definition 2.1.6 (Truth in a model). Let φ be a formula with free variables
from v = 〈vi1 , . . . vin〉, and let a = 〈ai1 , . . . , ain〉 ∈ Mn. We inductively define
M |= φ[a] as follows.

(i) if φ is t1 = t2, thenM |= φ[a] if tM1 [a] = tM2 [a];

(ii) if φ is R(t1, . . . , tm), thenM |= φ[a] if (tM1 [a], . . . , tMm [a]) ∈ RM;

(iii) if φ is ¬ψ, thenM |= φ[a] ifM 6|= φ[a];

(iv) if φ is ψ ∧ θ, thenM |= φ[a] ifM |= ψ[a] andM |= θ[a];

(v) if φ is ψ ∨ θ, thenM |= φ[a] ifM |= ψ[a] orM |= θ[a];

(vi) if φ is ∃vjφ(v, vj), thenM |= φ[a] if there is b ∈M s.t.M |= ψ[a, b];

(vii) if φ is ∀vjφ(v, vj), thenM |= φ[a] ifM |= ψ[a, b] for all b ∈M .

IfM |= φ[a] we say thatM satisfies φ[a] or φ[a] is true inM.

Definition 2.1.7 (L-Theory). An L-theory T is a set of L-sentences. We say
that a structureM is a model of T or that T has a modelM and writeM |= T

if M |= φ for all sentences φ ∈ T . By the theory of M we mean the set
{φ | M |= φ}. We often write Th(M) to denote the theory ofM.

Definition 2.1.8 (L-Embedding). Suppose that M,N are L-structures with
universes M and N respectively. An L-embedding η :M→N is an injective
function η : M → N preserving the interpretation of all the symbols of L.
More precisely:

(i) η(fM[a1, . . . , am]) = fN (η(a1), . . . , η(an)) for all f ∈ F and a1, . . . , an ∈
M, where m is the arity of f ;

(ii) 〈a1, . . . , an〉 ∈ RM if and only if 〈η(a1), . . . , η(an)〉 ∈ RN for all R ∈ R
and a1, . . . , an ∈M and n is the arity of R;

(iii) η(cM) = cN for c ∈ C.

A bijective L-embedding is called an L-isomorphism. If M ⊆ N and the inclu-
sion map is an L-embedding, we say either thatM is a substructure of N or
that N is an extension ofM.
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Definition 2.1.9 (Elementary Equivalence). We say that two L-structuresM
and N are elementarily equivalent and writeM ≡ N ifM |= φ if and only if
N |= φ for all L-sentences φ.

We have the following result.

Theorem 2.1.1. Suppose that j : M → N is an isomorphism. Then,M≡ N .

We define all set-theoretic notions in the usual way.

2.2 Boolean Algebra

Definition 2.2.1 (Boolean Algebra). A Boolean Algebra is a structure

B = 〈B,+, ·,−, 0, 1〉

with two binary operations + and ·, unary operation − and two constants 0

and 1, such that for all x, y, z ∈ B:

x+−x = 1;

x · −x = 0;

x+ (y + z) = (x+ y) + z;

x · (y · z) = (x · y) · z;

x+ y = y + x;

x · y = y · x;

x+ (x · y) = x;

x · (x+ y) = x;
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x · (y + z) = (x · y) + (x · z);

x+ (y · z) = (x+ y) · (x+ z).

A Boolean algebraBwithB having only one element is called a trivial Boolean
algebra or a degenerate Boolean algebra.

Definition 2.2.2 (Partially ordered set). The structure P = 〈P,≤〉, such that P
is a set and ≤ is a partial order is called a partially ordered set or a poset.

We can define a partial order ≤ on a Boolean algebra B by

x ≤ y if and only if x = x · y if and only if y = x+ y.

An atom in a Boolean algebra is a nonzero element x such that there is no ele-
ment y such that 0 < y < x. A Boolean algebra is atomic if every nonzero ele-
ment of the algebra is above an atom. We sometimes represent a Boolean al-
gebraB as a partial orderB = 〈B,≤〉 instead of the standardB = 〈B,+, ·,−, 0, 1〉.

Definition 2.2.3 (Complete Boolean Algebra). A Boolean algebra B = 〈B,≤〉
is called complete if for every A ⊆ B, inf A and supA exist.

Definition 2.2.4 (Subalgebra). Let B be a Boolean algebra and A ⊆ B. We say
that A is a Boolean subalgebra of B if +,−, ·, 0, 1 have the same meaning in A
as they do in B. We say that A is a dense subalgebra of B if, for every x ∈ B
with 0 < x, there exists y ∈ A such that 0 < y ≤ x.

2.3 Theory of Fields

Definition 2.3.1 (Monoid). A monoid is a structure S = 〈S,+, 0〉 with + a
binary operation and 0 a constant such that for all x ∈ S the following holds.

x+ (y + z) ≡ (x+ y) + z.

x+ 0 ≡ x, 0 + x ≡ x.
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When + is used to denote the binary relation in a monoid S, it is custom-
ary to refer to S as an additive monoid. We note that sometimes · is used in
stead of +. Then, the monoid is termed multiplicative. This convention carries
over to groups.

Definition 2.3.2 (Group). Let G = 〈G,+, 0〉 be a monoid. We call G a group if
for all x ∈ G there exists y ∈ G such that the following holds.

(x+ y ≡ 0 ∧ y + x ≡ 0)

Definition 2.3.3 (Abelian Group). Let G = 〈G,+, 0〉 be a group. We call G an
Abelian group if for all x, y ∈ G the following holds.

x+ y ≡ y + x

Definition 2.3.4 (Ring). Let 〈R,+, 0〉 be an Abelian group and let 〈R, ·, 1〉 be a
monoid. A structure R = 〈R,+, ·, 0, 1〉 is a ring if for all x, y ∈ R the following
holds.

x · (y + z) ≡ (x · y) + (x · z)

Note that 1 and 0 need not be distinct. A ring is commutative if the multiplica-
tive monoid is.

Definition 2.3.5 (Division Ring). Let R = 〈R,+, ·, 0, 1〉 be a ring. We say that
R is a division ring if

0 6≡ 1;

and for all x ∈ R there exists y ∈ R such that

(x · y ≡ 1 ∧ y · x ≡ 1)

We denote division rings by D.

Definition 2.3.6 (Field). By a field F we mean a commutative division ring.
By an ordered field we mean a field F together with a total order ≤ on F satis-
fying the following conditions (universal quantification is implied).

x ≤ y → x+ z ≤ y + z
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0 ≤ x ∧ 0 ≤ y → 0 ≤ x · y.

Definition 2.3.7 (Real Closed Field). Let F be an ordered field. F is called
Euclidean if every non-negative element in F is a square. An Euclidean field
is called real closed if every polynomial of an odd degree with coefficients in
F has a zero in F .

2.4 Topology

For more in-depth study of the field please consult [Kel75].

Definition 2.4.1 (Topological Space). A topological spaceX is a set, with a spec-
ified family of subsets τ s.t.:

1. ∅, X ∈ τ ,

2. if Uj ∈ τ for all j ∈ J , then
⋃
j∈J Uj ∈ τ ,

3. U ∈ τ and V ∈ τ , then U ∩ V ∈ τ .

The specified family of open sets τ is called the topology on X . A topological
space is sometimes referred to as (X, τ), where X is a set and τ is a topology
on X . If the topology is clear from the context we refer to the topological
space (X, τ) as X .

Definition 2.4.2 (Continuous Function). Let X, Y be topological spaces. A
function f : X → Y , where X, Y ⊆ Rn, is continuous if and only if for each
open subset V of Y , the subset f−1(V ) is open in X .

Let us now introduce some basic concepts used within topology.

Let (X, τ) be a topological space and V ⊆ X . By the complement of V , written
C(V ), we mean the following.

C(V ) = {x | x ∈ X, x 6∈ V }.

Definition 2.4.3 (Closed Set). Let X be a topological space. A set A ⊆ X is
closed if the complement of A is open.

The following is a very important notion from out point of view.
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Definition 2.4.4 (Regular open/closed set). Let X be a topological space. For
every u ⊆ X , the set r = (u)−

0 is called regular open and the set r = (u)0− is
called regular closed.

Definition 2.4.5 (Interior). Let (X, τ) be a topological space and V ⊆ X . We
define the interior of V , written V 0, as being the largest open subset of X , or
member of τ , included within V .

Definition 2.4.6 (Closure). Let (X, τ) be a topological space and V ⊆ X . We
define the closure of V , written V −, as the smallest closed subset of X , or
member of set of complements of τ , which includes V .

Remark. The following equivalence holds: V − = −((−V )0).

Definition 2.4.7 (Boundary). Let (X, τ) be a topological space and V ⊆ X .
The boundary of V , written b(V ) is defined as follows:

b(V ) = V − ∩ −(V 0).

Definition 2.4.8. Let 〈X, τ〉 be a topological space. A collection B of open
subsets of X is said to be a basis for the topology τ if every open set is a union
of members of B.

The separation axioms are additional conditions which may be required to a
topological space in order to ensure that some particular types of sets can be
separated by open sets, thus avoiding certain pathological cases. The follow-
ing lists names and associated conditions for topological spaces, which are
most important from our point of view.

Name Definition
Semi-regular space has a basis of regular open sets
Weakly regular space semi-regular and for any non-empty open set u,

there exists a non-empty open set v with v− ⊆ u

2.5 Affine and Projective Geometry

The very general notion of a mathematical space is notoriously hard to cap-
ture precisely. Very vaguely, a space consists of a set and a construction im-
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2.5. AFFINE AND PROJECTIVE GEOMETRY

posing some structure on that set. We base our description of affine and pro-
jective spaces primarily on [Ben95]. For this section only we adopt the fol-
lowing notational conventions: l(A,B) denotes the line through points A,B
and ‖ reads is parallel to (two lines are said to be parallel if their intersection
is empty).

Definition 2.5.1 ([Ben95], p. 123). An affine space A is an ordered triple 〈P,L,E〉,
where P is a nonempty set whose elements are called points and L and E are
nonempty collections of subsets of P called lines and planes, respectively,
satisfying the following:

1. If P and Q are distinct points, there is a unique line l such that P ∈ l

and Q ∈ l;

2. If P,Q and R are distinct noncollinear points, there is a unique plane
containing them;

3. If P is a point not contained in a line l, there is a unique line m such that
P ∈ m and m ∩ l = ∅;

4. If l,m and k are distinct lines with l∩m = ∅ andm∩k = ∅, then l∩k = ∅.

Definition 2.5.2. An affine plane A is an ordered pair 〈P,L〉, where P is a
nonempty set whose elements are called points and L is a nonempty collec-
tion of subsets of P called lines, satisfying the following:

1. If P and Q are distinct points, there is a unique line l such that P ∈ l

and Q ∈ l;

2. If P is a point not contained in the line l, there is a unique line m such
that P ∈ m and m ∩ l = ∅;

3. There are at least two points on each line;

4. There are at least two lines.

Familiar examples of affine planes include R2 and the rational coordinate
plane Q2.

Definition 2.5.3 ([Ben95], p. 144). A projective space P is an ordered pair
〈P,L〉, where P is a nonempty set whose elements are called points and L

is a nonempty collection of subsets of P called lines satisfying the following:
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1. If P and Q are distinct points, there is a unique line l such that P ∈ l

and Q ∈ l;

2. IfA,B,C andD are distinct points such that there is a pointE in l(A,B)∩
l(C,D), then there is a point F in l(A,C) ∩ l(B,D) [Pasch’s Axiom];

3. There are at least three points on each line;

4. Not all points are collinear.

Definition 2.5.4. A projective plane P is an ordered pair 〈P,L〉, where P is a
nonempty set whose elements are called points and L is a nonempty collec-
tion of subsets of P called lines satisfying the following:

1. If P and Q are distinct points, there is a unique line l such that P ∈ l

and Q ∈ l;

2. If l and m are distinct lines in L, then l ∩m 6= ∅;

3. There are at least three points on each line;

4. There are at least two lines.

Two usual examples of projective planes are the Euclidean hemisphere and
the so-called real projective plane, denoted PR2 (see [Ben95], p. 42). We now
show how PR2 is defined.

Definition 2.5.5. A projective point is a line in R3 that passes through the ori-
gin of R3. The real projective plane PR2 is the set of all such points.

The expression [a, b, c], in which the numbers a, b, c are not all zero, represents
the point P in PR2 which consists of the unique line in R3 that passes through
(0, 0, 0) and (a, b, c). We refer to [a, b, c] as homogeneous coordinates of P .

Affine and Projective Planes Given an affine plane 〈P,L〉 we extend it in
the following way. For each pencil φ of parallel lines we define a symbol Xφ

called a point at infinity. Let P ′ = P ∪ {Xφ | φ is a pencil of parallel lines in
L} and for each l ∈ L such that l ∈ φ, define l′ = l ∪ {Xφ}. Let l∞ = {Xφ | φ is
a pencil of parallel lines in L}. Define L′ = {l′ | l ∈ L} ∪ {l∞}.

We have the following two results. [Ben95], p. 43-44.
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Theorem 2.5.1. 〈P ′, L′〉 is a projective plane whenever 〈P,L〉 is an affine plane.

The proof is a straightforward check that all the axioms of projective plane
hold in 〈P ′, L′〉. Now consider the following construction. Let 〈P ′, L′〉 be a
projective plane. Choose l ∈ L′ and call it l∞. Let P = {p | p ∈ P ′ ∧ p 6∈ l∞}.
Now for each line l′ different than l∞ define l = {p | p ∈ l′ ∧ p 6∈ l∞}. Define
L = {l | l′ ∈ L′} (note that we have fixed the notation).

Theorem 2.5.2. If 〈P ′, L′〉 is a projective plane, then relative to any line l∞ in L′,
〈P,L〉 is an affine plane.

The proof is analogous. This time we are checking that all the axioms of the
affine plane hold in 〈P,L〉.

Recall that an n × n matrix A is invertible if there exists a n × n matrix
B with AB = I , where I is the identity matrix; A is orthogonal if AAT = I ,
where AT is the transpose of A (Cf. [Poo06]).

In the following definitions we confine our attention to the Euclidean plane.
In describing transformations we follow [Tea94].

Definition 2.5.6. An affine transformation of R2 is a function τ : R2 → R2 of
the form

τ(x) = Ax+ b,

where A is an invertible 2× 2 matrix and b ∈ R2.

The following is standard.

Theorem 2.5.3. An affine transformation maps straight lines to straight lines, pre-
serves parallelism and ratios of lengths along parallel straight lines. The set of affine
transformations forms a group under the operation of composition of functions.

We also give an example of more familiar (perhaps) Euclidean transforma-
tion. By an isometry of R2 we mean a function from f : R2 → R2 preserving
distances. It is a standard result that there are four isometries: a translation,
a rotation, a reflection, and a glide reflection.

Definition 2.5.7. A Euclidean transformation of R2 is a function τ : R2 → R2 of
the form

τ(x) = Ux+ b,

where U is an orthogonal 2× 2 matrix and b ∈ R2.
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Theorem 2.5.4. In R2, every isometry is a Euclidean transformation and every Eu-
clidean transformation is an isometry. The set of all Euclidean transformations forms
a group under the operation of composition of functions.

Obviously, every Euclidean transformation of R2 is an affine transforma-
tion of R2 (every orthogonal matrix is invertible). Hence affine properties
must be preserved under Euclidean transformations.

We now turn to the definition of a projective transformation. Let [a, b, c] =

{λ(a, b, c) | λ ∈ R} be a point in PR2 and let [A(a, b, c)] = {λ(A(a, b, c)) | λ ∈ R}
where A is an invertible 3× 3 matrix.

Definition 2.5.8. A projective transformation of PR2 is a function τ : PR2 → PR2

of the form
τ([a, b, c]) = [A(a, b, c)].

Analogously to the affine and Euclidean cases we have the following the-
orem.

Theorem 2.5.5. Projective transformations preserve collinearity, coincidence and
cross-ratio of points on a line. The set of all projective transformations forms a group
under the operation of composition of functions.

Affine Theorems in Euclidean plane This section lists a few important re-
sults in affine geometry (cf. [Ben95]). Most of these were originally formu-
lated within the context of the Euclidean plane. In our presentation we as-
sume that the underlying affine space is R2. Also, by AB we mean the Eu-
clidean distance between A and B.

Theorem 2.5.6 (Pappus). If lines l and m meet at O, with P,Q,R in l and S, T, U
in m, and if l(P, T ) ‖ l(Q,U) while l(Q,S) ‖ l(R, T ) then l(P, S) ‖ l(R,U).

Theorem 2.5.7 (Desargues I). Suppose thatA,B,C are distinct noncollinear points
with l(A,A′) ‖ l(B,B′) ‖ l(C,C ′), l(A,B) ‖ l(A′, B′) and l(A,C) ‖ l(A′, C ′).
Then l(B,C) ‖ l(B′, C ′).

Theorem 2.5.8 (Desargues II). Suppose that A,B,C are distinct noncollinear
points with l(A,A′) l(B,B′) l(C,C ′) meeting at a single pointO, l(A,B) ‖ l(A′, B′)
and l(A,C) ‖ l(A′, C ′). Then l(B,C) ‖ l(B′, C ′).
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O S T U

P

Q

R

Figure 2.1: Pappus’ Theorem in R2.

It is useful to view the Euclidean plane as the original example of an affine
space. As the affine properties were abstracted away, it became obvious that
certain desirable properties that held in the Euclidean plane might not hold
for many other affine spaces. We introduce the following convention. If Pap-
pus’ Theorem holds in an affine space it is called Pappian. Similarly, if both
Desargues’ Theorems hold in an affine space it is called Arguesian. We note
that Pappus theorem holds in any finite Arguesian plane. Also Pappus theo-
rem implies Desargues’ theorems ([Ben95], p. 66).

Definition 2.5.9. We say that OC is the result of addition of OA and OB and
write OA+OB = OC if and only if the following lines can be found (see Fig.
2.3):

(a) l, l′ meeting at a single point O;

(b) m parallel to l′;

(c) lA such that �lA, l′�= A, parallel or coincident with l;

(d) lB such that �lB, l′�= B, and such that lB, l,m meet at a single point;

(e) lC such that �lC , l′�= C, parallel or coincident with lB.

Definition 2.5.10. We say that OC is the result of multiplication of OA and
OB and write OA ·OB = OC if and only if the following lines can be found
(see Fig. 2.4):
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A A’

B B’

C C’

(a) Desargues’ Theorem I

A

A’

B B’

C

C’

(b) Desargues’ Theorem II

Figure 2.2: Two Desargues’ Theorems in R2. In a projective space these merge
into one theorem.

(a) l1, l2, l3 bounding a triangle;

(b) lA such that �lA, l3�= A, parallel or coincident with l2;

(c) lB such that �lB, l3�= B, and such that lB, l1, l2 meet at a single point;

(d) lC such that �lC , l3�= C, parallel or coincident with lB and such that
lC , lA, l1 meet at a single point.

The coordinatisation of affine planes forms an important part of the field.
The following sequence of results describes relation between division rings,
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Figure 2.3: OA + OB = OC.
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l1

l3O

J
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lA
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A B C

Figure 2.4: OA ·OB = OC.

affine planes and coordinatisation. We start with the fundamental theorem of
affine geometry, due to Hilbert.

Theorem 2.5.9 (Fundamental theorem). Relative to two fixed points O and I any
line in an Arguesian affine plane is a division ring.

Here, addition and multiplication are defined on the line as in Def. 2.5.9
and Def. 2.5.10 and O and I are the additive and multiplicative identities,
respectively. The following is the strengthening of the fundamental theorem.
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Theorem 2.5.10. Relative to two fixed points O and I any line in a Pappian affine
plane is a field.

The next two theorems describe the specific conditions relating coordinatisa-
tion of affine planes.

Theorem 2.5.11. For every division ring D a coordinate plane D2 is an Arguesian
affine plane.

Theorem 2.5.12. Every Arguesian affine plane can be considered as a coordinate
plane upon renaming its points as ordered pairs of (division) ring elements and as-
sociating a linear equation with each line.

In this context we also note the following theorem by Wedderburn.

Theorem 2.5.13. Every finite division ring is a field.

We finish this section with an important construct in affine and projective
geometry. We shall return to the following notions for example in section
3.2.2 while describing the historical development of affine and projective ge-
ometries in Chapter 3.

Definition 2.5.11. Given three collinear points A,B,C let L be a point not ly-
ing on the line throughA,B,C. Let any line throughC meet l(L,A), l(L,B) at
M,N respectively. If l(A,N) and l(B,M) meet at K and l(L,K) meets l(A,B)

at D, then the above construction is called the harmonic ratio of A,B,C,D and
D is called the harmonic conjugate of C with respect to A and B.

Definition 2.5.12. LetA,B,C,D be four collinear points. The anharmonic ratio
(A,B;C,D) is defined as follows AC·BD

BC·AD .

The importance of harmonic ratio lies in its non-metrical character. If pro-
jective geometry can be thought of as non-metrical in essence, the harmonic
conjugate is a projective invariant that does not involve any numerical values
in its definition. It can be stated in terms of anharmonic ratio (also called a
cross-ratio) in the following way: (A,B;C,D) = −1.

2.6 Convexity

Definition 2.6.1. A non-empty set S ⊆ R2 is called convex if, for all
(ζ1, ζ2), (ζ ′1, ζ

′
2) ∈ S and for all α ∈ [0, 1] we have:

(α · ζ1 + (1− α) · ζ ′1, α · ζ2 + (1− α) · ζ ′2) ∈ S.
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A D B C

K
N

M

L

Figure 2.5: Point D is the harmonic conjugate of C with respect to A and B.

The empty set is taken to be non-convex.

In other words for any two points a, b in S the straight line segment be-
tween a and b is also in S. That is, for every λ, µ ≥ 0 with λ+ µ = 1, we have
that λa+ µb ∈ S.

(a) Convex set (b) Non-convex set

Figure 2.6: An example of convex and non-convex sets in R2. (Image courtesy
of Wikipedia. Creative Commons License.)

We now list several important properties related to convexity (cf. [Web94],
[Egg58]).

Lemma 2.6.1. Let A ⊆ R2 be a convex set and let τ be an affine transformation.
Then τ(A) is convex.
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Proof. Let λ, µ ≥ 0 with λ + µ = 1. If x, y ∈ τ(A) then x = τ(a), y = τ(b)

for some a, b ∈ A. Since A is convex, λa + µb ∈ A. Since τ is an affine
transformation (and hence linear) λx+µy = λτ(a)+µτ(b) = τ(λa+µb). Thus
λx+ µy ∈ τ(A).

Definition 2.6.2. Let A ⊂ Rn. By the convex hull of A, denoted ch(A) we mean
the intersection of all convex sets in Rn containing A.

Obviously for any set its convex hull is unique.

Theorem 2.6.1 (Helly). Let A be a finite class of N convex sets in Rn such that
N ≥ n+ 1 and each n+ 1-element subclass of A has a non-empty intersection. Then
all N elements of A have a non-empty intersection.

Figure 2.7: A very simple example of Helly’s Theorem in R2.

2.7 Spatial Logic

This section contains definitions and basic results related to region-based spa-
tial logics. Roughly speaking, given a languageL anL−model Minterpreting
the primitives of L geometrically counts as spatial logic. We choose to refer
to elements of the domain of a region-based spatial logic as regions. We are,
however, interested in ruling out as many degenerate sets (e.g. of fractal na-
ture) as possible. There are two main reasons for doing so. Firstly, we want
regions to model objects of every-day experience. Secondly, good region can-
didates should be characterised by some sort of regularity both in terms of
shape and in terms of their properties. We hope that what follows makes
these abstract criteria more concrete. We recall the definition of a regular open
set.
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Definition 2.7.1 (Regular open/closed set). Let X be a topological space. For
every u ⊆ X , the set r = (u)−

0 is called regular open and the set r = (u)0− is
called regular closed.

So what do we mean by shape regularity? Let us consider the example of
regular open subsets of R2. These, informally speaking, do not have ”cracks”
or ”pin-holes” that can characterise an arbitrary subset of R2 (see 2.8).

(a) regular open sets (b) non-regular open sets

Figure 2.8: Examples of Regular and Non-regular Open Sets of R2 (after
[PH07]).

The following theorem (see [Kop89]) exemplifies what we mean by regularity
in terms of properties.

Theorem 2.7.1. The set of regular open sets in X forms a Boolean algebra RO(X)

with top and bottom defined by 1 = X and 0 = ∅, and Boolean operations defined by
x · y = x ∩ y, x+ y = (x ∪ y)−0 and −x = (X \ x)0.

That is, the behaviour of the members of RO(X) conform to certain rules,
the rules of the Boolean Algebra. Let us consider a specific example. Let
X = R2, then the product of two regular open sets is their set-theoretic inter-
section, the sum of two regular opens is, roughly speaking, the union of the
considered sets with internal boundaries removed. Note that we interpret
partial order as set-theoretic relation ⊆. (The example behaviour of sum in
RO(R2) is shown in Figure 2.9.) We might want to take into consideration
certain types of regular open sets. In what follows we present three main
candidates.
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Figure 2.9: The behaviour of sum in RO(R2), see [PH07].

Definition 2.7.2. Consider the language LΣ with Σ = {<,+, ·, 0, 1}with stan-
dard arithmetic interpretation. A set u ⊆ Rn is called semi-algebraic if there
exists an LΣ-formula φ(x̄, ȳ) in n+m variables x̄, ȳ and m-tuple of real num-
bers b̄ such that

u = {ā ∈ Rn | the (n+m)−tuple satisfies the formula φ(x̄, ȳ)}.

We are only interested in certain regular-open semi-algebraic subsets of Rn

(the set of all semi-algebraic subsets of Rn is denoted by ROS(Rn)). Observe
that any (n − 1)-dimensional hyperplane of Rn cuts it into two regular open
half-spaces. Hence the following is well-defined.

Definition 2.7.3 (Polytope). A basic polytope in Rn is the product, in RO(Rn),
of finitely many open half-spaces. A polytope in Rn is the sum, in RO(Rn), of
any finite set of basic polytopes.

We denote the set of polytopes in Rn by ROP (Rn). We refer to polytopes in
R2 as polygons and polytopes in R3 as polyhedra. If the lines bounding these
half-spaces have either rational or algebraic coefficients, we end up with two
more region candidates: rational and algebraic polytopes. We denote the set
of rational polytopes in Rn by ROQ(Rn) and the set of algebraic polytopes in
Rn by ROA(Rn). Observe that ROQ(Rn) ⊂ ROP (Rn), ROA(Rn) ⊂ ROP (Rn)

and ROP (Rn) ⊂ ROS(Rn). It is an easy result that ROS(Rn) is a Boolean
subalgebra of RO(Rn). Hence we have the following result.
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Theorem 2.7.2. ROX(Rn) is a Boolean subalgebra ofRO(Rn), whereX ∈ {P,Q,A, S}.
We stress that if in the above case we take X = ∅ we obtain RO(R2). In
what follows we mainly focus on spatial logics with the domain ROQ(R2)

and ROA(R2).

We introduce the following convention. By a topological spatial logic we
mean a language that contains primitives interpreted as relations or functions
invariant under topological transformations. Similarly, by an affine spatial
logic we mean a language with primitives interpreted as relations or func-
tions invariant under affine transformations, and so on. If it does not lead to
confusion, we sometimes refer to a given spatial logic using one of its primi-
tive relations or functions. One example is convexity spatial logic, so called,
because it contains a predicate interpreted as convexity.

2.7.1 Convexity logic

This section introduces convexity spatial logics, the subject of investigation
of this thesis. Let Lconv,≤ be the first-order language with two primitive pred-
icates: binary ≤ and unary conv; and two constant symbols: 0 and 1. First
consider the following structure M = 〈RO(R2),≤M, convM, 0M, 1M〉 where
the primitives are given the following interpretation.

≤M= {〈a, b〉 ∈ RO(R2)×RO(R2) | a ⊆ b};

convM = {a ∈ RO(R2) | a is convex};

0M = ∅;

1M = R2.

We shall not work directly with M but with certain substructures of M.

Definition 2.7.4. We define the model MX to be a substructure of M with the
domain ROX(R2), where X ∈ {P,Q,A}. Note that in case when X = ∅ we
obtain M.
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We sometimes refer to MP ,MQ,MA as the polygonal, rational and algebraic
model, respectively.
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3
History

3.1 Introduction

This chapter concerns the historical and philosophical background of logi-
cal investigations of affine geometry. For the sake of presentation we have
divided our historical analysis into three periods. The early period, concern-
ing mostly non-logical geometrical or philosophical ideas, covers roughly the
time up until the first decade of the 20thcentury. The transitional period, so-
called because the methods of modern mathematical logic were still being
developed then, spans from the end of the early period to the beginning of
the second half of the 20thcentury. The modern period covers the time from
the 50s to the 90s of the past century. Obviously this division is only conven-
tional and very imprecise: a lot of work done within the transitional period
can be justly claimed to belong to the modern period in terms of approach.

The end of the 19thcentury saw a rapid development of foundations of ge-
ometry. Out of the medley collectively refered to as geometria situ three sepa-
rate geometrical theories began to emerge: topology and projective and affine
geometry. The mathematical terminology relating to these theories was not
fixed yet, so the same ideas came in many guises. This arises when one anal-
yses the historical sources. For example, what Russell and Whitehead call
descriptive geometry, is in fact referred to these days as affine geometry. The
name descriptive seems to come from the very fact that within this approach
the quantitative notions are replaced with qualitative ones. To add confusion,
Russell refers to some projective properties by calling them descriptive many
times, see e.g. [Rus97], p. 29. Also, Whitehead describes descriptive geom-
etry as any geometry in which two straight lines do not necessarily intersect
and hence he does not explicitly refer to the notion of descriptive space being
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qualitative in character. In the sequel, we shall give precedence to the term
affine, as the term descriptive is nothing more than a historical curiosity. Obvi-
ously, whenever we do mention the term descriptive geometry” — for reasons
of historical accuracy, say — it is to be read affine as these terms are treated
coextensive. This also applies to any other term which is now known by a
different name to the present day mathematical community.

We should note that since research on topological formalisms is the dom-
inant theme in spatial logics and intertwines closely with research on affine
spatial logics, we decided to give a brief overview of historical development
of topological ideas. However, it is not the main theme of our investigations.
To the best of our knowledge there is no such survey relating affine and pro-
jective ideas in the context of modern formal logic.

We wish to emphasise two main ideas coming out of our historical anal-
ysis. The first is the emergence of point-free, region-based approach to ge-
ometry, most notably in Whitehead’s and Leśniewski’s works. The second,
perhaps more surprisingly, is the emergence of the qualitative approach to
geometry. This we observed in the works of Bertrand Russell and, less ex-
plicitly, in Whitehead’s proposition.

3.2 The Early Period

Euclid’s Elements are usually thought to be the most influential book in the
history of geometry. Euclid’s work set the scene for the development of ge-
ometry for the next centuries to come. Geometry was presented there as
based on a set of assumptions (postulates) and one primitive notion (that
of a point). Arguably the most controversial of these postulates states that,

given a line l and a point P not on that line there exists exactly one
line m through P which is parallel to l.1

This postulate is variously called, the parallel postulate, Euclid’s axiom or
simply the fifth postulate. We use all of these in our description. This section
presents the developments in geometry and philosophy of mathematics in
the 18thand 19thcenturies. Since our interest lies in setting geometric ideas in
the context of logic, we decided to follow Bertrand Russell’s description of

1There are many equivalent formulations of this postulate. Euclid himself chose a differ-
ent one, in terms of right angles.
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this period.2

3.2.1 Idealism vs. Empiricism

Immanuel Kant’s ideas on the philosophy of geometry had a tremendous im-
pact on the whole field, so it is worth rehearsing them here. Philosophy from
that period saw a shift from ontological to epistemological issues. Questions
regarding human knowledge became more and more prominent. One of the
most fundamental questions was the one asking about the origin of human
knowledge. In general, one can recognise two approaches to this problem.
One is that the nature of all human knowledge is empirical. This view, usu-
ally referred to as empiricism was predominant (especially prior to Kant) on
the British Isles and advocated by philosophers such as David Hume or John
Locke. The second possibility is to claim that at least certain knowledge of
the real world is independent of human experience. This was the view held
by Kant and it is usually branded as idealism or realism. Kant is famous for
his somewhat idiosyncratic philosophical jargon. In his main philosophical
works he deals with a combination of two categories of propositions. The
first category concerns relation of a predicate and a subject of a proposition,
This divides all propositions into analytic and synthetic. A proposition is an-
alytic if its predicate is contained in its subject (All bachelors are unmarried is a
well-known example); it is synthetic if it is not analytic (e.g. All bachelors are
unhappy). The criterion for a second category concerns conditions of validity
of a proposition. Here Kant divides all propositions into a priori (necessary),
where the truth conditions do not depend on our experience, and a posteri-
ori, where they do. This gives us a fourfold classification of prepositions: a
priori analytic, a priori synthetic, a posteriori analytic and a posteriori syn-
thetic. One of Kant’s greatest contributions to the epistemology is his argu-
ment for the existence of synthetic a priori propositions. As an example he
uses mathematics and specifically, geometry. Kant claims that the properties
of the external world as we perceive it are not independent from us; in fact
we perceive reality through the categories imposed by our intellect. Geome-
try for Kant is a science of space.3 There is nothing contingent in this science.

2Russell’s book Foundations of Geometry — based on his doctoral dissertation — concerns
mainly the period in history of mathematics a few decades after Immanuel Kant, when the
new idea of non-Euclidean geometry was born and developed.

3We note in passing that the influence of Kant on mathematics goes beyond the realm of
geometry. Sir W.R. Hamilton, the discoverer of quaternions, thought of algebra, in Kantian
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The statements of geometry, he says, are necessary (and hence a priori) and
yet they extend our knowledge (and hence are synthetic). For him, space and
time are forms of intellect and do not belong to the external world. This is the
famous ”Copernican revolution in philosophy”. We should mention that in
his text, Russell clearly distinguishes between logical (epistemological) and
psychological components in Kant’s analysis. Russell states that his interests
lie in the logical part.

3.2.2 Three periods of geometry

Russell follows Klein4 in dividing the history of geometry after Kant into
three periods: synthetic, metrical and projective.

The synthetic period

For centuries mathematicians were trying to deduce the fifth postulate from
the others. The early 19thcentury saw a different approach to the problem.
Instead of trying to prove the fifth postulate mathematicians, most notably
Johann Bolyai and Lobatchevsky, negated the postulate and tried to deduce
contradiction from the resulting system. This however proved impossible
and the obtained systems were shown to be consistent (in a pre-logical sense).
That is how the idea of non-Euclidean geometry obtained a solid mathemati-
cal footing. The period in which foundations of non-Euclidean geometry had
been laid Russell calls synthetic. The name alludes to the fact that all the re-
sults were developed within the axiomatic (also called synthetic) paradigm.5

Gauss is often considered an originator of the modern idea of the non-
Euclidean geometry. He did not publish any mathematical treatise on the
topic; however his ideas influenced Wolfgang Bolyai, a Hungarian mathe-
matician to work on these issues. It was Bolyai’s son, Johann, who in an 1832
publication essentially brought into being the field of non-Euclidean geom-
etry. Working in parallel, or in fact slightly ahead of Bolyai, was a Russian
mathematician N. Lobatchevsky, who presented the following version of the
negation of Euclid’s postulate:

With respect to a given straight line, all others in the same plane,
may be divided into two classes, those which cut the given straight

terms, as a science of time.
4[Rus97], Preface.
5[Rus97], p. 13.
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line and those who do not cut it; a line which is the limit between
the two classes is called parallel to the given straight line. It fol-
lows that, from any external point two parallels can be drawn, one
in each direction.6

The constructions presented independently by Bolyai and Lobatchevsky
underlie in fact just one type of the non-Euclidean geometries: hyperbolic.
One of the well-known properties of hyperbolic geometries is that the sum
of internal angles in a triangle is less than π.7 According to Russell, the emer-
gence of hyperbolic geometry in the synthetic period is in fact a mere a by-
product of establishing the independence of the fifth postulate from the oth-
ers.8

The metrical period

The main figures in the second period — Riemann and Helmholtz — were
more influenced by Gauss and Herbart, a German philosopher, than by Bolyai
or Lobatchevsky.9 This period breaks with the synthetic paradigm. The mo-
tivation for geometers becomes even more philosophical and the main aim
was to show the empirical nature of the accepted axioms.10 The method was to
define space in more general terms and abstracting from intuitions, develop
and apply new mathematical tools to deal with these generalised notions.
The most important innovations were a concept of a manifold, a dimension
and a curvature of a space. Riemann

regarded space as [...] a magnitude, or assemblage of magnitudes,
in which the main problem consists in assigning quantities to the
different elements or points, without regard to the qualitative na-
ture of the qualities assigned.11

thus justifying the name metrical assigned to this period. In spite of the inten-
tions of Riemann and Helmholtz, Russell tries to show that their method con-

6[Rus97], p. 11.
7We note in passing that there are several models of hyperbolic geometry and the so-

called inversive geometry serves as one of these. It is sometimes presented as a close relative
of the projective geometry. It is interesting to observe that Russell makes no mention of the
inversive geometry.We do not intend to introduce this notion here. For an introduction to
inversive geometry see [Cox71].

8[Rus97], p. 12.
9[Rus97], p. 13.

10[Rus97], p. 13.
11My italics. [Rus97], p. 15.
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tains a non-empirical component. He points out that implicit in the system
are three a priori axioms: the axiom of free mobility, the axiom stating that the
number of dimensions is finite and is an integer and the axiom stating that
two points are in a unique relation — distance.12 Russell regards Helmholtz
as more important philosophically than mathematically for the development
of metrical period.13 (Note that Helmholtz was a scientist working in many
fields and his empirical approach to geometry stems from his physiological
studies.) Helmholtz gives a list of axioms, empirical in nature, from which
all the main results of Riemann follow. This is however harshly criticised by
Russell. The last metrical mathematician mentioned by him is Beltrami. His
work is more important mathematically (he deals with the notion of negative
curvature of space) than philosophically.14

The projective period

The last period distinguished by Russell does away with the notion of dis-
tance altogether. It is dubbed projective and is by far the most important ac-
cording to Russell.15 He complains that this period did not have a philosoph-
ical exponent comparable to Riemann or Helmholtz. As we indicated, in his
book Russell does not clearly distinguish between what we now call projec-
tive and affine geometries. Since at the time topology as a separate branch
of mathematics had not yet been clearly defined, Russell makes no mention
of it either (even though he is clearly conversant with homeomorphism-like
transformation — see [Rus97], p.18). In one of his later texts he does dis-
tinguish between projective and affine geometries but notes that there is not
much of a difference between these two.16 It is not quite clear to which of the
three mentioned branches of geometry his remarks could be applied more
accurately.

Arthur Cayley is usually credited as the initiator of a modern approach to
the projective geometry. A staunch supporter of Euclidean geometry, he saw
his goal in establishing the notion of distance using purely descriptive terms.

12[Rus97], p. 22.
13[Rus97], p. 23.
14[Rus97], p. 25-27.
15[Rus97], Preface; also various comments throughout the text.
16Russell was a prolific author. He wrote several books touching on the foundations of

mathematics, all of them with confusingly similar titles (perhaps that is where he also follows
Kant’s example). In this case we mean his Principles of Mathematics.
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His importance lies in showing how ”metrical is only a part of projective”.17

Russell devotes a considerable amount of time and energy to explaining how
the quantitative notions used in projective geometry are merely notational
conventions, and that there is no real meaningful connexion, under the threat
of vicious circularity, between them and the notion of distance as known in
ordinary metrical geometry. In his explanation Russell refers to the use of
the notion of an anharmonic ratio as an invariant in projective geometry.18

Problems of that nature pushed mathematicians to search for a non-metrical
projective invariant. Finally, the notion of harmonic ratio was introduced
(cf. our Definition 2.5.11).19 In projective geometry one cannot distinguish
between a collection of fewer than four points from any other on the same
line.20 We note that as a result, Russell considers the now standard construc-
tion relating the Euclidean space with projective geometry by means of the
line at infinity as a purely technical result, with no philosophical significance.

We note that Russell argues against the first of Kantian distinctions of
propositions: on analytic and synthetic. Kant developed his ideas in times
when logic was synonymous with Aristotelian syllogistics, says Russell, and
syllogistics had a big disadvantage when compared to modern logic: it con-
cerned only the propositions of the form S x P, where S, P are the subject and
the object and x represents the copula, possibly with the addition of negation.
Since formal logic is able to represent more complicated sentence structure,
the Kantian distinction cannot apply. As regards the distinction between a
priori and a posteriori, according to Russell, the three implicit axioms men-
tioned in the section describing the metrical period form a basis of any geom-
etry. Since projective geometry is logically prior to metrical, Russell rephrases
these axioms in projective terms. He claims that these axioms are logically
necessary and independent from any experience and hence fall into category
of a priori propositions.21

17[Rus97], p. 29.
18[Rus97], p. 31-32.
19[Rus97], p. 35.
20[Rus97], p. 36.
21[Rus97], p. 52.
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3.3 The Transitional Period

From our perspective it is important not only how the ideas underpinning
affine geometry were developed. Since our research concerns region-based
logics, it is interesting to observe how and when the region-based paradigm
had begun to emerge. That is why we further separate the description of the
transitional and the modern period into point-related and region-related.

3.3.1 Point-related research

Whitehead and the foundations of affine geometry

We emphasise that Whitehead’s exposition is, for the most part, not stated
in the formalised language of today’s mathematics. Also, even though he
is rightly thought of as one of the forefathers of formal logic, it should be
remembered that his approach predates model theory. Whitehead mentions
three axiom systems for affine geometry: Russell’s, Peano’s and Veblen’s and
describes the last two of these in some detail.

Peano’s axioms The first system described by Whitehead is the one pro-
posed by G. Peano and based on Pasch’s considerations. It uses one primitive
relation — betweenness. The axiom system comprises three parts containing
axioms for the line, the plane and the three-dimensional space, respectively.
In short, the axioms for the line state that: there is at least one point; for any
two distinct points there exists a point between these; if a point lies between
two other points A and B, it also lies between B and A, provided it is distinct
from both A and B. There are also axioms securing ”technical” properties of
line segments.22 Regarding the axioms for the plane, the first of these state
that for a given line, there exists at least one point not on that line. The mean-
ing of the other two axioms together is that in any triangle a line l containing
one of the triangle vertices intersects a line containing another vertex if and
only if l intersects the opposite side of the triangle. Finally, there are three
axioms for the three-dimensional space. The first of these says that given a
plane there always exists a point which external to it. The second, again, is

22By a ”technical” property we mean (subjectively) a property that is not easily explained
in simple terms and is most cases required in proving that some other, more natural property
holds.
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an axiom securing certain ”technical” property. Whitehead (p. 2–3) claims
that the axioms

[...] secure the ordinary properties of a straight line with respect
to the order of parts on it, and also with respect to the division of
a line into three parts by any two points on it and into two parts
by any single point.

The second axiom system mentioned in the book is due to O. Veblen. Its
primitive is a three-place relation denoted by Whitehead as order. For the de-
scription of this system consult [Whi07] or [Veb03]. According to Whitehead
Veblen’s axiom system is equivalent to the axiom system of Peano. Also (p.
9)

both Peano and Veblen give an axiom securing the Dedekind’s
property. Also Veblen gives an axiom securing [...] Euclid[’s ax-
iom].

Here, the Dedekind’s property is the following:

If all points on a straight line fall into two classes such that every
point of the first class lies to the left of every point of the second
class, then there exists one and only one point which produces this
division of all points into two classes, this severing of the straight
line into two portions.

We note that this property is not first-order expressible. Tarski and col-
leagues use a version of this property in their respective axiomatisations in a
form of an axiom schema.23

Relation between affine and projective spaces Whitehead devotes a sub-
stantial part of his book to as he puts it ”enunciation of relations between
[affine] and projective spaces”.24

Whitehead defines projective space as a non-empty set P , elements of which
satisfy certain axioms. The first group of axioms he calls ”axioms of classifica-
tion”. These involve points, lines and relations between points and lines. Ac-
cording to Whitehead all these hold both in descriptive and projective space.

23See for example [TG99].
24We note that Szczerba and Tarski’s paper (cf. [ST79]) is influenced by Whitehead’s con-

structions. See also section 3.4 for the description of [ST79].
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The only axiom from this group distinctive of projective space is the one stat-
ing that if A and B are non-collinear points, and A′ is a point on the line BC
distinct from B and C, and B′ is a point on the line AC, distinct from A and
C, then the lines AA′ and BB′ have a point in common.

Next Whitehead gives an axioms he calls Fano’s axiom, stating that if the
point D is the harmonic conjugate25 of the point C with respect to the points
A and B, then C and D are distinct.26 We note that Whitehead also gives ”ax-
ioms of dimension” similar to those used by Tarski (cf. Section 3.4) to limit
the dimension of a considered space. The last group of axioms are called by
Whitehead the ”axioms of order”. Here, the harmonic conjugate is used to
define ordering of points on a line.

Whitehead defines a convex subset of a projective space as follows. Let P be
a projective space and let S ⊆ P . We say that S is convex if (i) S does not
include any straight line; (ii) given any two points in S, S contains one of
the two segments between them. Then he shows that points and lines be-
longing to a convex subset of a projective space can be shown to satisfy the
axioms of affine space.27 Whitehead also shows how to find a convex subset
of a projective space, where the Euclidean axiom holds true. He then shows
the independence of Dedekind’s axiom by considering convex region whose
elements are points with algebraic coordinates.28

Whitehead also describes a method for constructing a projective space,
given an affine space. This has become a standard method and is described
by us in Chapter 2 (also cf. [Ben95], p. 41–46). Historically, it was Klein, after
von Staudt, who developed it in the 1870s. In this context, Whitehead also
acknowledges work done by Pasch.29 Whitehead shows that the axioms of
projective geometry hold for projective points, lines and planes, as defined by
him.30 As a concluding remark Whitehead states:

Thus all the axioms for projective geometry including [...] the
Dedekind property are satisfied by the projective points and the
projective lines. Furthermore the proper projective points evi-

25For the definition of harmonic conjugate see Definition 2.5.11
26[Whi13], p. 24.
27The construction is somehow involved, please consult [Whi07], p. 14.
28[Whi07], p. 14.
29[Whi07], p. 15.
30[Whi07], p. 28.
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dently form a convex region in the projective space formed by the
projective points. Also the geometry of this convex region [...] cor-
responds step by step with the geometry of the original descrip-
tive space. Thus the geometry of descriptive space can always
be investigated by considering it as convex region in a projective
space.31

Russell and the foundations of geometry

It is a widely held view that, after the emergence of non-Euclidean geome-
tries Kant’s ideas in regard to the philosophy of mathematics lost much of
their validity. As we signalled earlier Russell’s original goal was to critically
analyse approaches to the philosophy of geometry after Kant, and propose
his reinterpretation of that philosophy. He proposes a more fine-grained ap-
proach, where he modifies Kant’s ideas and in his view saves some of Kant’s
original insights. In [Rus97] Russell claims that even if one cannot claim any-
more that Euclidean geometry is a priori, there still is a part of geometry
which should be considered to be so. Russell’s idea is the following. He
refers to the distinction (presented by us above) on synthetic, metrical and
projective periods in the history of geometry and focuses on the metrical and
projective approaches. He introduces two sets of statements, which he calls
the axioms of projective and metrical (parts of) geometry respectively. The
axioms of projective geometry according to Russell are as follows:

I We can distinguish different parts of space, but all parts are
qualitatively similar, and are distinguished only by the im-
mediate fact that they lie outside one another.

II Space is continuous and infinitely divisible; the result of infi-
nite division, the zero of extension, is called a point.

III Any two points determine a unique figure, called a straight
line, any three in general determine a unique figure, the plane.
Any four determine a corresponding figure of three dimen-
sions, and for aught that appears to the contrary, the same
may be true of any number of points. But this process comes
to an end, sooner or later, with some number of points which
determine the whole of space.32

31[Whi07], p. 32-33.
32[Rus97], p. 132.
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Russell adds some vague remarks regarding the accuracy of these axioms:

This statement of the axioms is not intended to have any exclu-
sive precision [...]. [It] includes, if I am not mistaken, everything
essential to projective geometry, and everything required to prove
the principle of projective transformation.33

Russell considers the non-quantitative projective approach to be superior
to the metrical one. Both projective and metrical axioms are, claims Russell,
a priori. He also claims that the axioms of projective geometry are equivalent
to the axioms of metrical geometry:

I’ the axiom of free mobility, replacing the axiom of homogeneity [I], in
his own words: Spatial magnitudes can be moved from place to place
without distortion.

II’ the axiom of dimensions: space must have a finite integral number of
dimensions.34

III’ the axiom of distance, replacing axiom [III]: every point must have to
every other point one, and only one, relation independent of the rest of
space. This relation is the distance between the two points.

The main difference is that the latter are stated in a way that incorporates the
notion of distance. However, there is a part of metrical geometry which is
not a priori. We need axioms allowing us to distinguish between Euclidean
and non-Euclidean geometry. And these axioms are of empirical nature.35

Hence the above can be thought of as the a priori metrical part of Euclidean
and non-Euclidean geometry alike.36

Later, Russell considerably changes his views on the foundations of ge-
ometry. For example, he does not defend Kant any more. Also, he does not

33[Rus97], p. 132.
34Perhaps a counterpart of the axiom [II]?
35[Rus97], p. 148. Cf. also (p. 6):

[The axioms of] projective geometry [...] [are] completely a priori. In metrical
geometry [...] the axioms will fall into two classes: (1) those common to Eu-
clidean and non-Euclidean spaces. [...] [These are found to be] a priori. (2)
Those axioms which distinguish Euclidean from non-Euclidean spaces. These
will be regarded as wholly empirical.

36[Rus97], p. 149, 150-177.
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divide the philosophy of geometry into non-Euclidean, metrical and projec-
tive periods anymore (nor does he make any mention of his earlier work
on the topic!). He does now distinguish between projective and affine ge-
ometries (which he calls descriptive) but he also says that the differences are
minuscule and inessential.37 He introduces a new threefold categorisation of
the development of geometry. First, he says, came the non-Euclideans, then
the ideas developed by Cantor and Dedekind on the nature of continuity, and
lastly the study of order is distinguished.38

Perhaps influenced by the distinctively logical approach of the Italian ge-
ometers like Pieri or Peano, Russell’s treatment of geometry is now phrased
more in the spirit of formal logic. Every geometry, he says, begins with the
notion of point as undefinable. Projective geometry adds the notion of a
straight line and a symmetrical relation between two points; in descriptive
geometry this relation is asymmetrical (thus allowing ordering of the points
on the line); metrical geometry adds a third relation between points - dis-
tance. This way of thinking about geometries can be found in later, much
more technical, logical works of Tarski and colleagues,39 where one develops
geometrical theories with strong emphasis on the language in which to de-
scribe them. Russell goes on to define harmonic conjugate and thus introduce
order in projective geometry (cf. paragraphs relating Whitehead’s approach
described in this chapter). He adds then Pieri’s order axioms and his formu-
lation of Dedekind’s continuity property.40 Finally Russell adds a dimension
axiom.41

Descriptive geometry42 begins with the notion of point and a relation of
betweenness. A description of the semi-axiomatised properties of between-
ness is given, after Peano and Vailati. Then the dimension and continuity
axioms are added.43 The treatment of descriptive geometry ends with the

37[Rus56], p.393-394.
38[Rus56], p. 381-383. It seems like these ideas were around at the time of [Rus97]. Is it

possible that Russell, definitely a man of great sagacity, was simply ignorant of these?
39Curiously, Russell treats betweenness as a two-placed relation. For Tarski’s works cf.

[Tar56], [Tar59], [ST79] and many others.
40For Dedekind’s property see the paragraph in this section on Whitehead and the foun-

dations of affine geometry. For Pieri’s work on the foundations of geometry cf. our remarks
relating the axiomatisation of the geometry of solids in section 3.4.2.

41Cf. [Rus56], p. 386-388. Nota bene, formalised versions of these axioms are used later by
Tarski e.g. in [Tar56]. Cf. also our earlier remarks on the Peano’s axiom system.

42Also called by him a geometry of position, which echoes common origin of, nascent at the
time of writing of [Rus56], topology and affine geometry.

43[Rus56], p. 394-399.
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(standard) analysis of the relation of projective and descriptive geometries.
Russell begins his treatment of metrical geometry with a preliminary anal-

ysis of Euclid’s work on geometry (which he calls elementary geometry). He
then remarks

[...] enough has been said to show that Euclid is not faultless, and
that his explicit axioms are very insufficient.44

and moves on to describe his approach to metrical geometry. Russell lists
some of the properties of the new primitive notion: distance.45 Russell goes
on to report on alternative approach by taking motion as an indefinable notion
(as developed by Pieri). This section finishes with a description of methods
of defining straight line, angle and order in metrical geometry; and the dif-
ferences in two- and three-dimensional cases.46

In one sense at least, Russell’s views did not change considerably. In
[Rus56] as in [Rus97] he strongly emphasises the difference between quali-
tative and non-qualitative geometries, and sees the former as the true basis
of any geometric enquiry.47 As it was mentioned, he treats projective and
descriptive geometries as essentially the same and non-qualitative in nature.
Also, the introduction of the notion of distance in projective and descriptive
geometries is, according to Russell, entirely superficial.48

Hilbert

Hilbert’s Foundations of Geometry is perhaps the most important work on Eu-
clidean geometry since the Elements. The book contains a number of axioms
grouped into five categories ([Hil50], p. 2–16.). The first group, the axioms of
connection, contains for example the following axiom.

If two points A and B of a straight line a lie in a plane α, then
every point of a lies in α.

The second group, the axioms of order, is later used by Tarski in his formali-
sation (see Section 3.4).49 For example

44Perhaps alluding to the fact that for example Pasch’s axiom is independent from Euclid’s
postulates, is used in the Elements but is missing from the list of axioms. Cf. [Rus56], p. 407.

45Cf. [Rus56], p. 407-408.
46[Rus56], p. 410-415, 416-417.
47Cf. [Rus56], p. 419-428.
48Frivolous is the word he uses. Cf. [Rus56], p. 425.
49Hilbert credits Pasch for the axioms in this group, [Hil50], p. 3.
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If A, B, C are points of a straight line and B lies between A and C,
then B lies also between C and A.

Next is the axiom of parallels (Euclid’s axiom). Then Hilbert distinguishes
the axioms of congruence. These relate to axioms of the equidistance relation
used by Tarski. For example

If a segment AB is congruent to the segment A’B’ and to the seg-
ment A”B” then the segment A’B’ is also congruent to the segment
A”B”.

Lastly Hilbert presents the axiom of continuity (also called Archimedean ax-
iom50) and the axiom of completeness, which has a rather interesting form:

To a system of points, straight lines, and planes, it is impossible to
add other elements in such a manner that the system thus gener-
alized shall form a new geometry obeying all of the five groups of
axioms. In other words, the elements of geometry form a system
which is not susceptible to extension, if we regard the five groups
of axioms as valid.

It seems like what Hilbert tries to secure axiomatically here is precisely a
subject of Tarski’s intense research culminating in the representation theorem
(see Section 3.4).

There is no doubt that Hilbert’s book is a major stepping stone in the
quest of logically strict analysis of the axiom system of Euclidean geome-
try. Hilbert makes an effort to formally analyse his axiom system in terms
of its consistency and independence of the axioms ([Hil50], p. 17–23). Even
though not fully formalised in the modern sense, the axioms and their con-
sequences are presented with high degree of mathematical rigour. There are
major caveats with that statement, however. For example the axiom of com-
pleteness, notwithstanding its special and very curious status, is formed with
no regard to the underlying language of description, hence if we were to
formalise this axiom system today, its formulation would surpass the limits
of first-order language. Hence it seems justifiable to conclude that Hilbert’s
work was an important step towards, rather than an example of, what we
would call today a logical analysis of an axiom system.

50We do not wish to state this axiom here. We note in passing that it is distinct from but
related to the Archimedean property in the context of the theory of fields.
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3.3.2 Region-related research

Whitehead, Regions and Topology

Whitehead is widely credited with the advancing of the region-based ap-
proach. The theory of what he calls a relation of extensive connection forms
a part of his multifarious philosophical treatise Process and Reality. An Essay
in Cosmology. As he himself admits, he has no intention of analysing the no-
tion of extensive connection from a more formal point of view ([Whi29], p.
416.) Whitehead starts with a relation of connection, left undefined and then
introduces a host of new relations.

Definition 3.3.1. Two regionsA andB are said to be medially connected if there
exists a region C such that both A and B are connected to C.

Definition 3.3.2 (de Laguna). A region A is said to include a region B if every
region connected with B is also connected with A.

Definition 3.3.3. A region A is said to overlap with a region B if there exists a
region C such that both A and B include C.

He then lists a number of properties that these new relations should sat-
isfy and after defining several other notions finally introduces the notion of
external connection.

Definition 3.3.4. Two regions A and B are externally connected if A and B are
connected and do not overlap.

By means of external connection he is now able to introduce two more
relations: tangential and non-tangential inclusion.

Whitehead credits de Laguna with influence over his earlier ideas, which
eventually led to the adoption of the notion of external connection as the cen-
tral one ([Whi29], p. 420). He goes on to construct a theory of sets based on
his definition of inclusion ([Whi29], p. 421–426.) We do not attempt to elab-
orate on the role of the theory of external connection in Whitehead’s deeply
nuanced philosophical views. We only note that in Process and Reality he deals
with a broad spectrum of problems, including relation of an organism to an
environment, the theory of feelings and the nature of God. As we pointed
out so many times already, it is important to remember that the apparatus of
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topology and modern formal logic was not in place at the time of publica-
tion of his book, also these mathematical ideas are entangled in his intricate
philosophical system and are not presented with the terseness normally en-
countered in mathematics. Perhaps that is why his work remained within
the realm of philosophical investigations and it took another half a century
to revive these ideas in a more formalised, strict setting. One clearly sees
how Whitehead’s topological ideas influenced modern spatial formalisms to
come. As we will outline in the next section his intuitions were formalised
and analysed by others in the after-war period. Whitehead’s theory of sets
is often compared to another alternative set theory developed by a reclusive
Polish logician Stanisław Leśniewski. His proposition is dealt with in the
following section.

Mereology

Leśniewski wrote little, and most of what we know about his work comes
from his students. The theory of sets he was dealing with is dubbed mereo-
logy (from Greek: the theory of parts). Leśniewski presented his system in
a mixture of idiomatic Polish and German and formalisms related to nota-
tional conventions of Principia Mathematica. His major publications come in
the decade following the publication of Process and Reality, that is from the
1930s onwards. It was a time when formal logic was coming of age and the
Polish logical school was at its best. All this and the fact that his results were
analysed, extended and presented by a new generation of Polish logicians,
made his work relatively better developed than that of Whitehead.

In essence, Leśniewski tried to formalize the notion of a collective set (as
opposed to, considered as standard in modern set theory, distributive set). Let
X be a collective set. We think of X as a certain whole, consisting of some
parts, called the elements of X . For example, a book can be thought of as a
collective set of pages, a library as a collective set of books etc.

Leśniewski used his system to analyze the parthood relation (in a col-
lective sense). In his times the predominant way of formalising one’s intu-
itions was by axiomatizing them. In a standard approach to mereology, the
parthood relation (v) is axiomatised as a partial ordering. We can introduce
some additional mereological relations defined via the v, describing situa-
tion where sets overlap, underlap, one is a proper part of another etc. Fol-
lowing [Var96] we define mereology as follows.
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Definition 3.3.5 (Mereology). Consider Lv. Let O(x1, x2) = ∃z(z v x1 ∧ z v
x2) (O(x1, x2) reads x1 overlaps x2) and let φ(x) be a formula in which x occurs
free. A theory of general mereology consists of the following axioms.

x v x
�
 �	reflexivity

x v y ∧ y v x→ x = y
�
 �	antisymmetry

x v y ∧ y v z → x v x
�
 �	transitivity

x 6v y → ∃z(z v x ∧ ¬O(z, y))
�
 �	supplement axiom

∃xφ(x)→ ∃z∀y(O(y, z)↔ φ(x) ∧O(y, x))
�
 �	fusion axiom

Tarski proved that every model of (atomic) general mereology is isomorphic
to an atomic complete quasi-Boolean algebra (that is a Boolean algebra with
the bottom element removed). He also proved that a model of atomless gen-
eral mereology is given by a complete quasi-Boolean algebra on the set of
regular open subsets of the Euclidean space. For more results on mereology
please consult [Grz55], [Pie00] and [Gor03].

Summary

Clearly, one can divide the development of Russell’s geometric ideas into
two periods: the first, more philosophical, influenced by Kant, and the sec-
ond, more logical in spirit, influenced by works of Cantor, Dedekind, Pieri
or Peano. In the first period, axioms given by Russell are not really fit for
use in axiomatisation of any geometrical space in question. Russell does not
really look at the issue from a logical point of view. Obviously, the notion of
interpretation had not been developed at that time, but Russell seems to be
indifferent to the precise definition of the language in which to express the
axiomatisation. It is not at all clear in what sense these axioms are sound and
complete in respect to the considered spaces, especially in view of Russell’s
comments that the projective and metric axioms are essentially the same.
The second period, on the contrary, is much more logical in spirit. He does
care about the language in which to phrase the axioms, for instance. This is
more of an achievement of the mathematicians that Russell is referring to in
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[Rus56] but perhaps Russell should be credited at least with bringing these
ideas together in an unified description of these developments. This in turn,
served as a basis of more formal analysis in the following decades. We em-
phasise once more the superiority of non-quantitative part of geometry over
the metrical part.

Whitehead and Russell’s contribution to the formalisation of affine and
projective spaces is that of compilers rather than authors. By providing a
comprehensive overview of known results they made these accessible to the
wider mathematical and philosophical audience. Thus, these publications
paved the way of the research to come. In the modern period these ideas
were developed within a framework of modern mathematical logic. Neither
Russell nor Whitehead published more extensively on these topics later on.
This might explain why their work, especially on the foundations of affine
and projective geometry, is relatively less known. Whitehead is widely cred-
ited as being one of the first mathematicians to focus on region-based theo-
ries. It has to be said that his work on region-based theories is riddled with
philosophy and lacks mathematical rigour.

Hilbert’s work was a major influence on the next generation of mathe-
maticians. This includes Tarski and his co-workers who developed tools of
model theory and formal logic allowing proper analysis of a given axiom sys-
tem. Hilbert’s influence lies also in the method. As we pointed out he was
one of the first mathematicians to analyse the axioms he proposed in what we
would now call a logical manner. It should be stressed that Hilbert’s Founda-
tions of Geometry is far more rigorous mathematically than any other source
we discussed in this section.

3.4 The Modern Period

In the description of the modern period we also found it important to bring
out the emerging two approaches. Hence the modern period is also sub-
divided into point-related and region-related research.
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3.4.1 Point-related research

Elementary geometry

In his classic paper [Tar59] Tarski considered system called by him elementary
geometry. By this he understood (informally) a part of Euclidean geometry
that can be formulated without using any set-theoretic notions, and hence
devoid of variables of higher orders. As we pointed out, Hilbert’s influence
on Tarski’s work is obvious here. For the most part it seems like Tarski’s ele-
mentary geometry is the first-order part of formalisation proposed by Hilbert
in his Foundations.51 Consider the first-order language Lβ,δ. Tarski proposed
the following axiom system stated in the language Lβ,δ (universal quantifiers
omitted).

(β(x, y, x)→ x = y)
�
 �	identity for β

(β(x, y, u) ∧ β(y, z, u)→ β(x, y, z))
�
 �	transitivity for β

(β(x, y, z) ∧ β(x, y, w) ∧ x 6= y → β(x, z, w) ∨ β(x,w, z))
�
 �	connectivity for β

δ(x, y, y, x)
�
 �	reflexivity for δ

(δ(x, y, z, z)→ x = y)
�
 �	identity for δ

(δ(x, y, z, u) ∧ δ(x, y, v, w)→ δ(z, u, v, w))
�
 �	transitivity for δ

∃v(β(x, t, u) ∧ β(y, u, z)→ β(x, v, y) ∧ β(z, t, v))
�
 �	Pasch’s Axiom

∃v∃w(β(x, u, t) ∧ β(y, u, z) ∧ x 6= y →

β(x, z, v) ∧ β(x, y, w) ∧ β(v, t, w))
�
 �	Euclid’s Axiom

51Hilbert’s axiom system was, in effect, expressed in second-order language.
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(δ(x, y, x,′ y′)∧δ(y, z, y,′ z′)∧δ(x, u, x,′ u′)∧δ(y, u, y′, u′)∧β(x, y, z)∧β(x′, y′, z′)∧x 6= y →

δ(z, u, z′, u′))
�
 �	Five Segment Axiom

∃z(β(x, y, z) ∧ δ(y, z, u, w))
�
 �	Axiom of Segment Construction

∃xyz(¬β(x, y, z) ∧ ¬β(y, z, x) ∧ ¬β(z, x, y))
�
 �	Lower Dimension Axiom

(δ(x, u, x, v) ∧ δ(y, u, y, v) ∧ δ(z, u, z, v) ∧ u 6= v)→

(β(x, y, z) ∨ β(y, z, x) ∨ β(z, x, y))
�
 �	Upper Dimension Axiom

All sentences of the form

∃p∀xy(φ ∧ ψ → β(p, x, y))→ ∃p∀xy(φ ∧ ψ → β(x, p, y)),

where p, y do not occur free in φ and p, x do not occur free in ψ (Continuity
Schema).
Intuitive meanings of the above can be find in [TG99]. The continuity schema
asserts that any two sets X and Y such that the elements of X precede the el-
ements of Y with respect to some point a are separated by a point b, where
X, Y are first-order definable.52 We also note that the upper dimension ax-
iom asserts that for any three points equidistant from each of two distinct
points have to be collinear. This fails in dimensions greater than two (hence
the name). Coupled with the lower dimension axiom this pinpoints the di-
mension. Up until this point Tarski’s approach seems to be very similar to
the one observed in Whitehead or Russell. The first difference is in precisely
defining what is elementary geometry. Namely, it is defined as the smallest
set of sentences (a theory) containing the above axioms and closed under the
logical rules of inference.53 A part of the problem with the previous attempts
was that the language in which to state formalisms was not strictly defined.

52See [TG99].
53Hence, with that reading, elementary geometry and the theory of elementary geometry

mean the same.
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Tarski used well-defined first-order language with just two primitives. How-
ever, Tarski’s greatest contribution is setting the problem within the context
of model theory. This added precision to the question of ”meaning” of the
above axioms. With Whitehead and Russell the meaning was assumed to be
known but never defined precisely. Rephrasing the problem by asking what
is a model for the theory of elementary geometry, together with the full techni-
cal apparatus of model theory at our disposal, meant we could investigate
the problem with far greater precision. We start with defining a candidate
interpretation.

Definition 3.4.1. Let F = 〈F, ·,+,≤〉 be a real closed field. Consider a struc-
ture

C = 〈C, βC, δC〉,

where C = F × F and

βC = {〈〈x1, x2〉, 〈y1, y2〉, 〈z1, z2〉〉 | x1, x2, y1, y2, z1, z2 ∈ F

and (x1 − y1) · (y2 − z2) = (x2 − y2) · (y1 − z1)

and 0 ≤ (x1 − y1) · (y1 − z1)

and 0 ≤ (x2 − y2) · (y2 − z2)}

δC = {〈〈x1, x2〉, 〈y1, y2〉, 〈z1, z2, 〉〈u1, u2〉〉 | x1, x2, y1, y2, z1, z2, u1, u2 ∈ F

and (x1 − y1)2 + (x2 − y2)2 = (z1 − u1)2 + (z2 − u2)2}.

we call C a (two dimensional) Cartesian space over F.

(In particular, if we set F to have values from R, we obtain the ordinary two
dimensional Euclidean space.)

This allows us to attach precise meanings to the symbols of Lβ,δ. Informally
variables are set to range over points of the vector space over a field; β(x, y, z)

reads ”y lies between x and z” (z = x or z = y not excluded) and δ(x, y, z, u)
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reads ”x is as distant from y as z is from u”. And only now can we say what
the axioms can be thought to express. However, there is still no particular
reason why we should pay more attention to the above interpretation, rather
than to any other we choose to think of. That is why Tarski proves this,
remarkable, theorem.

Theorem 3.4.1 (Representation Theorem). For M to be a model of the theory of
elementary geometry it is necessary and sufficient that M be isomorphic with the
Cartesian space over some real closed field F.

Proof. See [Tar59].

Tarski calls it the representation theorem for the theory of elementary ge-
ometry as it answers the question of characterising all models of the theory.
Observe that now not only is the problem of ”meaning” settled in a formally
satisfying manner. The representation theorem gives a precise answer to the
question of the standard interpretation of elementary geometry. We can also
ask other important questions regarding the theory of elementary geome-
try. One very interesting question relates the decidability of the satisfiability
problem. And the answer is quite surprising.

Theorem 3.4.2. The theory of elementary geometry is decidable but not finitely ax-
iomatisable.

Proof. See [Tar59].

The fact that elementary geometry is not finitely axiomatisable means any
other axiom system proposed must contain either axiom schema(ta) or infini-
tary rule(s) of inference. In fact, later on Tarski’s axiomatisation was refined
by others; obviously none of these axiomatisations were finite (see for exam-
ple [TG99]).

General Affine Geometry

Tarski in [Tar59] was able to formalise large part of Euclidean geometry us-
ing a language with only two primitives: betweenness (β) and equidistance
(δ). This paper started off a bigger research program of formalising other
parts of geometry. The paper [ST79] is a part of that research program. It is
concerned with logical analysis of what is termed as general affine geometry.
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Unfortunately the situation here is much more complex than in the case of
elementary geometry. In particular the question of the representation theo-
rem turns out to be much more elusive. The main result of [ST79] is a near-
representation theorem for the general affine geometry of two dimensions.
We also note that despite the similarities in method the results in this paper
are obtained using far more sophisticated and difficult techniques than those
used in [Tar59].

Definition 3.4.2. Consider Lβ . By general affine geometry we mean a theory
based on the following axioms (universal quantification omitted):

(β(x, y, x)→ x = y)
�
 �	Identity

((β(x, y, z) ∧ β(y, z, w) ∧ y 6= z)→ β(x, y, w))
�
 �	Transitivity

(β(x, y, z) ∧ β(x, y, w) ∧ x 6= y → β(x, z, w) ∨ β(x,w, z))
�
 �	Connectivity

∃x(β(x, z, y) ∧ x 6= y)
�
 �	Extension Axiom

∃v(β(x, t, u) ∧ β(y, u, z)→ β(x, v, y) ∧ β(z, t, v))
�
 �	Pasch’s Axiom

(β(p, x, x′) ∧ β(p, y, y′) ∧ β(p, z, z′) ∧ β(x, y, z′′) ∧ β(x′, y′, z′′) ∧ β(y, z, x′′)∧

β(y′, z′, x′′) ∧ β(x, z, y′′) ∧ β(x′, z′, y′′) ∧ ¬β(p, x, y) ∧ ¬β(x, y, p) ∧ ¬β(y, p, a)∧

¬β(p, y, z) ∧ ¬β(y, z, p) ∧ ¬β(z, p, y) ∧ ¬β(p, z, x) ∧ ¬β(z, x, p) ∧ ¬β(x, p, z)→

β(x′′, y′′, z′′))
�
 �	Desargues’ Axiom

∃xyz(¬β(x, y, z) ∧ ¬β(y, z, x) ∧ ¬β(z, x, y))
�
 �	Lower Dimension
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∃q(β(y, q, z) ∧ (β(x, q, p) ∨ β(q, p, x) ∨ β(p, x, q))∨

(β(z, q, x) ∧ (β(y, q, p) ∨ β(q, p, y) ∨ β(p, y, q))

∨(β(x, q, y) ∧ (β(z, q, p) ∨ β(q, p, z) ∨ β(p, z, q))
�
 �	Upper Dimension

All sentences of the form

∃p∀xy(φ ∧ ψ → β(p, x, y))→ ∃p∀xy(φ ∧ ψ → β(x, p, y)),

where p, y do not occur free in φ and p, x do not occur free in ψ (Continuity
Schema).

As acknowledged by the authors, this axiom system (as well as certain tech-
nical results within the paper) was influenced by Whitehead’s considerations
on affine geometry. We note also the similarities between this axiom system
and the axiom system for elementary geometry ([Tar59]).

Definition 3.4.3. Let F = 〈F,+, ·,≤〉 be an ordered field. Consider the two-
dimensional linear space over F, that is the set F × F and two operations
〈x, y〉 ⊕ 〈x′, y′〉 = 〈x+ x′, y + y′〉 and 〈x, y〉 ⊗ z = 〈x · z, y · z〉.

By the affine plane over F we mean the following structure

A(F) = 〈AF, BF〉,

whereAF = F×F andBF is a ternary relation onAF defined by the following
stipulation: for any three points a, b, c ∈ AF, BF(a, b, c) if, for some x ∈ F ,
0 ≤ x ≤ 1 and b = [a⊗ (1− x)]⊕ (c⊗ x).

We can clearly see the parallels between this and the original Tarski’s pa-
per now. Also, Whitehead’s way of defining an affine space as a convex sub-
set of a projective space is used in [ST79] within the model theoretic setting.
A natural definition of convexity in terms of betweenness is given: a (non-
linear) set S is convex if for all points a, c ∈ S if a point b is such thatBF(a, b, c),
then b ∈ S. A set is weakly convex if for every four points a, b, c, d ∈ S, if there
exists a point p such that BF(a, p, b) and BF(c, p, d) then p ∈ S.

Definition 3.4.4. Let S be any subset of AF. The structure formed by the set
S and the relation BF restricted to the points of S, denoted A(F, S), is called
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the S-restricted affine plane over F.

Coordinatisation We pointed out in Section 2.5 that a coordinatisation of
an affine space is an important result in affine geometry. It is not surprising
then that the paper [ST79] uses coordinatisation of affine general geometry
in their formalisation. It is done so by first of all showing how to define a
real-closed field.
Let A = 〈A,B〉 be a model of general affine geometry. We define

HA = 〈H = [e0, e∞), 0 = e0, 1 = e1,+, ·,≤〉,

where e0, e∞, e1 are distinct elements of A satisfying certain conditions.54 We
further define

GA = 〈H ×H, 〈0, 0〉, 〈1, 1〉,⊕,⊗,≤〉,

where 〈p, q〉 ⊕ 〈r, s〉 = 〈p + r, q + s〉; 〈p, q〉 ⊗ 〈r, s〉 = 〈p · r + q · s, p · s + q · r〉;
〈p, q〉 ≤ 〈r, s〉 if p+ s ≤ q + r〉.
We define the equivalence relation in the following way: 〈p, q〉 = 〈r, s〉 if and
only if p+s = q+r. Finally we construct the corresponding quotient structure:

FA = 〈FA, 0, 1,+, ·,≤〉 = GA/=.

We have the following theorem.

Theorem 3.4.3. If A is a model of general affine geometry then FA is a field; {x :

0 ≤ x} is a subuniverse of FA and HA is isomorphic to the subalgebra of FA induced
by {x : 0 ≤ x}.
Now we want to show how facts about HA and FA can be expressed in the
language of A. In order to do that we define a mapping

H : HA → A

such that

HA |= φ[v0, . . . , vn] if and only if A |= H(φ)[e0, e1, eω, e∞, v0, . . . , vn].

54Since the construction is somewhat involved we do not wish to present the details here.
For our purposes it suffices to say that a coordinate system is defined using e0, e∞, e1 and
few other points. Cf. [ST79].
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We also define a mapping
HF : FA → HA

such that

FA |= φ[〈x0, y0〉, . . . , 〈xn, yn〉] if and only if
A |= HF (φ)[e0, e1, eω, e∞, x0, y0 . . . , xn, yn].

We have the following theorem.

Theorem 3.4.4. If A is a model of general affine geometry, then FA is a real-closed
field.

Proof. The proof uses the above mappings and a fact that FA is a model of all
formulas of the form of axiom 9 and then it is shown that multiplication is
commutative.

Szczerba and Tarski aim to solve the representation problem for general
affine geometry as in the case of elementary geometry. The first theorem
shows that every model of affine geometry is isomorphic to some S-restricted
affine plane induced by that model.

Theorem 3.4.5. If A is a model of general affine geometry then there is a set S,
non-linear and convex in A(FA) and such that A is isomorphic to A(FA, S).

The next result shows that the converse of the above theorem is only true in
certain cases and fails in general.

Theorem 3.4.6. Every S-restricted affine space over R is a model of general affine
geometry, provided that S is convex in A(R). If a real-closed ordered field F is not
isomorphic to R, then there is a convex set S in A(F) such that A(F, S) is not a
model of general affine geometry.

So the situation is much more complex than in the case of elementary
geometry. We recall that elementary geometry was showed to be decidable.
Here, again the situation is much worse.

Theorem 3.4.7. The theory of general affine geometry is undecidable and not finitely
axiomatisable.

An extended analysis of some problems raised in [ST79] were subsequently
considered in [PS79]. Observe that in terms of the Russellian distinctions pre-
sented in Section 3.3.1 Tarski and Szczerba are looking at the non-metrical
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(for Russell a priori) part of geometry. In our research, we are interested in
essentially the same part of geometry but viewed from a region-based point
of view.55

3.4.2 Region-related research

In this section we describe early region-based spatial logics. We focus on two
important examples. The first is Tarski’s geometry of solids and the second
is Clarke’s calculus of individuals. We note that there is a marked difference
between these two in terms of approach. Tarski develops ideas of his super-
visor Leśniewski. However, the geometry of solids is presented in a manner
similar to elementary geometry or general affine geometry, described in the
previous section. Clarke’s develops Whitehead’s ideas. It has to be pointed
out that his system is also much in the spirit of Whitehead’s pre-model theo-
retic considerations.

The Geometry of solids

This is one of the very first examples of region-based theory from the litera-
ture. The language of the geometry of solids is many-sorted. There are two
types of variables over which quantification is allowed. First-order variables
denoted x1, . . . , xn, and second-order variables, denoted X1, . . . , Xn. There
are two primitive relation symbols – binary v and unary γ. Informally, the
variables are set to range over subsets of R3 and sets of subsets of R3, respec-
tively. Primitives are to be read in the following way. The relation symbol v
is interpreted as the set theoretic inclusion and the predicate symbol γ as the
property of being a sphere.

The following are the auxiliary relations defined in terms of v. Since we
have not introduced the semantics yet, from a formal point of view these
should be viewed as nothing more than formulas for which we chose to as-
sign convenient name tags to guide our intuition.

1. We say that x is disconnected from y and write D(x, y) if and only if
¬∃z(z v x ∧ z v y),

2. We say that x is a proper part of y and write PP (x, y) if and only if
x v y ∧ x 6= y,

55See Chapter 5. Of course, we deal with more specific example of affine space, the real
plane.
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3. We say that x is a sum of all elements ofX and write S(x,X) if and only
if ∀y(y ∈ X → y v x) ∧ ¬∃z∀y(z v x ∧ y ∈ X ∧D(z, y))

At this point further notational conventions are introduced using v, D, PP
and S.

1. We say that x is internally tangent to y and write IT (x, y) if and only if
∀x1∀x2(γ(x) ∧ γ(y) ∧ PP (x, y) ∧ γ(x1) ∧ γ(x2) ∧ x v x1 ∧ x v x2 ∧ x1 v
y ∧ x2 v y → x1 v x2 ∨ x2 v x1),

2. We say that x is externally tangent to y and write ET (x, y) if and only if
∀x1∀x2(γ(x)∧γ(y)∧D(x, y)∧γ(x1)∧γ(x2)∧x v x1∧x v x2∧D(x1, y)∧
D(x2, y)→ x1 v x2 ∨ x2 v x1),

3. We say that x, y are internally diametrical to z and write ID(x, y, z) if and
only if ∀x1∀x2(γ(x) ∧ γ(y) ∧ γ(z) ∧ IT (x, z) ∧ IT (y, z) ∧ γ(x1) ∧ γ(x2) ∧
D(x1, z) ∧D(x2, z) ∧ ET (x, x1) ∧ ET (y, x2)→ D(x1, x2)),

4. We say that x, y are externally diametrical to z and write ED(x, y, z) if
and only if ∀x1∀x2(γ(x) ∧ γ(y) ∧ γ(z) ∧ ET (x, z) ∧ ET (y, z) ∧ γ(x1) ∧
γ(x2) ∧D(x1, z) ∧D(x2, z) ∧ x v x1 ∧ y v x2 → D(x1, x2)).

Definition 3.4.5. We say that two spheres x, y are concentric and write con(x, y)

if and only if one of the following conditions holds:

(i) x = y,

(ii) ∀x1∀x2(PP (x, y) ∧ γ(x1) ∧ γ(x2) ∧ ED(x1, x2, x) ∧ IT (x1, x2, y)

→ ID(x1, x2, y)),

(iii) ∀x1∀x2(PP (y, x) ∧ γ(x1) ∧ γ(x2) ∧ ED(x1, x2, y) ∧ IT (x1, x2, x)

→ ID(x1, x2, x)).

We are getting closer to the axiom system proposed by Tarski for the geome-
try of solids. The following definitions are used in the axiomatisation of the
the geometry of solids. Firstly, let us note that a point is defined as a set of
balls concentric with a given ball.

Definition 3.4.6. We say that points X, Y are equidistant from point Z and
write equid(X, Y, Z) if and only if

X = Y = Z ∨∃z(z ∈ Z)∧∃z¬∃x(z ∈ Z ∧ ((x ∈ X ∨x ∈ Y )∧x v z∧D(z, x))).
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We note that it is possible now to include the postulates of elementary the
geometry of three dimensions, by applying results from [Tar59].

Definition 3.4.7. We say that x is a solid and write sol(x) if and only if

∃X∀y(y ∈ X ∧ S(x,X)).

Definition 3.4.8. We say that a point X is interior to a solid x and write
int(X, x) if and only if

∃y(y ∈ X ∧ y v x)

.

Axiomatisation The theory of the geometry of solids has the following ax-
iomatisation.

1. v is transitive;

2. for every non-empty X there exists exactly one x which is a sum of all
elements of X ;

3. Pieri’s axioms of the Euclidean Geometry of R3;56

4. if x is a solid, the class of all interior points of x is a non-empty regular
open set;

5. if the class of points is a non-empty regular open set, there exists a solid
x such that X is the class of all its interior points;

6. if x and y are solids, and all the interior points of x are at the same time
interior to x, then x is a part of y.

Semantics Tarski presented the following results concerning the interpreta-
tions of the theory of the geometry of solids. Consider a structure MT where
the first-order variables range over regular open subsets of R3 (regions) and
second-order variables range over sets of regions and where primitives are
interpreted as a binary inclusion relation (v) and the unary property of being
a sphere (γ).

56We were not able to locate an English (or Italian for that matter) version of Pieri’s works
containing this mentioned axiomatisation. For an informal description see [Smi10], p. 479–
483. We note that Pieri’s axiom system involved just the equidistance relation. The paper
[Smi10] claims (p. 483) that Tarski preferred Pieri’s system to the one of Hilbert.
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Theorem 3.4.8. The structure MT is a model of the theory of the geometry of solids.

So only now do the name tags attached previously to formulas have be-
come meaningful. Next, Tarski was able to prove a very strong representation
theorem that allows us to regard MT the standard model for the theory of the
geometry of solids.

Theorem 3.4.9. The theory of the geometry of solids is categorical, that is it has only
one model up to isomorphism.

We note the difference between the geometry of solids and elementary
geometry. This representation theorem is much stronger. It says that every
model of the geometry of solids is isomorphic to MT . Observe that the the-
ory of elementary geometry is not categorical. Tarski also showed that even
though the geometry of solids has a region-based interpretation, it is possible
to construct points from regions and simulate statements about points using
statements about regions. Tarski’s paper is somehow sketchy, in particular
many proofs are merely outlined. The interested reader is referred to the
article [PG] containing an exhaustive analysis of Tarski’s geometry of solids.

Calculus of Individuals

According to [Cla81] the drawback of Whitehead’s approach is not only that
it is far from being strictly formalized: it is also contradictory. One of the
axioms of the original system states that no region is connected to itself,
whereas the opposite can be inferred from the other axioms. Clarke’s goals
were to present a strict formalization of Whitehead’s ideas and to avoid the
contradiction.

Even though calculus of individuals is presented with no intended inter-
pretation, it is hinted that, following Whitehead, variables can be thought
of as ranging over regions and the only primitive relation C(x, y) can be in-
terpreted as x shares a common point with y. Auxiliary relations ≤ and O

interpreted as inclusion and overlaps relation (two regions overlap if their in-
teriors share a common point), respectively. Axiomatisation of this first-order
theory is presented in [Cla81] and analyzed in [BG91]. In Clarke’s calculus
the weak contact relation is axiomatised as follows.

Definition 3.4.9 (Weak Contact Relation). We say that a binary relation C is
a weak contact relation if it satisfies the following.
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1. ∀x C(x, x),

2. ∀x∀y C(x, y)→ C(y, x),

3. ∀x∀y∀z(C(z, x)↔ C(z, y))→ x = y.

Note in particular the first axiom which stands in disagreement with White-
head’s original assumption. Using C numerous other relations can be ”de-
fined” (we emphasise that definitions are only possible with the notion of
interpretation clearly defined first).

1. DC(x, y) if and only if ¬C(x, y) (disconnected);

2. x ≤ y if and only if ∀z(C(z, x)→ C(z, y)) (part);

3. x < y if and only if x ≤ y ∧ ¬y ≤ x (proper part);

4. O(x, y) if and only if ∃z(z ≤ x ∧ z ≤ y) (overlaps);

5. DR(x, y) if and only if ¬O(x, y) (discrete);

6. EC(x, y) if and only if C(x, y) ∧ ¬O(x, y) (externally connected);

7. TP (x, y) if and only if x ≤ y ∧∃z(EC(z, x)∧EC(z, y)) (tangential part);

8. NTP (x, y) if and only if x ≤ y∧¬∃z(EC(z, x)∧EC(z, y)) (nontangential
part).

Semantics As one of advantages of his system Clarke states the possibility
of distinguishing between contact and overlap relations. The paper [BG91] is
devoted to the quest for a model of Clarke’s axiom system. In this paper the
pair 〈R,C〉, whereR is a nonempty set andC is a contact relation axiomatised
as above is called a connection structure. It is shown that a connection struc-
ture enhanced with the rest of Clarke’s axioms is isomorphic to the atomless
Boolean algebra. As a result the following is proved.

Theorem 3.4.10. The class of regular open subsets of the Euclidean space is a model
of Clarke’s system.

Proof. See [BG91].

It is also shown that contact and overlap relations in fact coincide, making
the calculus of individuals less useful – for example EC relation defined by
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Clarke is not satisfied by any pair of regions and NTP and TP relations are
both equivalent to ≤ relation.

3.5 Summary

The modern period was characterised by the rise of new paradigm in for-
mal logic. The greatest achievement of Tarski and others is the novelty of the
method they used rather than anything else. The axioms in [Tar59] and [ST79]
come for the most part either from Hilbert or Whitehead. On the other hand,
Clarke’s investigations belong more to the previous period. True, he has im-
proved on Whitehead vague remarks, it was however another generation of
researches that took the notion of interpretation of the calculus of individuals
more seriously.

72



4
Contemporary Spatial Formalisms

4.1 Introduction

This chapter focuses on recent developments in region-based spatial logics.
As mentioned in the previous chapter, Tarski’s original contribution was to
initiate a research program on logical analysis of geometry within the model-
theoretic approach. That allowed mathematically precise investigation of
a number of spatial formalisms. There are two important observations we
wish to make here. Firstly, the model-theoretic approach was mostly applied
to point-based spatial logics, like elementary geometry. There has not been
much interest in region-based spatial logics until relatively recently, when the
so-called qualitative spatial reasoning research program began emerging within
the artificial intelligence community. It was developed initially without much
emphasis on the notion of interpretation — these logics were developed ax-
iomatically. The turn of the century saw a gradual change from axiomatic to
model-theoretic approach in the context of region-based spatial logics. The
second point we wish to make is that there is a slight but important difference
between Tarski’s and the modern approach to defining logics. Both elemen-
tary geometry and general affine geometry were constructed starting from a
set of axioms to which the (mathematically precise) notion of interpretation
was applied. These days the order is reversed - one starts with a model, giv-
ing us the interpretation of primitives of a considered language and proceeds
to investigate the properties of this model and its theory. Now, if we so wish,
we might try to axiomatise the theory in an attempt to fathom its properties.
And there is no requirement for these axioms to be ”natural” or intuitive in
any way.1 What we are looking for is a sound and complete (if not entirely

1More on that topic in the context of spatial logics can be found in [PH01].
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elegant) axiom system. Hence, the axiomatic method becomes subservient to
the model-theoretic one.

We divided this chapter into two parts. The first part concerns the initial
stage of research, which we chose to call the axiomatic approach, whereas the
second part concerns the results within the model-theoretic approach. Within
both parts we differentiate between affine and topological spatial logics and
present their development in parallel.

4.2 The Axiomatic approach

4.2.1 Topological Spatial Logics

In [Var96] Region Connection Calculus (RCC) is described as an extension
of a sub-theory of general mereology by the axioms of the contact relation
C. The axioms proposed were a modified version of those investigated by
Clarke (cf. [CBGG97]). Historically, RCC was intended as a correction of
Clarke’s calculus of individuals. The language of RCC comprises two binary
relation symbols C and ≤. The paper [CBGG97] states explicitly that RCC
should be interpreted topologically. However, the question of interpretation
of RCC was answered in a satisfying way in [DW03].

Definition 4.2.1 (Boolean Contact Algebra). Let BA be the theory of Boolean
Algebras and let L be an extension of the language of Boolean algebras by the
binary relation symbol C, then the theory extending BA with the following
axioms is called the theory of Boolean Contact Algebras.

1. C(x, y)→ x 6= 0 ∧ y 6= 0,

2. x 6= 0→ C(x, x),

3. C(x, y)→ C(y, x),

4. C(x, y) ∧ y ≤ z → C(x, z),

5. C(x, y + z)→ C(x, y) ∨ C(x, z),

We are also interested in the following properties.

(Ext) (C(x, z)→ C(y, z))→ x ≤ y,

(Con) x 6= 0 ∧ y 6= 0 ∧ x+ y = 1→ C(x, y).
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We call C a contact relation. The following theorem achieves a similar goal
to Tarski’s representation theorem in the case of Elementary Geometry.

Theorem 4.2.1 (Representation Theorem). EachBCAB is isomorphic to a struc-
ture 〈B,C〉 where B is a dense substructure of regular closed algebra RC(X) over
some weakly-regular τ1-space X and C is the contact relation on RC(X).

Proof. See [DW03].

The following two theorems are, in effect, completeness and soundness
theorems for RCC.

Theorem 4.2.2. IfX is a weakly regular τ1-space and 〈B,C〉 is a dense substructure
of the regular closed algebra RC(X) and C is the contact relation on RC(X), then
〈B,C〉 is a Boolean Contact Algebra.

As we already noted the axioms of RCC are the modified version of those
presented by Clarke (cf. [CBGG97]). These are, essentially, the axioms of
BCA presented above. This brings us to the following result.

Theorem 4.2.3. Each RCC-model is isomorphic to a substructure of the regular
closed sets of a connected weakly regular τ1-space.

We now turn our attention to a particular example of an RCC-related for-
malism, winning much of the attention of the researchers, called RCC8. It
was originally presented as defined within RCC but has been since sepa-
rated and is nowadays presented in a way in which the contact relation is not
explicitly used (see e.g. [RCC92]).

RCC8 RCC8 is defined as the constraint language over the signature com-
prising the following binary relation symbols: DC (disconnected), EC (ex-
ternally connected), PO (partially overlaps), EQ (equals), TPP (tangential
proper part), TPP−1 (reverse tangential proper part), NTPP (nontangential
proper part), NTPP−1 (reverse nontangential proper part). As in the case of
RCC the question of formally defining the interpretation had been left open
for a long time. The authors of [RCC92] write:

The [...] primitives [of RCC8] include physical objects, regions
and other sets of entities [p. 3]
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and later add that ”a spatial interpretation is assumed in a pictorial model”
similar to our Figure 4.1 which shows a graphical interpretation of the basic
RCC8-relations if we take variables to range over regular closed subsets of
R2.

DC(X,Y) O(X,Y)PO EC(X,Y) EQ(X,Y)

TPP(X,Y) TPP-1(X,Y) NTPP(X,Y) NTPP-1(X,Y)

Figure 4.1: Basic RCC8 relations for variables ranging over regular closed
subsets of R2.

4.2.2 Affine Spatial Logics

Convexity has played an important role in the development of qualitative
spatial reasoning from the very beginning. It seems to be the case however
that the research on convexity formalisms was treated as secondary to the
research on the topological qualitative spatial reasoning. In [RCC92], which
deals with RCC-type formalisms, a section is devoted to an extension of these
formalisms with a function convexhull(x) having the obvious interpretation.
“An axiomatisation” of this new function is proposed (DR[a, b] reads: a is
discrete from b).2

1. ∀x(P (x, convexhull(x)))

2. ∀x(P (convexhull(convexhull(x)), convexhull(x)))

3. ∀xyz((P (x, convexhull(y)) ∧ (P (y, convexhull(z))))→
(P (x, convexhull(z))))

2That is a and b can only share boundary points. See [RCC92], p. 3–4.
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4. ∀xy((P (x, convexhull(y)) ∧ (P (y, convexhull(x))))→ O(x, y))

5. ∀xy((DR(x, convexhull(y)) ∧ (DR(y, convexhull(x))))→
DR(convexhull(x), convexhull(y)))

The introduction of this new primitive is motivated by inexpressiveness
of topological spatial logics in terms of describing certain everyday geometric
relations (see [RC92]). As an example consider a relation of being inside a
region, without being part of it (e.g. water in a bottle). This can be formalised
as follows. A region r is said to be inside region s if r is a part of a convex
hull of s but not part of s itself. The convex hull function is used to define
this and other related properties.

INSIDE(x, y) := DR(x, y) ∧ P(x, convexhull(y))

P-INSIDE(x, y) := DR(x, y) ∧ PO(x, convexhull(y))

OUTSIDE(x, y) := DR(x, convexhull(y))

with obvious interpretations (P-INSIDE stands for partially inside). In-
verse relations are defined accordingly.

The paper [Coh95] contains another attempt at capturing the properties
of the convex hull function axiomatically.

1. ∀x(convexhull(convexhull(x))) = convexhull(x))

2. ∀x(x 6= convexhull(x)→ TPP (x, convexhull(x)))

3. ∀xy(P (x, y)→ P (convexhull(x), convexhull(y)))

4. ∀xyP (convexhull(x) + convexhull(y), convexhull(x+ y))

5. ∀xy(convexhull(x) = convexhull(y)→ C(x, y))

6. ∀xy(convexhull(x) · convexhull(y) =

convexhull(convexhull(x) · convexhull(y)))

7. ∀xy(DC(x, y)→ ¬conv(x+ y))

8. ∀xy(NTPP(x, y)→ ¬conv(y + (−x)))

9. ∀xy(conv(x) ∧ conv(y)→ conv(x · y))

10. ∀xyz(EC(x, y)∧conv(x+y)∧EC(y, z)∧conv(y+z)∧DC(x, z)→ conv(y))
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where conv(x) := convexhull(x) = x.
This is then used to investigate further the expressive power of the thus ex-
tended RCC8.

Yet another attempt at axiomatising the convex hull function are pre-
sented in [Ben94].

1. ∀x(TP(x, convexhull(x)));

2. ∀x(convexhull(convexhull(x)) = convexhull(x));

3. ∀xy(P (x, y)→ P (convexhull(x), convexhull(y)));

4. ∀xy(convexhull(x) = convexhull(y)→ C(x, y).

Also, [Ben96] tries to give a modal interpretation of the convex hull func-
tion in the spirit of Tarski and McKinsey’s work on relation between the S4

modal operator and the topological interior operator (see [TM44]). Bennett
proposes the following translation of the above axioms (here ◦ is the convex-
ity operator; 2 is the interior operator and � is S5 modal operator).

1. �(X → ◦X) ∧ ¬�(X → 2�X)

2. ◦ ◦X ↔ ◦X

3. �(◦X ↔ ◦Y )→ ¬�¬(X ∧ Y )

4. �(X → Y )→ (◦X → ◦Y )

Additionally, a new axiom is also considered

5. ∀xy(convexhull(x) · convexhull(y) =

convexhull(convexhull(x) · convexhull(y)))

and translated in the following way

5 ◦(◦X ∧ ◦Y )↔ (◦X ∧ ◦Y )
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4.3 The Model-theoretic approach

Recall the early topological spatial logics described in the previous section:
RCC and RCC8. We mentioned that RCC8 was first defined within RCC.
With the topological interpretation in place one can now ask the question:
what does it really mean that the primitives of RCC8 are definable in RCC?
It was soon realised that the answer to this question depends heavily on the
underlying topological space. It turns out that RCC8 primitives are indeed
definable in the language of RCC over many of the topological spaces of in-
terest. If that space is weakly regular τ1 and connected we take the contact
relation to be interpreted as follows (s and t are regular closed sets): C[s, t] if
and only if s ∩ t 6= ∅ and the RCC8 primitives are given the following inter-
pretation.

DC[s, t] if and only if s ∩ t = ∅;

EC[s, t] if and only if s ∩ t 6= ∅ and (s)0 ∩ (t)0 = ∅;

PO[s, t] if and only if t0 ∩ s0 6= ∅ and t ∩ −s 6= ∅ and −t ∩ s 6= ∅;

EQ[s, t] if and only if s = t;

TPP [s, t] if and only if s ⊆ t and b(s) ∩ b(t) 6= ∅;

TPP−1[s, t] if and only if TPP (t, s);

NTPP [s, t] if and only if s ⊆ t and b(s) ∩ b(t) = ∅;

NTPP−1[s, t] if and only if NTPP (t, s).

From a purely formal point of view then, there are good reasons to focus on
the more expressive language of RCC. (Recall that this is the first-order lan-
guage over the signature {+, ·,−, 0, 1, C}.) With the intended interpretation
in mind we view it as the Boolean Algebra together with the (topological)
contact relation. Hence the language can be divided into two parts: algebraic
and topological. At this point we might want to consider other languages
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where the topological part is being replaced or appended with other topolog-
ical relations or functions. We adopt this line of thinking here. The following
sections describe a selection of languages designed according to that pattern.
We divided our description into two parts. The first concerns first-order lan-
guages and the second part deals with constraint languages.

Recall that MP denotes the polygonal model and MQ the rational model.

4.3.1 Topological Spatial Logics

First-order languages We note that, given the intended interpretation, we
can replace +, ·,− with the order relation ≤ (cf. Section 2.7). We adopt this
convention here. Consider the following signatures:

Σ1 = {≤, C},
Σ2 = {≤, c},
Σ3 = {≤, C, c}.

We consider the first-order languages over these signatures, denoted in the
usual way. These languages are interpreted over a specific topological space,
the real plane. We now have to choose a plausible region-candidate for the
variables to range over. For the reasons outlined above we wish to consider
subalgebras of the set of regular open/closed subsets of R2.3 We limit our-
selves to the the following list of region-candidates (using the notation intro-
duced in Section 2.7): RO(R2), ROP (R2) and ROQ(R2). Finally we give the
following interpretation to the primitives: let s, t be regions

C[s, t] if and only if (s)0 ∩ (t)0 6= ∅;

c[s] iff s is a connected set;

s ≤ t iff s ⊆ t.

We first turn to the task of showing how sensitive different languages are to
changes in the domain. What we refer to as topological logics were histori-
cally often called mereotopologies and were viewed as a combination of mere-

3The choice between regular open or closed subsets is arbitrary.
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ological and topological ideas. There is, however, a more technical definition
of mereotopology. For example, Pratt-Hartmann (e.g. [PH07]) defines it as
certain type of Boolean Algebra. We introduce this technical notion here as it
is used in the results we wish to present.

Definition 4.3.1 (Mereotopology). Let X be a topological space. A mereotopo-
logy over X is a Boolean sub-algebra M of RO(X) such that, if o is an open
subset of X and p ∈ o, there exists r ∈M such that p ∈ r ⊆ o.

Definition 4.3.2. A mereotopology M is finitely decomposable if every region
in M is the sum of finitely many connected regions in M .

All the regular open algebras of interest are in fact mereotopologies (con-
sult [PH07] for proofs), hence we often refer to a topological logic as mereo-
topology and by specifying its domain (e.g. RO(R2), ROQ(R2)).
Consider L≤,C,c. The following example outlines the difference between the
theory of the mereotopology over RO(R2) and the theories of the mereotopo-
logies over ROP (R2) and ROQ(R2). Consider the following L≤,C,c-sentence.

∀x∀y(C(x, y)→ ∃z(c(z) ∧ z ≤ y ∧ C(x, z))).

It ”says” that, if a region contacts another region, then it contacts some
connected part of it. This sentence is satisfied by any finitely decomposable
mereotopology (such as ROP (R2)); it is not however satisfiable over RO(R2)

(for details see [PH07]). Let us consider yet another example — L≤,c. It turns
out that also here different domains determine different theories. The fol-
lowing shows that the mereotopologiesRO(R2) and andROP (R2),ROQ(R2)

have different L≤,c-theories. Consider the following L≤,c-sentence.

∀x1∀x2∀x3(c(x1) ∧ c(x2) ∧ c(x3) ∧ c(x1 + x2 + x3)→ (c(x1 + x2) ∨ c(x1 + x3))).

It ”says” that if three connected regions have a connected sum, then the first
must form a connected sum with one of the other two. [PH07] shows that
this sentence is true not only in ROP (R2) but also in ROQ(R2), whereas it
is not true in RO(R2). Figure 4.2 shows a RO(R2)-construction consisting of
regions r, s, t defined as follows.

r = {(x, y) | − 1 < x < 0; −1− x < y < y < 1 + x};
s = {(x, y) | 0 < x < 1; −1− x < y < sin(1/x)};
t = {(x, y) | 0 < x < 1; sin(1/x) < y < 1 + x}.
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It is clear that the sum of r, s, t is the large triangle (as depicted in the Figure
4.2) and so the sum of r, s, t is connected but neither r+s nor r+t is connected.

Figure 4.2: Three connected regions in R2, see [PH07]

One can also try and compare the expressive power of different topolog-
ical languages. What we essentially do is to fix the interpretation and, given
two languages, see if one language’s primitives are expressible in the other.
For example say we wish to compare languages L≤,C and L≤,c interpreted
geometrically. The first result shows that in fact instead of considering L≤,C
we could confine our attention to LC .

Theorem 4.3.1 ([PH07]). LetM be a mereotopology over a weakly regular spaceX ,
and let r1, r2 ∈M . Then r1 ≤ r2 if and only if M |= φ≤[r1, r2], where φ≤(x1, x2) is
the LC-formula

∀z(C(x1, z)→ C(x2, z)).

Proof. See [PH07].

A mereotopology M is said to respect components if every component of
every region inM is also inM . Most of the mereotopologies discussed in this
section respect components.

Theorem 4.3.2 ([PH07]). LetM be a mereotopology over a regular topological space
X such thatM respects components, and let r ∈M . Then r is connected if and only
if M |= φc[r], where φc(x) is the LC-formula
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∀x1∀x2(x1 > 0 ∧ x2 > 0 ∧ x1 · x2 = 0 ∧ x1 + x2 = x→ ∃x′1∃x′2(x′1 ≤ x1 ∧ x′2 ≤
x2 ∧ C(x′1, x

′
2) ∧ ¬C(x′1 + x′2,−x))).

Proof. see [PH07].

The two presented results ensure that for mereotopologies over regular
topological spaces which respect components LC is at least as expressive as
L≤,c. The converse is true for some well-behaved mereotopologies (we refer
the reader to [PH07]).

We note that one can also investigate expressiveness results of a more
absolute character. Given a topological logic and homeomorphic tuples of
regions, we might ask, do these tuples satisfy the same formulas? And con-
versely, can we find a formula satisfiable only by homeomorphic regions? We
do not investigate this problem here (cf. [PH07]). However we do provide
similar sort of results for convexity logic in Section 5.3.

One might wonder how the axiomatisation attempts described above fit
into model-theoretic approach to spatial logics. As we mentioned earlier,
there is a place for axiomatisation here. Constructing an axiom system is
one of the ways of exploring the properties of a given theory. Take L≤,c,
where variables range over regular open polygonal subsets of R2. The paper
[PHS98] axiomatises the L≤,c-theory of ROP (R2), which was later refined in
[PH07]. It includes the axioms of the non-trivial Boolean Algebra together
with axioms expressing certain topological properties (not chosen for their
intuitiveness). Among others these axioms include: an axiom ensuring that
two connected regions with a non-empty intersection have a connected sum;
an axiom schema stating that if connected regions form a connected sum,
then at least one of these regions is such that its removal from the sum leaves
out another connected sum. There are also axioms securing certain ”techni-
cal” properties, aiding the construction of the completeness proof. Impor-
tantly, an infinite inference rule is used.

{∀x(ψn(x)→ δ(x))|n ≥ 1}
∀xδ(x)

,

where for each n ≥ 1, ψn(x) stands for a formula

∃z1 . . . ∃zn(
∧

1≤i≤n

c(zi) ∧ (x =
∑

1≤≤n

zi)).
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Intuitively, this rule states that every region is a sum of connected regions.
Please consult [PH07] for a detailed description of the system and soundness
and completeness results. We note that we have taken up a similar approach
to axiomatising convexity logic, presented in the next chapter.

The constraint topological languages Since most of the first-order logics
are undecidable,4 it is reasonable to try and restrict the languages in hope to
restore decidability. In what follows we describe several constraint languages
with emphasis on complexity results. Recall the signatures Σ2 = {≤, c} and
Σ3 = {≤, C, c} from the previous section. We introduce two more, closely re-
lated, signatures Σ′2 = {≤, c−} and Σ′3 = {≤, C, c−}. This section concerns
the complexity results relating the constraint languages over these signa-
tures with topological interpretation. The paper [KPHZ10] deals with much
greater selection of interpretations; we however focus on the situation where
these constraint languages are interpreted over the real plane. The only new
symbol c−[r] is interpreted as: r has a connected closure.

Theorem 4.3.3. The satisfiability problem forLc≤,c− ,Lc≤,C,c− andLc≤,C,c overRO(R2)

and ROP (R2) is EXPT IME-hard.

Proof. See [KPHWZ10]
Thus we are left with just one language Lc≤,c, dealt with in the following

theorem.

Theorem 4.3.4. The satisfiability problem for Lc≤,c over ROP (R2) is EXPT IME-
hard.

By a graph model we mean a pair G = 〈G, σ〉, where G = 〈V,E〉 is a graph
and σ is a function mapping Lc≤,c-variables to a subset of V . The relation
symbol ≤ is interpreted as the inclusion relation on the power set of V and
c is interpreted as (graph-theoretic) connectedness. The proof proceeds as
follows. First it is shown that an Lc≤,c -formula is satisfiable over ROP (R2)

if and only if it is true in a connected planar graph model. Then, using the
techniques developed in [KPHWZ10] it is shown that it is EXPT IME-hard
to decide whether an Lc≤,c -formula is true in a planar graph model.

We wish to mention complexity results for two other constraint languages.5

The satisfiability of RCC8 over regular closed subsets of any topological
4For the discussion of the first-order undecidability of RCC and BCA cf. [Gri08], p. 47–

52, and [CBGG97].
5For other complexity results please consult [KPHZ10], [KPHWZ10] and [PH02].
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space X is shown to be NP-complete. The complexity does not change if
we take X = R2 (see [KPHZ10]). Note that RCC8 was modelled after Allen’s
interval algebra (see [All83] for the survey) and it was hoped that similar
techniques used in tackling problems from Allen’s algebra would prove use-
ful in case of RCC8. In particular, [RN97] presents an algorithm for solving
instances of RCC8 satisfiability problem — it is translated as a constraint
satisfaction problem. A composition function, mapping RCC8-relations to
RCC8-terms, is introduced (defined as a composition table look-up). For the
details of the construction the reader is referred to [RN97]. This approach
did not prove to be as fruitful as in the case of Allen’s algebra, since RCC8-
terms enhanced with the composition function do not form a relation alge-
bra.6 A particular modification of RCC8, called BRCC8, is of special interest
here. In [WZ00] the RCC8-relation symbols were enhanced with Boolean re-
gion terms: binary +, · and unary −. The resulting system—BRCC8—has
the following interpretation. Variables range over regular closed sets: RC(X);
RCC8-relation symbols are interpreted as above ; s + t interpreted s ∪ t; s · t
interpreted (s ∩ t)0 and −t if and only if (X/t)0. Formulas are defined anal-
ogously to the RCC8 case, the only difference is that now the basic relations
can hold between sums, products and complements of regions. If we take the
topological space X = Rn, for any n ≥ 1 the satisfiability problem turns out
to be PSPACE-complete.

4.3.2 Affine Spatial Logics

This section deals primarily with affine convexity spatial logics. We introduce
four signatures containing conv and some choice of ”topological” symbols.

Σ1 = {conv} ∪ {R | R is an RCC8 relation symbol},
Σ2 = {conv, EC, PP},
Σ3 = {conv, C},
Σ4 = {conv,≤}.

We denote the constraint languages over the signatures Σ1 and Σ2 by
Lcconv,RCC8 and Lcconv,EC,PP and the first-order languages over Σ3 and Σ4 by

6For a more detailed treatment ofRCC8 and related systems reader is referred to [RN07],
[Ren02] and [Gri08].
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Lconv,C and Lconv,≤. These languages are interpreted over the real plane with
variables ranging over the elements of RO(R2) (in some, indicated, cases we
restrict our attention to ROP (R2) and ROQ(R2)). All RCC8 relation symbols
are interpreted in the standard way; EC[a, b] iff a and b are externally con-
nected; PP [a, b] iff a is a proper part of b; C is the contact relation; conv is the
convexity property. We recall that Lconv,≤ is the language we introduced in
Section 2.7.
The paper [DGC99] is one of the first within the QSR paradigm to deal pri-
marily with convexity logic. There, the languages Lcconv,RCC8 and Lcconv,EC,PP
are investigated. Two main results are presented there. The first is a com-
plexity result for Lcconv,RCC8. A procedure is described such that given a set
of constraints S in Lcconv,RCC8 (assuming the above interpretation), this pro-
cedure generates a set of constraints S ′ such that S is satisfiable by a tuple
of regular open subsets of R2 if S ′ is satisfiable by a tuple of regular open
polygons of R2 with a boundable number of vertices. Hence the satisfiabil-
ity problem for Lcconv,RCC8 interpreted over RO(R2) is reduced to the satis-
fiability problem for Lcconv,RCC8 interpreted over RCP (R2). S ′ in turn can
be reduced in a similar fashion to the set S ′′ of formulas in the language of
fields reconstructed in Lcconv,RCC8 (using the fact that one can ”talk” about co-
ordinatisation in Lcconv,RCC8 — we discuss coordinatisation when describing
Lcconv,EC,PP ). Decidability – as well as the complexity bounds – then follows
from Tarski’s well known work ([Tar48]).7

We now give a brief overview of the procedure. Let r, s be regions related
by one of the Lcconv,RCC8 primitive relations.8 In essence, the procedure con-
sists of selecting witness triangular subregions r′ ⊂ r and s′ ⊂ s in a way
specific to the primitive relation involved. Consider a constraint expressing a
fact that r is related to other regions by n primitive relations. The procedure
will then select n witness regions for r. We now map r to a new region r′

which is the convex hull of the sum of all n witness regions involved. Re-
peating the procedure for every region in the considered constraint, we end

7And the satisfiablity problem for the theory of fields is known to be at least doubly
exponential. See [DH88].

8We note that the paper [BC99] proposes a model building algorithm for determining
consistency of RCC8-relations and shows how to extend this procedure to incorporate con-
vexity. This procedure is related to that of [DGC99] but it is claimed to be less computation-
ally heavy (p. 3). In the case of convexity [BC99] uses the property that for a convex region
r and a point p not in that region, p lies outside any triangular region whose vertices are
contained in r (by convexity this triangular region is also contained in r). For the details of
the construction please consult [BC99].
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up with a new set of polygonal regions. We refer the reader to the full expla-
nation of the procedure to the original paper.

The second result of [DGC99] relates to the language Lcconv,EC,PP . A cru-
cial step, as in the case of Lcconv,RCC8 is to show that Lcconv,EC,PP is expressive
enough to allow talking about coordinatisation. This is indeed the case: it
is shown that statements about points and lines can be simulated with state-
ments about regions. This includes the properties of collinearity and non-
collinearity and the betweenness relation (by the formula containing three
n-sequences of variables bet(x̄, ȳ, z̄), [DGC99], p. 251–254).We have the fol-
lowing theorem.

Theorem 4.3.5. If a region s is an affine transformation of region r, then for any
Lcconv,EC,PP -formula φ we have that RC(R2) |= φ[r] if and only if RC(R2) |= φ[s].

An analogous theorem, relating the language Lconv,≤ is proved in [Pra99].
The main results in this paper concern three interpretations, where variables
are set to range over RO(R2), ROP (R2) or ROQ(R2).
The paper [Pra99] extends the results from [DGC99] by investigating if the
converse of Theorem 4.3.5 holds. In the case of MQ the converse theorem is
shown to be true.

Theorem 4.3.6. Every n-tuple in ROQ(R2) satisfies an Lconv,≤-formula ϕ with the
following property: any two n-tuples satisfying ϕ are affine-equivalent.

The proof relies on constructing certain formulas that allow us to ”talk”
about rational polygons and fixing of their bounding lines in certain manner.
We use these, appropriately called, fixing formulas in our own construction in
Chapter 5. However, the converse of Theorem 4.3.5 is false in the case of MP .

Recall that a model A is prime if for any model B such that B is elemen-
tarily equivalent to A, the model A can be elementarily embedded in B. It is
shown that the model MQ is prime and that the models M,MQ,MP all have
different theories.
The paper [Dav06] deals with the language Lconv,C . It is shown that a num-
ber of topological relations are Lconv,C-definable: P (part of) , PP (proper
part of), c (connectedness), O (overlap), EC (externally connect) with obvi-
ous interpretations. As an example, consider the formula φ(x) defined to be
∀y∀z∀w((C(w, x) ↔ C(w, y) ∨ C(w, z)) → C(y, z)). The formula φ says that
if a region is a sum of two others, then these two have to contact each other.
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Hence, φ[r] is satisfied if and only if r is connected. Consider the following
lemma.

Lemma 4.3.1. If a and b are convex solids such that a is in contact with b, then a
and bmeet in a single point if and only if the following holds: for all regions c, d ∈ U ,
if c ⊂ a and d ⊂ b, b is in contact with c and a is in contact with d, then c is in
contact with d.

This lemma is used to show that there exists an Lconv,C-formula ψ such
that ψ is satisfiable by two regions if and only if these regions meet at a single
point. Using this fact and some related definitions it is shown that an affine
coordinate system is also Lconv,C-definable. Then using standard techniques
(not dissimilar to those utilised by [ST79]) real addition and multiplication
are defined relative to a given affine coordinate system. All this is needed to
prove the following theorems.

Theorem 4.3.7. Let U be a class of closed regions in the plane that includes all
simple polygons. Let φ(x1, . . . , xn) be an analytical and affine-invariant relation
over U . Then φ is first-order definable in the structure 〈U,C,Convex〉.
Theorem 4.3.8. Let φ be as in Theorem 4.3.7. Then φ is first-order definable in
〈RC(R2), C,Convex〉 if and only if φ an analytical and affine-invariant relation over
RC(R2).

(Analogous results hold when U is the set of all rational regular closed poly-
gons, cf. [Dav06]).

An analytical relation is one that can be defined in the structure S =

〈N ∪ Nω,+, ·, []〉, where Nω is the set of infinite sequences of natural num-
bers and given a sequence s̄ and a number p; s̄[p] means ”pthelement of s̄”.
In order to prove the results, it is shown that infinite sequences of points, the
indexing function on such sequences and the closure function (mapping an
infinite sequence of points to a region) can all be defined in Lconv,C .

On a final note we wish to observe that the language Lconv,≤ turns out to be
the most expressive — to a certain extent — of all those considered in this
section.

Theorem 4.3.9. The relations C(x, y) and EC(x, y) are Lconv,≤-definable in MQ

and MP .
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It follows that all the RCC8 relations are Lconv,≤-definable over these do-
mains. It follows that the expressiveness results from [DGC99] and [Dav06]
carry over to Lconv,≤. This theorem is also used to prove the undecidability of
MP and MQ. From this undecidability of M follows easily.

4.4 The Modal approach

In this section we gather interesting results on modal affine and projective
spatial logics. We note that the results presented here are only tangentially
related to our investigations.

Venema The paper [Ven99] deals with projective spatial logic. In this pa-
per a modal language is introduced for talking about projective planes. Let
Σ = {3P ,3L}. Take VARP and VARL be two countably infinite disjoint sets
elements of which are called point and line variables respectively. Next we
define FORP and FORL. The set FORP is the smallest set satisfying the fol-
lowing conditions: (i) every p ∈ V ARP is in FORP ; (ii) if p ∈ FORP , then
¬p ∈ FORP ; (iii) if p1, p2 ∈ FORP then p1 ∧ p2 ∈ FORP ; (iv) if l ∈ FORL then
3P l ∈ FORP . Analogously, the set FORL is the smallest set satisfying the
following conditions: (i) every l ∈ V ARL is in FORL; (ii) if l ∈ FORL, then
¬l ∈ FORL; (iii) if l1, l2 ∈ FORL then l1 ∧ l2 ∈ FORL; (iv) if p ∈ FORP then
3Lp ∈ FORL.

Note that to avoid notational clutter we do not sort the logical connec-
tives.

Hence L is a two-sorted modal language, where we distinguish between
point and line formulas. In order to define semantics for this language we
need to introduce a few more notions.

Definition 4.4.1. A two-sorted frame is a two-sorted structure F = 〈P,L, I〉
such that P ∩ L = ∅ and I ⊆ P × L. Elements of P and L are called points
and lines respectively; I is called the incidence relation.

A projective plane is thought of as a two-sorted frameF = 〈P,L, I〉 satisfying
the following properties.

1. Each pair of distinct points is connected by exactly one line;

2. each pair of distinct lines intersects in exactly one point;
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3. there are at least four points such that no three of them are incident with
one and the same line.

We let PP denote the class of projective planes. According to [Ven99] we
obtain an equivalent definition of a projective plane if we replace (3) with

(3′) there are at least four lines such that no three of them are incident with
one and the same point.

Finally, we can define semantics for L.

Definition 4.4.2. Let F = 〈P,L, I〉 be some frame. A valuation on F is a map
assigning subsets of P to point variables and subsets of L to line variables.
A (two-sorted) model is a pairM = 〈F , V 〉 such that F is a frame and V is a
valuation. Given a modelMwe define the notion of truth as follows:

M, s |= p if s ∈ V (p);

M, k |= l if k ∈ V (l);

M, x |= ¬φ if notM, x |= φ,

M, x |= φ ∧ ψ ifM, x |= φ andM, x |= ψ;

M, s |= 3PL if there is some k with s I k andM, k |= L;

M, k |= 3LP if there is some s with s I k andM, s |= P ,

where s ∈ P , k ∈ L, p ∈ V ARP , l ∈ V ARL, x is either in P or L.

The expressiveness of this language is explored to some degree. For ex-
ample, it is shown that the theorem of Pappus is expressible (Theorem 2.5.6
in Chapter 2).9 More precisely:

Lemma 4.4.1. Let F be a projective plane. Then there exists a formula ψ such that
the Pappus theorem holds in F if and only if F |= ψ.

Next, Venema proposes the projective calculus AXP consisting the fol-
lowing axioms and rules of inference.

1. all classical tautologies;

9Cf. [Ven99], p. 6–8
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2. 2P (l1 → l2)→ (2P l1 → 2P l2);

3. 2L(p1 → p2)→ (2Lp1 → 2Lp2);

4. p→ 2P3Lp;

5. l→ 2L3P l;

6. 3P>;

7. 3L>;

8. 3a3ap→ 3p;

9. 3b3bl→ 3l.

Here, 2iφ = ¬3i¬φ and 3aφ = 3P3Lφ, 3bφ = 3L3Pφ.

(MP) Modus Ponens: φ→ ψ, φ / ψ.
(N) Necessitation for 2P and 2L: φ / 2Pφ;ψ / 2Lψ, where φ is a point for-
mula and ψ is a line formula.
(SUB) Substitution uniformly replacing in any formula φ some propositional
variable by some formula of the same sort: φ / s(φ).

The meaning of axioms 1–3 is obvious. Informally, axioms 4–5 form the
modal way of stating that the accessibility relations connected to the dia-
monds 3P and 3L are each other’s converse. The axiom 6 states that each
point is incident with at least one line. The axiom 8 is the transitivity axiom
for 3. The axioms 5 and 7 are the obvious duals of 6 and 8 (cf. [Ven99], p.
13). This projective calculus determines the consequence relation `AXP .

Theorem 4.4.1. The calculus AXP is strongly sound and complete with respect to
the class PP of projective planes. That is, for any set Φ of formulas and any formula
φ (of the same sort) we have

Φ `AXP φ if and only if Φ |=PP φ.

It turns out the PP -satisfiability problem (PP -SAT) for LΣ, that is the
problem of determining for a given LΣ-formula φ if φ is satisfiable in some
projective plane is decidable. The paper [Ven99] also explores the computa-
tional complexity of PP -SAT and obtains the following result.
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Theorem 4.4.2. PP -SAT is NEXPT IME-complete.

Proof. See [Ven99].

Hodkinson One reason why [Ven99] is important for our purposes is that
Hodkinson et al model their ideas on this paper and use similar framework
to talk about affine modal logic.

Definition 4.4.3. Let Σ = {2P ,2L,2PL} and let syntax be defined as in
[Ven99] with the obvious modifications and with the following addition. We
extend the definition of FORL with the following condition: (v) if p ∈ FORL

then 2PLp ∈ FORL.

Definition 4.4.4. A two-sorted affine frame is a two-sorted structureF = 〈P,L, ε, ‖
〉 such that P ∩ L = ∅, ε ⊆ P × L, and ‖⊆ L × L. Elements of P and L are
called points and lines, respectively; ε is called the incidence relation and ‖ is
called the parallel relation.

A model and valuation are defined as in [Ven99]. The definition of truth in
a model differs in the case of modalities in the following way.

Definition 4.4.5. Let s ∈ P and l ∈ L

M, s |= 2PL ifM,m |= L for every m ∈ L with sεm;

M, l |= 2LP ifM, t |= P for every t ∈ P with tεl;

M, l |= 2PLL ifM,m |= L for every m ∈ L with l ‖ m.

The definitions of validity and satisfiability are standard.

Next [HH08] defines an affine plane.

Definition 4.4.6. A (two-sorted) affine frame A = 〈P,L, ε, ‖〉 is said to be an
affine plane if:

1 For any two distinct points s, t ∈ P , there is exactly one line l ∈ L such
that sεl and tεl.

2 For all l,m ∈ L, we have l ‖ m iff l = m or there is no s ∈ P with sεl and
sεm.

3 For any l ∈ L and s ∈ P , there is exactly one line m ∈ L such that sεm
and m ‖ l.
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4 There are distinct s, t, u ∈ P such that for no l ∈ L do we have sεl, tεl,
and uεl.

The logic of affine planes is defined to be the set of all point and line
formulas that are valid in every affine plane. We note that Hodkinson et
al. also gives a translation of the modal formulas into first-order logic (see
[HH08], p. 949). Next [HH08] defines a formula ψ such that ¬ψ is valid in
every affine plane. Certain properties of this formula are used in the proof of
the following, main theorem of the paper (cf. [HH08], p. 950–951).

Theorem 4.4.3. The modal logic of affine planes is not finitely axiomatisable.

The chapter [BGKV07] is a very good source on standard results in affine
logics. It refers, inter alia, to the results presented in [ST79], [Tar59] and more
indirectly to [Whi07] and [Rus97], [Rus56]. After rehearsing basic concepts in
affine and projective geometries, including coordinatisation of affine spaces,
the first-order theories are considered where [ST79] is reviewed. From our
point of view, the important contribution of [BGKV07] is the description of
two-sorted modal logic for plane affine geometry, but mainly because we are
also interested in – a specific example of – plane affine geometry (cf. [HH08]).

Definition 4.4.7. A two sorted frame F = 〈P,L, I〉 is affine if the following
are satisfied.

1. ∀X∀y∃z(XIz ∧ y ‖ z);

2. ∀x∀y∀z(x ‖ y ∧ y ‖ z → x ‖ z),

where X ∈ P , x, y, z ∈ L and x ‖ y iff for all Z ∈ P if ZIx and ZIy, then
x = y. We call ‖ a parallelism relation. We also define a strong parallelism
relation, denoted ‖s: x ‖s y iff for all Z ∈ P not ZIx or not ZIy. We append
the definitions in [HH08] in the following way. Let Σ = {2P ,2L, [‖s]} and
let syntax be defined as in [Ven99] with the following addition. We extend
the definition of FORL with the following condition: (v) if p ∈ FORL then
3PLl ∈ FORL. The semantics is analogous to the one in [HH08]. The main
difference is the interpretation of [‖s]: M,x |= [‖s]α iff for all y ∈ L such that
x ‖s y M, y |= α.

The main result is the following theorem.
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Theorem 4.4.4. The satisfiability problem for M is NEXPT IME-hard.

Proof. See [BG02].

4.5 Summary

The main theme of this chapter was the model-theoretic approach to spatial
formalisms. Historically it was the research on the qualitative spatial reason-
ing that revived the interest in the topological work of Whitehead and Clarke.
Initially, the research was carried out with the notion of interpretation being
only vaguely defined. It was soon realized, that in order to meaningfully in-
vestigate region-based spatial logics the tools developed in model theory are
required. We mentioned that within the model-theoretic approach axioma-
tisation is an important way of fathoming the properties of a given theory.
However, since the axiom system is no longer a starting point, it does not
really matter if it contains any ”intuitively” valid assertions. We gave an ex-
ample of such an axiom system in the case of topological spatial logic. The
next chapter presents, among others, the main contribution of this thesis: an
axiom system for an affine spatial logic.
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5
Axiomatisation

5.1 Introduction

Recall that MX denotes the structure 〈ROX(R2), conv,≤〉, withX ∈ {P,Q,A}.
If X = ∅ we obtain M = 〈RO(R2), conv,≤〉. This chapter contains the main
contribution of this thesis — the axiom system for the Lconv,≤-theory of MQ.
It is divided into two parts. The first part contains expressiveness results re-
lating to the rational model (and often generalising to other domains). The
second part describes the proposed axiom system and provides proofs of the
soundness and completeness theorems.

5.2 Expressiveness

5.2.1 Basic Expressiveness

Most of the results from this section are either directly taken from, or are
built on, the results presented in [Pra99]. We present an account of this work
in Chapter 4.

Lemma 5.2.1. Let l ∈ ROX(R2). Then MX |= hp[l] if and only if l is a half-plane,
where hp(x) is the formula:

conv(x) ∧ conv(−x).

Proof. It is enough to observe that for any convex region l its complement −l
is also convex if and only if l is a half-plane. See Figure 5.2.1
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a

−a

(a) conv(a) but ¬conv(−a)

a

−a

a

(b) conv(a) and conv(−a)

Figure 5.1: Using convexity to define a half-plane in R2.

We use letters l,m, n etc. (possibly with subscripts) to denote half-planes
but sometimes we use the same symbols to denote the lines bounding these
half-planes. We hope no confusion arises.1

Lemma 5.2.2. Let l1, l2 ∈ ROX(R2). Then l1 and l2 are half-planes with lines
bounding them being coincident if and only if

MX |= α[l1, l2],

where α(x1, x2) is the formula:

hp(x1) ∧ hp(x2) ∧ (x1 = x2 ∨ x1 = −x2).

Proof. Clearly, two lines are coincident just in case they bound the same half-
planes.

It is easy to see (cf. Figure 5.2) that for any two half-planes l1, l2, their
bounding lines are parallel or coextensive if and only if at least one of l1 · l2 =

∅, l1 · −l2 = ∅, −l1 · l2 = ∅, −l1 · −l2 = ∅ holds. This observation allows us to
talk about parallel lines in MX .

Lemma 5.2.3. Let l1, l2 ∈ ROX(R2). Then there exists a formula par(x1, x2) such
that MX |= par[l1, l2] if and only if l1 and l2 are half-planes and lines bounding them
are parallel.

1Obviously, with each line there are two half-planes associated.
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l2

−l2
l1

−l1

Figure 5.2: Lines bounding l1 and l2 are parallel: half-planes −l1 and l2 have
an empty intersection.

Proof. Consider the formula: par(x1, x2) :=

hp(x1)∧hp(x2)∧x1 6= ±x2∧(x1·x2 = 0∨x1·−x2 = 0∨−x1·x2 = 0∨−x1·−x2 = 0).

Definition 5.2.1. Let l,m, n be any non-parallel, non-coincident lines with
l∩m = O, l∩n = I and m∩n = J. We say that l,m, n form a coordinate system
or a coordinate frame and call l the abscissa, m the ordinata and refer to point O

as the origin and to segments OI and OJ as the units of measurement on the
lines they belong to.

Given n variables x1, . . . , xn and their complements there are 2n possible n-
element products of ±xi for 1 ≤ i ≤ n. We denote them by:

(1)∏
1≤i≤n

±xi, . . . ,
(2n)∏

1≤i≤n

±xi.

The index set of the set of all possible n-element products of ±xi is denoted
by Pn. Note that in this case phrases like complement and product are used
informally to denote respective function symbols in the language.

Lemma 5.2.4. There exist formulas coor(x1, x2, x3) and Γ(x1, x2, x3) such that
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O

J

I

(a)

O

J

I

(b)

Figure 5.3: Example coordinate systems.

MX |= Γ[l1, l2, l3] if and only if l1, l2, l3 are half-planes such that lines bounding
them meet at a single point; and MX |= coor[l1, l2, l3] if and only if l1, l2, l3 are
half-planes such that lines bounding them form a coordinate system.

Proof. Consider the formula

η(x1, x2, x3) :=
∧

1≤i≤3

hp(xi) ∧
∧

1≤i<j≤3

¬par(xi, xj).

Now put

coord(x1, x2, x3) := η(x1, x2, x2) ∧ ¬
∨

1≤i<j≤8

(

(i)∏
1≤k≤3

±xk = 0 ∧
(j)∏

1≤k≤3

±xk = 0)

and

Γ(x1, x2, x3) := η(x1, x2, x2) ∧
∨

1≤i<j≤8

(

(i)∏
1≤k≤3

±xk = 0 ∧
(j)∏

1≤k≤3

±xk = 0).

Observe that l1, l2, l3 satisfy coord just in case no two products
(i)∏

1≤k≤3

±lk,

(j)∏
1≤k≤3

±lk are empty. Similarily, l1, l2, l3 satisfy Γ just in case there are (at least)

two empty products
(i)∏

1≤k≤3

±lk,
(j)∏

1≤k≤3

±lk. This, together with the fact that

three non-parallel lines can only divide the plane into 6 or 7 regions depend-
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ing on whether these lines meet pairwise at three distinct points or meet at a
single point yields the result (see also Fig. 5.4).

l1
l2

l3

(a)

l1

l2

l3

(b)

Figure 5.4: Examples of Γ[l1, l2, l3] and ∆[l1, l2, l3] respectively.

Given MX |= coord[l,m, n] we adopt the convention that the line bounding
the first half-plane is the ordinata and the line bounding the third half-plane
is the abscissa. In general this will be represented by the numbering of the
elements, like so: MX |= coord[l1, l2, l3] but occasionally we purposefully dis-
rupt the numbering and write, for example, MX |= coord[l1, l3, l2].

We now present a number of expressiveness results extending [Pra99].

Definition 5.2.2. Let l,m ∈ ROX(R2) be half-planes. We say that the lines
bounding them form a general line pair if the lines intersect at the unique point
P.

Lemma 5.2.5. Let l1, l2 ∈ ROX(R2). There exists a formula �x1, x2� such that
MX |=�l1, l2� if and only if l1, l2 are half-planes and lines bounding them form a
general line pair.

Proof. Consider the formula (see Figure 5.5): �x1, x2� := hp(x1) ∧ hp(x2) ∧
±x1.± x2 6= 0.

Lemma 5.2.6. Let l1, l2, l3, l4 ∈ ROX(R2). There exists a formula �x1, x2� .
=�

x3, x4� such that MX |=�l1, l2� .
=�l3, l4� if and only if l1, l2 and l3, l4 are

half planes such that lines bounding them form general line pairs which determine
the same point.

Proof. Consider the following formula:

�x1, x2� .
=�x3, x4� := Γ(x1, x2, x3) ∧ Γ(x1, x2, x4).
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P

l1

−l1 −l2
l2

Figure 5.5: The line bounding l1 intersects the line bounding l2 at a point P.
Observe that all half-planes bounded by these lines have non-empty inter-
sections.

Recall the definitions of addition (Def. 2.5.9) and multiplication (Def. 2.5.10
in an affine plane, presented in Section 2.5).

Definition 5.2.3 ([Ben95]). We say that OC is the result of addition of OA and
OB and write OA+OB = OC if and only if the following lines can be found
(see Fig. 2.3):

(a) l, l′ meeting at a single point O;

(b) m parallel to l′;

(c) lA such that �lA, l′�= A, parallel or coincident with l;

(d) lB such that �lB, l′�= B, and such that lB, l,m meet at a single point;

(e) lC such that �lC , l′�= C, parallel or coincident with lB.

Definition 5.2.4 ([Ben95]). We say that OC is the result of multiplication of
OA and OB and write OA ·OB = OC if and only if the following lines can
be found (see Fig. 2.4):

(a) l1, l2, l3 bounding a triangle;

(b) lA such that �lA, l3�= A, parallel or coincident with l2;

(c) lB such that �lB, l3�= B, and such that lB, l1, l2 meet at a single point;
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(d) lC such that �lC , l3�= C, parallel or coincident with lB and such that
lC , lA, l1 meet at a single point.

We now show that addition and multiplication are definable in relation to a
given coordinate frame.

Lemma 5.2.7. There exists a formula

add(x1, x2, x3, xa, xb, xc)

such that
MX |= add[l1, l2, l3, a, b, c]

if and only if the following conditions all hold:

(i) l1, l2, l3 are half-planes such that lines bounding them form a coordinate system
with l3 the abscissa and l1 the ordinata;

(ii) a is a half-plane such that the line bounding it intersects the line bounding l3
at some point A;

(iii) b is a half-plane such that the line bounding it intersects the line bounding l3
at some point B;

(iv) c is a half-plane such that the line bounding it intersects the line bounding l3
at some point C;

(v) OA + OB = OC.

Proof. The following shows that the construction from Definition 2.5.9 is ex-
pressible in Lconv,≤. Consider the following formula

∃y (coord(x1, x2, x3) ∧ (par(xa, x1) ∨ α(xa, x1)) ∧ Γ(xb, x1, y) ∧ �x3, xb�
∧(par(xb, xc) ∨ α(xb, xc)) ∧ Γ(y, xa, xc)).

Lemma 5.2.8. There exists a formula

mult(x1, x2, x3, xa, xb, xc)

such that
MX |= mult[l1, l2, l3, a, b, c]

if and only if the following conditions all hold:
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(i) l1, l2, l3 are half-planes such that lines bounding them form a coordinate sys-
tem, with l3 the abscissa and l1 the ordinata;

(ii) a is a half-plane such that the line bounding it intersects the line bounding l3
at some point A;

(iii) b is a half-plane such that the line bounding it intersects the line bounding l3
at some point B;

(iv) c is a half-plane such that the line bounding it intersects the line bounding l3
at some point C;

(v) OA ·OB = OC.

Proof. The following shows that the construction from Definition 2.5.10 is ex-
pressible in Lconv,≤. Consider the following formula:

coord(x1, x2, x3) ∧ (par(xa, x2) ∨ α(xa, x2)) ∧ Γ(x1, x2, xb)∧ �x3, xb�
∧Γ(xc, xa, x1) ∧ (par(xc, xb) ∨ α(xc, xb)).

We obtain an easy consequence of Lemma 5.2.8.

Lemma 5.2.9. For each natural number n there exists a formula

powern(x1, x2, x3, x, zn)

such that
MX |= powern[l1, l2, l3, a, bn]

if and only if the following conditions hold:

(i) l1, l2, l3 are half-planes such that lines bounding them form a coordinate sys-
tem, with all the intersection points defined as above;

(ii) a is a half-plane such that the line bounding it intersects the line bounding l3
at some point A;

(iii) b is a half-plane such that the line bounding it intersects the line bounding l3
at some point B;
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(iv) OA
n

= OB.

Proof. An easy application of the multiplication formula:

∃z1 . . . ∃zn−1(mult(x1, x2, x3, x, x, z1) ∧
∧

2≤i≤n

mult(x1, x2, x3, x, zi−1, zi))

Rational Fixing Formulas We now describe a series of results, most of them
directly used in the axiomatisation. The most important of these results is the
existence of formulas allowing us to fix every rational half-plane. Our main
contribution here is that we spell out many of the proofs in [Pra99].

Lemma 5.2.10. Let l1, l2, l3 be rational lines forming a coordinate system with points
O, I,J as in Definition 5.2.1. Letm1,m2,m3 be rational lines such that the following
conditions all hold (see Figure 5.6 for an example):

l2

l1 l3

m2

m3

m1

O

S

Q

J

I

Figure 5.6: Coordinate frame with OI = IQ.

• for each li and mi: li ‖ mi,

• m1 ∩m2 ∩m3 = S,

• l1 ∩ l2 ∩m3 = J,

• l2 ∩ l3 ∩m1 = I,
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• l3 ∩m2 = Q,

then OI = IQ.

Proof. See [Pra99].

Lemma 5.2.11. Assume l1, l2, l3,m ∈ ROQ(R2) are half-planes and let l1, l2, l3
form a coordinate frame. There exists a formula φn(x1, x2, x3, y) such that for any
rational linem intersecting the line bounding l3 at a point K,MQ |= φn[l1, l2, l3,m]

if and only if OK = nOI, where n is an integer.

Proof. Construction from Lemma 5.2.10 is expressible in L≤,conv (see 5.6 and
[Pra99]). We obtain the desired result by repeating this construction several
times (see Figure 3 for an example). Let ψn(u1, . . . , un, k,m) be the following
formula:

∧
1≤j≤n−2,
j odd

par(uj, uj+2) ∧
∧

1≤j≤n−2,
j even

par(uj, uj+2)∧

∧
1≤j≤n−1,
j odd

�uj,m� .
=�uj+1,m� ∧

∧
1≤j≤n−1,
j even

�uj, k� .
=�uj+1, k� ,

now put φn(x1, x2, x3, y) := ∃u1 . . . ∃un∃m

(coor(x1, x2, x3) ∧ par(m,x3) ∧ u1 = x1 ∧ u2 = x2∧

ψn(u1, . . . , un, x3,m)∧ �un, x3� .
=�y, x3� ∧ �m,x1� .

=�m,x2� ).

Lemma 5.2.12. Lemma Assume l1, l2, l3,m ∈ ROQ(R2) are half-planes and let
l1, l2, l3 form a coordinate frame. There exists a formula φq(x1, x2, x3, y) such that
for any rational line m intersecting the line bounding l3 at a point K, MQ |=
φq[l1, l2, l3,m] if and only if OK = qOI, where q is a rational number.

Proof. Assuming the terminology from the previous lemma, we are required
to show that there exists a formula satisfied in the rational model if and only
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O Q

J

I

l1 = u1

l2 = u2

l3

m

u4 u6

u3 u5

Figure 5.7: An example configuration: OQ = 3OI

if OK =
n

m
OI, hence

mOK = nOI.

The last equation holds if and only if we can find some I′ such that

OK = nOI′

and
OI = mOI′

as then we obtain

mOK = mnOI′ = nmOI′ = nOI.

The following shows that there exists a formula expressing the above condi-
tion (see also Figure 5.8). Let φ n

m
(x1, x2, x3, v) :=

∃z(φm(x1, z, x3, x2) ∧ φn(x1, z, x3, v)).
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O I

J

I’

(a) OI = 4OI′

O I

J

I’ P

(b) OP = 7OI′

O I

J

I’ P

(c) OP = 7
4OI

Figure 5.8: A rational case.

Lemma 5.2.13. Let l1, l2, l3,m be half-planes in ROQ(R2), such that

MQ |= coord[l1, l2, l3].

Then there exists a formula satisfied in the rational model by the tuple l1, l2, l3,m
such that for any rational half-plane m′ the tuple l1, l2, l3,m′ satisfies this formula if
and only if lines bounding m and m′ are coincident.

Proof. Let m be any half plane. Observe that for the line bounding m one of
these cases holds (see Figure 5.9):

1. the line bounding m is parallel or coincident with the line bounding l3;

2. the line bounding m is parallel or coincident with the line bounding l1;

3. the line bounding m intersects l1 and l3 at the same point O and is par-
allel to the line bounding l2;
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4. the line bounding m intersects l1 and l3 at the same point O and inter-
sects the line bounding l2 at some point P;

5. the line bounding m intersects the lines bounding l3 and l1 at some ra-
tional points P and Q respectively;

l2

l1

l3O

J

I

m

(a) The third case.

l2

l1 l3O

J

I

m

P

(b) The fourth case.

l2

l1 l3O Q

J

I

m

P

(c) The fifth case.

Figure 5.9: Building rational fixing formulas. The last three cases.

What is left, is to show that these cases are expressible in our language.

Consider the following formulas.

1’. ∃z(φq(x3, z, x1, x2) ∧ φr(x3, z, x1, w)) ∧ (par(w, x3) ∨ α(w, x3));

2’. ∃z(φq(x1, z, x3, x2) ∧ φr(x1, z, x3, w)) ∧ (par(w, x1) ∨ α(w, x1));

3’. φ0(x1, x2, x3, w) ∧ par(w, x2);

107



5.2. EXPRESSIVENESS

4’. ∃z(φq(x3, z, x2, x1) ∧ φr(x3, z, x2, w))∧ �w, x1�=�w, x3� ;

5’. ∃z(φq(x1, z, x3, x2)∧φr(x1, z, x3, w))∧∃z(φs(x3, z, x1, x2)∧φt(x3, z, x1, w)).

It is easy to see that l1, l2, l3,m satisfy one of the formulas (1’-5’) if and only if
the corresponding case (1-5) holds. In each of these cases the line bounding
m is uniquely determined in a sense that there is no other line bounding a
half-plane m′ and satisfying exactly the conditions specified for line bound-
ing m, which is not coincident with m.

We see that we can fix the line bounding a half-plane with reference to a
given coordinate frame. Note however that for each line there exist two half-
planes (each being the complement of the other). In order to pin-point one
of the two half-planes we introduce the following notational shorthand. Let∏+(x1, x2, x3, x) := x1.x2.x3.x 6= 0 and

∏−(x1, x2, x3, x) := x1.x2.x3.x = 0 and
let j ∈ {+,−}. Now, the idea is to extend the formulas (1’–5’) with formulas
of the form

∏+ or
∏− indicating one of the sides of the considered line. For

example, let l1, l2, l3 be rational half-planes forming a coordinate frame and
let m be a half-plane bounded by the line coincident with the line bounding
l1. Hence we have that MQ |= α[l1,m] (recall that α ”says” that l1 and m are
coincident). This allows us to fix the line bounding m, but m itself can lie on
either side of that line. In order to tell m and its complement apart we add
an extra information with the help of

∏j j ∈ {+,−}. We specify a region
contained in m but not contained in its complement. Most cases it will be the
region l1 · l2 · l3.Note however that in cases when m intersects l1 · l2 · l3 we
specify l1 · l2 · n in

∏j instead, where n is a half-plane bounded by line that
together with l1, l3 serves as an ”auxilliary” coordinate frame (as in Lemma
5.2.12, see also Fig. 5.10). Hence assuming thatm does contain l1 ·l2 ·l3 we end
up with α(x1, x)∧∏+(x1, x2, x3, x) 6= 0. The full list of the amended formulas
is as follows (assuming variable names are not changed).

(i) if φ is of the form (1’-3’) then φ′ := φ ∧∏j(x1, x2, x3, w);

(ii) if φ is of the form (4’) then φ′ := φ ∧∏j(x3, z, x2, w);

(iii) if φ is of the form (5’) then φ′ := φ ∧∏j(x1, z, x3, w).

We call formulas (i)-(iii) the rational fixing formulas. All the above considera-
tions allow us to prove the following result easily.
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O I

J

I’ P

n

l3

l1

l2

m

Figure 5.10: Lines l1, l3 and n form an auxilliary coordinate frame.

Lemma 5.2.14. Let l1, l2, l3,m be half-planes in ROQ(R2), such that

MQ |= coord[l1, l2, l3].

Then there exists a formula satisfied in the rational model by the tuple l1, l2, l3,m
such that for any half-plane m′ the tuple l1, l2, l3,m′ satisfies this formula if and only
if m = m′.

Note that Theorem 4.3.6, presented in Chapter 4 is an immediate consequence
of the above.
As we are going to make extensive use of the rational fixing formulas, we
introduce a notational convention for them. Let MQ |= τ j(P,Q)[l1, l2, l3,m] be a
formula of the form (i)–(iii) expressing the following: m is fixed with respect
to the coordinate frame formed by l1, l2, l3. The parameter j (j ∈ {+,−})
is a flag to say which side of the line bounding m we are interested in (ex-
pressed by a subformula of the form

∏j). The parameters P,Q are members
of Q∪{∞}. If P,Q ∈ Q and neither P nor Q equals 0, we think of them as the
rational points at which m intersects l3 and l1 respectively. This property is
expressed by a subformula of the form (5’). If one of this parameters equals
zero, then the line bounding m passes through the origin of the coordinate
frame and, depending on the value of the other parameter, the line bound-
ing m either intersects l2 (if this other parameter is a rational number) or is
parallel to l2 (if this parameter equals ∞). This property is expressed by a
subformula of the type (3’) or (4’). If P =∞ then m is parallel to or coincides
with l3; and if Q =∞, then m is parallel to or coincides with l1. This property
corresponds to a subformula of the type (1’) or (2’). Note that we can neither
have both P and Q equal 0, nor both P,Q =∞.
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Let τ1, τ2, . . . be enumeration of the rational fixing formulas.

5.2.2 Other Expressiveness results

This section presents our original contribution in terms of expressivness of
Lconv,≤

Betweenness We repeatedly discussed the notion of betweenness in this
thesis. Most importantly betweenness is featured in papers by Tarski and
colleagues ([Tar56],[ST79] see also Section 3.4).

There are many related axiomatic approaches to the topic (standard text-
books include [BS55] and [Szm81]).

Definition 5.2.5. Let G be a non-empty set and let B ⊂ G × G × G. Relation
B is a betweenness relation if for all a, b, c ∈ G:

(A) B(a, b, c) ∨B(b, c, a) ∨B(c, a, b);

(B) B(a, b, a)→ a = b;

(C) B(a, b, c)→ B(c, b, a);

(D) B(a, b, c) ∧B(a, c, d)→ B(b, c, d);

(E) B(a, b, c) ∧B(b, c, d) ∧ b 6= c→ B(a, c, d).

In this section we show that betweenness — in the above sense — can be
defined in our language, without relativising to any coordinate frame.

Lemma 5.2.15. Let A, B and C be any points in R2 and let m, l, l1, l2, l3 be any line
such that m parallel to l and let bet(A,B,C) be defined in a following manner (see
Figure 5.11):

(i) A = �l1, l� , B = �l2, l� and C = �l3, l� ;

(ii) l1, l2, l3 meet m at a single point;

(iii) either (a) lines l1, l2, l3 are pairwise coincident or (b) l1, l2, l3 bound a triangle
T , l, l1, l3 bound a triangle T1 ⊆ T and l, l2, l3 bound a triangle T2 ⊆ T .

Then bet(A,B,C) is a betweenness relation.
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Proof. To see that the condition (A) is satisfied, consider a point D not on the
line containing A, B and C. Clearly, the lines connecting D to A, B and C
form a configuration satisfying (i)-(iii). The condition (B) is satisfied by (ii).
Conditions (C), (D) and (E) follow easily.

l

l1 l2 l3

A BC

Figure 5.11: Point C lies between points A and B.

We obtain the following easily.

Theorem 5.2.1. Let l, l1, l2, l3 be half-planes in ROX(R2). There exists a formula
β(x, x1, x2, x3) such that MX |= β[l, l1, l2, l3] just in case the point determined by
�l, l2� lies between the points determined by �l, l1� and �l, l3� .

Proof. Clearly, all the conditions mentioned in Lemma 5.2.15 are expressible
in the language Lconv,≤.

We note that it seems possible to show that the conditions (i)-(iii) capture the
betweenness relation in the sense of [Tar56], [ST79] or [BS55].

As a consequence of the above lemma we obtain a series of results regarding
MA.

Algebraic fixing formulas We now focus on results that follow from the ex-
pressiveness results presented above. Observe that what we have established
allows us to talk about polynomials of any degree with rational coefficients,
relative to a coordinate system. We do so by combining formulas add, mult,
powern and rational fixing formulas.
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For example consider the formula φ(x) := ∃y∃z∃v

(power2(x1, x2, x3, x, y)∧τ+
(4,∞)(x1, x2, x3, z)∧mult(x1, x2, x3, z, y, v)∧τ+

(2,∞)(x1, x2, x3, v)).

This formula is satisfied by a if and only if, intuitively speaking, a is a half-
plane bounded by a line crossing the abscissa of the coordinate system deter-
mined by l1, l2, l3 at some point x that is a solution to the equation 4x2 = 2.

Lemma 5.2.16. Assume l1, l2, l3,m ∈ ROA(R2) be half-planes and let l1, l2, l3 form
a coordinate frame. There exists a formula

ϕP (x1, x2, x3, y),

where P is a polynomial with rational coefficients an, an−1, . . . , a0, such that for any
algebraic line m intersecting the line bounding l3 at a point K,

MQ |= ϕP [l1, l2, l3,m]

if and only if
O = anOK

n
+ an−1OK

n−1
+ · · ·+ a0,

where an, an−1, . . . , a0 are rational numbers.

Proof. As indicated above, the condition O = anOK
n

+an−1OK
n−1

+ · · ·+a0,
where an, an−1, . . . , a0 are rational, is expressible in Lconv,≤ using a combina-
tion of the rational fixing formulas and formulas mult, add and powern.

Lemma 5.2.17. Let l1, l2, l3,m be half-planes in ROA(R2), such that

MA |= coord[l1, l2, l3].

Then there exists a formula satisfied in the algebraic model by the tuple l1, l2, l3,m
such that for any half-plane m′ the tuple l1, l2, l3,m′ satisfies this formula if and only
if lines bounding m and m′ are coincident.

Proof. This is very similar to Lemma 5.2.13. Observe that Lemma 5.2.16 gives
us way to fix an algebraic line if its intersection with the abscissa is a solution
to a given polynomial with rational coefficients. In general such a polyno-
mial has more than one solution, hence we are not able to pinpoint a single
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algebraic line. However, since for any pair of algebraic numbers there ex-
ists a rational number separating them, given a list of algebraic numbers we
can separate them all with rational numbers and refer to any algebraic num-
ber from the list uniquely by determining between which rational numbers it
lies. The main difference between this lemma and Lemma 5.2.13 is that we
need to show that this is expressible (observe that if MA |= β[l3, a, b, c] and
MA |= τ<P,∞>[l1, l2, l3, a] andMA |= τ<Q,∞>[l1, l2, l3, c], then P ≤ Q). But this
is simple. By Lemma 5.2.16 m satisfies some ϕP (x1, x2, x3, y). To obtain the
desired result, we need to extend this formula with

τ(P,∞)(x1, x2, x3, y1) ∧ τ(Q,∞)(x1, x2, x3, y2) ∧

β(x3, y1, y, y2) ∧ (ϕP (x1, x2, x3, y
′)→ ¬β(x3, y1, y

′, y2)).

In a manner similar to Lemma 5.2.14 we obtain the following result.

Lemma 5.2.18. Let l1, l2, l3,m be half-planes in ROA(R2), such that

MA |= coord[l1, l2, l3].

Then there exists a formula satisfied in the algebraic model by the tuple l1, l2, l3,m
such that for any half-plane m′ the tuple l1, l2, l3,m′ satisfies this formula if and only
if m = m′.

Trivially, since Q ⊂ A, we have that Th(ROQ(R2)) 6= Th(ROA(R2)). This
is shown by constructing a sentence true in ROA(R2) but false in ROQ(R2),
which is an easy exercise (see also [Pra99]).

Another consequence of the above is that the primitive relations of elemen-
tary geometry: equidistance and betweenness are expressible in the rational
model relative to a given coordinate system. In order to achieve that we need
to coordinatise MQ. In the process, we extend the results of Lemma 5.2.12 to
any line parallel to the abscissa (see Figure 5.2.2 for an example). Let l1, l2, l3
be rational lines forming a coordinate frame as in Definition 5.2.1. Let s be a
line parallel to l3 and let m be a rational line intersecting s at a point S.

(i) take the line parallel to l1 and containing I and mark its intersection
with s as IS;
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(ii) take the line parallel to l2 and containing IS and mark its intersection
with l1 as JS;

(iii) perform the operations described in Lemma 5.2.12 treating s as the ab-
scissa and IS and JS as the respective units of measurement, obtaining
a formula φQ, for some rational number Q.

l2

l1

l3O

J

I

s
OS

JS

IS

(a)

l2

l1

l3O

J

I

s
OS

JS

IS

m

M

(b)

Figure 5.12: Extending Lemma 5.2.14.

Obviously, for any given rational point we can find a rational line containing
it, which is not parallel to the abscissa in a given coordinate frame. This
means that the following is a well defined notion.

Definition 5.2.6. Let l1, l2, l3 be rational lines forming a coordinate frame. Let
m be any rational line. We define a coordinate function ρ assigning pairs of
rational numbers (P,Q) to any point of intersection M of m with a given
rational line as follows.

(1) if M ∈ l3, then ρ(M) = (P, 0), where φP [l1, l2, l3,m] is the corresponding
formula from Lemma 5.2.14;

(2) if M ∈ l1, then ρ(M) = (0, P ), where φP [l3, l2, l1,m] is the corresponding
formula from Lemma 5.2.14;

(3) if M ∈ mQ, where mQ is the line parallel to l3 and intersecting l1 at the
point Q, then ρ(M) = (P,Q), where φP [l1, l2, l3,m] is the correspond-
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ing formula from Lemma 5.2.14 and φQ[l1, l
′
2, l
′
3,m] is the formula ob-

tained by extending the results of Lemma 5.2.14 in a manner described
in points (i)-(iii) above.

By using the fixing formulas involved in the definition of a coordinate func-
tion we can explicitly use definitions of betweenness and equidistance in a
sense of Tarski (see Section 3.4) with a reference to a given coordinate frame, as
all the above is expressible in MQ. The details are routine.

We observe that with some modifications it should be possible to define a
coordinate function for MA.

Models Finally we show that convexity spatial logics of Euclidean spaces
of different dimensionality have different theories. To this end we use the
Helly’s theorem presented in Section 2.6. Consider the following formula
φ(x1, . . . , xN) :=∧

I⊆2S

∏
i∈I

xi 6= 0 ∧
∧

1≤j≤N

conv(xj)→
∏

1≤j≤N

xj 6= 0,

where S = {1, . . . , N}.

This formula says in ROX(R2) that regions r1, . . . , rN have non-empty inter-
section if each rj is convex and for every subset of {r1, . . . , rN}, its elements
have a non-empty intersection.

Theorem 5.2.2. For a given n there exists a set of formulas Φn expressing the Helly’s
theorem in ROX(Rn).

Proof. Consider φN := ∀x1 . . . ∀xNφ(x1, . . . , xN), where φ(x1, . . . , xN)is defined
as above. We define Φn = {φN | N ≥ n + 1 and |I| = n + 1}. Note that the
constraint |I| = n + 1 refers to the condition in Helly’s theorem that each
n + 1-element collection of sets indexed by S has a non-empty intersection,
where n denotes the dimensionality.

LetMn
X denote 〈ROX(Rn), conv,≤〉.

Theorem 5.2.3. Th(Mn
X) 6= Th(Mn+1

X ) for all n.
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Proof. Observe that, by the virtue of Helly’s theorem, for some φN ∈ Φn we
haveMn

X) |= φN butMn+1
X 6|= φN .

Let us consider a specific example of the cases of R2 and R3. Take the real
plane first. By Helly’s theorem, for every collection of at least three convex
sets such that each three of those have a non-empty intersection, we know
that all members of the considered collection have a non-empty intersection.
However, in R3 Helly’s theorem holds for a collection of at least four convex
sets such that each four of those have a non-empty intersection. Hence, it is
contingent that, say, some five element collection of convex sets each three
of which have a non-empty intersection, will turn out to have the property
posited by Helly’s theorem. It is necessarily true in R2. The above example
is expressed in both cases by the same Lconv,≤-formula, which is satisfied in
two-dimensional and not in three-dimensional model.

5.3 Axioms

In this section we propose an axiom system for the theory of MQ, denoted
Th(MQ).2 Recall that τ1, τ2, . . . is an enumeration of the fixing formulas.

Let S = {1, . . . , n}, fix P ⊆ 2S such that for every i ∈ S there exists I ∈ P
such that i ∈ I . Let y = bc(x1, . . . , xn) be any formula of the form y =∑
I ∈P

∏
i ∈I

xi. We call y = bc(x1, . . . , xn) a Boolean combination formula and bc a

Boolean term.

Let K 6= ∅, j ∈ {+,−} and let P,Q ∈ Q ∪ {∞}. We propose the following
axiomatisation of Th(MQ):

1. axioms of non-trivial Boolean Algebra;

2. ∃x1∃x2∃x3coord(x1, x2, x3);

3. ¬conv(0);

2A version of this axiom system has been reported in [Try10].

116



5.3. AXIOMS

4. ∀x1 . . . ∀xn∀y((
∧
i ∈S

hp(xi) ∧ y = bc(x1, . . . , xn))→ (conv(y)↔∨
K⊆S

∏
k ∈ K

xk = y)), where y = bc(x1, . . . , xn) is a Boolean combination

formula;

5. ∀x1∀x2∀x3∀y1 . . . ∀ym(
∧

1≤i≤m

τi(x1, x2, x3, yi)→
∏

1≤i≤m

yi = 0),

where any element of ROQ(R2) bounded by the half-planes fixed by τi
in reference to any coordinate system is empty;

6. ∀x1∀x2∀x3∀y(τ j(P,Q)(x1, x2, x3, y)→ ¬τ j′(P ′,Q′)(x1, x2, x3, y)),
where P 6= P ′ or Q 6= Q′ or j 6= j′;

7. ∀x1∀x2∀x3∀y(τ j(P,Q)(x1, x2, x3, y) ∧ τ j′(P ′,Q′)(x1, x2, x3, y
′)→ y = y′),

where P = P ′ and Q = Q′ and j = j′;

8. ∀x1∀x2∀x3(coord(x1, x2, x3)→ ∃y(τi(x1, x2, x3, y)));

(R1):

{∀y∀x1∀x2∀x3(coord(x1, x2, x3) ∧ hp(y) ∧ τ(x1, x2, x3, y))→
ψ(x1, x2, x3, y))) | τ a fixing formula}

∀y∀x1∀x2∀x3(coord(x1, x2, x3) ∧ hp(y)→ ψ(x1, x2, x3, y)).

(R2):

{∀y(∃x1 . . . ∃xn(
∧

1≤i≤n

hp(xi) ∧ y = bc(x1, . . . , xn))→ ψ(y)) | n ∈ N, y =

bc(x1, . . . , xn) a Boolean combination formula}

∀y(ψ(y)).

Our axiom system comprises two parts:
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1. axioms and rules of inference of classical predicate calculus;

2. non-logical axioms (1-8) and rules of inference (R1) and (R2) above.

On an intuitive level, assuming our standard interpretation, the meaning
of the above axioms is as follows. Axioms 1 make sure that the structure is
a Boolean Algebra. Axiom 2 asserts that there are at least three regions such
that lines bounding them form a coordinate frame. Axiom 3 states that 0 is
not convex. Axiom 4 states that if a convex region is a Boolean combination of
half-planes, then it has to be a product of some of these half-planes. Axioms
5 ensures that if τi fix half-planes (in ROQ(R2)) with an empty product, then
elements fixed by τi interpreted in any model of the proposed axiom system,
are forced to have a product equal to 0. Axioms 6 say that no half-plane can be
fixed by two formulas τ and τ ′ differing on any of their parameters. Axioms
7 say that if two half-planes a and a′ say, have fixing formulas with the same
parameters, then a = a′. Axiom schema 8 ensures that, given a coordinate
system and a fixing formula, there is a half-plane fixed by this formula in
reference to this coordinate system. Infinitary rule R1 states that every half-
plane can be fixed in reference to a given coordinate system. Finally R2 states
that every region is a Boolean combination of some half-planes.

Let Φ be a set of Lconv,≤-sentences. A proof in the above axiom system
is a sequence of Lconv,≤-formulas {φα}α<β for some (not necessarily finite)
ordinal β such that every φα is either an element of Φ; an axiom; or the result
of applying a rule of inference to some formulas φγ with γ < α. If ψ is the last
line of such proof we write Φ ` ψ. If Φ = {φ} we write φ ` ψ and if Φ = ∅ we
write ` ψ and call ψ a theorem. Denote the set of theorems by T (Ax).

Theorem 5.3.1 (Deduction Theorem). Let φ be an Lconv,≤-sentence and ψ an
Lconv,≤-formula such that φ ` ψ. Then ` φ→ ψ.

Proof. By assumption, there is a proof with premises {φ} and the last line ψ
and each formula β is either an axiom or a result of applying a rule of infer-
ence to earlier lines in the proof. There are two interesting cases:

(i) β = ∀y∀x1∀x2∀x3(coord(x1, x2, x3) ∧ hp(y) → ψ(x1, x2, x3)) is derived from
formulas

∀y∀x1∀x2∀x3(coord(x1, x2, x3) ∧ hp(y) ∧ τ(x1, x2, x3, y))→ ψ(x1, x2, x3, y))
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for all fixing formulas τ by R1;

(ii) β = ∀y(ψ(y)) is derived from formulas

∀y(∃x1 . . . ∃xn(
∧

1≤i≤n

hp(xi) ∧ y = bc(x1, . . . , xn)→ ψ(y))

for all n ∈ N and all bc-formulas by R2. The first case: by the inductive
hypothesis we have

` φ→ ∀y∀x1∀x2∀x3(coord(x1, x2, x3) ∧ hp(y) ∧ τ(x1, x2, x3, y))

→ ψ(x1, x2, x3, y))

for each τ and so

` ∀y∀x1∀x2∀x3(coord(x1, x2, x3) ∧ hp(y) ∧ τ(x1, x2, x3, y))

→ (φ→ ψ(x1, x2, x3, y))).

By R1

` ∀y∀x1∀x2∀x3(coord(x1, x2, x3) ∧ hp(y)→ (φ→ ψ(x1, x2, x3)))

and so

` φ→ ∀y∀x1∀x2∀x3(coord(x1, x2, x3) ∧ hp(y)→ ψ(x1, x2, x3)).

The second case: by the inductive hypothesis we have

` φ→ ∀y(∃x1 . . . ∃xn(
∧

1≤i≤n

hp(xi) ∧ y = bc(x1, . . . , xn)→ ψ(y)))

for each n ∈ N and each bc-formula. Whence

` ∀y(∃x1 . . . ∃xn(
∧

1≤i≤n

hp(xi) ∧ y = bc(x1, . . . , xn)→ φ→ ψ(y))

and so by R2 ` ∀y(φ→ ψ(y)). Hence ` φ→ ∀yψ(y)).
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5.3.1 Soundness

In this section we prove the soundness theorem for our axiom system.

Definition 5.3.1. Let L be a (non-empty) set of half-planes and let A be any
region. We say that A is a product from L if and only if A =

∏
1≤i≤m

li, where for

all li either li ∈ L or −li ∈ L. If in addition for all l ∈ L, l = li or l = −li for
some i, then A is a total product from L.

We take all products to be non-empty and distinct.

Definition 5.3.2. Let A be a convex set. A line l is internal to A if and only if
A has a non-empty intersection with both half-planes bounded by l.

Definition 5.3.3. Let A be a convex set. A line l is external to A if l is not a
bounding line of A and A is a subset of one and only one of the half-planes
bounded by l.

Lemma 5.3.1. Let A be a convex sum of products from a set L of half-planes. Let l
be a half-plane bounded by a line internal to A. Then for every Pi, a product from
A having l as a bounding half-plane, there exists exactly one Pj from A such that
Pj ≤ −l and Pj has the same segment of the line bounding l as its bounding line
segment. We say that Pi and Pj form a matching pair (in A) from l.

Proof. First of all observe that Pj has to belong to A. Since the line bounding
−l is internal to A we know that there exists Pk ≤ −l such that Pk is a product
from A. Assume Pk 6= Pj (othewise trivial). By convexity, all points lying on
a straight line segment between Pk and Pi. have to belong to A.
Since A is a sum of products from L and all the non-empty products from L

partition the plane, Pj is the only product from L containing this line segment
and Pj has to belong to A.

Lemma 5.3.2. Let A be a convex sum of products from a set L of half-planes. If
Pi = l1 · . . . · ln(i) · l and Pj = l′1 · . . . · l′m(j) · −l are products from A such that
Pi, Pj form a matching pair, then Pi = l1 · . . . · ln(i) · l′1 · . . . · l′m(j) · l and Pj =

l1 · . . . · ln(i) · l′1 · . . . · l′m(j) · −l.

Proof. For every linem external to Pi (Pj), either (a)m is a bounding line of Pj
(Pi) or (b)m is external to Pj (Pi). Assume (b) and that Pi and Pj do not belong
to the same half-plane bounded by m. Since Pi and Pj share a bounding line
segment s, and since two product can only share one bounding line segment,
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m separates Pi and Pj and Pi and Pj can only meet at one point at m. This
is a contradiction. By a similar reckoning we obtain the conclusion assuming
(a).

Lemma 5.3.3. Let A be a convex sum of products from a set L of half-planes. Let
Pi and Pj form a matching pair in A. Then Pi + Pj is a product from L′ = L \ {l},
where l is a line internal to A containing the bounding line segment common to Pi
and Pj .

Proof. By Lemma 5.3.2 Pi = l1 · . . . · ln(i) · l′1 · . . . · l′m(j) · l and Pj = l1 · . . . · ln(i) ·
l′1 · . . . · l′m(j) · −l.

Let us denote
∏

1≤k≤n(i)

lk ·
∏

1≤k≤m(j)

l′k by C. We then obtain: Pi = l · C and

Pj = −l · C. Now, consider

Pi + Pj = l · C +−l · C

by the distributive law for Boolean algebras we obtain

l · C +−l · C = C · (l +−l)

and finally
C · (l +−l) = C · 1 = C.

Observe that, since we eliminated the line bounding l and −l, C is a product
of half-planes from some L′ = L \ {l}.
Lemma 5.3.4. Let A be a convex sum of products from a set L of half-planes. Con-
sider a line l internal toA. Let P be a product fromA such that no half-plane bounded
by l is a bounding half-plane of P . If Q is a product from L such that Q ≤ λ and
P = Q · λ, where λ is either of the half-planes bounded by l, then P = Q.

Proof. Trivially, Q = Q · λ.

Theorem 5.3.2. Let A be a convex k-element (k > 1) sum of total products from a
set L of half-planes with |L| = n (n > 0). Then A is a k′-element (k′ < k) sum of
products from a set L′ ⊂ L with |L′| = n− 1.

Proof. Since k > 1 and all the total products are distinct, there exists at least
one line l internal to A. If n = 1, then A = l + −l = 1. By definition
1 =

∏
∅ = A. If n > 1, fix li from a set of l1, . . . , ls internal lines of A. By
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Lemma 5.3.3, for all matching pairs P,Q from li there exists P ′ = P +Q from
L′ ⊂ L \ {l}. By Lemma 5.3.4, for every S = m1 · . . . ·mr · λ such that λ = li

or λ = −li and S does not belong to any matching pair from li we have that
S = m1 · . . . ·mr. That is S equals some S ′ from L′ ⊂ L \ {l}.

Essentially Theorem 5.3.2 allows us to eliminate an internal line (see Fig.
5.13). Observe that given a region A which is a convex k-element sum (k > 1)
of total products from some set L, we can apply Theorem 5.3.2 until A is a 1-
element sum of total products from some L′ ⊂ L. That is, A is a product from
L: we can assume that all the remaining half-planes in L are the bounding
half-planes for A. (If l is not such a half-plane then l ≥ A and hence A can be
thought of as a product of some half-planes not including l.)

A

Q1

Q2 Q3

Q4

Q5

Q6

Q7

Q8

Q9
Q10

l

(a)

A

Q1

Q2 Q3

Q4 Q5

Q6

Q7 Q8

Q9

Q10+ + +

(b)

A
l1

l2

l3

l4

l5

l6

(c)

Figure 5.13: (a)-(b): Eliminating an internal line l from A, (c): A after all
internal lines have been eliminated.

We have the following theorem.

Theorem 5.3.3. Let A ∈ ROX(R2) be any convex set and let h1, h2, . . . , hn be half-
planes in ROX(R2). A is expressible as a sum of products of h1, h2, . . . , hn if and
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only if A =
∏
i∈K

hi for some K ⊆ {1, . . . , n}.

Proof. We just need to show that A can be thought of as a sum of total prod-
ucts from H = {h1, h2, . . . , hn} but this is easy (see Fig. 5.14 for an example).
If A is a one-element sum, the result is instantaneous. Otherwise the result
follows by Theorem 5.3.2. The only if direction is trivial.

A

P1

P2

P3

P4

(a)

A

(b)

A

Q1

Q2 Q3

Q4

Q5

Q6

Q7

Q8

Q9
Q10

(c)

Figure 5.14: Making A = P1 + P2 + P3 + P4 into the sum of total products
Q1–Q10.

Theorem 5.3.4. The inference rules are truth-preserving.

Proof. R1: Observe that given any coordinate system and a half-plane h, the
position of h in reference to this coordinate system falls into five categories
mentioned in the outline of the proof of Lemma 5.2.14. Since the intersection
point of two non-parallel rational lines is a point with rational coordinates,
clearly any such an arrangement is expressible by some fixing formula τ . The
result then follows.

R2: The result is obvious, as every r ∈ ROQ(R2) is a rational polygon
and so it is a Boolean combination of some rational half-planes.
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5.3. AXIOMS

We are ready to state the main result of this section.

Theorem 5.3.5 (Soundness Theorem). Let ψ be an Lconv,≤-sentence. If ψ ∈
T (Ax) then MQ |= ψ.

Proof. We are required to show that all the axioms are true in MQ and that
the inference rules are truth preserving. It should be clear why Axioms 2, 5-8
are true in MQ. Since ROQ(R2) is a Boolean Algebra, Axioms 1 hold. Since
by definition 0 is non-convex, axiom 3 holds. Axioms 4 is true by virtue of
Theorem 5.3.3 and rules R1 and R2 by Theorem 5.3.4.

5.3.2 Completeness

In this section we prove the completeness theorem for our axiom system. We
make extensive use of the following, classical results. Let Σ(x̄) be a set of
formulas in a language L with free variables in x̄. An L-structure A is said
to realise Σ(x̄) if there exists a tuple ā from A satisfying every σ(x̄) ∈ Σ(x̄).
We say that A omits Σ(x̄) if A does not realise Σ(x̄). An L-theory T is said to
locally realise Σ(x̄) if there is a formula φ(x̄) such that φ(x̄) is consistent with
T and for all σ(x̄) ∈ Σ(x̄), T |= ∀x̄ (φ(x̄)→ σ(x̄)). We say that T locally omits
Σ(x̄) if T does not locally realise Σ(x̄). In other words, T locally omits Σ(x̄) if
for every formula φ(x̄) consistent with T there exists σ(x̄) ∈ Σ(x̄) such that
T 6|= ∀x̄ (φ(x̄)→ σ(x̄)).

We modify these standard notions as follows.

Definition 5.3.4. A theory T is said to locally realise Σ(x̄) given a formula α(x̄)

if there exists φ(x̄) such that φ(x̄)∧α(x̄) is consistent with T and for all σ(x̄) ∈
Σ(x̄),

T |= ∀x̄ (φ(x̄) ∧ α(x̄)→ σ(x̄)) .

Otherwise φ(x̄) locally omits Σ(x̄) given α(x̄) in T .

We have the following theorem.

Theorem 5.3.6 (Conditional Omitting Types Theorem). Let L be a countable
language and let T be a consistent L-theory and α(x̄) an L-formula. Let Σ1(x̄) be a
set of L-formulas in the same variables as α(x̄) and Σ2(x) be a set of L-formulas in a
single variable x.

If T
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5.3. AXIOMS

(i) locally omits Σ1(x̄) given α(x̄), and

(ii) locally omits Σ2(y),

then T has a countable model omitting {α(x̄) ∧ σ(x̄) : σ(x̄) ∈ Σ1(x̄)} and Σ2(x).

Proof. Let C = c0, c1, . . . , be a countable set of individual constants, and let
φ0, φ1, . . . be the enumeration of all the sentences of the language formed by
adding the constants C to L. We define a sequence of consistent theories
T0 ⊆ T1 ⊆ . . . with T = T0. Suppose Tm = T ∪{Ψ0, . . . ,ΨR} has been defined,
we show how to define Tm+1. Start by setting Tm+1 = Tm. Let Ψ = Ψ0∧. . .∧ΨR

and let c̄ = c0, . . . , cp be the constants appearing in Ψ, z̄ = z0, . . . , zp be fresh
variables and Ψ(z̄) the result of replacing z̄ for c̄ in Ψ. Note that Ψ(z̄) is con-
sistent with T .

(1) Let w̄ be any tuple of the same arity as x̄, formed from variables z̄, zm
(repetitions allowed). Note that zm may or may not be one of the variables
in z̄. There are finitely many such tuples, say w̄1, w̄2, . . . , w̄s. Let d̄1, . . . , d̄s be
the corresponding tuples chosen from the constants c̄, cm. We construct a se-
quence of formulas π1, . . . , πs as follows. Consider the formula Ψ(z̄) ∧ α(w̄1)

and prefix it with quantifiers of the form ∃zi, where zi is a variable occurring
in z̄ but not in w̄1, denoted ∃w1(Ψ(z̄) ∧ α(w̄1)). If this is consistent with T ,
choose σ1(x̄) ∈ Σ1(x̄) (using the fact that T locally omits Σ1(x̄) given α(x̄))
such that ∃w1(Ψ(z̄) ∧ α(w̄1)) ∧ ¬σ1(w̄1) is consistent with T . Otherwise set
σ1 :=⊥. Then π1 := ∃w1(Ψ(z̄)) ∧ ¬σ1(w̄1) is consistent with T . Suppose
πi−1 has been defined, we show how to define πi. First, remove any ex-
istential quantification from πi−1 and replace it by ∃zi, where zi is a vari-
able occurring in z̄ but not occurring in w̄i (if it exists) to obtain a formula
of the form ∃wi(Ψ(z̄) ∧ ¬σ1(w̄1) ∧ . . . ∧ ¬σi−1(w̄i−1)). Consider the formula
∃wi(Ψ(z̄)∧¬σ1(w̄1)∧ . . .∧¬σi−1(w̄i−1)∧α(w̄i)). If this is consistent with T , by
the fact that T locally omits Σ1(x̄) given α(x̄), choose σi(x̄) ∈ Σ1(x̄) such that
∃wi(Ψ(z̄)∧¬σ1(w̄1)∧ . . .∧¬σi−1(w̄i−1)∧α(w̄i))∧¬σi(wi). Otherwise set σi :=⊥.
Then πi := ∃wi(Ψ(z̄)∧¬σ1(w̄1)∧. . .∧¬σi−1(w̄i−1))∧¬σi(w̄i) is consistent with T .

(2) Finally we arrive at the formula πs. Remove any existential quantifica-
tion from πs and prefix the resulting formula with ∃zk, k 6= m. Note that this
formula, denoted πs(zm) is also consistent with T . By the fact that T locally
omits Σ2, choose τ(x) ∈ Σ2(x) such that πs(zm) ∧ ¬τ(zm) is consistent with T .
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5.3. AXIOMS

Add ¬σ1(d̄1), . . . ,¬σs(d̄s),¬τ(cm) to Tm+1.

If φm is consistent with Tm+1 add φm to Tm+1, add ¬φm otherwise. If φm :=

∃n(Ψ(n)) pick the first unused constant cQ of C and add Ψ(cQ) to Tm+1. Thus
Tm+1 is a consistent theory.

Let T ? =
⋃
m≥0

Tm. Then T ? is a complete theory consistent with α(x̄) which

defines a model N |= T ? in the obvious way (see [CK73] p. 81).

Note that the construction from section (1) gives us that for eachϕ(x̄), ifϕ(x̄)∧
α(x̄) is consistent with T we obtain ϕ(x̄) ∧ α(x̄) ∧ ¬σ(x̄), for some σ ∈ Σ1.
And we set σ :=⊥ if ϕ(x̄) ∧ α(x̄) is not consistent with T . Hence we have

T |= ∃x̄(ϕ(x̄ ∧ (¬α(x̄) ∨ ¬σ(x̄)))),

for some σ ∈ Σ1. We obtain:

T 6|= ∀x̄(ϕ(x̄)→ (α(x̄) ∧ σ(x̄)))),

for some σ ∈ Σ1.

Hence N omits the type {α(x̄)∧σ(x̄) | σ(x̄) ∈ Σ1}. That is, N omits Σ1 given α.

It follows that N omits Σ2 by a similar but more standard argument (see
[CK73], p. 95–97).

We are now ready to state the main theorem of this section:

Theorem 5.3.7 (Completeness Theorem). Let ψ be an L≤,conv-sentence. If MQ |=
ψ then ψ ∈ T (Ax).

Proof. Let ψ be an L≤,conv-sentence such that ψ 6∈ T (Ax). We are required to
show that MQ 6|= ψ. Now let

T = {φ : ¬ψ ` φ}.

By the deduction theorem T is consistent. Consider the following sets of
formulas:
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1. Σ1(x1, x2, x3, y) = {coord(x1, x2, x3) ∧ hp(y) ∧ ¬τ(x1, x2, x3, y) : τ a fixing
formula},

2. Σ2(x) = {¬∃y1 . . .¬∃yn(
∧

1≤i≤n

hp(yi) ∧ x = bc(y1, . . . , yn)) : n ∈ N, x =

bc(y1, . . . , yn) a Boolean combination formula}.

Suppose Θ(x1, x2, x3, y) is a formula such that

Θ(x1, x2, x3, y) ∧ coord(x1, x2, x3) ∧ hp(y)

is consistent with T . We then have

T 6|= ∀y∀x1∀x2∀x3¬(Θ(x1, x2, x3, y) ∧ coord(x1, x2, x3) ∧ hp(y))

and

T 6|= ∀y∀x1∀x2∀x3 (coord(x1, x2, x3) ∧ hp(y)→ ¬Θ(x1, x2, x3, y)),

so by R1:

T 6|= ∀y∀x1∀x2∀x3((coord(x1, x2, x3) ∧ hp(y) ∧ τ(x1, x2, x3, y))

→ ¬Θ(x1, x2, x3, y)),

for some τ .3

Hence Θ(x1, x2, x3, y) ∧ coord(x1, x2, x3) ∧ hp(y) consistent with T implies

T 6|= ∀y∀x1∀x2∀x3(Θ(x1, x2, x3, y) ∧ (coord(x1, x2, x3) ∧ hp(y)

→ ¬τ(x1, x2, x3, y)),

for some τ .

3Since if T |= ∀y∀x1∀x2∀x3((coord(x1, x2, x3)∧hp(y)∧τ(x1, x2, x3, y))→ ¬Θ(x1, x2, x3, y))
for all τ , then by R1 T |= ∀y∀x1∀x2∀x3 (coord(x1, x2, x3) ∧ hp(y)→ ¬Θ(x1, x2, x3, y)).
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In other words, T locally omits Σ(x1, x2, x3, y) = {¬τ(x1, x2, x3, y) : τ a fixing
formula} given coord(x1, x2, x3) ∧ hp(y).

Now suppose Θ(x) is any formula consistent with T . We then have

T 6|= ∀x¬Θ(x)

and by R2: T 6|= ∀y(∃x1 . . . ∃xn(
∧

1≤i≤n

hp(xi)∧ y = bc(x1, . . . , xn))→ ¬Θ(y)) for

some n ∈ N and some bc, so Θ(x) consistent with T implies

T 6|= ∀y(Θ(y)→ ¬(∃x1 . . . ∃xn(
∧

1≤i≤n

hp(xi) ∧ y = bc(x1, . . . , xn))

for some n ∈ N and some bc. In other words, T locally omits Σ2(y).

By the conditional omitting types theorem there exists a countable model
A of T omitting Σ1(x1, x2, x3, y) and Σ2(y) .

A more intuitive way of saying that A omits Σ1 and Σ2 is that for ev-
ery element a of A and any l1, l2, l3 ∈ A forming a coordinate frame, a can
be expressed as a Boolean combination of some b1, . . . , bk ∈ A such that
A |=

∧
1≤i≤k

hp[bi] and A |=
∧

1≤i≤k

τi[l1, l2, l3, bi], where τi is a fixing formula for bi.

Since the carrier set of A is countable we can enumerate its elements :

A = {a1, a2, a3, . . .}.

We fix this notation for the remainder of this section. Assume WLOG that
|A| > 2 and that, by Axiom 2, a1, a2, a3 are such that

A |= coord[a1, a2, a3].

By the fact that A omits Σ2, for each ai ∈ A we have that

A |= ai = bc(b
(i)
N(1), . . . , b

(i)
N(i))
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for some b(i)
N(1), . . . , bN(i) ∈ A such that

A |=
∧

1≤j≤N(i)

hp[bj].

Since A omits Σ1, for each j ∈ {1, . . . , N(i)} there exists a fixing formula τ
such that A |= τ [a1, a2, a3, bj].

We now proceed to define a mapping e : A→ ROQ(R2).

Fix h1, h2, h3 ∈ ROQ(R2) such that

MQ |= coord[h1, h2, h3].

We start by defining a mapping e(k) for each initial segment a1, . . . , ak of
elements of A. By the above considerations, let ai = bc(b

(i)
1 , . . . , b

(i)
N(i)) for each

i ∈ {1, . . . , k}, we define e(k)(ai) = hi, i ∈ {1, 2, 3}.

Note that by Lemma 5.2.14 there exists a unique half-plane h(i)
j ∈ ROQ(R2)

such that
MQ |= τ

(i)
j [h1, h2, h3, h

(i)
j ].

We define e(k)(b
(i)
j ) = h

(i)
j and extend e(k) homomorphically to all elements of

the subalgebra generated by a1, . . . , ak.

By saying that (a half-plane) b is involved in a construction of (a region) a we
mean that A |= a = bc[b1, . . . , bk−1, b, bk+1, . . . , bn] for some k, n ∈ N, k ≤ n.4

Lemma 5.3.5. Let a1, . . . , ak be some initial segment of A. Then the mapping e(k) is
well defined.

Proof. Firstly note that for each half-plane bi involved in a construction of
any of a1, . . . , ak it follows from Axiom 6 that if A |= τ(P,Q)[a1, a2, a3, bi] and
A |= τ ′(P ′,Q′)[a1, a2, a3, bi], then P = P ′ and Q = Q′.

Now let b and b′ be two half-planes involved in a construction of some a
and a′ respectively, such that A |= τ [a1, a2, a3, b], A |= τ ′[a1, a2, a3, b

′] and b = b′.

4Obviously we use terms like ”a half-plane” or ”a region” in relation to A just to guide
intuition.
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By the definition of e(k), b and b′ are mapped to some h and h′, respectively.
We are required to show that h = h′. But this follows from the fact that
A |= τ ′[a1, a2, a3, b] (and so the respective conditions, as described above, are
satisfied) and Lemma 5.2.14.

Lemma 5.3.6. Let a1, . . . , ak be some initial segment of A. Then the mapping e(k) is
injective.

Proof. Let b and b′ be two half-planes involved in a construction of any of
a1, . . . , ak. We need to show that if e(k)(b) = h and e(k)(b′) = h′ are such that
h = h′ then b = b′. Let MQ |= τ(P,Q)[h1, h2, h3, h] and MQ |= τ ′(P ′,Q′)[h1, h2, h3, h

′].
By Lemma 5.2.14 it follows that for these fixing formulas P = P ′ and Q = Q′.
The result then follows from Axiom 7.

Since we fixed h1, h2, h3 ∈ ROQ(R2), for any b, b′ such that e(k)(b) = h and
e(k′)(b′) = h′ with b = b′ we have that h = h′. This follows by reckoning
analogous to the one presented in the proof of Lemma 5.3.5.

Lemma 5.3.7. For any initial segment a1, . . . , ak ∈ A the mapping e(k) is Boolean
algebra isomorphism.

Proof. It follows from axiom 5 that e(k) is a monomorphism. It is onto by
definition.

Lemma 5.3.8. For any initial segment a1, . . . , ak ∈ A the mapping e(k) is an em-
bedding.

Proof. By Lemma 5.3.7 e(k) is a Boolean Algebra isomorphism. We are re-
quired to show that the following holds:

• A |= conv[ai] if and only if MQ |= conv[e(k)(ai)] where 1 ≤ i ≤ k;

Since each ai is a Boolean combination of some b1, . . . , bN(i) we need to
show that

A |= conv[bc(b1, . . . , bN(i))]

if and only if

MQ |= conv[bc(e(k)(b1), . . . , e(k)(bN(i)))].

Suppose A |= conv[ai], by Axiom 3 ai 6= 0 and by Axiom 4 we have
A |= ai =

∏
j ∈I bj , for some I ⊆ {1, . . . , N(i)}. Therefore e(k)(ai) 6= 0
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(Lemma 5.3.7) and by definition

e(k)(ai) =
∏
i ∈I

e(k)(bi).

Since e(k)(bj) are half-planes (and as such convex)

MQ |= conv[e(k)(ai)].

Conversely, suppose MQ |= conv[e(k)(ai)], then (by theorem 15)

e(k)(ai) =
∏

1≤j≤N(i)

e(k)(bj)

for some selection of half-planes e(b1), . . . , e(k)(bN(i)). Therefore, since
e(k) is a Boolean algebra homomorphism

e(k)(
∏

1≤j≤N(i)

bj) =
∏

1≤j≤N(i)

e(k)(bj)

and since it is injective ai =
∏

1≤i≤k bi, ai 6= 0 with

A |=
∧

1≤j≤N(i)

hp(bj)

Hence, by Axioms 3 and 4, we have A |= conv[ai].

Lemma 5.3.9. Let e : A → ROQ(R2) be defined as e =
∞⋃
i=1

e(i). Then e is an

embedding.

Proof. We need to show that e is injective. But this is obvious in view of
Lemma 5.3.8.

Lemma 5.3.10. The mapping e : A→ ROQ(R2) is an isomorphism.

Proof. By Axiom 8 for any P,Q ∈ Q we can find an element a ∈ A such that
A |= τ(P,Q)[a1, a2, a3, a] and so e is onto.

It follows that A is isomorphic to MQ and so A |= φ if and only if MQ |= φ for
all Lconv,≤-sentences φ.
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Recall the way A is constructed. It follows that A |= ¬ψ but then also MQ |=
¬ψ and so MQ 6|= ψ, which concludes the completeness proof.

5.4 Summary

The language Lconv,≤ over the considered spatial domains is very expressive.
One can simulate statements about points and straight lines with statements
about regions. This in turn allows the introduction of a coordinate frame and
eventually, the rational fixing formulas. Taking this idea a bit further we saw
that the algebraic fixing formulas can be defined in a similar manner. This
allows one to distinguish between the rational and algebraic models. The
fact that the Helly’s theorem is ”expressible” in MX allows one to show that
Lconv,≤ is sensitive enough to detect changes in dimensionality. The fixing
formulas are also crucial in axiomatising the theory of the rational model. We
proposed an axiom system making a heavy use of the rational fixing formulas
and containing two infinitary rules of inference. We also conjectured that
with the use of similar techniques applied to the algebraic fixing formulas, it
would be possible to axiomatise the algebraic model.
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6
Conclusions and Further Work

We presented an axiom system for an affine spatial logic with convexity pred-
icate and variables ranging over polygonal subsets of the real plane. Chapter
3 gave the historical and philosophical background of logical investigations
of affine geometry. We described early attempts at the axiomatic characteri-
sation of affine geometry by Whitehead and Russell. Russell’s work is more
philosophical in spirit. He starts with a Kantian view of mathematics and
sees affine geometry as the a priori part of geometry. His views do evolve;
what does not change is his conviction of the importance of non-qualitative
notions in geometry. Whitehead’s contribution is more technical, yet, as we
pointed out, it comes prior to major developments in model theory. White-
head is widely credited as the proponent (together with Leśniewski) of the
region-based approach to geometry. Even though David Hilbert’s contribu-
tion is much more in spirit of modern formal logic — he proposed an axiom
system for Euclidean geometry — even his work cannot fully qualify as a
spatial logic. From our perspective it is important that this early work on
the foundations of geometry served as a major influence on the next gen-
eration of logicians. Alfred Tarski took Hilbert’s ideas on axiomatisation of
Euclidean geometry, extended them and presented them in a framework of
modern logic. Tarski’s major contribution is the change of emphasis from
the geometry itself to the language that describes it. This allowed posing
precise mathematical questions and obtaining precise answers. His work on
Euclidean geometry was extended in his joint work with Lesław Szczerba
on affine geometry. This work in turn is heavily influenced by Whitehead’s
considerations. Adopting the early Russellian approach, it can be said that
Szczerba and Tarski axiomatised the a priori part of geometry, while Tarski’s
solo work concerned the a posteriori part. Regarding the region-based ap-
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proach, we have Tarski’s work (again!) on the one hand and Clarke’s inves-
tigations on the other. The former was building on Leśniewski’s ideas and
proposed one of the first region-based spatial logics, the geometry of solids.
The latter was extending Whitehead’s topological ideas and constructed the
calculus of individuals. Chapter 4 describes how the ideas of spatial logic
were developed more recently. One can distinguish two approaches here.
The first, we chose to call axiomatic, stems from the work of Whitehead and
Clarke; the second, we called model-theoretic, owes more to Tarski. Both ap-
proaches are developed within, or in close proximity to, the qualitative spa-
tial reasoning paradigm. The idea, most notably put forward by Randell Cui
and Cohn in their seminal paper, is that non-quantitative analysis might be
less error prone and more computationally robust than the standard numeri-
cal approach. Also, it is claimed that qualitative region-based reasoning is, in
some sense, more fundamental (an example of human cognitive procedures
is usually given). We should like to stress that despite the similarity, Rus-
sell’s ideas do not seem to be a conscious influence here. The dominance of
topological spatial logics in both axiomatic and model-theoretic approaches
is evident. In terms of affine spatial logics we should mention Bennett and
Cohn in the axiomatic approach and Davis and Pratt-Hartmann in the model-
theoretic one. Chapter 5 describes our own contribution. We place ourselves
within the model-theoretic approach and build on work by Davis and Pratt-
Hartmann. In Russellian terms, we work — like Szczerba and Tarski — on
the a priori fragment of geometry, but from a region-based perspective. In
that sense we reach back to Whitehead’s ideas and trough Clarke’s work
place ourselves within the qualitative spatial reasoning paradigm. Adopt-
ing the model-theoretic approach, one starts not with the syntactic notion of
an axiom system, but rather with the semantic notion of an interpretation.
Axiomatisation is treated secondary as a means of finding out more about
the investigated logic. Make no mistake, this does not mean axiomatisation
is unimportant; it merely indicates that it is viewed as one of many ways to
explore a given logic and its theory.

Thesis contribution We started the thesis with a list of three groups of prob-
lems:

P1 How can we characterize the valid formulas of the spatial logic? That is,
what is a theory of a given spatial logic? In many cases, it also makes
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sense to ask which sentences of the considered language are true in all
structures of that class.

P2 What is the expressive power of a spatial language? In particular, given a
language, what other geometrical relations can we express in terms of
primitive relations in that language?

P3 What is the computational complexity of a given spatial logic? Most first
order logics are, for obvious reasons, undecidable. However, restrict-
ing attention to certain fragments of those logics, might prove useful in
terms of computational tractability.

In terms of these we have dealt with some success with the problems P1
and P2. Our main contribution is as follows. We axiomatised the theory of
〈ROQ(R2), conv,≤〉, where ROQ(R2) is the set of regular open rational poly-
gons of the real plane; conv is the convexity property and ≤ is the inclusion
relation. We proved soundness and completeness for our axiom system (P1).
We have also proved several expressiveness results (P2). We showed that
the betweenness and equidistance relations are definable in our logic in ref-
erence to a given coordinate frame. We also showed that betweenness can
be defined without any reference to a coordinate frame. We showed that,
roughly speaking, the property of being a root of a polynomial with rational
coefficients can be defined in reference to a given coordinate frame. We also
showed that Helly’s theorem can be ”expressed” in our logic. As a conse-
quence we showed that models of different dimensions have different theo-
ries. We also presented explicit (not difficult) proofs of several expressiveness
results from [Pra99] (Section 5.2).

Future Work Several natural extensions of our work suggest themselves at
this point. We would like to investigate the possibility of axiomatising other
affine spatial logics over the real plane. The most promising case is the one
where ROQ(R2) is replaced with ROA(R2). We are strongly convinced that,
given our expressiveness results, this axiomatisation is a straightforward ap-
plication of the techniques used in axiomatising ROQ(R2) (especially those
utilised in the proof of the completeness theorem). The cases of other do-
mains of interest remain somehow elusive, with RO(R2) being perhaps the
most difficult. Another way of extending our results would be to consider di-
mensions other than 2. Again, the cases of ROQ(Rn) and ROA(Rn) for n > 2
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seem very promising. In terms of expressiveness we would like to investi-
gate the possibility of defining other topological relations in our logic or in
the indicated alternatives. Most notably we think that it should be possible to
define the contact relation in the case of RO(R2) (recall that [Pra99] defined
the contact relation for the domains ROP (R2) and ROQ(R2)). In terms of
the above list of problems, P3 proved to be the most elusive. The first-order
theory of our convexity logic is undecidable and the existential fragment’s
complexity reduces to the result which is very hard to improve. Exploring
the computational complexity of convexity spatial logics of different dimen-
sions is one option here. Also, we might want to restrict ourselves even fur-
ther and consider only special types of formulas (like Horn clauses) to see
if there is any improvement in terms of computational complexity. Last but
not least, it might prove useful to try and axiomatise these mentioned frag-
ments of our convexity logic. This might be very helpful in implementing it
in some programming language in a form of spatial reasoner, even despite its
computational intractability.
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