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Abstract

Let a fragment of a natural language be a set of sentences of that language,

selected according to the syntactic constructions they exhibit. Suppose that each

sentence in a fragment can be assigned a semantic representation in some logical

formalism. We can treat such a fragment as defining a fragment of the relevant

logical formalism, and ask questions regarding the expressive power and reasoning

capabilities of that logical fragment. The results can then be interpreted as

describing the semantic properties of the original natural language fragment.

In this thesis, we define several fragments of English containing features such

as simple noun phrases, relative clauses, verbs and coordination. Each of the frag-

ments we consider can be given semantics in first-order logic. By making use of

standard results and techniques of first-order proof- and model-theory, we deter-

mine, for each fragment F , the computational complexity of determining whether

a given set of sentences of F is logically consistent. For selected fragments, we

also characterise expressive power in terms of the ability each has to describe

the differences between two situations, and use that characterisation to provide a

criterion for when arbitrary expressions of first-order logic can be translated into

each fragment.
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Chapter 1

Introduction

A man is seldom in a humour to unlock his bookcase, set his desk in order, and betake himself

to serious study.

— Dr. Johnson

The various syntactic constructions of a natural language such as English each

have a characteristic interpretation. Intuitively, proper nouns serve to identify

individuals, transitive verbs express relations, and so on. Different combinations

of individual syntactic constructions interact to allow the expression of more com-

plex meanings. Is there a way to make these intuitions precise, and to characterise

the effects on expressive power of combining different elements of syntax?

This thesis sets out to establish that the answer to these questions is yes, and

to provide, by way of demonstration, characterisations of the expressive power of

several different fragments of English, constructed from a small set of syntactic

features in varying combinations.

In the literature on formal logic, it is relatively common to carry out such

analysis of new, or fragments of existing, logical languages. Among the questions

often posed of a logic L are: how difficult is it to decide algorithmically whether

a given set of L-formulae are consistent, if that is even possible, (the satisfiability

problem), and what is the ability of L to distinguish different situations (its

expressive power)? And yet, despite the extent to which linguists have taken to

the use of formal logic to represent the semantics of natural language, there seems

to have been very little work done on discussing these same problems for natural

language. We aim in this thesis to contribute towards closing this gap.

11



CHAPTER 1. INTRODUCTION 12

There are several reasons for wanting to do so. A better understanding of

the semantic interactions of syntactic processes is intrinsically linguistically in-

teresting. It might also be instructive to be able to contrast the logical strengths

and weaknesses of natural languages and the artificial languages of logicians. Fi-

nally, more practically, there are potential applications in computing. The most

obvious example is that of natural language interfaces to databases, for which

it is important to know that the particular fragment of English used is capable

of expressing every query required. If such software has a deductive component,

then the computational properties of carrying out reasoning with that fragment

can also be very useful for software designers to know.

The work presented here is a continuation, and extension, of the programme

proposed by Pratt-Hartmann in [58]. That paper defines a small fragment of En-

glish and several linguistically interesting extensions of it. By means of standard

translations into first-order logic, each of these fragments is analysed with regard

to its semantic complexity – that is, the complexity of deciding its satisfiability

problem. It is proposed in [58] that such an approach could be extended to include

a wider range of English constructions. Pratt-Hartmann and Third continue this

programme in [60] with the extension of the fragments of [58] with ditransitive

verbs. The present work contains some of the results presented earlier, as well as

further semantic complexity results for fragments of English containing various

levels of (sub)sentential coordination. Some of the fragments of [58] and [60] are

also revisited, and their expressive power is characterised in terms of their abil-

ity to distinguish different situations. These results also offer criteria by which

we can determine when arbitrary logical formulae can be translated back into

English sentences in the fragments under consideration.

More specifically, we consider a range of fragments of English constructed

using proper and common nouns, the determiners every, some and no, relative

clauses, the copula, (di)transitive verbs and coordination of various sentential

and subsentential constituents. For each of these fragments, we present semantic

complexity results, with proofs for those which are novel. For each fragment

not featuring subsentential coordination, we present an analysis of its expressive

power.

The contributions made by this thesis can be summarised as follows. By

continuing the programme of [58] with regard to questions of the complexity of the

satisfiability problem, we contribute towards the understanding of the deductive
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power of simple English constructions, and in a sense help to “map out” parts of

the interface between syntax and semantics, at least for English. This goal is also

aided by our analyses of the logical expressive power of the fragments we study,

and by the presentation, in a linguistics context, of the techniques needed for

such analysis. We show that it is not only possible, but practical, to answer these

questions for natural languages using standard logical formalisms, and without

needing to invent a custom “English-like” logical syntax. As a result, not only

are the techniques we use quite generally applicable to non-English languages,

but we are also able to take advantage of the full body of existing work on the

syntax and semantics of first-order logic.

The structure of this thesis is as follows. Chapter 2 reviews the existing litera-

ture on the topics of natural language reasoning and expressive power. In Chapter

3, we give a brief summary of the necessary background topics in logic, and in

Chapter 4, we give a similar summary of the relevant topics in linguistics, as well

as a more detailed description of the questions we answer. Chapters 5 and 6 form

the main body of the thesis: Chapter 5 gives satisfiability and expressive power

results for fragments featuring the copula, relative clauses and (di)transitive verbs

and Chapter 6 gives satisfiability results for each of the fragments of Chapter 5

extended in turn with various levels of (sub)sentential coordination. Finally, in

Chapter 7, we summarise our results, and draw some general conclusions from

them, before suggesting some questions to be addressed by future work.



Chapter 2

Related Work

Que sais-je?

— Montaigne, Essais

This chapter contains a brief summary of related work. We give an overview

of the existing literature and discuss the differences in approach taken by this

thesis.

As stated earlier, our aim is to define a range of fragments of English with

associated semantics, and ask, for each, whether the problem of determining sat-

isfiability is decidable. In certain cases, we also give a semantic characterisation

of the fragment in question, by analysing its expressive power as the ability to dis-

tinguish different situations. There are therefore two bodies of literature relevant

to our work: previous studies of the problem of carrying out inference from nat-

ural language sentences, and previous studies of the expressive power of natural

language constructions. We consider these in turn.

2.1 Natural Language Reasoning

A great deal of the existing work on natural language semantics is concerned with

finding the best means of representing or computing the truth or assertability

conditions of expressions in natural language, or, given a particular choice of

representation language, with working out precisely how to interpret individual

constructions in an individual language. Surprisingly little, however, seems to

have been done on the study of natural languages as systems of inference. We

14



CHAPTER 2. RELATED WORK 15

consider the main examples here.

This section can be divided into two parts. We consider first the various

attempts there have been to study natural language reasoning using non-standard

logics, by which we mean formal languages or proof systems designed specifically

for this task. We then consider the rather smaller body of literature discussing

natural language reasoning using general-purpose standard logics, such as first-

order logic.

The motivation behind the first approach seems to be unease at the gap

between the syntax of, say, first-order logic and its associated proof systems, and

the syntax and kinds of inference typically used to express arguments in natural

languages such as English. A key proponent of this view is Sommers, who argues,

in [73], against the wholesale move by logicians towards the predicate-and-bound-

variable logics stemming from Frege, in favour of a “traditional formal logic”

continuing the Aristotelian tradition of a subject-predicate logic. Thus, to give

the classical example, the validity of the argument

Every man is mortal

Socrates is a man

Socrates is mortal

is explained by the fact that the subject – every man – of the first premise is

positive and universal, and shares a term – men – with the predicate of the

second premise. The particular subject – Socrates – of the second premise can

therefore be substituted for the subject of the first to give the (valid) conclusion

Socrates is mortal.

The work of Sommers is concerned with the general foundation of logic itself,

which falls somewhat outside the scope of this thesis. However, many of those

we now consider hold similar views on semantics to those expressed in [73] and

so it bears mentioning here.

In what follows, we examine in turn the works of Fitch [15], Suppes [79],

Purdy ([62], [63], [64], [65], [67]) and McAllester and Givan [46].

Fitch, in [15], tries to formalise directly the processes of reasoning with English

sentences, without any need for a separate formal language to represent semantics.

He does so by defining a system of “natural deduction” inference rules which apply

to the constituents of a sentence. For example, the rules of any-elimination and

introduction can be represented by the schemata
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b is a c b is a c

. . . any c . . . . . . b . . .

. . . b . . . . . . any c . . .

where . . . any c . . . and . . . b . . . are sentences identical save that in the latter, the

leftmost occurrence of b occurs in the position in which the leftmost occurrence

of any c occurs in the former. The rule of any-introduction is also subject to

the restriction that if any other proper noun is substituted throughout a proof

for b, the whole proof must continue to hold. Unsurprisingly, these rules bear a

strong resemblance to the usual formulations of ∀-introduction and elimination

in natural deduction systems for first-order logic.

Similar rules are presented for the introduction and elimination of other deter-

miners, such as some, no and the, passive verb constructions, verbal negation and

relative clauses. Rules are also given for sentences containing modal verbs such as

believe and know. For example, via rules of infinitive-introduction and elimination,

the sentences Jack believes that Bill came and Jack believes Bill to have come can be

shown to be equivalent. Finally, of course, natural deduction rules for the usual

Boolean connectives are presented.

The main difficulty with Fitch’s approach is no doubt already apparent. With-

out any detailed account of both the syntax and compositional semantics of the

sentences considered, it is necessary to introduce separate rules for every differ-

ent syntactic construction, and every variant way of phrasing a given set of truth

conditions. This point is particularly driven home by the handling of relative

clauses, for which Fitch gives seven pairs of introduction and elimination rules –

to handle relative clauses in the scope of any, some, no, the, not every, and so on.

So, for example, any-which-introduction and -elimination is performed as follows

. . . any c which vis . . . if any c vis, then (. . . that c . . . )

if any c vis, then (. . . that c . . . ) . . . any c which vis . . .

where . . . any c . . . and . . . that c . . . are interpreted as above, and vi is an in-

transitive verb. Similarly, not-every-which-introduction and -elimination are given

by

. . . not every c which vis . . . some c vis, and not (. . . that c . . . )

some c vis, and not (. . . that c . . . ) . . . not every c which vis . . .

with the same notation.
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As we see later, such a proliferation of rules is unnecessary – the semantics of

relative clauses can be separated from the semantics of the determiners in whose

scope they fall without any loss.

Suppes, in [79], takes a more compositional approach. He defines a fragment

of English via phrase structure rules, each of which has an associated function

detailing how to form the semantics of a phrase from the semantics of its con-

stituents. The fragment he defines contains the determiners all, some, no, demon-

strative phrases there are, common nouns, adjectives, relative clauses, possessive

of, (in)transitive verbs and negation. Thus the following sentences belong to

Suppes’ fragment.

There are vegetables

Some people eat all vegetables

Some people that do not eat all vegetables love vegetables of Southern growers

Each such sentence is assigned semantics using a simple language of sets and

relations. Given a vocabulary of set and relation symbols interpreted in some

domain of objects, the usual operations of union (X ∪ Y ), intersection (X ∩ Y )

and complement (X) are augmented with the converse (R̆) of a relation R, the

restriction (R|A) of the domain of a relation R to a set A and the image (R”A)

of a set A under the relation R. Suppes also introduces a method of fixing an

unspecified relation between two sets, which he uses to interpret “possessive of”, as

in vegetables of Southern growers. If X and Y are set symbols, then X2Y ⊆ X×Y is

a relation. No formal definition is given, but we assume that the actual denotation

of each X2Y over a given domain is fixed simultaneously with the denotations of

X and Y themselves.

Every common noun, and every adjective, is treated as a set symbol, and

each transitive verb is treated as a relation symbol. The above sentences are then

given the semantics

vegetables 6= ∅

people ∩ (∩
v∈vegetables(ĕat”{v})) 6= ∅

(people ∩ ((¬ĕat)) ∩ ( ˘love”(vegetables2”(southern ∩ growers)))) 6= ∅.

The first of these presumably requires no explanatory gloss. The second can

be paraphrased as stating that the intersection of the set of people and the set of

those who are eaters of every vegetable is non-empty. The third example states

that there exists at least one entity in the domain of discourse which is a person,
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to which at least one vegetable stands in the not-eaten-by relation and which

is in the love relation with every vegetable related to something which is both

Southern and a grower.

Such translations do seem to represent what most native speakers would take

to be the truth conditions of the given sentences. However, Suppes does not go

on to use these translations directly as a tool for reasoning. Rather, he proceeds

much in the manner of the traditional logician, by categorising sentences into

classes and then listing valid inferences in terms of those classes, using the set-

theoretic translations only to justify claims of validity. For example, all phrases

which are interpreted by the subset relation are identified. They are

all N1 are N2

N1 is of the form adjective N2

N1 is of the form N2 that VP

N1 is of the form N2 of N3.

where Ni is a noun or noun phrase for 1 ≤ i ≤ 3 and VP is a verb phrase. With

every phrase of the above forms denoted C(N1,N2), Suppes presents inference

rules such as

All N1 VP C(N1,N2)

All N2 VP

and

Some N1 VP C(N1,N2)

Some N2 VP.

The soundness of such rules are justified by appeal to the set-theoretic semantics.

A similar criticism applies to this approach as to that of Fitch. By stating

rules of inference directly in terms of (sets of) expressions of English, Suppes can

be forced, when faced with some extension of his fragment, to change his system

of inference in order to accommodate the extensions. Such a lack of extensibility

is particularly odd given how straightforward it is likely to be to define a proof

system which operates directly on the set-theoretic semantic representation lan-

guage he defines, and which would apply unaltered to the semantics of a wide

range of English constructions.

In several papers ([62], [63], [64], [65], [67]), Purdy proposes a logical formal-

ism, LN , which he claims is particularly suited to represent reasoning carried
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out in natural language. The advantages claimed for LN are, first, that carrying

out deduction in it is similar to the process of human reasoning in English, a

process which (Purdy claims) operates on constructions of English syntax. Sec-

ond, although satisfiability in LN itself is undecidable, it has a subfragment, very

similar to Quine’s fluted fragment of first-order logic, into which a reasonably

naturally-delineated fragment of English can be translated, and satisfiability in

the fluted fragment is decidable in non-deterministic exponential time. Decidabil-

ity is desirable for Purdy, not just on computational grounds, but also because

he conjectures that “everyday” English is decidable, and therefore its semantics

ought to be represented in a decidable formalism.

Formulae of LN are formed from a vocabulary of n-ary predicate symbols. The

following definition gives only that decidable fragment of LN used to represent

the semantics of English.

Definition 2.1. The LN expressions of arity n are defined as follows.

1. Every n-ary predicate is an n-ary expression.

2. The complement X of an n-ary expression X is n-ary.

3. If X is n-ary and Y is m-ary, then X ∩ Y is max{n,m}-ary.

4. If X is n-ary and Y is m-ary, then X ◦ Y is ((n+m) − 1)-ary.

5. If X is unary and Y is (n + 1)-ary, then someXY is n-ary.

Let D be a domain of objects and I an interpretation function mapping every

n-ary predicate to a subset of Dn. An n-ary expression X is satisfied by an

ordered sequence α = 〈d1, . . . , dn〉 of elements of D, written α |=I X, if

1. X is an n-ary predicate and (d1, . . . , dn) ∈ I(X),

2. X is of the form Y and α 6|=I Y ,

3. X is of the form Y ∩ Z and α |=I Y and α |=I Z,

4. X is of the form Y ◦ Z, where Y is m-ary, Z is ((n + 1) −m)-ary and for

every β = 〈e1, . . . , em〉 such that β |=I Y and γ = 〈f1, . . . , f(n+1)−m〉 such

that γ |=I Z, if em = f1, then 〈e1, . . . , em, f2, . . . f(n+1)−m〉 |=I X.
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5. X is of the form someY Z, where Y is unary and Z is (n + 1)-ary, and for

some d ∈ D, 〈d〉 |=I Y and 〈d, d1, . . . , dn〉 |=I Z.

For any pair of expressions X, Y , the expressions X ∪ Y,X ⊆ Y and X ≡ Y

are defined as abbreviations for (X ∩ Y ), (X ∩ Y ) and (X ⊆ Y ) ∩ (Y ⊆ X),

respectively. If X is unary and Y is (n+1)-ary, then everyXY is an abbreviation

for someXY .

Using a context-free grammar, and compositional semantics, Purdy defines

a fragment of English, each of whose sentences are interpreted by 0-ary LN ex-

pressions. Sentences generated by this grammar can contain proper nouns, the

determiners every, some and no, adjectives, relative clauses, (in)transitive verbs,

passives, sentence and verb phrase coordination and phrases of the form there be

VP, where VP is a verb phrase.

Under the assumption that the phrase is faster than expresses a transitive

relation, the following argument is clearly valid. If we further assume that is

faster than can be treated as a transitive verb, then we can express the argument

in Purdy’s fragment of English. A proof of its validity using LN is given below,

along with English glosses for each step.

Some horses are faster than some dogs

All dogs are faster than some men

Some horses are faster than some men

1 someHsomeDF some horses are faster than some dogs

2 allDsomeMF all dogs are faster than some men

3 D ⊆someMF all dogs are faster than some men

4 someHsome(someMF )F some horses are faster than some things faster than

some men

5 someH(someMF )F some horses are faster than some things faster than

some men

6 F ◦ F ⊆ F for all pairs of things, the first being faster than

something faster than the second implies the first

being faster than the second

7 someHsomeMF some horses are faster than some men

Purdy claims that every step of the above argument can be translated easily from

English to LN and back, and that, therefore, reasoning in LN is a better model
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for natural language reasoning than first-order logic. However, without details of

how to perform the backwards translation, for some steps in the above argument

(step 6, say), it is not clear that the English gloss given for the LN formula is

actually a member of Purdy’s fragment of English. It is therefore difficult to see

the difference between the production of this kind of gloss and the kind of ad hoc

English glosses often attached to proofs in first-order logic.

We stated earlier that the formulae of Definition 2.1 only form a fragment of

the full LN – a fragment which can be embedded in Quine’s fluted fragment of

first-order logic. Roughly speaking, the fluted fragment is just first-order logic

restricted so that variables occurring as arguments to non-unary predicates can

occur only in the same order as the sequence of quantifiers binding them. So, for

example, the formula

∀x(p(x) → ∀y(q(y) → r(x, y)))

is fluted, whereas

∀x(p(x) → ∃y(q(y) ∧ ∀z(r(x) → s(z, x, y))))

is not, since z appears before x and y as an argument to the ternary predicate s,

but the quantifier binding z occurs within the scope of the quantifiers binding x

and y. Fluted formulae are interpreted semantically in precisely the same way as

general first-order formulae.

The translation into the fluted fragment of the LN formulae in Definition 2.1 is

straightforward. In particular, the insistence that variables occur in a fixed order

in fluted formulae corresponds to the interpretation of n-ary LN formulae relative

to an ordered sequence of domain elements. It follows that, since satisfiability in

the fluted fragment can be decided in non-deterministic exponential time, so can

satisfiability in the fragment of LN given above. In general, however, the full LN

contains “selection operators” – a means of permuting and selecting subsequences

of the domain elements relative to which a LN predicate is interpreted. These

selection operators grant LN the full expressive power of first-order logic with no

restrictions on variable occurrence, and thus cause satisfiability to be undecidable.

McAllester and Givan, in [46], are concerned with identifying formal languages

usable for automated reasoning which have both good computational properties

and high expressive power. They suggest that such languages can be found by
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seeking inspiration in the structures of natural language. In support of this claim,

they define what they call Montagovian syntax, after Montague [84].

As with LN , the following definition does not give the full range of formulae

allowed by McAllester and Givan, only those which they use to interpret English

sentences. Full Montagovian syntax is expressively equivalent to first-order logic.

Definition 2.2. A class expression of Montagovian syntax is one of

1. a constant symbol

2. a unary predicate symbol

3. an expression of the form (R(some s)) or (R(every s)), where s is a class

expression and R is a binary predicate symbol.

A formula of Montagovian syntax is one of

1. (every s w), where s, w are class expressions,

2. (some s w), where s, w are class expressions, or

3. Any Boolean combination of formulae of Montagovian syntax.

Expressions of Montagovian syntax are interpreted over structures containing

a domain D of elements, in a similar fashion to formulae of first-order logic.

Constants are interpreted as elements of D, unary predicates as subsets of D,

and binary predicates as subsets of D2. Complex class expressions can then be

interpreted as subsets of D, with R (some s) denoting the elements of D which are

in the relation R with some element in the denotation of s, and similarly for R (every

s). Formulae can be assigned truth values in the obvious way: (every s w) is true

if the denotation of s in D is a subset of the denotation of w, and false otherwise,

and (some s w) is true if at least one element of D belongs to the denotations of

both s and w, and false otherwise. Boolean combinations of formulae are assigned

truth values via the usual interpretations of Boolean connectives. So

(every boy (loves (some girl)))

is true over a domain if every entity in the denotation of boy is in the loves

relationship with at least one entity in the denotation of girl. Similarly, the

formula
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(every (loves (some girl)) (loves (some boy)))

is true precisely when the set of lovers of some girl is a subset of the set of lovers

of some boy.

We can see from these examples that although some formulae in Montagovian

syntax bear at least a passing resemblance to sentences of English, not all do –

witness the second example.

McAllester and Givan go on to consider the satisfiability problem for certain

sets of Montagovian formulae. In particular, they show that the satisfiability

problem for formulae of the forms (every s w), (some s w) and their negations

is NP-complete. That is to say, they consider the set of formulae restricted to

those which do not contain conjunction and disjunction of other formulae. From

a linguistic point of view, this restriction is equivalent to disallowing arbitrary

Boolean combinations of sentences. The reason given for the NP-completeness of

this problem is that it is not necessarily known in advance which class expressions

might have an empty denotation in a satisfying structure. In the case where the

set of formulae under consideration contains one of (some s s) or its negation for

every class expression s, the satisfiability problem is decidable in deterministic

polynomial time.

The relationship between the sets of formulae McAllester and Given consider,

and sets of English sentences, is very loose. Although Montagovian formulae

are often quite English-like, there is no very clear fit between them and any

particularly natural fragment of English. Of course, such lack of fit is no real

surprise: their intent is to study logic via natural language, not the other way

around. Nonetheless, without a closer link to linguistic phenomena, it is hard to

use Montagovian syntax to learn about the semantics of English.

A slightly curious claim is made in [46] regarding the relationship between

choice of syntax and efficiency of inference. An advantage claimed for the use of

Montagovian syntax over the corresponding fragment of first-order logic is that

the former lends itself to more efficient inference. In support of this claim, the

argument is made that certain inferences require, in first-order logic, higher-order

unification, whereas the same inference in Montagovian formulae does not. For

example, the Montagovian inference rule

(every s t)

(every (R (some s)) (R (some t)))
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can be written in first-order logic as

∀x(S(x) → T (x))

∀y(∃x(S(x) ∧ R(x, y)) → (∃x(T (x ∧R(x, y)))))

but, they claim, whereas Montagovian formulae such as

(every(child-of(some bird)) (friend-of (every bird-watcher)))

can be shown to be a premise for the first rule by ordinary unification, the corre-

sponding first-order formula

∀x(∃y(bird(y) ∧ child-of(y, x)) → (∀y(bird-watcher(y) → friend-of(y, x))))

can only be shown to be an instance of ∀x(S(x) → T (x)) by unifying S with

the higher-order expression λx.∃y(bird(y)∧ child-of(y, x)) and Q with the higher-

order expression λx.∀y(bird-watcher(y) → friend-of(y, x)) and carrying out β-

reduction. However, this observation does not reveal a general problem with

first-order logic, but a problem with a particular choice of proof system for it:

the same inference using, say, resolution applied to formulae in clause normal

form, requires no higher-order unification.

As well as the preceding work, some attention has been paid to the problem

of natural language reasoning using standard logical formalisms. In [6] and [5],

Blackburn, Bos, Kohlhase and de Nivelle define a small fragment of English by

means of a grammar implemented in the logic programming language, Prolog.

This grammar simultaneously assigns first-order semantics to each sentence it

generates, in a format which can be given as input to an automated theorem-

prover. The motivation behind this approach is the desire to test semantic theo-

ries automatically. In particular, this system is used to experiment with theories

of discourse semantics. For example, it is common to assume that a given dis-

course has an associated context – a body of background knowledge shared by

participants, to which every new utterance in that discourse adds. Each such ut-

terance is assumed to be consistent with the context, and informative – that is, it

cannot be inferred from the existing context. The system proposed in [6] and [5]

can be used to experiment with different ways to handle these constraints, and

to fine-tune them to fit in with intuition. Modelling the context as a set of first-

order formulae, the satisfaction of the consistency and informativity constraints

on a fresh English sentence can be determined by translating it automatically into
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first-order logic, and feeding both the result and the context into an automated

theorem-prover, which is capable of determining consistency and deciding when

the given formula can be inferred from the given context.

Blackburn, et al, do not study the precise logical fragment generated by their

grammar, and so of course have no expectation as to whether the theorem-provers

they use will terminate on any set of inputs. Nonetheless, the system they

build provides a convenient method of experimenting with different semantic

constraints on discourse without having to perform all of the reasoning manu-

ally, and thus it has the potential to assist in the understanding of the kinds of

reasoning which actually do take place in natural languages.

The work on semantic complexity in this thesis continues the programme pro-

posed by Pratt-Hartmann in [58], in which a small fragment of English based on

the language of syllogistic reasoning is defined, and the complexity of its satis-

fiability problem, along with the complexity of several linguistically interesting

extensions, is analysed. In particular, fragments including relative clauses, transi-

tive verbs and anaphora, subject to various restrictions on anaphor interpretation,

are shown to have semantic complexities ranging from deterministic polynomial

time to undecidability. This work is continued in [60], with ditransitive verbs, and

a similar approach is taken for English temporal expressions in [59]. Definitions

of many of the fragments in [58] and [60], and statements of the corresponding

results, are given in Chapter 5.

Notwithstanding these latter works, the general consensus seems to be that

despite the common practice of using first-order logic to represent the semantics

of natural language, it is not appropriate to use it to study the process of reason-

ing. The argument for this claim seems to rest on the view that humans reason

using the syntax of their natural language. It is not obvious that such a claim

is true. Indeed, it is not obvious that human reasoning is a syntactic process at

all – it might, for example, operate directly on “internal” partial models. Rather

than assuming untested psychological hypotheses regarding reasoning, we feel it

is safer, yet just as instructive, to confine ourselves to a descriptive role. That is,

provided that native speaker intuitions regarding truth conditions can be faith-

fully represented, the relation of entailment continues to hold between certain

sets of English sentences regardless of the psychological process of checking that

it does. This relation can be studied very effectively using the standard tech-

niques of model theory. So we study natural language reasoning using a language
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which makes the structure of potential models clear – that is, using first-order

logic itself. A side-effect of this approach is that, given that first-order proof- and

model-theory have received an enormous amount of attention, there is a large

body of results of which we can take immediate advantage.

2.2 Expressive Power

Regarding questions of the expressive power of fragments of natural language,

such work as there is appears to have been concerned largely with questions of

quantification. In works such as [4], [39], [42], [85], and [88], expressive power

has been characterised as follows. Given the assumption that all elements of

a given syntactic category C of a given natural language denote mathematical

objects of a certain kind, one can ask whether every object of that kind is in

fact the denotation of some element of category C. If the answer is negative,

then it is instructive to determine the limits of expressive power – that is, what

are the conditions determining which of the full range of potential denotations

are actually allowed in the language concerned. To take a specific example, if

noun phrases or determiners of English are taken to denote quantifiers, it would

be interesting to know whether there are mathematically-expressible quantifiers

which cannot be expressed by noun phrases or determiners of English.

The classic reference for this question is of course Barwise and Cooper [4],

where several constraints on quantifiers are identified, and a range of conjectures

are made about their applicability to natural languages. The lines of enquiry

begun there are continued in later works. In particular, Keenan and Stavi [39] and

Keenan and Moss [42] examine a large class of English determiners and identify

constraints which seem to apply to all of them. Conversely, van Benthem [88]

examines various classes of mathematically-expressible quantifier and identifies

which occur in English.

Let us now be more precise. Following van Benthem [88], but differing slightly

from Barwise and Cooper [4], we take a quantifier Q over a domain E to be a

relation between subsets of E. For example, if Q is all, then we can define

Q = {(A,B)|A ⊆ E,B ⊆ E such that A ⊆ B}

and write allAB for (A,B) ∈ all. We speak of A and B in this notation as being
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the left and right arguments of Q, respectively. We also say that a quantifier A

over a domain E can express a set of subsets B of E if for some A ⊆ E, QAB for

all B ∈ B.

Two specific properties of quantifiers seem to be very important in natural

languages: conservativity and monotonicity.

Definition 2.3. A quantifier Q over a domain E is

1. conservative if for all A,B ⊆ E, QAB = QA(B ∩ A),

2. right upward monotone (MON↑) if for all A,B,B′ ⊆ E, if QAB and

B ⊆ B′ ⊆ E, then QAB′,

3. right downward monotone (MON↓) if for all A,B,B′ ⊆ E, if QAB and

B′ ⊆ B ⊆ E, then QAB′,

4. left upward monotone (↑MON) if for all A,A′, B ⊆ E, if QAB and

A ⊆ A′ ⊆ E, then QA′B,

5. left downward monotone (↓MON) if for all A,A′, B ⊆ E, if QAB and

A′ ⊆ A ⊆ E, then QA′B.

Conservativity (the “lives on” property of Barwise and Cooper) essentially

limits the domain of a quantifier to its first argument. In interpreting all men are

mortal, it is not necessary to consider any non-men; the truth conditions of this

sentence depend solely on the set of men. The various forms of monotonicity

describe how quantifiers behave with respect to sub- and supersets of their left

and right arguments. For example, all is both MON↑ and ↓MON since for any

A,B, if allAB, then allAB′ for every set B′ containing B, and allA′B for every

subset A′ of A.. Similarly, some is both MON↑ and ↑MON since for any A,B,

if someAB, then someAB′ for every set B′ containing B and someA′B for every

set A′ containing A. Quantifiers such as these which have both a left and a

right monotonicity property are said to be doubly monotone. Left upward and

downward monotonicity are known by Barwise and Cooper as persistence and

anti-persistence, respectively.

The property of conservativity appears to be fundamental to natural language

quantification. It is hypothesised by Barwise and Cooper that every natural lan-

guage determiner denotes a conservative quantifier. In [39], Keenan and Stavi
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present a list of English determiners, which appears to be intended to be exhaus-

tive, and show that, with the expected semantics, the closure of this list under

Boolean combination and infinite conjunction and disjunction is precisely the set

of all conservative quantifiers. In [42], Keenan and Moss extend the definition of

conservativity to polyadic quantifiers, such as more than (as in more A than B are

C), and show that all k-place English determiners denote conservative quantifiers.

Of course, the truth of this claim does depend on the exhaustivity of the given

lists of determiners, but so far, no counterexamples seem to have been found.

Conservativity does not impose any real limits on expressive power, however: it

is also shown in [42] that for any domain E, every set of subsets of E can be

expressed by some conservative quantifier.

The properties of monotonicity appear to be nearly as widely applicable as

conservativity. It is conjectured by Barwise and Cooper that all “simple” natural

language determiners are right monotone, and, in general, this conjecture does

seem to hold. However, there are relatively natural, though not necessarily simple,

determiners such as an even number of which are easily shown to be neither right

nor left monotone. Nonetheless, Väänänen and Westerst̊ahl [85] show that an even

number of can in fact be defined in terms of a Boolean combination of monotone

quantifiers, even if those defining quantifiers do not themselves appear to be the

denotations of natural language determiners.

Doubly monotone quantifiers are investigated in van Benthem [88], where it is

shown that over finite domains, every doubly monotone quantifier is expressible

as a Boolean combination of determiners of the form at most k out of every n A

are B, from which it can be concluded that (at least) English can express all

doubly monotone quantifiers. This result can be strengthened: it turns out that

every quantifier over finite domains which can be defined in first-order logic can

be expressed as a combination of determiners of the forms at most k (non-)A are

(not) B and there are at most k (non-)A. This latter result is proved using the

Ehrenfeucht-Fräıssé method to which we return in Chapter 3.

It is worth noting as an aside at this point that not all basic English determin-

ers can be defined in first-order logic. The classic example is most. The quantifier

denoted by most is right upward monotone and not left monotone at all, and is

shown in Appendix C of Barwise and Cooper [4] not to be first-order definable.

Other classes of quantifier considered in [39] and [42] include cardinal and

logical quantifiers. The set of cardinal quantifiers is taken to be those which



CHAPTER 2. RELATED WORK 29

depend solely on the number of elements of their left argument which are in

their right argument. For example, more than ten is a determiner denoting a

cardinal quantifier. The set of logical quantifiers, which includes the cardinal

quantifiers, is taken also to include those denoted by determiners such as every

whose meaning does not depend crucially on the particular structure in which

they are interpreted. By contrast, a possessive such as John’s denotes a non-logical

quantifier, since its meaning in a given structure depends on the interpretation

of the symbol John in that structure. The following expressive power results are

shown in [42]. Over infinite domains, the set of cardinal quantifiers is strictly

smaller than the set of logical quantifiers, which is strictly smaller than the set

of all conservative quantifiers. Over finite domains, however, cardinal and logical

quantifiers have the same expressive power, although neither can express as much

as the full set of conservative quantifiers.

The preceding discussion has hopefully given some flavour of the kind of re-

sults which can be obtained regarding the limitations of the expressive power of

natural language when compared to the full set of mathematically-possible deno-

tations. The results we present in this thesis are complementary to such work.

An interesting direction for the future might be to see whether restrictions on

quantification as discussed above could be used to generate restrictions, of the

kind we consider here, on the possible models of English sentences.

2.3 Conclusion

Following [58], the work in this thesis is intended to form a systematic study of

the inferential properties and expressive power of natural language. In contrast

to the prevailing view that “logicians’ logics” are not appropriate for the study

of natural language reasoning, we conduct all of our work within the framework

of first-order logic. No commitment to any claims regarding the psychological

nature of human reasoning is made by this choice. Rather, it is simply that the

underlying semantic structures can be perspicuously described in first-order logic

in a way which we feel can be obscured by the use of formalisms more closely

resembling English. Also, it is important that the techniques used to obtain our

results be equally applicable to any natural language, and again, it seems as if a

more English-like formalism would obstruct this goal.

We have, in this chapter, relied on a certain familiarity with notions such
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as formula, structure, grammar, and so on. In the following two chapters, we

present more formal accounts of the various mathematical and linguistic topics

underlying our work. We begin with logic.



Chapter 3

Logic and Computation

...a very astute people...their ideas are ignoble, but they make no mistakes in carrying them out.

— John Butler Yeats

Let us begin by presenting the logical background needed for this thesis. In the

following chapter, we go through a number of topics including: first-order logic

and its semantics; various fragments of first-order logic, including modal logic;

resolution theorem proving and some of its refinements; a discussion of ideas such

as bisimulation and Ehrenfeucht-Fräıssé games used to analyse the expressive

power of various logics; and some basic ideas of computational complexity .

3.1 First-order logic

3.1.1 First-order languages

The following completely standard definitions simply set out the basic terminol-

ogy and notation to be used throughout.

Definition 3.1. A signature Σ is a set of relation/predicate symbols and function

symbols, each of which has an associated positive arity. Function symbols of arity

0 are known as constants.

Given a signature Σ and a countable supply X = x1, x2, . . . of variables, the

set of terms over Σ is defined recursively as follows. We simultaneously define

the depth of a term.

Definition 3.2. 1. Every constant symbol is a term, of depth 1.

31
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2. Every variable is a term, of depth 1.

3. If n > 0, f is a function symbol of arity n and t1, . . . , tn are terms,

then f(t1, . . . , tn) is a term, whose depth is the maximum of the depths

of t1, . . . , tn.

For any term t, denote the depth of t by d(t).

The set of formulae over Σ is defined similarly. As with terms, let d(φ) be

the depth of a formula φ.

Definition 3.3. 1. If p is a relation symbol of arity n and t1, . . . , tn are terms,

then p(t1, . . . , tn) is a formula of depth max(d(t1), . . . , d(tn)).

2. If φ is a formula, then ¬φ is a formula of the same depth as φ.

3. If φ, ψ are formulae, then φ ∧ ψ and φ ∨ ψ are formulae whose depth is the

maximum of the depths of φ and ψ.

4. If φ is a formula and xi is a variable, then ∀xi(φ) is a formula of the same

depth as φ. All variables in φ are said to be in the scope of ∀xi.

The first-order language over Σ is the set of all formulae over Σ. We use the

standard abbreviations: ∃xi(φ) for ¬(∀xi(¬φ)), φ → ψ for (¬φ) ∨ ψ and φ ↔ ψ

for (φ→ ψ) ∧ (ψ → φ). Where the usual rules of precedence leave no ambiguity,

we also omit unnecessary brackets.

An occurrence of a variable xi in a formula φ is bound by the closest occurrence

of ∀xi or ∃xi in whose scope it lies, and is simply bound if it is bound by some

quantifier. A variable which is not bound in a formula is free in that formula.

Usually the free variables are explicitly shown: let x1, . . . , xn, be all the free

variables of φ; we typically write φ(x1, . . . , xn) instead of merely φ. The universal

closure of φ(x1, . . . , xn) is ∀x1 . . .∀xn(φ(x1, . . . , xn)) – the existential closure is

defined similarly. A formula with no free variables is often called a sentence or a

closed formula.

A formula containing no variables is ground and a formula containing at least

one function symbol is functional.

Formulae matching rule 1 above – that is, formulae containing no quantifiers,

disjunction, conjunction or negation – are called atoms. A literal is an atom or

its negation. We write unary literal to mean a literal whose predicate is unary,

and similarly for binary, ternary, and so on.
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3.1.2 Semantics

We now describe how to assign semantics to a first-order language.

Definition 3.4. A structure A interpreting a given signature Σ consists of a non-

empty set A (the domain of A) and some fixed interpretation sA of every symbol

s in Σ.

1. If c is a constant, then cA ∈ A.

2. If f is a function symbol of arity n, then fA is a function fA : An → A.

3. If p is a relation symbol of arity n, then pA is a subset of An.

Definition 3.5. Let X be the set of variables and let A be a structure. A variable

assignment in A is a function g : X → A. We abuse notation to apply a variable

assignment g to an arbitrary term t in the following way.

1. If t is a variable x, then g(t) = g(x).

2. If t is a constant c, then g(t) = g(cA).

3. If t = f(t1, . . . , tn) for some n-ary function f and terms t1, . . . , tn, then

g(t) = fA(g(t1), . . . , g(tn)).

If g is a variable assignment, then for any variable x and any a ∈ A, let g[x/a]

be the variable assignment

g[x/a](y) =







g(y) if x 6= y

a otherwise

We are now in a position to give an interpretation of formulae in a structure.

Definition 3.6. Let φ be any formula over a signature Σ, let A be a structure

interpreting Σ and let g be a variable assignment in A. Then we say that φ is

true in A, or φ holds in A, and write A |= φ[g] if one of the following (exhaustive)

cases holds.

1. φ is of the form p(t1, . . . , tn) for some n-ary predicate p and terms t1, . . . , tn

and (g(t1), . . . , g(tn)) ∈ pA.

2. φ is of the form ¬ψ and it is not the case that A |= ψ[g]



CHAPTER 3. LOGIC AND COMPUTATION 34

3. φ is of the form ψ1 ∧ ψ2, and A |= ψ1[g] and A |= ψ2[g].

4. φ is of the form ψ1 ∨ ψ2, and A |= ψ1[g] or A |= ψ2[g].

5. φ is of the form ∀x(ψ) and for every a ∈ A, A |= ψ[g[x/a]].

If φ is any formula such that for every variable assignment g ∈ A, A |= φ[g], then

we say that φ is true in A, A models φ or A is a model of φ, and we write A |= φ.

It is straightforward to show that for any closed formula φ, if A |= φ[g] for any

assignment g in A, then A |= φ. There is usually no need to refer explicitly to

a variable assignment as we generally consider only closed formulae, or formulae

with a small number of free variables. When φ(x1, . . . , xn) is a formula with free

variables x1, . . . , xn, we tend to write A |= φ[a1, . . . , an] instead of A |= φ[g] for

some variable assignment which maps xi to ai for all 1 ≤ i ≤ n. It is easy to see

from the above definition that it does not matter to which elements of A g maps

the elements of X \ {x1, . . . , xn}

Definition 3.7. Given a structure A interpreting a signature Σ, let the first-order

theory of A be the set of all formulae over Σ true in A.

Definition 3.8. Let A,B be structures such that A interprets a signature Σ and

B interprets at least the symbols in Σ. If A ⊆ B, then B is an extension of A,

or A is a substructure of B, if

1. for every constant c in Σ, cA = cB,

2. for every function f in Σ, fA is the restriction of fB to A.

3. for every relation r in Σ, rA is the restriction of rB to A.

We say that B is an elementary extension of A if B is an extension of A and

for every first-order formula φ(x1, . . . , xn) over Σ and sequence a1, . . . , an ∈ A,

A |= φ[a1, . . . , an] if and only if B |= φ[a1, . . . , an].

Herbrand Structures

One method of actually building structures interpreting a signature Σ is from the

elements of Σ themselves. Structures interpreting first-order languages in this

way are commonly known as Herbrand structures.
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Definition 3.9. Let Σ be a signature, which we assume always to contain at

least one constant symbol c0. The Herbrand universe H over Σ is constructed

recursively.

1. For every constant c in Σ, c ∈ H .

2. If f is an n-ary function symbol in Σ and t1, . . . , tn ∈ H , then f(t1, . . . , tn) ∈

H .

Since c0 ∈ H , H is non-empty and so can serve as the domain of a structure.

Definition 3.10. Let H be the Herbrand universe over a signature Σ. An Her-

brand structure H over Σ is a structure as in Definition 3.4 with domain H

interpreting every term over Σ as itself and every n-ary relation symbol in Σ as

an n-tuple of H .

Definitions 3.9 and 3.10 are essentially a way of getting semantic informa-

tion from syntactic constructions, and allow us to show when purely syntactic

processes have correctly generated the desired semantic result. For example, we

use Herbrand structures later to extract models for formulae from the output of

automated theorem proving techniques.

Entailment and Satisfiability

Definition 3.11. Let φ, ψ be closed formulae over a signature Σ and suppose

that in every structure A interpreting Σ, if A |= φ, then A |= ψ. Then we say

that φ entails ψ, or that ψ follows from φ, and write φ |= ψ. By extension, if Φ is

any set of closed formulae and ψ a closed formula, we write Φ |= ψ as shorthand

for
∧

Φ |= ψ.

Formulae φ and ψ are said to be equivalent if φ entails ψ and ψ entails φ –

i.e., if both formulae are true in precisely the same structures.

If a formula φ is entailed by the empty set of formulae, then φ is true in every

structure, in which case we say that it is a theorem, written |= φ. If no structure

A exists such that A |= φ, then φ is unsatisfiable or inconsistent. Otherwise φ is

satisfiable (consistent).

The following fundamental result can be found in any good textbook dis-

cussing the model theory of first-order logic.
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Theorem 3.12. Compactness Let Φ be a set of first-order formulae. Then Φ

is satisfiable if and only if every finite subset of Φ is satisfiable.

In other words, an unsatisfiable set of formulae is always unsatisfiable for a

finite reason.

Types and Saturation

Definition 3.13. Let Σ be a signature and let Φ(x1, . . . , xn) be a set of formulae

over Σ containing a sequence of free variables x1, . . . , xn. We call Φ(x1, . . . , xn)

an n-type over Σ.

A structure A interpreting Σ realises an n-type Φ(x1, . . . , xn) if there exist

a1, . . . , an ∈ A such that A |= Φ[a1, . . . , an].

Loosely speaking an n-type realised by a1, . . . , an in a structure A consists of

everything which can be said about a1, . . . , an if Σ were expanded to include a

set of constant symbols naming the a1, . . . , an in A.

Of course, it is entirely possible for there to be a structure A whose first-order

theory is consistent with an n-type Φ(x1, . . . , xn), but in which Φ(x1, . . . , xn) is

not realised. Some structures simply do not contain enough elements to realise

all possible types.

Definition 3.14. Let A be a structure interpreting a signature Σ, let A′ ⊆ A

and let Σ(A) be Σ augmented with a constant symbol a for each a ∈ A′. Let

A(A′) be the extension of A interpreting Σ(A′) in which every constant a ∈ A′

denotes itself. A type Φ(x) over A′ is a 1-type over Σ(A′).

A structure A is ω-saturated if, for every finite subset A′ of A, every type over

A′ is realised in A(A′)

Structures which are ω-saturated contain enough elements to realise all pos-

sible n-types. The following results are discussed in [52, Chapter 5].

Theorem 3.15. Let A be an ω-saturated structure. Then A realises every n-type

consistent with its first-order theory.

It is also always possible to obtain an ω-saturated structure whenever one is

needed.

Theorem 3.16. Every structure A has an elementary extension A∗ such that A∗

is ω-saturated.
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In various results in the main body of this thesis, we use the following slightly

restricted notion of “type”.

Definition 3.17. Let n ∈ N and let A be a structure. If a1, . . . , an ∈ A, the

n-type of a1, . . . , an in A, denoted tpA[a1, . . . , an], is the set of all quantifier-free

formulae φ(x1, . . . , xn) such that A |= φ[a1, . . . , an].

3.1.3 Fragments

It is often useful to restrict attention to subsets of the first-order language over

a signature – for example, to obtain a language with good computational prop-

erties. We refer to such subsets as fragments of the full language. In the course

of this thesis, as described in Chapter 1, we look at fragments of first-order logic

generated by the translation of certain sets of English sentences, where the restric-

tions on logical formulae arise from the rules of English syntax. In this section,

we describe several ways in which fragments of first-order logic have been defined

directly by restrictions on the logical syntax.

Prefix fragments

One way in which first-order formulae can be restricted is in the number and

sequence of quantifiers they contain. A fragment of first-order logic subject to

such restrictions is known as a prefix fragment. Much of the early work on the

decision problem for first-order logic (of which more later) involved the study of

various prefix fragments, in the hope of shedding light on the general, unrestricted

case. After the general decision problem was shown to be undecidable, this work

continued in order to classify which prefix fragments are decidable, and which are

not. A thorough overview of the results on prefix fragments, and of the decision

problem in general, can be found in [8].

Definition 3.18. A first-order formula is said to be in prenex normal form if it is

of the form Q1x1Q2x2 . . . Qnxn(ψ(x1, . . . , xn)), where Q1, . . . , Qn are quantifiers,

x1, . . . , xn are variables and ψ(x1, . . . , xn) is quantifier-free.

Theorem 3.19. Every first-order formula is equivalent to a formula in prenex

normal form.

A prefix fragment of first-order logic is specified by giving a pattern of quanti-

fiers, such as ∀∃∀ and (optionally) a restriction on the content of signatures, such



CHAPTER 3. LOGIC AND COMPUTATION 38

as “only unary predicates, no constants or function symbols”. The fragment thus

defined contains all and only the prenex normal formulae in signatures meeting

the given restriction whose initial sequence of quantifiers match the given pattern.

Taking the examples just given, the formula

∀x∃y∀z(p(x) → (q(y) ∧ r(z))),

where p, q, r are unary predicates, is a member of the specified fragment, whereas

neither

∀x∃y∀z(p(x) → (q(y) ∧ r(z) → s(x, z)))

nor

∀w∃x∀y∃z(p(w) → (q(x) ∧ r(y) → s(z)))

are, containing as they do non-unary predicates and too many quantifiers, respec-

tively.

Limited-variable fragments

In Definition 3.3, we described languages whose formulae may contain an arbitrary

number of variables, thus essentially allowing first-order formulae to quantify over

an arbitrary number of sets. Limited-variable fragments result from attempts to

constrain this expressive power.

Definition 3.20. Let k ∈ N and let Σ be a signature. The k-variable fragment

over Σ, denoted Lk, is the set of all formulae over Σ containing only the variables

x1, . . . , xk.

So, for example, the formula

∀x1(man(x1) → mortal(x1))

is in the fragment L1, whereas

∀x1(man(x1) ∧ ∃x2(donkey(x2) ∧ own(x1, x2)) → ∀x2(stick(x2) → ¬own(x1, x2)))

is in L2. Note how different occurrences of the variable x2 are bound by different

quantifiers in the second example.

Very roughly speaking, a limitation on variables sets a limit on the number of
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entities between which a given formula can describe relations. As such, limited-

variable fragments can be very useful for describing, for example, resource-limited

computation.

As it turns out, many of the logical fragments we define in this thesis in

terms of fragments of English turn out to be subfragments of L2. Specifically, all

fragments not featuring ditransitive verbs fall into this category.

The basic modal fragment

The basic language of modal logic translates into a fragment of first-order logic,

as do many of its extensions. Since some results on modal logic are of direct

relevance to the current work, it is worth taking the time to give a reasonably

full exposition. More details can be found in [7].

Definition 3.21. Given a set S of proposition symbols, the basic modal language

over S contains all and only formulae generated by the following rules.

1. p is a modal formula for all p ∈ S.

2. If φ is a modal formula, then ¬φ is a modal formula.

3. If φ, ψ are modal formulae, φ ∧ ψ and φ ∨ ψ are modal formulae.

4. If φ is a modal formula, �φ is a modal formula.

We take φ→ ψ, φ↔ ψ to be the same abbreviations as in Definition 3.3, and

take ♦φ to abbreviate ¬(�(¬φ)). We omit unnecessary brackets where possible.

Definition 3.22. Let a modal structure M consist of a set of worlds W , each of

which is an assignment of true (T) or false (F) to each p ∈ S, and an accessibility

relation R ⊆ W ×W . We say that a modal formula φ is true at a world w ∈W

in M, written M, w |= φ if

1. φ = p for some p ∈ S and w assigns T to p.

2. φ = ¬ψ for some modal formula ψ and it is not the case that M, w |= ψ.

3. φ = ψ1 ∧ ψ2 for some modal formulae ψ1, ψ2 such that M, w |= ψ1 and

M, w |= ψ2.

4. φ = ψ1 ∨ ψ2 for some modal formulae ψ1, ψ2 such that M, w |= ψ1 or

M, w |= ψ2.
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5. φ = �ψ for some modal formula ψ such that for every w′ ∈ W such that

(w,w′) ∈ R, M, w′ |= ψ.

It follows that if φ = ♦ψ for some modal formula ψ, then M, w |= φ if there

exists w′ ∈W such that (w,w′) ∈ R and M, w′ |= ψ.

Entailment, equivalence, satisfiability, and so on, are all defined similarly for

modal formulae as for first-order formulae.

The standard translation transforms modal logic into a fragment of first-order

logic, as we now show.

Definition 3.23. Let S be a set of proposition letters and let φ be a modal

formula over S. The standard translation STx(φ) is defined as follows. Let Σ be

a signature constructed from S by taking every p ∈ S to be a unary predicate in

Σ, as well as a single binary relation r.

1. If φ = p for some p ∈ S, then STx(φ) = p(x).

2. If φ = ¬ψ, then STx(φ) = ¬STx(ψ).

3. If φ = ψ1 ∧ ψ2, then STx(φ) = STx(ψ1) ∧ STx(ψ2)

4. If φ = ψ1 ∨ ψ2, then STx(φ) = STx(ψ1) ∨ STx(ψ2)

5. If φ = �ψ, then STx(φ) = ∀y(r(x, y) → STy(ψ)) for some fresh variable y.

Theorem 3.24. Let φ be a modal formula. Then there exists a modal structure

M and a world w such that M, w |= φ if and only if there exists a structure A

and a ∈ A such that A |= STx(φ)[a].

We may therefore meaningfully refer to the fragment produced by the standard

translation as the modal fragment of first-order logic.

3.2 Expressive Power

Formal languages are often defined first in purely syntactic terms, with a view to

providing a semantic interpretation later. However, it is the semantics which are

usually of most interest, and it would be useful in general to know the full range

of semantic notions expressible in a given language. Likewise, it would also be

helpful to be able to compare the expressive power of two languages, and hence as



CHAPTER 3. LOGIC AND COMPUTATION 41

a consequence, be able to tell when expressions of one language can be translated

into expressions of the other while retaining the same semantics.

What we would like, then, is to be able to give a purely semantic character-

isation of a language L, such that we can tell precisely when expressions of any

given other language are equivalent to an expression in L. Even more usefully,

perhaps, such a characterisation might allow us to determine precisely which

semantic areas of interest a given language can be used to study.

One standard example of this kind of result is the characterisation of modal

logic developed by Johan van Benthem in his PhD thesis, published as [86]. We

give a brief overview of his work here.

Definition 3.25. Let M,N be modal structures with worlds W,V and acces-

sibility relations R,R′, respectively, and let B ⊆ W × V . We say that B is a

bisimulation if the following hold for every (w, v) ∈ B.

1. for all w′ ∈W , if wRw′, then there is a v′ ∈ V such that vRv′ and (w′, v′) ∈

B,

2. for all v′ ∈ V , if vRv′, then there is a w′ ∈W such that wRw′ and (w′, v′) ∈

B,

3. for every proposition letter p, M, w |= p if and only if N, v |= p

Write M, w ∼ N, v if (w, v) ∈ B for some bisimulation B, in which case we

say that w and v are bisimilar, and write M ∼ N if there is some bisimulation

B ⊆ (W,V ).

Given the above definition, the following is an easy structural induction on

formulae.

Lemma 3.26. Let M, w and N, v be bisimilar. Then for every modal formula φ,

M, w |= φ if and only if N, v |= φ.

The converse does not hold, but via a rather more involved argument, we get:

Lemma 3.27. Let M, w and N, v be such that for every modal formula φ, M, w |=

φ if and only if N, v |= φ. Then M,N have elementary extensions M∗,N∗,

respectively, such that w∗ is a world in M∗, v∗ is a world in N∗ and M∗, w∗ and

N∗, v∗ are bisimilar.
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Lemmas 3.26 and 3.27 can together be used to prove what is known as the

van Benthem Characterisation Theorem ([7], [86], [90]):

Theorem 3.28. A first-order formula φ is equivalent to (the standard translation

of) a modal formula if and only if φ is invariant for bisimulation, where invariant

for bisimulation means that any two bisimilar structures agree on the truth value

of φ.

With bisimulation, then, we have a relatively simple relation on modal struc-

tures which tells us exactly when two structures have the same modal theory. If

we now wish to compare the expressive power of a different fragment of first-order

logic with that of modal logic, we can do so by purely semantic means, without

having to go via more awkward approaches, such as syntactic transformations

between the languages.

The relation of bisimulation itself also sheds light on the properties of modal

logic: in particular, its “local” nature. Modal truth really depends only on the

kinds of world which are accessible from one given world.

So what we would like, for any language L, is to be able to construct a relation

∼L between structures playing the same role for L as bisimulation does for modal

logic. One method for achieving this goal for a very wide range of languages is

that of Ehrenfeucht-Fräıssé games ([14], [52], among others.) These allow us

to build arbitrarily close finite approximations to the desired relation ∼L, from

which generalisation to ∼L itself is straightforward. We do not directly use this

method in this thesis, but the basic idea provides a useful framework for thinking

about this kind of problem, so we give a sketch here.

Let L be a language and suppose we have two structures A and B interpreting

L-formulae. We wish to know whether A and B have the same L-theory – or

more generally, what features any A and B must share in order to have the same

L-theory. To find out, consider a two-player Ehrenfeucht-Fräıssé game played

on A and B. The players are known as Abelard (the spoiler) and Eloise (the

duplicator) (after a rather unfortunate pair of mediæval lovers, one of whom,

Abelard, was a logician.) Abelard wishes to show that A and B are different

with regard to L, and Eloise that they are the same. A game lasts n rounds,

each consisting of a move by each player, with Abelard always moving first. In

each round, Abelard picks one of the two structures and names an element in its

domain. Eloise must then find an element in the other structure satisfying some
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condition, which in general depends on L. If she can do so, she wins that round;

if not, Abelard wins the game. If Eloise wins all n rounds, she wins the game.

In order to be useful, the condition which Eloise’s choices should meet are

designed to ensure that if she wins, the sequences of n choices made over the

course of the game are indistinguishable by formulae of L up to some “complexity

level”. By complexity level, we mean measures such as the quantifier depth of

a first-order formula, or the depth of nesting of modal operators � and ♦ in a

modal formula. If Abelard wins, there must exist some L-formula of complexity

level n assigned different truth values by A and B.

Of course, the result of a single game tells us nothing: one of the players

may simply have made poor choices. More interesting is the notion of winning

strategies. Roughly, a player has a winning strategy for the n-round game if (s)he

has a method for selecting moves which ensures a win regardless of the other

player’s choices. If Eloise has a winning strategy for the n-round game, she can

always show that A and B agree on L-formulae of complexity up to n. If she has

a winning strategy for the infinitely-long game, then A and B must agree on all

L-formulae.

The preceding summary of Ehrenfeucht-Fräıssé games is deliberately vague:

the precise rules of the game depend crucially on the language L under consider-

ation. However, the general idea remains the same regardless of the language.

It is easy to see how bisimulations, then, characterise the winning strategies for

Eloise for the appropriate game on modal structures, where L is the basic modal

language: no matter what Abelard chooses, she can always choose a bisimilar

element, which is guaranteed to have the right properties. Although we do not,

of course, necessarily need to invoke these games in order to define and discuss

bisimulation.

So it is with the results in this thesis. For each logical language L defined from

a fragment of English whose expressive power we consider, we define a relation ∼L

between structures which defines the appropriate winning strategies for Eloise –

that is, which corresponds precisely to the preservation of the truth of L-formulae

between structures. We then give a purely semantic definition of L by means of

an Invariance Theorem for ∼L. The van Benthem characterisation theorem is the

Invariance Theorem most relevant to modal logic.
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3.3 Automated Theorem-Proving

The entailment problem for a logic is the question of whether the conjunction

of a given set of formulae in that logic (the premises) entails another formula in

that logic (the conclusion.) The satisfiability problem for a logic is the question

of whether a given set of formulae in that logic has a model.

Automated theorem proving involves attempts to answer these questions in

such a way that the answer can be implemented on a computer. For a full overview

of this field, see [69]. We concentrate here only on variants of one technique –

resolution theorem proving – for which [45] is a good source.

For logics equipped with negation, the entailment and satisfiability problems

are dual: if Φ is a set of formulae and φ a formula, then Φ |= φ if and only if

Φ ∪ {¬φ} is unsatisfiable.

Resolution-based methods of theorem proving operate on sets of formulae in a

particular normal form (clause normal form) and decide whether the given set is

satisfiable. By the above observation, the corresponding questions of entailment

are thus also immediately answered. The popularity of resolution stems from its

ease of implementation; the drawback is that resolution proofs are far from easy

for humans to read.

3.3.1 Clause normal form

In this section, we rehearse the familiar notions of Skolemisation and clausal form.

Consider an arbitrary closed first-order formula φ0. We transform φ0 by stages

into a set C of clauses such that φ0 is satisfiable if and only if C is satisfiable. (So

φ0 and C are equisatisfiable.)

Firstly, using the (easily-checked) De Morgan equivalences

¬(φ ∧ ψ) ↔ (¬φ ∨ ¬ψ)

and

¬(φ ∨ ψ) ↔ (¬φ ∧ ¬ψ),

all negations occurring in φ0 can be moved inwards to produce a formula φ1

equivalent to φ0 in which negation only occurs applied to atoms, and never to

complex formulae.

By Theorem 3.19, we can convert φ1 into an equivalent formula φ2 in prenex
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normal form. We now proceed to eliminate existential quantifiers from φ2.

For every existentially-quantified variable x occurring in φ2, let n be the num-

ber of universal quantifiers in whose scope x occurs, let x1, . . . , xn be the variables

bound by those universal quantifiers and let sx be a fresh function symbol of arity

n. For each such x, replace every occurrence of x in φ2 by the term sx(x1, . . . , xn)

and let φ′
2 be the resulting formula.

Finally, let φ3 be the result of removing all existential quantifiers from φ′
2. We

call φ3 a Skolemisation of φ2, and each new function symbol introduced in the

construction of φ3, a Skolem function. The process itself, we call Skolemisation.

Theorem 3.29. With the above construction, φ2 is satisfiable if and only if φ3

is satisfiable.

Note that unless φ2 contains no existential quantifiers, φ3 is not equivalent

to φ2, since φ2 may well hold in a structure which does not interpret any of the

Skolem functions in φ3, and so we cannot ask whether φ3 is true in A. Equisat-

isfiability suffices, however.

Example 3.30. If φ2 = ∃x(p(x) ∧ q(x)), then the formula p(c) ∧ q(c) where c is

a constant, is a Skolemisation of φ2.

Similarly, Skolemising φ2 = ∀x∃y(boy(x) → (girl(y) ∧ love(x, y))) generates a

formula of the form ∀x(boy(x) → (girl(f(x)) ∧ love(x, f(x)))) where f is a unary

function symbol.

Since every variable in φ3 is universally quantified, and the relative order of

universal quantifiers in such a formula makes no difference to its truth conditions,

as a matter of notational convenience we omit all universal quantifiers, and write

the largest quantifier-free subformula of φ3 instead of φ3 itself.

Finally, using the equivalence ((φ1 ∧ φ2) ∨ φ3) ↔ ((φ1 ∨ φ3) ∧ (φ2 ∨ φ3)),

rearrange φ3 into the form ψ1 ∧ . . . ψn, where each ψi, 1 ≤ i ≤ n, is a disjunction

of literals – i.e., put φ3 into conjunctive normal form.

Let C = {ψi|1 ≤ i ≤ n}. Each element of C is known as a clause. We interpret

logical notions such as entailment, equivalence, satisfiability, and so on, applied to

sets of clauses by the corresponding notions applied to the universal closure of the

conjunction of the elements of that set. By construction, then, C is equisatisfiable

with our original formula φ0.

Every clause is therefore of the form

¬A1 ∨ ¬A2 ∨ . . . ∨ ¬Ai ∨Ai+1 ∨ . . . ∨ An
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for some n > 0 and 1 ≤ i ≤ n, where each Aj, 1 ≤ j ≤ n is an atom. A

clause is unit if it contains precisely one literal, positive (respectively, negative)

if it contains no negated atoms (respectively, only negated atoms) and Horn if

it contains at most one non-negated atom. The terms ground, functional, and so

on, apply to clauses just as they do to general formulae.

3.3.2 Unification

The unification algorithm is the core of resolution-based methods of theorem

proving. It essentially provides a method for determining when a given expression

(term, atom, literal) is more general than another given expression (of the same

kind.)

Definition 3.31. A substitution θ is a mapping from the set of variables to the

set of terms (over a contextually-specified signature.) We apply substitutions to

terms as follows (using postfix notation.)

1. cθ = c for every constant c.

2. xθ = θ(x) for every variable x.

3. If f is a function symbol of arity n and t1, . . . , tn are terms, then

f(t1, . . . , tn)θ = f(t1θ, . . . , tnθ).

Similarly, we extend this notation to apply a substitution θ to atoms, literals

and clauses as follows.

Definition 3.32. 1. If p is an n-ary relation symbol and t1, . . . , tn are terms,

p(t1, . . . , tn)θ = p(t1θ, . . . , tnθ).

2. If A is an atom, then (¬A)θ = ¬(Aθ)

3. If C = l1 ∨ . . . ∨ ln is a clause, where each li, 1 ≤ i ≤ n is a literal, then

Cθ = l1θ ∨ . . . ∨ lnθ.

Definition 3.33. A term t1 is an instance of a term t2 if there is some substitution

θ such that t1 = t2θ, in which case we say that t2 is more general than t1.

A substitution θ is more general than a substitution θ′ if there exists a sub-

stitution σ such that for any term t, tθ′ = (tθ)σ.
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We speak of instances, and comparative generality, of atoms, literals and

clauses via the obvious extension to the above definition.

Example 3.34. Let x, y be variables, let c be a constant and let r be a binary

relation symbol. The atom r(x, y) is more general than r(c, y) because if θ is any

substitution mapping x to c and y to itself, r(x, y)θ = r(c, y). Atoms r(x, y) and

r(y, x) are equally general, because the substitution θ′ mapping x to y and y to

x gives r(x, y)θ′ = r(y, x) and r(y, x)θ′ = r(x, y).

Definition 3.35. Let E1, E2 be a pair of terms, atoms or literals. We say that

E1 and E2 unify if there exists a substitution θ such that E1θ = E2θ, in which

case we say θ is a unifier of E1 and E2. If, for every unifier σ of E1 and E2, θ is

more general than σ, then θ is a most general unifier (m.g.u.) of E1 and E2.

Theorem 3.36. Let E1, E2 be any pair of terms, atoms or literals. Then either

E1 and E2 do not unify, or we can construct an m.g.u. θ of E1 and E2.

Example 3.37. The atoms r(c, y) and r(x, d), where c, d are constants and r is

a binary relation, can be unified with m.g.u. θ mapping x to c, y to d, so that

r(c, y)θ = r(x, d)θ = r(c, d).

By definition, if E1 and E2 unify with m.g.u. θ, then E1θ(= E2θ) is an instance

of both E1 and E2.

3.3.3 Resolution

Bearing in mind that every variable occurring in a clause is implicitly universally

quantified, the idea of comparative generality of expressions given above corre-

sponds to intuition: the truth of a formula entails the truth of all less general

formulae. Similarly, if a formula is unsatisfiable, then so is every formula more

general than it. This observation forms the basis of the resolution method of

theorem proving.

Definition 3.38. Let C be a set of clauses and let C ∨ l, C ′ ∨ l′ ∈ C, where C,C ′

are (possibly empty) clauses and l, l′ are literals. The resolution rule is as follows

C ∨ l C ′ ∨ l′ if lθ = ¬l′θ for some m.g.u. θ

Cθ ∨ C ′θ



CHAPTER 3. LOGIC AND COMPUTATION 48

where l, l′ are known as the resolved-upon literals and Cθ ∨ C ′θ is a (binary)

resolvent of C ∨ l and C ′ ∨ l′. If the resolvent of any two clauses is the empty

set, we denote it by ⊥ (“bottom”) and treat it as equivalent to the set of clauses

{p(c),¬p(c)} for some (any) unary predicate p and some (any) constant c.

Let C ∨ l∨ l′ be a clause in the same notation as above. The factoring rule is

as follows

C ∨ l ∨ l′ if lθ = ¬l′θ for some m.g.u. θ

Cθ ∨ lθ

where Cθ ∨ lθ is known as a factorisation of C ∨ l ∨ l′.

Resolution and factoring together form a proof system for first order logic

without equality: in the above notation, C ∨ l, C ′ ∨ l′ and C ∨ l∨ l′ are premises,

and Cθ∨C ′θ and Cθ∨lθ are the conclusions, of their respective rules. We speak of

deriving conclusions from premises, and can construct derivations in the obvious

way. It is hopefully clear from the earlier discussion that neither resolution and

factoring derive conclusions which are more general than their premises.

Definition 3.39. Let C be any set of clauses. By (possibly infinite) iteration of

the resolution and factoring rules, we can construct a set R∗(C) containing every

clause derivable from C by these rules, including the elements of C themselves.

We call R∗(C) a saturated clause set and describe its construction as saturation

under resolution and factoring. For every clause C ∈ R∗(C), we write C ⊢ C, read

as “C is provable from C”.

Theorem 3.40. Let C be a set of clauses. Then C is unsatisfiable if and only

if C ⊢ ⊥. We say therefore that resolution and factoring are both sound and

refutation-complete.

Example 3.41. Let c, d be constants, p, q unary predicates and r a binary rela-

tion. The set of clauses C = {p(c) ∨ p(c),¬p(x) ∨ q(x)} is visibly satisfiable. We

can compute R∗(C) in two steps:

p(c) ∨ p(c)

p(c) ¬p(x) ∨ q(x)

q(c)

since any substitution unifies p(c) with itself, the substitution θ : x 7→ c unifies

p(c) and p(x) and q(c) = q(x)θ. Since the union C′ of C with {p(c), q(c)} is clearly

closed under resolution and factoring, R∗(C) = C′.
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Similarly, we can see that the set D = {p(c),¬p(x) ∨ r(x, d),¬r(c, d)} is un-

satisfiable. One proof of this claim using resolution takes the form

p(c) ¬p(x) ∨ r(x, d)

r(c, d) ¬r(c, d)

⊥

These examples are of course extremely simple. The main reason for choosing

them is that with more complex examples, proofs using resolution and factoring

very quickly become large and unwieldy. A great many of the “human-friendly”

structures of formulae are lost in Skolemisation and the conversion to clause nor-

mal form, and so the proofs generated by rules operating on clauses are typically

much harder to read than, say, a natural deduction proof of the same result. The

advantage, of course, is that resolution and factoring are both very simple rules

to implement. They also lend themselves well to questions of decidability. That

is to say, given a language L, if resolution and factoring can only derive finitely

many clauses from any set of L-formulae, then we have an algorithm which can

decide whether an arbitrary set of L-formulae is satisfiable.

In the context of automation, smaller is naturally nearly always better, and

so it would be helpful if resolution and factoring could be constrained in such

a way as to generate smaller proofs in preference to larger ones, while retaining

refutation-completeness. Various restrictions to the resolution rule are used to

achieve this goal. For the purposes of this thesis, we consider A-orderings and

hyperresolution. As with most of the material in this section, more detailed and

comprehensive overviews can be found in [45] and [69].

Definition 3.42. Let � be a partial order on the set of atoms. We say that �

is an A-ordering if

1. � is well-founded.

2. if A1 � A2, then for every substitution θ, A1θ � A2θ, in which case we say

that � is liftable.

A-orderings can be extended to literals by ignoring any negation symbols.

Given an A-ordering �, we define a refinement of resolution called �-ordered

resolution.

Definition 3.43. Let � be an A-ordering, let C be a set of clauses and let C ∨ l,

C ′ ∨ l′ ∈ C, where C,C ′ are (possibly empty) clauses and l, l′ are literals. The

�-ordered resolution rule is as follows
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C ∨ l C ′ ∨ l′ if lθ = ¬l′θ for some m.g.u. θ

Cθ ∨ C ′θ l,¬l′ �-maximal in their respective clauses

Likewise, if C ∨ l∨ l′ is a clause in the same notation, the �-ordered factoring

rule is as follows

C ∨ l ∨ l′ if lθ = ¬l′θ for some m.g.u. θ

Cθ ∨ lθ l, l′ both �-maximal in C ∨ l ∨ l′

where Cθ ∨ lθ is known as a factorisation of C ∨ l ∨ l′.

Appropriate selection of an A-ordering can reduce the search space for unsat-

isfiability proofs of a set C of clauses, and so, by the following result, perhaps allow

satisfiability to be decided for fragments of logic on which unordered resolution

does not terminate.

Theorem 3.44. For any A-ordering �, �-ordered resolution and factoring are

sound and refutation-complete.

Another refinement of resolution which can reduce the search space compared

to ordinary resolution is hyperresolution, which essentially works by combining

several resolution steps into one larger step. Hyperresolution also has the benefit

of doubling up as a technique for building particularly useful models for certain

satisfiable clause sets.

Definition 3.45. Let C1, . . . , Cn be a set of positive unit clauses and let D be

a clause of the form ¬A1 ∨ . . .¬An ∨D1, where for all 1 ≤ i ≤ n, Ai is an atom

and D1 is a (possibly empty) non-negative clause. Suppose further that θ is an

m.g.u. of Ci and Ai for all 1 ≤ i ≤ n. Then D1θ is a hyperresolvent of C1, . . . , Cn

and D.

C1 . . . Cn ¬A1 ∨ . . . ∨ ¬An ∨D1

D1θ

If D1 is empty, i.e., ifD = ¬A1∨. . .∨An, then the hyperresolvent of C1, . . . , Cn

and D is ⊥.

Writing the premises of the hyperresolution rule as implications, we can see

that hyperresolution is a form of high-powered modus ponens :

C1θ . . . Cnθ C1θ ∧ . . . ∧ Cnθ → D1θ

D1θ
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Theorem 3.46. Hyperresolution is sound and refutation-complete.

We mentioned earlier that hyperresolution can be used to construct models

for certain satisfiable clause sets. Consider a satisfiable set of Horn clauses C.

Let R∗
H(C) be the result of saturating C under hyperresolution, using the obvious

analogue of Definition 3.39, and let D be the set of all ground instances of positive

unit clauses in R∗
H(C). We can view D as a representation of a structure H over

the Herbrand universe of C by letting a tuple t1, . . . , tn of terms belong to the

denotation of an n-ary relation r if and only if r(t1, . . . , tn) ∈ D. It turns out

that H is a model of C, and has the following useful property.

Theorem 3.47. Let C, D and H be as above. Then H is a unique minimal model

of C, in the sense that if A is any model of C, and DA is the set of all ground

atoms true in A, then D ⊆ DA.

Thus if saturation of a clause set C under hyperresolution tells us that C

is satisfiable, then we can immediately extract a model of C from the results

of saturation. In fact, even if C is unsatisfiable, it is an easy corollary of the

above that H is a model of the non-negative subset of C (which, of course, is

always satisfiable – clearly, hyperresolution can only derive ⊥ from a clause set

containing at least one purely negative clause.)

3.4 Computational Complexity

We give here a very brief overview of some of the main ideas in the theory of

computational complexity. For full details and discussion, see, for example, [21]

and [50] .

Roughly, complexity theory concerns itself with questions of the worst-case

performance of different algorithms as applied to varying sizes of input. Clearly,

in order to formalise such questions, it is necessary to have a formal model of

algorithms and their execution. We proceed with what is probably the most

familiar such model. The following section mainly follows [50].

3.4.1 Turing Machines

We can picture a Turing machine as a length of tape beginning with a start (“left-

most”) square, and consisting of countably many squares thereafter, a read/write
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head which has a state and which can move left or right on the tape, and a pro-

gram which, given a current state and a symbol on the tape, tells the head its

new state, which direction to move and which symbol to write on the tape.

Definition 3.48. A deterministic Turing machine M = (K,Σ, δ, k) consists

of a finite set of states K, a finite alphabet Σ, a transition function δ from

K × Σ to (K ∪ {halt, yes, no}) × Σ × {left, right,wait} such that K ∩ Σ = ∅

and {halt, yes, no, left, right,wait} ∩ (K ∪ Σ) = ∅, and an initial state k ∈ K. We

assume Σ always contains distinguished symbols blank and start.

An input to a Turing machine M = (K,Σ, δ, k) is a finite sequence of symbols

from Σ, representing the contents of the tape before computation begins, with

start written on the leftmost square of the tape and the head positioned above

that square.

A configuration (l,Λ, P, n) of a machine M consists of a current state l ∈ K,

a left string Λ of symbols in Σ representing the contents of the tape from the

leftmost square up to and including the square beneath the head, a right string

P of symbols in Σ consisting of all symbols to the right of the head, and a current

step count n ∈ N. Where P is finite, assume that every square to the right of

the last symbol in P contains blank. Every machine M with input P always has

initial configuration (k, start, P, 0).

Let (l,Λλ, ρP, n) be a configuration of a machine M , where λ, ρ ∈ Σ, Λ, P are

possibly empty strings over Σ and suppose that δ(l, λ) = (l′, λ′, D). If D = right,

let Λ′ = Λλ′ρ and let P ′ = P ; if D = left, let Λ′ = Λ and let P ′ = λ′ρP ; and if

D = wait, let Λ′ = Λλ′ and let P ′ = ρP . Then we say that M with configuration

(l,Λλ, ρP, n) yields the configuration (l′,Λ′, P ′, n+ 1) in one step. We generalise

to “yields in n steps” in the obvious way.

Essentially, we interpret the “yields” relation between configurations as the

execution of the program δ on a given input. The machine starts in its initial

configuration, with state k and the head positioned at start on the leftmost square

of the tape. The next configuration yielded by the initial configuration is then

determined according to δ as described above, and then so on until the machine

enters one of the states halt, yes or no, at which point execution terminates.

If we consider a problem Π to be a question which can somehow be encoded

as the input to some Turing machine M , then M solves Π if, when M is executed

on the encoded input, it terminates with the correct answer to Π, in the following

sense: if Π is a “yes/no” problem, the final state of M is yes if and only if the
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answer to Π is “yes” and no if and only if the answer to Π is “no”; if Π is not

a “yes/no” question, then M terminates with final state halt and the contents of

the tape form a (suitably-encoded) correct answer to Π. M does not solve Π if it

either terminates with an incorrect answer, or never terminates.

In practice, we generally take “a problem Π” to mean a whole class of par-

ticular questions which can be encoded as input to a Turing machine, and refer

to specific questions as instances of Π. For example, a problem might be “String

reversal”, and an instance of that could be “what is the reverse of the string

pirate?”

If Π contains only “yes/no” questions, then we say that it is a decision problem.

All of the problems discussed in this thesis are decision problems. If some Turing

machine M solves a decision problem Π, we say that Π is decidable, and that M

decides Π. Otherwise, Π is undecidable.

Machines satisfying Definition 3.48 in every respect save that δ is allowed to

be an arbitrary relation between its domain and codomain, rather than specif-

ically a function, are known as non-deterministic. Taking configuration, input

and yield to mean the same thing for a non-deterministic machine as they do for

a deterministic machine, a given configuration and input to a non-deterministic

machine may not yield a unique configuration. Thus the same input may produce

different answers from such a machine depending on which choices of “next” con-

figuration are made at each stage of computation. A non-deterministic machine

M solves a problem Π if there is guaranteed to be at least one run of M with

input Π which gives the correct answer.

It is well-known that some problems cannot be solved by any Turing machine,

deterministic or otherwise. In the decidable cases, it is useful to have a means

of comparing the efficiency of different machines in solving the same problem.

During execution, machines can use two resources: space (the total number of

symbols required on the tape) and time (the total number of steps required to

terminate.) Often we are less interested in the particular function representing the

resources used by a machine solving Π as we are in the general class of functions

into which it falls: polynomial, exponential, and so on. The so-called “big O”

notation formalises this idea.

Definition 3.49. Let f : N → N and g : N → N be functions. Then we say

that f(n) = O(g(n)) if there are positive integers c, n0 such that for all n > n0,

f(n) ≤ c.g(n).
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Definition 3.50. Let Π be a problem and suppose there is a Turing machine M

and functions f, g : N → N such that, given any instance of Π as input of length

n, M terminates in O(f(n)) steps and uses O(g(n)) boxes on the tape. Then we

say that M implements an algorithm for Π of time complexity O(f(n)) and space

complexity O(g(n))

3.4.2 Complexity

In general, the space and time required to solve a given instance π of a problem

Π depends on three factors: the existence of a Turing machine which solves Π,

the number of symbols in the on-tape encoding of π and, of course, the particular

instance π itself.

If we want to characterise the “difficulty” of solving a particular problem Π

in terms of the resources needed by a Turing machine to solve Π, then we need

to take these factors into account. Generally, some instances of a problem are

easier to solve than others, and so in order to be as general as possible, we need

to consider the worst case: what is the hardest it can possibly be to solve Π? In

this way, we insulate our analyses from the properties of particular instances of

any problem.

As well, if more than one Turing machine exists to solve a problem, then there

can be differences in efficiency. After all, if a problem is solvable, then there cer-

tainly exist ways of solving it which involve many redundant steps of computation.

The existence of inefficient solutions is no guide to the computational properties

of a problem.

We therefore analyse the computational complexity of a problem Π as follows.

Firstly, can Π be solved by any Turing machine, and if so, what are the worst-case

resource requirements of such a machine, as a function of the size of instances

of Π as encoded on the input tape? An answer to these questions provides an

upper bound on complexity. Such an upper bound might not, of course, represent

the most efficient solution of Π. A lower bound on complexity can be established

by showing that every instance π′ of a problem Π′, with a known (or strongly

suspected) minimum complexity, can be rewritten as a similarly-sized instance

π of Π which has the same solution as π′. If Π can be shown to have identical

upper and lower bounds, then we know that we cannot (or we are unlikely to) find

a better method of solving Π. We say “strongly suspected minimum complex-

ity”, and “unlikely to find” because certain extremely well-known key questions



CHAPTER 3. LOGIC AND COMPUTATION 55

of complexity theory remain open: in particular, many of the suspected lower

complexity bounds for certain families of problem have not yet been shown to be

optimal. We return briefly to this issue below.

Definition 3.51. A complexity class is a set of problems which have some com-

mon upper bound on their complexities. Classes we encounter during this thesis

include:

PTIME the set of problems solvable by a deterministic Turing machine in time

bounded by a polynomial function of the size of the input.

NPTIME as PTIME, but allowing non-deterministic machines.

EXPTIME the set of problems solvable by a deterministic Turing machine in

time bounded by an exponential function of the size of the input.

NEXPTIME as EXPTIME, but allowing non-deterministic machines.

PTIME and NPTIME are commonly abbreviated to P and NP, respectively.

Since every deterministic Turing machine is also non-deterministic, we know that

P ⊆ NP ⊆ EXPTIME ⊆ NEXPTIME

Although it is known that P 6= EXPTIME, it is a famously open problem

whether the rest of these inclusions are all proper. It is suspected that they all

are. Problems in P are often labelled tractable.

We now make precise the idea of the reduction of one problem to another,

required to establish lower complexity bounds.

Definition 3.52. A decision problem Π is reducible to a decision problem Π′ if

every instance π of Π can be encoded in PTIME as an instance π′ of Π′ such

that π and π′ have the same answer.

Thus if Π is reducible to Π′, then Π′ is at least as hard to solve as Π, apart

from a polynomial difference in complexity resulting from the reduction itself.

Definition 3.53. Let C be a complexity class. A problem Π is C-hard if every

problem in C is reducible to Π.

A problem Π is C-complete if it is in C and it is C-hard.
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Actually, the definition of hardness for PTIME and its subsets requires a

stricter definition of reducibility than that given above, since ideally we would

like reductions to have insignificant complexity compared to the problem being

reduced. However, we never need to consider the P-hardness or otherwise of any

problems in this thesis, and so Definition 3.53 suffices.

So, if a particular problem is hard for a complexity class, then it is among the

hardest problems in that class, in that every other problem in the class reduces

to it. We can thus derive lower complexity bounds: if all that is known is that

Π is solvable in EXPTIME, then it might be possible for there to be a PTIME

algorithm solving Π. However, if Π can be shown to be EXPTIME-complete, then

certainly no PTIME algorithm for Π exists. If there were, then any problem Π′ in

EXPTIME could be solved in PTIME simply by reducing Π′ to an equisolvable

instance π of Π in polynomial time (possible since Π is EXPTIME-complete),

and then solving π, also in polynomial time. But since P 6= EXPTIME, no such

algorithm exists. Thus the notion of completeness fixes both upper and lower

bounds on the complexity of a problem.

Example 3.54. Given a language L for which a notion of satisfiability has been

defined, the satisfiability problem for L is the following question: given an arbi-

trary (set of) formula(e) φ of L, decide whether φ is satisfiable.

Let L be any language of classical propositional logic. Then the satisfiability

problem for L is NP-complete.

Not all problems have an algorithmic solution, as Turing famously showed.

The most relevant example to this thesis is the following:

Example 3.55. Let L be the language of first-order logic. Then there exists

no Turing machine which can decide the satisfiability problem for L. We say

therefore that first-order logic is undecidable.

There are, however, decidable fragments of first-order logic (see, for example,

[8]):

Example 3.56. Let L2 be the two-variable fragment of first-order logic. The

satisfiability problem for L2 is NEXPTIME-complete.
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3.5 Conclusion

The preceding sections together provide the main logical and mathematical back-

ground needed to prove the results in this thesis. In the next chapter, we move

on to linguistics, and a discussion of the ideas necessary to define the fragments

of English with which we are concerned.



Chapter 4

Natural Language Syntax and

Semantics

ROMULUS: Scotios sunt weeds. CAESAR: Be quiet, boy, and do not put yore nom in the

acusative its not grammer.

— Nigel Molesworth, Back in the Jug Agane

In order to define formally the fragments of English we wish to study, we

need two things. First, we need a method of generating sentences of English

containing only our choice of syntactic features, and second, we need a method

of assigning semantics to the sentences generated. Both of these should allow as

clear a presentation as possible.

4.1 Syntactic Framework

Loosely speaking, we say a generative grammar is a formal description of a system

which produces grammatical sentences of a given language. There are many well-

known frameworks for specifying such grammars: examples include the variants

of transformational grammar (e.g. [24]), head-driven phrase structure grammar

(HPSG) ([53], [54]) and categorial grammar (e.g., [75]). Each of these attempts

in some way to provide an explanatory account of sentence formation in natural

languages, often also covering the interface between syntax and other linguistics

processes, such as semantics or pragmatics. The differences between these frame-

works tend to reflect different views of how language works – whether syntactic

58
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processes involve transformation between multiple levels of representation of a

sentence, or whether a language consists of complex formation rules working on

a simple lexicon, or simple formation rules with a complex lexicon.

However, for this thesis, we are not concerned overmuch with the mechanics

of sentence construction per se, nor the cognitive processes of parsing. Given

that none of the constructions we consider are particularly rare or syntactically

complex, we can be confident that any sensible framework for generative grammar

can cope with them. The semantics we assign in each case are also relatively

straightforward, and we state any particular simplifications or assumptions we

make. We need a grammar only to generate the set of sentences meeting some

naturally-expressed specification – “all sentences containing a transitive verb with

proper nouns as its subject and object”, say – and to assign to each sentence the

correct semantics. By “correct” semantics, we mean truth conditions which the

average native speaker of English would accept for the sentences concerned.

To this end, then, the fragments presented in this thesis are given using stan-

dard context-free phrase structure grammars with movement rules, such as those

used in, for example, [24] and [25], among many others.

The idea of a context-free grammar is well known, and straightforward to deal

with. Figure 4.1 shows an example of such a grammar and the structure of the

sentences (phrases of category S) which can be generated by it. We return to the

concept of movement later.

The following definition can be found in Hopcroft and Ullman [33].

Definition 4.1. A context-free grammar G is a tuple (N, T,R, S), where N is a

finite set of non-terminal symbols, T is a finite set of terminal symbols, R is a set

of (phrase structure) rules of the form n → ν, where n ∈ N and ν is a string of

symbols from N ∪ T , and S ∈ N is the start symbol.

We can generate strings of category S by recursively evaluating the rules of

G as follows. If n ∈ N is a non-terminal symbol, S1, . . . , Sm ∈ N ∪ T and

n → S1, . . . , Sm ∈ R is a rule in G, then n evaluates to the concatenation of

the evaluations of S1, . . . , Sm. If some Si ∈ N, 1 ≤ i ≤ m, then evaluation of

Si proceeds recursively. Every terminal symbol evaluates to itself. A string of

category S is then a result of evaluating S in G.

Generally, of course, we can represent a grammar G = (N, T,R, S) simply by

a list of the rules R, as in Figure 4.1, and a specified start symbol, which in the

example given is S.
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S → NP, VP
NP → dog

NP → man

VP → V, NP
V → bites

S

NP

dog

VP

V

bites

NP

dog

S

NP

dog

VP

V

bites

NP

man

S

NP

man

VP

V

bites

NP

dog

S

NP

man

VP

V

bites

NP

man

Figure 4.1: A sample grammar and the structures of all its generated sentences.

We divide every grammar into three sections. Rules with non-terminal sym-

bols on the right-hand side form the syntax, and rules with only terminal cate-

gories on the right-hand side form the lexicon, which is made up of the formal

lexicon and the content lexicon. The formal lexicon contains rules generating the

closed class of grammaticalised words such as some, every, is, and not. The content

lexicon contains rules generating the open classes of nouns and verbs.

When discussing the trees used to represent sentence structure, we need to

refer to the structural property of c-command, which is defined as follows.

Definition 4.2. Let T be a tree and let A, B be nodes of T . We say that A

dominates B if A is (strictly) higher in T than B, and A c-commands B if

1. A does not dominate B,

2. B does not dominate A,

3. the first branching node dominating A also dominates B.

For example, in Figure 4.2, NP1 c-commands VP, V and NP2, VP c-commands

NP1, V c-commands NP2 and NP2 c-commands V. The node S does not c-

command any node.
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S

NP1 VP

V NP2

Figure 4.2: An example of c-command.

4.2 Semantics

Of course, as well as generating sentences, we also need to be able to assign

a semantic representation to each sentence generated, preferably automatically.

Using first-order logic as the representation language, the sentences generated by

the grammar of Figure 4.1 ought to be assigned semantics according to Table 4.1.

dog bites dog bites(dog, dog)
dog bites man bites(dog,man)
man bites dog bites(man, dog)
man bites man bites(man,man)

Table 4.1: Semantics of a set of simple sentences

Such translation from sentences of natural language into logic is, of course, as

old as logic itself, and a key component of any logic course involves a great deal of

practice in translating one to the other in such a way that the translations have

the same truth conditions as the original. We would like to handle this kind of

translation both automatically and compositionally. That is, we would like the

semantics of a phrase to be computed from the semantics of its constituents. In

the example of Figure 4.1, we would like to assign semantics to dog, man and bites,

and then be able to generate the semantics of VP and S from those assignments.

The tradition of compositional semantics is popularly held to go back to Frege,

although the first fully fleshed out formalisation of the idea covering a wide range

of kinds of sentences is in Montague [84]. Montague selected suitable expressions

of higher-order logic to be the semantic interpretations of lexical items, and used

higher-order composition to compute the semantics of a complex expression from

the semantics of its parts. In particular, expressions which occur in a wide variety

of linguistic contexts can be assigned semantics which give the desired result in

any of those contexts.
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Montague translated his fragments of English into intensional logic, a higher-

order logic capable of expressing the intensional constructions those fragments

included. Our concern is with entirely quantificational and relational features;

we thus need only provide translations into first-order logic. We need certain

higher-order constructs in order to do so, however.

Definition 4.3. Suppose we have a set of types, consisting of basic types e (the

type of entities) and t (the type of truth values) and functional types, where a

functional type is of the form 〈τ1, τ2〉 for some basic or functional types τ1, τ2.

Let Σ be a first-order signature, and let a typed variable be a symbol not

occurring in Σ which has an associated type τ .

The set of λ-expressions over a given signature Σ and set T of typed variables

is defined recursively by the following conditions.

1. Every first-order term over the signature Σ and every element of T of type

e is a λ-expression of type e.

2. Every closed first-order formula over the signature Σ and every element of

T of type t is a λ-expression of type t.

3. If φ is a λ-expression of type τ2, and x is a variable of type τ1 in T possibly

occurring in φ, then λx(φ) is a λ-expression of type 〈τ1, τ2〉. In this case we

say that λx binds x in φ.

4. If ψ is a λ-expression of type τ1, and φ is a λ-expression of type 〈τ1, τ2〉,

then φ(ψ) is a λ-expression of type τ2. In this case we say that φ is applied

to ψ.

Let φ, ψ be λ-expressions, let x be a variable of the same type as ψ, and let

φ[ψ/x] denote the result of substituting ψ for every free occurrence of x in φ.

More precisely, let φ[ψ/x] be

1. ψ if φ = x,

2. φ if φ is of type e or t,

3. φ1[ψ/x](φ2[ψ/x]) if φ = φ1(φ2) for some λ-expressions φ1, φ2,

4. λx(φ1) if φ = λx(φ1) for some λ-expression φ1,
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5. λy(φ1[ψ/x]) if φ = λy(φ1) for some λ-expression φ1, y 6= x and y not free

in ψ or x not free in φ1.

6. λz((φ1[z/y])[ψ/x]) if φ = λy(φ1) for some λ-expression φ1, y 6= x, y not free

in ψ, x not free in φ1 and z a completely fresh variable of the same type as

y.

Let φ be a λ-expression, and suppose that we can find an occurrence of λx(φ1)

as a subexpression of φ. If y is a variable not occurring free in φ1, of the same

type as x, let ψ be the result of replacing the chosen occurrence of λx(φ1) in φ

with λy(φ1[y/x]). We call such a replacement a change of bound variable in φ.

We say that λ-expressions φ and ψ of the same type are α-equivalent if ψ can be

obtained by an empty or finite number of changes of bound variable in φ.

Let ψ be a λ-expression of type τ1, and λx(φ) a λ-expression of type 〈τ1, τ2〉,

so that x is a variable of type τ1. We say that φ[ψ/x], which has type τ2, is a

β-reduct of (λx(φ))(ψ) (which also has type τ2), and call the process of computing

β-reducts β-reduction. If φ, ψ are any λ-expressions of the same type, we say

that φ β-reduces to ψ if ψ can be obtained from φ by an empty or finite sequence

of β-reductions.

For example, if x has type e, c, d are constants and r is a binary predicate,

then λx(r(c, x)) has type 〈e, t〉 and d has type e. We should thus be able to

apply λx(r(c, x)) to d to obtain an expression of type t. The β-reduction of

λx(r(c, x))[d] is r(c, d) – a closed first-order formula, and hence, as required, of

type t.

Similarly, let p have type 〈e, t〉, let x have type e and let man,mortal be unary

predicates. Then the λ-expressions λx(mortal(x)) and λp(∀y(man(y) → p(y)))

have types 〈e, t〉 and 〈〈e, t〈, t〉, respectively, as can be seen if we apply the latter

to the former and compute the β-reduction. We begin with

λp(∀y(man(y) → p(y)))[λx(mortal(x))],

and replace every occurrence of p in ∀y(man(y) → p(y)) with λx(mortal(x)), to

obtain

∀y(man(y) → (λx(mortal(x)))(y)).

This expression contains another instance of λ-expression application, and so we
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S/φ(ψ) → NP/φ, VP/ψ
NP/λp(p(dog)) → dog

NP/λp(p(man)) → man

VP/φ(ψ) → V/φ, NP/ψ
V/λsλx[s(λybite(x, y))] → bites

Figure 4.3: A sample annotated grammar

β-reduce again, to get

∀y(man(y) → mortal(y)),

which has type t, as required.

Note that in order to avoid any possible clashes arising from two λ-expressions

having variables in common, we assume in every instance of β-reduction that

neither formula contains any typed variables occurring in the other. We silently

replace any expressions violating this condition with an α-equivalent expression

wherever necessary.

Expressions in the λ-calculus can be used to represent the semantics of words

in natural language. The process of application can be used to compute the

semantics of a phrase from the semantics of its components. For example, if Lara

has the semantics λp(p(lara)), and runs has the semantics λx(runs(x)), then the

semantics of Lara runs can be computed by applying the semantics of Lara to the

semantics of runs, to produce runs(lara).

We show the assignment of semantics to words and phrases by means of se-

mantically annotated grammars. Suppose a grammar G contains a rule of the

form X → X1, X2, and a semantically annotated version G′ of G contains a rule

of the form X/ψ(φ) → X1/φ,X2/ψ. Then G′ is interpreted as saying that if

X1, X2 are assigned semantics φ, ψ, then the semantics of X are computed by

applying the semantics of X2 to the semantics of X1. The actual values of φ, ψ

can be computed by recursively evaluating X1, X2 by further annotated rules of

G′. If X1, say, is a terminal category, then φ is a λ-expression. The generalisation

to phrase structure rules with more than two symbols on the right-hand side is

straightforward.

Figure 4.3 shows how the grammar of Figure 4.1 can be annotated with com-

positional semantics in this way, bearing in mind that for simplicity, we have

assumed that both man and dog are proper nouns. To avoid clutter, we usually

omit explicit reference to the types of λ-expressions.
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S
bites(dog, dog)

NP
λp(p(dog))

dog

VP
λx[bite(x, dog)]

V
λsλx[s(λybite(x, y))]

bites

NP
λp(p(dog))

dog

S
bites(dog,man)

NP
λp(p(dog))

dog

VP
λx[bite(x,man)]

V
λsλx[s(λybite(x, y))]

bites

NP
λp(p(man))

man

S
bites(man, dog)

NP
λp(p(man))

man

VP
λx[bite(x, dog)]

V
λsλx[s(λybite(x, y))]

bites

NP
λp(p(dog))

dog

S
bites(man,man)

NP
λp(p(man))

man

VP
λx[bite(x,man)]

V
λsλx[s(λybite(x, y))]

bites

NP
λp(p(man))

man

Figure 4.4: Computing semantics from an annotated grammar.
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Let a fragment of natural language, or of logic, be a set of sentences, or

of formulae, respectively. Figure 4.4 illustrates how a semantically annotated

grammar generates a fragment of English, and a corresponding fragment of first-

order logic. Since the first-order formulae generated are intended to represent

the truth-conditions of the corresponding English sentences, we may use them to

analyse the semantic properties of those sentences. For example, we can obtain

a precise notion of entailment and equivalence between sentences by means of

entailment and equivalence relations between formulae, and we can ask whether

it is possible to tell if a given set of sentences is satisfiable. More precisely, for

any fragment F of English, we transfer notions from first-order logic onto F as

follows. Let Σ be any set of sentences of F and let Φ be the set of translations

of Σ into first-order logic. Let ‖Σ‖ be the number of symbols in Σ. We say

that a sentence S ∈ Σ is true (false) in a structure A if and only if the logical

translation φ ∈ Φ of S is true (false) in A. The set Σ is satisfiable if and only if

Φ is satisfiable, and we say that Σ entails a sentence S if Φ entails the semantics

of S. For any structure A, let the F -theory of A be the set of F -sentences true

in A.

We can therefore speak of the satisfiability problem for a fragment of English

in much the same way as we speak of it for a fragment of logic, and thus we can

also inquire as to the computational complexity of solving such a problem, using

the size ‖Σ‖ of a set of sentences Σ as the complexity measure. For any fragment

F of English, then, let the semantic complexity of F be the complexity of the

satisfiability problem for F . Similarly, we can investigate the expressive power

of a fragment of English, and attempt to prove Invariance Theorems of the kind

described in Chapter 3, Section 3.2.

The benefit of using simple context-free grammars and Montague-style se-

mantics is that both are widely known and relatively easy to follow. It is also

straightforward to implement them as parsers in the logic programming language,

Prolog, allowing quick and easy testing. We claim that these choices affect only

the exposition: our results would have been identical had our choices been differ-

ent.
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4.3 X Grammars

The grammars we present in this thesis are all generally within the standard X

framework, a good description of which can be found in [24], among others. We

give a brief introduction here.

The basic motivation is the observation that different phrasal categories –

noun phrases, verb phrases, adjective phrases, and so on – all seem to have a

common structure. Consider the sentence

[S [NP The students of philosophy who came to Athens ]

[V P often heard Socrates in the agora ]]

and take the subject NP first. It consists of a common noun, students, modified or

qualified by the, of philosophy and who came to Athens. Observing that of philosophy

is intuitively more closely tied to the noun than who came to Athens – compare *the

students who came to Athens of philosophy – and that the definite article is naturally

taken to apply to the whole phrase, we propose the following structure.

NP

the

students of philosophy

who came to Athens

leaving the internal structures of the preposition phrase and the relative clause

unexamined.

Now consider the verb phrase in the above sentence. It consists of a transitive

verb heard, modified or qualified by often, Socrates and in the agora. As the direct

object, Socrates has a closer relation to the verb than in the agora – compare *often

heard in the agora Socrates – and the temporal adverb often is naturally taken to

apply to the whole phrase. We therefore propose the following structure for the

VP.
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VP

often

heard Socrates
in the agora

So here are two relatively complex phrases, of different types, both of which

can plausibly be given the same structure. The conjecture behind the X frame-

work is that this observation is not accidental, but reflects an underlying linguistic

pattern, and that all phrases can be seen as having a similar structure.

So, let X be any basic syntactic category (leaving it deliberately vague what

is meant by “basic”) and let XP be a phrase whose main constituent is X (again,

deliberately vague, but intended in the sense that a noun is the main constituent

of a noun phrase, for example). We suppose that XP has the structure

XP

Specifier X′

X′

X Complement

Adjunct

Considering the common characteristics of the earlier examples, we take the

specifier of X to be an element somehow restricting the whole XP, a complement

of X to be an argument of, or element somehow necessarily connected to, X and

an adjunct to be a modifier of X. X itself is known as the head of XP. A phrase

need not necessarily contain all of these elements – Socrates, for example, is clearly

a legal noun phrase on its own – but the claim is that phrases do not need to be

given structures any more complicated than this one. Where necessary, we allow

terminal nodes to contain “null” elements – elements which may have a semantic

interpretation, and whose existence in the phrase structure is posited as having

some explanatory power, but which do not correspond to a voiced component of

the spoken sentence.

The X′ position (read “X bar” – the notations X and X′ are often used in-

terchangeably) is proposed in order to capture the seemingly recursively defined
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structure of many phrases. Adjuncts, it seems, can stack up – consider Figure

4.5.

Phrase structure rules generating such a structure fit the following pattern.

XP → Spec, X′

X′ → X′, Adjunct

X′ → X, Complement

The X structure extends to other syntactic categories easily. For example,

the sentence is usually taken to be an inflectional phrase (IP), headed by a

tense/number inflection, or an auxiliary, whose specifier is the subject of the

sentence and whose complement is the predicate. Sentences containing the aux-

iliary do provide a good example of this structure in English.

IP

NP

Socrates

I′

I

did

(3sg., past)

VP

annoy the students

The grammars presented in this thesis are generally written within the X-

framework, primarily for reasons of clarity. No particular linguistic commitment

is intended, however, and if, as occasionally happens, the clarity of a grammar

can be improved by departing from the X structure, we do not hesitate to do so.

4.4 Specific Constructions

The constructions of English we need in order to define the fragments studied

in this thesis are: proper and simply-quantified common noun phrases (Socrates,

every man), the copula (is, is not), relative clauses (who is a stoic), transitive and

ditransitive verbs(admire, prefer) and coordination (and, or). We handle all of these

in a more or less standard way. Those cases which are slightly more involved, we

explain here.
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NP

Spec

the

N′

N′

N′

N

students

Complement

of philosophy

Adjunct

who came to Athens

Adjunct

last year

VP

Spec

often

V′

V′

V′

V

heard

Complement

Socrates

Adjunct

in the agora

Adjunct

on feast days

Figure 4.5: Recursive phrase structure
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4.4.1 Relative Clauses

There are various situations in which constituents of a sentence do not seem to

appear in their normal “base” position. For example, English specifiers normally

precede their head, and yet with the analysis of a sentence as IP, with the inflec-

tion as head and the subject as specifier, simple yes/no questions seem to pose a

problem.

Socrates did annoy the students

Did Socrates annoy the students?

Transformational accounts of syntax explain phrases such as these in terms

of movement. Taking the structure of the first, declarative, sentence above as

basic, they suggest that at some stage during syntactic processing, the auxiliary

moves to a new position outside the IP. Other accounts of syntax – for example,

categorial grammars – avoid the need to posit any kind of movement by dropping

the idea that some sentence structures are more basic than others.

The handling of relative clauses is the only aspect of the work in this thesis

which makes any use of movement rules. As we stated in the introduction to this

chapter, it is unlikely that changing to a non-movement-based account would

have any material effect on our results.

We take a relative clause to be a phrase of category IP – that is, a sentence.

In order to allow an IP to occur as the complement to a common noun, we allow

phrases of this category to be embedded within a complementiser phrase, CP,

with a null head C. At least one main noun phrase – subject or (in)direct object

– in the embedded IP must be one of the wh-words who, whom or which. The

following phrase structure rules suffice.

CP → CSpec, C′

CSpec →

C′ → C, IP

C →

and each IP c-commanded by CSpec contains an NP generated by one of

NP → whom

NP → who

NP → which.
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Of course, sentences generated by such rules are not grammatical, in general.

For example,

* Every man Socrates admires whom

In order to ensure correct English word order, we apply a rule of wh-movement.

Thus, after generation, every wh-word occurring as an NP must be moved to the

nearest c-commanding CSpec position, without passing through an intervening

CP, and leaving behind a trace t, which is not pronounced and whose role is

largely semantic. At most one wh-word can occupy any given CSpec position,

and we insist that every CSpec position does contain a moved wh-word. Sentences

whose parse trees cannot be made to satisfy these conditions are considered un-

grammatical. We thus obtain the “deep” and “surface” structures for NPs, shown

by example in Figure 4.6.

We often co-index the moved relative pronoun and the trace in examples for

which the full tree structure is not shown, in order to indicate which movements

have occurred. The noun phrase in Figure 4.6, for example, might be written as

[NP [Det every ] [N ′ [N man ] [CP [CSpec whomi ] [C′ [C ] [IP Socrates admires ti ] ] ] ] ]

We also assume, without specifying a mechanism, that every transitive and

ditransitive verb marks its NP complement(s) as accusative case and allow whom

to occur only where it receives accusative marking. Admittedly, such case mark-

ing is very much a weakening aspect of modern English grammar, but we gain a

small amount of extra clarity in our example sentences by using it here, and it

costs nothing.

The conditions on wh-movement together ensure the (desired) ungrammati-

cality of examples such as

* every man Socrates admires whom

* every man who admires whom

* every man who whom admires

while still generating all desired cases.

Note also that we would like to rule out examples such as the following from

being grammatical.

*[NP every man [CP who admires every sophist] [CP who despises Plato] ]
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NP

Det

Every

N’

N

man

CP

CSpec C’

C IP

NP

Socrates

VP

V

admires

NP

whom

NP

Det

Every

N’

N

man

CP

CSpec

whom

C’

C IP

NP

Socrates

VP

V

admires

NP

t

Figure 4.6: Sentence structure before and after wh-movement
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N′

λx[philosopher(x) ∧ ¬stoic(x)]

N
λx[philosopher(x)]

philosopher

CP
λpλx[p(x) ∧ ¬stoic(x)]

CSpect

λqλpλx[p(x) ∧ q(x)]

RelPro

who

Ct
′

λt[¬stoic(t)]

C IP
¬stoic(t)

NP
λp[p(t)]

t

I′

λx[¬stoic(x)]

is not a stoic

Figure 4.7: Computing the semantics of a relative clause (I)

That is, the reading in which who despises Plato qualifies man rather than sophist

is not considered to be grammatical. We therefore design our grammars so that

each noun can have at most one relative clause complement.

The handling of the semantics of wh-movement also requires some care. In

order to maintain compositionality, the wh-trace must have a semantic represen-

tation of a type to which the semantics of a verb can be applied to yield the

semantics of a VP. And yet, consider the desired semantics of the N′

student whomi Socrates annoys ti

which ought to contribute a subformula of the form

student(x) ∧ annoys(socrates, x)

to the semantics of any sentence containing it. The second argument of annoy

is the same variable which occurs as the only argument of student. We therefore

need a way to mirror semantically the coindexation of trace and relative pronoun

which occurs syntactically. To achieve this, we assume that each wh-trace t

is assigned the semantics λp[p(t)], and that the semantics of the corresponding

relative pronoun then bind exactly that term t to the desired value. Figures 4.7

and 4.8 show the computation of the semantics of phrases of category N′, and

hopefully make it clear how such a process can work.
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N′

λx[man(x) ∧ ∃y(cynic(y) ∧ admire(y, x))]

N
λx[man(x)]

man

CP
λpλx[p(x) ∧ ∃y(cynic(y) ∧ admire(y, x))]

CSpect

RelPro
λqλpλx[p(x) ∧ q(x)]

whom

Ct
′

λt[∃y(cynic(y) ∧ admire(y, t))]

C IP
∃y(cynic(y) ∧ admire(y, t))

NP
λq[∃y(cynic(y) ∧ q(x))]

some cynic

I′

I VP
λx(admire(x, t))

V
λsλx[s(λy(admire(x, y)))]

admires

NP
λp[p(t)]

t

Figure 4.8: Computing the semantics of a relative clause (II)
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4.4.2 Coordination

The main difficulty in handling coordination neatly is the breadth of its applica-

bility. It seems that nearly any linguistic element can be coordinated with any

other of the same category. For example, as well as straightforward coordination

of sentences

Socrates is a mortal or I’ll eat my hat

coordination can occur in a variety of subsentential positions.

Cataline was denounced by [NP Cicero ] and [NP Tully]

Did you leave the country [P on ] or [P before] the 1st of January 2000?

It was [AdjP extremely expensive ] and [PP in bad taste ]

Tell us, [ are you now ] or [ have you ever been ] a practising philosopher?

As the final examples illustrate, coordination is not limited to items of the

same syntactic category, nor is it always between whole phrases. Data such as

these make it particularly difficult to account for coordination using phrase struc-

ture grammars, although lexical systems such as categorial grammars can be more

successful (for example, [93].) Within a transformational framework, [47] covers

the main issues, and offers an account using movement and traces. However, in

order to cope with all the data, the assumption that sentence structures are trees

is abandoned, and more general graphs are used.

Within transformational theories, the application of transformations to coor-

dinations is subject to a constraint identified in [70]. The Coordinate Structure

Constraint demands that transformations apply equally to all coordinated struc-

tures.

For our purposes, we can largely avoid the difficulties, since we do not need

a single, general-purpose coordination rule. In fact, such a rule might prove

too broad for our needs. For example, semantically, of course, coordination of

NPs must have a different effect to the coordination of verbs, and we wish to

study the effects of each in isolation. Rather, then, than defining a generalised

coordination rule and complicating our grammars in order to account for all

the various difficulties which arise, we simply treat each kind of coordination

separately. Thus, when we come to look at verb coordination, we need only the

comparatively simple rules
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V → V, and, V

V → V, or, V

along with the appropriate semantic annotations. Although these rules can be

written in a way which satisfies the X structure, in the limited contexts we

consider, it is hard to see what could be gained by doing so. We therefore prefer

the simpler approach just described.

The only transformation we use is wh-movement. The only possible situations

in which Ross’ Coordinate Structure Constraint could apply, then, would be if

we allowed coordination of relative pronouns, or of traces, or if a coordination

intervened between the base position of a relative pronoun and its final landing

site in CSpec. Coordination of silent elements such as traces is simply forbid-

den – * some man whoi Socrates and ti saw Plato – and coordination of wh-words

makes sense only in contexts such as questions where the agreement features of

the questioned element are not known, such as in Whoi or whati did you see ti that

night?. In situations, such as those arising in Chapter 6, where an intervening co-

ordination might affect wh-movement, we make appropriate modifications either

to the relevant grammar or to the wh-movement transformation, to ensure that

the Coordinate Structure Constraint is always satisfied.

4.5 Conclusion

Having briefly explored the relevant topics of both logic and linguistics, we are

now in a position to formulate precise questions concerning the semantic com-

plexity and expressive power of fragments of English. The following notation is

used throughout the remainder of this thesis. For any fragment F of English, let

an F -sentence be an element of F and let an F -formula be the result of trans-

lating an F -sentence into first-order logic. We also use F ambiguously to refer to

the fragment of logic so generated, leaving context to indicate in each case which

is meant.

We define a specific fragment F by fixing the syntax and formal lexicon; the

content lexicon can vary. The choice of a particular content lexicon is equivalent

to the selection of a signature for the corresponding first-order language. The

label F therefore refers in fact to a family of fragments. When we speak of “the

fragment F” in the absence of a contextually-salient content lexicon, we mean

the union of all such fragments.
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For brevity, we often assume that the content lexicon and the associated

first-order signature always contain the same symbols, so that, for example, no

distinction is drawn between the proper noun Socrates and the constant symbol

socrates. This assumption is intended simply to avoid having to make unnecessary

repeated reference to the translation process, and does not have any material

consequences on the results presented.

In the next chapter, we define a range of fragments of English, featuring sen-

tences whose main connectives are the copula, relative clauses and (di)transitive

verbs, defining each fragment using a semantically annotated context-free gram-

mar. For each fragment, we analyse the semantic complexity, and, by means of

a notion of simulation between semantic structures, provide a characterisation

of expressive power. These latter results can then be used to give completely

semantic definitions of the fragments concerned.



Chapter 5

The Copula, Relative Clauses

and Verbs

All syllogisms have three parts.

Therefore, this is not a syllogism.

— Unknown

In this chapter, we consider which fragments of English we can construct

by taking simple NPs – proper nouns and simply-quantified common nouns –

and forming sentences using the copula, relative clauses and both transitive and

ditransitive verbs. For each fragment so constructed, we discuss its semantic

complexity and characterise its expressive power using the techniques outlined in

the preceding chapters.

We begin with an extremely simple fragment based on the copula, and proceed

to extend that fragment, first with transitive, and then ditransitive, verbs, then

with relative clauses and no verbs, before finally looking at the fragments we can

generate using both relative clauses and verbs in combination.

Many of the semantic complexity results presented here were shown in [58]

and [60], in which case we simply state the theorems without proof.

5.1 The syllogistic fragment: Cop

The earliest known fragment of a natural language to be studied for its logical

properties is of course that fragment of ancient Greek used by Aristotle to define

79
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the syllogistic form of reasoning. It therefore seems fitting that we begin with the

corresponding fragment of modern English, which additionally has the advantages

of being both syntactically and semantically simple. We are concerned initially,

then, with sentences of the forms

c is (not) a p Some p is (not) a q

Every p is a q No p is a q

where p and q are common (count) nouns, and c is a proper noun. The fragment

consisting of all such sentences was first introduced in [58], with the label E0.

Using such sentences, we are able to express all possible syllogistic arguments,

both valid and invalid:

Every man is a mortal Every man is a mortal

Socrates is a man Xanthippe is not a man

Socrates is a mortal Xanthippe is not a mortal

The validity (respectively, invalidity) of these arguments corresponds to the

logical impossibility (respectively, possibility) that all of the premises and the

negation of the conclusion can hold simultaneously.

Every man is a mortal Every man is a mortal

Socrates is a man Xanthippe is not a man

Socrates is not a mortal Xanthippe is a mortal

Each of the sentence-forms above admits an obvious translation into first-

order logic, and by considering the possible formulae arising as such translations,

we obtain a fragment of logic, which we can then use to prove results about the

semantics of the original English fragment.

We begin with a formal definition of the language of the syllogism, and its

semantics, via the following phrase structure rules

Syntax

IP/φ(ψ) → NP/φ, I′/ψ

I′/φ → is a , N′/φ

I′/¬φ → is not a , N′/φ

NP/φ → PropN/φ

NP/φ(ψ) → Det/φ, N′/ψ

N′/φ → N/φ.

Formal lexicon

Det/λpλq[∃x(p(x) ∧ q(x))] → some

Det/λpλq[∀x(p(x) → q(x))] → every

Det/λpλq[∀x(p(x) → ¬q(x))] → no
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Content lexicon

N/λx[man(x)] → man

N/λx[mortal(x)] → mortal
...

PropN/λp[p(socrates)] → Socrates

PropN/λp[p(diogenes)] → Diogenes
...

The rules given here for I′ phrases deviate from the X framework, by treating

is a and is not a essentially as single lexical items rather than complex phrases.

The reason for handling the copula in this way is that we want to use it only in

its predicative sense, and not in any of its other senses. For example, we do not

use it to express identity, as in Cicero is Tully, or as an auxiliary, as in Cicero is

going to the Curia. We also want to avoid the problems which might arise if we

treated it as an ordinary transitive verb – for example, we would like to rule out

sentences such as these:

* Every man is some mortal

* Socrates does not be a woman

* Every man is not Socrates

We therefore do not give separate rules for the copula, its negation, and the

indefinite article, followed by a filter on generated sentences to eliminate output

such as the above.

Figure 5.1 illustrates the derivation of a sentence (IP) in this fragment, along

with the simultaneous generation of its semantics.

IP
∀x(man(x) → mortal(x))

NP
λq[∀x(man(x) → q(x))]

Det
λqλp[∀x(p(x) → q(x))]

Every

N
λx[man(x)]

man

I′

λx[mortal(x)]

is a N
λx[mortal(x)]

mortal

Figure 5.1: Structure of a simple Cop-sentence

It is straightforward to check that all the sentence-forms given earlier can be

generated by such a process, and assigned the appropriate semantics, thus:
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c is (not) a p ±p(c)

Some p is (not) a q ∃x(p(x) ∧ ±q(x))

Every p is a q ∀x(p(x) → q(x))

No p is a q ∀x(p(x) → ¬q(x))

In addition, the following slightly more awkward sentences are also generated.

Every p is not a q ∀x(p(x) → ¬q(x))

No p is not a q ∀x(p(x) → q(x))

However, as both of these sentence-forms are assigned the same semantics as

less awkward forms listed above, this overgeneration need not concern us: no

tightening of the grammar can have any effect on the logic.

We take all such semantic assignments to be uncontroversial. The occurrence

of precisely the above translations as exercises in countless introductory logic

courses provides sufficient evidence for their adequacy and general acceptance.

In a fragment as simple as this one, it is particularly easy to see the relation

between the structure of the English sentences and the structure of the logic:

proper nouns give rise to constants, the determiners every and no to universal

quantifiers and the determiner some to an existential quantifier.

The common grammatical feature of all of these sentences is the copula is.

We therefore refer to this fragment as Cop.

5.1.1 Semantic complexity

At the beginning of the previous section, we gave examples of valid and invalid

arguments expressed using only Cop-sentences, and discussed their equivalence

to unsatisfiable and satisfiable sets of Cop-sentences, respectively. The examples

given were standard three-line syllogisms, but of course, there is no reason to

impose any limit on length: the following argument is also valid.

Every stoic is a philosopher

Every philosopher is a mortal

Diogenes is a stoic

Diogenes is a mortal

Checking the validity of this example does, however, clearly take more steps

of reasoning that were needed for the earlier arguments. What we would like to

know is exactly how many more steps are required in general to decide validity
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as the number of sentences is increased, and, in fact, whether it is even possible

to decide the validity of some arguments.

More precisely, we wish to answer the following: given an argument expressed

using only sentences of Cop, is there an algorithm for deciding its validity? Equiv-

alently, since Cop contains sentence negation, is there an algorithm for deciding

the satisfiability of a given set of Cop-sentences? If the answer is yes, what then

is the computational complexity of the decision procedure?

The following result was proved in [58]:

Theorem 5.1. The satisfiability of a set of sentences of Cop can be decided in

deterministic polynomial time.

Thus, deciding which sets of Cop-sentences represent logically-possible situa-

tions – equivalently, which syllogistic arguments are valid – is a tractable problem.

5.1.2 Expressive power

The preceding result allows us to find out whether a set of Cop-sentences is

inconsistent, or whether it describes some possible situation. What it does not

tell us, however, is anything about the properties of situations which consistent

sets of Cop-sentences can describe. Given any pair of situations, under what

circumstances can sentences of Cop tell them apart? We now attempt to answer

this question.

As in the previous section, we proceed by translating sentences of Cop into

formulae of first-order logic, and answering the corresponding questions applied

to the formal language. Thus, when we say that a set of Cop-sentences describes

a situation, we mean that there exists at least one structure interpreting the

relevant first-order language in which the corresponding Cop-formulae are true,

and when we speak of a Cop-sentence S distinguishing a pair of situations, we

mean that for some given pair of structures A and B, the semantics φ of S is

true in one of A or B and false in the other. So, for example, if A is defined over

the domain {a} by socratesA = a, mortalA = {a}, and B is defined over the same

domain by socratesB = a, mortalB = ∅, then the Cop-sentence Socrates is a mortal

distinguishes A and B.

Thus, to characterise the expressive power of Cop, we need to find some

condition which pairs of structures must satisfy whenever no Cop-sentence can

distinguish between them – i.e., when both structures make exactly the same
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Cop-sentences true. Such a condition would then play the same role for Cop as

bisimulation plays for modal logic.

Suppose that we are dealing with some fixed content lexicon, corresponding to

a first-order signature Σ = (C, P ), where C is the set of constants generated from

the proper nouns in the lexicon, and P is the set of unary predicates generated

from the common nouns.

Definition 5.2. Let A be any structure interpreting Σ. Let the Cop-configuration

of A be the function confA : P ×P → {0, 1, 2, 3, 4} defined as follows for p, q ∈ P .

confA(p, q) = 0 if pA = qA

1 if pA ( qA

2 if qA ( pA

3 if pA ∩ qA 6= ∅, qA \ pA 6= ∅ and pA \ qA 6= ∅

4 otherwise.

If A and B are structures interpreting S, we say that A and B are Cop-similar

(written A ∼Cop B) if

1. confA = confB, and

2. for every constant c ∈ C, tpA[cA] = tpB[cB].

The following theorem shows that Cop-similarity is precisely the notion we

require to capture the expressive power of Cop. Recall that a Cop-sentence is

true in A if and only if its corresponding Cop-formula is true in A, and that the

Cop theory of A is the set of Cop-formulae over Σ which are true in A.

Theorem 5.3. Let A and B be structures interpreting Σ. Then A ∼Cop B if and

only if A and B have the same Cop theory (over the signature Σ.)

Proof. Suppose that A ∼Cop B. We show that for every Cop-formula φ over Σ, if

A |= φ, then B |= φ. Since Cop allows sentence negation, it then follows that if

B |= φ, then A |= φ.

φ = ±p(c) Immediate, since tpA[cA] = tpB[cB].

φ = ∀x(p(x) → q(x)) If A |= φ, then pA ⊆ qA, so confA(p, q) = 0 or 1. Since

A ∼Cop B, confB(p, q) = 0 or 1, so pB ⊆ qA, and hence B |= φ.

φ = ∀x(p(x) → ¬q(x)) If A |= φ, then pA ∩ qA = ∅, so confA(p, q) = 3. Since

A ∼Cop B, confB(p, q) = 3, so pB ∩ qA = ∅, and hence B |= φ.
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The other cases follow by symmetry of A and B. Thus, if A ∼Cop B, then A and

B have the same Cop theory.

Conversely, suppose A 6∼Cop B. That is, suppose either that for some pair of

unary predicates p, q ∈ P , confA(p, q) 6= confB(p, q), or that for some constant

c, tpA[cA] 6= tpB[cB].

In the latter case, there exists some p ∈ P such that A |= p[cA] and B 6|= p[cB],

or vice versa, in which case the Cop formula p(c) is true in one of A and B, and

false in the other.

For the former case, we show that for each possible pair of values of confA(p, q)

and confB(p, q), we can construct a Cop formula true in A and false in B. The

proof is routine; for brevity, we describe only a single case here.

confA(p, q) = 0, confB(p, q) = 1: Then pA = qA, pB ⊆ qB, and qB \ pB 6= ∅, and

so the Cop formula ∀x(q(x) → p(x)) (and hence the Cop sentence Every q

is a p) is true in A and not B.

Thus the fragment Cop is capable of distinguishing between two structures

if and only if they are Cop-dissimilar. As Cop-similarity is an easy condition to

check, we can use it to prove inexpressibility results, such as the following.

Corollary 5.4. Let P , Q, R be sets. No Cop-formula, or set of Cop-formulae,

is equivalent to P ∩ R = Q ∩R.

Proof. Define two structures A and B over the domain {a1, . . . , a5}, interpreting

only p, q and r as follows

pA = pB = {a1, a2} rA = {a2, a5}

qA = qB = {a2, a3, a4} rB = {a2, a3, a5}

and consider the Cop-fragment generated by the content lexicon consisting of

common nouns corresponding to each of p, q and r. Neither A nor B interpret

any constants, and it is easy to check that confA and confB have the same value

for every combination of pairs from {p, q, r}, and so A ∼Cop B, and by Theorem

5.3, A and B make the same Cop-sentences true. But pA ∩ rA = qA ∩ rA, and

pB ∩ rB 6= qB ∩ rB, and so the result follows.
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Theorem 5.3 thus answers the question we posed earlier: under what circum-

stances do two structures make the same Cop-sentences true? The notion of

Cop-simulation thus has a broadly similar role with regard to the Cop fragment

of first-order logic as bisimulation has for the modal fragment. Recall also that

bisimulation could be exploited to give a purely semantic characterisation of the

modal fragment via the van Benthem Characterisation Theorem, given earlier

as Theorem 3.28. Can we therefore prove an analogue of Theorem 3.28 with

“Cop” replacing “modal fragment” and “Cop-simulation” replacing “bisimula-

tion”, thereby obtaining a semantic characterisation of Cop?

Unfortunately, the answer is: not quite.

Theorem 5.5. There is no relation ∼ on structures such that for every first-

order formula φ, φ is equivalent to a Cop-formula if and only if φ is invariant

for ∼.

Proof. Observe first that every Cop-formula is Horn. Let c be a constant, and

p, q unary predicates, so that p(c) and q(c) are Cop-formulae, and let A,B be

structures interpreting at least those symbols such that A ∼ B. Since ∼ preserves

the truth of Cop-formulae, it follows that

A |= p[cA] if and only if B |= p[cB]

and

A |= q[cA] if and only if B |= q[cB].

But then it must also follow that

A |= p[cA] ∨ q[cA] if and only if B |= p[cB] ∨ q[cB]

That is, p(c) ∨ q(c) is ∼-invariant. But p(c) ∨ q(c) is not a Horn formula, nor

is it equivalent to any set of Horn formulae. To see this, recall from Theorem

3.47 that every satisfiable set Φ of Horn formulae has a unique “least” Herbrand

model H such that H |=
∧

Φ, and every model A of Φ satisfies every ground atom

true in H. Now consider the Herbrand models H defined by pH = {c} and qH = ∅,

and H′ defined by pH′

= ∅ and qH′

= {c}. Clearly, both H and H′ are models of

p(c) ∨ q(c), p(c) is the only ground atom true in H, q(c) is the only ground atom

true in H′, and every model of p(c) ∨ q(c) must satisfy one of p(c) or q(c). The

formula p(c) ∨ q(c) thus has no unique “least” Herbrand model, and so is not
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equivalent to any set of Horn formulae. The result follows.

Thus no semantic definition of Cop (or indeed of any Horn fragment) can be

given in terms of invariance for some relation on structures. However, a somewhat

weaker result is possible. Let Cop∗ be the fragment of English (and hence of logic)

obtained by adding the following rules to the grammar of Cop:

IP/φ ∧ ψ → IP/φ, and, IP/ψ

IP/φ ∨ ψ → IP/φ, or, IP/ψ

Since Cop contains sentence negation, Cop∗ is thus effectively the result of closing

Cop under Boolean combinations of sentences.

Theorem 5.6. A first-order formula φ is equivalent to a Cop∗-formula if and

only if φ is invariant for Cop-simulation.

Proof. (Essentially the same as the proof of Theorem 3.28 – see, e.g., [7],[90].)

Theorem 5.3 guarantees that any formula equivalent to a Cop-formula is invariant

for ∼Cop, and so any formula equivalent to a Boolean combination of Cop-formulae

(i.e., any Cop∗-formula) must also be invariant for ∼Cop.

To show the converse, suppose that φ is invariant for Cop-simulation, and let

Φ = {ψ |ψ a Cop∗-formula, φ |= ψ}.

If we can show that Φ |= φ, then by compactness, there exists some finite subset

X ⊆ Φ such that |=
∧

X → φ. By construction of Φ, |= φ →
∧

X, and so

|= φ ↔
∧

X – that is, φ is equivalent to a conjunction of Cop∗-formulae, which

must itself be a Cop∗-formula.

Now, to show that Φ |= φ, suppose that Φ is consistent (otherwise we have

trivially that Φ |= φ), and let A be a model of Φ. Let

T = {ψ |ψ a Cop∗-formula and A |= ψ}.

We show that T ∪ {φ} is consistent. For, suppose it was not. Then, by compact-

ness, for some finite subset X ⊆ T , |= φ → ¬
∧

X. Now, by moving negations

inward, we can see that ¬
∧

X is logically equivalent to a Cop∗-formula χ (since

Cop∗ is closed under Boolean operators) which is a member of Φ. But then

A |= ¬
∧

X, contradicting X ⊆ T , and A |= T . So T ∪ {φ} is consistent.
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Let B be any model of T ∪ {φ}, and let ψ be any Cop∗-formula. If A |= ψ,

then ψ is an element of T , and so B |= ψ. Likewise, if A |= ¬ψ, then ¬ψ is an

element of T , and so B |= ¬ψ. Thus A and B have the same Cop∗ theory, and

so the same Cop theory, and, by Theorem 5.3, A ∼Cop B. Since B |= φ and φ is

invariant for Cop-simulation, A |= φ, and so Φ |= φ as required.

Note that the extra rules added for Cop∗ are far from logically harmless:

in particular, it is easy to show, as we do in Chapter 6, that Cop∗ has an NP-

complete satisfiability problem, compared to the PTIME result for Cop. However,

as we saw, without this extra complexity, a result such as Theorem 5.6 is not

possible.

5.2 Verbs

We now proceed to extend the grammar of Cop with new rules generating sen-

tences containing transitive or ditransitive verbs such as admire and prefer, respec-

tively. We thus obtain two fragments of English, Cop+TV and Cop+TV+DTV.

Via the same process of semantic annotation as before, these define two frag-

ments of logic which we can study in order to answer the same questions we

posed for Cop, and so the semantic complexity and expressive power of each of

these fragments can be compared.

Let Cop+TV be the fragment of English containing all sentences of Cop, as

well as all sentences of the forms

NP1

{

ts

does not t

}

NP2

where t is a transitive verb and NP1 and NP2 are either proper nouns, or com-

mon nouns with the determiners every, some and no. Let Cop+TV+DTV be the

fragment containing all sentences of Cop+TV, as well as those of the forms

NP1

{

ds

does not d

}

NP2 to NP3

where d is a ditransitive verb, and NP1, NP2 and NP3 are as for Cop+TV. The

assignment of semantics to each sentence is straightforward. Thus a Cop+TV
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sentence such as Every man admires some mortal is interpreted by the formula

∀x(man(x) → ∃y(mortal(y) ∧ admire(x, y)))

whereas the Cop+TV+DTV sentence Every donkey prefers every carrot to every stick

is interpreted as

∀x(donkey(x) → ∀y(carrot(y) → ∀z(stick(z) → prefer(x, y, z))))

Let TV denote the following set of phrase structure rules

Syntax Formal Lexicon

I′/φ → VP/φ Neg → does not

I′/φ → NegP/φ

NegP/¬φ → Neg, VP/φ Content Lexicon

VP/φ(ψ) → TV/φ, NP/ψ

TV/λsλx[s(λy[admire(x, y)])] → admires

TV/λsλx[s(λy[despise(x, y)])] → despises
...

and let DTV denote the rules

Syntax

VP/(φ(ψ))(π) → DTV/φ, NP/ψ, to, NP/π

Content Lexicon

DTV/λsλtλx[s(λy[t(λz[prefer(x, y, z)])])] → prefers.
...

A formal definition of Cop+TV is then given by the union of TV and the rules

defining Cop, and of Cop+TV+DTV by the union of DTV and the rules defining

Cop+TV. It is straightforward to verify that these rules generate precisely the

sentences desired, bearing in mind that in order to keep the grammar simple,
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we have ignored the surface syntactic issues of verb-inflection and the use of any

instead of some in negative contexts. Neither of these details affect the semantics.

Figures 5.2 and 5.3 show the derivation of IPs by the above grammar along with

the simultaneous generation of their semantics.

IP
∀x( stoic(x) → ¬ admire(socrates, x)))

NP
λp[p(socrates)]

Socrates

I′

VP
λy[∀x( stoic(x) → ¬ admire(y, x))]

TV
λsλy[s(λx[ admire(y, x)])]

admires

NP
λq[∀x( stoic(x) → ¬q(x))]

Det
λpλq[∀x(p(x) → ¬q(x))]

no

N
λy[ stoic(y)]

stoic

Figure 5.2: Structure of a simple Cop+TV sentence

The fragments of logic generated by Cop+TV and Cop+TV+DTV consist of

all Cop-formulae, over the appropriate signature, and all formulae of the following

forms

L0

Q1x1(p1(x1) ∗1 L1)

Q1x1(p1(x1) ∗1 Q2x2(p2(x2) ∗2 L2))

Q1x1(p1(x1) ∗1 Q2x2(p2(x2) ∗2 Q3x3(p3(x3) ∗3 L3)))

where, for 1 ≤ i ≤ 3, pi is a unary predicate, (Qi, ∗i) ∈ {(∀,→), (∃,∧)} and, for

0 ≤ i ≤ 3, Li is a non-unary literal involving exactly the variables x1, . . . , xi, so

that L0 is ground. Note that the formulae unique to Cop+TV+DTV are precisely

those containing ternary predicates.

In Cop, every sentence contains at most one determiner, and therefore every

Cop-formula contains at most one quantifier. Cop sentences are thus entirely

unambiguous with regard to relative quantifier scope. Sentences in Cop+TV, or
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IP
∃x( stoic(x) ∧ ∀y(cynic(y) → prefer(socrates, x, y)))

NP
λp[p(socrates)]

Socrates

I′

VP
λz[∃x( stoic(x) ∧ ∀y(cynic(y) → prefer(z, x, y)))]

DTV
λsλtλz[s(λx[t(λy[ prefer(x, y)])])]

prefers

NP
λq[∃x( stoic(x) ∧ ¬q(x))]

some stoic

to
NP

λq[∀y( cynic(y) → ¬q(y))]

every cynic

Figure 5.3: Structure of a simple Cop+TV+DTV sentence
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Cop+TV+DTV, however, can contain up to three determiners, and hence the

corresponding formulae can have multiple quantifiers. Each such sentence could

thus in principle have several distinct readings. The by-now stereotypical example

of a scope-ambiguous sentence is in fact a member of Cop+TV. The sentence

Every boy loves some girl

can have the readings

∀x(boy(x) → ∃y(girl(y) ∧ love(x, y)))

and

∃x(girl(x) ∧ ∀y(boy(y) → love(x, y)))

The rules given above generate only surface readings, such as the first of the

preceding formulae. We could have complicated our grammar in such a way as

to generate readings where the object of the sentence has wide scope, but it is

simpler to make the following observation: if a Cop+TV sentence has a surface

reading of the form Q1x(p(x) ∗1 Q2y(q(y) ∗2 L2)), in the same notation as above,

then it also has a reading of the form Q2x(q(x)∗2Q1y(p(y)∗1L2)). A similar pro-

cess of permutation generates the different readings of formulae containing three

quantifiers. In terms of the forms of formulae generated, rescoping of sentences

therefore has the effect of permuting the arguments to the non-unary predicate,

and nothing else. So provided we take care, where possible, that our proofs do

not rely on the order of such arguments, the addition of rescoping rules to the

grammars of Cop+TV and Cop+TV+DTV has no effect on our results. For sim-

plicity, we therefore assume initially that such rules are not present, and simply

check this condition afterwards.

Clearly, since every Cop-sentence is also a sentence in both of the new frag-

ments, anything expressible in Cop is also expressible in Cop+TV. Theorem 5.3

can be used to justify the intuitively obvious claim that the converse is false: the

addition of transitive verbs constitutes a genuine increase in expressive power.

5.2.1 Semantic complexity

It might be assumed that the extra expressive power made available by the ad-

dition of transitive verbs would lead to an increase in the computational cost of

determining satisfiability. In fact, it turns out that satisfiability in both Cop+TV
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and Cop+TV+DTV is tractable, as we now show. These results were originally

shown in [60], via a different proof to that given here, although the underlying

ideas are the same.

Let E be an arbitrary set of Cop+TV+DTV-sentences, and let Φ be the

set of Cop+TV+DTV-formulae representing the semantics of the elements of E,

computed using the above grammar in polynomial time.

Skolemise Φ, and convert it into a set C0 of clauses equisatisfiable with Φ, and

so by definition equisatisfiable with E. The elements of C0, written as implications

for ease of reading, are of the forms

±p1(c) L0

p1(x1) → ±p2(x1) p1(x1) → L1

p1(x1) → p2(f(x1)) p1(x1) ∧ p2(x2) → L2

p1(x1) ∧ p2(x2) → p3(g(x1, x2)) p1(x1) ∧ p2(x2) ∧ p3(x3) → L3

where c is a constant, p1, p2, p3 are unary predicates, f, g are unary and binary

(Skolem) function symbols, respectively and for each i, 0 ≤ i ≤ 3, Li is a non-

unary literal containing exactly the variables {x1, . . . , xi}. In order to reduce the

number of cases which need to be considered, we rewrite C0 to give an equisatis-

fiable set C with the property that constant symbols only occur in unit clauses.

To do this, for each constant c occurring in a non-unit clause C ∈ C0, let pc be

a fresh unary predicate symbol, let C1 = pc(c) and C2 = ¬pc(x) ∨ C[x/c], where

x is a variable not occurring in C. So if C = ¬p1(x) ∨ t(x, c), then C1 = pc(c)

and C2 = ¬pc(y) ∨ ¬p1(x) ∨ t(x, y). Let C be the result of replacing each such C

with the corresponding C1 and C2. It is straightforward to check that C0 and C

are equisatisfiable.

Note that, unlike Cop, satisfiability in Cop+TV+DTV cannot be decided by

unordered resolution: the presence of function symbols (introduced by Skolemi-

sation of nested quantifiers) can lead to the generation of arbitrarily deep terms

during resolution. For example, consider the Cop+TV+DTV sentences c is a p1,

Every p1 t1s some p2, Every p2 t2s some p3, Every p3 is a p1. The set of clauses generated

from these sentences includes p1(c), p1(x1) → p2(f1(x1)), p2(x2) → p3(f2(x2)),

p3(x3) → p1(x3). Unordered resolution can thus derive p3(f2(f1(c))), and hence,

via the final clause p3(x3) → p1(x3), atoms p3(f2(f1(t))), where t is ground and

of arbitrarily high depth.

Cop+TV+DTV is nonetheless decidable. To show this, we generate an eq-

uisatisfiable clause set D from C, and show that the satisfiability of D can be
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decided in PTIME by avoiding the generation of deep terms.

Let C be any clause in C. Examination of the possible forms of C shows that

all of the following properties hold.

P1. C is Horn.

P2. C involves at most one non-unary literal.

P3. If C involves a non-unary literal, then every unary literal of C has the form

¬p(x), where p is a unary predicate and x is a variable.

P4. If a variable x appears in C, then x appears in some literal of the form

¬p(x), where p is a unary predicate.

P5. If C involves a positive unary literal, then C has one of the forms

p1(c) p1(x1) → p2(x1)

p1(x1) → p2(f(x1)) p1(x1) ∧ p2(x2) → p3(g(x1, x2))

where c is a constant, p1, p2, p3 are unary predicates and f, g are (Skolem)

function symbols.

Recall from Chapter 3 that the set of non-negative clauses in C is always

satisfiable, and, by (P1), saturating these clauses under hyperresolution allows us

to construct an Herbrand structure H which is uniquely “minimal” with respect

to C in the following sense: if C is satisfiable, then H |= C, and if A is any model

of C, then the set of ground atoms true in H is a subset of the set of ground atoms

true in A.

We begin by noting that the distribution of function symbols in C is in fact

severely limited, a fact we can exploit in order to show decidability. Observe that

every function symbol occurring in C was introduced by the Skolemisation of a

single Cop+TV+DTV-formula in which existential quantifiers occurred within

the scope of universal quantifiers. Each of these function symbols thus appears in

exactly two clauses in C, one of which, by (P5) is of the form γf(x̄) → of(f(x̄)),

where x̄ is a tuple of variables of the same arity as f , of is a unary predicate

and γf(x̄) is a conjunction of atoms pf,1(x1)∧ . . .∧pf,n(xn), where x̄ = x1, . . . , xn

and for all 1 ≤ i ≤ n, pf,i is a unary predicate. Note that both γf(x̄) and of are

uniquely determined by f . We introduce the following notation. If p, p′ are unary

predicates, write p ⇒ p′ if there exist predicates p0, . . . , pn for some n such that
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p = p0, p
′ = pn and the clauses pi(x) → pi+1(x) are in C for every i, 0 ≤ i ≤ n.

It follows from (P5) that for all unary predicates p, functions f and tuples of

ground terms t̄ of the appropriate length

H |= p(f(t̄)) iff H |= γf(t̄) and of ⇒ p (P6)

An immediate consequence of (P6) is that for any pair of tuples of ground

terms t̄, t̄′ of the same arity as f such that H |= γf(t̄)∧ γf(t̄′), it must be the case

that tpH[fH(t̄)] = tpH[fH(t̄′)]

For every function symbol f occurring in C, let cf be a fresh constant symbol,

let C ′
f be the clause γf(x̄) → of (cf) and let D = C ∪ {C ′

f |Cf ∈ C}. Note that D

also satisfies properties (P1) - (P4), and a modified property (P5):

P5′. If C involves a positive unary literal, then C has one of the forms in (P5)

or one of the forms

p1(x1) → p2(cf) p1(x1) ∧ p2(x2) → p3(cg)

where cf , cg are constant symbols, p1, p2, p3 are unary predicate symbols

and f, g are (Skolem) function symbols.

As a consequence of (P1), (P4), (P5) and (P5′), hyperresolution applied to

clauses in D can only derive ground unit clauses.

We now saturate D under hyperresolution, restricted so that no clause con-

taining a term of depth greater than 3 is derived. Let D∗ be the resulting set

of clauses (which may, of course, contain ⊥). By a similar argument to the one

above, we can prove an analogue of (P6) for D∗. For all unary predicates p,

functions f and tuples of ground terms t̄ of depth less than or equal to 2,

p(f(t̄)) ∈ D∗ iff γf(t̄) ∈ D∗, of ⇒ p and d(t̄) ≤ 2 (P6′)

p(cf) ∈ D∗ iff γf(t̄′) ∈ D∗ for some t̄′ and of ⇒ p

The intuition behind the construction of D and D∗ is that, due to (P6), if

we wish to decide which unary predicates hold of a given term t in H, all that

matters is the leading function symbol of t, and not its functional depth. The
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following lemma establishes that D∗ contains enough information to decide the

satisfiability of C.

Lemma 5.7. 1. For every unary predicate p and function symbol f of arity

n, there is an n-tuple t̄ of ground terms such that H |= p(f(t)) if and only

if p(cf ) ∈ D∗.

2. Let p1, . . . , pn be any sequence of unary predicates occurring in C (and hence

in D and D∗.) Then there is a ground term t such that H |=
∧n

i=1 pi(t) if

and only if there is a ground term t′ such that for all 1 ≤ i ≤ n, pi(t
′) ∈ D∗.

Proof. 1. Let t̄ = t1, . . . , tn, suppose that

γf(x1, . . . , xn) = pf,1(x1) ∧ . . . ∧ pf,n(xn)

and suppose that H |= p(f(t̄)). By (P6), H |= γf(t̄) and of ⇒ p. If d(ti) ≤ 3

for all 1 ≤ i ≤ n, we have by construction of D∗ that pf,i(ti) ∈ D∗ for all

1 ≤ i ≤ n, and so by (P6), p(cf) ∈ D∗. Otherwise, suppose for induction

that for some 1 ≤ i ≤ n, d(ti) > 3 and for all m-tuples t̄′ of terms all of

depth less than d(ti), functions g of arity m and predicates q, if H |= q(g(t̄′))

then q(cg) ∈ D∗.

Since d(ti) > 3, there is a function g of arity m and an m-tuple t̄′ of ground

terms such that ti = g(t̄′), d(t̄′) ≥ 3. So by (P6), H |= γg(t̄′) and of ⇒ pf,i.

But then by the induction hypothesis, if

γg(x1, . . . , xm) = pg,1(x1) ∧ . . . ∧ pg,m(xm)

then pg,j(cj) ∈ D∗ for all 1 ≤ j ≤ m and constants cj. Since γg(x̄) → og(cg)

is in D and og ⇒ pf,i, it follows that pf,i(cg) ∈ D∗. By repeating this

process for every term in t̄, we get a sequence c1, . . . , cn of constants such

that pf,i(ci) ∈ D∗ for all 1 ≤ i ≤ n. Since γf(x̄) → of(cf) is in D and

of ⇒ p, it follows that p(cf) is in D∗ as required.

Conversely, suppose that p(cf ) ∈ D∗. Then there exists a hyperresolution

proof of p(cf) from D∗ and by (P6′), of ⇒ p and there is an n-tuple t̄ of

ground terms all of depth less than or equal to 3 such that γf(t̄) ∈ D∗.

Suppose as before that γf(x̄) = pf,1(x1) ∧ . . . ∧ pf,n(xn).
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Let ti be an element of t̄. If ti contains only constants and function symbols

occurring in C, then any hyperresolution proof of pf,i(ti) from D is a proof

of pf,i(ti) from C. Otherwise, ti contains a subterm cg, where g is a function

symbol.

If ti = cg for some function g of arity m then by (P6′), we know that

og ⇒ pf,i, γg(x̄) → og(cg) ∈ D and for some m-tuple t̄′ of ground terms,

γg(t̄′) can be proved from D by hyperresolution, and every element of t̄′ has

depth 3 or less. If every element of t̄′ occurs in C, then H |= γg(t̄′) and,

since we know that γg(x̄) → og(cg) is in D, γg(x̄) → og(g(x̄)) is in C and so

H |= og(g(t̄′)) and H |= pf,i(g(t̄′)). If some element of t̄′ does not occur in C,

then proceed recursively. Since for every function g, cg occurs in no purely

positive clauses in D, eventually such recursion terminates.

Finally, if ti = g(t̄′) for some function g of arity m and m-tuple t̄′ of ground

terms, then by (P6′), γg(t̄′) can be proved from D by hyperresolution, every

element of t̄′ has depth 2 or less, and of ⇒ pf,i. But then by (P6′), we know

that pf,i(cf) ∈ D∗ and the argument for the previous case applies.

Repeating the above argument for every ti in t̄ generates an n-tuple t̄′ of

terms in the universe of H such that H |= p(f(t̄)), as required.

2. Suppose that for some ground term t, H |=
∧n

i=1 pi(t). If t is a constant,

then by construction of D∗, pi(t) ∈ D∗ for all 1 ≤ i ≤ n. Otherwise, for

some m-ary function symbol f and m-tuple of ground terms t̄, t = f(t̄).

But then by case 1, pi(cf) ∈ D∗ for all 1 ≤ i ≤ n.

Conversely, let t be a ground term such that for all 1 ≤ i ≤ n, pi(t) ∈

D∗. If t = cf for some m-ary function f , then by case 1, there are n m-

tuples of ground terms t̄1, . . . , t̄n such that H |=
∧n

i=1 pi(f(t̄i)). By (P6),

for all 1 ≤ i, j ≤ n, tpH[f(ti)] = tpH[f(tj)] and so for any 1 ≤ i ≤ n,

H |=
∧n

j=1 pj(f(ti)), as required. If t = f(t̄′) for some m-ary function f and

m-tuple of ground terms t̄′, then by (P6′), of ⇒ p, γf(t̄′) can be derived

from D by hyperresolution and every element of t̄′ has depth 2 or less. But

then by (P6′) again, pi(cf) ∈ D∗ for all 1 ≤ i ≤ n, and the argument of the

preceding paragraph applies. If t = c for some constant c occurring in C,

then trivially H |=
∧n

i=1 pi(c).

We are now in a position to show the decidability of Cop+TV+DTV.
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Theorem 5.8. The satisfiability of a set E of sentences of Cop+TV+DTV can

be decided in deterministic polynomial time.

Proof. Construct C, and hence D and D∗ as described above. The number of

symbols in D∗ is bounded by a polynomial of the size ‖E‖ of E, and so the

construction of D∗ terminates in PTIME. It remains only to show that C is

unsatisfiable if and only if ⊥ ∈ D∗.

Suppose that C is unsatisfiable. Then there exists a hyperresolution proof D of

⊥ from C. Recall that H is constructed by hyperresolution from the non-negative

clauses of C, and thus every clause derived by any non-final step of D holds in H.

The final steps of D must be of the form
...

...
...

... l1 . . . li ¬l′1 ∨ . . . ∨ ¬l′i ∨ l

m1 . . . mj ¬m′
1 ∨ . . . ∨ ¬m′

j ∨ ¬m lθ

⊥
where i, j ∈ N, l1, . . . , li and m1, . . . , mj , l are positive literals, ¬l′1, . . . ,¬l

′
i and

¬m′
1, . . . ,¬m

′
j ,¬m are negative literals, lkθ = l′kθ for 1 ≤ k ≤ i, mkθ

′ = m′
kθ

′

for 1 ≤ k ≤ j and (lθ)θ′ = mθ′ for some substitutions θ and θ′. The clauses

C = ¬l′1 ∨ . . .∨¬l′i ∨ l and C ′ = ¬m′
1 ∨ . . .¬m

′
j ∨¬m must, since, hyperresolution

on Horn clause sets can only derive unit clauses, be members of C (and hence

of D.) By considering all of the possibilities for C and C ′, it can be seen that

the set of unit clauses l1, . . . , li, m1, . . . , mj must be made up of collections of

positive unit clauses such that for a tuple of ground terms t̄, for each term t in t̄,

there is a set pt
1, . . . , p

t
n of unary predicates such that H |=

∧n

i=1 p
t
i(t) and for some

possibly empty tuples t̄1, . . . , t̄m of terms selected from t̄, functions f1, . . . , fm and

predicates q1, . . . , qm, H |=
∧m

i=1 qi(fi(t̄i)). Lemma 5.7 and (P6′) then guarantee

that ⊥ ∈ D∗.

Conversely, if ⊥ ∈ D∗, then there exists a proof D of ⊥ from D by hyper-

resolution. The final steps in D must be of the form given above, save that the

non-unit clauses C and C ′ (using the same notation as before) must be elements

of D, but are not necessarily in C. For all of the cases where C and C ′ are both

in C, Lemma 5.7 guarantees, via a similar argument to the one above, that ⊥ can

be derived from C. By (P5′), the only other possibility is that the final steps of

D are of the form
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...
... γf(t̄) γf(x̄) → of(cf)

p(x) → ¬of (x) p(cf) of(cf)

⊥

where f is an n-ary function symbol. Since p(cf) and γf(t̄) must be elements of

D∗, we know that by (P6′) that of ⇒ p and by Lemma 5.7, there exists a tuple

t̄′ of ground terms such that H |= γf(t̄′), so that by (P6), H |= p(f(t̄′)). Hence

⊥ can be derived from C via a hyperresolution derivation terminating with the

following steps
...

... γf(t̄′) γf(x̄) → of(f(x̄))

p(x) → ¬of (x) p(f(t̄′)) of(f(t̄′))

⊥

.

Thus C is unsatisfiable, completing the proof.

In essence, the preceding proof works because of the limited ability of Cop+TV

and Cop+TV+DTV to describe NPs: without relative clauses, all that can be

known is how the denotation of a single unary predicate is related to the deno-

tations of at most a pair of unary predicates. No reference can be made within a

Cop+TV(+DTV)-sentence to more than one predicate satisfied by an individual,

or more than one relation in which it stands. In fact, the relations themselves –

the verbs – play a very small role in the proof of Theorem 5.8. In particular, the

proof made no reference to the order of arguments to non-unary relations, and

thus, as we noted earlier, Theorem 5.8 continues to hold even when we add rules

for quantifier rescoping to Cop+TV and Cop+TV+DTV.

5.2.2 Expressive power

The fact that fragments can have different abilities to distinguish situations and

yet have the same semantic complexity demonstrates that complexity is too coarse

to serve as a characterisation of expressive power. To find a better one, let us

begin with Cop+TV: as in the case of Cop, we define a relation between struc-

tures preserving truth of Cop+TV-sentences. Let Σ = (C, P, T ) be a signature

consisting of constants C, unary predicates P and binary relations T .

Definition 5.9. Let A be a structure interpreting Σ. Let the TV-configuration

of A over Σ be the function tvA : P ×P ×T → {1, 2, 3, 4, 5, 6} defined as follows
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for p, q ∈ P , t ∈ T .

tvA(p, q, t) = 1 if (pA × qA) ∩ tA = ∅

2 if pA × qA ⊆ tA and pA × qA 6= ∅

3 if pA 6= ∅ and for every a1 ∈ pA, there exist

a2, a3 ∈ qA such that (a1, a2) ∈ tA, (a1, a3) 6∈ tA

4 if qA 6= ∅, there exists a1 ∈ pA such that

({a1} × qA) ∩ tA = ∅ and there exists a2 ∈ pA

such that {a2} × qA ⊆ tA

5 if (pA × qA) ∩ tA 6= ∅, there exists a1 ∈ pA such

that ({a1} × qA) ∩ tA = ∅ and for every a2 ∈ pA,

there exists a3 ∈ qA such that (a2, a3) 6∈ tA

6 otherwise

If A and B are structures interpreting Σ, we say that A and B are TV-similar

(A ∼TV B) if

1. tv-confA = tv-confB,

2. for every pair of constants c, d, tpA[cA, dA] = tpB[cB, dB],

3. for every c ∈ C, p ∈ P and t ∈ T :

(a) there exists a ∈ A such that A |= p[a] ∧ t[a, cA] iff there exists b ∈ B

such that B |= p[b] ∧ t[b, cB],

(b) there exists a ∈ A such that A |= p[a] ∧ t[cA, a] iff there exists b ∈ B

such that B |= p[b] ∧ t[cB, b], and

4. A ∼Cop B.

Each Cop+TV-formula can contain up to two unary predicates and one binary

relation. The different cases in the definition of TV-configuration exhaust the

possibilities of how sets of Cop+TV-sentences can describe the interactions of

their denotations. Each case therefore corresponds to a particular sentence or set

of sentences. Let p and q be common nouns (and hence unary predicates), and t

a transitive verb (and hence binary relation.) For some structure A interpreting

p, q and t, the value of tvA(p, q, t) corresponds to the sentences below. It is easily

checked that every structure A interpreting p, q and t satisfies exactly one of

these possibilities.

1. No p ts any q.
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2. Every p ts every q, Some p is a p, Some q is a q.

3. Every p ts some q, Every p does not t some q, Some p is a p.

4. Some p ts no q, Some p ts every q, Some q is a q.

5. Some p ts some q, Some p ts no q, No p ts every q.

6. Every p ts some q, Some p ts every q, Some p does not t some q.

Theorem 5.10. Let A and B be structures interpreting Σ = (C, P, T ). Then

A ∼TV B if and only if A and B have the same Cop+TV theory (over the signa-

ture Σ.)

Proof. Essentially the same as that for Theorem 5.3.

The definitions of Cop and TV configuration allowed us to prove Theorems

5.3 and 5.10, respectively, because both fragments are essentially finite. None

of the phrase structure rules in their definitions are recursive, and so in each

case there is a (small) upper bound on sentence length. This bound means that

exhaustive lists of the possibilities for interpretation (as Definitions 5.2 and 5.9

are) can be used to characterise expressive power. The introduction of recursive

phrase structure rules (in the form of relative clauses) in the following section

rules out this approach for later fragments.

The following corollary to Theorem 5.10 shows that Cop+TV shares some of

the limitations of the expressive power of Cop.

Corollary 5.11. Let P , Q, R be sets. No Cop+TV-formula, or set of Cop+TV-

formulae, is equivalent to P ∩R = Q ∩R.

Proof. Define two structures, A and B over the domain {a1, . . . , a5} interpreting

the unary predicates p, q, r and the binary predicate t as follows

pA = pB = {a1, a2} rA = {a2, a5}

qA = qB = {a2, a3, a4} rB = {a2, a3, a5}

tA = tB = {(a1, a2)}

It is straightforward to check that A and B are TV-similar, and thus by Theorem

5.10 make all the same Cop+TV-sentences true. But pA ∩ rA = qA ∩ rA, and

pB ∩ rB 6= qB ∩ rB, and so the result follows.
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Since the Cop-formulae in the proof of Theorem 5.5 are also in Cop+TV, and

every Cop+TV-formula is Horn, an analogue of Theorem 5.5 holds, and so in

order to prove any kind of Invariance Theorem, we are forced to add sentence (IP)

coordination via the same phrase-structure rules as earlier, to produce a fragment

Cop+TV∗ closed under Boolean combinations of sentences. The following result

then follows by a near identical argument to that for Theorem 5.6.

Theorem 5.12. A first-order formula φ is equivalent to a Cop+TV∗-formula if

and only if φ is invariant for TV-simulation.

As before, the addition of sentence coordination leads to an increase in com-

plexity: Cop+TV∗ has an NP-complete satisfiability problem. This result is

proved in Chapter 6.

There remains, of course, the question of the logical expressive power of

Cop+TV+DTV, and of the effect of allowing quantifier rescoping in Cop+TV

and Cop+TV+DTV. (The proof of Theorem 5.8 certainly is sensitive to the order

of arguments to non-unary predicates.) None of these fragments are recursively

defined, and so they all admit a finite characterisation.

We could proceed as we have done so far, and manually enumerate the options

for, say, a Cop+TV+DTV configuration. However, perhaps this would be missing

a trick. All of these fragments have had a tractable decision problem, and, for a

given set of symbols from the content lexicon, only a very small number of ways

in which all of these symbols can be combined to form grammatical sentences.

We can take advantage of these facts in order to automate the generation of a

suitable relation between structures.

Let F be any fragment satisfying the following conditions.

1. F is decidable.

2. Every F -sentence is an instance of one of only a finite number of sentence-

schemata.

It is straightforward, given these conditions, to determine automatically a set

F of sets of sentence schemata such that over a given signature Σ, every maximal

consistent set of F -sentences over Σ is an instance of some member of F . The

notions of Cop- and TV-configuration essentially define such an F .

This idea is perhaps best illustrated with an example. Let Fex be the very

small fragment defined by the grammar of Cop without the rules for proper nouns.
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Fex is clearly decidable, since Cop is, and every Fex-sentence is an instance of one

of the schemata










Every

Some

No











p1

{

is

is not

}

a p2

where p1, p2 are common nouns.

Let Fex consist of the union of the following cases, C1 to C4.

C1. Every p is a q, no p is a q (i.e., there are no ps.)

C2. Every p is a q, some p is a q.

C3. Some p is not a q, no p is a q.

C4. Some p is not a q, some p is a q.

It is straightforward to check that for any pair of common nouns p′ and q′, the

maximal consistent set of Fex-sentences containing both p′ and q′ is an instance of

a member of Fex. Thus, if we take a common noun p, any structure interpreting

p must make exactly one of the following cases true. These possibilities can be

calculated directly from Fex by substitution, discarding any results which are not

satisfiable.

D1’. Every p is a p, no p is a p (i.e., there are no ps.)

D2’. Every p is a p, some p is a p (i.e., there are ps.)

For any fragment F satisfying conditions 1 and 2, and any structure A in-

terpreting the signature of F , the corresponding F can be used to compute an

exhaustive list of the possible ways A can interpret a given set of symbols. We

can use this information to define a notion of simulation ∼F between structures

such that for any structures A and B interpreting the same signature, A ∼F B

if and only if A and B have the same F -theory.

It is thus possible to automate the construction of an appropriate relation

of simulation for certain fragments, among them Cop+TV+DTV and the ex-

tensions of Cop+TV and Cop+TV+DTV with quantifier rescoping. Of course,

as fragments become more complicated, the number of cases in the definition of

simulation becomes correspondingly larger, but this process nonetheless greatly

reduces the effort required of a human scholar in studying such fragments.



CHAPTER 5. THE COPULA, RELATIVE CLAUSES AND VERBS 104

For Horn fragments such as Cop+TV(+DTV), both with and without quan-

tifier rescoping, Theorem 5.5 continues to prevent the possibility of Invariance

Theorems for those fragments alone. In fact, as we see in Section 5.3, many non-

Horn fragments also fall foul of Theorem 5.5 too. However, just as earlier, the

addition of sentence coordination to such fragments allows Invariance Theorems

to be established.

Theorem 5.13. Let F be a fragment satisfying conditions 1 and 2, let ∼F be an

F -simulation, as computed above, and suppose that an analogue of Theorem 5.5

holds for F . Let F ∗ be the result of extending the grammar of F with rules for

coordination of IP. Then an arbitrary first-order formula φ is equivalent to an

F ∗-formula if and only if φ is invariant for F -simulation.

Proof. See the proof of Theorem 5.6.

5.3 Relative Clauses

The preceding section considered only very small extensions to Cop, granting

limited powers to describe relations between individuals, but sharing Cop’s in-

ability to say much about those individuals themselves. In this section, we take

a different tack, returning to Cop and extending its ability to describe entities,

with restrictive relative clauses.

Noun phrases in Cop are all either proper nouns such as Socrates, or quantified

common nouns such as every man. With the addition of relative clauses, we gain

the ability to embed Cop-sentences qualifying common nouns. So rather than

just some philosopher, we can refer to some philosopher who is not a stoic, and limit

the denotation of the whole NP. Relative clauses can of course be nested: some

man who is a philosopher who is not a stoic is a perfectly acceptable English NP.

The interpretation of relative clauses such as these is uncontroversial: follow-

ing [25], among others, we interpret them conjunctively. If some individual ι is a

stoic who is not a cynic, then ι is a stoic and ι is not a cynic.

Let Cop+Rel be the fragment of English containing all sentences of the form

NP1 is (not) an NP2, where NP1 and NP2 are noun phrases. A noun phrase in

Cop+Rel is either a proper noun, or a quantified N ′ of the form every/some/no φ.

An N ′ in Cop+Rel is either a common noun p, or has the form p who is (not) a φ

(where p is a common noun and φ is an N ′). So, for example, Every man who is a
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stoic is a philosopher who is not a cynic is a Cop+Rel-sentence, as is No man who is

a stoic who is not a cynic is an epicurean. With the conjunctive semantics outlined

above, these are interpreted as

∀x(man(x) ∧ stoic(x) → philosopher(x))

and

∀x(man(x) ∧ stoic(x) ∧ ¬cynic(x) → epicurean(x))

respectively.

More formally, Cop+Rel is generated by the union of the following rules with

those of Cop.

Syntax

N′/φ(ψ) → N/ψ, CP/φ

CP/φ(ψ) → CSpect/φ, C′
t/ψ

C′
t/λt[φ] → C, IP/φ

NP/φ → RelPro/φ

CSpect →

Formal lexicon

C →

RelPro/λqλpλx[p(x) ∧ q(x)] → who,

which

In order to produce the correct semantics, wh-movement must be applied to

sentences (IPs) generated by these rules, as outlined in Chapter 4, Section 4.4.1.

In particular, we insist that: (i) every RelPro moves into the nearest CSpect

which c-commands it; (ii) every CSpect is filled by a moved RelPro; and (iii)

every NP position vacated by a RelPro moving to CSpect is filled by a trace t

with semantic value λp.p(t). Figure 5.4 shows the generation of a sentence by

the rules for Cop+Rel, with wh-movement illustrated, as well as the generation

of the semantics.

In fact, a simple fragment such as this one could be specified just as precisely

without any reference to wh-movement. For the sake of extensibility, however,

we prefer the more general approach.

In what follows, we use who and which as relevant; the issue of animacy agree-

ment between relative pronouns and their antecedents does not affect the seman-

tics.

Note that since each Cop+Rel-sentence contains at most one determiner, each

Cop+Rel-formula contains at most one quantifier. Unlike in Section 5.2, we

therefore do not need to worry about quantifier scope.
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IP
∀x(philosopher(x) ∧ ¬stoic(x) → cynic(x))

NP
λq[∀x(philosopher(x) ∧ ¬stoic(x) → q(x))]

Det
λpλq[∀x(p(x) → q(x))]

Every

N′

λx[philosopher(x) ∧ ¬stoic(x)]

N
λx[philosopher(x)]

philosopher

CP
λpλx[p(x) ∧ ¬stoic(x)]

CSpect

λqλpλx[p(x) ∧ q(x)]

RelPro

who

Ct
′

λt[¬stoic(t)]

C IP
¬stoic(t)

NP
λp[p(t)]

t

I′

λx[¬stoic(x)]

is not a stoic

I′

λx[cynic(x)]

is a cynic

Figure 5.4: Structure of a simple Cop+Rel sentence
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We define the fragment of logic generated by Cop+Rel in two stages. First,

define an N ′-formula recursively:

1. p(x) is a an N ′-formula (where p is a unary predicate.)

2. If π(x) is an N ′-formula, then p(x)∧π(x) and p(x)∧¬π(x) are N ′-formulae.

A Cop+Rel-formula is then of one of the forms

±p(c)

∀x(φ1(x) → ±φ2(x))

∃x(φ1(x) ∧±φ2(x))

where c is a constant, p is a unary predicate and φ1(x) and φ2(x) are N ′-formulae.

It is straightforward to verify that the grammar presented earlier does in fact

generate all and only formulae of the above forms over the relevant signature.

The N ′-formulae, as the name suggests, are the subformulae of Cop+Rel-formulae

corresponding to the semantics of N ′-phrases.

Since Cop+Rel contains Cop as a subfragment, we know that every pair of

Cop-distinguishable situations can also be distinguished by Cop+Rel. The fol-

lowing result shows that Cop+Rel is a genuine extension of Cop.

Proposition 5.14. 1. Cop+Rel is strictly more expressive than Cop.

2. Cop+Rel can distinguish situations which cannot be distinguished by sen-

tences of Cop+TV.

Proof. 1. Let A, B be as in the proof of Corollary 5.11. That is, both struc-

tures are over the domain {a1, . . . , a5} and interpret unary predicates p, q

and r and binary predicate t as follows

pA = pB = {a1, a2} rA = {a2, a5}

qA = qB = {a2, a3, a4} rB = {a2, a3, a5}

tA = tB = {(a1, a2)}

As noted before, A and B are Cop-similar, and so by Theorem 5.3, make

all the same Cop-sentences true. However, the Cop+Rel-sentence Every q

who is an r is a p, which translates to ∀x(q(x) ∧ r(x) → p(x)), is true in A

and not in B.
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2. It is relatively easy to show that A and B above are also Cop+TV-similar,

whence the result follows by Theorem 5.10.

Incidentally, recall that Corollaries 5.4 and 5.11 showed that neither Cop nor

Cop+TV could express P ∩ R = Q ∩ R, where P,Q and R are sets. It ought to

be trivially clear that in any model A of the Cop+Rel-sentences Every p who is an

r is a q and Every q who is an r is a p, it must be the case that pA ∩ rA = qA ∩ rA.

5.3.1 Semantic Complexity

The main feature distinguishing Cop+Rel from the two earlier fragments is the

ability to embed sentences recursively inside others, and it is this feature which

is responsible for the extra complexity of deciding Cop+Rel. The following result

was proved in [58]:

Theorem 5.15. The satisfiability problem for Cop+Rel is NP-complete.

5.3.2 Expressive Power

With the presence of recursive rules in the grammar of Cop+Rel, a simple enu-

meration of the situations the fragment can describe is clearly not possible as it

was for the preceding fragments. In fact, the characterisation of expressive power

for Cop+Rel is a great deal simpler for it.

As before, we now define a relation on structures corresponding to preservation

of truth in Cop+Rel. Suppose again that Σ = (C, P ) is a signature of constants

C and unary predicates P .

Definition 5.16. Let A and B be structures interpreting Σ. We say that A and

B are Cop+Rel-similar, written A ∼Rel B, if

1. for every constant c ∈ C, tpA[cA] = tpB[cB],

2. for every a ∈ A satisfying a unary predicate, there exists b ∈ B such that

tpA[a] = tpB[b].

3. for every b ∈ B satisfying a unary predicate, there exists a ∈ A such that

tpA[a] = tpB[b].
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Theorem 5.17. Let A and B be structures interpreting Σ. Then A ∼Rel B if

and only if A and B have the same Cop+Rel theory over Σ.

Proof. Suppose that A ∼Rel B. We show that for every Cop+Rel formula φ, if

A |= φ, then B |= φ. Since Cop+Rel contains sentence negation, it follows that

if B |= φ, then A |= φ.

The truth of all ground Cop+Rel-formulae is evidently preserved by clause

(2) in Definition 5.16. Each Cop+Rel-formula not containing a constant is of

the form ∀x(φ1(x) → ±φ2(x)) or ∃x(φ1(x) ∧±φ2(x)), where φ1(x) and φ2(x) are

N′-formulae. A simple induction on the structure of N′-formulae suffices to show

that A and B agree on the truth value of every Cop+Rel-formula.

Conversely, suppose now that A 6∼Rel B. Then one of (1), (2) or (3) in

Definition 5.16 fails. We consider each case in turn.

1. For some constant c, tpA[cA] 6= tpB[cB]. As in the proof of Theorem 5.3,

there exists a ground Cop-formula (and hence Cop+Rel-formula) φ such

that A |= φ and B 6|= φ.

2. There exists a ∈ A satisfying some unary predicate such that for every

b ∈ B, tpA[a] 6= tpB[b]. So for every b ∈ B, there exists a unary predicate

pb such that A |= pb[a] iff B |= ¬pb[b]. Let P+
a = {p+ ∈ P |A |= p+[a]},

and let P−
a = P \ P+

a . We know that P+
a 6= ∅, since a satisfies some unary

predicate p1, and so the sentence

Some p1 { who is a p+ }p+∈P+
a

{ who is not a p− }p−∈P−

a

is a p1.

is true in A but not in B.

3. Similar to the previous case.

Thus if A 6∼Rel B, there exist Cop+Rel-formulae true in A and false in B, and

so the theorem holds.

The insistence in clauses (2) and (3) of Definition 5.16 that we only consider

elements of A and B satisfying at least one unary predicate stems directly from

the syntax of Cop+Rel. Every quantified noun phrase in Cop+Rel must contain

at least one (head) noun – the p in Every/some/no p – which translates to a positive

occurrence of a unary predicate p in the semantics. Cop+Rel is thus unable to

refer to “propertyless” entities. We can of course (as English itself indeed does)
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assume a universal property satisfied by every entity, and so simplify Definition

5.16. Suppose that in every structure A, a special noun thing is interpreted so

that thingA = A, and consider only signatures Σ = (C, P ) such that thing ∈ P .

Corollary 5.18. Let A and B be structures interpreting a signature Σ = (C, P )

such that thingA = A and thingB = B. Then A and B have the same Cop+Rel

theory if and only if

1. for every constant c ∈ C, tpA[cA] = tpB[cB],

2. for every a ∈ A, there exists b ∈ B such that tpA[a] = tpB[b],

3. for every b ∈ B, there exists a ∈ A such that tpA[a] = tpB[b],

Proof. Near-identical to the proof of Theorem 5.17

Recall from the proof of Theorem 5.5 that since Cop and Cop+Rel are both

Horn fragments, we were forced to extend both of them with sentence coordi-

nation in order to obtain any kind of Invariance Theorem. As Cop+Rel is not

Horn, it is natural to ask whether this requirement continues to hold, or whether

an Invariance Theorem can be shown directly.

It turns out that an analogue of Theorem 5.5 also holds for certain non-Horn

fragments, which we prove using the following lemma.

Lemma 5.19. No Cop+Rel-formula, or conjunction thereof, is equivalent to

p(c) ∨ q(c), where p, q are distinct unary predicates.

Proof. Let φ0 = p(c) ∨ q(c) and suppose there exists some set Φ of Cop+Rel-

formulae such that |= φ0 ↔
∧

Φ. There are three possibilities, when
∧

Φ is

written with the elements of Φ in some fixed order:

1.
∧

Φ = ±r(d) ∧ Φ′ for some constant d, unary predicate r and conjunction

of Cop+Rel-formulae Φ′.

2.
∧

Φ = ∃x(r(x)∧φ1(x))∧Φ′ for some unary predicate r, an N′-formula φ1(x)

and conjunction of Cop+Rel-formulae Φ′.

3.
∧

Φ = ∀x((r(x) ∧ φ1(x)) → φ2(x)) ∧ Φ′ for some unary predicate r, N′-

formulae φ1(x), φ2(x), with φ1(x) possibly empty, and Φ′ a conjunction of

Cop+Rel-formulae.
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We consider each case in turn.

1. Suppose that
∧

Φ = r(d) ∧ Φ′ (the case
∧

Φ = ¬r(d) ∧ Φ′ is similar.)

If r 6= p and r 6= q, or if r is one of p, q and d 6= c, then the structure A

given over the domain {a, a′} by cA = a, dA = a′, pA = {a}, qA = ∅ and

rA = ∅ is a model of φ0, but not a model of r(d) – and hence not a model

of
∧

Φ, contradicting |= φ0 ↔
∧

Φ.

Otherwise, d = c and r = p or r = q. Suppose without loss that r = p.

Then r 6= q, since p and q are distinct. Let A be the structure over the

single element domain {a} given by cA = a, pA = ∅, qA = {a}. Then A is a

model of φ0, but not of
∧

Φ, and so again, φ0 and
∧

Φ are not equivalent.

2. If r = p or r = q (suppose without loss that r = p), then let A be the

structure over the domain {a} given by cA = a, pA = ∅, qA = {a}. Then A

is a model of φ0 and not a model of
∧

Φ, and so 6|= φ0 ↔
∧

Φ.

Otherwise, p 6= r 6= q. Then any structure A such that cA ∈ pA (or cA ∈ qA)

and rA = ∅ is a model of φ0 and not of
∧

Φ.

3. By the previous cases, we can see that every element of Φ must be univer-

sally quantified, of the form ∀x((r(x)∧φ1(x)) → φ2(x)) (with φ1(x) possibly

empty). In particular, the antecedent of every such formula φ contains a

positive occurrence rφ(x) of a unary predicate rφ. Let A be any structure

in which every unary predicate is assigned an empty denotation. It is im-

mediate then that every element of Φ is true in A, and that φ0 is false in

A, and so
∧

Φ and φ0 are not equivalent.

Since the preceding cases are exhaustive, it follows that no such Φ can exist.

Theorem 5.20. There is no relation ∼ on structures such that for every first-

order formula φ, φ is equivalent to a Cop+Rel-formula if and only if φ is invariant

for ∼.

Proof. It is trivial to show that φ0 = p(c)∨ q(c) is invariant for any such relation

∼. By the preceding lemma, however, φ0 is not equivalent to any conjunction of

Cop+Rel-formulae.
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The proof of Lemma 5.19 relied essentially on the structure of N′-formulae;

in particular, every N′-formula contains a leading positive occurrence of a unary

predicate. Since this constraint applies to the formulae generated from N′-phrases

in every fragment we consider in this thesis, an analogue of Theorem 5.20 holds

for all of them. We are therefore required to extend every fragment with rules for

sentence coordination in order to obtain Invariance Theorems, which we hence-

forth do without comment.

So, let Cop+Rel∗ be the fragment of English generated by the grammar of

Cop+Rel (including wh-movement), augmented with phrase structure rules for

sentence coordination.

IP/φ ∧ ψ → IP/φ, and, IP/ψ

IP/φ ∨ ψ → IP/φ, or, IP/ψ

Note that Cop+Rel∗ can contain sentences with embedded IP coordination:

Every man who is a stoic { and/or } is a cynic is a philosopher. It is routine, although

tedious, to show that every Cop+Rel∗-sentence containing such coordination can

be rewritten as an equivalent Cop+Rel∗-sentence containing only coordination

of complete (non-embedded) IPs. Since Cop+Rel∗ allows sentence negation, it

follows that Cop+Rel∗ is simply the result of closing Cop+Rel under Boolean

combinations of sentences.

With the preceding remarks in mind, the following result is obtained via a

similar proof to Theorem 5.6.

Theorem 5.21. A first-order formula φ is equivalent to a Cop+Rel∗-formula if

and only if φ is invariant for Rel-simulation.

Unlike the previous two cases, the addition of sentence coordination does

not affect the complexity of deciding satisfiability: the semantic complexity of

Cop+Rel∗ is shown in Chapter 6 to be NP-complete. In fact, it is straightforward

to prove that any fragment whose semantic complexity is NP-hard or harder is

unaffected (in complexity terms) by the addition of sentence coordination.

5.4 Relative clauses with verbs

The obvious next set of fragments to consider are the extensions of Cop+Rel with

both transitive and ditransitive verbs. We consider the various cases separately.
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Each of the following fragments contain potentially scope-ambiguous sentences;

however, we assume throughout that all sentences are given their surface reading.

5.4.1 Cop+Rel+TV

Let Cop+Rel+TV be the fragment of English generated by the union of the

phrase structure rules of Cop+Rel with the rules TV, together with the rule of

wh-movement as described in Section 5.3. An example sentence in Cop+Rel+TV

is Every stoic who hates some cynic admires some philosopher, which, with the relative

scope of quantifiers taken according to surface order, has the truth conditions

∀x(stoic(x) ∧ ∃y(cynic(y) ∧ hate(x, y)) → ∃z(philosopher(z) ∧ admire(x, z))).

Figure 5.5 shows the derivation of the preceding Cop+Rel+TV-sentence, and

its semantics.

The fragment of logic generated by Cop+Rel+TV can be described in two

stages.

Definition 5.22. Let a Cop+Rel N′-formula be an N′-formula as described in

Section 5.3, pp.107. A formula φ(x) is a Cop+Rel+TV N′-formula if

1. φ(x) is a Cop+Rel N′-formula, or

2. φ(x) is of one of the forms π(x) ∧±t(x, c) or π(x) ∧±t(c, x), where π(x) is

a Cop+Rel N′-formula, c is a constant and t a binary predicate.

3. φ(x) is of one of the forms

π1(x) ∧Qy(π2(y) ∗ τ(x, y))

π1(x) ∧Qy(π2(y) ∧ ψ(y) ∗ τ(x, y))

where (Q, ∗) ∈ {(∀,→), (∃,∧)}, π1(x), π2(y) is a Cop+Rel N′-formula, ψ(y)

is a Cop+Rel+TV N′-formula and τ(x, y) is a literal containing a binary

predicate and the variables x, y in some order.

A formula φ is a Cop+Rel+TV N′-formula if it is of one of the forms ±p(c),

±t(c, d), ∀x(ψ1(x) → ±ψ2(x)) or ∃x(ψ1(x) ∧±ψ2(x)), where c, d are constants, t

is a binary predicate and ψ1(x), ψ2(x) are Cop+Rel+TV N′-formulae, with ψ1(x)

not one of the forms in 2 above.
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IP
∀x(stoic(x) ∧ ∃y(cynic(y) ∧ hate(x, y)) → ∃z(philosopher(z) ∧ admire(x, z)))

NP
λq[∀x(stoic(x) ∧ ∃y(cynic(y) ∧ hate(x, y)) → q(x))]

Det
λpλq[∀x(p(x) → q(x))]

Every

N′

λx[stoic(x) ∧ ∃y(cynic(y) ∧ hate(x, y))]

N
λx[stoic(x)]

stoic

CP
λpλx[p(x) ∧ ∃y(cynic(y) ∧ hate(x, y))]

CSpect

λqλpλx[p(x) ∧ q(x)]

RelPro

who

Ct
′

λt[∃y(cynic(y) ∧ hate(t, y))]

C IP
∃y(cynic(y) ∧ hate(t, y))

NP
λp[p(t)]

t

I′

λx[∃y(cynic(y) ∧ hate(x, y))]

hates a cynic

I′

λx[∃y(philosopher(y) ∧ admire(y, x))]

admires some philosopher

Figure 5.5: Structure of a simple Cop+Rel+TV sentence
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It is hopefully clear that Cop+Rel+TV-formulae as defined here are precisely

the formulae produced by generation of an IP using the phrase structure rules of

Cop+Rel+TV.

Trivially, Cop+Rel+TV is at least as logically expressive as Cop, Cop+Rel

and Cop+TV. Unsurprisingly, it strictly extends all of these fragments.

Proposition 5.23. There exists structures A, B such that A and B have the

same Cop+Rel and Cop+TV theories (and hence the same Cop theories also),

and there exists a Cop+Rel+TV sentence true in A but not in B.

Proof. Let A = {a1, a2, a3, a4}, let B = {b1, b2, b3, b4, b5, b6, b7}, and define A and

B by

pA
1 = {a1} pB

1 = {b1, b5}

pA
1 = {a2, a3} pB

2 = {b2, b3, b6}

pA
3 = {a4} pB

3 = {b4, b7}

tA1 = {(a1, a2)} tB1 = {(b1, b2), (b5, b6)}

tA2 = {(a3, a4)} tB2 = {(b3, b4), (b6, b7)}

A and B are Cop+TV-similar and Cop+Rel-similar, but the Cop+Rel+TV-

sentence Some p1 t1s some p2 who t2s some p3 is true in B but not in A.

Semantic Complexity

The combination of relative clauses and transitive verbs has a marked effect on

complexity. The following result was shown in [58].

Theorem 5.24. The problem of determining satisfiability in Cop+Rel+TV is

EXPTIME-complete.

In order to prove one of the results in Chapter 6, (Theorem 6.15, to be precise),

we adapt the EXPTIME-hardness proof for Cop+Rel+TV. It suffices to note here

that every Cop+Rel+TV-sentence required for this hardness proof is of one of

the following forms:

Every p which is (not) a q is an r

Every p is a q

No p is a q

Every p ts some q

Every p which ts some q is an r



CHAPTER 5. THE COPULA, RELATIVE CLAUSES AND VERBS 116

Expressive Power

In preceding sections, we studied the expressive power of a fragment F firstly

by defining a relation on structures corresponding to the preservation of truth

of F -formulae, and then showing an Invariance Theorem for the extension of F

with sentence coordination, since we know by Theorem 5.20 that no Invariance

Theorem holds for F directly.

In order to obtain similar results for Cop+Rel+TV, and, indeed, all of the frag-

ments remaining in this chapter, we need to make a small extension to the gram-

mars we use. In particular, we need to allow the conjunction of relative clauses, so

that as well as Every stoic who hates some cynic is a philosopher in Cop+Rel+TV, we

also allow Every stoic who hates some cynic and whom every cynic hates is a philosopher,

with the obvious corresponding semantics. Towards the end of this section, we

show that such extension is relatively harmless.

Definition 5.25. Let A and B interpret a signature Σ = (C, P, T ) consisting of

constants C, unary predicates P and binary relations T . Let A′ be the subset of A

such that every a ∈ A′ either satisfies some unary predicate or is the interpretation

of some constant in A, and likewise for B′. A Rel+TV-simulation R ⊆ A′ × B′

is a relation satisfying the following conditions:

1. for every constant c, cARcB.

2. for every a ∈ A′, b ∈ B′ such that aRb, tpA[a] = tpB[b],

3. for every a ∈ A′, b ∈ B′ such that aRb, and every constant symbol c,

tpA[a, cA] = tpB[b, cB],

4. for every a ∈ A′, b ∈ B′ such that aRb, and every t ∈ T ,

(a) if, for some a′ ∈ A′, A |= ±t[a, a′] , then for some b′ ∈ B′ such that

a′Rb′, B |= ±t[b, b′],

(b) if, for some a′ ∈ A′, A |= ±t[a′, a], then for some b′ ∈ B′ such that

a′Rb′, B |= ±t[b′, b],

(c) if, for some b′ ∈ B′, B |= ±t[b, b′], then for some a′ ∈ A′ such that

a′Rb′, A |= ±t[a, a′],

(d) if, for some b′ ∈ B′, B |= ±t[b′, b], then for some a′ ∈ A′ such that

a′Rb′, A |= ±t[a′, a],



CHAPTER 5. THE COPULA, RELATIVE CLAUSES AND VERBS 117

5. for every a ∈ A′, there exists b ∈ B′ such that aRb,

6. for every b ∈ B′, there exists a ∈ A′ such that aRb,

A and B are Rel+TV-similar, written A ∼Rel+TV B, if some R ⊆ A′ × B′ is a

Rel+TV-simulation.

Lemma 5.26. If A ∼Rel+TV B, then A and B agree on all Cop+Rel+TV formulae.

Proof. Let R ⊆ A′ ×B′ be a Rel+TV simulation.

By 1 and 3, A and B agree on all ground Cop+Rel+TV formulae.

A simple structural induction shows that for all N′-formulae φ(x), if a ∈ A′, b ∈

B′ such that aRb, then A |= φ[a] iff B |= φ[b].

Now let φ be any non-ground Cop+Rel+TV formula, and suppose that A |= φ.

In each case, B |= φ. We give only one example here, for brevity – the rest are

similar. Let ψ1(x) and ψ2(x) be N′-formulae.

φ = ∀x(ψ1(x) → ψ2(x)) : For all a ∈ A, if A |= ψ1[a], then A |= ψ2[a]. Suppose

for some b ∈ B, B |= ψ1[b] ∧ ¬ψ2[b]. If b ∈ B′, then by 6, there exists

a ∈ A′ such that aRb and, by the above induction, A |= ψ1[a] ∧ ¬ψ2[a]

– a contradiction. So b ∈ B \ B′. By definition, ψ1(x) contains a unary

predicate p such that every element which satisfies ψ1(x) in any structure

satisfies p(x), contradicting the assumption that b ∈ B \B′. So B |= φ.

Lemma 5.27. Let A and B be ω-saturated structures which agree on all formulae

in Cop+Rel+TV. Then A ∼Rel+TV B.

Proof. Define R ⊆ A′ ×B′ as follows:

R = {(a, b) | a ∈ A′, b ∈ B′, and for all N′-formulae φ(x),

A |= φ[a] iff B |= φ[b]}

We check that R is a Rel+TV-simulation.

1. Immediate, since A and B have the same Cop+Rel+TV theory.

2. Any 1-type can be specified fully by an N′-formula in the fragment Cop+Rel.

We use the assumption that a and b both satisfy at least one predicate in

their respective structures here.
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3. Let a ∈ A′, let c be a constant symbol and let p be a unary predicate symbol

such that A |= p(a). For every binary predicate t such that A |= ±t[a, cA],

p(x) ∧±t(x, c) is an N′-formula satisfied by a in A, and hence for all b ∈ B

such that aRb, B |= p[b]∧±t[b, cB]. A similar argument applies in the case

A |= ±t[cA, a]. It then follows by 1 and 2 that tpA[a, cA] = tpB[b, cB].

4. (We consider only case 4a) Suppose that for some a ∈ A′, there exists

a binary t such that A |= ±t[a, a′] for some a′ ∈ A′. We show that for

every b ∈ B′ such that aRb, there exists b′ ∈ B′ such that B |= ±t[b, b′]

and a′Rb′. Let Φ be the set of N′-formulae satisfied by a′. For every finite

sequence φ1(x), . . . , φn(x) of elements of Φ, a satisfies the N′-formula ψ(x) =

∃y(φ1(y) ∧ . . . ∧ φn(y) ∧ ±t(x, y)) in A, and so, for all b ∈ B′ such that

aRb, B |= ψ[b]. ψ(x) is an N′-formula only because Cop+Rel+TV allows

conjunction of relative clauses. By ω-saturation of B, there exists b′ ∈ B′

such that B |=
∧

φ(y)∈Φ φ[b′] ∧ ±t[b, b′]. That is, b′ satisfies precisely the

N′-formulae satisfied by a′, and hence a′Rb′.

5. Let a ∈ A′, let p be a unary predicate satisfied by a in A and let Φ be

the set of N′-formulae satisfied by a in A. Then for every finite sequence

of elements φ1(x), . . . , φn(x) of Φ, A |= p[a] ∧ φ1[a] ∧ . . . ∧ φn[a], and hence

A |= ∃x(p(x) ∧ φ1(x) ∧ . . . ∧ φn(x)) – a Cop+Rel+TV formula (since we

allow conjunction of relative clauses), which must therefore be true in B

also. So for each finite sequence of elements φ1(x), . . . , φn(x) of Φ, there

exists b ∈ B′ such that B |= p[b]∧φ1[b]∧ . . .∧φn[b], and so by ω-saturation

of B, there exists b ∈ B′ such that B |= p[b]∧
∧

φ(x)∈Φ φ[b]. Since Φ is closed

under negation, it follows that aRb.

6. Similar to 5.

Thus R is a Rel+TV-simulation, and so A ∼Rel+TV B.

Let Cop+Rel+TV∗ be the extension of Cop+Rel+TV with coordination of

complete sentences. In light of Lemmas 5.26 and 5.27, we can now prove

Theorem 5.28. A first-order formula φ is equivalent to a Cop+Rel+TV∗ formula

if and only if φ is invariant for Rel+TV-simulation.

Proof. Essentially the same as the proof of Theorem 5.6, save that, having built

structures A and B with the same Cop+Rel+TV∗ theory, we cannot immediately
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conclude that A ∼Rel+TV B. However, as every structure has an ω-saturated

elementary extension (by Theorem 3.16), we are able to construct elementary

extensions A∗ and B∗ of A and B respectively such that A∗ ∼Rel B∗, whence the

rest of the proof proceeds as earlier.

5.4.2 Cop+Rel+DTV

Let Cop+Rel+DTV be the fragment of English generated by the union of the

phrase structure rules of Cop+Rel with the rules DTV, together with the rule

of wh-movement as described in Chapter 4, Section 4.4.1, in much the same

way as Cop+Rel+TV was formed from Cop+Rel. An example sentence in

Cop+Rel+DTV is Every philosopher who is a stoic prefers every stoic to every cynic,

with the semantics

∀x(philosopher(x) ∧ stoic(x) → ∀y(stoic(y) → ∀z(cynic(z) → prefer(x, y, z))))

The remainder of this section proceeds along very similar lines to the preceding

section.

Definition 5.29. A formula φ(x) is a Cop+Rel+DTV N′-formula if

1. φ(x) is a Cop+Rel N′-formula, or

2. φ(x) is of one of the forms

π1(x) ∧Qy(π2(y) ∗ δ(x, y, c))

π1(x) ∧Qy(π2(y) ∧ ψ(y) ∗ δ(x, y, c))

π1(x) ∧ δ(x, c, d)

where (Q, ∗) ∈ {(∀,→), (∃,∧)}, c, d are constants, π1(x), π2(y) are Cop+Rel

N’-formulae, ψ(y) is a Cop+Rel+DTV N’-formula and δ(t1, t2, t3) is a literal

containing a ternary predicate and the terms t1, t2, t3 in some order.

3. φ(x) is of one of the forms

π(x) ∧Q1y(π1(y) ∗1 Q2z(π2(z) ∧ ψ2(z) ∗2 δ(x, y, z)))

π(x) ∧Q1y(π1(y) ∧ ψ1(y) ∗1 Q2z(π2(z) ∗2 δ(x, y, z)))

π(x) ∧Q1y(π1(y) ∗1 Q2z(π2(z) ∧ ψ2(z) ∗2 δ(x, y, z)))

π(x) ∧Q1y(π1(y) ∧ ψ1(y) ∗1 Q2z(π2(z) ∧ ψ2(z) ∗2 δ(x, y, z)))

where (Q1, ∗1), (Q2, ∗2) ∈ {(∀,→), (∃,∧)}, π(x), π1(y), π2(z) are Cop+Rel

N’-formulae, ψ1(y), ψ2(z) are Cop+Rel+DTV N’-formulae and δ(t1, t2, t3)



CHAPTER 5. THE COPULA, RELATIVE CLAUSES AND VERBS 120

is a literal containing a ternary predicate and the terms t1, t2, t3 in some

order.

A formula φ is a Cop+Rel+DTV N′-formula if it is of one of the forms ±p(c),

±d(c, d, e), ∀x(ψ1(x) → ±ψ2(x)) or ∃x(ψ1(x) ∧ ±ψ2(x)), where c, d, e are con-

stants, d is a ternary predicate and ψ1(x), ψ2(x) are Cop+Rel+DTV N′-formulae,

with ψ1(x) not one of the forms in 2 above.

It should come as no surprise that Cop+Rel+DTV strictly extends Cop+Rel,

nor that it has different expressive power to both Cop+TV and Cop+Rel+TV –

that is, there are structures which can be distinguished by Cop+Rel+DTV but

not by Cop(+Rel)+TV, and vice versa. The generation of relevant examples is

routine.

Semantic Complexity

In [60], it was shown that the obvious extension of Cop+Rel+DTV with transi-

tive verbs, Cop+Rel+TV+DTV (to which we return later) has a NEXPTIME-

complete satisfiability problem. Since Cop+Rel+DTV is by definition a subfrag-

ment of Cop+Rel+TV+DTV, its satisfiability problem is certainly also decidable

in NEXPTIME.

The NEXPTIME-hardness part of the proof in [60] involves the reduction

of a known NEXPTIME-hard satisfiability problem to an equisatisfiable set of

sentences in Cop+Rel+TV+DTV. The set of sentences required are all of one of

the following forms.

Every p1 which is a p2 ds every p3 which is a p2 to every p4

Every p1 which is (not) a p2 is a p3

Every p1 ds some p2 to every p3

No p1 ds any p2 to every p3

Every p1 ds every p2 to every p3

No p1 is a p2

Some p1 is a p1

Since none of those sentences involve any transitive verbs, they are all in fact

sentences in Cop+Rel+DTV, and so we can conclude:

Theorem 5.30. The satisfiability problem for Cop+Rel+DTV is NEXPTIME-

complete.
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Expressive Power

We make the same extension to Cop+Rel+DTV as we did to Cop+Rel+TV, and

allow the conjunction of nominal phrases. Since both fragments have very similar

sentence structure, it should come as no surprise that the required definitions are

also similar.

Definition 5.31. Let A and B interpret a signature Σ = (C, P,D) consisting

of constants C, unary predicates P and ternary relations D. Let A′ be the

subset of A such that every a ∈ A′ either satisfies some unary predicate or is the

interpretation of some constant in A, and likewise for B′. A Rel+DTV-simulation

R ⊆ A′ × B′ is a relation satisfying the following conditions:

1. for every constant c, cARcB.

2. for all a ∈ A′, b ∈ B′ such that aRb, tpA[a] = tpB[b],

3. for all a ∈ A′, b ∈ B′ such that aRb, and every pair of constants c, c′ ∈ C,

tpA[a, cA, c′A] = tpB[b, cB, c′B],

4. for all a ∈ A′, b ∈ B′ such that aRb, every c ∈ C and every d ∈ D,

(a) if, for some a′ ∈ A′, A |= d(a, a′, cA), then for some b′ ∈ B′ such

that a′Rb′, B |= d(b, b′, cB), and similarly for every permutation of the

order of the arguments of d.

(b) if, for some b′ ∈ B′, B |= d(b, b′, cB), then for some a′ ∈ A′ such that

a′Rb′, A |= d(a, a′, cA), and similarly for every permutation of the order

of the arguments of d.

5. for all a1 ∈ A′, b1 ∈ B′ such that a1Rb1, and every d ∈ D,

(a) if, for some a2, a3 ∈ A′, A |= ±d[a1, a2, a3] , then for some b2, b3 ∈ B′

such that a2Rb2, a3Rb3, B |= ±d[b1, b2, b3], and similarly for every

permutation of the order of the arguments of d.

(b) if, for some b2, b3 ∈ B′, B |= ±d[b1, b2, b3] , then for some a2, a3 ∈ A′

such that a2Rb2, a3Rb3, A |= ±d[a1, a2, a3], and similarly for every

permutation of the order of the arguments of d.

6. for all a ∈ A′, there exists b ∈ B′ such that aRb,
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7. for all b ∈ B′, there exists a ∈ A′ such that aRb,

A and B are Rel+DTV-similar, written A ∼Rel+DTV B, if some R ⊆ A′ × B′

is a Rel+DTV-simulation.

Lemma 5.32. If A ∼Rel+DTV B, then A and B agree on all Cop+Rel+DTV-

formulae.

Proof. Essentially the same as the proof of Lemma 5.26.

Lemma 5.33. Let A and B be ω-saturated structures which agree on all formulae

in Cop+Rel+DTV. Then A ∼Rel+DTV B.

Proof. Define R ⊆ A′ ×B′ as follows:

R = {(a, b) | a ∈ A′, b ∈ B′, and for all N′-formulae φ(x),

A |= φ[a] iff B |= φ[b]}

We show that R is a Rel+DTV-simulation. Most of the clauses in Definition

5.31 can be shown to hold of R via similar arguments to those employed in the

proof of Lemma 5.27. The only slightly more complicated case is 4. We prove

part 4a here – 4b then follows by symmetry of A and B.

Let a1, a2 ∈ A′, c ∈ C such that A |= δ[a1, a2, c
A]. By 6, there are b1, b2 ∈ B′

such that a1Rb1, a2Rb2 and so by definition of R, a1 and b1 satisfy the same N′-

formulae, as do a2 and b2. In particular, let π1(x), π2(y) be Cop+Rel N′-formulae

fixing the 1-types of a1, a2, respectively. Then π1(x) ∧ ∃y(π2(y) ∧ δ(x, y, c))

and π2(x) ∧ ∃y(π1(y) ∧ δ(x, y, c)) are N′-formulae satisfied by a1 and a2, re-

spectively, and so are satisfied by b1 and b2, respectively, in B. It follows that

B |= δ[b1, b2, c
B], as required, and the result holds.

By the now-familiar argument, we can show:

Theorem 5.34. Let Cop+Rel+DTV∗ be the fragment Cop+Rel+DTV extended

with coordination of complete sentences. Then a first-order formula φ is equiva-

lent to a formula in Cop+Rel+DTV∗ if and only if φ is invariant for Rel+DTV-

simulation.
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5.4.3 Cop+Rel+TV+DTV

As alluded to in the previous section, Cop+Rel+TV+DTV is the fragment of

English generated by the union of the grammar of Cop+Rel+TV with the rules

DTV. So, for example, the sentence Every stoic who knows some epicurean prefers every

epicurean to every cynic is in Cop+Rel+TV+DTV, and is assigned the semantics

∀x(stoic(x) ∧ ∃y(epicurean(y) ∧ know(x, y)) →

∀y(epicurean(y) → ∀z(cynic(z) → prefer(x, y, z)))).

The fragment of logic generated from Cop+Rel+TV+DTV is that generated by

the obvious combination of Definitions 5.22 and 5.29 in a similar manner to the

definitions of both Cop+Rel+TV and Cop+Rel+DTV.

It is trivial to show that Cop+Rel+TV+DTV offers a strict increase in ex-

pressive power over all fragments considered so far.

Semantic Complexity

In [60], the following result was proved.

Theorem 5.35. Satisfiability in Cop+Rel+TV+DTV is NEXPTIME-complete.

Expressive Power

Owing to the structure of Definitions 5.25 and 5.31, expressive power results for

Cop+Rel+TV+DTV are surprisingly straightforward. First, we add conjunction

of relative clauses to Cop+Rel+TV+DTV, and then proceed as before.

Definition 5.36. Let Σ = (C, P, T,D) be a signature consisting of constants C,

unary predicates P , binary relations T and ternary relations D. Let A,B be

structures interpreting Σ, let A′ be the subset of A such that every a ∈ A′ either

satisfies some unary predicate or is the interpretation of some constant in A, and

likewise for B′, and let R ⊆ A′×B′. We say that R is a Rel+TV+DTV-simulation

if

1. R is a Rel+TV-simulation.

2. R is a Rel+DTV-simulation.
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Structures A and B are Rel+TV+DTV-similar, written A ∼TV+DTV B, if some

R ⊆ A′ × B′ is a Rel+TV+DTV-simulation.

Lemma 5.37. If A ∼TV+DTV B, then A and B agree on all Cop+Rel+TV-DTV-

formulae.

Proof. Essentially the same as the proofs of Lemmas 5.26 and 5.32.

Lemma 5.38. Let A and B be ω-saturated structures which agree on all formulae

in Cop+Rel+TV+DTV. Then A ∼TV+DTV B.

Proof. Essentially the same as the proofs of Lemmas 5.27 and 5.33.

We can therefore conclude

Theorem 5.39. Let Cop+Rel+TV+DTV∗ be the fragment Cop+Rel+TV+DTV

extended with coordination of complete sentences. Then a first-order formula φ

is equivalent to a formula in Cop+Rel+TV+DTV∗ if and only if φ is invariant

for Rel+TV+DTV-simulation.

Of course, all of the preceding results, from Lemma 5.26 onwards, depend on

the assumption that arbitrary finite conjunction of relative clauses is allowed. It

might be hoped, of course, either that some version of these results which did

not rely on such an assumption, or a result similar to Theorem 5.20 showing its

necessity, might be found. Currently, the question remains open.

However, in a certain sense, the assumption of arbitrary relative clause con-

junction can be seen as logically harmless, as it is possible, using only sentences in

Cop+Rel+TV(+DTV), to “define out” the coordinations necessary for the proofs

of Lemmas 5.26 and 5.27 (or Lemmas 5.32 and 5.33, or Lemmas 5.37 and 5.38),

provided we allow extensions to the relevant signature Σ. For every N′-formula

φ(x) over Σ corresponding to a relative clause, let pφ be a fresh unary predicate

symbol, and let ψφ
1 = ∀x(pφ(x) → φ(x)) and ψφ

2 = ∀x(φ(x) → pφ(x)). Let Q be

the set of pφ for all φ(x).

For every φ(x), both ψφ
1 and ψφ

2 are Cop+Rel+TV(+DTV)-formulae over Σ

extended with Q.

Now, let φ1(x) and φ2(x) be any N′-formulae over Σ corresponding to rel-

ative clauses, and let φ be any formula in Cop+Rel+TV(+DTV) over Σ con-

taining φ1(x) ∧ φ2(x) as a subformula. Then pφ1
, pφ2

∈ Q. Let φ′ be the re-

sult of replacing every occurrence of φ1(x) ∧ φ2(x) in φ with pφ1
(x) ∧ pφ2

(x).
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Clearly, φ′, ψφ1

1 , ψ
φ2

1 , ψ
φ1

2 , ψ
φ2

2 together entail φ, and any structure A in which φ

holds can be extended to a structure A′ interpreting both Σ and Q such that

A and A′ have the same Cop+Rel+TV(+DTV) theories over Σ and such that

A′ |= φ′ ∧ ψφ1

1 ∧ ψφ2

1 ∧ ψφ1

2 ∧ ψφ2

2 . By repeating this process as necessary, we

can ensure that every Cop+Rel+TV(+DTV) formula involving the conjunction

of N′-formula needed in the proofs of the relevant lemmas can be replaced with

Cop+Rel+TV(+DTV)-formulae over Σ∪Q not involving the conjunction of N′-

formulae, without harming the outcome of the proof.

Every new formula used for this “defining out” process is clearly a member of

Cop+Rel+TV(+DTV), so it does not seem too far-fetched to claim that we have

not exceeded the expressive-power bounds of Cop+Rel+TV(+DTV) in proving

the foregoing results.

5.5 Conclusion

In this chapter, we have investigated both the semantic complexity and the ex-

pressive power of a range of fragments of English constructed from simple, every-

day grammatical constructions. The main contributions are the purely-semantic

characterisations of each fragment given in Theorems 5.6, 5.12, 5.21, 5.28, 5.34,

5.39, the semantic complexity result for Cop+TV(+DTV) in Theorem 5.8 and

the method given in Section 5.2 for the automatic generation of a truth-preserving

relation on structures for arbitrary finite fragments satisfying certain properties.

Table 5.5 summarises the semantic complexity results. Figure 5.5 summarises

the comparative expressive powers of the fragments studied. A solid line between

two fragments indicates that the lower fragment is strictly more expressive than

the fragment above it, and a dashed line indicates that two fragments have sim-

ply different expressive powers, with neither capable of distinguishing all pairs of

situations distinguishable by the other.

In the following chapter, we proceed to extend each of the fragments consid-

ered in this chapter with various levels of subsentential coordination and prove

semantic complexity results in each case.
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Fragment Complexity
Cop PTIME
Cop+TV PTIME
Cop+TV+DTV PTIME
Cop+Rel NP-complete
Cop+Rel+TV EXPTIME-complete
Cop+Rel+DTV NEXPTIME-complete
Cop+Rel+TV+DTV NEXPTIME-complete

Table 5.1: Summary of semantic complexity results

Cop

Cop+TV Cop+Rel

Cop+TV+DTV Cop+Rel+TV Cop+Rel+DTV

Cop+Rel+TV+DTV

Figure 5.6: Comparative expressive powers



Chapter 6

Coordination

You may call it combination, you may call it the accidental and fortuitous concurrence of atoms.

— Lord Palmerston, on a projected Palmerston-Disraeli coalition, 5 March 1857

In this chapter, we take each of the fragments considered in the preceding

chapter, and extend their grammars with rules for a variety of forms of coordi-

nation. That is to say, we separately extend each fragment in turn with rules for

coordination of full sentences, noun phrases, nominal phrases, relative clauses,

predicate phrases and verbs. For each fragment so generated, we analyse its se-

mantic complexity. Questions of the expressive power of each of these fragments

remain open.

6.1 Sentences

We have already mentioned the fragments obtained by extending the fragments

of Chapter 5 with rules for the coordination of sentences. Each of the starred

fragments used in the Invariance Theorems in the previous chapter is of this kind.

Let sentence coordination be defined by the phrase structure rules

IP/φ ∧ ψ → IP/φ,and,IP/ψ

IP/φ ∨ ψ → IP/φ,or,IP/ψ

subject to the restriction that no coordinated IP contains an unbound wh-trace.

The reason for this restriction is simply to rule out examples such as *Every man

who admires some stoic and some cynic despises. We return to the coordination of

relative clauses later, in Section 6.4.

127
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IP
∀x(man(x) → mortal(x)) ∧ ∃x(man(x) ∧ ¬mortal(x))

IP
∀x(man(x) → mortal(x))

Every man is a mortal

and
IP

∃x(man(x) ∧ ¬mortal(x))

some man is not a mortal

Figure 6.1: Structure of a simple Cop∗-sentence

Now let F be any decidable fragment of English, of those defined in the pre-

vious chapter, which does not contain sentence coordination, and let F∗ be the

extension of F with the above rules. For example, Figure 6.1 shows the derivation

of a sentence and its semantics in Cop∗.

We give a decision procedure for F∗.

Theorem 6.1. Let F and F∗ be as above. Then the satisfiability problem for F∗

is decidable.

Proof. Let E be any set of F∗-sentences and let Φ be the set of translations of E

into first-order logic. We can, by definition of F∗, write Φ in the form

(φ1,1 ∨ . . . ∨ φ1,n1
) ∧ (φ2,1 ∨ . . . ∨ φ2,n2

) ∧ . . . ∧ (φm,1 ∨ . . . ∨ φm,nm
)

where for all 1 ≤ i ≤ m, 1 ≤ j ≤ ni, φi,j is an F-formula.

To determine the satisfiability of Φ, simply guess an assignment of truth values

to each φi,j such that for all 1 ≤ i ≤ m, there is at least one j, 1 ≤ j ≤ ni such

that φi,j is assigned “true”. We can write this assignment as a set of F-formulae

Ψ = {±φ1,1, . . . ,±φm,nm
} such that for all 1 ≤ i ≤ m, 1 ≤ j ≤ ni, φi,j ∈ Ψ if φi,j

is assigned “true”, and ¬φi,j ∈ Ψ otherwise.

Since F is decidable, we can decide the satisfiability of Ψ. If it is satisfiable,

then Φ is satisfiable. Otherwise, try again.

The above procedure forms a non-deterministic algorithm for deciding the

satisfiability of E.

The non-determinism of the above algorithm only has a visible effect on the

complexity of satisfiability for the smallest among our fragments.
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Theorem 6.2. Let F be one of Cop, Cop+TV or Cop+TV+DTV, and let F∗

be the result of extending F with sentence coordination. Then the satisfiability

problem for F∗ is NP-complete.

Proof. Membership in NP is easily shown. In the notation of Theorem 6.1, guess-

ing the assignment leading to the construction of Ψ takes no more than polynomial

time, and for each of the listed fragments, the satisfiability of Ψ can be checked

in polynomial time.

To show NP-hardness, we reduce propositional satisfiability to satisfiability in

Cop∗, thus establishing the result for all of the listed fragments. It is well known

that it is only necessary to consider a set Φ of propositional clauses all of the

forms P ∨Q, ¬P ∨ ¬Q or ¬P ∨ ¬Q ∨ R, where P,Q,R are proposition letters.

Let c be a constant and for each proposition letter P , let p be a unary predicate

symbol. Let Ψ be the result of replacing every occurrence of every proposition

letter P in Φ with the atom p(c). Thus Ψ consists only of clauses of the forms

p(c) ∨ q(c), ¬p(c) ∨ ¬q(c) or ¬p(c) ∨ ¬q(c) ∨ r(c), and every element of Ψ is a

Cop∗-formula. It is straightforward to show that Φ and Ψ are equisatisfiable, and

so satisfiability in Cop∗ is NP-hard.

Theorem 6.3. Let F be any of the fragments of Chapter 5 containing relative

clauses, and let F∗ be the result of extending the grammar of F with sentence

coordination. Then the satisfiability problem for F∗ has the same complexity as

the satisfiability problem for F.

Proof. The satisfiability problem for Cop+Rel is NP-complete, and so the non-

determinism of the algorithm in the proof of Theorem 6.1 makes no difference to

complexity.

All of the remaining fragments have a satisfiability problem which is at best

in EXPTIME. In the notation of the proof of Theorem 6.1, all the possibilities for

the construction of Ψ can be attempted in deterministic exponential time, and

so again, complexity is unaffected.

6.2 Noun Phrases

We now turn to forms of subsentential coordination, beginning with that of noun

phrases.
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IP
∀x(man(x) → man(x)) ∧ ∀y(woman(y) → ¬man(y))

NP
λp[∀x(man(x) → p(x)) ∧ ∀y(woman(y) → ¬p(y))]

NP
λq[∀x(man(x) → q(x))]

Det
λpλq[∀x(p(x) → q(x))]

Every

N
λx[man(x)]

man

Coord

and

NP
λq[∀y(woman(y) → ¬q(y))]

Det
λpλq[∀y(p(y) → ¬q(y))]

no

N
λy[woman(y)]

woman

I′

λx[man(x)]

is a man

Figure 6.2: Structure of a simple Cop+NPCoord-sentence



CHAPTER 6. COORDINATION 131

Let F be one of the fragments of Chapter 5. We let F+NPCoord be the

fragment obtained by extending the grammar of F with the following rules.

NP/λp[φ(p) ∧ ψ(p)] → NP/φ,and,NP/ψ

NP/λp[φ(p) ∨ ψ(p)] → NP/φ,or,NP/ψ

subject to the restriction that no NPs containing an unbound wh-trace can be

coordinated.

It is easily verified that these rules give the appropriate semantics to coordi-

nations of NPs. Figure 6.2 shows an example in Cop+NPCoord.

For the sake of simplicity, we ignore issues of number agreement for coordi-

nated NPs. In any example sentences in which it matters, we silently replace

ungrammatical constructions such as *Socrates and Plato is a mortal with Socrates

and Plato are mortals without comment. We also exclude from the content lexicon

any relational nouns, in order to rule out sentences such as Tom, Dick and Harry

are brothers – while grammatical, such sentences have quite different semantics

and do not properly belong in any of the fragments we consider here. We do not

trouble ourselves either to handle the elided coordinator between, for example,

Tom and Dick in the preceding example. The semantics are identical whether we

perform the elision or not.

Each F+NPCoord generates a fragment of logic in the usual way. We may

therefore ask what the semantic complexity of each fragment is.

Theorem 6.4. The satisfiability problem for Cop+NPCoord is NP-complete.

Proof. Membership in NP follows immediately from the observation that coordi-

nation of subject NPs, which is all that can occur in Cop+NPCoord, generates

semantics identical to those of a coordination of sentences in Cop. The com-

putation of semantics in Figure 6.2 demonstrates why this claim is true; every

such computation must proceed in a similar manner. Theorem 6.2 then gives

membership in NP.

To show NP-hardness, we reduce a special case of propositional satisfiability

to satisfiability in Cop+NPCoord. We can restrict attention to propositional

clauses of the forms ¬P ∨ ¬Q ∨ ¬R or P ∨ Q, where P,Q,R are proposition

letters, without affecting NP-hardness (see, e.g., [46]). Let Φ be any set of such

clauses, and for every proposition letter P occurring in Φ, let p be a proper noun.

Let t be a common noun, and let Eφ be the set of Cop+NPCoord-sentences

produced by translating the elements of Φ as follows.
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¬P ∨ ¬Q ∨ ¬R p or q or r is not a t ¬t(p) ∨ ¬t(q) ∨ ¬t(r)

P ∨Q p or q is a t t(p) ∨ t(q)

Let Ψ be the set of translations of elements of Eφ into first-order logic. Then

Φ and Ψ differ in size by only a constant factor and are visibly equisatisfiable.

The NP-hardness, and thus NP-completeness, of the satisfiability problem for

Cop+NPCoord follows.

Unfortunately, the precise semantic complexities of Cop+TV+NPCoord and

Cop+TV+DTV+NPCoord are not yet known, although we can give the following

partial results.

Theorem 6.5. The satisfiability problem for Cop+TV+NPCoord is at best NP-

hard, and is decidable in EXPTIME.

Proof. NP-hardness is immediate, since every Cop+NPCoord-formula is also in

Cop+TV+NPCoord.

To see membership in EXPTIME, we make several observations. Note first

that, as above, all coordination of subject NPs in Cop+TV+NPCoord generate

sentences in Cop+TV∗.

Sentences containing conjunctions of object NPs are also equisatisfiable with

sentences in Cop+TV∗. Consider any sentence S of the form NP1 ts NP2 and NP3.

If NP1 is a proper noun, or is not specified by the determiner some, then S is

equivalent to NP1 ts NP2 and NP1 ts NP3. Otherwise, NP1 is of the form some N’,

and S is equisatisfiable with c ts NP2 and c ts NP3, where c is a fresh common

noun. (In terms of logic, we can Skolemise the interpretation of NP1.)

As for disjunctions of object NPs, every sentence of the form NP1 ts NP2 or

NP3 is equisatisfiable with a sentence containing relative clauses of the form NP1

who does not t NP2 ts NP3 or NP1 who does not t NP3 ts NP2 if NP1 is not a proper

noun, and with a sentence of the form NP1 ts NP2 or NP1 ts NP3 otherwise.

Of course, when applied to NP disjunctions with more than two disjuncts,

this rewriting could lead to sentences such as

Every man [ who does not admire Tom ]

[ who does not admire Dick]

admires Harry

with both relative clauses qualifying man – a construction we explicitly noted was

ungrammatical in Chapter 4, Section 4.4.1. However, by introducing fresh unary
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predicates as in Chapter 5, Section 5.4, we can always eliminate such sentences

without affecting the problem size significantly.

Thus every Cop+TV+NPCoord-sentence can be rewritten in polynomial time

as an equisatisfiable sentence in Cop+Rel+TV∗. Since satisfiability in the latter

fragment is in EXPTIME, so is satisfiability in the former.

Theorem 6.6. The satisfiability problem for Cop+TV+DTV+NPCoord is at best

NP-hard, and is decidable in NEXPTIME.

Proof. Very similar to the proof of Theorem 6.5.

For the remaining fragments, the addition of NP coordination has no effect

on semantic complexity.

Theorem 6.7. The satisfiability problem for Cop+Rel+NPCoord is NP-complete.

Proof. Observe that every NP in a Cop+Rel+NPCoord-sentence occurs in sub-

ject position, and so just as for the earlier cases, each Cop+Rel+NPCoord-

sentence can be rewritten as a sentence in Cop+Rel∗. NP-completeness follows

from Theorems 5.15 and 6.3.

Theorem 6.8. Cop+Rel+TV+NPCoord has an EXPTIME-complete satisfiabil-

ity problem, whereas the satisfiability problems for Cop+Rel+DTV+NPCoord and

Cop+Rel+TV+DTV+NPCoord are both NEXPTIME-complete.

Proof. By introducing new unary predicates where necessary, sentences in any

of the listed fragments can be rewritten so that NP coordinations do not occur

within relative clauses. But then the rewriting methods of the proof of Theorem

6.5 apply, leading to equisatisfiable sentences containing no NP coordination, but

featuring relative clauses and sentence coordination. Each of the above fragments

already contains relative clauses, and the addition of sentence coordination has no

effect on semantic complexity, as shown in Theorem 6.3. The result then follows

from Theorems 5.24, 5.30 and 5.35.

6.3 Nominals

Let us move within the noun phrase now, and consider what happens when we

allow the coordination of nominal phrases. That is, what is the logical effect of

allowing phrases such as every man or woman and some scholar and gentleman?
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IP
∀x((scholar(x) ∧ gentleman(x)) → philosopher(x))

NP
λq[∀x((scholar(x) ∧ gentleman(x)) → q(x))]

Det
λpλq[∀x(p(x) → q(x))]

Every

N
λx[scholar(x) ∧ gentleman(x)]

N
λx[scholar(x)]

scholar

and
N

λx[gentleman(x)]

gentleman

I′

λx[philosopher(x)]

is a philosopher

Figure 6.3: Structure of a simple Cop+N′Coord-sentence

We need to take some care with the choice of examples here. We wish to

restrict attention to cases where, semantically, the coordination takes place be-

tween the denotations of nominals. So some scholar and gentleman refers to an

entity which is both a scholar and a gentleman. Different choices of common

noun rule out this kind of reading, for external reasons: every man and woman is

usually read as every man and every woman rather than every thing which is both a

man and a woman, and is semantically closer to NP coordination. We take it that

this interpretation is forced by world knowledge regarding men and women rather

than by any syntactic property. So we must take care to select example phrases

and sentences which do allow the desired reading.

The following annotated phrase structure rules suffice to generate the correct

phrases when added to any of our list of fragments.

N′/λx[φ(x) ∧ ψ(x)] → N′/φ,and,N′/ψ

N′/λx[φ(x) ∨ ψ(x)] → N′/φ,or,N′/ψ

If F is a fragment of English, let F+N′Coord be the fragment generated by ex-

tension of the grammar of F with the above rules. Figure 6.3 shows the structure

of a sentence in Cop+N′Coord, along with its generated semantics.

We can show upper bounds for the semantic complexity of all fragments con-

taining N′ coordination at once: the proof does not depend in the particular
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properties of any fragment. So, let F+N′Coord be as above, and let F+Rel be F

extended with relative clauses, if it does not already contain them.

Theorem 6.9. For every fragment F in Chapter 5, the satisfiability problem for

F+N′Coord reduces to the satisfiability problem for F+Rel.

Proof. Let F be any of the relevant fragments, and let Φ be an arbitrary set

of F+N′Coord-formulae. If φ ∈ Φ is the semantic interpretation of a sentence

containing N′ coordination, then φ must contain a subformula φ(x) of the form

φ1(x) ∨ φ2(x) or φ1(x) ∧ φ2(x), where φ1(x), φ2(x) are either of the same form as

φ(x), or are N′-formulae in the fragment F. We rewrite each such φ in the usual

way, as follows.

Suppose that φ contains a subformula φ(x) of the form φ1(x)∨φ2(x). Let p be

a fresh unary predicate, let ψ be the result of replacing every occurrence of φ(x)

in φ with p(x) and let Ψp be the defining clause ∀x(p(x)∧¬φ1(x) → φ2(x). Then

the set of formulae Ψ = (Φ \ {φ}) ∪ {ψ,Ψp} is equisatisfiable with Φ. A similar

rewriting can be performed for all φ(x) = φ1(x) ∧ φ2(x) occurring in Φ. We can

repeat this process until we obtain an equisatisfiable set Ψ∗ only polynomially

larger than Φ. By construction, every formula in Ψ∗ is an F+Rel-formula, and

the result follows.

For each fragment already containing relative clauses, Theorem 6.9 also gives

a lower bound.

Theorem 6.10. The satisfiability problem for

1. Cop+Rel+N′Coord is NP-complete.

2. Cop+Rel+TV+N′Coord is EXPTIME-complete.

3. Cop+Rel+DTV+N′Coord is NEXPTIME-complete.

4. Cop+Rel+TV+DTV+N′Coord is NEXPTIME-complete.

Proof. Immediate from Theorem 6.9 and the relevant theorems in Chapter 5.

It turns out that extending Cop with N′ coordination also yields the same

lower complexity bound as the corresponding extension with relative clauses.

Theorem 6.11. The satisfiability problem for Cop+N′Coord is NP-complete.
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Proof. In [58], satisfiability in Cop+Rel is shown to be NP-hard by the reduction

of propositional satisfiability to the satisfiability of sentences in Cop (which are

also therefore in Cop+N′Coord) and Cop+Rel-sentences of the forms

Every p which is not a q is an r

Every p which is a q is an r

where p, q and r are common nouns. But these sentences are easily shown to be

equivalent to Cop+N′Coord-sentences of the forms

Every p is an r or q

Every p and q is an r

respectively. Thus the satisfiability problem for Cop+N′Coord is NP-hard, and

thus NP-complete.

For the remaining fragments Cop+TV and Cop+TV+DTV, the question of

a lower complexity bound remains open.

6.4 Relative Clauses

Given that the determiners every, some and no cannot be coordinated with each

other – *every and some man makes little sense – the only other element of the noun

phrase which can be coordinated (among the fragments we consider, at least) is

the relative clause. In this section, then, we study the effects of allowing phrases

such as every stoic who admires some cynic or whom some platonist despises.

In order to allow wh-movement to operate correctly, we interpret such phrases

as being generated by the coordination of CPs, as in

[NP every stoic [CP [CP whoi ti admires every cynic ] and

[CP whomj some platonist despises tj ]]]

The other possible position for relative clause coordination is at the level of

the embedded IP, but the data seem to argue against this option:

[NP *every stoic [CP whoi [IP [IP ti admires every cynic ] and

[IP some platonist despises ti ]]]]
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IP
∀x(philosopher(x) ∧ (¬stoic(x) ∨ ¬platonist(x)) → cynic(x))

NP
λq[∀x(philosopher(x) ∧ (¬stoic(x) ∨ ¬platonist(x)) → q(x))]

Det
λpλq[∀x(p(x) → q(x))]

Every

N′

λx[philosopher(x) ∧ (¬stoic(x) ∨ ¬platonist(x))]

N
λx[philosopher(x)]

philosopher

CP
λpλx[p(x) ∧ (¬stoic(x) ∨ ¬platonist(x))]

CP
λpλx[p(x) ∧ ¬stoic(x)]

who is not a stoic

and
CP

λpλx[p(x) ∧ ¬platonist(x)]

who is not a platonist

I′

λx[cynic(x)]

is a cynic

Figure 6.4: Structure of a simple Cop+Rel+CPCoord sentence
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One possible reason for the ungrammaticality of this example is that, since

it occurs in both subject and object positions, the trace ti cannot be assigned a

unique case.

We therefore generate coordinations of relative clauses using the following

rules

CP/λpλx[(φ(p))[x] ∧ (ψ(p))[x]] → CP/φ,and,CP/ψ

CP/λpλx[(φ(p))[x] ∨ (ψ(p))[x]] → CP/φ,or,CP/ψ

In the usual way, for each fragment F, let F+CPCoord be the fragment gener-

ated by adding these rules to the grammar of F. Figure 6.4 shows the structure of

a sentence containing relative clause coordination, and the semantics generated

for it.

Of course, it only makes sense to add relative clause coordination to fragments

which already contain relative clauses. We thus only look at the appropriate ex-

tensions of Cop+Rel, Cop+Rel+TV, Cop+Rel+DTV and Cop+Rel+TV+DTV.

Given all the results so far in this chapter, it ought not to come as much of a

surprise that semantic complexity is unaffected in any of these cases.

Theorem 6.12. Let F be one of the fragments listed above. Then the semantic

complexity of F+CPCoord is the same as the semantic complexity of F.

Proof. By construction of each F, every occurrence of CP coordination is in a

phrase of the form

[N ′ p [CP [CP who(m) . . . ] and/or

[CP who(m) . . . ]]]

where p is some common noun. But clearly, every such phrase can be equivalently

replaced with a phrase

[N ′ [N ′ p [CP who(m) . . . ] ] and/or

[N ′ p [CP who(m) . . . ]]]

since the semantics of each coordinate in both of these are forced to have the

same single free variable, which is therefore bound by a single quantifier. The

reduction used in the proof of Theorem 6.9 applies, so that each F+CPCoord is a

subfragment of F+Rel, which is the same as F for all of the cases listed here.
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6.5 Predicate phrases

The preceding sections have exhausted the possibilities for coordination within

the noun phrase. We now move on to consider coordination between other el-

ements of the sentence: the copula, verb phrases and, within the VP, the verb

itself.

In all of the fragments of English we have studied, the only methods of predi-

cation of a subject are via the copula, or a verb phrase (in those fragments which

contain verbs.) Rather than dealing with coordination of these constituents sepa-

rately, we consider them together, under the banner of “predicate coordination”.

Both the copula and the verb phrase, and their negations, are immediately

dominated by the same category in our grammars: they are both daughters of I′,

which in each case takes its semantics unmodified from its Cop or VP daughter.

We may thus handle both Cop and VP coordination in a uniform way, as I′

coordination. The following rules suffice.

I′/λx[φ(x) ∧ ψ(x)] → I′/φ,and,I′/ψ

I′/λx[φ(x) ∨ ψ(x)] → I′/φ,or,I′/ψ

I′ coordinations can occur within relative clauses, as in

Every stoic who [I′ [I′ admires some cynic ] and

[I′ despises some platonist]].

To handle examples such as these, we need to modify our account of wh-

movement slightly. Let us allow more than one relative pronoun to be moved

into the same CSpec position, provided that no two such relative pronouns origi-

nate within the same IP, and that each begins with the same role, either subject

or object, within its initial IP. In order to satisfy the Coordinate Structure Con-

straint, we must also restrict I′ coordination so that if any one coordinate contains

an unbound wh-trace, then so do all of its sister coordinates. Figure 6.5 shows

the structure of a sentence containing I′ coordination, including the modified

wh-movement.

If F is any of the fragments of Chapter 5, let F+I′Coord be the result of

extending the grammar of F with the above rules.

Theorem 6.13. Let F be any one of the fragments of Chapter 5. The satisfiability

problem for F+I′Coord is reducible to the satisfiability problem for F+Rel∗.



CHAPTER 6. COORDINATION 140

IP
∀x(mortal(x) → (man(x) ∨ woman(x)))

NP
λq[∀x(mortal(x) → q(x))]

Every mortal

I′

λx[man(x) ∨ woman(x)]

I′

λx[man(x)]

is a N
λx[man(x)]

man

or
I′

λx[woman(x)]

is a N
λx[woman(x)]

woman

Figure 6.5: Structure of a simple Cop+I′Coord-sentence

Proof. We show only the case where I′ coordinations are not embedded within

a relative clause: the embedded case is trivially reducible to CP coordination,

which as we noted in the proof of Theorem 6.12 is reducible to ordinary relative

clauses. We also assume, for both ease of presentation and linguistic nicety, that

no “mixed” coordinations occur – that is, we do not encounter sentences such as

?Socrates is a man or is a mortal and admires some cynic. Nothing essential changes

in the following proof, however, if such sentences are admitted.

So, let F be any fragment, and suppose we have an F+I′Coord sentence S

meeting the aforementioned conditions and containing I′ coordination. S then

consists of a subject NP s and an I′ coordination I′1 and/or . . . and/or I′n. If s is a

proper noun, then S is visibly equivalent to the F∗ sentence

s I′1 and/or . . . and/or s I′n.

Otherwise s is an NP headed by a common noun. If the main coordinator is and,

then S is equivalent to the sentence

s who I′1 . . . who I′n−1 I′n.

If the main coordinator is or, S is equivalent to the sentence

s who ¬I′1 . . . who ¬I′n−1 I′n
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where for 1 ≤ i ≤ n, ¬I′i is the negation of I′i according to the grammar of F.

As it stands, these generated sentences are not F+Rel-sentences, since they

may contain more than one relative clause qualifying the same noun. However,

they can be converted into equisatisfiable sets of F+Rel-sentences by introducing

fresh common nouns and defining-sentences of F in the usual way. Thus ev-

ery F+I′Coord-sentence can be rewritten as an equisatisfiable F+Rel∗-sentence.

Theorems 6.2 and 6.3 then give upper complexity bounds for each fragment

F+I′Coord.

For each fragment containing relative clauses, a lower complexity bound is

immediate from Theorem 6.3. We consider the remaining cases in turn.

Theorem 6.14. The satisfiability problem for Cop+I′Coord is NP-complete.

Proof. By the preceding theorem, satisfiability in Cop+I′Coord is decidable in

NP. The NP-hardness proof is very similar to the proof of Theorem 6.11: the

sentence-forms which we there rewrote in Cop+N′Coord, we must rewrite here in

Cop+I′Coord. The equivalences given below suffice.

Every p which is not a q is an r ↔ Every p is a q or is an r

Every p which is a q is an r ↔ Every p is an r or is not a q

where p, q and r are common nouns. NP-completeness is then immediate.

Theorem 6.15. The satisfiability problem for Cop+TV+I′Coord is EXPTIME-

complete.

Proof. Membership in EXPTIME follows from Theorem 6.13.

In Chapter 5, Section 5.4, we listed the sentence-forms needed to prove the

EXPTIME-hardness of Cop+Rel+TV. These consist of sentences in Cop+TV

(which are also therefore in Cop+TV+I′Coord), Cop+Rel-sentences of the forms

considered in the proof of the previous theorem (which can therefore be expressed

in Cop+TV+I′Coord) and Cop+Rel+TV-sentences of the form

Every p which ts some q is an r

where p, q, r are common nouns and t is a transitive verb. Any such sentence can

be rewritten as the equivalent Cop+TV+I′Coord sentence

Every p is an r or does not t some q

from which EXPTIME-completeness follows.
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Theorem 6.16. Cop+TV+DTV+I′Coord has a NEXPTIME-complete satisfia-

bility problem.

Proof. In Chapter 5, Section 5.4, we cited the NEXPTIME-hardness proof for

Cop+Rel(+TV)+DTV from [60], and gave a list of all Cop+Rel+DTV-sentences

required for that result. Rather than repeat them all here, we simply note that the

only sentence-form needed which is not already in Cop+TV+DTV+I′Coord, or,

by the proofs of the previous two theorems, is not already known to be expressible

in Cop+TV+DTV+I′Coord, is

Every p which is a q ds every r which is a q to every s

where p, q, r and s are common nouns and d is a ditransitive verb.

By introducing a fresh common noun t, we can replace all such sentences with

the equisatisfiable set of sentences

Every p ds every t to every s or is not a q

Every r is a t or is not a q

and hence derive NEXPTIME-completeness.

6.6 Verbs

The final form of coordination we consider is that of verbs, both transitive and

ditransitive. Is the semantic complexity of any of our fragments affected by the

admission of sentences such as Plato admires and respects Socrates?

We are, of course, restricted to consideration only of those fragments which

already contain verbs of some kind. Thus throughout this section, when we speak

of “a fragment F”, we mean any fragment of Chapter 5 except Cop and Cop+Rel.

The phrase structure rules which generate coordinations of verbs, and the

relevant semantic annotations, are straightforward.

TV/λsλx[(φ(s))[x] ∧ (ψ(s))[x]] → TV/φ,and,TV/ψ

TV/λsλx[(φ(s))[x] ∨ (ψ(s))[x]] → TV/φ,or,TV/ψ

DTV/λsλtλx[([φ(s)](t))[x] ∧ ([ψ(s)](t))[x]] → DTV/φ,and,DTV/ψ

DTV/λsλtλx[(φ(s))[x] ∨ (ψ(s))[x]] → DTV/φ,or,DTV/ψ
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IP
admire(plato, socrates) ∧ respect(plato, socrates)

NP
λp[p(plato)]

Plato

I′

VP
λy[admire(y, socrates) ∧ respect(y, socrates)]

TV
λsλy[s(λx[admire(y, x)]) ∧ s(λx′[respect(y, x′)])]

TV
λsλy[s(λx[ admire(y, x)])]

admires

and
TV

λs′λy′[s′(λx′[ respect(y′, x′)])]

respects

NP
λp[p(socrates)]

Socrates

Figure 6.6: Structure of a simple Cop+TV+VCoord-sentence



CHAPTER 6. COORDINATION 144

We only allow like-with-like coordination – transitive verb with transitive

verb, ditransitive with ditransitive. It may be possible to generalise slightly to

allow “right-node raised” constructions, such as Every girl admired, and gave a flower

to, some policeman, by treating the combination of a ditransitive verb, its direct

object and the preposition to, as a transitive verb. However, transitive verbs can

be simulated using ditransitive verbs and a “dummy” direct object proper noun:

simply replace sentences of the form NP1 ts NP2 with NP1 ts c to NPb2, where t

is a transitive verb (or a coordination of transitive verbs), t′ is ditransitive (or a

coordination of ditransitive verbs) depending on t and c is a proper noun. If the

same noun c is used in the rewriting of every sentence containing transitive verbs,

then satisfiability is clearly unharmed. Thus no higher semantic complexity can

result from generalising to “mixed” coordinations. For the sake, then, of keeping

the grammars simple, we stick to the basic cases.

For any fragment F, let F+VCoord be the result of extending the grammar

of F with the above rules. Figure 6.6 shows the structure and semantics of a

sentence containing verb coordination.

We determine the semantic complexity in each case.

Theorem 6.17. The satisfiability problem for Cop+TV+VCoord is NP-complete.

Proof. To show membership in NP, let E be a set of Cop+TV+VCoord-sentences,

and let Φ be the result of translating E into first-order logic. By the introduction

of fresh binary predicates where necessary, Φ can be converted in polynomial time

into an equisatisfiable set Φ′ = Φ1 ∪ Φ2, where Φ1 is a set of Cop+TV-formulae,

and Φ2 contains only formulae of the forms

∀x∀y(t1(x, y) → t2(x, y))

∀x∀y(t1(x, y) → t2(x, y) ∨ t3(x, y))

where t1, t2 and t3 are binary relations.

The satisfiability of Φ1 can be checked in polynomial time, as Theorem 5.8

shows. Φ2 consists entirely of universal formulae with no function symbols, and

so if Φ∗
1 is the result of saturating Φ1 according to the proof method of Theorem

5.8, then the satisfiability of Φ∗
1 ∪ Φ2, which is equivalent to the satisfiability of

Φ1 ∪ Φ2, can certainly be checked in NP.

To show NP-hardness, we reduce propositional satisfiability to satisfiability in

Cop+TV+VCoord. Recall that it is sufficient to be able to decide the satisfiability

of a set Φ of clauses of the forms P ∨Q, ¬P ∨¬Q and ¬P ∨¬Q∨R. Let c, d be
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common nouns, and for every proposition symbol P occurring in such a set Φ, let

p be a transitive verb. By introducing fresh common nouns p′, q′ where necessary,

we translate elements of Φ into Cop+TV+VCoord-sentences as follows.

P ∨Q c ps or qs d p(c, d) ∨ q(c, d)

¬P ∨ ¬Q c does not p and q d ¬p(c, d) ∨ ¬q(c, d)

¬P ∨ ¬Q ∨ R c ps or p′s d p(c, d) ∨ p′(c, d)

c qs or q′s d q(c, d) ∨ q′(c, d)

c does not p and p′ d ¬p(c, d) ∨ ¬p′(c, d)

c does not q and q′ d ¬q(c, d) ∨ ¬q′(c, d)

c p′s or q′s or rs d p′(c, d) ∨ q′(c, d) ∨ r(c, d)

These translations visibly preserve satisfiability, and so the problem of decid-

ing satisfiability in Cop+TV+VCoord is NP-hard, and hence NP-complete.

Theorem 6.18. The satisfiability problem for Cop+TV+DTV+VCoord is NP-

complete.

Proof. Membership in NP follows by a nearly identical argument to that given

above. NP-hardness is immediate, since every formula in Cop+TV+VCoord is

also in Cop+TV+DTV+VCoord.

Theorem 6.19. Let F be one of the fragments Cop+Rel+TV, Cop+Rel+DTV or

Cop+Rel+TV+DTV. Then F+VCoord has a NEXPTIME-complete satisfiability

problem.

Proof. To see membership in NEXPTIME, note that a set Φ of formulae in each

fragment F+VCoord can be equisatisfiably rewritten, by introducing new predi-

cates as necessary, as a set Φ1 of F-formulae, and a set Φ2 of purely universally-

quantified, non-functional formulae of the forms

∀x∀y(t1(x, y) → t2(x, y))

∀x∀y(t1(x, y) → t2(x, y) ∨ t3(x, y))

∀x∀y∀z(d1(x, y, z) → d2(x, y, z))

∀x∀y∀z(d1(x, y, q) → d2(x, y, z) ∨ d3(x, y, z))

where t1, t2 and t3 are binary relations and d1, d2 and d3 are ternary relations.

In [58] and [60], it is shown that the satisfiability of Φ1 can be checked in at

worst NEXPTIME by saturation under resolution to give a set of clauses Φ∗
1. By

the same argument used in the proof of Theorem 6.17, checking the satisfiability
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of Φ∗
1∪Φ2 therefore cannot take more than NEXPTIME. Since Φ1∪Φ2 and Φ∗

1∪Φ2

are equisatisfiable, the result follows.

We need only show NEXPTIME-hardness for Cop+Rel+TV+VCoord. Theo-

rems 5.30 and 5.35 ensure the NEXPTIME-hardness of Cop+Rel+DTV+VCoord

and Cop+Rel+TV+DTV+VCoord.

By a slight adaptation of [60, Lemma 4.6], we can see that NEXPTIME-

hardness follows if the satisfiability of clauses of the following forms can be re-

duced to satisfiability in Cop+Rel+TV+VCoord

¬p(x) ∨ ¬q(x) ∨ ¬p(y) ∨ ¬r(x) ∨ ¬t1(x, y)

¬p(x) ∨ q(x) ∨ r(x)

¬p(x) ∨ t1(x, f(x))

¬p(x) ∨ ¬p(y) ∨ ¬t1(x, y) ∨ ¬t2(x, y) ∨ ¬t3(x, y)

¬p(x)¬p(y) ∨ t1(x, y) ∨ t2(x, y)

where p, q, r are unary predicates, t1, t2, t3 are binary relations and f is a unary

(Skolem) function symbol.

Cop+Rel+TV+VCoord-formulae of the following forms suffice to carry out

such a reduction:

∀x(p(x) ∧ q(x) → ∀y(p(y) ∧ r(y) → ¬t1(x, y)))

∀x(p(x) ∧ ¬q(x) ∨ r(x))

∀x(p(x) → ∃y(p(y) ∧ t1(x, y)))

∀x(p(x) → ∀y(p(y) ∧ t1(x, y) ∧ t2(x, y) → ¬t3(x, y)))

∀x(p(x) → ∀y(p(y) ∧ t1(x, y) → t2(x, y))

All of the above are Cop+Rel+TV-formulae, apart from the final two. But

these are straightforwardly expressed in Cop+Rel+TV+VCoord with the equiv-

alent sentences

No p t1s and t2s and t3s any p

Every p t1s or t2s every p

Satisfiability in Cop+Rel+TV+VCoord is thus NEXPTIME-hard.

6.7 Conclusion

We have presented an almost complete survey of the effects on semantic com-

plexity of allowing various levels of coordination to the fragments introduced in

Chapter 5. Table 6.7 summarises the results.
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The obvious extension of the work in this chapter would be to continue as

in Chapter 5 and provide semantic characterisations of each of these extended

fragments. Although we have not yet looked into it, it might be expected that

such results are easier to obtain than those in Chapter 5. After all, many of

the complications in our earlier proofs arose from the very limited distribution

of conjunction and disjunction in the fragments considered, compared to stan-

dard artificial logical languages. For the moment, however, we must leave such

questions open.
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Coordinated category Fragment
Cop Cop+TV Cop+TV+DTV Cop+Rel

IP NP NP NP NP
NP NP Open Open NP
N′ NP Open Open NP
CP N/A N/A N/A NP
I′ NP EXPTIME NEXPTIME NP
V N/A NP NP N/A

Coordinated category Fragment
Cop+Rel+TV Cop+Rel+DTV Cop+Rel+TV+DTV

IP EXPTIME NEXPTIME NEXPTIME
NP EXPTIME NEXPTIME NEXPTIME
N′ EXPTIME NEXPTIME NEXPTIME
CP EXPTIME NEXPTIME NEXPTIME
I′ EXPTIME NEXPTIME NEXPTIME
V NEXPTIME NEXPTIME NEXPTIME

Table 6.1: Semantic complexity results for fragments with coordination



Chapter 7

Conclusions

Take care of the sense and sounds will take care of themselves.

— Lewis Carroll, Alice’s Adventures in Wonderland

In this thesis, we have defined a range of simple fragments of English fea-

turing basic constructions such as proper and common nouns, relative clauses,

(di)transitive verbs and coordination, and assigned truth-conditional semantics

to each. By treating each fragment as generating a corresponding fragment of

first-order logic, we have been able to characterise the complexity of reasoning in

each fragment, as well as the logical expressive power of those fragments without

subsentential coordination. We have thereby provided criteria by which it is pos-

sible to determine when arbitrary expressions of first-order logic can be translated

into certain fragments of English.

We have demonstrated techniques for carrying out precise analysis of the se-

mantic contributions of syntactic constructions in natural language, using stan-

dard formalisms, and without any need for a custom “English-like” logical syntax.

Such an approach allows the easy application of standard results and techniques

of mathematical logic, with no wasted effort. The use of such standard tech-

niques also has the advantage that this approach can generalise easily to any

natural language.

The results presented here provide a detailed “map” of the interface between

syntax and semantics, at least for some parts of English, and highlight some of

the semantic limitations of some simple fragments of English. One of the most

striking facts to have emerged is the extent to which logicians rely on arbitrary

149
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conjunction and disjunction – a facility which, in the guise of relative clauses,

and so on, is considerably more restricted in natural language. Such a contrast

would be unlikely to be apparent if semantics were handled using a formalism

with syntax closer to that of English.

As we noted in Chapter 2, the prevailing view seems to have been that trans-

lation of natural languages into “logicians’ logics”, such as first-order logic, is

not really appropriate for studying questions related to natural language rea-

soning. Those who hold such a view seem to justify it by appeal to the claim

that humans do not reason using, say, first-order syntax. However, the claim

that humans reason using the syntax of their native language seems equally open

to question. Regardless of the actual methods of human reasoning, the study

of which we leave to psychology, given an accepted set of truth conditions for

sentences, the potential models of the world in which they are true or false are

fixed. As a consequence, so are relations such as entailment between sentences.

We claim therefore that any semantic representation language which allows clear

descriptions of such possible models is likely to be a useful tool for studying nat-

ural language semantics. We interpret the results and proofs of this thesis as

justification for this claim.

The question of generality is also significant: a logical system whose syntax

resembles that of English might well be easy enough to adapt for closely related

language such as German, but could be hopeless for languages with drastically

different syntactic structures, such as Latin or Czech, just to pick some examples

even within the Indo-European family.

Several possible objections to the techniques we have used suggest themselves.

Firstly, we have claimed that our particular choice of syntactic framework has no

effect on the results, and that many of the syntactic shortcuts we have taken are

similarly harmless. But could it not be that the same fragments, given in a differ-

ent grammar formalism or using much more sophisticated syntactic restrictions,

might have a different semantic complexity, for example? The answer seems to

be no. Certainly it is straightforward to verify that each of our grammars do gen-

erate at least all grammatical sentences in the desired fragments. It is possible –

indeed, probable – that they overgenerate, and produce sentences which ideally

we would like to rule out. However, the upper bounds we have shown apply to

the full, potentially overgenerated fragments produced by our grammars, and so

would continue to hold even if the overgeneration were to be removed. The lower
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bounds do not depend on all sentences generated by each grammar, but only on

the particular sentences required for each hardness proof. A simple check of each

such proof reveals that the sentences used in each case are all unquestionably

grammatical, and do indeed express the truth-conditions assigned to them. Thus

any grammar, in any formalism, purporting to generate the fragments concerned

must generate those sentences, and assign those semantics. The lower bounds

we have given for semantic complexity are also therefore immune to syntactic

refinement.

The expressive power results are perhaps more fragile – it is entirely plau-

sible that tighter definitions of fragments could require more precise notions of

simulation to characterise their expressive power. We believe, however, that the

essential details will turn out to be stable under refinement, and that our results

capture the general semantic nature of the fragments we have studied.

Another objection which could be raised is that the language of our fragments

is not really “everyday” English. People rarely produce sentences such as Every

philosopher who is not a stoic is a cynic. While certainly true, it is nonetheless also

true that the kinds of sentence we have used are extremely typical “defining” sen-

tences, and a great deal of general world knowledge about, say, the denotations of

various common nouns, and so on, can be expressed using them. Thus, although

not necessarily examples of daily conversational English., the fragments we have

defined are natural and useful candidates for study.

The semantic complexity results presented in this thesis contribute to the

programme of work proposed in [58] and form an extension of that work. This

programme is clearly far from complete, and no doubt much could be learned

by studying further fragments of English, or naturally defined fragments of other

natural languages.

The results on expressive power can likewise be extended to larger fragments,

or to other languages. We have given here no characterisation of the expressive

power of any of the fragments in Chapter 6, for example. In both [58] and [60],

some of the fragments we have considered are extended with anaphora, admitting

sentences such as Every cynic who admires some stoic respects him, subject to various

restrictions on the denotations of anaphora. It would be interesting to provide

expressive power results for these fragments too. A suggestion from an anonymous

reviewer of [83] was to look into ways that the characterisation of expressive power

might be automated, so that extension to larger fragments becomes easier. It is
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unclear, at least at the moment, however, how such a task might be undertaken

for fragments defined using recursive phrase structure rules.

As well as extending to larger or different fragments of English or other lan-

guages, further model-theoretic conclusions can be drawn from the expressive

power results in this thesis. For example, it ought to be relatively trivial to give

for a fragment F , a characterisation of the class of structures definable by a set

of F -sentences, using techniques such as those used in [7, Chapter 3] where such

results are presented for modal logic.

Finally, it seems likely that some of the results of Generalised Quantifier

Theory, such as those discussed in Chapter 2, might offer some general insight into

how to give semantic characterisations of fragments containing various quantifiers,

and so could be used to develop further expressive power results of the kind given

here.



Bibliography
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