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Abstract

Classical approaches to a formal representation of space consider points to be
primitive and regions to be sets of points. In contrast, mereotopology is an ap-
proach to the representation of space which considers regions to be primitive. In
doing so, mereotopology becomes interesting to the Artificial Intelligence com-
munity for qualitative spatial representation and reasoning.

This thesis takes a model-theoretic approach to mereotopology. Various sets
of regions are defined and investigated. The regular open semi-algebraic sets in
the real plane are identified as a well-behaved set of regions. Several first-order
languages are introduced whose variables range over regions. Predicate sym-
bols are interpreted as mereological and topological relations such as ‘region z
is part of region 3’, ‘regions x and y are in contact’ or ‘region z is connected’.
The mereotopological languages are interpreted over various sets of regions, and
thereby structures in the sense of model theory are introduced. The expressivity
of the mereotopological languages and the properties of the model-theoretic struc-
tures are investigated. The theory of the mereotopological structure of regular
open semi-algebraic regions is completely axiomatised in an extended first-order
predicate calculus and is shown to be undecidable.

It is shown that the mereotopological structure of all semi-algebraic sets of
the real plane can be interpreted in the mereotopological structure of the regular
open semi-algebraic sets. Consequently, in spite of the absence of points in certain

meretopological structures, one can refer to points in these structures.
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Chapter 1
Introduction

Space is fundamental to the world we live in. Our ability to see, to hear, to touch
and to move lets us perceive space. We distinguish a large variety of spatial
concepts related to shape, location, size, distance etc. as shown by psychological
experiments and the investigation of natural languages. Some spatial concepts are
even used as metaphors together with non-spatial concepts, e.g. “deep thought”
or “far-fetched argument”, which indicates that space plays an important role in
our thinking. As a consequence, knowledge about space and how we relate to it

is of considerable philosophical and practical interest.

1.1 What is mereotopology?

Topology is the mathematical discipline that investigates the properties of space
which remain invariant under continuous change. Topology does not distinguish
between a cup with one handle and a doughnut. This fact can be clarified by
a plasticine model of a doughnut. The lump of plasticine can be continuously
deformed, that is without tearing, perforating or joining ends, such that it takes
the shape of a cup with handle. The lump of plasticine in the shape of a doughnut,
however, cannot be deformed into the shape of a pretzel without the discontinuous
deformation which is required to create additional “holes”. Classical topology,
i.e. point-set-topology, takes the ontological view that points are the primary
spatial entities and any other spatial entities are sets of points.

Like topology, mereotopology is a discipline that investigates the properties of
space which remain invariant under continuous change. However, unlike classi-

cal topology, mereotopology takes the ontological view that the primary spatial

12



CHAPTER 1. INTRODUCTION 13

entities are regions that have, in contrast to points, a spatial extension. It is
helpful to think of regions as lumps of space that could be occupied by mate-
rial objects. Properties of regions that are considered in mereotopology are, for
example, ‘region x is part of region y’, ‘region x is in contact with region ¥’ or
‘region x is connected’. The first of these properties is said to be mereological,
while the latter two properties are said to be topological. Notwithstanding the
distinction between mereological and topological properties, all properties con-
sidered in mereotopology are invariant under continuous change. However, it is
mereology, i.e. the formal study of the relation between part and whole, together

with topology that give mereotopology its name.

1.2 The motivation for mereotopology
There are three principal motivations for mereotopology:

1. Metaphysics and the foundations of geometry
2. Formal ontology

3. Qualitative spatial representation and reasoning (QSR)

Metaphysics is the philosophical study of being. Many philosophers have con-
tributed a fair part of their work to the investigation of the nature of space:
Aristotle, Newton, Kant, Brentano to name but a few. Ontological questions
which have been asked are: Do points exist? If so, what is a point?

We do not perceive points. However, we perceive objects and therefore the
“lumps of space”, i.e. regions, they occupy. Is it possible to explain points in terms
of regions? Is it possible to define classical geometry referring to regions only?

Formal ontology is the study of ontological principles that are independent
of specific domains (Guarino, 1998). One of the aims of formal ontology is the
development of common-sense ontologies of the everyday world of desks, mugs,
holes, shadows etc. If points are assumed to be the primary spatial entities then
desks, mugs, holes and shadows must be constructed from points as sets of points.
Consequently, one has to deal with many of the problems inherent in set-theory.
However, if objects of our everyday world are considered to be regions—although
perhaps regions of various kinds—there is no necessity to construct entities as
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sets of primitive entities. Therefore, mereotopology is considered to provide the
appropriate tools for formal ontology.

Finally, mereotopology is thought to be a promising approach to qualita-
tive spatial representation and reasoning (QSR). To clarify the meaning of
qualitative spatial representation and reasoning consider the following example.
An Ordnance Survey map of London provides a more or less accurate graphical
description of the absolute location of streets, buildings etc. with respect to a
given coordinate system. Therefore, the map contains the quantitative informa-
tion that, for example, the distance between Euston rail station and Heathrow
airport is 5 miles. A London underground map, however, conveys no metric,
but only topological, information. One can read from the map the qualitative
information that Euston rail station is connected by tube to Leicester Square
and that Leicester Square is connected by tube to Heathrow airport. Then one
can infer that Euston rail station and Heathrow airport are connected by tube
lines without using any quantitative information in the reasoning process. Many
spatial reasoning problems require only qualitative spatial information. For ex-
ample, assume a description of the relations between regions A, B, C and D is
given by: A is inside B, B overlaps C, C touches D on the outside, D overlaps B,
D is disjoint from A, and C overlaps A. Are there regions in the plane that satisfy
this description? If so, we would like to see an example. If there are no such
regions, we would like to have an explanation why there cannot be such regions.

Since mereotopology deals only with qualitative and more specifically topolog-
ical spatial data, it is thought that mereotopology provides the means to efficient
topological reasoning (Cohn et al., 1992). Furthermore, taking regions as primary
spatial entities, mereotopology is considered to provide cognitively appropriate

common-sense ontologies of everyday objects.

1.3 Issues in mereotopology

The prominent questions in mereotopology are:
1. Which regions have we got? That is, which regions do we take to exist?
2. Which mereological and topological properties do we take to be primitive?

These two questions are independent of the specific motivation for research in

mereotopology. However, if one is motivated by the metaphysical questions then
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the next questions are:

[.1 How can we reconstruct points from regions?

[.2 How can we verify that reconstructed “points” are points?

If one is interested in formal ontology or topological representation and reasoning

then the next questions are:

II.1 What can we express with the mereotopological properties we take to be

primitive?
I1.2 What is true of what we can say with respect to the regions we have?

I1.3 Is there any algorithmic way to answer the previous question?

There are two main approaches to answering question 1. One is to take a set
of entities from topology and let these entities represent regions. I will call such a
set of entities a spatial domain. Thus, a spatial domain explicitly represents a set
of regions. For example, the open sets of the topological space R? can be taken
to represent regions. An alternative approach is to represent regions implicitly
by their mereological and topological properties. This latter approach is often
realised by a set of axioms in a formal (first-order) language where variables range
over regions. Therefore, for the latter approach, question 2 has to be answered
first: What are the mereological and topological properties which we take to be
primitive and which, therefore, correspond to predicate symbols in the formal
language? For example, the binary mereological predicate symbol P and the
topological predicate symbol C can be chosen to have the meaning ‘region z is
part of region 3’ and ‘region z is in contact with region y’ respectively. Such
formal language will be called a mereotopological language and a set of sentences
in a mereotopological language will be called a mereotopological theory.

Although the two approaches to the representation of regions are different,
they complement each other. It is sensible to interpret a mereotopological theory
over a spatial domain such that the variables range over the elements of the
domain. In this case, the pair consisting of spatial domain and interpretation
is said to be a model of the theory. Conversely, given an interpretation of a
mereotopological language over a spatial domain, a mereotopological theory can

be given to characterise some properties of the spatial domain.
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Both approaches have drawbacks. A spatial domain has properties that are
specific to the mathematical area the elements of the domain are taken from.
Thus, the spatial domain has properties that are not necessarily properties of
the regions the domain is intended to represent. A mereotopological theory, on
the other hand, might be inconsistent and, therefore, does not represent regions
at all, or the theory might be incomplete and, therefore, does not represent all
properties of the set of regions.

However, both approaches taken together avoid these drawbacks. If we con-
sider a variety of spatial domains that are taken to represent the same set of
regions then it is possible to concentrate on the properties which are common to
all of the spatial domains. The question is how we can identify spatial domains
which represent the same set of regions. One solution is to consider the properties
that can be expressed in the mereotopological language and which hold with re-
spect to a given spatial domain. Then two spatial domains represent the same set
of regions if their properties that can be expressed in the chosen mereotopological
language are the same. Therefore, the questions for the expressivity of the mereo-
topological language (question II.1) and the properties which hold with respect
to the spatial domain (question I1.2) need to be answered. Thus, the answers to
questions II.1 and II.2 lead to a unified approach to the representation of regions.
Furthermore, the approach provides criteria for consistency and completeness of
mereotopological theories. A mereotopological theory is consistent if it admits a
model, i.e. a spatial domain the theory is interpreted over. A mereotopological
theory is complete if all models of the theory satisfy the same sentences of the
mereotopological language the theory is formulated in.

Mathematical model theory is the branch of mathematics with investigates
(first-order) languages, theories in these languages and the models of theories.
Therefore, mathematical model theory provides exactly the methods which are

needed to answer the above questions in mereotopology.

1.4 Aim and objectives

The aim of the present work is to investigate the properties of regions represented
by spatial domains and mereotopological theories, thereby giving answers to the
above questions. Methods and results from topology, graph theory and model

theory will be employed to achieve this aim.



CHAPTER 1. INTRODUCTION 17

The objectives are:

e to define a variety of spatial domains over familiar topological spaces,

e to choose interesting mereotopological languages which will be interpreted

over the spatial domains, thereby defining models called mereotopologies,

e to investigate the expressivity of the mereotopological languages and the

model theoretic properties of the mereotopologies,

e to determine the sentences in a mereotopological language which are true

with respect to a selected mereotopology by a complete axiomatisation,

e to investigate whether the truth of sentences in a mereotopological language

with respect to a selected mereotopology is decidable by an algorithm,

e to utilise the expressivity of a mereotopological language to “reconstruct”

points and other spatial entities.

1.5 Thesis overview

The following chapter elaborates on the issues raised in the introduction and
places mereotopology in its philosophical, mathematical and historical context.

Chapter 3 gives an answer to question 1, introducing a variety of spatial
domains over the real plane and the real sphere. The properties of these domains
are investigated.

In chapter 4, various mereotopological languages with predicate symbols ex-
pressing parthood, connection, contact and boundedness are introduced. The
languages are interpreted over the spatial domains defined in chapter 3, and
several model-theoretic structures called mereotopologies are introduced. Their
properties, as well as the expressivity of the mereotopological languages, are in-
vestigated. Thus, chapter 4 answers questions 2 and II.1.

Chapter 5 provides a complete axiomatisation of the mereotopology of regular
open semi-algebraic sets in the real plane. Thus, question I1.2 is answered with
respect to this specific mereotopology.

Chapter 6 is concerned with the feasibility of spatial reasoning in mereotopol-
ogy. It is shown that reasoning about non-trivial mereotopologies is undecidable.

Thus, this chapter settles question I1.3.
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In chapter 7, the intended ontological simplicity of mereotopology is ques-
tioned. It is argued that, under certain circumstances, a sparse spatial domain
implicitly defines a richer spatial domain. It is shown that a mereotopology, al-
though it is point-free, may represent points in a certain sense. The technique
used to reconstruct points is a partial answer to question I.1.

The conclusion gives an interpretation of the results and indicates future work.

A glossary at the end of this thesis explains the frequently used concepts.
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1.6 Notation and prerequisites

The reader is expected to have a basic knowledge of graph theory, topology, logic
and model theory. For example, Armstrong’s textbook (Armstrong, 1979) covers
most of topology used in this thesis. The necessary background in logic and
model theory is given, for example, in (Mendelson, 1997). Any concepts but the
basic ones are introduced where necessary. These are also explained in a glossary
at the end of the thesis. The following subsections present notations and basic
concepts used in this thesis which are adjusted to the present purposes or are

non-standard.

1.6.1 General

Let A and B be subsets of the set X. Then || A|| denotes the cardinality of the
set A, A\ B denotes the difference, and A denotes the set-theoretic complement,
with respect to X. The power-set of A is denoted by p(A).

1.6.2 Topology

Let U be a subset of a topological space X = (X, 7). The closure of U is denoted
by [U] and the interior of U is denoted by U°. This somewhat unusual notation
is chosen to reserve U for the set-theoretical complement of U and 7 for the
tuple-notation in logic (see below).

In a metric space X with metric p, B.(p) denotes the open ball with radius e
around the point p, i.e. B(p) = {q € X|p(p,q) < €}.

A continuous function  from the unit interval with its usual topology into X
is a path. The range ([0, 1]) of the path  is called the locus of v and is denoted
by |7v|. The endpoints of a path are the points v(0) and y(1). An arc (or Jordan
arc) is an injective path. The interior of an arc v is the set |y|\ {7(0),7(1)}. A
simple closed curve (or Jordan curve) is a continuous function from the unit-circle

with its usual topology into a topological space X.

1.6.3 Graph theory

A graph T is a pair (V, E) where V, the set of vertices, is a finite set, and E,
the set of edges, is a subset of {{vy,ve}|vi,v2 € V,u; # vy}. Thus, the graphs
considered in this thesis do not have multiple edges or loops. Given a graph I,
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V(T') denotes the set of vertices and E(I') denotes the set of edges. Two graphs

of importance in this thesis are the graphs K5 and K3 3:

Ks = {v,...,vs}, {{vi, v;}1 <i<j <5}

Kz = ({v1,-. ., ve}, {{visv0;}1 <@ <3,4<j <6}

A subset V' of V(I') induces a subgraph I of T, written I C I', with I'' =
{V',E(T) N p(V')}. Given a subset V' of V(T'), I' \ V' denotes the subgraph of
I induced by V(') \ V'. In this case, the vertices V' are said to be deleted from
[. If e = {v1,v2} is an edge of I' = (V| E) then I'/e denotes the graph obtained
from ' by contracting the edge e to the vertex v;. More precisely, I'/e is the
graph (V\ {v2}, (EU{{v1,v}{ve, v} € E, v # v1})\ {{v2, v}|v € V}). Any graph
['" obtained from a graph I' by repeated deletion of vertices or contractions of
edges is called a minor of I'. Two graphs I'y = (Vi, E1) and 'y = (V4, Es) are
1somorphic if there exists a bijection o:V;UE; — V,U Ey such that for all v € Vi,
o(v) € Vo and for all {vy, v} € Ey, {o(v1),0(v2)} € Es. If 0 is an isomorphism
between I'; and I'y; then I write o:1'y — I's.

A path of length n joining vertices v, and wve is a graph with n vertices
v1,...,0, and the edge set {{v;,v;11}/1 < i < n}. A cycle is a graph with
vertices vq,...,v, and the edge set {{v;,vi1}1 < i < n} U {{v,v,}}. Two
paths 'y, Ty C T joining vertices v; and vy are said to be independent (in T') if
V(1) NV (Ty) = {v1,ve}. A graph I' is connected if for any two distinct vertices
v1,vy € V(I') there exists a path I C I' joining v; and vy. A graph T is n-
connected if any two distinct vertices are joined by at least n independent paths
in I'.

A plane graph T is a tuple (V, E) where V is a finite set of points in R? or
S% = {(z1,29,73) € R¥|2? + 22 + 22 = 1} and E is a finite set of arcs in R?
or S? respectively such that the endpoints of an arc in E are elements of V', no
two arcs in F have the same endpoints, and the interiors of the arcs in E are
disjoint. To avoid unnecessary notational overhead, a plane graph I' = (V, E)
will be considered as the set |JV UJ{|7||y € E} as well as the (abstract) graph
(V([),{{7(0),7(1)}|y € E}). The faces of a plane graph I' are the components
R2 \ T or S?\ T respectively. A graph I is planar if there exists a plane graph I
which is isomorphic to I'. In this case, the graph [ is said to be a plane embedding

of I'. T will appeal to the following characterisation of planar graphs.
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Theorem (Wagner 1937). A graph T is planar if and only if neither K5 nor

K3 is a minor of I

1.6.4 Logic and model theory

Given a signature X, the usual first-order language with signature ¥ will be
denoted by £(X). Gothic letters 2, B, 9, M etc. denote L-structures in the sense
of model theory. Their domains are denoted by A, B, M, N etc. respectively. The
domains which are of specific interest to mereotopology are denoted in bold type,
e.g. P and S.

Let 2 be an L-structure with domain A. A formula ¢(z1,...,z,) is said to
define the set {(ai,...,a,) € A"|A = ¢lai,...,a,]} in A. A subset B of A"
(n > 1) is said to be L-definable in A if there exists a formula ¢(xq,...,z,) of £
such that ¢(z1,...,x,) defines B. The set B is L-definable with parameters in 2
if there exists a formula ¢(z1,...,z¢) (kK > n) and a (k — n)-tuple by, ..., bg_y, in
A such that B = {(a1,...,a,)|% = dlay,...,an,b1,... bg_nl}

A set of sentences (in L) is called a theory (in L£). The theory of 2, denoted
Th(%A), is the set of all sentences in £ which hold in 2. A type x(z1,...,z,) in
the variables z1,...,, is a maximal consistent set of formulae in the variables
Z1,.-.,Tn. The type of a tuple (ai,...,a,) € A™ is the type {¢(z1,...,2,) in
LA = dlai, ..., a]}

To simplify notation, a tuple of variables z1,...,x, as well as a tuple of el-
ements aq,...,a, will be abbreviated to Z and @ respectively. The size of such
abbreviated tuple either will be known from the context or will be of no impor-

tance.



Chapter 2

Mereotopology and related fields of
study

The previous chapter introduced mereotopology as the region-based approach to
topology. This chapter places mereotopology in its mathematical, philosophical
and historical context. 1 will elaborate on the issues of mereotopology which
have been raised in the introduction and present their treatment in the relevant
literature. The focus will be on mereotopology motivated by the need for a qual-
itative representation of spatial knowledge in many application areas of Artificial
Intelligence (AI). Since the reconstruction of points from regions is the origin
of mereotopology, the reconstruction of points will be presented in a historical

review.

2.1 The motivation for mereotopology

In section 1.2 of the introductory chapter, I explained that mereotopology is
motivated on the one hand by the aim to reconstruct points from regions and on
the other hand by the need for a qualitative representation of space. The former
motivation will be considered in more detail in section 2.7. Here, I will elaborate
on the latter.

Since space is a fundamental part of the world we live in, problem solving
requires in many cases a qualitative representation and manipulation of spatial
data. Qualitative spatial representation and reasoning (QSR), a well established

subfield of Al, aims at solving problems which deal with qualitative spatial data

22
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(for an overview of QSR see (Hernandez, 1994) and (Cohn, 1997)). Mereotop-
ology as one specific approach to QSR aims at a cognitively realistic and useful
qualitative representation of everyday objects in space. Therefore, mereotopology
takes regions as primary entities and considers their mereological and topological
properties. Points are not necessarily excluded as entities of mereotopology. How-
ever, in mereotopology, points must not be the primary entities from which other
entities are constructed. The following themes which justify this view reoccur in
the literature (Fleck, 1996; Galton, 1996; Gotts et al., 1996; Smith, 1998).

Firstly, there are considerations for the efficiency of spatial representation and
reasoning. If points are the only primitive spatial entities then regions must be
constructed from points. Thus, regions are higher-order entities and any formal
system dealing with regions has to quantify over these higher-order entities. The
necessity to deal with higher-order systems is believed to make efficient spatial
reasoning impossible.

Secondly, if points are the only primary spatial entities then any set of points
can be a “region”. Consequently, there are “regions” we do not encounter in the
everyday world: sets which are scattered in infinitely many “pieces”, extremely
convoluted lines, fractals etc. For example, a straight line can be continuously
changed into a “line” that is so convoluted that it does not fit anymore in our
intuitive classification of lines and areas. The development of such a “line” is
depicted in figure 2.1. Each line segment between two of the indicated points of
the generator is replaced by a smaller version of the generator itself to get the
first step towards the final “line”. Each line segment is again replaced by an even
smaller version of the generator to get the second step. This procedure, infinitely
repeated, defines a fractal whose Hausdorff dimension is 1.5 (Falconer, 1990).
Thus, the set of points defined by the fractal neither belongs to the class of lines
nor to the class of areas as one intuitively understands them.

Thirdly, taking regions as sets of points plays further havoc with common
sense, as the following two puzzles show. Consider a ball of points, for instance
the unit ball in the Euclidean space R® with centre point (0,0,0). It is common
sense that a ball can be divided into two congruent halves. However, only one
of the two halves can contain the centre point and, therefore, the halves cannot
be congruent. For the second puzzle, consider a chess board with its black and
white squares. Is the point at which two black squares and two white squares
meet black or white? If the point is black then it belongs to the black squares and
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Figure 2.1: A set of points which is neither a line nor an area, but a fractal of
Hausdorff dimension 1.5

the two white squares do not touch. If the point is white then it belongs to the
white squares and the two black squares do not touch. However, it is common
sense that there is no difference between the black and the white squares except
for their colours. This second puzzle leads us to the problem of boundaries which
is the fourth and last of the main reasons which exclude points as the primary
entities in mereotopology.

Topology in its set-theoretical variation teaches us to classify sets of points
into open sets, closed sets, boundaries etc. This classification forces fundamental
questions on us which several philosophers have attempted to solve (cf. Varzi,
1997): Does a region include its boundary? Do regions share parts of their
boundaries if they are in contact? What is the ontological difference between a
region including its boundary and the region’s interior?

According to Varzi (1997), Leonardo da Vinci assumes that two objects in
contact have a common boundary which, however, is no material part of either
of the objects in contact. Da Vinci argues that if a boundary participated in an
object then it would be of substance and therefore separate objects. Brentano
believes that there are two boundaries, one belonging to each of the entities in
contact such that the boundaries share the same location. Bolzano states that
contact is only possible between an object with a boundary and another without
a boundary.

Any choice of these three possibilities seems to be more or less arbitrary.

Some mereotopologists believe that boundaries—and, consequently, unpleasant
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Figure 2.2: A region including a part of its boundary, a crack and a spike

ontological questions—can be avoided by adopting a mereotopological approach
to the representation of space. Others believe that mereotopology is the very
tool to deal with boundaries. The following section explains how this apparent

contradiction comes about.

2.2 Boundaries and the distinction between open

and closed regions

The Al community employs mereotopology for a qualitative and cognitively ap-
propriate representation of the mereological and topological properties of ob-
jects in space. Experience tells us that any material object is three-dimensional
throughout and has no “cracks” or “spikes”. Therefore, a region such as the one
depicted in figure 2.2 has no interpretation with respect to objects. Moreover,
a representation of objects in space aimed at problem solving in Al most often
does not require the notion of boundaries. Consider, for example, a robot which
is programmed to find its way around a room without bumping into things. Cer-
tainly, the robot has to recognise obstacles but has no need to “know” about
boundaries to achieve its task. Thus, there are applications of qualitative spa-
tial representation and reasoning where boundaries unnecessarily complicate the
situation.

Even mereotopological approaches which are not aimed at practical applica-
tions but simply at a representation of space can dispense with boundaries and
the distinction between open and closed regions. For the sake of the argument, let
a ‘region’ be considered as a chunk of space that is potentially occupied by one or
several material objects. This definition presupposes space to be absolute. That
is, space is assumed to exist independently of any other entity. The alternative
would be to regard space as relative, i.e. exhibited only as a property of other

entities and their relation to each other. Whether space is absolute or relative is
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the issue of an ongoing philosophical debate (see for example (Nerlich, 1994)) but
does not concern the present work. It is simply convenient to consider space to
be absolute for the development of spatial domains and mereotopological theories
aimed at qualitative spatial representation and reasoning.

There are two assumptions we usually make about material objects which
distinguish them from regions as potential receptacles of objects. Firstly, no two
material objects can occupy the same region at the same time,' and secondly,
not every sum of two material objects exists. For example, a desk together with
a chair are nothing but the collection of the objects desk and chair. A bread-
knife, however, is assembled from a handle and a blade. Knife, handle and blade
are distinct material objects but the sum of handle and blade forms the object
knife. See (Varzi, 1998) for the problems which such sums of objects pose to
mereotopology. In contrast to objects, regions can overlap. Furthermore, regions
can be summed together. The space occupied by a desk and a chair is just the
region occupied by the desk summed together with the region occupied by the
chair. Therefore, a mereotopological approach to the representation of objects
has to have different properties than a mereotopological approach to the repre-
sentation of regions as potential receptacles of objects. Moreover, I argue below
that a mereotopological approach to the representation of regions as chunks of
space has to dispense with boundaries (although nothing prevents us from talk-
ing about them, cf. chapter 7), while mereotopological approaches which include
boundaries are usually aimed at the representation of objects in space.

Some formal ontologists employ mereotopology explicitly to represent the
properties of objects. Formal ontology is the discipline that investigates the
principles that underlie every ontology independently of the specific domain of
application. Mereotopology, as the formal study which combines mereological and
topological notions, is thought to be a valuable tool for formal ontology (Guarino,
1998). Moreover, mereotopology is seen by some as the true theory of part and
whole. While mereology studies the relation between parts and the entities they
are parts of, mereotopology provides a concept of a whole in the sense of ‘consist-
ing of one piece’, i.e. being topologically connected, which is considered to be one

criterion to identify wholeness (Varzi, 1997). So far objects which we encounter

LObservations like “a statue shares its localisation with the bronze it is made from” (see Casati
and Varzi, 1996) do not interfere here, since an object ‘statue’, as considered here, has the
properties of being a statue and being made from bronze. Neither statue nor bronze are objects
in their own right and therefore do not share the same part of space.
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in our everyday life have been in the centre of investigation in formal ontology,
although abstract entities such as geographical entities have been considered as
well (Casati et al., 1998). The consideration of material objects and geographical
entities inevitably requires the consideration of spatial entities such as regions
and boundaries.

Smith and Varzi (Smith, 1995, 1996, 1998; Smith and Varzi, 1997; Varzi,
1997) explicitly consider objects and develop a mereotopological theory which
is informed by the the philosophical investigation of boundaries, continuity and
contact by Brentano. They argue that the distinction between open and closed
regions is consistent with common sense. Holes serve as examples. A hole has
a parasitic existence, being dependent on the object it is a hole of. If a ma-
terial object is accepted to include its boundary then a hole is defined by the
boundary, but has no part in the boundary. Therefore, a hole does not include
its boundary, while the host object does so. Hence the open-closed distinction
makes sense (cf. Casati and Varzi, 1994). Moreover, Smith and Varzi argue that
the introduction of one type of boundary is not sufficient for a mereotopological
theory of objects. The distinction of two kinds of boundary makes it possible
to distinguish two kinds of contact. Two material objects cannot be in contact,
since both include their boundaries which they cannot share. Therefore, apparent
contact of material objects, such as John and Mary holding hands, is a metrical
notion of closeness but no genuine contact.

Smith and Varzi distinguish between bona-fide (or physical) and fiat (or
human-demarcation-induced) boundaries, not only of objects but also of geo-
graphic entities (for the latter see also (Casati et al., 1998)). A spatial entity has
a bona-fide boundary if its boundary is an interruption of the continuity of the
entity against its surroundings. For example, a wine glass standing on a table
is visibly separated from the table and the air that surrounds it. Therefore, the
boundary of the glass is a bona-fide boundary. However, although we take the
stem and cup of the glass to exist as separate entities, there is not necessarily a
marked boundary between stem and cup. Nevertheless, the existence of a bound-
ary separating stem and cup is taken for granted. Such boundary, therefore, is a
fiat-boundary. One example for a geographic entity with bona-fide boundary is
Great Britain, whose boundary is defined by the discontinuity between land and
sea. However, the boundaries of post-code areas, or the boundary of the US state

of Wyoming are fiat boundaries.
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The introduction of fiat boundaries enables the contact between objects of
the same kind. Two objects with fiat boundaries are in contact if they share a
part of their fiat boundaries. Hence, two post-code areas can be in contact. An
object with a bona-fide boundary, however, can only be in contact with another
object without a boundary. For instance, a hole is in contact with its host.

Asher and Vieu (1995) also argue in favour of two different kinds of contact.
They introduce the notions of ‘weak contact’ and ‘strong contact’ that are moti-
vated by natural language usage. Asher and View argue that given a wine glass
standing on a table, the wine glass and the table are in weak contact since the
glass and the table come vanishingly close but do not share their boundary. Stem
and cup of the wine glass, however, share a part of their boundary and therefore
are said to be in strong contact.

However, I argue that although the distinction between types of boundaries
and types of contact may be appropriate for objects, it goes amiss with regions
considered as potential receptacles of objects. To oppose Smith and Varzi’s ar-
gumentation with respect to regions I give the following example. Consider a
mould that is a material object with a hole that is to be filled. Following Smith
and Varzi’s argumentation, the hole and the mould are in contact. Assume now
that the hole is filled with bronze to form a new object. Since the new object is
a material object, it is not in genuine contact with the mould. However, what is
the difference between the region occupied by the hole and the region occupied
by the newly formed object? Common sense says that the newly formed object
fills exactly the space the hole filled before. Therefore, the region occupied by the
hole and the region occupied by the newly formed object must be the same. The
region occupied by the mould itself has not changed during the creation of the
new object. Therefore, considering regions alone there cannot be different types
of contact.

Casati and Varzi (1996, 1997) develop a mereotopological theory that caters
for regions and objects. Their aim is to develop a theory of localisation. There-
fore, their formal language contains a binary predicate symbol L representing
localisation. The formula L(z,y) has the intended meaning ‘(entity) z is exactly
located at (region) y’. The relation L is axiomatised as a mereological relation
relating entities and regions. It turns out that a unary predicate defining the set
of regions would serve equally well to define the theory of localisation.

Whether one intends to represents objects in space or space by itself, the
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principal question in any approach to mereotopology is: Which regions exist? In
mereotopology, the set of regions is either explicitly represented by a spatial do-
main or it is represented by a mereotopological theory as explained in the following

two sections.

2.3 Spatial domains

A set of elements which are taken to represent regions will be called a spatial do-
main. Most spatial domains are constructed from a tried and tested representa-
tion of space. Such representations are the two- and three-dimensional Euclidean
spaces R? and R®. The primary entities of Euclidean spaces, however, are points.
Therefore, any representation of a region over a Euclidean space is necessarily
a set of points. This fact seems to contradict the very idea of mereotopology.
However, a set of points simply represents a region. Thus, not points but sets of
points are the primary entities in a spatial domain. A commonly used repository
of sets which are taken to represent regions are the regular open or regular closed
sets over the Euclidean spaces. A regular open set is identical to the interior of its
closure, and a regular closed set is identical to the closure of its interior. There-
fore, regular sets do not have “spikes” or “cracks”. Moreover, the regular open sets
and the regular closed sets of a topological space form a Boolean algebra with
respect to the inclusion relation. The regular open sets of Euclidean spaces will
be considered in detail in chapter 3.

Few mereotopologists introduce spatial domains. Dornheim (1998) introduces
a spatial domain constructed over the real plane R%2. He defines simple regions as
the bounded (regular) closed sets in R? whose boundary is a simple polygon. His
spatial domain consists of all finite unions of simple regions, the complements of
these unions in the Boolean algebra of regular closed sets, the empty set and R2.
Thus, the spatial domain forms a Boolean subalgebra of the Boolean algebra of
regular closed sets in R?, and at most one component of a region is unbounded.

Pratt and Lemon (1997) and Pratt and Schoop (1998, 1999) consider the
spatial domains of regular open semi-linear and semi-algebraic sets over the real
open and closed planes. These spatial domains will be presented in chapter 3.

Gotts (1994, 1996a) suggests closed and bounded manifolds with well-behaved
boundaries as well as regular closed sets of a regular connected space as repre-

sentations of regions.
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Asher and Vieu (1995) do not define a spatial domain explicitly, but they
do define a class of spatial domains by properties expressed in the mathematical
meta-language of topology. The spatial domains are essentially the semi-regular
sets of a topological space; i.e. for every region z, [z] = [°] or z° = [z]°. Thus,
the regions do not have “spikes” or “cracks”, but may contain or exclude parts of
their boundary. An additional constraint on Asher and Vieu’s spatial domains is
that the inclusion relation on regions must not be dense.

All these spatial domains have in common that, on the one hand, they are
restricted to relatively well-behaved sets and, on the other hand, they attempt to

provide sufficiently many regions for the representation of objects in space.

2.4 Mereotopological theories

A mereotopological language is a first-order language with a number of predicate
symbols with a mereological or topological interpretation. A mereotopological
theory is a set of sentences in a mereotopological language. Several predicate
symbols with mereological or topological interpretation have been presented in
the literature (see table 2.1). Predicate symbols with a geometric interpretation
have been suggested as well (e.g. to express convexity (Cohn, 1995) or congru-
ence (Borgo et al., 1996a)). However, such symbols will not be considered in this
thesis.

In the following, I will present some of the mereotopological theories that have
been presented in the literature. Since most mereotopological theories are formu-
lated in the language with predicate symbols P and C, and since these theories
share a number of basic axioms, I will present a representative mereotopological
theory and point out the differences to specific other mereotopological theories.

The simplest mereotopological theory, called Ground Mereotopology (MT),?

consists of the following three axioms:

Cl1 Vz(C(z,x)) C-reflexivity
C2 VaVy(C(z,y) = C(y, x)) C-symmetry
C3 VaVy(P(z,y) — Vz(C(z,z) — C(z,v))) P implies C

2The names of the mereotopological theories in this section are those used in Varzi (1996).
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‘ Symbol ‘ Reading

P(z,y) | region x is part of region y

(Whitehead, 1929; Clarke, 1981, and many more)

C(z,y) | regions = and y are in contact

(Whitehead, 1929; Clarke, 1981, and many more)

c(x) | region x is connected

(Pratt and Lemon, 1997; Pratt and Schoop, 1998)

x <y | region z is part of region y

(Pratt and Lemon, 1997; Pratt and Schoop, 1998)

(Borgo et al., 1996a)

SR(z) | region x is a simple region, i.e. = is connected

I(z,y) | regions z and y are separated

(Grzegorczyk, 1960; Eschenbach, 1994)

R(z) | x is a region

(Eschenbach and Heydrich, 1995)

Table 2.1: Mereotopological predicate symbols

Thus, the symbol C represents a reflexive and symmetric binary relation, and if

region x is part of region y then regions r and y are in contact. So far, there is

nothing spatial about this theory. However, the symbols can clearly be given a

spatial interpretation. Consider the open discs in R? as regions and assume that

a region r is part of a region s if and only if » C s, and regions r and s are in

contact if and only if the closures of r and s have a point in common. Then it

is easy to see that the following predicates defined via P and C also have spatial

interpretations (cf. figure 2.3):

PP(z,y) =4 P(z,y) A= P(y, )
O(z,y) =4 32(P(2,2) AP(2,y))
PO(z,y) =4 O(z,y) A ~P(z,y) A= P(y,z)
EC(z,y) =4 C(z,y) A O(z,y)

DC(.I, y) =df C(.I, y)
TPP(z,y) =4 PP(z,y) A 32(EC(z,z) AEC(z,v))

NTPP(z,y) =4 PP(z,y) A =32(EC(z,2) A EC(z,y))

x is a proper part of y
x and y overlap

x and y overlap partially
x and y are externally
connected

x and y are disconnected
x is a tangential proper
part of y

x is a non-tangential

proper part of y

Region z is a proper part of region y, in symbols PP(z,y), if z is a part of



CHAPTER 2. MEREOTOPOLOGY AND RELATED FIELDS 32

B

o
)
N

=

o
&

DC(z,y) TPP(z,y)  NTPP(z,y)

Figure 2.3: Visualisation of various binary relations definable by the predicates
P(z,y) and C(z,y)

y but y is not a part of z. Two regions overlap, in symbols O(z,y), if there is a
third region which is part of both. The overlap-relation is refined by the relation
of partial overlap (PO(z,y)): regions z and y overlap but neither is z a part of
y nor is y a part of z. These three relations are defined via the mereological
relation P. The other three relations rely on the topological relation C as well.
Two regions are in external contact, in symbols EC(z,y), if they are in contact
but do not overlap. External contact facilitates a refinement of ‘proper part’ into
‘tangential proper part’ and ‘non-tangential proper part’. If region z is a proper
part of region y and there is a region z which is in external contact with x and
y, then z is a tangential proper part of y. If there is no such z then x is a non-
tangential proper part of y. Thus, the two predicates P and C can distinguish a
variety of spatial relations that can be seen as the analogues to some of Allen’s
primitive relations between temporal intervals (Allen, 1981).

Note that interpreting C(z,y) as ‘(the closures of) regions x and y share a
point’ excludes by axiom C1 the empty set from the spatial domain. In many
mereotopological approaches an empty region or null-element is excluded from
the spatial domain on ontological grounds.

There are two different ways to extend the mereotopological theory MT. Either
the mereological predicate P is defined in terms of the topological predicate C,
or both predicates P and C are primitives. The next two sections present these

two different extensions of MT.
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2.4.1 Mereology subsumed by topology

The extension of the mereotopological theory M'T by the following axiom treats
the mereological predicate P(z,y) as defined by Vz(C(z,z) — C(z,v)).

C4 VaVy(Vz(C(z,z) = C(z,y)) — P(z,v)) C defines P

The theory C1-C4 has been named Strong Mereotopology (SMT). If the following
axiom is added to SMT we get Strong Extensional Mereotopology (SEMT).

C5 VaVy(Vz(C(z,z) > C(z,y)) =z =1y) C-extensionality

Thus, regions are extensional with respect to the contact predicate: if two regions
x and y are in contact with the same regions then x and y must be identical.
Given a spatial domain M defined over a topological space, the predicate C

has usually one of the following three interpretations:

1. {(r,s) € M?|[r] N [s] # 0}
2. {(r,s) € M?|[r]Nns#Dorrnls| #0}
3. {(r,s) € M?|rns # 0}

Given interpretation 1 or 2 in the presence of axiom C5, the closures of any
two regions must be distinct. Therefore, a model of SEMT with interpretation
1 or 2 does not admit boundaries or the distinction between open and closed
regions. For this reason, SEMT is popular with mereotopologists in Al. Given
interpretation 3 and a model of SEMT where the spatial domain consists only of
open sets, mereotopology is possibly reduced to mereology, since in this case the
contact relation coincides with the overlap relation. However, the relations do
not necessarily coincide. It is certainly possible that two open sets intersect but
do not have a common part in a thinly populated spatial domain. For a deeper
investigation of these three possible interpretations of C see (Cohn and Varzi,
1998).

It is easy to see that the following sentences are theorems of SEMT.
P1 Vz(P(x,x)) P-reflexivity

P2 VaVy(P(z,y) AP(y,z) = z =y) P-antisymmetry
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P3 VaVyVz(P(z,y) AP(y,z) = P(z,2)) P-transitivity
P4 VaVy(Vz(P(z,z) <> P(z,y)) =z =v) P-extensionality

Sentences P1-P4 form essentially the theory of Extensional Mereology as devel-
oped by Lesniewski (1929) (see also (Simons, 1987)). Sentences P1-P3 form the
main axioms of every mereological theory. Therefore, in SEMT, topology can be
seen to subsume mereology.

Strong (extensional) mereotopology can be extended by the following exis-
tential axioms. Generally, it is assumed that a maximal region, called universe,

exists. The existence of such region is expressed by axiom P5:
P5 3aVy(P(y,z)) existence of universe

It follows from axiom C4 that a universe is unique. It is easy to see that in SEMT
axiom P5 is equivalent to the sentence 3zVy(C(y, x)) which in some mereotopol-
ogical theories replaces P5.

Intuitively, if regions = and y exist then there also exists a region which is the
“union” or “sum” of regions x and y. The space occupied by a desk together with
the space occupied by a chair is simply the space occupied by the desk and the
chair. Likewise, if two shadows overlap, they have a complete shadow in common.
Thus, an “intersection” or “product” of regions and, in the presence of a universe,
a “complement” sensibly exist. In many mereotopological theories, sum, product

and complement of regions are introduced as definite descriptions:

D1 z +y =4 12Vw(C(w, 2) <> (C(w, z) vV C(w, y)) sum
D2 z x y =4 12Vw(C(w, 2) <> (C(w, z) A C(w, y)) product
D3 —z =4 12Vw(C(w, 2) <> - P(w, z)) complement,

where a formula [iz¢(x)] is substituted by Jy(Vz(d(z) <> = = y) A¥[y]). The
existence of the sum and product of two regions is asserted by axioms such as
P6, P7 and P8:

P6 VaVy3z(z =z +y) existence of sum
P7 VaVy(O(z,y) — J2(2 = = x y)) existence of product

P8 Vx3y(Fz(—P(z,z)) - y = —x) existence of complement
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Note that axioms P7 and P8 are conditional, since an empty region does not exist
in models of SEMT. The product of two regions exists only if they overlap, and the
complement exists only for regions which are not the universe. A model satisfying
axioms C1-C5 and P5-P8 is closed under finite sums, products and complements.
Such a model is a Boolean algebra with its bottom-element removed (Biacino and
Gerla, 1991). While most extensions of strong mereotopology in the literature
agree on axioms C1-C5, P5 and P6, the definitions of product and complement
of regions differ.

The most prominent extensions of strong mereotopology are those by Clarke
(1981), Randell et al. (1992b) and Asher and Vieu (1995). The latter two ap-
proaches are inspired by Clarke’s work. Clarke extends the ‘calculus of individ-
uals’ (Leonard and Goodman, 1940) to include a notion of contact. His mereo-
topological theory consists essentially of SEMT, axiom P6 and the following two

axioms:

PTcuarke VxVy‘v’z(((C(z, z) = O(z,7)) A (C(z,y) = O(z,y)) existence of
— (C(z,z x y) = (0(z, 7 X y))) product

P9ciarke V2Iy(NTP(y, z)) no atoms
where NTP(z, y) stands for P(z,y) A =32(EC(z,z) A EC(z,¥))

Clarke considers the distinction between C(z,y) and O(z,y) to be a virtue of
his theory. Unfortunately, the axioms do not force this distinction. In addition,
since by theorem P1, x is part of z, Clarke’s definition of complement (D3 above)
implies that no region is in contact with its complement.

The Region Connection Calculus (RCC) (Randell et al., 1992a,b; Bennett,
1995, 1996a; Gotts et al., 1996; Cohn et al., 1997) overcomes these idiosyncrasies.
The mereotopological theory RCC consists of SEMT together with axioms P6,
P7 and P8. However, in RCC the product and complement of regions are defined
differently compared to D2 and D3:

D2gcc © X y =4 12Yw(C(w, 2) <> Fv(P(v,2) AP(v,y) A C(v,w))) product

D3grcc —x =4 12Vw((C(w, 2) > " NTPP(w, z)) complement
AO(w, 2) <> = P(z,2)))
It follows from axiom P8 and theorem P1 of the RCC-theory that a region

x is in contact with —z but does not overlap —z. Hence, C and O are distinct
predicates in RCC.
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Following the intuition that space can be divided into smaller and smaller
regions, the following axiom of the atomless RCC-theory ensures that there are

no atoms with respect to the mereological predicate P.
P9 Vz3y(NTPP(y,x)) no atoms

In RCC the intended meaning of the symbol C is ‘the closures of regions x and
y have a point in common’. Therefore, by the extensionality axiom C5, a spatial
domain constructed over R? or R? that satisfies the axioms of RCC consists either
of regular open or of regular closed sets. Hence, with this specific interpretation
of C the interpretation of P coincides with set inclusion.

Diintsch et al. (1998b) and Stell and Worboys (1997) show that any model of
RCC is an atomless Boolean algebra with the bottom-element removed. Gotts
(1996a) shows that the regular closed sets of a connected space obeying the Tj3-
separation axiom provide a model for RCC.

The RCC-theory as defined so far is obviously not complete, and thus does not
characterise the intended meaning of the topological predicate C. For example,
the theory does not pin down the dimension of the universe, i.e. the space itself,
though Gotts (1994, 1996¢) makes suggestions as to how specific dimensions can
be incorporated in RCC. Furthermore, RCC does not determine how regions are
distributed in space. It is easy to see that a model of RCC is given by the set of
regular open sets in the real plane R? which have finitely many components, each
of which either is an open disc having the centre point (0,0) and a radius smaller
than 1, or is an annulus with the centre point (0,0) and an outer radius smaller
than 1. Bennett (1995, 1996a) aims to remedy the incompleteness of RCC and
extends it by further existential axioms. However, the new axioms are complex
and do not provide a complete theory.

The mereotopological theory of Asher and Vieu (1995) includes all axioms of

RCC except for axiom P9. However, complementation is defined differently:
D34y —z =4 12Vw(C(w, z) <> Fv(=C(v,z) A C(v,w))) complement

Hence, as in Clarke’s theory a region is not in contact with its complement.
However, the axiom Jz3y(EC(z, y)) of Asher and Vieu’s theory forces the contact-
relation and the overlap-relation to be distinct. In addition to the contact predi-

cate, Asher and Vieu define a predicate for weak contact:

D4 WC(z,y) =4 ~C(z,y) AV2((P(z,2) Az =1i(2)) = C(y, c(2)))
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where i(z) and ¢(z) are defined thus
D5 i(z) =4 12Vw(C(w, z) <> Fv(NTP (v, z))) interior
D6 c(x) =4 12((Vy(C(z,y)) = 2 =2) V2 = —i(—x)) closure

Note that the closure of the universe is the universe itself, since the complement of
the interior is not defined. A simple model of Asher and Vieu’s mereotopological
theory is given by the spatial domain M = {(0,2), (0,1), (0,1], (1,2),[1,2)} C
©(R) where C is interpreted as {(x,y) € M?|lzNy # 0}. Thus, (0,1] and [1, 2) are
the only regions in contact which do not overlap. Interior and closure as defined
in D5 and D6 are given by the topological interior and closure with respect to the
subspace (0,2). Hence, (0,1] and (1,2), and (0,1) and [1,2) are in weak contact.

The mereotopological theories which will be considered in this thesis are ex-
tensions of SEMT, although not all theories will employ the very expressive topo-

logical notion of contact.

2.4.2 Mereology and topology as partners

The characteristic of strong mereotopology which distinguishes it from other
mereotopological theories is that the mereological relation is defined by the topo-
logical relation. However, in some mereotopological approaches the mereotop-
ological relation and the topological relation are treated as separate though in-
terlinked relations. Thus, in such approaches, mereology and topology can be
seen as partners. A mereotopological theory following such approach includes
the axioms of ground mereotopology, MT, but excludes the axiom C4 which de-
fines the mereological relation P via the relation C. Since the sentences P1-P3
are not theorems of MT, in this approach they have to be included as axioms in
the theory. Sum, product and complement of regions are defined in terms of the

mereological predicate:

D1 2 @ y =4 12Vw(O(w, 2) <> (O(w, z) V O(w, y)) sum
D2" z ® y =4 12Vw(P(w, z) <> (P(w,z) A P(w,y)) product
D3' oz =4 12Vw(P(w, z) <> = O(w, z)) complement

The axioms stating the existence of sums, products and complements have to be

adapted accordingly:
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P6' VaVy(Fz(z =z D y)) existence of sum
P7 VaVy(O(z,y) — 32(2 =z ® y)) existence of product
P8 VaVy(3z(—P(z,z)) — J2(z = ©1)) existence of complement

There are now two possibilities to introduce extensionality. Extensionality can
be based purely on the predicate C using axiom C4 or it can be based on the
predicate P using axiom P4. It is easy to see that given axiom C3, P4 implies
C4.

The theory consisting of MT, P1-P5, P6', P7" and P8’ is called Closed Ex-
tensional Mereotopology (CEMT). General Extensional Mereotopology (GEMT)

consists of the axioms C1-C3, P1-P5 and the following axiom schema:

P9 For each n > 1, each formula ¢(zy,...,z,) the axiom
Vg ...V, (3x1(¢(x1, )]

— EIsz( O(y, z) <> Az1(d(z1, - -, 2n) A O(y,m))))

fusion

This axiom schema ensures that the sum of every infinite set of regions which
can be defined with parameters exists. Note that there are more subsets of an
infinite spatial domain than there are sets definable with parameters, since the
mereotopological language is a finitary first-order language. Lacking expressivity
results for mereotopological languages, it is not clear which regions the fusion
axiom schema forces to exist. They might exhibit pathological behaviour and
therefore might not be appropriate for a representation of everyday objects.

The fusion axiom schema can be used to introduce topological concepts such
as interior, closure, boundary etc. to a mereotopological theory. The quasi-
topological operators for interior, exterior, closure and boundary of regions are
defined thus:

D5 i(x) =4 12Vy(O(y, 2) <> FJw(NTPP(w, z) A O(y, w)) interior
D6 e(z) =4 i(O) exterior
D7 c(z) =4 Se(x) closure

D8 b(z) =4 S(i(z) D e(x)) boundary
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Note, however, that although by the fusion axiom schema of GEMT the interior
and closure of a region exist, they need not be distinct. Consider, for example,
the spatial domain of regular open sets of a Euclidean space where the contact
relation is interpreted as “the closures of the two regions share a point” and the
mereological relation is interpreted as set-theoretical inclusion. Certainly, the
interior of a region r is the region itself. The complement of r is the largest
regular open set disjoint from r. Therefore, the closure of r is r itself. Further
axioms are necessary if interior and closure of regions are intended to be distinct.

The mereotopological theory of Borgo et al. (1996a,b, 1997) extends CEMT.
Their mereotopological language employs the mereological predicate symbol P, a
unary predicate symbol SR with the reading ‘z is a simple region’ meaning ‘region
x is connected’ and a binary predicate symbol CG with the reading ‘z and y are
congruent’. Given the geometrical interpretation of the latter predicate symbol,
the mereotopological language is certainly very expressive. The authors give an
axiom system which aims to give a “good” characterisation of the intended models
which contain regular three-dimensional regions. Unfortunately, these intended
models are not formally defined. The mereological part of the axiom system
is based on closed extensional mereology (axioms P1-P5, P6', P7' P8'). The
topological part states the existence of connected regions and their interior parts.
The contact predicate C is defined in terms of P and SR. On the morphological
level, Hilbert’s work on the axiomatisation of congruence and the correspondence
between points and spheres is exploited. Spheres are defined following Tarski’s
definitions (Tarski, 1956). The congruence of spheres allows Borgo et al. to define
the congruence and convexity of arbitrary regions.

The approach to mereotopology which will be presented in the following claims
that topology subsumes mereology in certain circumstances. However, it will be
argued here that also this approach can be considered as taking mereology and
topology as equivalent partners.

Eschenbach and Heydrich (1995) introduce a mereotopological language where
the binary predicate symbol C is replaced by a unary predicate symbol R with the
intended meaning ‘z is a region’. Thus, Eschenbach and Heydrich assume implic-
itly that the domain, over which the variables of the mereotopological language
are interpreted, contains a whole variety of entities, some of which are regions.
The presented mereotopological theory consists of axioms P1-P5 and P9 together
with the definitions of C(z,y) and EC(z,y) given by O(z,y) A R(z) A R(y) and
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C(z,y) ANVz(P(z,2) ANP(z,y) — =~ R(z)) respectively. Thus, the formulae C1-C3
are provable from axioms P1-P3. Therefore, so it is claimed, topology is nothing
but a subtheory of mereology where quantification is restricted to “regions”, i.e. to
the elements satisfying the predicate R(x). However, the classification of entities
by the predicate R(z) is not a mereological notion. Here, “regions” are implicitly
intended to be extended lumps of space. A point or a boundary, therefore, is not a
“region”. This very separation of extended lumps of space to other spatial entities
gives the predicate R(z) clearly a topological meaning. If all entities satisfy R(z)
then contact coincides with overlap and we are left with a purely mereological

theory.

2.4.3 Mereotopological theories taking dimensions or bound-

aries into account

Few mereotopological approaches take regions of various dimensions into account.

Gotts (1996b) presents a mereotopological theory based on the single mereo-
topological predicate INCH (z,y) with the meaning ‘z INcludes a CHunk of 3’.
Intuitively, two regions r and s stand in the I NC H-relation if the dimension of
r M s is not smaller than the dimension of s. A spatial domain of well-behaved
closed manifolds is intended to provide a model of the theory. However, no formal
results of the paper are based on this interpretation. It follows from the axioms
of Gotts’ mereotopological theory that regions can be classified into classes of
equi-dimensional regions and that these classes form a linear order with a mini-
mal element. A part-whole predicate P and a contact predicate C are definable.
Thus, given an appropriate interpretation, the INC H-predicate is at least as
expressive as the usual mereotopological predicates.

Galton (1996) presents a modification of generalised extensional mereotop-
ology to axiomatise spatial domains of regions of various dimensions. Galton
employs a binary predicate symbol B, where B(z,y) is read as ‘region z is part
of the boundary of region 3’, and the symbol P with its usual mereological inter-
pretation. However, two regions stand in the mereological relation only if they
are of the same dimension. Galton argues that a point might be incident in a
line but does not contribute the line’s extent and therefore is not a part of the
line. Given this assumption, the set of points can be defined on the grounds of
the mereological notion: PT(z) = Vy(P(y,z) — P(x,y)). A relation defining
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pairs of regions of the same dimension can be defined using P. Furthermore,
since a part of the boundary of a region z is of lower dimension than z, Galton
is able to define a binary relation defining the pairs (z,y) where z is of lower
dimension than y. The axioms of the mereotopological theory ensure that the
dimensions form a strict linear order. However, the mereotopological theory does
not force the existence of any element of any dimension. If a spatial domain is
chosen to include regions of various dimensions, for example the closed one- or
two-dimensional sets in the plane, then the whole plane is a region and the sum
of any definable set of region exists by the fusion axiom of the theory. Elements
of mixed dimensionality, however, do not have to exist, since a line lies in the
plane but is not part of the plane.

The mereotopological theories of Smith and Varzi which are explicitly tailored

to boundaries were already discussed in section 2.2.

2.5 The expressivity of mereotopological languages

There are at least two kinds of expressivity results. Firstly, one can ask which
sets of regions can be defined in a given mereotopological language (absolute ex-
pressivity). Secondly, one can ask whether some mereotopological language can
differentiate regions that another language cannot tell apart (relative expressiv-
ity). For example, consider the spatial domain RO(RR?) of regular open sets of the
real plane and the mereotopological language with C as its only mereotopological
predicate symbol. It is easy to show that the formula Vz(C(z,2) — C(y,2))
defines the inclusion relation if the relation C is interpreted by the set {(r,s) €
RO(R?)|[r] N [s] # 0} (see lemma 4.1.2 below). However, if the set of all subsets
of R? is taken as a spatial domain, then the inclusion relation is not definable by
the predicate symbol C with the given interpretation (see lemma 7.0.1 below).
Consequently, the mereotopological language with predicates C and P, where C
is interpreted as before and P is interpreted as the inclusion relation, is more ex-
pressive than the mereotopological language with C as its only mereotopological
predicate symbol with respect to p(IR?). However, both languages have the same
expressivity with respect to the spatial domain RO(R?).

Since only a small number of authors have considered formally defined spatial
domains, formal expressivity results are limited. Pratt et al. (Pratt and Lemon,

1997; Pratt and Schoop, 1998) introduce several spatial domains and thus are able
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to prove relative and absolute expressivity results for two basic mereotopological
languages (Pratt and Schoop, 1999). This work is included and extended in
sections 4.1 and 4.4 of this thesis. Other authors, who only give an informal
interpretation of their mereotopological languages, have presented very complex
formulae which are intended to define relevant mereotopological notions. Gotts
et al. (Gotts, 1994; Gotts et al., 1996) construct formulae that are intended to
distinguish between a ball and a torus. The mereotopological language of Borgo
et al. (1996a,b, 1997) is especially expressive since not only predicate symbols
with mereotopological but also with geometrical interpretation (congruence) are
employed. Borgo et al. provide formulae defining spheres and convex regions.
Most often, these “experimental” expressivity results are plausible. Nevertheless,
they need to be approached with caution since no spatial domain is formally
defined.

Diintsch et al. (1998a) investigate the expressivity of the eight basic binary
relations =, DC, EC, PO, TPP, NTPP, TPP~! and NTPP~" (cf. page 31) in the
three-variable fragment of first-order logic. Diintsch et al. show that the relations
DC and PO can be refined into five relations.

Formal languages and their expressive power have been investigated in the
more general setting of topology and geometry. Several modal languages have
been employed to capture spatial notions (e.g. Rescher and Garson, 1968; Asher
and Vieu, 1995; Balbiani et al., 1996; Dabrowski et al., 1996) with varying degrees
of success (see Lemon and Pratt, 1997). Henson et al. (1977) consider the lattice
of closed sets of a topological space as spatial domain. They declare a topological
property to be “first-order definable” if it is definable in the first-order language
of lattices interpreted over the closed sets. Under these assumptions, a surprising
number of topological properties are first-order definable. For example, some
of the separation axioms as well as the connectedness of a topological space
are first-order definable. Bankston (1984, 1990) develops the notion of a first-
order representation which maps topological spaces to L-structures such that
homeomorphic spaces get mapped to isomorphic structures. This notion allows
him to compare the expressive power of first-order languages with respect to
classes of topological spaces. For example, Bankston shows that all compact 2-
dimensional simplicial complexes are definable in the language of lattices where
the lattices are given by the closed sets of metrisable topological spaces.

First-order languages specifically aimed at the application in spatial databases
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have been investigated (Kuijpers et al., 1999; Kuijpers and den Bussche, 1999).
This work is closely related to research in o-minimal structures (see section 2.8.1
below).

In order to reference all entities of a topological space, i.e. points and sets,
a (monadic) second-order language L£; was studied in (Flum and Ziegler, 1980;
Ziegler, 1985). Flum and Ziegler show that some of the separation axioms of

topology are L;-definable (cf. section 2.8.3).

2.6 The complexity and decidability of mereotop-

ological theories

The undecidability of many mereotopological theories was essentially shown by
Grzegorczyk (1951). In particular, the theory of his “algebra of bodies” is relevant
to mereotopology (cf. chapter 6), where the algebra of bodies is essentially the set
of regular open sets of a Euclidean space of dimension two or higher. Dornheim
(1998) shows the undecidability of a mereotopological theory that admits a model
which is ontologically much sparser than the “algebra of bodies”.

Reasoning in theories in the three-variable fragment of first-order logic has
been shown to be decidable and even tractable. In the centre of the complexity
analysis of restricted mereotopological languages stands the Region Connection
Calculus with its eight pairwise disjoint and mutually exhaustive basic relations
=, DC, EC, PO, TPP, NTPP, TPP ! and NTPP ! that are defined via the
symbol C (Cohn et al., 1995) (cf. section 2.4, page 31). The set of these eight
relations is known as RCC-8. The reduced set of binary relations =,DC U EC, PO,
TPP UNTPP, TPP~" and NTPP™" is known as RCC-5. The formulae of RCC-5
and RCC-8 respectively are first order formulae which use the relation symbols
and have at most three variables, one of which must be bound. Bennett (1994)
shows that every theory in RCC-8 can be transformed in an equi-satisfiable theory
of propositional intuitionistic logic with respect to a given standard interpretation.
Renz and Nebel (Nebel, 1995; Renz, 1998; Renz and Nebel, 1997, 1998a,b) show
the satisfiability problem in any RCC-8 theory where no formula contains an
existential quantification to be solvable in polynomial time. The satisfiability of
any unrestricted theory of RCC-5 or RCC-8, however, is NP-hard. Furthermore,
Renz and Nebel identify a maximal tractable subclass of RCC-8 containing 148
binary relations including the eight basic ones. (A subclass C' of RCC-8 is given
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by a subset of the powerset of RCC-8 where each element R € C defines the
relation | J R.)

Jonsson and Drakengren (1997) classify all subclasses of RCC-5 with respect
to the complexity of their satisfiability problem. They identify the four maximal
tractable subclasses of RCC-5.

2.7 The origin of mereotopology

Since Euclid, ‘point’ has been treated as a primitive concept of geometry. Is this
a necessity? Are there ways to construct the familiar geometry without referring
to the concept ‘point’? What do we mean by ‘point’ anyway? These questions
led philosophers and mathematicians in the beginning of the 20th century to look
for an alternative formalisation of geometry. The first step in this direction was
to identify alternative primitives. We do not perceive points in space. However,
we perceive physical objects. Having in mind this cognitive difference, a number
of new primitives were suggested: ‘solid bodies’ (Huntington, 1913), ‘regions’
Whitehead (1920), ‘solids’ (de Laguna, 1922), ‘volumes’ (Nicod, 1930), ‘lumps’
(Menger, 1940), ‘bodies’ (Grzegorczyk, 1960) etc. I will use the term ‘region’ to
refer to any of these.

An alternative formalisation of geometry based on the primitive ‘region’ has
to enable a reconstruction of points. Otherwise, the formalisation cannot be an
alternative formalisation of the familiar geometry. Therefore, the reconstruction
of points is a necessary part in an alternative approach to geometry.

Whitehead (1919, 1920) develops a ‘theory of extensive abstraction’ to recon-
struct points from regions. He uses the binary relation ‘region z extends over
region y’, the converse of the relation ‘region ¥ is part of region x’, to define sets
of sets of regions which are intended to serve as a substitute for points. Hence,
Whitehead introduces the concept of an abstractive set: A set R of regions is an
abstractive set? if

(i) of any two members of R, one contains the other as part

(ii) there is no region which is a common part of every member of R.

Then an abstractive set “converges to the ideal of all nature with no ... ex-

tension” (Whitehead, 1920, p. 61). However, abstractive sets cannot be taken

3 Actually, Whitehead introduces abstractive sets over durations and events and only later
constructs abstractive sets of regions (Whitehead, 1920, pp. 60,79).
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Figure 2.4: An abstractive set

as a substitute for points, since there exist several abstractive sets converging to
the same point. Thus, there would be too many points. Therefore, Whitehead
introduces further concepts: An abstractive set P is said to cover an abstrac-
tive set @ if every member of P contains as part some member of (). Then two
abstractive sets have the same abstractive force, if each covers the other. This
relation is an equivalence relation and its equivalence classes are the abstractive
elements. However, there are still more abstractive elements than points, since an
abstractive set does not necessarily converge to a point, but may also converge to
a line (cf. figure 2.4). Whitehead realizes that his primitive relation of ‘extending
over’ cannot remedy this problem.

It remains for de Laguna (1922) and Nicod (1930) to show independently a way
to the solution. Both introduce a notion of contact between regions. Moreover,
Nicod is the first to interpret regions as regular closed sets of a topological space.

De Laguna proposes an improvement of Whitehead’s idea by considering the
binary relation ‘region x can connect regions y and z’ which he uses to define
the relation ‘region x is part of region y’. De Laguna gives the relation ‘region z
can connect regions y and 2’ the following meaning: after some translation and
rotation of region x, x has at least one point in common with y and at least
one point in common with z. Obviously, this primitive relation conveys more
than purely topological information; if z can connect regions y and z then the
maximal “diameter” of z is smaller or equal to the minimal distance of y and z.
Nevertheless, de Laguna’s paper can be seen as the birth of mereotopology, since
for the first time mereological and topological notions are employed together.

Following Whitehead, de Laguna defines points, lines and surfaces as abstrac-
tive elements. De Laguna can ensure by employing the can-connect-relation that
abstractive sets converge to a point. It is worth pointing out that lines and sur-
faces in de Laguna’s construction are not defined as sets of points but that points,
lines and surfaces belong to the same class of entities. Since de Laguna’s primi-

tive relation carries topological as well as geometrical information, he is able to
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define geometrical concepts such as collinearity. However, he does not provide a
complete formalisation of geometry.

Nicod takes an approach which is very similar to de Laguna’s but employs a
purely topological relation to define points.

Whitehead (1929) reviews his earlier work and employs a single primitive
binary relation with the intended meaning ‘region z is externally in contact with
region y’. However, he does not strive for a complete formalisation of geometry
in terms of regions and gives a long list of assumptions which are to capture his
intuition about regions. This list of assumptions is inconsistent as Clarke (1981)
points out.

Grzegorczyk (1960) reconstructs points from regions using a single primitive
relation ‘z and y are separated’. Biacino and Gerla (1996) show that Grzegor-
czyk’s and Whitehead’s definitions of point are equivalent. Clarke (1985) extends
his earlier work (Clarke, 1981, cf. section 2.4.1) to reconstruct points. However,
his definition of point causes the topological relation of contact and the mereo-
logical relation of overlap to coincide, thereby reducing his system to mereology
(Biacino and Gerla, 1991). Probably the most famous reconstruction of points is
that by Tarski (1956), who defines points as sets of concentric spheres. Hunting-
ton (1913) also employs spheres as his primitive entities. His points, however, are
spheres which do not contain any other spheres. Therefore, points are primitive
entities in his system and do not have to be reconstructed. Eschenbach (1994)
bases her definition of point on the primitive mereological predicate ‘z and y are
discrete’ and a primitive topological predicate ‘x is a region’. Again points are
not constructed but are primitive entities which do not have proper parts.

The most recent work on the reconstruction of points is done by Roeper (1997).
He uses two primitive relations: the mereotopological primitive relation ‘region
x and region y are in contact’ and a topological primitive relation ‘region x is
limited’. Roeper identifies points with sets of ultrafilters in the Boolean algebra
of regular closed sets in a locally compact Hausdorft space.

Although not directly related to mereotopology, it is worth pointing out that
the reconstruction of Euclidean geometry based on regions has been developed
further in physics. Schmidt (1979) employs the primitives ‘region’, ‘inclusion’ and
‘transport’ to construct a structure isomorphic to Euclidean three-dimensional
space. Regions are taken to be rigid bodies, inclusion is the mereological notion

between regions, and ‘transport’ describes the mappings formed by translations
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and rotations. For a summary of (Schmidt, 1979) see (Gerla, 1995).

2.8 Fields related to mereotopology

2.8.1 Tame topology and o-minimal structures

In 1984, Grothendieck wrote in §5 of his “Esquisse d'un programme” (Schneps
and Lochak, 1997, p. 29 of the French original):

. “general topology” was developed ... by analysts and in order to
meet, the needs of analysis, not for topology per se, i.e. the study of
the topological properties of the geometrical shapes. ... Even now,
just as in the heroic times when one anxiously witnessed for the first
time curves cheerfully filling squares and cubes, when one tries to do
topological geometry in the technical context of topological spaces,
one is confronted at each step with spurious difficulties related to

wild phenomena.

Grothendieck outlined how a field of tame topology might be developed which is
free from wild phenomena. He recognised the semi-algebraic, algebraic and sub-
analytic sets (see e.g. Bochnak et al., 1998; Shiota, 1997) as examples of tame
topological structures. These structures are tame in the sense that any semi-
algebraic (algebraic, sub-analytic) set is the finite union of ‘simpler’ sets. Model-
theorists have recently become interested in tame topology (van den Dries, 1996,
1998), since some model-theoretic structures have been identified whose definable
sets form tame topological structures. For example, the real semi-algebraic sets
are exactly the sets which are definable with parameters over R in the language
of the real closed field. Similar results have been obtained for certain model-
theoretic structures which have been called o-minimal (Knight et al., 1986; Pillay
and Steinhorn, 1986; Pillay, 1987). A model-theoretic structure defined over a
(usually dense) linear order R is called o-minimal (= order-minimal) if every
subset of R definable with parameters is the finite union of open intervals and
points of R.

This thesis is not concerned with tame topology or o-minimal structures as
such. However, there is a definite link between mereotopology in the context of

Al and tame topology in that mereotopologists in Al explicitly consider spatial
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structures that do not exhibit wild phenomena. Consequently, I will make heavy

use of results in tame topology and, more specifically, semi-algebraic geometry.

2.8.2 Graph theory

There are a number of correspondences between graphs and arrangements of
regions in space. Consequently, some satisfiability problems in mereotopology
are equivalent to satisfiability problems in graph theory. As an example, consider
the following satisfiability problem. Assume that O(zx,y) stands for ‘region z
overlaps region y’. The question is whether there exist open-disc homeomorphs
T1,---,T4, 81, S2, 83 in the real plane such that O(r;,r;41) (1 < ¢ < 3), O(r4,71),
not O(ry,73), not O(rg,74), O(riys;) (1 < ¢ < 4,1 < j < 2), not O(s;, s5)
(1 <i<j<3),0(ss3,r1), O(ss,73), not O(ss,re) and not O(sz,r4). This sort of
problem is known in graph theory as string graph problem since the description
can be represented by a planar embedding of a graph where the vertices represent
the regions and an edge joins two vertices if and only if the corresponding regions
overlap. Recognising string graphs has been shown to be NP-hard (Kratochvil,
1991).

Chen et al. (Grigni et al., 1995; Papadimitriou, 1997; Chen et al., 1998a,b)
consider a problem that is slightly different from the string graph problem. They
introduce the concept of a planar map graph. A planar map graph represents the
overlap relation of closed-disc homeomorphs with disjoint interior in the plane.
Chen et al. show that a graph is a planar map graph if and only if it is the half-
square of a planar bipartite graph where a square of a planar graph I' is a graph
I'? that has the same set of vertices as I' and two vertices are linked by an edge in
I'2 if there is a path of length two between the two vertices in I'. A half square of
a planar bipartite graph is simply the square of the graph restricted to one of the
two partitions of vertices. It follows from standard results that the recognition
problem for planar map graphs is in NP.

In this thesis, the complexity of satisfiability problems plays a minor role.
However, correspondences between graphs and arrangements of regions in the

real plane will be exploited in several ways.
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2.8.3 Spatial reasoning in modal and higher order logics

Most mereotopological approaches are formulated in first-order logic. Unfortu-
nately, a large number of first-order mereotopological theories have been shown
to be undecidable (see section 2.6). Modal logics offer a chance to obtain decid-
able or even tractable mereotopological or spatial theories. Modal logics which
attempt to capture spatial notions have been investigated by Lemon and Pratt
(1997, 1999). They show that the modal logics of Rescher and Garson (1968),
von Wright (1979), Jeansoulin and Mathieu (1995) and Bennett (1996b) do ad-
mit models which cannot be called spatial. Thus, in a sense these logics are not
“spatially complete”.

An interesting spatial modal logic is presented by Dabrowski et al. (1996).
They extend the work of Moss and Parikh (1992) and introduce a bi-modal lan-
guage for spatial representation and reasoning. Formal models are constructed
from subset frames which are pairs X = (X, O) where X is a set of points and
O is a set of non-empty subsets of X. The modal logic topologic is introduced.
It is shown that topologic has the finite model property and therefore is decid-
able. Topologic is expected to be strong enough to support elementary topological
reasoning.

Flum and Ziegler (Flum and Ziegler, 1980; Ziegler, 1985) interpret a monadic
second-order language Lo over topological structures that are tuples (2, o) where
2 is an L-structure with domain A and o C p(A) is a topology on A. Although
central model-theoretic theorems such as the compactness theorem, the complete-
ness theorem and the Lowenheim-Skglem theorem hold for monadic second-order
logic (interpreted as a two-sorted logic), they fail for L, interpreted only over
topological structures. Although there is no Lo-formula ¢ such that (2, o) = ¢ if
and only if o is a topology on A, there exists a formula ¢y, such that (2, o) = dpas
if and only if o is the basis of a topology on A. Flum and Ziegler restrict £, to a
monadic second-order language L£; such that every sentence of £; holds in a topo-
logical structure if and only if it holds with respect to some basis of the topology of
the structure. Then compactness, completeness and Lowenheim-Skglem theorem

hold for £; interpreted only over topological structures.
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2.9 Conclusion

In this chapter, I have elaborated on the issues in mereotopology and presented
their treatment in the literature. It turns out that a rigorous definition and
investigation of well-behaved collections of regions, i.e. spatial domains, has been
neglected. The majority of publications in mereotopology are concerned with
the invention of axioms to capture some properties of regions. However, only a

minority of mereotopological theories are shown to be consistent and complete.



Chapter 3

Planar spatial domains and their

properties

The goal of this chapter is to identify a spatial domain that on the one hand
is well-behaved and on the other hand provides regions that are sufficient for a
common-sense representation of objects in (two-dimensional) space. First, I will
introduce a spatial domain that is less well-behaved. Then, I will restrict the

domain further and further to achieve the goal.

3.1 The spatial domain of regular open sets

In the previous chapter, I discussed the ontological advantages of boundary-free
spatial domains. Open sets can have “cracks” and closed sets can have “spikes”
as depicted in figure 3.1(a) and (b). The set of regular open sets provides a
representation of regions which do not differ with respect to their boundaries. A
reqular open set of a topological space is identical to the interior of its closure.
A regular closed set is identical to the closure of its interior. Therefore, regular
open and regular closed sets have neither “cracks” nor “spikes”. Moreover, no
two regular open (closed) sets differ only with respect to their boundaries. Thus,
the regular open as well as the regular closed sets provide boundary-free spatial
domains. In this section, I will investigate the spatial domain of regular open
sets.

Remember that the closure of a set u is denoted by [u], its interior by u°, its

boundary by 0(u) and its set-theoretic complement by .

ol
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(©) (d)

Figure 3.1: Open sets (left) and closed sets (right) in R?

Theorem 3.1.1 (Koppelberg (1989), Theorem 1.37). Let X be a topologi-
cal space and RO(X) be the reqular open sets of X. Then RO(X) is a complete
Boolean algebra under set-theoretical inclusion. The distinguished bottom-element
0 and top-element 1 and the operations +, - and — for join, meet and complement

respectively are given by

0=0, 1=X,
u+v=[uwUv]°, v-v=uNv, —u=(X\u)°

where u,v € RO(X). Furthermore, for M C RO(X) the least upper bound,
ST M, is given by [|J M]° and the greatest lower bound, [ M, is given by [ M]°.

The join will here be called sum and the meet will be called product. While
the product of two regular open sets is simply their intersection, the sum of two
regular open sets is, very roughly, the union of the sets where cracks are filled up.
Figure 3.2 depicts three examples of sums.

The remainder of this section is concerned with the properties of regular open
sets of a topological space X, and more specifically of RZ. The following lemma

will be used without further mention.

Lemma 3.1.2. Let X and Y be topological spaces and h: X — Y be a homeo-
morphism. Let u,v € RO(X). Then h(u) € RO(Y), h(—u) = —h(u), h(u+v) =
h(u) + h(v) and h(u - v) = h(u) - h(v).

Proof. Since for any set u C X, h([u]) = [h(u)], h(u®) = h(u)° and h(u) = h(

u),
the lemma is straightforward. O

The following definition introduces a central notion in topology: connectedness.
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Figure 3.2: Three pairs of regular open sets and their sums

Definition 3.1.3. Let X be a topological space and v C X. Two non-empty
disjoint sets vy, vo C X form a separation of u if u = v; Uwvy. A subset u of X is
connected if for all separations vy, vy, C X of u either [v1|Nwvy # B or v1 N [vy] # 0.
A maximal connected subset of u C X is said to be a component of u. The
topological space X is locally connected if for every point p € X and every open
neighbourhood u of p, there exists a connected open neighbourhood of p lying in

u.

Lemma 3.1.4. A component of a regular open set in a locally connected topolog-

ical space X is reqular open.

Proof. Let v be a regular open set in X and let u be a component of v. It is a
standard result that v is open (Armstrong, 1979, Chapter 3, Exercise 26). Then
u C [u]® C [u]. Since u is connected, [u]° is connected (see e.g. Newman, 1964,
Chapter IV, Theorem 1.2). Since v C [u]® C [v]° = v and v is a maximally

connected subset of v, u = [u]° as required. O

Since the attention is restricted here to regular open sets, it is a helpful result
that connectedness of a regular open set can be defined referring to regular open

sets only.

Lemma 3.1.5. Let X be a locally connected topological space. A non-empty reg-
ular open set u C X 1is connected if and only if for every non-empty reqular open
sets vy, v9 € X with u = vy + vy, u N [v1] N [vg] # 0.
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Proof. Assume wu is disconnected. Let v; be a component of u. By lemma 3.1.4,
vy is regular open. Let vy = r - (—wv;). Then (v1,v3) is a separation of u and
vy N [vg] = @. Since v; is a maximal connected subset of u, u N [v;] = v;. Hence,
u N o] N [vg] = 0.

Conversely, assume u is connected. Let v;,vo C X be regular open sets
such that u = v; + vo. Assume vy N vy = (), otherwise trivially u N [vy] N [vg] # 0.
Certainly, v = v, UvU(9(v1) Nu), whence the pair (uN[vy], ve) forms a separation
of u. Since u is connected and [u N [v1]] Nwe C [u] N [v] Nwe = [v1] Nwy = 0,

(uN [o]) N [va] # 0. O

Lemma 3.1.6. Let X be a topological space and u,vi,vo C X be reqular open
sets such that u is non-empty and u+v, and u+ve are connected. Then u—+v;+vy

18 connected.

Proof. By (Newman, 1964, Chapter IV, Theorem 1.5), (u + v;) U (u + vo) is
connected. Since (u 4+ v1) U (u+ v2) C [(u+ v1) U (u+v2)]° = u+ vy + vy C
[(u+v1) U (u+ vq)], by (Newman, 1964, Chapter IV, Theorem 1.2), u + v; + vo

is connected. O

Now I will concentrate on the Euclidean space R2. Let the set of regular open
sets in R? be denoted by F (F standing for full domain). The set F will be called
the spatial domain of regular open sets. The spatial domain F provides regions
of simple shape such as rectangles and discs. Moreover, F contains regions whose
shape is extravagant and which, therefore, have properties which common sense
would not expect from real-world objects.

Consider a regular open set r in the real plane whose boundary consists in
part of a variation of the topologist’s sine curve. An example is given in figure 3.3
where the oscillating curve is defined by f(x):= sin(107/z)/(1+z) for 0 < z < 7.
Consider the rectangular regular open set u = (—3m,m) x (=1,1). The curve
f((0,7]) splits the regular open set u into the regular open sets r,s and ¢ as
shown. The set 7 + s+t = [rUsUt]° = u is connected. However, neither r + ¢
nor s+t is connected! Clearly, this somewhat astonishing result depends on the
shape of the boundaries. One property which is closely related to the shape of a

boundary is accessibility:

Definition 3.1.7. A boundary point p of a set u C R" is accessible (from u) if
there is a path v:[0,1] — u U {p} such that v([0,1)) € v and (1) = p. The
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Figure 3.3: Three regions bounded by the topologist’s sine curve

boundary of u is accessible (from u) if every boundary point of u is accessible

(from u).

For instance, the points {0} x [—1, 1] on the y-axis in figure 3.3 belong to the
boundary of r but they are not accessible from r. A large number of results of
this thesis will depend on the accessibility of boundaries.

The region depicted in figure 3.4 shows that there are connected regular open
sets which have boundary points that are neither accessible from the region itself
nor from its complement. In this case, the region engulfs the non-accessible part
of its boundary except for one point. Although the region is regular open there
are boundary parts that cannot come into contact with any ball of arbitrary size
which is disjoint from the region. In this respect, the region has similarities to
open regions with “cracks”. Thus, the region is not suitable for a representation
of everyday objects.

It was shown in lemma 3.1.5 that the sum of two disjoint connected regular
open sets r and s is connected if and only if r and s share a boundary point p
which is an interior point of r + s. The question is whether at least one such
point p must be accessible from r as well as s. The following example shows that
this is not the case.

As in a construction of the middle third Cantor set on [0, 1], let Ey = (3, %),

Er=G3Hu(ld), B=(£2)U(L ) U L) u(Z, B etc. Since F is
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Figure 3.4: A connected regular open set sharing non-accessible boundary points
with its complement

a complete Boolean algebra, r = ((0,1) x (2,2.5)) + > (B2, x (—1,2)) and
s = ((0,1) x (=2.5,-2)) + >, en(F2ng1 x (=2,1)) are regular open sets. The
three initial steps of their development are shown in figure 3.5. The regions r and
s will be called the interlinked Cantor combs. Certainly, r and s are connected.
Furthermore, r 4+ s is connected, although r and s do not share any accessible

boundary point.

3.1.1 Regular open sets with accessible boundaries

The next lemmas show that connected regular open sets in R? with accessible
boundaries have especially pleasing properties. Two new notions are required.
Given a connected open set u and two boundary points p and ¢ of u, an arc v
in v U {p} with 7(1) = p is called an end-cut in u. An arc v in u U {p, ¢} with
7(0) = p and (1) = ¢ is called a cross-cut in u.

Lemma 3.1.8. Let r1,79,73 C R? be mutually disjoint connected regqular open

sets with accessible boundaries. Then [ri])N[ra] N[rs] contains at most two points.

Proof. Assume p;, po and ps are distinct points of [r;]N[rs]N[rs]. Let ¢; be a point
in 7; (1 < j < 3). Since the boundaries of ry, r, and r3 are accessible and the
regions are connected, there exist end-cuts ;; (1 <7 < j < 3) from g¢; to p; in 7.
Since 71, 1 and r3 are mutually disjoint, the arcs ; ; form a plane embedding of
the non-planar graph K3 5 which is impossible. Therefore, [r1]N[r2]N[r3] contains

at most two points. O

Note that this lemma fails for regular open sets in general as the example in

figure 3.3 shows.
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Figure 3.5: Three stages in the development of interlinked Cantor combs

Lemma 3.1.9. Let r, 51,55 C R? be mutually disjoint reqular open sets with ac-
cessible boundaries such that r has n components (n > 1), and s; and sy are
connected. Then ||0(s1) N O(s2) N (r + s1 + s9)|| < n.

Proof. Suppose p and ¢ are distinct points of d(s1)NA(s2) N (r+ 51+ 82). Since s;
and s, are connected and have accessible boundaries, there are cross-cuts vy; and
9 from p to ¢ in s; and sy respectively. Thus, v; U v, is a Jordan curve defining
the open halves d; and dy of the plane. Since s; + s, is disconnected, it follows
from lemma 3.1.5 that p,q € 9(s1 + s2) N O(r).

If n = 1 then r lies in d; or dy. Hence, p and ¢ are not interior points of
7+ 81+ 85 contradiction the assumption. Hence, ||0(s1)N0(s9)N(r+s1+52)|| < 1.

If n > 1 then note that by lemma 3.1.8 for each component ¢ of r, ||0(t) N
d(s1)NA(s2)|| < 2. Moreover, if p € 9(s1)NI(s2)NA(t) then by the above argument
t lies in dy, say. Since the boundary of r is accessible, some other component t'
of r lies in dj such that p € 9(t'). Hence, ||0(s1) NO(s2) N (r+s1+s9)|| <n. O

Lemma 3.1.10. Let ry,...,7, CR? (n > 2) be connected reqular open sets with
accessible boundaries such that r1 + ...+ 1, is connected. Then for some 1 with

2<1i<mn, r +r;is connected.
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Proof. If vy - r; # (0 for some i € {2,...,n} then by lemma 3.1.6, 71 + r; is
connected. Suppose r1 - r; # () and 7 + 7; is disconnected for i € {2,...,n}. By
lemma 3.1.9, |[0(r1) N O(r;)) N (r1 + ...+ 1)|| < n—2foreach i € {2,...,n}.
Hence, [[0(r1) N (r1 + ...+ 1)|| < (n —2)(n — 1) contradicting the density of
(accessible) boundary points (see e.g. Newman, 1964, p. 162). O

A correspondence between finite collections of connected regular open sets with

accessible boundaries and finite graphs will be established in the next lemmas.

Definition 3.1.11. Given non-empty connected regions rq,...,7, € S, the bi-
nary connection graph I' = (V,E) on ry,...,r, is given by the vertex set V =
{r1,...,rn} and the edge set £ = {{r;,r;}/1 <i < j <mn,r;+r; is connected}.

The following graph theoretical result will be used in the sequel.

Proposition 3.1.12 (Diestel (1997), Proposition 1.4.4). Given a connected
graph I = (V, E), there is a vertex v € V such that '\ {v} is connected.

Lemma 3.1.13. Let ry,...,r, C R? (n > 1) be non-empty connected regular
open sets with accessible boundaries. Then r1 + ...+ r, is connected if and only

if the binary connection graph on ry,...,r, 1S connected.

Proof. Assume that the binary connection graph I" on r{,... 7, is connected. I
show by induction over n that r; + ...+ r, is connected. For n = 1 the lemma
holds trivially. Let n > 1. By proposition 3.1.12, for some 7 with 1 < i < n,
I'\ {r;} is connected. Then by induction hypothesis >, ., ;;7; is connected.
Since I' is connected, for some k # i, {r;,rx} C E and thus r; + 7 is connected.
Hence, by lemma 3.1.6, 71 + ...+ 7, is connected.

Conversely, assume 71 + ...+ 1, is connected. I show that, after renumbering
ri,...,ry if necessary, the binary connection graph on rq,...,r; is connected for
each i € {1,...,n}. I proceed by induction over i.

If 7+ = 1 then then the hypothesis is trivially true. Let ¢+ > 1. By induction
hypothesis the binary connection graph on rq,...,r;_1 is connected. By the first
part of this proof, r1 +...+7;_1 is connected. Since (r1+...+7r;_1)+7ri+...+ 7,
is connected, it follows from lemma 3.1.10 that for some r; (i < j < n), r; say,
(ri+...47i—1) +1; is connected. Again by lemma 3.1.10, r; 4 r; is connected for
some r; (1 < j <i—1), r; say. Hence, {ry,r;} is an edge in the binary connection

graph on 74, ..., r; which therefore is connected. O
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Lemma 3.1.14. Let r1,...,m, C R? be connected reqular open sets with acces-
sible boundaries such that r + ...+ r, ts connected. Then, after renumbering if

necessary, ro + ...+ r, is connected.

Proof. Let I" be the binary connection graph on r, ..., r,. By proposition 3.1.12,
there exists i, 1 <7 < n, such that I"\ {r;} is connected. Then by lemma 3.1.13

n .
> _j—1,2iTj is connected. O

Lemma 3.1.15. Letrgy,r1,...,7, C R? be mutually disjoint connected non-empty
reqular open sets with accessible boundaries. Moreover, assume that the comple-
ments of g, ...,r, are non-empty and connected, and that vy + ...+ r, = R%.
Then, after renumbering if necessary, ro+. . .41, is connected and has a connected

complement.

Proof. By lemma 3.1.10, there is r;, 71 say, such that ry + r; is connected. If
—(ro+1;) is connected, the lemma holds. If —(ro+17;) is disconnected, let s; be a
component of —(ro+7;). Then ry+r; is connected for some r; C s1. If —(rg+r;)
is connected, we are done. Otherwise let s, be a component of —(r¢+7;) such that
r; € so. Hence, so C s;. Proceeding in this way, the finiteness of ro,71,...,7,
guarantees that one can find some 7 such that ro+r and —(ro+7y) is connected.

Then, after renumbering if necessary, —(ro + rg) =72+ ... + p. O

The above lemmas show that regular open sets with accessible boundaries are
well-behaved. However, the components of the intersection of two connected
regular open sets with accessible boundaries do not necessarily have an accessible
boundary (see figure 3.6). The next section makes an attempt to identify a well-
behaved Boolean subalgebra of regular open sets where connected regions have

accessible boundaries.

3.2 A spatial domain constructed from Jordan re-
gions

For the introduction of the spatial domain of this section and for some proofs
later on it will be convenient to consider spatial domains over compact topological
spaces. Therefore, the one-point compactification (X*,7*) of a topological space
(X, 7) is introduced as follows. Let p,, be a point not in X. The point py is
called the point at infinity. Let X* = X U {pw} and declare u C X* as open,
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Figure 3.6: The intersection of two regular open sets with accessible boundaries

ie.uw € 7", if u € 7 or u is the complement in X* of a set which is closed and
compact in X. Then it is easy to see that for a locally compact space (X, 7),
i.e. every point of X has a compact neighbourhood, (X*, 7%) is a compact space.

The real plane R? is also called the open plane in contrast to its one-point
compactification (R?)* which is known as the closed plane. Occasionally, T will
make use of the standard result that (R?)* is homeomorphic to the 2-sphere
S% = {(w1, 22, 23) € R*|2? + 22 + 22 = 1} where the homeomorphism is induced
by stereographic projection (see e.g. Armstrong, 1979, Section 3.3, Problem 18).
In the sequel, I write R2 to refer indifferently to R? or (R?)*. The following
proposition justifies the extension of the *-notation to any Boolean subalgebra of
RO(R?).

Proposition 3.2.1. The function *: RO(R*) — RO((R?)*) with

i uwU{p} if R?\ u is compact in R?
u =
u otherwise

defines a Boolean algebra isomorphism such that for u,v € RO(R?), u C v if and
only if u* C v*, and u is connected if and only if u* is connected. Moreover, u is
bounded if and only if ps ¢ [u*].

Proof. Let u € RO(R?). Let w be the closure of u in R? and let w, be the closure
of v in (R?)*. Since every open neighbourhood of a point p € R? in (R?)* contains
an open neighbourhood of p in R?, w C w,.

Assume u is bounded. Then w is compact in R?. Hence, (R*)* \ w is open in
(R?)*. Thus, w is closed in (R?)*, whence w, = w. Since R? \ u is not compact,
u*

= u. Hence [u*]° = w°® = u = u*.
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Assume v is unbounded and R? \ u is compact. Then u* = u U {ps} is open
in (R?)*. Since py is an interior point of u U pe, Poo is a boundary point of u in
(R?)*. Hence, w, = w U {ps}, whence [u*]° = (w U {pso})® = v U {poo } = u*.

Assume v is unbounded and R? \ u is not compact in R?>. Then —u is un-
bounded and u U {ps} is not open in (R?)*. Since [u] = R* \ —u is not compact,
—u U {ps} is not open in (R?)*. However, u and —u are open in (R?)*, whence
Poo 18 @ boundary point of v and —u. Hence, w, = w U {py}. Since u* = u, peo
is an exterior point of u*, whence [u*]° = (w U {p})® = v = u*.

Thus, the function * is well-defined. Note that the topology R? is a subspace
topology of (R?)* induced by R?. Hence, if u is regular open in (R?)*, u\ {pso} is
regular open in R%. Since in this case, (u \ ps)* = u, the function * is surjective.

Let u,v € RO(R?). Tt has to be shown that (—u)* = —u*, (u-v)* = u* - v*
and (u+ v)* = u* + v*. Again let w be the closure of u in RZ.

If u is bounded then [u*] = w. Hence, —u* = (R?)*\ [v*] = (R*)* \w =
(R2\ w) U{poo} = —uU{pw} = (—u)*. If u is unbounded then [u*] = w U {pwo}-
Hence, —u* = (R?)*\ [u*] = (R*)*\ (wU {po}) = B2\ w = —u = (—u)*.

If R? \ v and R? \ v both are compact then RZ \ v UR? \ v = R? \ (uNwv) is
compact. Then u* - v* = (WU {Poo}) N (WU {Po}) = (uNv) U{po} = (u-v)*. If
R? \ u is not compact or R? \ v is not compact then R? \ v, UR? \ v = R? \ (uNv)
is not compact. Hence, u* - v* = (u - v)*.

Since u +v = —(—u - —v), (u+ v)* = u* + v*.

It remains to show that v C v iff u* C v* and u is connected iff u* is connected.

Assume u C v. If R? \ v is compact then R? \ v is compact. Hence, u* =
U {poo} C v U {ps} = v*. If R? \ u is not compact, then v* = v C v C v*.
Assume u* C v*. Then u* \ {poo} = u C v* \ {po} = v.

Assume v is connected. Let vy, v, € RO(R?) such that u = v; + v,. Then by
lemma 3.1.5 [v1]N]vg]Nu # 0. Since v; C v}, vo C vy and u C u*, [vi]Nvs]Nu* # (.
Hence, u* is connected. Let u* be connected and let v},v; € RO((R?)*) such
that v} + v = w*. Since [vf] N [v3] N v* is an infinite set, [v1] N [ve] Nu =

([v] N [w3] N u*) \ {po} # 0. Hence, by lemma 3.1.5, u is connected. O

Given any Boolean subalgebra (M, +,-, —, 0, R?) of RO(R?), I write M* to refer
to the set {u*|u € M} and I write M to refer indifferently to M or M*. The

following lemma will be used without further mention.
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Figure 3.7: A region of the spatial domain J with infinitely many components

Lemma 3.2.2. Let X and Y be topological spaces and let h: X — Y be a home-
omorphism. Then h*: X* — Y™ defined by

h*(x):{ Poo i T = Poo

h(z) otherwise
1s a homeomorphism.

Proof. Certainly, h* is bijective. Let U be an open set in X*. For the continuity
of (h*)~!, it has to be shown that h*(U) is open in Y*. Either (i) U is open in X
or (ii) X \ U is closed and compact in X.

(i) If U is open in X then, since h~! is continuous, h(U) is open in Y. Hence,
h(U) = h*(U) is open in Y™

(ii) If X \ U is closed and compact in X then, since h is a homeomorphism,
h(X \ U) is closed and compact in Y. WLOG assume p,, € U, otherwise (i)
applies. Hence, Y*\h(X\U) = Y\A(X\U)U{px} = AU\ {Px })U{P } = h*(U)
is open in Y*. The continuity of ~* is shown by exchanging h and h~!. O

Now I turn to the definition of a Boolean subalgebra of RO(R?) which omits at
least some pathological regular open sets. A set u C R is said to be a Jordan
region if it is bounded and its boundary is a simple closed curve. Let the spatial
domain J* be the set of finite sums of finite products of Jordan regions in F*.
Then J* is a Boolean subalgebra of F*. It follows from proposition 3.2.1 that the
spatial domain J = {u \ {p}|u € J*} is a Boolean subalgebra of F.

Are the regions of J well-behaved? It is easy to see that the domain J contains
regions with infinitely many components. Figure 3.7 shows two Jordan regions r
and s whose boundaries are in part defined by the image of sin(1)z and —sin(2)z
respectively. Then r-s has infinitely many components. Furthermore, the bound-
ary point p of r - s is not accessible from 7 - s. The example of the interlinked

Cantor combs on page 57 showed that there are connected regions of F whose sum
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(a) (b)

Figure 3.8: (a) A region of J which shares one non-accessible boundary point
with its complement; (b) the construction of the region in (a)

is connected but which nevertheless do not share any accessible boundary points.
I conjecture that there are no such regions in the spatial domain J. However,
there are regions in the spatial domain J that have one non-accessible boundary
point with their complement in common. An example of such region is shown in
figure 3.8(a). The components of this region are an infinite number of concentric
annuli with smaller and smaller radii. The region is constructed as the sum of
four products of Jordan regions that are similar to regions r and s depicted in
figure 3.8(b). It is not obvious that the region r depicted in figure 3.8(b) really
is a Jordan region. The following notions and theorems help to prove that r is a

Jordan region.

Definition 3.2.3. Let X be a metric space with metric p. A set U C X is locally
connected at the point p, if, given a positive €, there exists a positive § such that
any two points of U N B;(p) lie in a connected set lying in U N B.(p) (cf. definition
3.1.3). The set U is uniformly locally connected if given a positive €, there exists a
positive § such that all pairs of points p and ¢, that satisfy p(p, ¢) < ¢, are joined
by a connected subset of the space of diameter less than €, where the diameter of
a set is the least upper bound of the distances between all pairs of points of the

set.

Theorem 3.2.4 (Newman (1964), Chapter VI, Thrm 14.1). All Jordan re-

gions are uniformly locally connected.
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Theorem 3.2.5 (Newman (1964), Chap. VI, Thrm 13.1). If the subset U
of a metric space X s uniformly locally connected then U is locally connected at
all points of [U].

Theorem 3.2.6 (Newman (1964), Chapter VI, Thrm 14.4). IfU C X is
locally connected at a point p of O(U), then p is accessible from U.

Corollary 3.2.7. Jordan regions have accessible boundaries.

Useful are also the following two converses of Jordan’s curve theorem.

Theorem 3.2.8 (Newman (1964), Chapter VI, Thrm 16.1). Ifa closed set
in (R?)* has two connected complements from each of which it is accessible at ev-

ery point, it s a simple closed curve.

Theorem 3.2.9 (Newman (1964), Chapter VI, Theorem 16.2). If a con-
nected open set in (R?)* is uniformly locally connected, has a connected comple-
ment and a connected boundary, then its boundary is a simple closed curve, a

point or the empty set.

If is easy to see that region r in figure 3.8(b) is uniformly locally connected,
has a connected complement and a connected boundary. By theorem 3.2.9, the
boundary of region r is a simple closed curve. Hence r is a Jordan region and an
element of J.

The construction of regions with non-accessible boundary points can be taken
further. Certainly there exists an element of J that has infinitely many non-
accessible boundary points that have themselves a non-accessible boundary point
as limit point. Therefore, the set of non-accessible boundary point is not necessar-
ily discrete. However, I conjecture that connected elements of J are well-behaved

in the following sense.

Conjecture 3.2.10. The boundary points of a connected region r € J are acces-

sible from r.

Since the boundary of a Jordan region is accessible by corollary 3.2.7, the

above conjecture is true if the following conjecture can be proven.

Conjecture 3.2.11. FEvery connected region of J* is the sum of finitely many

Jordan regions.
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The verification of the above conjecture would provide an alternative charac-

terisation of Jordan regions:

Conjecture 3.2.12. A non-empty bounded connected region ofj with non-empty

connected complement is a Jordan region.

Proof. Let r € J be a non-empty bounded connected set with non-empty con-
nected complement. By conjecture 3.2.10, the closed set O(r) is accessible from
r and —r. Hence by theorem 3.2.8, 0(r) is a simple closed curve. Since 7 is

bounded, r is a Jordan region. O
A further conjecture that will be of importance later on is:

Conjecture 3.2.13. Let r € J and let R be a subset of the components of r.
Then SR e J.

Although it is uncertain whether a component of a region in J is an element
of j, the following result shows that connectedness for regions of J can be defined

referring to regions in J only.

Lemma 3.2.14. A region r € J is connected if and only if for all non-empty

regions Si, Sg € J with r = 81+ 89, T N [s1] N [s2] # 0.

Proof. The proof of the only-if-direction proceeds as for lemma 3.1.5. For the
if-direction assume that r is disconnected. Certainly there exists a region s € J
such that some but not all components of r lie in s. Then the pair (r - s,r - —s)
forms a separation of r and (r-s)N[r-—s] = (. Since r-s is the sum of components
ofr,rN([r-s]=r-s. Hence, [r-s|N[r-—s]Nnr=70. O

This section discussed the Jordan domain J as a possibly well-behaved spatial
domain. However, regions in J may have infinitely many components and there-
fore non-accessible boundary points. In the next section, I will introduce better
behaved spatial domains. The main characteristic of these spatial domains will
be that every region has only finitely many components and that every boundary

point of a region is accessible from the region.
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{(z,y) € R?|2?/25 + y?/16 < 1 and 2% + 4z + y? — 2y > —4
and 22 —4r +y?> — 2y > —4and (22 +y> -2y #8ory > —1)}

Figure 3.9: A semi-algebraic set in the plane (after Bochnak et al., 1998)

3.3 The spatial domain of regular open semi-alge-

braic sets

There are Boolean subalgebras of J which are especially well-behaved. Two such
subalgebras, the regular open semi-algebraic sets and the regular open semi-
linear sets in the real plane, will be introduced in the sequel. I start off with the

definition of semi-algebraic sets. Semi-linear sets will be introduces in section 3.4.

3.3.1 Semi-algebraic sets and their properties

The following definitions, propositions and theorems are adapted from (van den
Dries, 1998) and (Bochnak et al., 1998) and will be employed in later chapters.

The relevant proofs can be found in the references just mentioned.

Definition 3.3.1. The semi-algebraic sets in R" form the smallest set C C
©(R™) such that C contains all sets {Z € R"|f(Z) > 0} where f is a polyno-
mial with n parameters from R and and C is closed under finite union, finite

intersection and complementation.

Incidentally, the semi-algebraic sets are exactly the subsets of R” (n > 1) that
are definable with parameters over R in the language of the ordered real closed
field with constants (van den Dries, 1998, Chapter 2, Corollary 2.11). Figure 3.9
shows an example of a semi-algebraic set.

Let S denote the set of all regular open semi-algebraic sets in R?. According
to the convention which was introduced above, S* denotes the set of regular
open semi-algebraic sets in (R?)* where (R?)* is now considered as the 2-sphere

5% = {(z1,72,73) € R®|2? + z3 4+ 23 = 1} which itself is a semi-algebraic set in
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——
—e —e
(a) A decompostion but (b) A stratification

not a stratification

Figure 3.10: Two decompositions of a square

R3. The set of all semi-algebraic sets in R? will play a major role in chapter 7. I

continue with important results about semi-algebraic sets.

Proposition 3.3.2 (Bochnak et al. (1998), Proposition 2.2.2).

The closure, interior and boundary of a semi-algebraic set in R* are semi-algebraic.

A semi-algebraic set A C R" will be called a k-cell (0 < k < n) if it is
homeomorphic to (0,1)* where (0,1)° stands for a point. Clearly, every k-cell is
a semi-algebraic set. A finite set C of mutually disjoint 0-, 1-, ... and n-cells in
R" is a decomposition of a set A C R if A = |JC. A decomposition C of A is
a stratification of A if for each C € C, AN ([C] \ C) is the union of elements of
C. Figure 3.10 shows two decompositions, one of which is a stratification. The
following cell stratification theorem, which is a consequence of (van den Dries,
1998, Chapter 4, Proposition 1.13), indicates the especially well-behaved nature

of semi-algebraic sets.

Cell stratification theorem. Fvery semi-algebraic set in R" has a stratifica-

tion.
Thus, every semi-algebraic set is the disjoint union of finitely many cells.

Definition 3.3.3 (Bochnak et al. (1998), Def. 2.4.2). A semi-algebraic set
A C R" is said to be semi-algebraically connected if for all semi-algebraic disjoint
closed sets B; and B, in R"” with B; U By = A either B = A or By = A.

Definition 3.3.4 (Bochnak et al. (1998), Def. 2.2.5, 2.5.12). Let A C R™
and B C R" be two semi-algebraic sets. A function f: A — B is called semi-
algebraic if its graph graph(f) = {(z, f(z))|z € A} is a semi-algebraic set in
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R™" A path (arc) whose graph is semi-algebraic is called a semi-algebraic
path (arc). A semi-algebraic set A C R" is semi-algebraically path-connected
(arc-connected) if, for every pair of (distinct) points p,q € A, there exists a
semi-algebraic path (arc) f:[0,1] — A with f(0) =p and f(1) = g.

Proposition 3.3.5. Let f:[0,1] — R" be a semi-algebraic path with f(0) # f(1).
Then there is a semi-algebraic arc g:[0,1] — R™ with g(0) = £(0), g(1) = f(0)
and g([0,1]) € £([0,1]).

Proof. By the cell stratification theorem, there exists a stratification C of |f|. It
follows by (van den Dries, 1998, Chapter 4, Corollary 1.6(ii)) that C contains 0-
and 1-cells only. The natural ordering on [0, 1] induces a sequence of the cells of
C which starts with the 0-cell f(0) and ends with the 0-cell f(1). Moreover, in
the sequence every 0-cell (except for f(1)) is followed by a 1-cell and every 1-cell
is followed by a 0-cell. If f is not injective some 0-cells will appear as cross-points
more than once in the sequence. If cells appearing between such cross-point are
deleted from the sequence, the union of the remaining cells is the locus of some
semi-algebraic arc g:[0,1] — f([0, 1]). O

Proposition 3.3.6. Let A C R" be a semi-algebraic set. Then the following

statements are equivalent.

1. A is connected.
2. A 1is semi-algebraically connected.
3. A 1is semi-algebraically path-connected.

4. A is semi-algebraically arc-connected.

Furthermore, A has finitely many components, all of which are semi-algebraic

sets.

Proof. By (Bochnak et al., 1998, Theorem 2.4.5), A has finitely many compo-
nents, all of which are semi-algebraic, and (i) iff (ii). By (Bochnak et al., 1998,
Proposition 2.5.13), (ii) iff (iii). By proposition 3.3.5, (iii) iff (iv). O

A further characteristic of semi-algebraic sets is that they have accessible bound-

aries as the next proposition states.
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Proposition 3.3.7 (Bochnak et al. (1998), Theorem 2.5.5). Let A C R”
be a semi-algebraic set and p € R* be a boundary point of A. Then there exists a
path f:]0,1] = R™ with f(0) = p and f((0,1]) C A.

Proposition 3.3.8 (van den Dries (1998), Chapter 6, Lemma 3.5).
Let Ay, Ay C R" be disjoint closed semi-algebraic sets. Then there exist disjoint
semi-algebraic open sets Uy and Uy such that Ay C Uy and Ay C Us.

In the remainder of this section, I will restrict my attention to reqular open

semi-algebraic sets.

3.3.2 Regular open semi-algebraic sets and their properties

Topological spaces can be classified according to their separation properties.

These are defined as follows.

Definition 3.3.9. A topological space X is said to be Hausdorff if for all distinct
points p, g € X there exist disjoint open sets U,V in X such that p e Uand g e V
(T axiom). A topological space X is regular if for all distinct points p,q € X
there exists an open set U such that p € U and ¢ ¢ U, or ¢ € U and p ¢ U
(Ty axiom) and for every closed set V' and every point p € X \ V there exist
disjoint open sets U, and Uy such that p € U, and V C Uy (T3 axiom). A
space X is normal if for all two distinct points p, ¢ € X there exist open sets U,
and U, containing p and ¢ respectively such that p ¢ U, and ¢ ¢ U, (T, axiom)
and for all disjoint closed sets A and B there exist disjoint open sets Uy and Up

containing A and B respectively (T, axiom).

It is straightforward to show that every normal space is regular and every
regular space is Hausdorff. It is easy to see that the Euclidean spaces are normal,
and therefore regular and Hausdorff. Let the notion of separation properties be

transferred to spatial domains in the following way.

Definition 3.3.10. A spatial domain M over a topological space X is Hausdorff,
reqular or normal if M satisfies the corresponding separation axioms in the above
definition where ‘open sets in X’ is changed to ‘open sets in the spatial domain

M’, and ‘closed set in X’ is changed to the ‘closure of an element in M.

Since a spatial domain M over a topological space X may contain only a few
open sets, normality does not imply regularity, and regularity does not imply

Hausdorffness in general. However, here we have the following result.
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Proposition 3.3.11. The spatial domains f*‘, J* and S are Hausdorff, reqular

and normal, and the spatial domain J s Hausdorff and regular.

Proof. Let A; and A, be two disjoint closed sets in (R?)*. For each point p € A,
let U, be an open ball with centre p such that [U,JNAy = 0. Let Uy = {U,|p € A1}.
For each point ¢ € A, let U, be an open ball with centre ¢ not intersecting | JU;.
Let Uy = {U,|q¢ € As}. Then U = U; Ul is an open cover of A; U Ay. Since
(R?)* is compact and A; U A, is closed, A; U A, is compact. Hence, there exists
a finite subcover U’ of Y. Then B, = > (U' NU;) and By = > (U' NUy) are
disjoint elements of S* such that A; C B; and A; C B,. Hence, F*, J* and S*
are Hausdorff, regular and normal.

For F, the proposition follows directly from the normality of R? and the fact
that for any two disjoint open sets U and V, [U]° and [V]° are regular open,
disjoint and contain U and V respectively.

For J, the proposition follows directly from the fact that every open disc and
its complement in the Boolean algebra of regular open sets is an element of J.

By proposition 3.3.8, S is normal. Since points are closed sets in R?, S is also

regular and Hausdorff. d

Lemma 3.3.12. Any non-empty element ofg 1s the sum of finitely many mutu-

ally disjoint connected elements of g, all of which are 2-cells.

Proof. By the cell stratification theorem, there exist finite sets Cy, C; and Cy of
0-, 1- and 2-cells respectively, such that C = Cy U C; U Cy is a stratification of
r € S. For each A € CyUCy, A C [s] for some s € Co. Hence, [r] = [ JC2]. Thus,
r=[UC°=>2C.

By proposition 3.2.1, S and S* are isomorphic Boolean algebras such that
r € S is connected if and only if * is connected. Therefore, the lemma holds also
for S*. O

Proposition 3.3.13. The structure (§, +,,—,0,R?) is a Boolean subalgebra of
T+, —,0,R2).

Proof. By definition 3.3.1, the set of semi-algebraic sets is closed under finite
unions, intersections and complementation. Furthermore, by proposition 3.3.2,
the closure and interior of a semi-algebraic set are semi-algebraic. Hence, for
wv €S u+v=[uUv]°€S. Soare u-v =uNv and —u = ]ﬁiﬂ(lﬁi\u)
By lemma 3.3.12, every region in S is the finite sum of 2-cells. Since 2-cells are
elements of j, S clJ. O
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Lemma 3.3.14. Let 7 € S and let s be a component of r. Then s € S.

Proof. Since locally Euclidean spaces are locally connected, it follows from lemma

3.1.4 that s is regular open. By proposition 3.3.6, s is a semi-algebraic set. [

Lemma 3.3.15. A region r € S is connected if and only if for every two non-

empty regions Sy, So € S with r = s1+ 89, TN [s1] N [s9] # 0.
Proof. By lemma 3.3.14, the proof proceeds as for lemma 3.1.5. O

Lemma 3.3.16. Ifr € S is non-empty, connected and bounded, and has a non-

empty connected complement then r is a Jordan region.

Proof. The proof is the same as for conjecture 3.2.12, but with conjecture 3.2.10

replaced by proposition 3.3.7. O

Theorem 3.3.17 (Newman (1964),Chapter V, Theorem 9.2). Ifthe com-
mon part of the two closed sets Fy and Fy in (R?)* is connected, two points which
are connected in (R?)*\ Fy and (R?)*\ Fy are connected in (R?)*\ (F; U Fy).

Lemma 3.3.18. Let r,s € S* be two Jordan regions. If [r|N[s] is connected then

—(r +s) is connected.

Proof. Let Fy = [r] and F; = [s]. Let p,q € —(r +s) = (R*)*\ (F1 U F3). Then
p,q € (R*)*\ F}) = —r and p,q € (R*)* \ F;) = —s. Since —r and —s are
connected, p and ¢ are connected in —r and —s. Since [r] N [s] is connected, it
follows from theorem 3.3.17 that p and ¢ are connected in (R?)*\ (Fy U Fy) =
—(r +s). Hence, —(r + s) is connected. O

Lemma 3.3.19. Let r,s € S* be two disjoint Jordan regions whose sum s a

Jordan region. Then O(r) N O(s) is the locus of a Jordan arc.

Proof. T use the following three results given in (Newman, 1964).

Result 1, chapter V, theorem 11.5: If the common part of two continua Fj
and F, in (R?)* is not connected, there exists a pair of points not separated by
Fi, but separated by F; U Fy. (A continuum is a compact connected set with at
least two points.)

Result 2, chapter IV, theorem 12.1: A continuum whose connection is de-

stroyed by the removal of two arbitrary points is a simple closed curve.
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Result 3, chapter IV, theorem 10.2: A continuum of which all but at most
two points are cut-points is a Jordan arc. (A point p of a connected set X is a
cut-point if X \ {p} is disconnected.)

Since r and s are disjoint and r + s # (R?)*, d(r) # 0(s). Since d(r) and
d(s) are simple closed curves, 9(s) \ 9(r) # 0. Let p € 9(s) \ 9(r). Choose € > 0
such that B.(p) N d(r) = 0. Then 9(s) \ B(p) is closed and has a connected
complement. It follows from result 1 that [r] N [s] = d(r) N O(s) is connected.
Since r + s is connected, it follows from lemma 3.3.15 that d(r) N J(s) is not a
singleton. Since d(r) and 9d(s) are closed, d(r) N J(s) is compact and hence a
continuum.

Let p € (r)NA(s)N(r+s) and q € A(r)\9(s). Since J(r) is a Jordan curve, it
follows from result 2 that d(r) \ {p, ¢} is disconnected. Hence, (3(r) N d(s)) \ {p}
is disconnected. Lemma 3.1.8 implies that (9(r)Nd(s))\ (r + s) contains at most
two points. Hence, all but at most two points of d(r) N d(s) are cut-points. By
result 3, d(r) N J(s) is (the locus of) a Jordan arc. O

Lemma 3.3.20. Let r,r5 € S and p € [r]] N [ro]. Then there exist disjoint
bounded connected regions s1,s; € S such that s; C 1, s5 C 79, [s1] N [s2] = {p}

and [—(ry + 72)] N [s1] N [s2] is a singleton or empty.

Proof. Since the boundary points of 7; and ry are accessible by lemma 3.3.7, there
exist semi-algebraic loops 7y, at p in r; and 7, at p in ry such that |y | and |y,
are disjoint except for p. Then the loops define connected regions s1, so € S such

that s; C 71, s2 C 7o, [s1] N [s2) = {p} and [—(r1 + r2)] N [s1] N [s2] C {p}. O

Lemma 3.3.21. Let ri,r9,73,74 € S be connected and mutually disjoint such
that r; + r; is connected (1 < i < j <4). Then [ri] N [re] N [rs] N [rs] = 0.

Proof. Assume p € [r{|N[ro]N[rs]N[ry). Let ¢; € r; (1 <4 < 4). By lemma 3.3.7,
the boundaries of r1, 79,73 and 74 are accessible. Hence, there exist arcs ; ; from
¢ to g; in 7; + r; with disjoint interior (1 < i < j < 4). Moreover, there exist
end-cuts & (1 < ¢ < 4) from ¢; to p in r; not intersecting v, ; (1 < j < 4,j # j)
except in ¢;. Then the arcs form a plane embedding of the non-planar graph Kj

which is impossible. U

Lemma 3.3.22. Let rq,79,73, 51,82 € S be connected and mutually disjoint such
that r; + s; is connected (1 < i< 3,1 <5 <2). Then [ri] N[re) N [rs] = 0.
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Proof. Assume p € [r] N [re] N[rs]. Let ¢g € r, (1 < i < 3) and p; € s,
(j = 1,2). By lemma 3.3.7, the boundaries of rq, 7, 73,51 and sy are accessible.
Hence, there exist mutually disjoint Jordan arcs +;; from ¢; to p; in r; + s;
(1 <i<3,1<j<2). Moreover, there exist end-cuts & (1 < ¢ < 3) from ¢; to
p in 7; not intersecting -y; ; except in ¢; (1 < j < 3,7 # ). Then the arcs form a
plane embedding of the non-planar graph K33 which is impossible. O

Lemma 3.3.23. Let ri,ro,73 € S be mutually disjoint j-regions such that r1 +ry
and r1+13 are j-regions, —(ro+1r3) is connected and —(r1+1ry+713) is non-empty.

Then [r{] N [re] N [r3] contains at most one point.

Proof. Suppose for contradiction that p; and p, are two distinct points in [r{] N
[ro] N [r3]. Let p3 € —(r1 + 1o +13) and ¢; € r; for ¢ € {1,2,3}. Note that
ri + —(r1 + 72+ rs) for i € {1,2,3} is connected. Let v; ; be an end-cut from
¢ to p; in r; for i € {1,2,3},5 € {1,2} and let ;3 be an arc from ¢; to p3 in
ri+—(r1+7ry+r3) for i € {1,2,3}. Certainly, the arcs can be chosen to intersect
at endpoints only. Then the loci of these arcs represent a plane embedding of the

non-planar graph Kj 3 which is impossible. O

The partition of a region into mutually disjoint simpler regions will play an im-

portant role in later proofs.

Definition 3.3.24. The elements r,...,r, € F are said to form a partition of
reFif they are mutually disjoint, non-empty and sum to r. In case of r = @,
ri,...,Try is simply said to be a partition. A partition rq,...,r, of r is said to
be connected if each r; (1 < i < n) is connected. A region r € F is called
j-region if r is non-empty and connected and has a non-empty and connected
complement. A connected partition whose elements are j-regions is said to be a
j-partition. A j-partitionry,..., 7, € F is radial about 1, if —(r1+71;) is connected
for all ¢+ with 2 <4 < n. A radial partition is a j-partition which is radial about
every element of the partition. The elements r{,...,r, € F are said to refine the
elements sy, ...,s; € F if every s; (1 < i < k) if the sum of various ;. In this case,
ri,...,Tn is said to be a refinement of sy, ..., sg. Given regions ry,...,r, € f‘, let
S1,--.,Sk be the components of regions of the form £ry -...-£r,. This connected

partition si, ..., s, is called the connected partition generated by r1,...,7,.

The following lemmas present results concerning radial partitions. Remember
that the binary connection graph on connected regions ry, . .., r, contains an edge

{ri,r;} if and only if r; + r; is connected (1 <i < j < n).
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Lemma 3.3.25. Let ry,....7, € S (n > 4) be a radial partition such that for
some point p and some k with 3 < k <mn, p € [r;] if and only if 1 <i < k. Then
r1+ ...+ 1 15 a j-region. Moreover, the binary connection graph on rq, ..., 7y 1S

a cycle.

Proof. Let r1,...,r, € S*. Assume p € [r1]N...N[rg] and p & [re1] U ... Ur,].
I show that r; + ...+ r, is connected first. Let s{,s9 € S* be a separation of
s=r1+...+7 If p€ sy Usy then for some r; (1 <i<k), -8 7#0F#r;- s
Since 7; is connected, [r; - s1]N[r; - s2] Ns1+ s2 # (. Hence [s1] N [s2] N s1+ 52 # 0.
If p ¢ s1 U sq then, since p & [—s], p € d(s1) N I(s2) N's. Then [s1] N [s2] N5 # (.
Either way, by lemma 3.3.15, s = r; 4+ ... 4 r is connected.

Let t = rgy1+...+7r,. I show by induction over k, k > 3, that 1 +...4 1 is
a Jordan region, r; + ¢ is connected (1 < i < k), and the binary connection graph
on ry,...,r is a cycle.

Assume k = 3. Then ry + ro, 79 + r3 and r; + r3 are connected. Thus, the
binary connection graph on rq, 79,75 is a cycle. Since the partition is radial, r;
(1 <4 < 3) has a connected sum with every component of ¢. It follows from
lemma 3.3.22, that ¢ is connected. Hence, r; 4+ ry 4+ 73 is a Jordan region.

Assume that £ > 3 and the induction hypothesis holds for £ — 1. Since
r1+...+ 7 is connected, r; has a connected sum with some region r; (2 < i < k).
Assume WLOG that r; 4+ ro is connected. Since the partition is radial, ry + ro
is a Jordan region. Suppose that the collection of regions r; + ry,r3,..., 7% is
not radial. Then for some region, r3 say, —((r1 + r2) + r3) is disconnected. By
lemma 3.3.18, d(r1 + 72) N O(r3) is disconnected. Since p € (r1) N A(re) N IA(r3),
one component, of d(ry +re) NI(r3) contains p and another component intersects
with O(r1) or O(ry). Assume WLOG that 0(r;) N 0(r3) is disconnected. By
lemma 3.3.18, —(ry + r3) is disconnected. However, this is impossible since the
partition rq, ..., r, isradial. Hence, the elements 1479, r3, ..., 7} are radial about
each other. Therefore, it follows from the induction hypothesis that r + ...+ 7y
is a Jordan region, the binary connection graph on r; +7ry, 73, ..., 7% is a cycle and
each of ry + r9, 73,..., 7, has a connected sum with ¢ = rg1 + ...+ r,. Assume
WLOG that r1 +79+73 and r1 +ry + 7 are connected. By lemma 3.3.22, at most
one of r; and 7y has a connected sum with both r3 and r,. Suppose r; + r3 and
r1 + ry are connected. Since ry 4 r3 or r9 + ry is disconnected and the partition
is radial, ro + t is connected. Since also r3 + ¢ and rp + ¢ are connected, and

p € [ro] N [rs] N rl, it follows from lemma 3.3.21 that 7; cannot have a connected
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sum with both r3 and r,. The same holds for r,. Assume WLOG that r; +7; and
r9 + 73 are connected. Since r; + 75 is connected, the binary connection graph on
ri,...,TE 18 a cycle. Since the partition is radial, 7, + ¢ and 79 + ¢ are connected.
This completes the induction step.

For rq,...,r, € S, the result follows from proposition 3.2.1. O

The following lemmas appeal to a number of results in graph theory. These are:

Theorem 3.3.26 (Bonnington and Little (1995), Theorem 1.25). A graph
I with more than one vertex is n-connected if and only if n < ||V(L)|| and I'\ S
is connected for each S C V(T') such that ||S|| < n.

Theorem 3.3.27 (Gross and Tucker (1987), Thrm. 1.6.1). A plane graph
I' is 2-connected if and only if every face of I' is bounded by a cycle.

Thus, if the edges of a 2-connected plane graph [' are semi-algebraic then the
faces of ' form a j-partition in S. Note, however, that the topological boundary of
a j-partition is not necessarily a plane graph since the “graph” may have multiple
edges. In case of the open plane, the boundary of a j-partition or radial partition
may not even be a “graph” with multiple edges, since several regions might be

unbounded.

Theorem 3.3.28 (Whitney 1932, Diestel (1997), Theorem 4.3.2). Let I’
be a 3-connected planar graph and let I; and Iy be two plane embeddings of T in
the closed plane such that o1:I" — I, and oo: ' — Iy are graph isomorphisms.

Then there exists a homeomorphism h from the closed plane onto itself such that
hlvyuea) = 02007 .
Thus, if I; is a plane embedding of a 3-connected planar graph I' and the

cycle C' C T bounds a face of I; then C bounds a face in every plane embedding

of I'. It is easy to see that this is not true for 2-connected planar graphs.

Theorem 3.3.29. The edges of a plane graph can be continuously deformed into
piecewise linear edges without affecting any vertices or any semi-algebraic (or

alternatively piecewise linear) edges.
Proof. Follows directly from a statement in (Bollobas, 1979, p. 16). O

Definition 3.3.30. Given a radial partition r1,...,7, € S* (n > 4), the topo-
logical boundary graph on ry,...,r, is the plane graph I'y such that V(I'g) =

Uscicjcrcn([ril 0[] 0 [re]) and U E(Ts) = Uiz, 9(ri).
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Lemma 3.3.31. The topological boundary graph of a radial partition ry,...,r, €
S* (n > 4) is a 3-connected plane graph.

Proof. Let T'y be the topological boundary graph of r{,...,r,. Note that every
r; has at least three neighbours in rq,...,r, and, by lemma 3.3.23, [r;] N [r;] N
[rx] contains at most one point (1 < ¢ < j < k < n). Hence, T's is a plane
graph. Let v be any vertex of I's. Then v lies in the closures of at least three
regions. By lemma 3.3.25, the sum of these regions is a j-region. Hence, by
theorem 3.3.27, T's \ {v} is a 2-connected graph. Therefore, by theorem 3.3.26,

I’y is 3-connected. U

Definition 3.3.32. The tuples rq,...,r, and sq,..., s, of a spatial domain over
a topological space X are said to be topologically equivalent, written ry,...,r, ~
S1,---,8n, if there exists a homeomorphism h: X — X such that hA(r;) = s;
for 1 < i < m. A subset A of p(X) is said to be topologically homogeneous if,
whenever @, b are n-tuples from A such that @ ~ b and a is an element of A, there
exists b € A such that @,a ~ b, b.

Thus, a topologically homogeneous set A C p(X) need not be closed under arbi-
trary homeomorphisms of X; however, any two topologically equivalent n-tuples
in A must ‘look alike’ in terms of their topological relations to other elements of
A. T will show below, employing radial partitions and 3-connected planar graphs,
that the spatial domain S is topologically homogeneous. First, I show that any
tuple of regions in S can be refined by some radial partition and that radial

partitions have the following property.

Lemma 3.3.33. Let ry,...,7, € S and sy,...,8, € S (n > 4) be radial par-
titions such that r; + r; is connected if and only if s; + s; is connected (1 <
i < j <n), and r; is bounded if and only if s; is bounded (1 < i < n). Then

TlyeooyTy ™~ S1y...,8n.

Proof. 1 prove the lemma for the closed plane first. Let r1,...,7,,81,...,5, € S*.
By lemma 3.3.31, the topological boundary graphs I', and T’y of r{,...,r, and
$1,. .., Sp respectively are 3-connected plane graphs. I show that [r;]N[r;]N[ry] is
a vertex of I', if and only [s;]N[s;]N[sk] is a vertex of I'; (1 <4 < j < k < n), and
[ri] N [r;] is an edge of T, if and only if [s;] N [s;] is an edge of 'y (1 < i < j < n).
Then I', and I'y are plane embeddings of the same 3-connected planar graph and

the lemma follows by theorem 3.3.28.
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Since r; +r; is connected iff s; + s; is connected, it follows from lemma 3.3.19
that [r;] N [r;] is an edge of [, iff [s;] N [s;] is an edge of T’y (1 <i < j < n).

Assume p € [r|N...N[r] and p ¢ [r1]U...U[r,] for some [, 3 <1 < n. By
lemma 3.3.25, the binary connection graph on r1,...,7;is a cycle and r1 +...+1m;
is a Jordan region. Hence, the binary connection graph on s1, ..., s; is a cycle and
s1+ ...+ s is a Jordan region. WLOG assume that s; + so + s3 is connected. By
lemma 3.3.23, [s1] N [s2] N [s3] contains a single point ¢g. Then for any 4, j, k with
1<i<j<k<I[si)N[sj]N[sk] = {p}, since otherwise by lemma 3.3.25 the
binary connection graph on sy, ..., s; could not be a cycle. It is shown analogously
that, if [s;] N [s;] N [sk] is a singleton, then [r;] N [r;] N [rk] is a singleton.

Now let ry,...,7,,81,---,8, € S and let I', and I'y; be the the topological

boundary graphs of r},...,r; and s},...,s} respectively. By the above proof

r n
there exists a homeomorphism h : (R?)* — (R?)* taking r} to sf (1 <4 < n).
Since r; is bounded iff s; is bounded, the point at infinity p., lies on corresponding
vertices, edges or faces of I, and I's. Hence, h can be chosen to map po to itself.

Therefore, h|g: is a homeomorphism taking 7; to s; (1 <i < n). O

The following two lemmas are adapted from (Pratt and Schoop, 1998). The
first of the two lemmas will be used to show that every connected partition can
be refined to a radial partition. The second lemma will be used in chapter 5.
However, both lemmas are technically similar and therefore presented together

here.

Lemma 3.3.34. Letr,s,t € S be connected such that T is non-empty, r and s+t
are disjoint and r + s and r +t are connected. Then there are disjoint connected
non-empty regions ri,ry € S such that r = ro+re and ry+ s, r1+t, ro+ s
and ro + t are connected. Furthermore, if r € S, r is unbounded and —(r + s) is
bounded then r can be chosen to be bounded, or r1 and ro can be chosen to be

unbounded.

Proof. Consider the regions r*, s* and t* of S*. If s* or t* is empty an easier
or similar proof as the one which follows applies. Assume s* and ¢t* to be non-
empty. It follows from lemma 3.3.15 that there are two distinct points pi,ps €
(r*4s*)No(r*) and two distinct points ¢1, g2 € (r*+t*)NA(r*). Let ps be a point
in r*. Since by proposition 3.3.7 the boundary of r* is accessible from r*, and by
proposition 3.3.6, r* is arc-connected, there exists a semi-algebraic cross-cut y; in

ri from p; to g1. Either ~; partitions 7* into two connected regions r§ and 73, or
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)

(a) (b)

Figure 3.11: The existence of specific regions in S

r*\ |71| is connected. In the former case, obviously r} and r} are disjoint elements
of S* whose sum is 7*. In the later case, let 75 be a semi-algebraic cross-cut from
P2 t0 go in 7\ |y1| (cf. figure 3.11(a)). Since py € [s*], g2 € [r*] and 7, connects
[s*] and [r*], p» and ¢ lie in the same component of (R?)*\ (r* \ |y|). It is a
result from (Newman, 1964, Chapter V, Theorem 11.7) that, if v is a cross-cut
in a non-empty open connected set U with endpoints in the same component of
(R?)*\ U then U \ || has two components. Hence v, partitions 7*\ |y;| into two
connected regions ri and r5. Again, it is easy to see that i and r; are disjoint
elements of S* whose sum is 7*. Since p;, ps and ¢y, ¢» are points of (r*+s*)NO(r*)
and (r*+s*)NO(r*) respectively, it follows from lemma 3.3.15 that 7+ s*, 77 +1*,
ry +s* and ry 4+ t* are connected. Then by lemma 3.2.1, r; + s, 1 + ¢, 72 + s and
r9 + t are connected.

If 7 is unbounded and —r is bounded, i.e. py € 7*, then choose |y;| (and |y2])
not to include py, and let 77 be the component of 7* \ |y1| (7*\ (|71 U |y2])) that
does not contain p. Then r; is bounded. If v, is chosen to go through p,, then
r1 and 79 are unbounded.

If r and —r are unbounded and —(r +s) is bounded then py, € [r*]\ [—(r+s)].
Then p; and p, can be chosen not to be p,, and r; can be chosen to be the

bounded region. If p; is chosen to be p,, then r; and 7, are unbounded. O

Lemma 3.3.35. Let r,;s € S be disjoint j-regions such that r + s is a j-region.
Then there exist disjoint connected non-empty regions ri,re € S such that r =
4+ 1o, 1+ 5 and ro + —(r + 8) are connected and ro + s and 1 + —(r + )

are disconnected. Furthermore, if r € S, r is unbounded and —r is bounded then
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one of r1 and ry can be chosen to be bounded, or ri and ro can be chosen to be

unbounded.

Proof. Consider the regions 7*, s* € S*. By lemma 3.3.19, 9(r*)Nd(s*) is a Jordan
arc a. Let p; and p, be its endpoints. By the accessibility of the boundary of r,
there exists a semi-algebraic cross-cut y from p; to pe in 7* (cf. figure 3.11(b)).
The arc v separates r* into two disjoint Jordan regions r; and 5 whose boundaries
are |a| U |y| and (O(r*) \ |a|) U |y| respectively. By lemma 3.3.15, 77 + s* and
rs + —(r* + s*) are connected, and rj + s* and r} + —(r* + s*) are disconnected.
By proposition 3.2.1, 7 + s and 79 + —(r + s) are connected, and 7 + s and
r1 + —(r + s) are disconnected.

If r is unbounded and —r is bounded, i.e. ps, € r*, then || can be chosen to
include py. Then r; and 7, are unbounded. On the other hand, v can be chosen

to pass Py “on the left” or “on the right”. Then either r; or 79 is unbounded. [

Lemma 3.3.36. (i) There exists a function f:N — N such that any j-partition
in S with n elements has a radial partition with f (n) elements as refinement.
(i) There exists a function g:N — N such that any connected partition in S

with n elements has a j-partition with g(n) elements as refinement.

Proof. (i) Let r1,...,m, € S be a j-partition. Suppose s; and s, are two compo-
nents of —(r; + r9). Then r; + s; and 71 + so are connected. By lemma 3.3.34,
there exist disjoint connected regions t;,%s € S such that ri =11+ 1ty and 81 + 11,
s1 + tg, So + t; and sy + ty are connected. Hence, t; and ¢y are j-regions. More-
over, the number of components of —(¢; + ) and —(¢; + r2) together is equal
to the number of components of —(r; 4+ r3). Therefore, proceeding with the ap-
plication of lemma 3.3.34 in this way, in a finite number of steps the j-partition
ri,...,7, is refined to a radial partition. It is easy to see that at most n — 2 such
steps are necessary. Hence, the new partition has at most 2n — 2 elements. Let
f(n) =2n—2. If s1,..., s is a radial refinement of sq,...,s, with & < f(n) then
lemma 3.3.34 guarantees that sq,. .., s, can be further refined to an f(n)-element
radial partition.

(ii) Let r1,...,m, € S be a connected partition. Suppose si, Sy € S are two
components of —r;. Then r; 4+ s; and r; + s9 are connected. By lemma 3.3.34,
there exist disjoint connected regions t,t; € S such that 1 = t1 + 19, and 1 + sq,
t1 + So, to + s1 and t9 + sy are connected. Then the number of components of

—t; plus the number of components of —t¢5 is smaller or equal to the number
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of components of —r;. Therefore, a repeated but finite application of lemma
3.3.34 results in a j-partition that refines r{,...,r,. It is easy to see that at most
n — 1 applications are required. Hence, let g(n) = 2n — 1. If s1,...,5, is a
radial refinement of sy,...,s, with k& < g(n) then lemma 3.3.34 guarantees that

S1,- .., 8k can be further refined to an g(n)-element radial partition. O

Proposition 3.3.37. There exist only finitely many n-element radial partitions

in S up to topological equivalence.

Proof. Since there are only finitely many 3-connected planar graphs with n ver-
tices, it follows from lemma 3.3.33 that there are only finitely many n-element

radial partitions up to topological equivalence. O

The following proposition is a direct consequence of proposition 3.3.37 and lemma
3.3.36.

Proposition 3.3.38. There exist only finitely many n-element connected parti-

tions up to topological equivalence in S.

Note that the proposition neither holds for the spatial domain F nor the
spatial domain of regular open semi-algebraic sets in R®. A consequence of the
proposition is that there are only countable many regions in S up to topological

equivalence. This is not true for F or J:

Lemma 3.3.39. There exist uncountably many regions up to topological equiva-

lence in F and J.

Proof. Consider two Jordan regions r and s of J such that r - s has infinitely
many components as depicted in figure 3.7 on page 62. Certainly for any subset
C of the components of r - s there exist two Jordan regions ' and s’ such that
r-s CUC,forallce C,c-r' s #0,and [r' - s']N[—(r-s)] = 0. Thus, there
is a region ¢ in J with denumerable many components that are ordered through
their contact-relation. Moreover, for any subset C' of the components of ¢ there is
a region t¢ that is identical to ¢ except that all and only those components of ¢
which are covered by a region in C' have a hole. Therefore, there are uncountably

many regions up to homeomorphism in JCF. O

Proposition 3.3.40. The spatial domain S is topologically homogeneous.
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Proof. Let ri,...,10,7,81,...,8, € S* such that r,...,7, ~ s1,...,5,. By
lemma 3.3.36, there is a radial partition uq,...,ux € S* (k > 4) refining the
connected partition generated by r1,...,r,,r. Since r1,..., 7, ~ S1,..., Sy, there
exists a homeomorphism A : (R?)* — (R*)* taking r; to s; (1 < i < n). Let
v; = h(u;)) (1 < i < k). Then vy,...,v, is a radial refinement of si,...,s,.
However, note that the sets vq,...,v, are not necessarily elements of S*. Let I
be the topological boundary graph of vy,...,v,. By theorem 3.3.29, I' can be
continuously deformed into a plane graph I'" where all non-semi-algebraic edges
are replaced by piecewise liner ones. Let v] be the face of I" whose boundary is
the deformed boundary of v; (1 < i < k). Then vi,...,v, are elements of S*
refining sy, ..., s, such that v; +v; is connected if and only if v; +v; is connected
(1 <4 < k). By lemma 3.3.33, there exists a homeomorphism g: (R?)* — (R?)*
taking u; to v} (1 <4< k). Let s =g(r). Then ry,...,7,7 ~ S1,..., 8, S.

Let r1,...,7,7,81,...,8, € S such that r,...,7r, ~ s1,...,5,. Hence, there
exists a homeomorphism h:R? — R? taking r; to s; (1 <4 < n). By lemma 3.2.2,
h extends to an homeomorphism h*: (R?)* — (R?)* such that h*(r}) = s (1 <4 <
n) and h*(ps) = Poo- By the above argumentation there are radial refinements
ul,...,up and vf,...,vf in S* of r},...,rr, 7" and s7,...,s; respectively such
that uf,...,u; ~ vf,...,v;. Moreover, the graph I" in the above argumentation
can be chosen such that py € [u}] iff po € [v}]. It follows from lemma 3.3.33

that there exists a homeomorphism ¢:R* — R? taking u; to v; (1 <7 < k). Let

s =g¢(r). Then ry,...,70,7 ~ S1,..., Sp, S. O

In this section, we have seen that the set S of regular open semi-algebraic sets in
R? is very well-behaved: every region in S has an accessible boundary and finitely
many components, S forms a Boolean algebra and Sis topologically homogeneous.
Such pleasant properties have been observed not only for semi-algebraic sets but

also for other structures, called o-minimal structures.

3.4 O-minimal structures

The set of semi-algebraic sets is one example for an o-minimal structure in the
sense given below. O-minimal structures have recently become the centre of
intensive research in model theory. The term ‘o-minimal’, standing for ‘order-
minimal’, was introduced in model theory to describe a class of “nice” structures

(Pillay and Steinhorn, 1986; Knight et al., 1986). However, o-minimal structures
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are also of interest to topologists, since the definable sets of an o-minimal (model-
theoretic) structure can be interpreted as sets over a topological space. As it turns
out, these definable sets are well-behaved and satisfy certain finiteness properties
that make them interesting for the development of a “tame topology” as envisaged
by Grothendieck (see Schneps and Lochak, 1997).

O-minimal structures can be defined on any dense linear order without end-
points. Since this thesis is restricted to the Euclidean setting, I give a definition

of o-minimal structure on R.

Definition 3.4.1 (van den Dries (1998)). An o-minimal structure on R is a

sequence S = (S, )nen such that for each n € N:

(1) S, is a Boolean algebra of subsets of R”, that is, ) € S, and if A, B € S,,,
then AUB € Sand R* \ A € S,;;

(2) if A€ S, then AXR€ S, and Rx A € Sp41;
3) {(z1,...,2,) e R*|z; =2} € S, for some 4, j with 1 < i < j < n;

(4) if A € S,;1 then 7(A) € S, where 7:R**! — R" is the usual projection
map, i.e. 7(A) = {(z1,...,2,) ER"|[(21,..., ZTp, Tpy1) € A};

(5) for each r € R, {r} € &1, and {(z1,22) € R?|x; < 25} € Sy;

(6) the only sets in &; are the finite unions of sets of the form {r} or (r{, )
where r € R and 1,72 € RU{—00, +o0}.

From a model-theoretic point of view, an o-minimal structure can be defined
as a model-theoretic £(<, . ..)-structure 2l whose domain A is a dense linear order
without endpoints such that every subset of A which is definable with parameters
in 2 is the finite union of points and open intervals of A. Given such o-minimal
(model-theoretic) structure 2, the sets definable with parameters in 2 form an

o-minimal structure in the first sense.

Examples of o-minimal structures are (van den Dries, 1996):

1. The class of semi-algebraic sets
They were already introduced in the previous section. The semi-algebraic
sets are exactly the sets definable with parameters in the model-theoretic
structure with domain R and language £(<,0, 1,4+, —, -) with its usual in-

terpretation.
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2. The class of semi-linear sets

A semi-linear subset of R" is the finite union of sets of the form

{z e R*|fi(x) =0,..., fu(x) =0,g1(x) >0,...,g(x) >0}

where f; (1 <i<k) and g; (1 <j <) are polynomials of degree smaller
or equal to 1. The semi-linear sets are exactly the sets definable with
parameters in the model-theoretic structure with domain R and language
L(<,0,4+,—, (Ar)rer) where <, + and — have their usual interpretation and
A, is the scalar multiplication by r. Obviously, every semi-linear set is a

semi-algebraic set.

3. It has been shown in (Peterzil, 1992) that there exists one o-minimal struc-
ture which lies exactly between the semi-linear and the semi-algebraic sets.
This structure contains all semi-linear set and all bounded semi-algebraic

sets.

4. The class of sets definable with parameters in the model-theoretic struc-
ture with domain R and language £(<,0,1,+, —,-, exp) where exp(z) is

interpreted as the exponential function e*.

5. The class of sets definable with parameters in the model-theoretic structure
with domain R and language £(<,0,1,+, —, -, (f)) where (f) ranges over
all restricted analytic functions, i.e. over all functions f:R" — R such that

fl=1,1)» is analytic and f is identically 0 outside [—1, 1]".

3.5 The spatial domain of regular open semi-linear

sets

I denote the spatial domain of reqular open semi-linear sets in R* by P (standing
for “polygonal”). Note that P C S and, moreover, (P, +, -, —, 0, R?) is a Boolean
subalgebra of (S, +, -, —, 0, R?).

So far, only uncountable spatial domains have been introduced. If the affine
functions in the definition of semi-linear sets are restricted to take only rational
parameters then the set of such restricted semi-linear sets is a countable subset

of all semi-linear set. I denote the regular open set of this restricted set by



CHAPTER 3. PLANAR SPATIAL DOMAINS 84

Q. Then Q C P and, moreover, (Q,+,-, —, 0, R?) is a Boolean subalgebra of
(Pa+a ) _7®aR2)'

The following two lemmas will be of importance later on.

Lemma 3.5.1. Ifry,...,1, € P and r € S then there ezists s € P such that

TlyeeosTps T~ T1yee., T, S.
Proof. Assume rq,...,r, € P*. By lemma 3.3.36, there exists a radial partition
Ui, ..., ur € S* refining the connected partition generated by rq,...,r,,r. Hence,

Ui, ..., u refines r1,...,r,,7. By theorem 3.3.29, the edges of the topological
boundary graph I" of u1, . .., u; can be continuously deformed into a graph I’ with
piecewise linear edges without affecting any edges which are already piecewise
linear. Hence, the faces of IV are elements of P*. Moreover, I' and I are plane
embeddings of the same 3-connected planar graph, whence by theorem 3.3.28
there is a homeomorphism h of the closed plane onto itself taking each wu; to a
face v; of I (1 < ¢ < k). Hence, uq,...,ux ~ vq,...,0 Since the boundaries
of r; are left unaffected by h, h(r;) = r; (1 < i < n). Let s = h(r). Then
Tlyeeos Ty T ™ T1yenes Ty S.

Assume ry,...,r, € P. Then 7}, ..., 7} € P*. Certainly, there is a refinement
of the connected partition generated by 7j,...,7 such that py is a vertex of
the topological boundary graph. Then the proof proceeds as before. Hence,
Ty, vt~ oo e, 8" and 7 is bounded if and only if s is bounded. Then

PAR (%) 7' n?

Tlyeeey Ty T~ Tl ooy Th, S, U

Lemma 3.5.2. If ry,...,7, € Q and s € S then there exists r € Q such that

Tlyenes Ty ST,y Ty, T

Proof. The proof proceeds as for lemma 3.5.1 except that the piece-wise linear

edges are chosen to have rational vertices. O

The topological homogeneity of P and Q follows immediately from the above two

lemmas and the homogeneity of S (proposition 3.3.40).

Corollary 3.5.3. The spatial domains P and Q are topologically homogeneous.

3.6 Conclusion

This chapter introduced the five spatial domains F, J, S, P and Q over the

topological space R? and their counterparts over (R?)*. The spatial domain F of
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regular open sets in R? was shown to contain regions that are not appropriate for
a common-sense representation of everyday objects in space. The spatial domain
J is a strict subset of F and was only conjectured to be better-behaved than F.
The set S of regular open semi-algebraic sets was shown to be extremely well-
behaved. Further refinements of S were given by the polynomial spatial domain
P and its refinement Q, the spatial domain of rational polygons.

The properties that make S and therefore also P and Q so well-behaved are:

1. S forms a Boolean algebra with respect to the subset relation.

2. S obeys the separation property of normality and is topologically homoge-

neous.

3. There are only finitely many n-element connected partitions in S up to

topological equivalence.
4. Every region in S has finitely many components.

5. Every region in S has an accessible boundary.

The following chapters make use of these properties of S.

The spatial domain S is a subset of the o-minimal structure of semi-algebraic
sets over the real line. It is an open problem whether the two-dimensional reg-
ular open sets of some other o-minimal structure over the real line provide an
equally well-behaved spatial domain. The investigation of spatial domains over

R3 remains for future work.



Chapter 4

Planar mereotopologies and their

properties

The introduction of spatial domains in the previous chapter settled the question
of which regions are taken to exist. In this chapter, mereological and topological
primitives will be introduced and represented by non-logical symbols in first-
order languages. These first-order languages will be interpreted over the spatial
domains and so model-theoretic structures will be introduced. The properties of
these structures as well as the expressivity of the first order-languages will be

investigated.

Definition 4.0.1. Let X be a topological space and £ a first-order language
with equality. An L-structure 9% with domain M C p(X) is a mereotopology
(over X) if

(i) the set {(r,s) C M?|r C s} is L-definable in 9 (mereological criterion)

(ii) for all 7,5 € M* (k > 1) and every atomic formula ¢(z1,...,2;)in £, 7 ~ 5

implies M = @[F| <> ¢[5] (topological criterion).

All mereotopologies considered here will be L-structures where £ has only a
small number of non-logical symbols with mereological or topological interpreta-

tion. These symbols are:

(i) the binary predicate symbol < where z < y is read as ‘region z is part of

region y’,

86
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(ii) the binary predicate symbol C where C(z, y) is read as ‘regions x and y are

in contact’,

(iii) the unary predicate symbol ¢ where c(z) is read as ‘region z is connected’,

and

(iv) the unary predicate symbol b where b(z) is read as ‘region z is bounded’.

Different combinations of these symbols will be employed. I write £(X) for
the usual first-order language with equality and signature ¥. Then £({<,c}), or
L(<, ¢) for short, represents the first-order language with equality and predicate
symbols < and c. The languages £(<,c), £(<,¢,b), £L(C) and L(<, C) will fea-
ture in this thesis. These four languages will be called mereotopological languages.
I use the symbol L,,;; to refer to any of these four mereotopological languages.

The predicate symbols <,C, ¢ and b have the following standard interpreta-
tion which will be observed throughout the thesis. Given a topological space X
and an L,,-structure 9 with domain M C p(X), I define

<™ = {(r,s) € M?|r C s}
[CI* = {(r,s) € M?|[r]Ns] # 0}
[c]™ = {r € M|ris connected}

b = {r € M|r is bounded} if X is a metric space
N M otherwise

The spatial domains introduced in the previous chapter are now interpreted
over the mereotopological languages. The various L£,,;-structures are symbolised
by the Gothic letters corresponding to the letters of the spatial domains. Thus, §
is an L,;-structure with domain F, and the £, ;-structures J, &, B and Q have
the domains J, S, P and Q respectively. The one-point compactifications will be
treated analogously. Thus, the £,,;-structure §* has the domain F* etc. An L,;-
structure in a specific mereotopological language is denoted by the Gothic symbol
followed by the signature of the language. For example, &*(<,c) denotes the
model-theoretic structure which interprets the mereotopological language £(<, ¢)
over the spatial domain S*. Sometimes it will be convenient to refer indifferently
to an L,,;-structure over the open or the closed plane. Therefore, I will transfer
the ~-notation, which was used in the previous chapter for spatial domains, to
mereotopologies. For example, I take S to refer indifferently to & or &*. 1
write R to refer indifferently to §, J or &. The domain of R is denoted R.
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*_notation.

The signature-notation will be used in combination with the ~- or
Note, however, that a multiple occurrence of one of the ~-notations in a lemma,
theorem or proof etc. is understood to refer to the same model-theoretic structure
and its spatial domain. Moreover, the occurrence of the ~-notation for several
models in the same lemma, theorem or proof etc. is to be resolved either in the *-
or non-*-notation for a/l domains and mereotopologies in the respective lemma
etc. Thus, if a theorem refers to § and & then the theorem holds for $ and G,
and for §* and &%, but not necessarily for § and &*.

Given the above standard interpretation of the predicate symbols it is easy to
see that (<, ¢), R(<, ¢,b) and R(<, C) are mereotopologies. It will be shown
in lemma 4.1.2 that $R(C) is a mereotopology as well.

The following lemma shows R be a mereotopology in the stronger sense of re-
quiring two topologically equivalent tuples of regions to satisfy the same formulae
and not only the same atomic formulae. The lemma shows the importance of the

notion of topological homogeneity.

Lemma 4.0.2. Let O be a mereotopology in the language L,,; such that M is
topologically homogeneous. Let v, 5 € M™ be topologically equivalent. Then r and
5 have the same type in IN.

Proof. By induction on the complexity of ¢. If ¢ is an atomic formula, then, by
assumption, M = @[] iff M = ¢[s]. The only non-trivial recursive case is where
¢ is Jx1(z,x). Suppose, then M = ¢lal. Let a € M be such that M = ¥la, al.
Since M is topologically homogeneous, let b € M satisfy @, a ~ b, b. By inductive
hypothesis, 9 = 9[b, b], and hence M = ¢[b]. O

4.1 The relative expressivity of the mereotopol-
ogical languages

This section extends the work presented in (Pratt and Schoop, 1999) on the
relative expressivity of mereotopological languages in plane mereotopology. Some
of the lemmas have been taken directly from the cited work.

Given a set A, a subset C of A™ for some n > 1 is said to be a relation over

A. The main result of this section is:

Theorem 4.1.1. (i) All relations over R that are L(<, c)-definable in R(<, ¢)
are also L(C)-definable in R(C), but not vice versa.
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(i) All relations over S* that are L(C)-definable in &*(C) are also L(<,c)-

definable in &*(<, ¢), and vice versa.

(iii) All relations over S that are L£(C)-definable in &(C) are also L(<,c,b)-

definable in §(§, ¢, b), and vice versa.

Thus, the language £(C) is strictly more expressive in the open plane than
L(<,¢); but this advantage is lost when we move to the closed plane. The lan-
guage L(<,c,b), however, has the same expressivity as £(C) in the open and in
the closed plane with respect to the semi-algebraic spatial domains.

The above theorem will be proved in separate lemmas. First I prove that £(C)
is at least as expressive as £(<,c). Specifically, I prove that the interpretations
of the primitives < and ¢ in £(<, ¢) are £(C)-definable in R(C).

Lemma 4.1.2. Let 1,79 € R. Thenr C 1y if and only if 5‘{(0) = ¢<[r1,ra),
where ¢ (z,y) is the L(C)-formula Vz(C(z, z) — Cl(y, 2)).

Proof. If 11 C ry then [r1] C [rq], so [t]N[r1] # 0 implies [t]N[rz] # O for any set .
Conversely, if r; - (—r9) is non-empty, by the regularity of R (proposition 3.3.11),
a region ¢ can be found lying in the interior of ry - (—73), so that [t] N [r1] # 0,
but [t] N [re] = 0. O

Since the subset relation C on R is £(C)-definable in RR(C), the symbol < will
be used in L£(C)-formulae as a shorthand for ¢<. It follows that the Boolean
functions + , - and —, as well as the constants 0 and 1 are also £(C)-definable;
so again, these symbols will be used in £(C)-formulae as a shorthand for their
definitions.

Lemma 4.1.3. Let r € R. Then r is connected if and only if R(C) = éq[r],
where ¢c(x) is the L(C)-formula

Vo Vas(x =21+ 2o Az 2o =0Ax1 #0A T #0
— 3t b (2 < @1 Axhy < xo A C(ah, xh) A= C(z) + 2h, —x))) .

Proof. Tt follows from the regularity of R (proposition 3.3.11) that for non-empty
and disjoint regions r; and 79, d(ry) N A(re) N (r1 + r9) # B if and only if r; and

ro satisfy the formula
Izl 3y (2] < 3 Axhy < w9 A C(2], 7h) A = C(x) + 2h, — (1 + 72)))

in f)v%(C) The result then follows from lemmas 3.1.5, 3.2.14 and 3.3.15. O
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I henceforth write the symbol ¢ in £(C)-formulae, understanding it as a shorthand
for ¢.. The next task is to show that not every relation over R is £(<, c)-definable
in fR.

Lemma 4.1.4. There is no formula in L(<,c) defining the contact-relation in

R.

Proof. Let r},13,s7, s5 € S* be disjoint Jordan regions such that [r{]N[r;] = {pec}
and [s5] N [s3] = {p} for some point p # py. It follows from standard results in
topology that there exists a homeomorphism A : (R?)* — (R?)* that maps r; to s;
(1 =1,2). By lemma 4.0.2, r}, 5 and s}, s satisfy the same formulae in R*(<, ¢),
and it follows from lemma 3.2.1 on page 60, r1,79 and sq, sy satisfy the same
formulae in R(<, ¢). However, [r1] N [re] = 0 and [s1] N [so] # 0. O

The next task is to show that £(<, c) is as expressive as £(C) in &*. Specifically,
I prove that the interpretation of the primitive C is £(<, ¢)-definable in &*.

Lemma 4.1.5. Let sy, 52,t € R* with —(s; + 1), —(s2 +t) and t all connected,
and [s1] N [sa] = 0. Then —(s1 + sy + ) is also connected.

Proof. T appeal to theorem 3.3.17 on page 71. Let F} = s; +t and F, = so + 1.
Since t is connected, F; N F, = [t] is connected. Let p,q € —(s1 + so + 1) =
(R?)"\(F1UF;). Thenp,q € —(s1+t) = (R?)*\Fy and p, g € —(s2+t) = (R?)*\ F%.
Since —(s1 +t) and — (s + t) are connected, p and g are connected in these sets.

Then p and ¢ are connected in —(s;+s$2+%). Hence, —(s1+$2+1) is connected. [

In the sequel, T write 7(y1, y2) to abbreviate the formula

Fz(c(= (11 + 2)) Ae(=(y2 + 2)) Ac(2) Ame(= (4 + 92+ 2)))-

Lemma 4.1.6. Let r1,75 € S*. Then [ri] N [ra] # 0 if and only if 6*(<,¢) E

bc(r1,re), where ¢ (1, z2) is the L(<L, c)-formula:

Fy1Fye (11 < 21 Aye < 29 AT(Y1,Y2))-

Proof. The if-direction is immediate given lemma 4.1.5. For the only-if direction,
it is easy to see by the accessibility of boundaries that if [r;]N[rs] # () then we can
find s1 < rq, s9 < 7o such that s; and se satisfy 7, whence &*(<, ¢) = ¢g[r1, ra)-

[
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Hence, the language £(C) is expressive enough to distinguish between the open-
and the closed-plane mereotopologies G and G* while the language £(<, ¢) cannot
tell them apart. The following lemma will be used to show that boundedness is
L£(C)-definable in &.

Lemma 4.1.7. Let s1,52,t € R* with —(s; +t), —(s2 +1t) and t all connected,

—(s1 + 2+ t) disconnected, and [s1] N [s2] = 0. Then s1 and sy are unbounded.

Proof. Let *: R(<,¢) — R*(<,c) be the model isomorphism given by proposi-
tion 3.2.1 on page 60. Then (—(s; +1t))* = —(s] +t*), (= (s2 +1))* = —(s5 +t*),
and t* are all connected, while (—(s; +s2+1))* = — (s} + s5 +1t*) is disconnected.
It follows from lemma 4.1.5 that [si]N[s3] # 0. Since [s1]N[se] = 0, it is clear from
the definition of * that [s}] and [s}] both contain the point at infinity, whence s,

and s, are unbounded. ]

Lemma 4.1.8. Letr € S. Then r is bounded if and only if §(C) = ¢y[r], where
by (z) is the L(C)-formula:

—Jy Iy (ys Kz Ay <z AT(Y1,y2) A C(yr, Y2))-

Proof. If r satisfies =¢p(x) in &(C), then, by lemma 4.1.7, r contains two un-
bounded regions, so is certainly itself unbounded. Conversely, if r is unbounded,
by the accessibility of boundaries, it is simple to construct regions si,s, € S
such that, s; < 7, s < r and [s1] N [s9] = 0, and satisfying the £(C)-formula
(Y1, Y2)- U

Since boundedness is trivially definable in &*(C), it follows from lemmas 4.1.2 and
4.1.3 that £(C) is as expressive as £(<,c,b) in &*. Since parthood, connection
and boundedness are L£(C)-definable in &, it remains to show that contact is
L(<, ¢, b)-definable in &.

Lemma 4.1.9. Let r,r9 € S. Then [r] N [ro] # 0 if and only if & = éclr1, ro]

where ¢c(x1,x2) is the formula

Fy1 3y (y1 < 21 Ay < @2 AT (y1,y2) A (b(y1) V b(y2))) -

Proof. Assume (rq,75) € S? satisfies ¢c(x1,72) in &. Then there are regions
s1,82 € S at least one of which is bounded such that s; C r{, s C ry and s, s9

satisfies m(y1,y2) in &. Then the pair (s7, s3) satisfies ¢§ (21, 22) in G*. Hence,
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[si] N [s3] # 0. Since poo ¢ [s1] N [s3], ([s7]N[s3]) \ {Poo} # 0. Thus, [s1]N[s2] # 0
and therefore [r1] N [rq] # 0.

For the converse direction, assume that the closures of r{, 7, € S have a point
p in common. By lemma 3.3.20, there exist bounded regions s;, s2 € S such that
s1 Cr1, s Cre and p € [s1]N[s2]. Then by lemma 4.1.9 the pair (s}, s3) satisfies
O (w1, x2) in &*. Hence, there are regions ¢3,%5 € S* such that ¢; C s3, t3 C s}
and &* = 7[t], t5]. Since py ¢ [s7]U[s3], it follows that p, ¢ [t]] U [t5]. Hence t;
and t, are bounded and & = 7[ty,t3]. Hence, G = ¢¢[ry, 2o O

The last lemma completes the proof of theorem 4.1.1.

4.2 Homeomorphisms from automorphisms

Before I go on to investigate the model-theoretic properties of the mereotopologies
and provide further expressivity results, I prove a technical result that will be used

later on.

Definition 4.2.1. Let X be a topological space and 9 be a mereotopology over
X. The mereotopology 9t will be called

(i) Hausdorft if the spatial domain M is Hausdorff,

(ii) regular if the spatial domain M is regular and

(iii) normal if the spatial domain M is normal.

Theorem 4.2.2. Let 9 be a mereotopology over a topological space X satisfying

the following conditions:
(i) M is a Boolean subalgebra of RO(X);
(1) MM is Hausdorff;

(1ii) M is regular;

(iv) if p € X then there is a € M such that p € a and [a] is compact (local

compactness);

(v) the relations {(a,b) € M?|[a] N [b] # 0} and {a € M|[a] compact} are L-
definable in 9.

Then, if a is an M-automorphism, there exists a homeomorphism h: X — X
such that, for all a € M, a(a) = h(a) =4 {h(p)|p € a}.
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The proof of this theorem is taken nearly unchanged from (Pratt and Schoop,
1999). It employs a technique of Roeper (1997), to reconstruct points as equiv-
alence classes of ultrafilters on 9 as defined below. By showing that automor-
phisms of 9 map equivalent ultrafilters to equivalent ultrafilters, corresponding
homeomorphisms of the space X onto itself are obtained. For the remainder of
this section, I assume that 9 satisfies the conditions of theorem 4.2.2.

Definition 4.2.3. An ultrafilter on 9 is a a set U C M such that
(i) X eU,

(i) facU,beUand a Cb, then be U,

(i) ifa€ U and b€ U, then anNb e U,

(iv) for each a € M, either a or its complement is in U, but not both.

An ultrafilter U on 90 is said to be a compact if U contains some u such that [u]

is compact.

Lemma 4.2.4. Let U be a compact ultrafilter on M. Then the set ({[u]lu € U}

1S a singleton.

Proof. This is an adaptation of a standard result (Koppelberg, 1989, Chapter 1,
Exercise 2). I first show that (\{[u]|u € U} contains at least one point. Choose
ug € U such that [ug] is compact. Then ({[u]lu € U} = 0 implies [ J{X \ [u]|u €
U} = X, whence {—u|u € U} covers X and hence [uy]. By compactness of [ug],
let uq,...,u, € U be such that uy C [ug] C —ug U...U—u, C —uy + ...+ —uy,,
whence ug - u; - ... - u, = 0 contradicting the fact that U is a proper filter.
Next we show that (\{[u]lu € U} contains at most one point. Suppose that
p,q € ({[u]lu € U} with p # ¢q. By assumption (Hausdorffness), we can find
disjoint a,b € A such that p € a and g € b. Hence p ¢ [—a] and ¢ ¢ [a]. Since U is

maximal, either a or —a is in U, so that either p or ¢ is not in ({[u]lu € U}. O

Given a compact ultrafilter U, the element of ({[u]|u € U} will be denoted by

py and U is said to converge to py.

Lemma 4.2.5. Let U be a compact ultrafilter on 9M converging to py. If py €
a € M then a € U. Furthermore, there exists b € U such that py € b and [b] C a.
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Proof. Suppose py € a € M. Then py ¢ [—a]. Since U is an ultrafilter converging
to pu, pu € [u] for every u € U, so —a ¢ U, whence a € U. For the second part of
the lemma, observe that X \ a is closed. By assumption (regularity), there exist
disjoint b,b' € A such that py € b and X \ @ C b'. Thus [b] C a; and by the first
part of the lemma, b € U. O

Definition 4.2.6. If U and V are ultrafilters on 90, we say U and V' are equiv-
alent if [ulN[v] #0 forallu € U,v € V.

Lemma 4.2.7. If U and V are compact ultrafilters on IM, then py = py iff U

and V' are equivalent.

Proof. The only-if direction is trivial. For the if-direction suppose that py # py.
By assumption (Hausdorffness), there exist disjoint a,b € M such that py € a,
and py € b. By lemma 4.2.5, b € V and, furthermore, there exists u € U such
that [u] C a. Hence, [u] N [b] = () contradicting the equivalence of U and V. O

Lemma 4.2.8. Let « be an IM-automorphism and U and V' equivalent compact

ultrafilters on M. Then a(U) and a(V') are equivalent compact ultrafilters on M.

Proof. Tt is straightforward to show that « maps ultrafilters to ultrafilters. The
result then follows because the relations {a € M]|[a] compact} and {(a,b) €
M?|[a] N [b] # 0} are, by assumption, definable in 9. O

Lemma 4.2.9. Let a be an IM-automorphism, a € M, and U a compact ultra-
filter with py € a. Then pyw) € o(a).

Proof. By lemma 4.2.5, a € U, and there exists b € U such that py € [b] and
[b] C a, so that [b] N [—a] = 0. By assumption, {(a,b) € M?|[a] N [b] = 0}
is L-definable in 9. Then, since « is an automorphism, [a(b)] N [—a(a)] = 0,
i.e. [a(b)] C a(a). Since a(b) € a(U), paw) € [a(b)] C a(a). O

It remains to show theorem 4.2.2.

Proof of theorem 4.2.2. Suppose that a is an 9t-automorphism. Let for a com-
pact ultrafilter U on 9t the function A be defined by h(py) = paw). I show: (i) h
is well-defined and injective, (ii) both the domain and range of h are the set X,
(iii) for all @ € A, a(a) = h(a) =4 {h(p)|p € a} and o '(a) = h '(a), and (iv) h
and h~! are continuous.

(i) Let U and V be compact ultrafilters on 9 both converging to p. By lemma
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4.2.8, the automorphism « maps equivalent ultrafilters to equivalent ultrafilters.
Hence, h is well defined. Applying the same reasoning to o !, h is injective.

(ii) Let p € X. Then {a € M|p € a} is a filter on 9 and by assumption (local
compactness) contains some a € M with [a] compact. By the prime ideal theorem
(Koppelberg, 1989, Chapter 1, 2.16), this filter can be extended to a (compact)
ultrafilter U on 9M. By lemma 4.2.4, U converges to some point py. By the
assumption of Hausdorffness of M and lemma 4.2.5, p = py. Thus, the domain
of h is X. Applying the same reasoning to ™!, the range of h is X.

(iii) Let py € a(a) and U be some compact ultrafilter on 9 converging to
py. By lemma 4.2.9, po-1(y) € a. Hence, py = h(ps-1)) € h(a). Con-
versely, let py € h(a). By the definition of h, p,-1y) € @ and by lemma 4.2.9,
py € a(a). Hence a(a) = h(a). Since a~'(a) € M, a!(a) = h7(h(a" (a)) =
h~Ha(a™Ha))) = h™(a).

(vi) Let u C X be an open set. By the regularity of M, there is for each point
p € u an open set a, € M with p € a, C u. Thus the set U = {a, € M|p € u}
satisfies (JU = u. Then h(u) = R(UU) = U,y

of open sets and hence is itself an open set. Therefore, h~! is continuous. By

h(a) = U,y @(a) is a union

substituting A~! and o' for h and a, respectively, h is continuous. O

4.3 Model-theoretic properties of planar mereo-
topologies

In this section, I will investigate the model-theoretic properties of the mereotopolo-
gies defined at the beginning of this chapter. Some of the results in this section

have been presented in a similar form in (Pratt and Lemon, 1997).
Theorem 4.3.1. The mereotopologies R(<,c) and R*(<,c) are isomorphic.
Proof. The theorem is a direct consequence of proposition 3.2.1 on page 60. O

Theorem 4.3.2. The mereotopologies R(C) and R*(C) are not elementarily equiv-

alent.

Proof. Consider the formula 7 (y;, y2) given on page 90. It follows from lemma 4.1.5
that, given r1,ro € R*, R* = m[rq, r2] implies [r1] N [ro] # 0. Hence, the formula
Vo Vo (m(xy, z2) — C(z1,22)) holds in R*. However, it is easy to see that the
formula does not hold for all unbounded regions in the open plane mereotopology
R. O
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Figure 4.1: Two elements of J in contact

Theorem 4.3.3. (i) §(§,0)$€§(§,c) (i) §(C)¢§(C)
(1)) F(<,¢) £6(<,¢) (iv) F(C) # 6(C)

Proof. (i) Remember that in lemma 4.1.6 the formula ¢§(x,y) was shown to
define the set {(r,s) € (S*)?|[r] N [s] # 0} in &*(<,c¢). Let o stand for the

sentence
VaVy(oo(z,y) — 32’ (' <z Ac(z) Ay <yAncly) Aos(a',y))).

Assume (r, s) € (S*)? satisfies ¢ (z,y) in &*(<,¢). Then [r]N[s] # (. Since r
and s have finitely many components, there exist components 7' and s’ of r and s
respectively such that [r'] N [s'] # 0. Hence, (r', ") satisfies ¢ (z,y) in &*(<, ¢),
whence 6*(<,¢) = o.

The regions r, s € J* which are depicted in figure 4.1 visibly satisfy ¢¢(z, y)
in J*. However, no two connected parts ' and s’ of r and s respectively are in
contact. By lemma 4.1.5, (1, s') does not satisfy ¢¢(z,y) in J*(<,c). Hence,
J*(<,¢) £ o, whence J(<,¢) = J* (<, ¢) Z 6*(<,¢) = 6(K,0).

(ii) Follows directly from (i) and lemmas 4.1.2 and 4.1.3.

(iii) Follows directly from (i) and the fact that J C F.

(iv) Follows directly from (iii) and lemmas 4.1.2 and 4.1.3. O

Theorem 4.3.4. Q <P <X 6 and Q* < P* < &*.

Proof. 1 show P < G first. By construction, B C &. By the Tarski-Vaught-
Lemma (Mendelson, 1997, Proposition 2.37), it is sufficient to show that for every
formula ¢(zg,...,2,) in £, 7 € Sand a1,...,a, € P, it & = ¢[r,a4,...,a,] then
there exists b € P such that & [ ¢[b, a1, ..., a,].- By lemma 3.5.1, for any r € S,
ai,...,a, € P there exists b € P such that ay,...,a,,7 ~ ay,...,a,,b. Then by
lemma 4.0.2, if & & ¢[r,a4,...,a,] then & E ¢[b,ay,...,a,]. The other cases

can be proved analogously appealing to lemma 3.5.2 where necessary. O
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Having investigated the model-theoretic relations between the mereotopologies,
now I will investigate the model-theoretic properties of the mereotopologies and

their theories. This requires the introduction of further model-theoretic concepts.

Definition 4.3.5. Let (%) be a set of formulae in the free variables z = x4, ..., x,
and let 2 be an L-structure. The structure 2 is said to realize ¥(Z) if some n-
tuple of elements of A satisfies 3(z). The structure 2 is said to omit X(z) if A
does not realize X(z).

Given a model 2 and a subset X C A, the model % expanded by new constant
symbols taking the elements of X as interpretation will be denoted by 2x, and
its language by Lx. Then 2y is called an extension of A. A model 2 is said to
be w-saturated if for every finite set X C A, every set of formulae ¥(z) of Lx
consistent with Th(2y) is realized in 2.

A theory T is said to be categorical in cardinality K, or k-categorical, if T has a
model of cardinality x and every two models of T of cardinality x are isomorphic.
A theory T is a-stable if for every model 2 of T" and any set X C A of cardinality

a, the extension Ay realizes exactly « types in a single variable.

Let d,(z) (n > 1) stand for the formula

Elxl...EIxn(a:::c1+...+xn/\/\c(xi)) )
i=1

Then given a mereotopology (<, c) and a region r € M, r will satisfy d,(x) if
and only if r is the sum of n connected regions. Let A(z) = {=d,(z)|n > 1}.
Then all regions in M have finitely many components if and only if 9t(<, ¢) omits
A(z). For example, §(<, ¢) omits A(z).

In the sequel, I make use of the fact that by virtue of lemmas 4.1.2 and 4.1.3
it is admissible to use with respect to S the symbols < and c as abbreviations in

any of the mereotopological languages.

Proposition 4.3.6. There exists a countable model of the L,,;-theory of S real-
izing A(x).

Proof. Let LE, be the language L,,; enriched with the infinite set {¢;|i € N} of
constant symbols. Let 7 be the theory Th(é) U {comp(c;, c0)|1 < i} U {e; #
¢j|ll < 4,5, # j} where comp(z,y) stands for the formula Vz(z < 2z Az <
y Ac(z) = o = z) expressing that x is a component of y. It is easy to see that

any finite subtheory of 7 is consistent. Hence, by the compactness theorem, T°¢
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is consistent. Therefore, there exists a model 9t of 7 not omitting A(x), which,
by the Downwards Lowenheim-Skglem theorem, can be chosen to be countable.
The reduct of M to L,,;, i.e. the model 9 where the interpretation is restricted
to the language L, is the required model. O

Corollary 4.3.7. The model S is not w-saturated.

Corollary 4.3.8. The L,,;-theory ofé 18 not w-categorical.

Proof. By proposition 4.3.6 there exists a countable model 9 of Th(S) = Th(Q)
which realizes A(z). Hence, 9 % 9.

However, I show below that the L£,,;-theory of G satisfies the following weaker

categoricity result.

Proposition 4.3.9. Any two countable models of the L,,;-theory ofé which omat
A(z) are isomorphic.

By Scott’s isomorphism theorem (Keisler, 1971), there exists a formula ¢ in
the infinitary language L., such that any two countable models of Th(S (L))
are isomorphic if and only if they satisfy ¢. Obviously, in this case, the formula
¢ is
\/ (Elxl...ﬂxn(x =1 +...+xn/\/\c(xi))) :

i=1

n>1

Theorem 4.3.10. The L,,;-theory off)v‘i 18 not w-stable.

Proof. Let ay € R be non-empty. By proposition 3.3.11, R is regular. Hence,
there exists a countable sequence a1, as,... in R such that ay Da; Dag D ... .
Again since R is regular, for each a; D a; there is g'such that a; D ¢'D a;.

Hence, there is a countable subset X C R on which C defines a dense linear

order. For each initial segment Y C X, the set of formulae

{ey <vlyeYU{v<cglre X\Y}

is consistent with Th(Rx) and can be extended to a unique type 6y (v) consistent
with Th(%Rx). Hence, there is a model 9 of Th(Ry) realizing each type Oy (v).

Since X has 2“ initial segments, 9 realizes at least 2“ types in one variable. O

Theorem 4.3.11. The L,,;-theory of S is not categorical in any cardinality.



CHAPTER 4. PLANAR MEREOTOPOLOGIES 99

Proof. By (Chang and Keisler, 1990, Lemma 7.1.4), if a theory T is categorical in
some uncountable cardinality, then 7' is w-stable. It follows from corollary 4.3.8

and theorem 4.3.10 that Th(&) is not categorical in any cardinality. O

Definition 4.3.12. A formula ¢(Z) in £ is complete in a theory T if, for all
formulae ¥(z), either T = ¢(z) — ¥(z) or T = ¢(z) — —)(z) holds. A
model A is atomic if every n-tuple @ in A satisfies a formula ¢(Z) in 2 which is
complete in Th(2A). A formula ¢(z1,...z,) is said to be topologically complete
in a mereotopology M if any two tuples 7,5 € M™ which satisfy ¢(z) in 9 are

topologically equivalent.

In the remainder of this chapter, let 0x(xy,...,z,) stand for an L,,;-formula of

the form
E|y1 s Elyk(pF,I(yla .- :yk) A 0'(551, <oy Ty Y1, - 'ayk))

where pr r(yi,-- -, yx) defines y1,. ..,y to be a radial partition with binary con-
nection graph I' and defines y; to be bounded if and only if y; € I, and o(z, )
defines each z; be the sum of specific y;’s. In case of L,,; = L(<,c), a formula
pr.r(yi,--.,yx) defines yq, ...,y to be a radial partition with binary connection

graph I'. Such formulae pr ;(7) and o(Z, §) can certainly be constructed.

Theorem 4.3.13. A formula O(z1,...,x,) is topologically complete in é(C),

S(<,¢,b) and &*(<,c). Moreover, O(x1,...,z,) is complete in Th(S), and

every n-tuple in S satisfies such formula.

Proof. Let for this proof & only stand for é(C), é(g, ¢,b) and &*(<, c). Assume
that the n-tuples 7 and 5 in S satisfy 0x(Z). Then there are k-element radial
partitions % and v refining 7 and 5 respectively such that u; + u; is connected
iff v; + v; is connected (1 < i < j < k), and u; is bounded iff v; is bounded
(1 <i<k). By lemma 3.3.33 on page 76, 4 ~ ¥ and hence 7 ~ §. Thus, 6,(Z) is
topologically complete.

It follows from lemma 4.0.2 that all tuples satisfying 0 (Z) have the same type.
Then & | 0,(z) — 6(z) or & = 0,(z) — —¢(z) for all formulae ¢(z). Hence,
Th(S) = 6,(Z) — ¢(Z) or Th(S) = 0,(z) — —¢(Z). Thus, 6;(Z) is complete.

Let rq,...,7, € S. By lemma 3.3.36 on page 79 there exists a radial parti-

tion si,..., S, refining the connected partition generated by rq,...,7,. Hence,
S1,...,S refines r1,...,7,. Then sy,...,s; satisfies some formula pr;(7) and
T1y-vyTny S1,-- -, Sk satisfies some formula o(Z, ). Hence, rq,. .., r, satisfies some

formula 6y (7).
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Since 6(<,¢) and &*(<,¢) are isomorphic by theorem 4.3.1, any n-tuple of
S satisfies some formula 6 (Z), which is complete in Th(S*(<,c)) = Th(6(<
,€)). O

Thus, S and therefore also ‘i and £ are atomic models. However, to prove the

promised categoricity result I need the following more general theorem.
Theorem 4.3.14. A model of Th(&) which omits A(zx) is atomic.

Proof. Let ay,...,a, € A. Let by,...,b,, € A be the (necessarily disjoint) non-
zero elements of the form +a; - ... - +a,. Since 2 omits A(z), each b; is the
sum of connected elements b;1,...,bix, € A. It follows from lemma 3.1.6 that

Th(G) = Th(2) = VaVy(c(z) Ac(y) Az -y # 0 — ¢(r + y)). Summing together
those b; ;’s which overlap, we get a connected partition ¢i,...,¢; € A refining
by,...,b, and ay,...,a,. By lemma 3.3.36 on page 79, there is a function f:
N — N such that any k-clement connected partition in S has an f(k)-element
radial partition as refinement. Since this result can be expressed in a formula
for each k > 1, there exists an f(k)-element radial partition refining ay, ..., a,.

Hence, ay, ..., a, satisfies a complete formula ) (Z). O

Since £ is a countable atomic model, proposition 4.3.9, whose proof was omitted

above, follows directly from theorem 4.3.14 and the following theorem.

Theorem 4.3.15 (Chang and Keisler (1990), Theorem 2.3.3). If2 and B

are countable atomic models and A =B, then A = B.

The mereotopology Q) has a special status: it is the smallest model of Th(é’)

in the following sense.

Definition 4.3.16. A model 2 is said to be prime if, for any model B, A =B
implies A < B.

Theorem 4.3.17 (Chang and Keisler (1990), Theorem 2.3.4). A model is

countable atomic if and only if it is prime.
Then directly from theorem 4.3.14, we have the following result.
Theorem 4.3.18. The mereotopology Qisa prime model.

In the sequel, I will appeal to the following two standard results in model

theory.
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Theorem 4.3.19 (Chang and Keisler (1990), Theorem 3.1.6). Let A be a
model of cardinality o and let ||L]| < 8 < a. Then A has an elementary submodel
of cardinality 5. Furthermore, given any set X C A of cardinality smaller than

or equal to B, A has an elementary submodel of cardinality B which contains X .

Theorem 4.3.20 (Chang and Keisler (1990), Prop. 2.4.4, Ex. 2.4.5).
Let 2 be a countably atomic model and let a,b € A™ (n > 1) have the same type

in A. Then there is an automorphism of A taking @ to b.
Theorem 4.3.21. The mereotopologies § and‘:j are not atomic.

Proof. The proof follows an idea by Dr. lan Pratt and is identical for § and J.
Suppose for contradiction that ¥ is atomic. Let T,5 € (f‘)” satisfy the same
complete formula ¢(Z). Certainly, Q is a countable subset of F. By theorem
4.3.19, there exists a countable elementary submodel 97t of § containing Q and
the regions of the tuples 7 and s. Then 91 is atomic and 7 and s satisfy the same
complete formula ¢(z) in 9. By theorem 4.3.20, there exists an automorphism
o on M taking 7 to 5. Hence, by theorem 4.2.2, there exists a homeomorphism
hR — R? taking 7 to §, i.e. 7 and § are topologically equivalent. Therefore, ¢(Z)
is topological complete. Thus, every n-tuple satisfies a topologically complete
formula. However, L,,; is only countable and by lemma 3.3.39 on page 80, there

exist uncountably many elements up to topological equivalence in F. O

4.4 The absolute expressivity of the mereotopol-
ogical languages

The relative expressivity of the mereotopological languages was investigated in
section 4.1. This section investigates how far the mereotopological languages can
distinguish between various arrangements of regions. Since the languages are
mereotopological, by lemma 4.0.2 they cannot distinguish between topologically
equivalent n-tuples of regions. This gives an upper bound of the expressivity
of the mereotopological languages. The lower bound of their expressivity was
provided by theorem 4.3.13: every n-tuple of S satisfies a topologically complete
formula in &(C), &(<, ¢, b) and &*(<, ¢). Hence, the mereotopological languages
L(C) and L(<, ¢, b) distinguish n-tuples in S up to topological equivalence. The
language £(<,c) is capable to distinguish n-tuples in the closed plane. However,

this is not true for the open plane as lemma 4.1.4 shows.
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These expressivity results can be used to show that the signatures {C} and
{<,¢,b}, and, in the case of the closed plane, the signature {<, c} as well, are
topologically adequate over the semi-algebraic domains in the following sense.
Suppose we construct the infinitary languages £,,,(C), Lu,0(<,¢,b) and L, (<
,¢) in exactly the same way as L£(C), £(<,c,b) and £(<,c), except that, if
®(zq,...,2,) is a countable set of formulae in the variables z1,...,z,, then
A®(z1,...,2,) and \/ (x4, ..., z,) are also formulae. (Thus, formulae of £,,,,,(C),
L,.(<,¢,b) and L,,,,(<, ¢), although infinitary, may contain only finitely many
variables.) Let a relation C over a subset A of p(X) be called topological if for all
a € C and bin A" (with n the length of @) @ ~ b implies b € C. Then we have:

Theorem 4.4.1. Let C be a relation over the open-plane spatial domain S. Then
the following are equivalent:

(i)  C is topological;

(ii)) C is L,,,(C)-definable in the structure &(C);

(i1i) C is L,,,(<,c,b)-definable in the structure &(<, ¢, b).
Let C be a relation over the closed-plane spatial domain S*. Then the following

are equivalent:
(i)  C is topological;
(i) C is L,,,(C)-definable in the structure &*(C);
(15i) C is L,,,(<, ¢, b)-definable in the structure &*(<, ¢, b);
(iv) C is L,,,(<,c)-definable in the structure G*(<,c).

Proof. 1 give the proof for the mereotopology &(C). Corresponding remarks
apply to 6*(<, ¢), &*(C) and &(<, ¢,b). That all L., (C)-definable relations in
S(C) are topological follows using the same proof strategy as for lemma 4.0.2;

the details are routine. Conversely, if C is a topological relation over §, then

\/ {¢(x> € £(C)

is a formula of £,,,(C) (by the countability of £(C)), and is clearly satisfied in
S(C) by all and only those n-tuples in C. O

¢ is a topologically complete £(C)-formula
s.t. 6(C) = ¢[a] for some a € C

It is obvious, by a simple counting argument, that no such result as theorem 4.4.1
could hold for the finitary versions of the mereotopological languages.
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4.5 Conclusion

In this chapter, I introduced a number of mereotopological languages that employ
predicate symbols to express the notions of parthood, contact, connectedness and
boundedness. The mereotopological languages were interpreted over the spatial
domains f*‘, j, g, P and (NQ, and thereby the mereotopologies %, 5, é, ‘i? and fl,
called mereotopologies, were defined.

The relative expressivity of the mereotopological languages with respect to
these mereotopologies was investigated. It was shown that the mereotopological
languages cannot distinguish between the mereotopologies é, ‘i and £ but can
tell & and % apart. The topological notion of contact was shown to be more
expressive than the notions of parthood and connectedness taken together. How-
ever, parthood and connectedness are sufficient to define contact in the mereo-
topology G*. The topological notion of contact was shown to have the same
expressivity with respect to the mereotopology S as the notions of parthood,
connectedness and boundedness taken together. The relative expressivity results
were extended to absolute results. The mereotopological languages £(C) and
L(<,c¢,b) were shown to be topologically adequate in the sense that these lan-
guages distinguish all n-tuples of regions in S up to topological equivalence, and
that the infinitary versions of these languages distinguish between all topological
relations over S. For L(<, ¢) these results only hold in the closed plane mereo-
topology &*.

The theory of & omits the set of formulae A(x), since every region in S has
only finitely many components. However, it was shown that there are models of
Th(S) which do not omit A(z). This results shows that the finitary mereotopol-
ogical languages are not capable to capture all properties of S. Tt was shown that
Qisa prime model. Thus, since 9 and & are elementarily equivalent, any model
of Th(é) contains a copy of Q. Therefore, if we accept the spatial domain S to
be adequate for the common-sense representation of space, then the above result
shows that the much simpler spatial domain C) is adequate as well. Moreover,
since prime models of Th(é) are isomorphic, there is no ontologically more parsi-
monious spatial domain which is adequate as well. This result becomes especially
interesting since the spatial domain Q is employed in computer science for the
representation of spatial data (e.g. in the areas of Computer Aided Design (CAD)
and Geographical Information Systems (GIS)). Bearing in mind the importance

of the mereotopology Q(C), the next chapter establishes which formulae of £(C)



CHAPTER 4. PLANAR MEREOTOPOLOGIES 104

hold in &(C), and hence in Q(C).



Chapter 5

A complete axiomatisation for the

mereotopology &(C)

In this chapter, I present a complete axiomatisation of the £(C)-theory of & in
the predicate calculus extended by an infinitary rule of inference. The following
section introduces this extension. Section 2 introduces the axiom system, and
section 3 presents the consistency and completeness proofs.

5.1 The predicate calculus with an infinitary rule

of inference: the A-calculus

In order to approach a complete axiomatisation of Th(&), an extension to the
predicate calculus will be introduced in this section. The extension, which will be
called A-calculus, has close relations to w-logic, which has been used to investigate
the standard model of arithmetic (cf. Chang and Keisler, 1990).

Let A = A(Z) be a consistent infinite set of formulae in some countable first-
order language £. Then the A-calculus is formed by adding to the usual axioms

and rules of inference of the predicate calculus the A-rule:

{vz(5(2) v ¢(%))|6(z) € A7)}
VZ($(Z))

Note that proofs in the A-calculus can have infinite length, since A(Z) is infinite.

The terminology of usual first-order logic is transferred to the A-calculus: Given
a theory X U {c}, o is said to be deducible from X in the A-calculus, in symbols
Y Fa o, if there is a proof in the A-calculus of ¢ from Y. The set of all sentences

105



CHAPTER 5. A COMPLETE AXIOMATISATION OF Th(&(C)) 106

deducible in the A-calculus from ¥ is the deductive closure of ¥ in the A-calculus.
A theory is called inconsistent in the A-calculus if for every sentence o in L,
¥ Fa o, and consistent in the A-calculus if it is not inconsistent in the A-
calculus. A theory is called complete in the A-calculus if its deductive closure in
the A-calculus is maximal consistent in the A-calculus. Unsurprisingly, there are
deduction, consistency, soundness and completeness theorems for the A-calculus.

Deduction theorem for the A-calculus. Let ¥ be a set of sentences, and o
and 7 be two sentences. Then ¥ Fa 0 — 7 if and only if XU {c} Fa 7.

Proof. If ¥ -x 0 — 7 then a proof of 7 from ¥ U {¢} is obtained by a proof of
o — 7 from ¥ with application of modus ponens.

Conversely, let {74 }o<a<p be a proof of 73 = 7 from ¥ U {o} where for each
Ty (0 <o/ < B), {Ta}o<a<ar is a proof of 7. I show by transfinite induction on
o that ¥ ka0 — Ty

If 7 is an axiom, 7 € X U {0} U {7a}o<a<a’, O Ty was deduced from
Y U {0} U{7a}o<a<ar by modus ponens or the rule of generalisation then ¥ U
{Ta}to<a<ar Fa 0 — T4 by the deduction theorem of the predicate calculus.
If o =0 then ¥ FA 0 = 7. If @ > 0 then it follows from the induction
hypothesis that ¥ Fn 0 — 7. If 7o = Vz(¢(Z)) for some ¢ and VZ(¢(Z))
is deduced from ¥ U {o} U {75}o<a<as by the application of the A-rule then
Vz(6(Z) V ¢(Z)) € T U {o} U {Ta}to<ace for all 6(z) € A(z). If o/ = 0 then
Vz(6(Z)Ve(Z)) € XU{o} and hence ¥ Fx 0 — Vz(6(Z)Vp(Z)) for all §(Z) € A(Z).
If & > 0 then Vz(§(z) V ¢(z)) € ¥ U {0} U {7a}to<a<er Whence by induction
hypothesis ¥ Fa 0 — Vx(d(Z) V ¢(Z)) for all 6(z) € A(Z). Either way, since T
is not free in the sentence o, X Fa VZ(6(Z) V (0 — ¢(Z))). Then by the A-rule,
Y Fa VZ(o — ¢(Z)). Again, since Z is not free in o, ¥ Fa 0 — VZ(¢(Z)). Hence,
YA o — Ty O

Corollary 5.1.1. A set of sentences Y. U {o} is consistent in the A-calculus if
and only if ¥ t/a —o.

Definition 5.1.2. Let 3(Z) be a set of formulae in the free variables z = x4, ..., z,
and let 2 be an L-structure. The structure 2 is said to realize ¥(Z) if some n-
tuple of elements of A satisfies 3(Z). The structure 2 is said to omit X(z) if A
does not realize (7). A theory T in L is said to locally omit () if for every
formula ¢(Z) in £ consistent with 7', there is 0(Z) € X(Z) such that ¢(Z) A —o(Z)

is consistent with 7.
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Omitting types theorem (Chang and Keisler (1990), Theorem 2.2.9).
Let T be a consistent theory in a countable language L, and let () be a set

of formulae. If T locally omits X(Z), then T has a countable model which omits
X(z).

In the following sections, L-structures omitting some set A(Z) of formulae will

be of specific interest. They will be called A-models.

Soundness theorem for the A-calculus. Let X be a set of sentences and o
be a sentence. If ¥ Fa o then all A-models of ¥ are A-models of o.

Proof. Let 2 be a A-model of ¥ and {0, }o<a<p @ proof of o3 = o from ¥ in the
A-calculus such that {04 }o<a<o is a proof of . I argue by induction over a.
Assume o, is deduced from 3, but is not derived by the A-rule. Then o4 is an
axiom, oy € X U {04 }o<a<a’, Or o), is deduced from ¥ U {04 }o<a<er by modus
ponens or rule of generalisation. It follows from the soundness theorem of the
predicate calculus and for o/ > 0 also by the induction hypothesis that 2 = o,
Assume o, = VZ(¢(Z)) for some ¢ and VZ(¢(Z)) is deduced from XU {0, }o<a<a’
by an application of the A-rule. If o/ = 0 then Vz(6(z) V ¢(z)) € X for all
d(Z) € A. Hence, A = VZ(0(Z) V ¢(Z)). If & > 0 then by induction hypothesis,
A = VZ(6(Z) V (7)) for all () € A. Either way, since 2 omits A, for all @ in
A, for some 6(Z) € A(Z), A i~ 6[a]. Hence, A = VZ(¢(Z)). O

Consistency theorem for the A-calculus. A set of sentences X is consistent
in the A-calculus if and only if ¥ has a A-model.

Proof. Let & be the deductive closure of ¥ in the A-calculus. Assume ¥ is
consistent in the A-calculus. Then X is consistent. Suppose ¢(z) is a formula
consistent with . Then VZ(—¢(Z)) ¢ 3. Then {VZ(§(Z)V—¢(7))|6(Z) € A(Z)} &
33 and hence VZ(6(Z) V—¢(Z)) ¢ 3 for some §(Z) € A(z). Therefore, =5(Z) A p(Z)
is consistent with ¥, i.e. & locally omits A(Z). Therefore, by the omitting types
theorem, there is a model of ¥ C ¥ omitting A(Z).

For the converse direction, assume that X is inconsistent in the A-calculus.
Then for some o € 3, ¥ A -0 and hence ¥ has no (A-)model. O

The completeness theorem for the A-calculus is a corollary of the deduction the-

orem and the consistency theorem for the A-calculus:

Completeness theorem for the A-calculus. Let 3 be a set of sentences and
o be a sentence. If all A-models of ¥ are A-models of o then ¥ Fa o.
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The completeness of a theory ¥ in first-order logic is characterised by the
elementary equivalence of all models of ¥. The proposition below shows that the

completeness of 3. in the A-calculus is characterised by the elementary equivalence
of all A-models of X.

Proposition 5.1.3. A theory ¥ which is consistent in the A-calculus is complete

in the A-calculus if and only if any two A-models of X are elementarily equivalent.

Proof. Straightforward. O

5.2 The axiom system P

In this section, I present a complete axiom system P. To achieve readability of
the axiom system P and to make the completeness proof more transparent, the
axiom system P will be stated in the formal language L(c,b,+,-, —,0,1) where
c and b are unary predicate symbols, + and - are binary function symbols, — is
a unary function symbol, and 0 and 1 are constant symbols. The mereotopology
G will be considered as an L(c, b, +, -, —,0, 1)-structure where the function and
constant symbols are interpreted as join, meet, complement and bottom- and top-
element respectively of the Boolean algebra (S, +,-,—,0,1) and ¢ and b define
the connected and bounded regions respectively (cf. chapter 4). It follows from
theorem 4.1.1 that the subset-, connectedness- and boundedness-relation and the
Boolean operations and constants are £(C)-definable in &. Therefore, the axiom
system P in the language L(c,b,+,-,—,0,1) can be translated into an axiom
system in the language £(C).

The following abbreviations will be used in the axiom system.
1. Let x < y stand for x - y = z. In G, x < y defines the subset-relation.

2. Forn>1letx =2, ®...® x, stand for
T=x1+ ...+, A /\ (c(zi) Ny #0) A /\ zi-x;=0.
1<i<n 1<i<j<n
In G,z =12,6... % z, defines the sets of regions which have at most n

components.

3. Let j(z) stand for ¢(z) Az # 0 Ac(—z) A —z # 0. By lemma 3.2.12, j(x)

defines the set of j-regions in G.
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The axiom system P consists of the following axioms and axiom schemata.

Al The usual axioms of non-trivial Boolean algebra with Boolean operations
+, - and —, and (distinct) top- and bottom-elements 1 and 0.

A2 VmVsz((c(m-i—y) ANe(y+2z) Ay #0) —>c(x—|—y+z))

A3 Where n > 1, the axioms

Vxl...Vxn((c( Z xz> A /\ c(z)) — \/ C(x1+:rz'))

1<i<n 1<i<n 2<i<n

A4 Where n > 1, the axioms

A5 ﬁaxl...axﬁ( A (@) Az #0A A zi-z;=0A A C(.Z‘Z-—i-xj))

1<i<6 1<i<j<6 1<i<3

4<;<6

A6 c(1)

A7 =b(1)

n n

A8 Where n > 1, the axioms Vz; ...Vz,(b(>_ z;) < A b(z;))

=1 =1

A9 Where n > 4 and 3 < k < n, the axioms

Vo .. .Vxn(<1 =118...0 1, A /\ (i(zi) A e(—(zs + z5)))

1<i<j<n
k n
AN-ba) A N b(mz))
=1 i=k+1

— ] (ZxJ Aw(xl,...,xk)>

=1

where m(z1,...,z;) stands for the formula which expresses that the binary
connection graph on zi,...,xx is a cycle with edges {z;,z;11} (1 < i <
k) and {z1,xx}. Such formula 7(zq,...,z,) can certainly be constructed.

However, I omit the details of this construction.
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A10 ‘v’x‘v’sz( (c(z) Ae(y) Ac(z) Ac(z+y) Ac(z + 2)
ANe-y=0Az-2=0Az#0A¢(z,y)) —
T3 (1 = @1 @ w2 A Ny i (i +y) Al + 2)) A (e, :cQ)))

where ¢(x,y) and 1(z, z5) are one of the following pairs:

¢($ay) ¢($1a$2)
—b(z) Ab(—(z +vy)) b(z1)
—b(z) Ab(—(z +y)) —b(z1) A—=b(zs)

~—
— N

A1L Vavy( (@) Aj(y) Az +y) Ay =0Ad(a,y)
Az13xo(x = 21 B 22 Ac(z1 +y) A —c(z1 + (=) - (—y))A
(22 + (—2) - (=9)) A ez +y) Av(e1,3)))

where ¢(x,y) and 1(z1, z5) are one of the following pairs:

¢(z,y) P(@1, 72)

= b(z) Ab(—z) b(z)

= b(z) Ab(—z) b(zs)

=b(z) Ab(—z) —b(z1) A —=Db(xs)

The respective task of the individual axioms are as follows. Axiom 1 reflects the
structure of the spatial domain S. Axiom 2 ensures that two connected regions
with a non-empty intersection have a connected sum. Axiom schemata 3 and
4 impose restrictions on n-tuples of connected regions whose sum is connected.
Given a connected sum of a finite collection of connected regions, firstly, each of
these regions has a connected sum with at least one other region of the collection,
and secondly, one of the regions can be removed from the collection without
destroying the connectedness of the sum of the remaining regions. Both axiom
schemata reflect a correspondence between sums of connected regions and the
binary connection graph on these regions.

Axiom 5 characterises planarity by forbidding the non-planar graph Kj3 to
be the binary connection graph of some collection of mutually disjoint connected
regions. It is shown by lemma 5.3.4 below that axiom 5 is sufficient to exclude

the non-planar graph K3 as binary-connection graph as well.
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(a) A j-partition of the open (b) A j-partition of the open
plane annulus

Figure 5.1: Explanation for axiom 9

Axioms 6 and 7 simply state the connectedness and unboundedness of the
entire space. Axiom schema 8 ensures that a region is bounded if and only if
all of its parts are bounded. Therefore, given a partition of the whole space, it
follows from axiom 7 that at least one of the regions of the partition must be
unbounded.

Axiom schema 9 ensures that the entire space has the (un)boundedness prop-
erties of the open plane and not those of, for example, an open annulus. Fig-
ure 5.1(a) shows an instantiation of the axiom schema for n = 8 and k£ = 4

for the open plane that is depicted in the figure by an open disc. The regions

ri,...,rg form a radial partition of the entire space as required by the condition
1=210... 073 AN\ cicjcni(zi) Ac(—(zi+z;))) of the axiom. Regions r1,...,74
are unbounded and regions rs,...,rs are bounded as required by the condition

AL, =b(z;) A Ai—py1 b(2:). By the axiom, the sum of unbounded regions has
to be a j-region. The regions ry,...,r, satisfy this condition. Furthermore, the
binary connection graph of the unbounded regions must be a cycle (7w(x1, ..., z4))
which is correct for 71, ..., 74. Now consider the annulus depicted in figure 5.1(b).
The regions 7y, ..., 79 instantiate the antecedent of the axiom for k¥ = 8. Further-
more, the sum of the unbounded regions ry,...,rs is a j-region. However, the
binary connection graph on ry,...,rg is not a cycle. Thus, the axiom does not
hold for these nine regions partitioning the annulus.

Finally, axioms 10 and 11 ensure the existence of sufficiently many regions of

various shapes, and the existence of bounded and unbounded regions. Figure 5.2
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(a) Axiom 10 (b) Axiom 11
Figure 5.2: Instantiations of axioms 10 and 11

shows two simple instantiations of the two axioms.

5.3 Consistency and Completeness of P

In this section, I will show that the axiom system P is consistent and complete

in the A-calculus where

Ax) = {ﬂflxl...Ela:n(x =z1+...+z, A /n\c(x,))‘n > 1}.

i=1
Therefore, a mereotopology 9 is a A-model, i.e. a model omitting the set of

formulae A(z), if and only if every region of 9t has only finitely many components.

Theorem 5.3.1 (Consistency). The aziom system P is consistent in the A-

calculus.

Proof. By lemma 3.3.12 on page 70, & omits A(z) and hence is a A-model.

Moreover, the following list shows that every axiom (schema) holds in &.

Al By proposition 3.3.13 on page 70.
A2 By lemma 3.1.6 on page 54.
A3 By lemma 3.1.10 on page 57 and proposition 3.3.7 on page 69.

A4 By lemma 3.1.14 on page 59 and proposition 3.3.7 on page 69.
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A5 Suppose there are mutually disjoint connected regions 1,79, 73, 1, S2, S3 € S
such that r; +s; for 1 < ¢ < j < 3 is connected. For each i € {1,2,3} let
p; be some point in r; and let ¢; be some point in s;. By lemma 3.3.15,
O(ri) NA(s;) N (ri+s5) #0 (1 < i < j < 3), and by proposition 3.3.7, the
boundaries of the regions are accessible. Hence, there exist arcs v; ; from p;
to ¢j in r; +s; (1 <14 < j < 3) such that the arcs have mutually disjoint
interiors. It is easy to see that the arcs form a planar embedding of the

non-planar graph K33 in the plane which is impossible.
A6 R? is connected.
A7 2 is unbounded.

A8 The union of any finite number of bounded subsets is bounded (see e.g. Suther-
land, 1975, Proposition 2.2.15). Thus, if r1,...,r, € S are bounded so is
S ri €U [ri]- The other direction is trivial.

A9 By lemma 3.3.25 on page 74 with p = p.
A10 By lemma 3.3.34 on page 77.

A1l By lemma 3.3.35 on page 79.

Hence, by the consistency theorem of the A-calculus, P is consistent in the A-

calculus. O

To show the completeness of P in the A-calculus, considerable more effort
is necessary. The notations and lemmas presented in the following subsection

provide some help.

5.3.1 Properties of models of P

For this subsection, let the L(c, b, +, -, —, 0, 1)-structure 2 with domain A be some
A-model of P. Although 2 is not necessarily a mereotopology, the terminology
introduced for mereotopologies will be use for elements of A. An element a € A
is said to be “connected” if A = c[a] and “bounded” if A = b[a]. To simplify
notation, I will write the constant symbols 0 and 1 in place of the elements 0%
and 1% and will treat the function symbols similarly, i.e. I write a; + ay instead

of +*(a1, as) and refer to “the sum of a; and ay” etc. An element a € A\ {0} is
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said to be “non-zero” and two elements a1, ay € A are “disjoint” if a; - as = 0. If
ai,...,a, € A are non-zero, connected, mutually disjoint and sum to a € A then
I writea =a;®...9®a,. If in this case a; + ay is connected then a; is said to be
a neighbour of ay. The element a; is said to be a part of as, written a; < as, if
ay - as = a1. As in topological spaces, an element a; is a component of an element
ao if a1 is a maximal connected part of ay. With this terminology the definitions
of the various kinds of partitions and refinements are directly transfered from

those for spatial domains (see definition 3.3.24 on page 73).

Lemma 5.3.2 (Pratt and Schoop (1998)). The formula c(0) is a theorem of
P in the A-calculus.

Proof. By the axioms for a non-trivial Boolean algebra, we have, for all n > 1:

kaxvxl...vxn(( A ca)n@= 3 z)n N\ (xi=0))—>c(a:))

1<i<n 1<i<n 1<i<n
P I—VxVxl...‘v’xn(( /\ c(z) A (xz = Z x;) A - /\ (x; =0)) > x 760)
1<i<n 1<i<n 1<i<n

and, therefore,

PI—VxEle...Elxn(( A ca@)n@=> :cﬁ)—)(c(x)\/x#())).

1<i<n 1<i<n

Hence, for every 6(z) € A(z), P+ Vx ((5(3:) — (c(z) Vo # 0)) By the infini-
tary rule of inference in the A-calculus, Vz(c(z) V z # 0) and therefore ¢(0) are

theorems of P in the A-calculus. O
Lemma 5.3.3. The formula b(0) is a theorem of P.

Proof. Let 8 be a model of P. By axiom 6 and lemma 5.3.2, 1 and 0 are
connected. It follows from axiom 10 that there exists a bounded element b € B.
Since b = b+ 0 is bounded, it follows from axiom 8 that 0 is bounded. By the

completeness theorem, b(0) is a theorem of P. O

Lemma 5.3.4. The formula

—Eixl AN 3375( /\ (C(.’L‘Z) Nzx; 7é 0) N /\ (C(J?Z + .’Ej) VAN T; = 0))

1<i<5 1<i<j<5

s a theorem of P.
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Proof. Let ¢_ks5 stand for the above formula. Let 8 be a model of P. Suppose
for a proof by contradiction that there are mutually disjoint non-zero elements
T1,...,75 € B such that r; + r; is connected for 1 <4 < j <n, ie. B = ¢ ks.
By axiom 10, there exist disjoint connected non-zero elements 71,712 € B such
that 71 = ri1 + 712 and 711 + 79, 711 + 73, 12 + 79 and 719 + 73 are connected.
By axiom 3 and the fact that r4 + r11 + 712 and r5 + 711 + 712 are connected,
it can be assumed that r, + r1; and r5 + r1; are connected or that ry 4+ r1; and
r5 + 112 are connected. If r4 4+ r1; and r5 + r1; are connected then each of rio, 14
and 75 has a connected sum with each of r1, 79 and r3. If r4 + 711 and r5 + rio
are connected then each of r15, ro and r4 has a connected sum with each of 71,
r3 and r5. However, this is impossible, since by assumption B satisfies axiom 5,

whence ¢_gs5 is a theorem of P. O
The following lemma will be used in the sequel without further mention.

Lemma 5.3.5. An element a € A is the sum of finitely many components. More-

over, these components are unique.

Proof. Since 2 omits A(z), there is a finite set 7 of connected elements a4, . .., a, €
A that sum to a. If every pair a;,a; in 7 is replaced with a; + a; if a; + a; is
connected and this step is repeated as often as possible then eventually 7 is a fi-
nite set of connected elements by,...,b;, € A which sum to a. Furthermore, every
two elements b;,b; (1 < i < j < k) have a disconnected sum and by axiom 2 are
disjoint. If £ = 1 then by is the only component of a. Suppose k£ > 1 and b, is
not a component of a. Then there is a connected b’ € A with b; < b’ < a. Hence,
for some j (2 < j < k) b'-b; # 0 and therefore by axiom 2, b; + b; is connected
contradicting the construction of by, ..., bx. Hence, by, ..., by are maximally con-
nected and thus components of a. It follows from axiom 2 that components are

unique. Hence, by, ..., b, are the components of a. O

Lemma 5.3.6. Let a € A be non-zero with a # 1. Then there exists a j-partition
c1,...,c € A of a.

Proof. Tt is sufficient to show that there exists a j-partition for every component
of a. Therefore, assume a is connected. If a is a j-element then the lemma holds
trivially. Otherwise, let dy,...,d, € A (n > 2) be the components of —a. Since
by axiom 6, 1 = a+d; + ...+ d, is connected, by axiom 3, a + d; (1 < i < n)

is connected. By axiom 10, there exist disjoint connected non-zero elements
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a1, as € A such that a = a1 + a0, and d; + ay, di + a9, dy + a1 and dy + ay are all
connected. I show by induction over n that there exists a j-partition of a.
Assume n = 2. By axiom 2, —a; = ay + d; + dy and —ay = a1 + d; + d are
connected. Hence, a; and ay are j-regions and ai, as is a j-partition of a.
Assume n > 2. Then —a; =ay+di +...+d, and —as = a1 +d; + ...+ d,.
Since by axiom 2, a1 + dy + ds and a9 + dy + ds are connected, both —a; and —as

have fewer than n components. By induction hypothesis, there exist j-partitions

c1,...,cand ¢, ..., cpof a; and ay respectively. Hence, cq, ..., ¢ is a j-partition
of a. O
Lemma 5.3.7. Let aq,...,a, € A be non-zero with a; # 1. Then there ezists a
J-partition ci,...,cx € A of a = ay + ...+ a, which refines ay, ..., a,.

Proof. Let by,...,b, € A be the non-zero elements of the form a - +a; -
+a,. Then by,..., b, is a partition of a refining a4,...,a,. Then with lemma

5.3.6 applied to each b; there exists a j-partition ci,...,c; € A of a refining

A1y, Oy 0
Lemma 5.3.8. Let ay,...,a, € A be a j-partition. Then there exist ci,...,c, €
A such that aq,cq,...,c, is a radial partition refining aq,...,a,, and a; has at
least three neighbours in cq, ..., cC.

Proof. If ay,...,a, is not radial about a; then for some a; (2 < i < n), ay say,
—(a1 4+ a2) is disconnected. Let by, ..., b, be the components of —(a; + ay). Since

ay is a j-element, it follows from axiom 3 that as + b; and as + by are connected.
By axiom 10, there exist elements dy,ds € A such that ay = dy ® dy and b + dy,
by + do, by + dy and by + dy are connected. Hence, d; and dy are j-elements
and both —(a; + d;) and —(a; + d2) have fewer than m components. Hence,
ai,dy,do, as, ..., a, is a j-partition refining ay,...,a,. The above argument can
be repeated until eventually there is some j-partition ¢}, ..., ¢, € A of —a; which
refines as,...,a, such that ai,c|,...,c, is radial about a;. However, possibly
ai,cy, ..., ¢y is not radial about ¢}. It has to be shown that ai,¢},. .., ¢} can be
refined into a radial partition without splitting a;.

Assume ¢ is a neighbour of a;. Then —(a; + ¢|) is connected. Assume
—(c} + ¢) is disconnected. Let e; and es be two components of — (¢} +¢)) and let
f1, f2 € Asuch that ¢, = f1® fo and fi+eq, fi+es, fot+er and fo+ey are connected.
Since either e; < —(a1+¢;) or eg < —(a; +¢}), —(a1 + f1) = —(a1 + ¢}) + f2 and

—(a1+ f2) = —(a1+¢})+ f1 are connected. Therefore, by the same argumentation
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as above there exist elements cf,...,c/, € A which refine c,..., ¢, such that
ar,cy,cf, ..., cin is a j-partition radial about a; and ¢j. Hence, eventually there
are cy, ..., cx € A such that ay,c,...,c is a radial partition.

Possibly, a; has only one or two neighbours in ¢y,...,c;. If a; has only one
neighbour in ¢y,...,¢; then £k =1, ¢; = a3 and n = 2. Then by axiom 10, there
exist connected elements e, es € A such that ¢y = e; @ es, and a1 +¢e; and a1 + €5
are connected. Then aq, e, e; is a j-partition radial about a; and the situation is
similar to the following case.

If a; has only two neighbours in ¢y,..., ¢, ¢; and ¢ say, then by axiom 10,

there exist connected elements e;,es € A such that ¢; = e; @ e; and a1 + ey,

a; + ez, —(a1 +¢1) + 1 = —(a1 +e3) and —(a; + ¢1) + €2 = —(a; + e;) are
connected. Then aq,eq,es,co,...,c, is a j-partition radial about a; such that
a; has three neighbours. It remains to show that aq, e, es, co, ..., c, is a radial

partition. Since —(¢; + ¢;) and a; + e2 are connected and a; < —(¢1 + ¢;), it
follows from axiom 2 that —(¢; + e1) = —(¢1 + ¢;) + €2 is connected (2 < i < k).
Sois —(¢; + e3) (2 <i < k). Hence, ay, e, ey, ..., ¢k is a radial partition such

that a; has three neighbours. 0

Lemma 5.3.9. Ifa,b € A, —a is connected and b is a component of a, then —b

and b+ —a are connected.

Proof. Assume by, by, ..., b, are the components of a. Since b;+0b; is disconnected
(1 <i<j<n), by axioms 3 and 6, b; + —a is connected (1 < i < n). Then by
axiom 2, —by = —a + by + ... + b, is connected. O

On the analogue of the binary connection graph on non-empty connected elements
of the domain S, the binary connection graph of non-zero connected elements
ai,...,a, € A is defined by the vertex set V = {ay,...,a,} and the edge set
E = {{a;,a;} C V|a; # a; and a; + a; is connected}.

Lemma 5.3.10. Letaq,...,a, € A be non-zero and connected. Then a1+...+a,

1s connected if and only if the binary connection graph on a4, ..., a, 1s connected.

Proof. The lemma is shown by induction over n. If n = 1 then the lemma holds
trivially. Let n > 1.

Assume that the binary connection graph I' on a4,...,a, is connected. By
lemma 3.1.12 on page 58, there is a; (1 <4 < n), a; say, such that I' \ {a,} is

connected. Then by induction hypothesis, ay + ... + a, is connected. Since I is
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connected, there is some j (2 < j < n) such that {a;,a;} is an edge of I". Hence,
a; + a; is connected. Then by axiom 2, a; + ... + a, is connected.
Assume a; + ...+ a, is connected. Then by axiom 4 there is a; (1 < i < n),

ay say, such that as + ...+ a, is connected. By induction hypothesis, the binary

connection graph on as,...,a, is connected. By axiom 3, a; + a; is connected
for some j with 2 < j < n. Hence, the binary connection graph on a4, ..., a, is
connected. O

Lemma 5.3.11. Let ay,...,a, € A be a connected partition. Then the binary
connection graph I' on ay,...,a, is planar. Furthermore, if a1, ..., a, ts a radial

partition with at least four elements then I' is a 3-connected graph.

Proof. Suppose for proof by contradiction that I' is non-planar. Since, Kj or
K3 5 is a minor of I, some subgraph I'' of I" is contractible to K or K33. If I' is
the result of the contraction of an edge of I, {a1,as} say, then I'” is a subgraph
of the binary connection graph on the connected partition a; + as,as, ..., .
Therefore, K5 or K33 is the subgraph of the binary connection graph of some
connected partition. However, by axiom 5 and lemma 5.3.4 this is impossible.
For the 3-connectedness of I', by theorem 3.3.26 on page 75 it is sufficient to
show that for any 4, j with 1 <14 < j < n, I'\{a;, a,} is connected. Since ay,...,an
is radial, —(a; + a;) is connected. Then by lemma 5.3.10, the binary connection

graph on {a1,...,a,} \ {a;,a;}, i.e. the graph I'\ {a;, a;}, is connected. O

Lemma 5.3.12. Let ay,...,a, € A (n > 4) be a radial partition such that
ai,...,ar (kK > 3) are the unbounded elements of the partition. Let T be the
binary connection graph on ai,...,a,. Then T'\ {axi1,...,a,} bounds a face in

every plane embedding of T'.

Proof. By lemma 5.3.11, T is a planar graph. By axiom 9, the graph C =

M\{aks1,-..,a,}isacycle and a;+. . .+ay is a j-element. Hence, by lemma 5.3.10,
I'\{ai,...,ar} is connected. Since C is a cycle and I"\ {a4, ..., ax} is connected,
C bounds a face in any plane embedding of I'. O

Now I am sufficiently equipped to show the completeness of the axiom system P

in the A-calculus.
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5.3.2 Completeness of P in the A-calculus

Theorem 5.3.13 (Completeness). The axiom system P is complete in the A-

calculus.

Proof. Since by theorem 5.3.1, P is consistent in the A-calculus, it follows from
proposition 5.1.3 that it is sufficient to show that any two A-models of P are
elementarily equivalent. It will be shown that any A-model of P is elementarily
equivalent to the A-model & of P. The theorem then follows immediately.

Let 2’ be any A-model of P. By the Downwards-Léwenheim-Skglem theorem,
there exists a countable elementary submodel 2 of 2. Therefore, 2 is a countable
A-model of P. The elementary equivalence of 2 and & will be shown in two
stages. In the first stage, subsets of A of increasing but finite cardinality will be
embedded into S such that 2 is isomorphic to a submodel of &. In the second

stage, it will be shown that 2l is isomorphic to an elementary submodel of &.

Stage 1:

Assume aq,as, a3, ... is an enumeration of the domain A of 2. It will be
shown that, for each initial segment a4, ..., a,, some embedding of a;,...,a,
refines some embedding of a4, ..., a,, for all m < n.

Axiom 10 shows that A has more than two elements. Therefore, assume
WLOG that a; ¢ {0,1}. I show by induction over n that for every initial segment

ai,...,a, there is a radial partition c§"), ce c,(cz) € A (k, > 4) with at least three
unbounded elements which refines a4, ...,a,. Moreover, if n > 1, c&"), . .,cgc?
also refines the radial partition cgn_l), e c,(!:j)

By lemma 5.3.5, a; has finitely many components b,...,b, and —a; has
finitely many components b;yq,...,bx. Then by,...,b; is a connected parti-
tion. By lemmas 5.3.7 and 5.3.8, there exists a radial partition cgl), ceey cfcll) €A

(k1 > 4) which refines by, ..., by and hence a;. By axiom 10, the radial partition

cgl), een, c,(cll) can be chosen to have at least three unbounded elements. Now let

(n—1) (n—

n>1landc 7,... ¢ Y be a radial partition with at least three unbounded

n—1
elements which refines ay,...,a, ;. By lemma 5.3.5, for each i (1 < i < k1),
an -cz("_l) has finitely many components d, 1, ..., d;;, and a,, - (—c§"‘1)) has finitely
many components d; 11, ...,dim;- Then dyg,..., dkn—l;mkn_l is a connected par-
tition, that refines c§”‘”, ) ..,cgij) and ai,...,a,. By lemmas 5.3.7 and 5.3.8,

there is a radial partition c§"), .. .,cgﬁ) € A (kp_1 > 4) with at least three un-
bounded regions that is a refinement of dy 1,...,d1mys- -+, diy_ 105 - -, dkn—lamkn_l

1 1
and hence of "™V, .. .,cgt_l) and ai,...,a,.
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(n) (n)

Each radial partition c¢;”,...,c,’ and hence each initial segment a,,...,a,

will now be mapped into the domain S .
For n > 1, let G™ be the set of all functions g™ : {{™, ... c,(::)} — S such

that the following three conditions are satisfied:
Bl: g™ (d™),..., g™ (ci?) is a radial partition,

B2: For1<i<j<ky, ™ +c§-") is connected if and only if g™ (c(n))—i-g(")(c;"))

] ]

is connected,
B3: For1 <i<n, cgn) is bounded if and only if g(")(cgn)) is bounded.

Claim 1. Forn > 1, G™ #£ 0.

Proof. In this proof, let c1, . . ., ¢y stand for ¢, . . . cg;). Since ¢y, . . ., ¢k is aradial
partition, it follows from lemma 5.3.11 that the binary connection graph I' on
c1, ..., is a 3-connected planar graph. Let ¢y, ..., ¢, be the unbounded elements
of ¢1,...,cp. Since m > 3, it follows from lemma 5.3.12 that cq,...,c, are the
vertices of a face in any plane embedding of I". Let I'y = (V = {v1,..., v}, E) be
a plane embedding of I' in the closed plane such that the vertices vy,...,v,, are
the vertices of the boundary of the unbounded face f of [';, i.e. po, € f. In the
following, I construct a plane graph I'; = (V’, E') such that the faces r},...,7}
of I'; are elements of S* which form a radial partition, r; + r} is connected if
and only if ¢; + ¢; is connected and r; is bounded if and only if ¢; is bounded
(1 <i<j<k). Moreover, I'; will be constructed such that there is a bijection
¢:VUEUF — V'UE'"UF'" where F and F' are the sets of faces of I'; and T’}
respectively and ¢(V) = F', ¢(E) = E', ¢(F) = V', v € ¢(v) for all v € V and
&(f) € fforall feF.

Choose, in every face f of I';, a point py such that, if po, € f then p; = ps.
Let V' be the set of these points and let ¢(f) = py. Since I'; is 3-connected, it
follows from theorem 3.3.27 that the faces of I'; are Jordan regions. Hence, any
edge of I'; is shared by exactly two faces. For any edge v of I'; construct an edge
v of T} as follows. Let f; and fy be the faces sharing the edge 7. Let 7' be a
semi-algebraic arc from py, to py, in fi + fo such that the interior of 7' does not
intersect any edge of I'; which has already been defined. Let ¢(y) = +'. After
the construction of all edges, each vertex v; of T'; lies in a face r} € S* of I'} and
in each face of I'} lies exactly one vertex of I';. Then I} is a so-called geometric
dual of Ty with ¢(v;) = rf (1 <4 < k). Since I'; is 3-connected it follows from
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(Diestel, 1997, Chapter 4, Section 6) that I'} is 3-connected. By theorem 3.3.27,
ri,...,T; € S* is a j-partition of the closed plane.

If ¢; + ¢; is connected for some distinct ¢,j € {1,...,k}, then v; and v; are
the endpoints of some edge v in I';. By construction, ¢(7) is the common edge
of the faces ¢(v;) = r; and ¢(v;) = rj. Hence, r} + r} is connected. If 7} + 7}
is connected for some distinct 7, j € {1,...,k}, then 7} and 7} share a common
edge 7. By construction, v; and v; are the endpoints of the edge ¢~!(7). Hence,
¢; + ¢; is connected.

If ¢; (1 <i < k) is unbounded then v; is a vertex of an edge v of the face f
with po € f. Hence, py € ¢(7y). Since ¢() is part of the boundary of ¢(v;) = 7,
Poo € [r}], whence 7; is unbounded. If py, € [r}] then p,, is a point in some edge
7' of r}. Hence, the vertices of $~'(7') belong to the unbounded vertices, and one
of the endpoints of ¢~'(v') is ¢~'(r}) = v;. Hence, ¢; is an unbounded element.

Hence, 71,...,7, € S is a radial partition such that r; + r; is connected iff

¢; + ¢; is connected and r; is bounded if ¢; is bounded. O
Claim 2. Let g1, g, € G™. Then gl(c§")), .. .,gl(c,(::)) ~ gg(cgn)), - QQ(C]EZ)).

Proof. Since g1(c{™) is bounded if and only if g5(c{™) is bounded, and g1 (™) +
a1 (cg-n)) is connected if and only if gQ(cZ(-"))—i—gQ(cg-n)) is connected (1 < i < j < ky),

the claim follows by lemma 3.3.33 on page 76. O

In the following, given a non-empty set C' C {cgn), e ci")}, I write ¢ (C) for
the set {g™ (™)™ e C}.

Claim 3. Let C C {cﬁ"), - c,(;?} be non-empty. Then
(i) Y C is connected iff 3" g™ (C) is connected and
(i3) 3> C is bounded iff 3" g™ (C) is bounded.

Proof. Since G is a model of P, (i) follows from lemma 5.3.10 and condition B2
of g™, and (ii) follows from axiom 8 and condition B3 of g(n). O

By construction, the radial partition cg”),...,c,(c? refines the radial partition

cgm),...,cg"n) for each n,m with 1 < m < n. Let for each ¢ with 1 < i < k,,
cz(-ln), e, cz(l") be the elements of c§”), . cg:t) that sum to cgm). Then for ¢ € G™,

the restriction of g™ to ™, ..., ™ (1 < m < n), written g™|,, is defined by

m

9™ = g+ g (],

]

Claim 4. Let ¢ € G™ (n > 1). Then ¢™|, ; € G*Y.
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Proof. It has to be shown that the conditions B1, B2 and B3 hold for ¢™|,_;.
For B2, note that by construction of ¢™|,_i,

n n—1 n n—1
g( In-1(c; ( ))+ )| —1(§ ))
= g(e) 4+ g +

b,

gM (™) 4L g §7>)

which is by claim 3(i) connected if and only if ¢ +... +ci” + & +. .+ M =
i J
(m) + c( ™ is connected. Consequently, condition B1 holds as well.
Condition B3 holds, since by claim 3(ii), g™ |,_1 (" 1)) = g"(c (")) +...+

™4+ ,(l") = ™Y is bounded. O

7

g™ ”n ) is bounded if and only if ¢;’

Claim 5. Let g™ € G™. Then there exists g™+tY € GV such that g™V, =
(n)
g™,

Proof. Let gt € G It follows from claim 4 that g™+, € G™, and from
claim 2 that g™, (™), . .. ,g("“)\n(c,(;)) ~ g™y, L g™ (cg:l)) Since S is
topologically homogeneous as shown by proposition 3.3.40 on page 80, there exist
81y Sk €S (1 <4 < ky) such that

g(n+1)| ( n)), . ’g(n+1)‘ ( ("))’ g(n—i—l)(cgn-i-l)) g(n+1)( (:1—11))

~ g )( (n)) ... ,g(”)(c,(cz)) S15n-vs Sk -

Hence, there exists a homeomorphism h:R? — R2 such that h (gt (")) =

;i (1 <4 < kpy1). Then ho g+Y is the required function. d

Claim 6. The model A is isomorphically embedded into &.

Proof. Choose a function ¢ € GM. It follows from claim 5 that for every n > 1
a function ¢™ € G™ can be chosen such that ¢(™|,_1 = ¢™ Y. Any non-zero
a € A, is the sum of some ch) Yy Jl ) for some n > 1. Let the embedding
function g: A — S be defined by ¢(0) = @ and g(a) = g™ ;1)) + .o+ g™ ;l))
for a # 0. Then g is a Boolean algebra isomorphism such that a € A is connected
iff g(a) is connected and a € A is bounded iff g(a) is bounded. For a = 0 the

equivalences are ensured by lemmas 5.3.2 and 5.3.3. O

Stage 2:

By the last claim, A can be embedded into S such that some model € which
is isomorphic to 2 is a submodel of &. For simplicity I regard A as the image of
the embedding and therefore consider from now on the elements of A as regular

open semi-algebraic sets in the plane. It remains to show that % < &.
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Claim 7. Let ay,...,a, € A be a j-partition radial about a; such that a, has at
least three neighbours. Let ri,79 € S be j-regions with a; = r1 & ro. Then there

exrist by, by € A such that aq,...,a,,71,72 ~ aq,...,a,, by, bs.

Proof. Consider the elements aj,...,a;,r],75 € S*. Remember that by proposi-
tion 3.2.1 for all 51,59 € S, 51 + 59 is connected if and only if s} + s3 is connected,
and s; is bounded if and only if py, ¢ [s7]. Then it is sufficient to show that there
exist by, by € A such that af,...,a%, 5,75 ~ af,...,ak, b}, b5 and for 7 € {1,2},
Poo € [b7] is bounded iff py, € [r}] is bounded.

It follows from planarity considerations that r; and ry have at most two neigh-
bours in ag, ..., a, in common. I will consider the number of common neighbours
of r1 and ry as separate cases.

Case 1: Assume the regions r; and 7o have no neighbour in as,...,a, in
common.

Since a4, 7, and 7y are j-regions, a}, r; and rj are Jordan regions and [r}]N[r3]
is the locus of a cross-cut 7, in aj. Therefore, to show that af,...,a;, 7,15 ~

af,...,ak, by, b5 for some by, by € A it is sufficient to show that [b7] N [b%] is the
locus of a cross-cut <, in a] that has the same endpoints as 7.

Assume ay, . .., ay are the elements of {ay,...,a,} such that d(a}) N (O(r7) \
d(r3)) # 0. Tt is easy to see that no a; (2 < < k) is a neighbour of ro, and that
ay+...+aj is connected. Let d* be the components of — (a3 +...+aj) such that
a; C d*. Let ¢* = d*- —a}. Since d* and a] are Jordan regions, c* is a Jordan
region. By axiom 11, there exist by,by € A such that a; = by @ by, by + ¢ and
by +—(a1+c) are connected, and b; + —(a; +c¢) and by+c are disconnected. Hence,
fori € {1,2}, b; has the same neighbours as r;. Then the cross-cut 7, defined by b7
and b3 has the same endpoints as 7,. Hence, ai,...,a}, 77,75 ~aj,...,ay, b}, b5.

It remains to show that b; is bounded iff a; is bounded (i € {1,2}). Note that
the closed plane is the disjoint union of the sets —a?, af, d(a}) Nd(c*) N (a1 + ¢)*,
(0(a}) N 9(c*)) \ (a1 + ¢)* and 9(a}) \ d(c*). Therefore, the point at infinity pe,
lies in one of these sets. If po, € —aj then a; is bounded and so are rq, 79, by
and by. If po € aj then a; is unbounded and —a; is bounded. Then r; or 7
is unbounded and by axioms 8 and 11, b; and by can be chosen as required. If
Poo € 0(a})NA(c*)N(a1+c)* then a; and ¢ are unbounded but —(a;+c¢) is bounded.
Then r; is unbounded and 75 bounded. Since d(a}) N A(c*) N (a; + ¢)* C I(b}),
by is unbounded and b, is bounded. If p, € (9(aj) N I(c*)) \ (a1 + ¢)* then ay,

¢, 1, ro and —(a; + ¢) are unbounded. So are the regions b; and by. And finally,
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(a) (b)

Figure 5.3: Regions r; and 79 having one neighbour in as, ..., a, in common

if poo € 0(a3) \ O(c*) then r; and ¢ are bounded and ry and —a; are unbounded.
Since d(a}) \ d(c*) C 9(b3), by is bounded and by is unbounded.

Case 2: The regions r; and ry have two neighbours in common.

Assume WLOG that as and a3 are the common neighbours of r; and 5. Then
[r¥]N[r3] is the locus of a cross-cut 7, in a} which has one end-point in a} +a} and
one end-point in aj + aj. It is sufficient to show that there exist disjoint j-regions
b1, by € A such that a = by @ by, the cross-cut 7, in af defined by [b7]N [b%] has one
end-point in a] + a3 and one end-point in aj + a3 and the regions b; and b, can
be chosen such that for 7 € {1,2}, b; has the same neighbours as r; in ay, ..., a,
and b; is bounded if and only if r; is bounded. By axiom 10, there are b;,by € A
such that as + by, as + be, az + by and az + by are connected. Hence, [b7] N [b3] is
the locus of a cross-cut v, that has one end-point in a} + a3 and one end-point in
a; + a3. WLOG let b; have the same neighbours as r;.

The closed plane is the union of the mutually disjoint sets —a},a},d(a}) N
d(a3) N (a1 + ag)*, d(a}) N I(a3) N (a1 + a3)* and J(a7) N A((ar + as + a3)*). If
Poo € —aj then ay,7r; and 7 are bounded and so are by and by. If py, € af then ay
and 7y or ro are unbounded. By axioms 8 and 10, the elements b; and by can be
chosen as required. If p,, € d(a}) NA(al) N (a1 + az)* then ay, as and r; or ry are
unbounded and —(a; + ag) is bounded. Then by axioms 8 and 10, b; and by can
be chosen as required. The case po, € d(a}) N A(a}) N (a1 + a3)* is equivalent to
the previous one. Finally, if po, € 0(a}) N O((a1 + az + a3)*) then a1, —(a1 + a2)
and only one of r; and 75 is unbounded. Then only one of b; and b, is unbounded,
and by axioms 8 and 10, b; and b, can be chosen as required.

Case 3: The regions r; and 7, have only one neighbour in ay,...,a, in
common.

I distinguish two subcases.
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Case 3.1: The region r has one neighbour only and is not in contact with
any other neighbour of 5. Figure 5.3(a) shows an example.

Assume WLOG that ay is the neighbour of r;. By axiom 10, there exist
di,dy € Asuch that ay = d1®dy, di+71, di+72, di+—(a1+a2) and do+—(a;+az)
are connected. Then ay,dy,ds,as,...,a, is a j-partition radial about a; such
that a; has at least three neighbours. Then by case 2 of this proof, there exist
bi,by € A such that aq,dq,ds,as,...,0,,71,79 ~ a1,dy,do,as,...,ay,,b1,by and
hence ay,...,a,,71,79 ~ a1, ..., ap, by, bs.

Case 3.2: The region r} is in contact with exactly two neighbours of r3.

Figures 5.3(b) and 5.3(c) show examples. Assume that ay is the neighbour
common to r; and ro. By axiom 11, there are di,ds € A such that as = d; & do,
d; + 7 and dy + —(r1 + a) are connected and dy + r; and d; + —(r1 + ag) are
disconnected. Then dy 4 75 is connected. By axiom 10, there exist e;,es € A
such that dy = e; ® eg and ey + dy, ey + dy,e1 + —(a1 + a2) and ex + — (a1 + a2)
are connected. Then WLOG, ey + a; is connected and e; + a; is disconnected.
Then aq,d; + e1,€e9,a3,...,a, is a j-partition radial about a; such that a; has
at least three neighbours and r; and ry do not have any neighbours in d; +
€1,€2,0as3,...,0, in common. Then by case 1 of this proof there exist b;,by € A
such that ai,dy + e1,e9,as3,...,a,,71,72 ~ a1,d; + e1,€2,0a3,...,0a,,b1,by and,

therefore, a1,...,an, 71,79 ~ ay,...,an, b1, bs. O

Claim 8. Letay,...,a, € A be a partition such that a1 is a j-region. Let ri,ry €
S be j-regions such that ay = 1 @® ro. Then there are by,by € A such that

al)"'aan:’rlar2Nala"'aanablabZ-

Proof. By lemma 5.3.6 there exists a j-partition ay, ¢y, ..., ¢y which refines aq, ..., a,.
By lemma 5.3.8, there exist di,...,d,, € A such that ai,d;,...,d,, is a ra-
dial partition refining a1, cq,...,c, such that a; has at least three neighbours

in dy,...,d,. By claim 7, there are by,by € A such that ay,dq,...,dp, 1,72 ~

ai,dq,...,dn,b1,be. Hence, a1,...,a,,7m1,79 ~ a1,...,a,,b1,bs. O
Claim 9. Let ay,...,a, € A be a partition such that ay is a j-region. Let r € S
be a subset of ay. Then there erists b € A such that ay,...,0,,7 ~ a1,...,0y,,b.

Proof. If r = () then let b = (). Assume r # (). By lemma 5.3.6, there exists a
j-partition r1,...,r,, € S or a; which refines r. It suffices to show that there are

bi,...,b, € Asuch that a,...,a,,71,...,7m ~ Q1,...,0p,b1,...,b,. I proceed



CHAPTER 5. A COMPLETE AXIOMATISATION OF Th(&(C)) 126

by induction on m. If m =1 then b; = a; and the claim holds trivially. If m > 1,
by lemma 3.1.15 on page 59, the regions rq,...,7, can be renumbered such that
rh =719+ ...+ 1y is a jregion. Then a; = r @ r). By claim 8, there exist
by, b, € A such that a1,...,a,,71,72 ~ a1,-...,an, b1, b, Since S is topologically
homogeneous, there exist so,...,s,, € S such that ai,...,an, 71,72, ..., 7m ~
A1y -y Ay, b1, Sy . Sy SInce So, ..., Sy, is a j-partition of by, it follows from the
induction hypothesis that here exist by, ..., b, € Asuchthatay,...,a,,r1,...,7m ~

al,...,an,bl,...,bm. ]

Claim 10. Letay,...,a, € A be a j-partition andr € S. Then there existsb € A

such that ay,...,a,,7 ~ Q1,...,0,,b.

Proof. Consider r as the sum of the regions a;-r,...,a,-r. A repeated application
of claim 9 guarantees the existence of by,...,b, € A such that ay,...,a,,a; -
TyeuuyOp =T ™~ Q1y...,0,,b1,...,b, and hence aq,...,a,,7 ~ ai,...,a,,b with
b="b+...+by. O

Claim 11. Let ay,...,a, € A and r € S. Then there exists b € A such that

Alyenny Oy, T ~ A1, ..., 0, ).

Proof. Assume WLOG that a; # 1. By lemma 5.3.7, there exists a j-partition
c1,...,cx € A which refines aq,...,a,. Then by claim 10 there exists b € A such

that ¢i,...,cp, 7 ~c1,...,cp,b. Hence, ay,...,a,,7 ~ ay,...,an,0. O
Claim 12. A < 6G.

Proof. By claim 6, %A is a submodel of &. In order to show that 2l is an elementary
submodel of &, by the Tarski-Vaught-Lemma (Mendelson, 1997, Proposition 2.37)
it is sufficient to show that for every formula ¢(xg,...,z,) in £, r € S and
ai,...,a, € A, if & &= @[r,a1,...,a,| then there exists b € A such that &
olb, a1, ..., a,]. By claim 11, for any r € S, a4, ..., a, € A there exists b € A such

that a1,...,an, 7 ~ a1,...,an,b. Since L(c,b,+,-,—,0,1) is a mereotopological
language, if & = ¢[r, a4, ...,a,] then & = ¢[b, aq, ..., ay,). O
The last claim completes the completeness proof. O

Corollary 5.3.14. The deductive closure of P in the A-calculus is the theory of
S in the language L(c,b,+, -, —,0,1).
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Since the connectedness- and boundedness-relations and the Boolean opera-
tions and constants are £(C)-definable in &, P can also be considered to be a

complete axiomatisation of &(C) in the A-calculus.

5.4 Conclusion

In this chapter, I introduced the A-calculus, which extends the predicate calculus
by an additional infinitary rule of inference. This rule ensures—in the special case
considered here—that any set of mereotopological formulae which is consistent in
the A-calculus has a mereotopology as model all of whose elements have finitely
many components. As a consequence, I could show the axiom system P to be
complete in the A-calculus. Furthermore, the deductive closure in the A-calculus
of P was shown to be the theory of G(C). One of the properties that make G(C)
interesting for a common-sense representation space is that all of the regions in
S have only finitely many components. However, proposition 4.3.6 on page 97
showed that there exists a model of Th(&(C)) which does not omit A, i.e. some
“regions” of this model have infinitely many “components”. Thus, the first-order
finitary mereotopological language £(C) is not sufficient to capture all of the nice
properties of G(C). So far, it has not been investigated whether a model of P that
does not omit A can be a mereotopology. Such models are perhaps very exotic

and cannot be constructed over the topological space R?. However, I conjecture:
Conjecture 5.4.1. The mereotopology J(C) is a model of P.

My belief in this conjecture is based on conjecture 3.2.10. If conjecture 3.2.10
is true, then axioms 1-9 have essentially already been shown to hold for J(C).
Since axioms 10 and 11 rely on connected regions and even Jordan regions, I
expect them to hold in J(C).

By theorem 4.3.3, J(C) and &(C) are not elementarily equivalent. The proof
of this theorem shows that there exists a simple formula that distinguishes be-

tween J(C) and &(C). Immediately two questions arise:

1. Can we add some more formulae to P to construct an axiomatisation of
Th(6(C))?

2. Can P at least be extended to a theory P’ that axiomatises the class of
well-behaved mereotopologies that are models of Th(S(C))?
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Question 1 is answered in the next chapter in the negative. The axiom system
P is shown to be incomplete. Furthermore, it is shown that no axiomatisation of
Th(6(C)) can possibly be found since Th(&(C)) is undecidable. The undecid-
ability proof provides the means for an interesting partial answer to question 2
which is given in section 6.2 below.

One interesting open question is whether other o-minimal structures, for ex-
ample the o-minimal structure definable with the exponential function (cf. sec-
tion 3.4), provide models of Th(S&(C)).



Chapter 6

The undecidability of

mereotopological theories

This chapter shows almost all mereotopological theories which are considered in
this thesis to be undecidable.

The decidability of mereotopological theories has been investigated before.
Dornheim (1998) investigates the properties of a mereotopology which is similar
to the mereotopology 3. He encodes the Post-correspondence problem in the
theory of his mereotopology, and thus shows its undecidability. Dornheim’s un-
decidability proof relies on the fact that his spatial domain has regions with only
finitely many components. Grzegorczyk (1951) shows a series of theories to be
undecidable. His “theory of bodies” is essentially the theory of the mereotopology
in the language £(C) of regular open sets in a second countable metric space.
The paper does not give the full proof but only a sketch of a crucial induction.
A closer inspection reveals that the proof relies on an important property of the
spatial domain: it is closed under infinite sums.

It is possible to transfer these undecidability results to the theories of F(C)
and é(C), and, given the expressivity results in section 4.1, also to the theory of
&*(<,¢). However, the undecidability of the theories of &(<,c), J(C), J(<,c)
and F(<,c) cannot be inferred from either Dornheim’s or Grzegorczyk’s proof.
Therefore, I will present a generalisation of Grzegorczyk’s proof which shows the
undecidability of Th(S) and Th(F). Moreover, I will show the stronger result

that the mereotopological theories are hereditarily undecidable as defined below.

Definition 6.0.2. A theory T is decidable if the set of its consequences is re-

cursive. A consistent theory 7" in a recursive first-order language L is essentially

129
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undecidable, if every consistent theory 7" in £ with T C 7" is undecidable. A
theory 7' in a first-order language L is hereditarily undecidable if every subset of

the deductive closure of 7" is an undecidable theory in L.
The main result of this chapter is:

Theorem 6.0.3. The mereotopological theories ofg’, (‘NS, ‘13 and Q are hereditarily

undecidable.

Since the proof of this theorem relies on the fact that the spatial domain is

closed under sums of components, the result is only conjectured for 5
Conjecture 6.0.4. The mereotopological theory 0f§ 15 hereditarily undecidable.

It is a consequence of the expressivity results in section 4.1 that it is sufficient

to show the following proposition in order to prove the above theorem.

Proposition 6.0.5. The theories of F*(<,¢) and &*(<,¢) are hereditarily un-
decidable.

However, I will show a stronger theorem that does not restrict the result to

planar mereotopology:

Theorem 6.0.6. Let 9 be a mereotopology in the mereotopological language
L(<,c) over the compact space (RF)* (k > 2) such that

(i) (M, C) is a Boolean subalgebra of RO((RF)*),
(i) if r € M and R is a subset of the components of r then Y R € M,

(11i) (Qgr)* € M, where Qg stands for the set of reqular open semi-linear sets

in R with rational “corner points”. In particular, for k = 2, Qg: = Q.

Then the L(<,c)-theory of M is hereditarily undecidable.

By construction, the spatial domains F*,J* and S* satisfy conditions (i) and
(iii). Condition (ii) is satisfied for F*, since F* is closed under infinite sums,
and for S*, since every region in S* has only finitely many components and
S* is closed under finite sums. Condition (ii) is also believed to hold for J*
(cf. conjecture 3.2.13 on page 65).

From now on let 91 be some mereotopology with domain M satisfying the

conditions of theorem 6.0.6.
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6.1 The proof

The proof of theorem 6.0.6 makes use of the fact that hereditary undecidability of
a theory 7' can be proven by interpreting a finite essentially undecidable theory
in T (see theorem 6.1.2 below). The formal definition of interpretation is given

as follows.

Definition 6.1.1 (Hodges, 1993). Let £; and £, be two first-order languages,
2 an L-structure with domain A, and B an Ly-structure with domain B. An

(n-dimensional) interpretation Z of B in 2 is a triple (6z, -z, fz) where

1. 0z(z1,...,x,) € L is a distinguished formula, the domain formula of Z,

2. -z is a function which maps each unnested atomic formula ¢(z,...,z,,) €
Ly to a formula ¢z(71,...,ZT,) € L1 where the T; are disjoint n-tuples of

distinct variables, and

3. fr :0z(A") — B is a surjective function such that for all unnested atomic
formulae ¢(z1,...,2,) € Lo and all a; € 67(A")

A= oz(@r, -, an) it B = o(fz(a1),. .., fz(am)) -

Theorem 6.1.2 (Hodges, 1993, Theorem 5.5.7). Let T} be a finite and es-
sentially undecidable theory in a first-order language L1 of finite signature. Let
Lo be a recursive first-order language and Ty a theory in Lo. If T is an interpreta-
tion which interprets some model of T in some model of T, then Ty is hereditarily

undecidable.

A well-known finite and essentially undecidable theory is the theory T4 of finite
arithmetic (Tarski et al., 1953). The theory T4 is a theory in a first-order lan-
guage with equality and finite signature {0, S, +, - } and consists of the following

sentences:
VaVy(S(z) =S(y) —z=y)  Va(z #0—-Fylz=5(y)))
Vz(z 4+ 0=1x) VaVy(z + S(y) = S(z +y))
Vi(z -0 =0) VaVy(z - S(y) = (z - y) + x)

One model of T4 is the standard model of number theory M = (N, +, -, S,0)
where S is the successor function and +, - and 0 have their usual interpretation.

I will give a 1-dimensional interpretation of 91 in the mereotopology 9. Every
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Figure 6.1: Examples of chains

natural number n will be associated by the interpretation with the set of regions
with n components. Therefore, the domain formula 6z(z) of the interpretation Z
must be satisfied only by regions with finitely many components, and furthermore
for each n € N by at least one region with n components.

The next definition introduces the condition for a pair (r,s) of regions to be a
chain. Examples of chains are given in figure 6.1. It will be shown below that
the region r of a chain (7, s) has only finitely many components. The definition

of chain, therefore, gives us a first idea of what the domain formula will look like.

Definition 6.1.3. Let r,s € M. If r - s # () then r is said to overlap s. The
region r is said to be a component respecting part of s if every component of r is
also a component of s. A component s’ of s is said to be a neighbour of r in s if
r and s’ overlap.

The pair (r, s) is called chain if
1. 7 4 s is connected and

2. either r is connected or the following conditions hold:

(a) every component of s overlaps two components of 7,

(b) every component of r overlaps two components of s except for two
components ry and 7 of r, called head and tail of the chain, each of

which overlaps exactly one component of s,
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Figure 6.2: Counterexamples of chains

(c) for every component 7’ of r distinct from head or tail, (r - —r') + s
has two components, one of which contains the head while the other
contains the tail,

(d) for every component respecting proper part r’ of r there exists a com-
ponent s’ of s such that s’ overlaps r’ and r - —7'.

Certainly, the pair (f), s) is a chain for any connected region s; so is (r, )
for any connected region r. However, if r is disconnected, a chain (r,s) has to
obey conditions 2a-2d in the above definition. Figure 6.2 depicts pairs (r, s) of
regions that violate one or more of these conditions. The pair (r, s) depicted in
subfigure (a) violates condition 2a and the pair depicted in subfigure (b) violates
condition 2b, but both pairs obey all other conditions. Subfigure (c) satisfies
all conditions except for condition 2c¢ since there is a component 7’ of r such
that (r - —r') 4+ s is connected. Subfigure (d) violates conditions 2¢ and 2d while
subfigures (e) and (f) only violate condition 2d. I will show that all chains are as

simple as those depicted in figure 6.1.



CHAPTER 6. UNDECIDABILITY IN MEREOTOPOLOGY 134

Lemma 6.1.4. Let (r,s) € M? be a chain such that r is disconnected. Let R be
the set of components of r, and let ry and rp denote head and tail of the chain

respectively. Then
(i) (r-—rr)+ s is connected,
(i) the binary relation < defined on R by
r1 < ro iff r1 and ry lie in the same component of (r - —rg) + s
1S a strict linear ordering,

(1) if r1,79 € R and s’ is a component of s such that vy + s' + rq is connected

and 1y < ro then for all 3 € R\ {ry,r2} either r3 <1y orry < r3.

Proof. (i) By condition 2d of the definition of chain, there exists a component st
of s that overlaps r and r - —ry. Hence, for some component ¢ of (r - —rr) + s,
rr + t is connected. Assume t # (r - —ry) + s. By condition 2d, there exists a
component s’ of s such that s’ overlaps ro+ (¢-7) and r- —(rp + (¢-7)). It follows
from condition 2a that s’ # s;. By condition 2b, s’ overlaps ¢-r. Thus, t is not a
maximally connected proper subset of (7 - —rr)+ s contradicting the assumption.
Hence, rp + (¢ - r) is connected.

(ii) Let 7' € R\ {ru,rr}. By condition 2¢, (r-—r')+ s has two components ¢
and t7 containing head and tail respectively. By condition 2d, some component
of s overlaps 7’ and (tg +t7) - 7. Thus, r' + tg or r' 4 t is connected. Assume,
WLOG, that 7’ + tg is connected. Again by condition 2d, some component s’ of
s overlaps (r' +tg)-rand r-—((r'+tg)-r) =tr-r. Since (r-—r')+s=tg+tr
is disconnected, s’ overlaps 7’. Hence, r' 4 ¢y is connected as well. Note that by
the definition of <, rg < r’ and r' £ ry and by condition 2¢, ' < r7 and 7 4 7.

For the following let r1,75,73 € R be distinct and ¢;5 and t;7 be the compo-
nents of (r - —r;) + s (¢ = 1,2, 3) that contain the head and the tail respectively.

It follows directly from the definition of the relation < that vy £ r1. Thus, <
is strict.

Assume 71 A 1o, If 1y = rp or rg = vy then 7o < ry. If ry,79 € R\ {ry,rr}
then 7y C tyr. Since ro + top is connected and 7y - (ro + tog) = 0, 7o lies in ryg.
Hence, 3 < 1. Thus, < is total.

Assume 11 < 19. If 71 = 1y or 7o = rp then ro A ry. W ry,ro € R\ {ry,rr}
then 71 € top. Since 7o + tor is connected and (ro + tor) - 11 = 0, 7o + tor C ti7

whence ry £ r;. Thus, < is asymmetric.
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If ry < ry and 7y < r3 then 73 £ ro and, thus, toy - r3 = (). Then tyy C t3y.
Since 1 C toy, r9 < r3. Thus, < is transitive.

Hence, < is a strict linear ordering on R.

(iii) Assume, there exists a component s’ of s such that r; +s'+75 is connected
and r; < r9. Suppose there exists r3 € R such that 7, < r3 < r5. Then by
condition 2¢, (r-—r3)+s is disconnected. Let ty be the component of (r-—r3)+s
containing the head and let ¢ the other component. Since r; C tg and ry C tr,
s' C ty and ¢’ C tp. Hence, ty + tr is connected contradicting the assumption
that (7, s) is a chain. O

Proposition 6.1.5. Let (r,s5) € M? be a chain. Then r has finitely many com-

ponents.

Proof. Suppose for a proof by contradiction that the set R of components of r is
infinite. Let 7y and rr denote the two components of r which overlap only one
component of s. Let the ordering < on R be defined as in lemma 6.1.4(ii). For
every component r; € R, choose a point p; in r; and let P be the set of these
points. Then, P is infinite. Since (R¥)* is compact, [r] is compact and P has an

accumulation point ¢ ¢ P in [r]. Let an ordering < on P U {q} be defined by

Pi < Pj if pi,ijPand Ty <X Tj,
pi < q if p; € P and the set {p € P|p; < p} has accumulation point g,
g<p; if p; € P and the set {p € P|p < p;} has accumulation point g.

Note that the ordering (PU{q}, <) may be neither asymmetric nor anti-symmetric
for ¢. However, for all p, € P, p; < q or ¢ < p;. In particular, py < q <
pr and pr £ ¢ £ pu. Let Rey = {r; € Rlp; < ¢} and t., = > R, +
> {s'|s' is a component of s which overlaps Y  R.,}. Since pg < ¢, rg C t,.
Let ty be the component of ¢, which contains ry and let Ry the set of compo-
nents of 7 - ty. By condition 2d, for some component s’ of s and some 7,7, € R,
r; Ctyg, r, Cr-—Y. Reyand s’ overlaps r; and 7. By lemma 6.1.4(iii), there is
no r; € R with r; <7 <rporry <r <rj. Since r; C ity Ctey, pj < g, ie. the
set {p € P|p; < p} has accumulation point ¢. If p; < p, then {p € P|p, < p} =
{p € Plp; <p} \{p;}- If pr <pj, then {p € Plp, <p} ={p € Plp; <p} U {p;}.
Either way, py < ¢. Hence, ry € R.,. Since r; C ty and r; + s’ + 14 is connected,
rr C ty contradicting the maximality of tgy. Therefore, P cannot have an ac-
cumulation point ¢ in [r]. Since [r] is compact, P and therefore also R must be

finite. Thus, r has finitely many components. O
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The following two lemmas, whose straightforward proofs are omitted, introduce

formulae that are used below to introduce a formula defining chains.

Lemma 6.1.6. Let comp(z,y) stand for the formula
z<yAc()AVz(z <zAz<yAc(z) > z=2))
and x <y stand for the formula
V' (comp(z', ) — comp(z',y)) .

Then for r,s € M: (i) MM = comp|r, s] if and only if r is a component of s and
(i) M = r < s if and only if r is a component respecting part of s.

Lemma 6.1.7. Let N(z,y, z) stand for the formula
(z-y=0A2=0)VVy(comp(y',y) Az-y"# 0 <« comp(y’, z))

and Ny (z,y) for the formula

x-y;éO/\Elelzl...Elzn(z:Zzi/\ /\ z,-7éz]-/\/\comp(zz-,z)/\N(x,y,z)>
i=1

1<i<j<n i=1

where n is some positive integer. Then for any r,s,t € M:

(i) M = Nir, s, t] if and only if t = > Ns(r), where Ns(r) stands for the set of
all netghbours of r in s,

(i1) M = N,[r, s] if and only if r and s are not disjoint and ||Ns(r)|| = n.

Lemma 6.1.8. Let each expression on the left hand side of the following list
stand as abbreviation for the indented formula directly below the respective ez-
Pression.
chaina(z, y)

Vy'(comp(y', y) — Nao(y', z))
chain2b(z, y)

dx gy (comp(a:H, x) Acomp(zr,x) Nxy # xp AN Ni(zg,y) A Ni(zr,y)

AV (comp(z', ) ANx' # g ANx' # xr — No(2', y)))

chain2c(z, y)

Vz'( comp(z', x) —

AzgAerArgAzr(c(za) Ac(zr) Azr - 2r =0Azg + 270 = (v —2') + y
AN1(zg,y) A Ni(zr,y) ANxg < zg Axp < zT)>
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chain2d(z, y)

Vx’(:c’ dzx Az #x— Y (comp(y,y) ANy -2’ 0Ny - (- —2') # 0))
chain(z, y)

c(x+y)A(c(x)V (chain2a(z, y) Achain2b(x, y) A chain2¢(z, y) Achain2d(z, y)))
Then forr,s € M, (r,s) is a chain if and only if MM = chain[r, s].

Proof. Given lemmas 6.1.6 and 6.1.7, a comparison of the formulae chain2a(z,y),
..., chain2d(z, y) with the conditions 2a-2d in definition 6.1.3 shows the formula
chain(z, y) to define the set of chains in 9. O

The formula chain(z, y) will be used in lemma 6.1.14 to define the domain formula
for the interpretation of O in 9. The next lemmas show that the domain M

contains sufficiently many well-behaved regions to construct chains.

Lemma 6.1.9. Let A be a closed set in (R¥)* and v be an arc in (R*)*\ A.
Then there exists a connected element r € M with connected complement such

that || Cr, AN[r] =0 and the boundary of r is accessible from r and —r.

Proof. Since v is an arc, there exists a homeomorphism A : (RF)* — (R¥F)* such
that |y| is mapped to a line segment. Let € > 0 be the minimal distance between
h(lv]) and h(A). Let D = U{Bs(p)lp € h(|]7|)}. Then [D] is connected and
does not intersect h(A). Moreover, h(A) lies in one component of (RF)* \ [D].
By condition (iii) of M, for every point p € |y| there exists an open “cube”
rp, C h7Y([D]). Thus, V = {rplp € ||} is an open cover of |y|. Since |v| is
closed and hence compact, there is a finite subcover V' of V. Then A lies in one

component —r of — > V', Then r is the required region. O

Lemma 6.1.10. Let rq,...,7, € M be the components of the non-empty region
r € M such that for 0 < i < j < n, [r;]N[r;] = 0 and the boundary of r; is
accessible from r; and —r;. Then there exist disjoint arcs v, ..., Yn Such that for
1<i<mn, %(0)€ric, %) €rand |y N[rj] =0 if 5 € {0,...,n}\ {i —1,i}.

Proof. Since the boundary of ry + r; is accessible from ¢ + r; and —(rg + 1)
and (—r) + ro + 1 is arc-connected there exists an arc vy, in (=) + 79 + r1 from
some point in 7y to some point in 74 such that (—r) \ |y1| is connected. Since the
boundary of 11 +74 is accessible from ry +ry and —(ry+rq) and ((—7)+r1+72)\ |71
is arc-connected there exists an arc 7, in ((—=r) + 71 4+ r2) \ |71] from some point

in 71 to some point in ro such that (—r) \ (|71| U |72|) is connected. A repeated
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application of the above argument guarantees the existence of all the required

arcs. O

Lemma 6.1.11. Let the non-empty region r € M have a connected complement,
a boundary accessible from r and —r and finitely many components ro,71,...,T,
such that [r;] N [r;] =0 for 0 < i < j < n. Then there exists s € M such that

(r,s) is a chain.

Proof. By lemma, 6.1.10, there exist disjoint arcs 7y, ..., v, such that for 1 <17 <
n, 1(0) € riz1, vi(1) € ry and |y N[ry] = 0if 5 € {0,...,n} \ {i — 1,i}. By
lemma 6.1.9, there exist regions s1,...,s, € M such that for 1 <i <n, || Cs;
and [s;)N[r;]=01if j € {0,...,n} \ {i — 1,4}. Then (r,> " ,s;) isa chain. O

In the following, I write |r| to denote the number of non-empty components of a
region 7 € M, i.e. |§| =0 and |r| > 1 for r # (). Given r,s € M, I write s < r if
s C r, —s is connected, every component of r contains one component of s, and

r is empty if s is empty. Obviously, s < r implies |s| = |r|.

Lemma 6.1.12. Let r,s € M be non-empty, have connected complements and
the same finite number of components such that for any two distinct components
r1 and o of v or s, [r1)N[ra] = 0. Furthermore, let r and s such that the boundary
of r is accessible from r and —r and the boundary of s is accessible from s and
—s. Then there existst € M such thatr+s Ct, r <t and s < t.

Proof. Assume rq,...,7, and si,...,s, are the components of  and s respec-
tively. By lemma 6.1.10, there are disjoint arcs 74, . . ., ¥, such that for1 <7 < n,
7:(0) € 74, 7i(1) € s; and for 1 <i < j <mn, |y N[r; +s;] = 0. By lemma 6.1.9,
there exist mutually disjoint connected regions ¢4, ..., t, € M such that r;+s; C ¢;
for 1 <7 <n. Then t =3  t; is the required region. O

Lemma 6.1.13. Let ¢ < y stand for the formula
(z=0—=y=0)Ac(—2) Az <y AVy'(comp(y',y) = comp(z -y, x)) .
Then forr,s € M, M E=r < s if and only if r < s.
Proof. Straightforward. O
Lemma 6.1.14. Let F(x) stand for the formula
Jy3z(y < x A chain(y, 2)) .

Then forr € M, I = Fr] if and only if r has finitely many components.
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Proof. If-direction: If r is the empty set then with () as witness for y and z, F(z)
is satisfied by = in 9%. If r is non-empty, it is easy to see that by condition (iii)
of M there exists ' € M whose boundary is accessible from 7' and —r’ such that
r" < r and for every distinct pair rq, 7o of components of 7', [r1] N [ry] = 0. By
lemma 6.1.13, M = 7' < r. By lemma 6.1.11, there exists s € M such that (7', s)
is a chain. Then by lemma 6.1.8, 9 = Flr].

Only-if-direction: Let r' and s be witnesses for y and z in F[r| respectively.
By lemma 6.1.8, (', s) is a chain. Therefore, by proposition 6.1.5, 7’ has finitely
many components. Since M = ' <« r, |r| = |r'|. Hence, r has finitely many

components. ]

The formula F(z) will be the domain formula of the interpretation of 91 in 9.
It remains to find formulae to mimic equality and the operators sum +, product

- and successor S.

Lemma 6.1.15. Let ~(x,y) stand for the formula

(x=0Ay=0)
V(x7é0/\y7é0/\.7-'(x)/\.7-'(y)/\x-y:0

A Fy'Fz(2' Kz ANy K yNT' K 2Ny < z)) )

Then for r,s € M, M = =|r,s] if and only if r and s are disjoint, have finitely

many components and |r| = |s|.

Proof. If-direction: If |r| = |s| = 0 then r = ) = s and M = =[r,s|. Assume,
therefore, |r| = |s| > 1. By lemma 6.1.14 and the fact that r and s are disjoint,
M = Flr] A F[s] Ar-s=0. It follows from condition (iii) of M that there exist
r',s' € M such that M = r' < r A s’ < s, the boundary of 7’ is accessible from
r" and —r', the boundary of s’ is accessible from s’ and —s’ and for all distinct
components 71,79 of r or s, [r1] N [ry] = 0. By lemma 6.1.12, there exists t € M
such that » < t and s < t. By lemma 6.1.13, 9 = &[r, s|.

Only-if-direction: If (r,s) € M? satisfies the first conjunct of &(z,y) then
r = () = s. Hence r and s are disjoint and |r| = |s| = 0. If (r,s) satisfies the
second conjunct of &~(z,y) then r and s are non-empty and by lemma 6.1.14
have finitely many components. Let 7', s’ and ¢ be witnesses for z’, ¥’ and z
respectively. By lemma 6.1.13, |r'| = |r| and |s'| = |s|. Since 7’ < t and §' < t,
Ir'| = |t| = |s'|. Thus, |r| = [s]|. O
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Lemma 6.1.16. Let ~(z,y) stand for the formula

.7:(.1') /\.7:(y) A 3$13$23y13y2($1 < $/\y1 < y/\@(.’L'l, CCQ) /\@"(yl, yg) /\@(.CL'Q, y2)) .

Then forr,s € M, M ==~[r, s] if and only if r and s have finitely many compo-

nents and |r| = |s|.

Proof. If-direction: By lemma 6.1.14, 9 = Flr| A F[s]. If |r| = [s| = 0 then r
is a witness for z; and z, and s is a witness for y; and y, in = (zx,y) satisfied
by (r,s) in 9. Assume, therefore, |r| = |s| = n > 1. By condition (iii) of M,
there exist r1,s; € M such that r; < r and s; < s. Certainly, r; and s; can
be chosen to be different from (R*)*. If r; + s; # (R*)* then, by condition (iii)
of M, there exist two disjoint regions ry, sy € M lying in —(r + s) such that
|| = |s'| = n. Then, by lemma 6.1.15, 9 =~ [r,s]. Otherwise r; - —s; and
s - —ry are non-empty and disjoint. By condition (iii) of M, there exist regions
T, 89 € M such that |rq| = |se| = n, 19 C 81 - —r1 and s9 C r1 - —s;. Then by
lemma 6.1.15, M ==, s].

Only-if-direction: By lemma 6.1.14, r» and s have finitely many components.
Let r1, 79,51 and so be witnesses for x1, z9,y; and yy respectively. Then by lem-
mas 6.1.13 and 6.1.15, |r| = |r1| = |re| = [s2] = |s1] = |s]. O

At last I am in the position to define formulae defining successor, addition and

multiplication.

Lemma 6.1.17. Let S(x,y) stand for the formula

F(x) AF(y) Ay # 0A Ty (comp(y', y) A =(z,y - =),
+(z,y, 2) for the formula
Fx) ANF(y) ANF(2) A"y (2" -y = OA =(z,2")A =(y, ¥ )A =(2' + 9/, 2))
and o(x,y, z) for the formula
F@)ANFy) ANF(2) AN (Z < 2A =(2, 2)
AVz!'(comp(z',z) ANx' # 0 —==(2' - 2, y))) -

Then forr,s € M,
1. M = Sr, s] iff r and s have finitely many components and |r| + 1 = |s|,
2. M = +[r, s,t] iff r, s and t have finitely many components and |r|+|s| = |¢|
and

3. M = o[r,s,t] iff r,s and t have finitely many components and |r|-|s| = |t|.



CHAPTER 6. UNDECIDABILITY IN MEREOTOPOLOGY 141

Proof. Since it is straightforward to show 1 and 2, I concentrate on 3.

For the if-direction assume first || = |t/ = 0. Then ¢ is a witness for 2’ in
o(z,y, z) satisfied by (r,s,t) in 9. Now assume ry,...,r, are the (non-empty)
components of . By condition (iii) of M, for each r; (1 < i < n) there exists
t; C r; with connected complement and [t;| = |s|. Let ¢ = > ¢;. Then
t' C r and every component of r contains |s| components of ¢. Hence, |t/| =
Ir| - |s| = |t| and 9M = e[r, s, t] with ¢’ as witness for 2’. The only-if-direction is

straightforward. O
Now an interpretation Z of 91 in 9 can be given:

Proof of theorem 6.0.6. By lemmas 6.1.14, 6.1.16 and 6.1.17 a one-dimensional
interpretation Z of 91 in 9 is given by

1. F(z) is the domain formula,

2. .z maps x = y to = (z,y), y = S(z) to S(z,y), x +y = z to +(z,y, 2),
x-y=ztoe(x,y,z) and 0 to 0,

3. fz:F(M) — N maps 0 to 0 and every non-empty region of F(M) to the

number of its components.

Then by theorem 6.1.2, Th(90) is hereditarily undecidable. O

It is worth pointing out the difference between the above undecidability proof
and Grzegorczyk’s proof. To show the undecidability of the “theory of bodies”,
Grzegorczyk made use of two properties of the topological space R": (i) the
(regular) open sets are closed under infinite union (sum) and (ii) R™ is second
countable, that is, R" has a countable basis. Consequently, any open set in R" has
at most countably many components. Property (i) enables Grzegorczyk to define
a set of structures which have finitely or infinitely many components. To be more
precise, using the language £(C), Grzegorczyk is able to define the set of isolated
sets, i.e. sets that do not contain their limit points. Moreover, property (i) allows
him to introduce the operations for sum, product and successor for finite and
infinite isolated sets. These operators together with property (ii) enable him to
define the finite isolated sets: an isolated set S is finite if the cardinality of S is
the same as the cardinality of the set S with one point removed. Then, given that
the operators for sum, product and successor are defined for all isolated sets, there

is an immediate interpretation of number theory in the theory of bodies. Thus,
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Grzegorczyk uses the properties of the spatial domain to define the operators
sum, product and successor on representations for numbers, and then, using the
defined operators, Grzegorczyk defines “finiteness”.

Since some of the spatial domains in this thesis are not closed under infinite
sums, the undecidability proof that was given in this section could not follow
Grzegorczyk’s argument. I could only define the operators for sum, product and
successor after “finiteness” was defined. The existence of an £(<, ¢)-formula F(z)
that defines the set of regions which have only finitely many components is a fact
which is interesting in its own right. The following section uses the formula F(z)

to acquire further knowledge about mereotopologies over R?.

6.2 A characterisation of topological A-models

The spatial domain S is well-behaved in the sense that every region in S has
finitely many components. This property is reflected in the fact that the mereo-

topology &(C) omits A(x), i.e. the set of formulae

n
{—Elxl gz =4 e A /\c(xz))‘n > 1}
i=1

where c¢(z) is an abbreviation for the formula defining connectedness as given in
lemma 4.1.3. In section 5.2, a complete axiomatisation P of Th(&(C)) in the
A-calculus was presented. Proposition 4.3.6 on page 97 showed that there exist
models of Th(&(C)) that do not omit A(x). However, can such model be a
mereotopology, i.e. a model defined over a topological space? In this section, I
give a partial answer to this question.

Let any mereotopology 9U(C) over R* or (RF)* whose domain M satisfies
the conditions of theorem 6.0.6 be called a standard mereotopology. It can be
shown, following lemmas 4.1.2 and 4.1.3, that the subset-relation and connec-
tion are L£(C)-definable in 9. Therefore, the £(<,c)-formula F(z), as given
in lemma 6.1.14, can be considered as an L(C)-formula. It was shown that
in every standard mereotopology the formula F(z) defines the set of regions
with finitely many components. Therefore, for any standard mereotopology 90,
I = Vo (F(z)) if and only if 9 omits A(x). Thus, any mereotopology over R* or
(RF)* that is a model of Th(&(C)) and that realizes A is an exotic mereotopology
indeed. However the question for the existence of such exotic mereotopology is

answered, the following theorem shows that elementary equivalence of standard
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mereotopologies that are models of Th(G&(C)) can be characterised by two simple

axiom systems.

Theorem 6.2.1. Let P be the axiom system as given in section 5.2. Consider
F(x) as an L(C)-formula where ¢ and < are abbreviations for the formulas given
in lemmas 4.1.2 and 4.1.3. Let Pr = P U {VaF(x)} and let P, be the aziom

system P together with the infinitary aziom schema

(0(0) AVaVy(o(x) Ac(y) = ¢(2 +y)) — Vad(z) .

Then the theories Px and Ps are w-categorical with respect to the class of standard

mereotopologies.

Proof. By lemma 6.1.14, a standard mereotopology which is a model of Pr is
A-model of P. Let 9t be a standard mereotopology that is a model of P,. It is
easy to see that for ¢(z) being the formula F(z) the antecedent of the implication
in the axiom schema holds in 9. Hence, Vx(F(x)) holds in 9. Therefore, M is
a A-model of P.

Since by proposition 4.3.9 on page 98, P is w-categorical with respect to A-
models, and all standard mereotopologies of Pz or P, are A-models, Px and Ps

are w-categorical with respect to the class of standard mereotopologies. O

6.3 Conclusion

The theories of the mereotopologies % and & were shown to be hereditarily un-
decidable. Thus, an application of the unrestricted mereotopological theories to
topological reasoning is out of the question. However, promising complexity re-
sults for topological reasoning with restricted mereotopological languages have
been presented in the literature (cf. section 2.6).

The undecidability of Th(&) shows that there exists no axiomatisation of
Th(S) in first-order logic. Thus, the decision in chapter 5 to axiomatise the
theory of & in some other calculus than the predicate calculus, here the A-
calculus, was a necessary one.

A formula F(z) of £(<,c) was presented which defines the set of regions
with finitely many components in standard mereotopologies, i.e. well-behaved

mereotopologies over R¥. As a consequence, two extensions of the axiom system

IThe axiom schema was suggested by Professor J. Paris.
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P, the axiom systems Pz and P;, could be shown to be w-categorical with respect
to the class of standard mereotopologies.

The undecidability proof of the mereotopological theories relied on the fact
that natural numbers could be represented as classes of regions with finitely many
components. Thus, on the one hand the undecidability proof relied on the defin-
ability of components, and on the other hand on the existing variety of regions in
the spatial domains. Therefore, a decidable mereotopological theory either only
admits models with regions which have a maximum of n components where n
is some fixed natural number, or the mereotopological language is restricted in

syntax or semantics. All of these restrictions, however, are severe.



Chapter 7
Points in point-free mereotopologies

It is possible to construct mereotopologies which contain points as well as regions
in their spatial domain. I will introduce such mereotopology below. However,
one of the main reasons why the Al-community is interested in mereotopology
is that mereotopology, being a region-based approach to topology, can avoid the
ontological questions regarding points and boundaries (cf. section 2.2). I will show
in this chapter that the ontological simplicity of mereotopology is only superficial;
even in certain point-free mereotopologies it is possible to refer to points and
boundaries, thereby allowing the ontological questions to enter through the back
door.

It has been shown that points can be reconstructed from regions by identifying
points as sets of (sets of) regions (cf. Whitehead’s abstractive elements in section
2.7 or the use of ultrafilters in section 4.2). Thus, points can be represented as
higher-order constructs. It appears difficult if not impossible to refer to such
“points” in a first-order language. Nevertheless, I will show that there are mereo-
topological languages which are expressive enough to refer to points represented
by definable sets of regions. Moreover, I will show that it is possible to refer not
only to points but also to boundaries, open regions and closed regions. To make
this idea concrete I introduce an ontologically rich mereotopology as follows.

Let S; be the spatial domain of all semi-algebraic subsets of R?, and let &;
be the model-theoretic £(<, C)-structure with domain S; where the mereotopol-
ogical symbols < and C have their standard interpretation, i.e. [<]®f = {(r, ;) €
S¢lr1 C o} and [C]® = {(r1,72) € Sf|[r1] N [ra] # 0}. Hence, &; is a mereotop-
ology containing points, while the mereotopology & is point-free. Note that the

language £(C) is not expressive enough to define the subset relation over S; as

145
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the next lemma shows.
Lemma 7.0.1. The set {(r,s) € Sf|r C s} is not definable in &;(C).

Proof. Let the function f:S; — S; be defined by

z otherwise

f(x) = { 2°U(9(x) \@) ifa° = [o]°and [o] = [o°]

Thus, f “toggles” the boundaries of semi-regular sets and maps all other sets to
themselves. Hence, f is a bijection and [r] = [f(r)] for all » € S;. Therefore, f

is a model automorphism. However, for a semi-regular set r € Sy, 7° C [r] but

F(r]) € f(r°). O

It is easy to see that the set of singletons, i.e. points, in Sy is defined in &; by
the £(C)-formula

Fy(C(z,y)) AVyV2(C(z,y) A Clz, z) = C(y, 2))

which will be abbreviated by point(z). Obviously, point(x) is not satisfied in &,
since S is an atomless Boolean algebra. However, the language £(C) is expressive
enough to refer to “imaginary points” in &. Moreover, it will be shown that every
element in Sy corresponds to an “imaginary element” in S . Thus, the “imaginary
domain” of & is as rich as the domain of &y, although S is not as rich as S;.
Furthermore, the correspondence between S; and the imaginary domain of &
will entail that every L£(<,C)-formula that is satisfied in &; corresponds to an
L(C)-formula that is satisfied in &.

It is an old idea to define a point p either by two lines which intersect in p
or as two regions 7, and 75 which touch only at the point p (cf. Galton, 1996).
However, the pair (71, 75) cannot be taken as the unique representation of p, since
there exist many pairs of regions that touch only in p. Thus, there would be too
many points. However, the set P of all pairs that touch in p will do nicely as the
representation of p. If the set P is definable in &(C) with parameters 71 and 79,
then, in model theory, P is called an “imaginary element” of &(C) (see Hodges,
1993). It will be shown below that P is definable in G(C) with parameters.

It is important to realise the difference between the representation of a point as
a set of (sets of) regions and the representation of a point as an imaginary element.
While quantification over general sets in a first-order language is impossible,

quantification over tuples of the domain is possible and facilitates quantification
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over imaginary elements. As a consequence, it will be possible to define not only
points but all elements of Sy as imaginary elements in &(C). More precisely, I will
show that the mereotopology &(<,C) can be interpreted in the mereotopology
G(C) and vice versa in the sense of definition 6.1.1 on page 131.

In order to interpret &(C) in &(<,C), the set of regular open sets must
be definable in &;. Since (Sf, C) is a Boolean algebra, the Boolean operators
N,U and — are definable in &;(<, C). Since the set of all singletons is defined in
S7(<, C) by the formula point(x), it is easy to see that the formula Vy(point(y)A
C(z,y) — y < z) defines the closed sets in S;. Hence, the closure- and interior-
operators, c1(z) and int(z), are definable in &¢(<,C). Then the set of regular
open sets is defined by the formula z = int(c1(z)) which is the domain formula
of the trivial interpretation of G(C) in &;(<, C). The interpretation function -z
maps C(z,y) to C(z,y) and z < y to Vz(C(z,2) = C(z,y)) (cf. lemma 4.1.2 on
page 89).

The interpretation of &¢(<,C) in &(C) requires more effort, as shown in the

following section.

7.1 An interpretation of &;(<,C) in &(C)

The basis for the interpretation of &;(<,C) in &(C) is that every point in R? is
representable as a definable set of pairs of regions of S. The next two lemmas
ensure that, for every O-cell and every 1l-cell in R?, a representation by pairs
of regular open semi-algebraic sets can be found. Then it will be shown that
every semi-algebraic set can be represented by a set of 5-tuples of regular open

semi-algebraic sets.

Lemma 7.1.1 (Existence of 0O-cell representations). Let A C R? be a closed

semi-algebraic set and let p € R*\ A. Then there exist regular open semi-algebraic
sets Uy, Uy C R? with [Uy] N [Us] = {p} and [U; UUs]N A = 0.

Proof. Since p is a point of the open set R? \ A, there exists an open disc B
around p with [B] N A = ). Certainly, any two orthogonal lines through p define
four semi-algebraic regular open quadrants, which sum to B. Let U; and U, be

two non-adjacent quadrants. Then U; and U, are as required. O

Lemma 7.1.2 (Existence of 1-cell representations). Let the semi-algebraic

set A C R? be a 1-cell and let B C R? be a closed semi-algebraic set disjoint from
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(b)
Figure 7.1: The construction of a 1-cell in (R?)*

A. Then there exist disjoint reqular open semi-algebraic sets Uy, U, C R? such
that Uy N [Us] = [A] and (U U U] N B is a finite set.

Proof. Two cases have to be considered:

Case 1: A separates the plane.

Since A and B are disjoint closed sets, there exists by the normality of S
(proposition 3.3.11 on page 70) a regular open semi-algebraic set D such that
A C D and [D]N B = (. Since A separates the plane and A C D, A separates D
in two regular open semi-algebraic sets U; and U, such that [U;|N[Uz] = [A] = A
and [U; UUs]N B =[D]N B = .

Case 2: A does not separate the plane.

It will simplify the proof to consider A as a 1-cell in the one-point compactifi-
cation (R?)* of R%. Let po and p; be the endpoints of A. Note that one of py and
p1 might be the point at infinity, and hence [A] and B considered as subsets of
(R?)* may share this point. Furthermore, the points py and p; might be compo-
nents of B. By the accessibility of the boundaries of A and B, it seems obvious
that there are semi-algebraic arcs from pg to p; which define together with A the
required regions (cf. figure 7.1(a)). However, I present a formal proof.

For each point p € A let U, be an open disc around p not intersecting B or

the endpoints of A. Let U,, and U,, be open discs around p, and p; respectively
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such that U,, and U, do not include any component of B except for possibly
po and p;. Then U = {U,|p € A} U{U,,,U,,} is an open cover of [A]. Since
[A] is compact there is a finite subcover U’ of U containing U,, and U,,. The
regular open semi-algebraic set V' = YU’ includes [A], but does not include any
component of B except for possibly py and p;. Since the boundary of a semi-
algebraic set is accessible, there exist two disjoint semi-algebraic cross-cuts g
and y; of V going through p, and p; respectively but not through any point of
B as shown in figure 7.1(b). Let the two components of V' \ (A U |v| U |n])
adjacent to both crosscuts be denoted by U, and Us,. Then [U;] N [Us] = [A] and
[U1 UUs]N B C {po,p1}- Then U; \ {poo} and U \ {poo} are the required regions
in S. U

Now I will use the existence of 0-cell- and 1-cell-representations to define for each
semi-algebraic set a representation by regular open semi-algebraic sets.
Let the function f:S° — S; be defined by

f(zo, ... x4) = (2o Ul(w1,22) Up(x3,24)) \ (mo N (I(x1, 22) Up(x3,24)))

where I(z1, 22) = ([z1] N [x2]) \ [ (21 + 22)] and p(z3, x4) = [23] N [z4]. Note that
if 1 and z, are disjoint then [(z1, x9) is the finite union of 0- and 1-cells, and if
x3 and x4 are disjoint and no two components of 3 and z, have a connected sum

then p(x3,z4) is a finite set, i.e. a finite union of 0-cells.

Proposition 7.1.3 (Existence of representations for all s € Sy).

For any s € Sy there exist sy, ...,s4 €S such that s = f(so, ..., S4).

Proof. Let sy be the regular open semi-algebraic set [s]°. Let st = s\ s¢ and
s7 = sp \ s. Then st and s~ are disjoint semi-algebraic sets. Since s as

well as s~ have empty interior, by the cell stratification theorem on page 67,

st Us™ is the union of finitely many mutually disjoint 1-cells lg, . . ., I, and O-cells
Po,---,pn such that [;]Nl; = 0 for 1 <4 < j < m. A repeated application
of lemma 7.1.2 guarantees the existence of 31 ,sgo),sgl),sél), . sY”) 82 €S

such that for 0 < j < m, [s¥] N [s¥] = [1;] and [s¥ U s9) N U208 U s
is a finite set. Let s; = (J, s = Z;’Los? and sy = U:nosg) =>" s,
Then ([s1] N [s2]) \ [=(s1 + s2)] = Ui~ li- Analogously, a repeated application
of lemma 7.1.1 guarantees the existence of ss,s4 € S with [s3] N [s4] = UL, pi-
Then st Us™ = (([s1]N[s2]) \ [=(s1 4+ s2)]) U ([s3] N [s4]) and s = (s UsT)\ s~ =
f(s0y---,84). O
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Thus, the function f maps every 5-tuple of regular open sets to a semi-algebraic
set and every semi-algebraic set s can be identified with the set {(so,...,s4) €
S°|f(so,---,84) = s}. In the interpretation of &;(<,C) in &(C), I will employ
exactly this identification. The interpretation of &;(<,C) in &(C) requires a
number of definability results. In the following list, let each expression on the left
stand as an abbreviation for the indented formula directly below the respective

expression.

1. pt($1,$2)
C(z1, z2) AVZIVZh (2] < 21 Azl < g AC(2), 29) A C(1,2) — C(z), 24))

[\V]

. <$1,$2> ~ <ylay2>
pt(z1,x2) A pt(y1, y2)
AVz Vah (o) <z Aahy < @9 A C(ah, 25) — Cah, y1) A C(wh, 42))

w

<$lax2> ey
21320 ({1, x2) = (21, 20) AN 7 C(—y, 21 + 22))

S

{21, 32) € [y1] N [y2]
2132 ({21, 22) = (21, 22) N2 S y1 A 2o < o)

ot

. inls(z1, %2, Yo, - - - Ya)
(T1,m2) € [y1] N [yo] A = ({21, 22) € [=(y1 + y2)] N [1])

o

(T1,22) € (Yo, - - -, Ya)
({(z1,2) € Yo V inls(z1, T2, y1,Y2) V (T1,72) € [y3] N [ya])
A=((x1,2) € yo A (inls(x1, 2, Y1, Y2) V (71, T2) € [y3] N [y4]))

7' <x0""’x4> S <y0,""y4>
V21 V22 ({21, 22) € (To, ..., Ta) = (21,22) € (Yo, -+, Ya))

8. adhpt(z1, T2, Yo, - - -, Ya)
Vy<<$1,$2> €y — Iz1322((21, 22) € y A (21, 22) € (Yo, - - .,y4)))

9. C(xo,...,:c4,y0,...,y4)
21329 (adhpt (21, 22, To, - - - , Z4) A adhpt (21, 22, Yo, - - - Ya))

Let (ry,72) € S% If [r] N [ry] is a singleton then the pair (r1,r9) is said to
represent the point p € [r1] N [re] and I write (ry,r) € U if p € U for U C R?.
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Lemma 7.1.4. The formulae given in the above list define the following sets in

G&:

1. pt(zq,x2) {(r1,79) € S?(r1,72) € R?}

~ T1,T2, 81, S2 4| (rurs) € R and
) { B ) €S el = ) s }
3. (x1,T2) €y {(r1,72,8) € S3|(r1,79) € s}
4. (21, 32) € [y2] N [yo] {(r1, 72, 81, 82) € S*|(r1,72) € [s1] N [s0]}
5. inls(zy, o, Yoy --->Ys)  {(r1,79,80,---,84) € ST|{r1,m2) € I(51,82)}
6. (x1,22) € (Yo, .-, Ya) {(r1,79,80,---,84) € ST{r1,m2) € f(S05---,54)}
7 A2y oy xa) < (oo ya) {(ro,...,74,50,...,81) € SPf(7) C f(5)}
8. adhpt(z1, T2, Yo,..-,41) {(r1,72,50,-..,8 ) € S™|{(ry,mo) € [f(3)]}
9. C(zoy- ., T4 Y05+ -->Ys)  {(T0s...,7a,80,...,81) € SP[f(F)]N[f(5)] # 0}

Proof. 1. Assume (ry,75) € S? satisfies pt(zy,72) in &. Since & | C[ry, o,
[r1] N [re] is non-empty. Suppose [ri] N [re] contains two distinct points p and q.
Since G is regular, there exist two regular open semi-algebraic sets 7} and r, with
disjoint closures such that p € | and ¢ € 7). Although (7] - r1, 7% - r5) satisfies
the antecedent of the implication in pt[ry, 5], it does not satisfy the consequent.
Hence, (r1,72) must be a point representation. Conversely, if (r1,73) represents
the point p then r; and r, are in contact but disjoint. Then any two regular
open semi-algebraic subsets 7| and 74 of r; and ry respectively must share the
boundary point p if r] is in contact with 7 and r} is in contact with ;.

2. Assume (ry,7,51,80) € S* satisfies (1, 72) & (y1,y2) in &. Suppose
(r1,72) and (s1, s2) represent distinct points p and ¢ respectively. Then it follows
from lemma 3.3.20 on page 72 that there exist regular open semi-algebraic subsets
ri and 7} of r; and ry respectively such that (], r}) represents p and 7} + r} is in
contact with at most one of s; and s,. Hence, (r1,73) and (s1, s2) represent the
same point. The converse direction is trivial.

3. Assume (rq,79) € S? represents a point pin s € S. Then since G is regular,
there exists s’ € S with p € s and [s'] C s. Then (s-ry, s-73) represents the point
p and s - (r; + 73) is not in contact with —s. The converse direction is trivial.

4. Let ri,r9,81,82 € S such that (r,72) represents p € [s1] N [s2]. By
lemma 3.3.20 on page 72, there exist t1,¢, € S such that [t;] N [t2] = {p}, t1 C 1
and t5 C s5. The converse direction is trivial.

5. Remember that [(ry, 7) is an abbreviation for [r1]N[rs] \ [—(r1 +72)]. Then

this definability result follows directly from the previous ones.
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6. and 7. are trivial given the previous results.

8. The formula standing for adhpt(z1, z2, Yo, - - -, ys4) is a formal rendering of
the definition of adherent point: every (regular) open neighbourhood of the point
represented by (x1,22) has a point, represented by (z1,22), with f(vo,---,ys)

in common. Hence, (ry,72,S0,...,81) € S7 satisfies adhpt(x1, 2,0, ...,ys) if
and only if (r,79) represents an adherent point of f(sg,-..,ss), i.e. a point in
[f(507 SRR 84)]'

9. Trivial given the previous result. O

Now the 5-dimensional interpretation of &¢(<,C) in &(C) is given by

1. the domain formula 2o = 20 Ax1 = 1 Axo = o A X3 = X3 A T4 = T4,

2. the map of

‘/'USytO <‘/'U0"""/L‘4) S <y0""’y4> and C(l‘7y) tO C(:'L'O7""x4’y0""’y4)’
and

3. the surjective function f:S° — S; as defined on page 149. Lemma 7.1.4

ensures that for all (rg,...,74), (s0,--.,54) € S®

6):<7”0,...,7"4>§<50,...,84> lff Gf’:f(ro,...,Tzl)Sf(So,...,S4)
6)20[7'0,...,7"4,80,...,54] lff Gf’:C[f(ro,...,r4),f(80,...,84)].

7.2 A complete axiomatisation of Th(S;(<,C))

The interpretation of &;(<,C) in &(C) provides an easy means for a complete
axiomatisation of Th(&;(<,C)). In chapter 5, I presented an axiom system P
which axiomatises the theory of &(c,b,+,-,—,0,1) in the A-calculus. Given the
expressivity results in section 4.1, P can be considered as a complete axiomati-
sation in the A-calculus of the theory of G(C). I will show that an axiom system
Py consisting of a translation of the axioms of P together with four new axioms
provides a complete axiomatisation of Th(S;(<,C)) in the A’-calculus where A’
differs slightly from A.

As noted above, the operators N,U, ™ and the operators c1(x) and int(z)
with their set-theoretical interpretation are £(<, C)-definable in &;. It follows
immediately that the bottom element 0 of (Sf, C) as well as the set of connected
elements are definable in &;. Let RO(z) abbreviate the formula x = int(cl(x))

defining the regular open sets in Sy where int(z) and c1(z) are the interior and
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closure operators as introduced in the beginning of this chapter. In the sequel,
let x + y stand for int(cl(z Uy)) and let f(x,xo,...,x4) stand for
4

/\RO(:Ui) Az = (2o Ul(z1,22) Up(x3,24)) N (x0 N (I(z1,22) Up(x3,74)))

where [(x1,x9) stands for (c1(z1) N ¢l(z2)) N z1 + z2 and p(xs,z4) stands for
cl(z3) N cl(zy).
Given L(C)-formulae ¢(z) and ¥(Z), let the function ' : £L(C) — L(<,C) be

defined as follows.

(z=y)z=y (C(z,y))" — C(z,y)

(—¢(z)) = —=(o(2))' (9(z) A (@) = (6(2)) A ((2))
(@) V(@) = (8(2) V ¥(@) (=)= ¥(@)) = (8(2)) — (¥(2))
(Fz¢(Z))' = 3z(RO(2) A (8(2))")  (Vzo(T)) = Vz(RO(z) — (6(Z))")

Then the axiom system P; consists of the following axioms:

A(P') The set of axioms P’ = {¢'|¢ € P}.

A(i) Vadzg... Elx4( /4\ RO(z;) A f(z, o, . . . ,334))

1=0

A(ii) Vzq.. .Vxﬁx( /4\ RO(z;) — f(x, o, - .- ,M))

i=0
A(iii) VaVyVag ... Va,Vyy ... Yy, (f(x, Zoy ey Ta) N F(Y, Yoy - -+ Ys) =
((Cw,9) & (Clao,- -, 20,90, 1)) )A

@<y (@oraa) < o ua)))
where C(zg,...,%4,Y0,---,Ys) and (zg,...,24) < (yo,...,ys) are the for-

mulae defined in the previous section.
A(iv) VaVy(z <yAy <z <z =1y)

Theorem 7.2.1. Let forn > 1, &/ (z) stand for the formula
RO(z) — Jxq ... 3z, (a: =21 +...+x, A /\c(xz) A RO(a:i))
=1

and let A'(z) = {=d](z)|n > 1}. Then the aziom system Py is consistent and
complete in the A'-calculus. Furthermore, Py aziomatises the theory of &;(<,C)

in the A'-calculus.



CHAPTER 7. POINTS IN POINT-FREE MEREOTOPOLOGIES 154

Proof. Consistency: By lemma 3.3.12 on page 70 and theorem 5.3.1 on page 112,
S is a model of P omitting A(z). Therefore, &; is a model of P’ = {¢'|¢ € P}
omitting A’(x). By proposition 7.1.3 and the fact that (S;, C) is a Boolean al-
gebra, &; satisfies axioms A(i), A(ii) and A(iv). By lemma 7.1.4, &; satisfies
axiom A(iii). Hence, by the consistency theorem of the A’-calculus, Py is consis-
tent in the A’-calculus.

Completeness: Let 2" and B’ be models of Py omitting A’'(z). By the down-
wards Lowenheim-Skglem theorem, there exist countable models 2 and 8 such
that 24 < 2" and B < B’. I show that 2 and 9B are isomorphic.

Let g be the structure A restricted to the language £(C) and the domain
RO(A) and let By be the structure B restricted to the language £(C) and the
domain RO(B). By proposition 4.3.9 on page 98, there exists a bijection « :
RO(A) — RO(B) such that for all ay, ..., a, € RO(A) and all formulae ¢(z1,...,z,)
in £(C), A = ¢lay,-..,a,] if and only if B = dla(ay),. .., aa,)]

Let the possibly partial function 3: A — B be defined by f(a) = a(a) if a €
RO(A) and B(a) = b if there are ag, ..., as € RO(A) such that A = fla, ao, ..., a4]
and B = f[b,a(ap),...,a(as)]. I show that 5 is an isomorphism between 2 and
B.

Let a € A. By axiom A(i), there exist ag,...,as € RO(A) such that 2 =
fla, ag, - .., a4]. It follows from axiom A(ii) that there is b € B such that B |
flb, a(ag), - - ., a(as)]. Thus, g is a well-defined function.

Let b € B. By axiom A(i), there exist by,...,bs € RO(B) such that B =
flb,bg,--.,bs). Since a *(by),...,a '(by) € RO(A), by axiom A(ii) there exists
a € A such that % & fla,a (by),...,a 1(bs)]. Since the function 3 is well-
defined, B = f[B(a),a(a " (by),...,a(a ' (bs))]. Since B = f[b,by,--.,bs] A
f18(a), by, . .., by, it follows from axioms A(iii) and A(iv) that 3(a) = b. Thus,
is surjective.

Assume that for some a,a’ € A\ RO(A4), B(a) = B(a'). By the definition
of 3, there are ag,...,a4,ag,...,a, € RO(A) such that A = fla,aq,...,a4] A
fld',ap, ..., ay] and B = f[B(a), a(ap), - .., a(a)] A f]B(d), a(ap), - . ., a(a))]. By
axioms A (iii) and A(iv), B £ ((a(ap),...,a(as)) < {a(ap),-..,a(a}))) and B =
((alag), .- -, a(a})) < (afao), ..., a(as)))'. Since B |= ¢(a(a))” iff Bro = ¢(a(a))
iff Aro | d(a) iff A = ¢(a)’, it follows from axiom A(iii) that 2 = a < o' and
A = d < a. By axiom A(iv), a = o’. Thus, § is injective.

Hence, #: A — B is a bijection and it follows from axiom A(iii) that 3 is an
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isomorphism between 2 and ‘B. O

7.3 Conclusion

I have shown that the mereotopologies &(C) and &;(<, C) can be interpreted in
each other. Therefore, although &(C) and &;(<, C) are mereotopologies with dif-
ferent spatial domains—the former being point-free, the latter containing points—
both mereotopologies allow us to refer to the same spatial entities. Thus, even
in &(C) it is possible to speak about points and boundaries and to distinguish
between open and closed regions. Therefore, the ontological simplicity of some
mereotopologies is superficial, and the unpleasant ontological questions regarding
boundaries are persistent.

On a more positive note, the results of this chapter show that a mereotopology
containing points can be equally well-behaved as a point-free mereotopology. It
follows from the interpretation of &;(<,C) in &(C) that the pleasing properties
of &(C) also apply to &;(<,C). Moreover, points and regions exist side by side
as primitives in S¢. Therefore, the problems occurring in point-based approaches
to spatial representation are avoided (cf. section 2.1). For instance, Sy does not
contain any fractals although it contains points.

Note that the results of this chapter rely on the expressivity of the mereo-
topological language £(C). It follows from lemma 4.1.4 that equivalent results

cannot be obtained for the open plane mereotopology &(<, c).



Chapter 8
Conclusion

In this thesis, I have taken a model-theoretic approach to mereotopology and

addressed the following major issues:
e the representation of regions
e the expressivity of mereotopological languages

e the characterisation of the sentences in a mereotopological language which

are true with respect to a specific mereotopology
e the decidability of the truth of these sentences

Regions were represented by regular open sets in the real open and closed plane.
Thus, the spatial domains were kept ontologically simple, excluding points, bound-
aries and avoiding the distinction between open and closed sets. The spatial do-
main F of all regular open sets was shown to exhibit wild phenomena. These
phenomena show some elements of F to be inappropriate for a common-sense
representation of everyday objects. The spatial domain S of all semi-algebraic
regular open sets in F was shown to be extremely well-behaved.

First-order mereotopological languages with predicate symbols expressing part-
hood, contact, connection and boundedness were interpreted over the spatial do-
mains introduced in this thesis. It was shown that parthood and connection can
be expressed in terms of the contact-predicate in the mereotopologies %, 3 and
S. Conversely, contact was shown to be definable in terms of parthood and con-
nection in the closed plane mereotopology G* and definable in terms of parthood,
connection and boundedness in the open plane mereotopology &. Infinitary ver-

sions of the mereotopological languages were shown to be topologically adequate
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in the sense that every subset of the domain S which is closed in S under topo-
logical equivalence is definable in at least one of the mereotopological languages.
These expressivity results were used to show that it is possible to refer to points,
boundaries and closed regions in S although such entities do not exist in S. Thus,
the intended ontological simplicity of the spatial domain S is only superficial.

The theory of the mereotopology &(C) was characterised by an axiom system
P that is complete in an extension of the predicate calculus which contains an
additional infinitary rule of inference. The theories of S and % were shown to be
hereditarily undecidable.

Of course, a number of issues in mereotopology remain to be addressed. First
of all, it is an open question whether the conjectures regarding the spatial domain
J hold. A confirmation of the conjectures would extend a number of results about
S to ‘:j For instance, J would provide a model of the axiom system P which is not
a standard mereotopology over R%2. Related to this observation is the question
whether the spatial domain of all 2-dimensional regular open sets of any o-minimal
structure over R provides a model of P.

In this thesis, only 2-dimensional regions in the real open and real closed plane
have been considered. The question is, whether the results that were attained
can be transferred to spatial domains which are only locally planar, such as
spatial domains over the Mobius-strip or the torus, or to the spatial domain of
regular open sets in R®*. Some of the results are already known to fail in the
3-dimensional case. For example, it was shown that there are only finitely many
connected partitions in S up to topological equivalence. It is easy to see that this
result fails for the semi-algebraic regular open sets in R®. Apart from the technical
details, I do not expect the 3-dimensional case to provide new interesting results
in mereotopology. However, it would be interesting to generalise the results of
this thesis to non-Euclidean spaces in order to recognise which role the regularity
of the Euclidean spaces plays for the results in this thesis.

An issue which has been only rudimentarily explored in this thesis is the
reconstruction of points. It would be interesting to investigate under which con-
ditions points can be reconstructed at all, and whether it is always possible to

reconstruct a mereotopology from its reconstructed points.
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The applicability of the results of this thesis is limited. Although logic-based
approaches to spatial representation and reasoning might be very useful for Geo-
graphical Information Systems (Casati et al., 1998; Egenhofer, 1991, 1994; Egen-
hofer and Mark, 1995) and spatial databases (Bimbo et al., 1993; Papadimitriou
et al., 1996; Papadimitriou, 1997; Paredaens, 1998), it remains to be shown that
they offer a realistic alternative to standard reasoning methods such as provided
by computational geometry (see e.g. Preparata, 1985). In particular, the undecid-
ability results in mereotopology show that there is no effective approach to spatial
reasoning with unrestricted first-order mereotopological languages. However, the
complexity results in qualitative spatial reasoning in restricted first-order lan-
guages are promising (cf. section 2.6). Apart from actual reasoning, first-order
mereotopology might be used to specify the semantics of graphical languages such
as Pictorial Janus (cf. Cohn and Gooday, 1994). Furthermore, the close link be-
tween well-behaved mereotopological structures and o-minimal structures might

turn out to be fruitful for mereotopology as well as for tame topology.



Glossary

[u] closure of u

u® interior of u

0(u) boundary of u

|7| LOCUS OF A PATH vy

A-model a model omitting the set of formulae A

Poo the point at infinity of a ONE-POINT COMPACTIFICATION

T1y... Ty ~ S1,...,S, the tuples r{,...,r, and sq,...,s, are TOPOLOGICALLY
EQUIVALENT

2A =B the structures 2 and B are elementary equivalent
20 =B the structures 2 and *B are isomorphic
L(Y) first-order language with signature 3

L refers indifferently to one of the MEREOTOPOLOGICAL LANGUAGES L(C),
L(<,C), L(<,¢) or L(<, ¢, b).

F. F* SPATIAL DOMAIN of regular open sets in the OPEN PLANE and CLOSED
) g p
PLANE respectively

F refers indifferently to either F or F*

$,8F MEREOTOPOLOGY of the regular open semi-algebraic sets in the OPEN
PLANE and CLOSED PLANE respectively

§ refers indifferently to either § or §*
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R? refers indifferently to either R? or (R?)*

R, R* refers indifferently to F or S, and F* or S* respectively
R refers indifferently to R or R*

R, R* refers indifferently to § or &, and §F* or &* respectively

S,S* SPATIAL DOMAIN of regular open semi-algebraic sets in the OPEN PLANE
and CLOSED PLANE respectively

S refers indifferently to either S or S*

6, G* MEREOTOPOLOGY of the regular open semi-algebraic sets in the OPEN
g g
PLANE and CLOSED PLANE respectively

S refers indifferently to either & or G*

S; MEREOTOPOLOGY of the semi-algebraic sets in R?

Th(2A) theory of the L-structure 2, i.e. the set of sentences in £ which hold in A
X* ONE-POINT COMPACTIFICATION of the TOPOLOGICAL SPACE X.

accessible boundary The boundary B of a set U is accessible (from U) if for

every point p € B there exists an END-CUT from some point in U to p.

accumulation point Given a subset U of a topological space X, a point p € X
is an accumulation point of U if every open neighbourhood of p contains

infinitely many points of U.

adherent point Given a subset U of a topological space X, a point p € X is an
adherent point of U if every open neighbourhood of p contains a point of
U. The closure of U is the set of all its adherent points. Cf. LIMIT POINT.

arc an injective PATH
arc, semi-algebraic an arc which is a semi-algebraic function

arc-connected A set S is arc connected if any two distinct points of S are joined

by an arc lying in S.

atomic model A model 2 is atomic if every n-tuple in A satisfies a COMPLETE
FORMULA in Th().
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(k-)categorical A theory is k-categorical if any models of power  are isomor-

phic; the theory is categorical if it is k-categorical in any power k.

cell, n-cell a semi-algebraic subset of R* (K > n) homeomorphic to (0,1)" where
(0,1)° is taken to be a point

closed plane the 2-sphere S? = {(z1,x2,73) € R*|2? + 23 + 23 = 1}, homeo-
morphic to (R?)*

compact A subset U of a topological space X is compact if every open COVER

of U has a finite subcover.

connected A subset U of a topological space is connected if for any two non-
empty sets V1, V5 such that V3 UV, = U, either [Vi]NV; # 0 or ViN[V3] # 0.

connected partition a PARTITION all of which REGIONS are CONNECTED

complete formula A formula ¢(z1, ..., ,) is complete in a theory 7" if for every
formula ¢ (xq, ..., z,) exactly one of T |= ¢(x1,...,2,) = ¥(z1,...,2,) and
T E ¢(x,...,2,) = P(21,...,2,) holds.

complete theory a THEORY whose set of consequences is maximal consistent

cover, subcover A collection U of open sets of a topological space X is an open
cover of aset U C X if U C |JU. A subcover of U is a subset of U.

cross-cut an arc y in some set U U {7(0),7(1)} of a topological space X such
that v((0,1)) C U° and v(0),v(1) € 9(U)

decidable A set A is decidable if there is a mechanical procedure that deter-
mines, for any given element a, whether or not a € A. By Church’s thesis,
A is decidable if A is RECURSIVE.

end-cut an arc 7 in some set U U {(1)} of a topological space X such that
7([0,1)) € U® and (1) € 9(U)

Hausdorff A topological space is Hausdorff if any two points of the space lie in

disjoint open sets (see also definition 3.3.9 on page 69).

homeomorphism continuous bijection between two TOPOLOGICAL SPACES which

has a continuous inverse.
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Jordan arc another name for ARC or SIMPLE ARC

Jordan curve a HOMEOMORPHISM whose domain is the unit circle in R?; a
tOPOLOGICAL SPACE which is homeomorph to the unit circle; another name
for SIMPLE CLOSED CURVE

Jordan region bounded open subset of the OPEN or CLOSED PLANE whose
boundary is a JORDAN CURVE; homeomorph to an open disk

j-partition PARTITION all of which REGIONS are J-REGIONS
j-region REGION in F which is bounded by a JORDAN CURVE

limit point Given a subset U of a topological space X, a point p € X is a limit
point of U if every open neighbourhood of p contains a point of U distinct
from p. Cf. ADHERENT POINT.

locally compact A topological space X is locally compact if every point of X

has an open neighbourhood whose closure is compact.

locally connected A topological space X is locally connected if for every point
p € X and every open NEIGHBOURHOOD wu of p, there exists a connected
open NEIGHBOURHOOD of p lying in .
A subset u of a metric space X with metric p is locally connected at the
point p, if, given a positive €, there exists a positive § such that any two

points of u N Bs(p) lie in a connected set lying in u N B,(p)
locus of a path the range ¥([0,1]) of a path 7; denoted |v|

L-structure a structure in the sense of model theory; consisting of a domain
and an interpretation which interprets the predicate and function symbols

of the formal language £ over the domain

manifold topological space which is locally homeomorphic to a Euclidean space

of given dimension

mereology the formal study of the relation between a whole and its parts; ax-

iomatic mereology was established by Lesniewski (1929)

mereological property property of inclusion: regions x is part of region y
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mereotopological language formal (first-order) language whose predicate sym-

bols are intended to define mereological or topological properties.
mereotopological property mereological or topological property

mereotopology 1. the discipline that investigates the properties of space which
remain invariant under continuous change where REGIONS are the primary
spatial entities; 2. an L-structure whose domain is a SPATIAL DOMAIN and
where £ is a MEREOTOPOLOGICAL LANGUAGE.

metaphysics the philosophical study of being

neighbourhood, open An open neighbourhood of the point p is an open set

containing p.

normal A topological space is normal if it obeys the T;- and T,-separation

axioms (see definition 3.3.9 on page 3.3.9).

one-point compactification The one-point compactification of a topological
space (X, 7) is the topological space (X*,7*) where X* = X U py, Poo 1S 2
point not in X and U C X* is an element of 7* if U is open in X or X \ U

is closed and compact in X.

ontology 1. the metaphysical study of nature and existence; 2. the (set of)

entities whose existence is implicit in any given theory
open plane another name for the real plane R?, cf. CLOSED PLANE

partition (of r € f‘) tuple rq,...,7r, € F such that r; 1 =0(1<i<<j)and
r=ri+...+ry “ry, ..., is a partition” is shorthand for “ry,...,r, is a

partition of R2”

path continuous function 7 from the unit interval [0, 1] into a TOPOLOGICAL
SPACE X

path-connected A subset U of a topological space is path-connected if every
two point of U are joined by a path with locus in U

(Note that any connected open set in a Euclidean space is path-connected.)

radial partition a J-PARTITION ry,...,7, such that —(r; + r;) is connected
(1<i<<ji<n)
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recursive A function f is said to be recursive if it can be obtained from initial
functions (zero function, successor function, projection functions) by appli-
cation of substitution, recursion and the restricted p-operator (see Mendel-
son, 1997, Section 3.3).
A set A is recursive if the characteristic function fo defined by fc(a) =0
ifa¢ Aand fc(a) =1if a € A is recursive.

region an element of a SPATIAL DOMAIN

regular A topological space is regular if it obeys the Ty- and Ts-separation
axioms (see definition 3.3.9 on page 69).
regular open set open set which is identical to the interior of its closure

semi-regular set set u such that either [u] = [u°] or u® = [u]

separation The pair of sets (v, v) forms a separation of the set u if v; and vy

are disjoint and u = vy U vs.
separation axioms see HAUSDORFF, REGULAR, NORMAL
simple arc another term for ARC or JORDAN ARC

simple closed curve see JORDAN CURVE
spatial domain a set of subsets of a TOPOLOGICAL SPACE

theory set of sentences in a formal language

topologically equivalent Two tuples r1,...,7, and sq,...,s, of a spatial do-
main over the open (closed) plane are topologically equivalent, written
Tiy.ev.yTp ~ S1,-...,8y, if there exists a HOMEOMORPHISM from the OPEN
(CLOSED) PLANE onto itself taking r; to s; (1 <1i < n).

topological space a pair (X, 7) where X is a set, 7, the set of open sets, is a
subset of p(X) containing () and X, and is closed under union and finite

intersection

topologically homogeneous A spatial domain M is topologically homogeneous
if for any o, r1,...,7n,S1,...,8, € M such that rq,...,7r, ~ s1,..., s, there

exists so such that ro,r,...,7r, ~ Sg, S1,..., Sp.
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topological property property of a region that is invariant under continuous
spatial change; examples: ‘region x is connected’, ‘region z is hollow’ but

only depending on the type of hole ‘region z has one hole’
topologist’s sine curve the function sin(1)

topology formal study of the properties of space that are invariant under con-

tinuous change

type A type x(z1,...,z,) in the variables x1, ..., z, is a maximal consistent set

of formulae in the variables z1,..., x,.



Bibliography

J. F. Allen (1981). An interval-based representation of temporal knowledge. In
Proceedings of the Seventh International Joint Conference on Artificial Intelli-
gence (ILJCAI 81), pages 221-226.

M. A. Armstrong (1979). Basic Topology. McGraw-Hill.

N. Asher and L. Vieu (1995). Toward a geometry of common sense — A semantics
and a complete axiomatization of mereotopology. In Proceedings of the Four-
teenth International Joint Conference on Artificial Intelligence (IJCAI 95),
pages 846-852.

P. Balbiani, L. F. del Carro, T. Tinckev, and D. Vakarelo (1996). Geometrical
structures and modal logic. In Proceedings of the International Conference on
Formal and Applied Practical Reasoning (FAPR ’96), volume 1085 of Lecture
Notes in Artificial Intelligence, pages 43-57.

P. Bankston (1984). Expressive power in first order topology. Journal of Symbolic
Logic, 49:478-487.

P. Bankston (1990). Taxonomies of model-theoretically defined topological prop-
erties. Journal of Symbolic Logic, 55:589-603.

B. Bennett (1995). Carving up space: existential axioms for a formal theory
of spatial regions. In F. D. Anger, H. W. Guesgen, and G. Ligozat, editors,
Proceedings of the IJCAI 95 Workshop on Spatial and Temporal Reasoning.
Available at: http://agora.leeds.ac.uk/spacenet/publications.html.

B. Bennett (1996a). Carving up space (II): steps towards construction of an
absolutely complete theory of spatial regions. In J. J. Alferes, L.. M. Pereira,
and E. Orlowska, editors, Proceedings of the 5th European Workshop on Logics

166



BIBLIOGRAPHY 167

in Artificial Intelligence, Evora, Portugal (JELIA 96), volume 1126 of Lecture
Notes in Artificial Intelligence, pages 337-353.

B. Bennett (1996b). Modal logics for qualitative spatial reasoning. Bulletin
of the Interest in Pure and Applied Logics (IGPL), 4(1):23-45. Available at:
ftp://ftp.mpi-sb.mpg.de/pub/igpl/Journal /V4-1/index.html.

B. Bennett (1994). Spatial reasoning with propositional logics. In J. Doyle,
E. Sandewall, and P. Torasso, editors, Principles of Knowledge Representa-
tion and Reasoning: Proceedings of the 4th International Conference (KR °94),
pages 51-62, San Francisco, CA. Morgan Kaufmann Publishers.

L. Biacino and G. Gerla (1991). Connection structures. Notre Dame Journal of
Formal Logic, 32(2):242-247.

L. Biacino and G. Gerla (1996). Connection structures: Grzegorczyk’s and White-
head’s definition of point. Notre Dame Journal of Formal Logic, 37(3):431-4309.

A. D. Bimbo, E. Vicario, and D. Zingoni (1993). Spatial logic for image represen-
tation and retrieval-by-contents. In V. Roberto, editor, Intelligent perceptual
systems: mew directions in computational perception, volume 745 of Lecture

Notes in Artificial Intelligence, pages 222-240. Springer.

J. Bochnak, M. Coste, and M.-F. Roy (1998). Real Algebraic Geometry, volume 36
of Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge. Springer, Ber-

lin.
B. Bollobéas (1979). Graph Theory: an Introductory Course. Springer, New York.

C. P. Bonnington and C. H. C. Little (1995). The foundations of topological graph
theory. Springer, New York.

S. Borgo, N. Guarino, and C. Masolo (1996a). A pointless theory of space based on
strong connection and congruence. In L. C. Aiello, J. Doyle, and S. C. Shapiro,
editors, Principles of Knowledge Representation and Reasoning: Proceedings
of the Fifth International Conference (KR 96), pages 220-229, San Francisco,
CA. Morgan Kaufmann Publishers.



BIBLIOGRAPHY 168

S. Borgo, N. Guarino, and C. Masolo (1996b). Towards and ontological theory
of physical objects. In IMACS-IEEE/SMC conference "Computational Engi-
neering in Systems Applications” (CESA 96), Symposium on Modelling and
Stmulation, Lille, France, July 9-12 1996.

S. Borgo, N. Guarino, and C. Masolo (1997). Qualitative spatial modelling based
on parthood, strong connection and congruence. Technical Report LADSEB-
CNR Int. Rep. 03/97, IRST, Italy.

R. Casati, B. Smith, and A. C. Varzi (1998). Ontological tools for geographic
representation. In Guarino (1998), pages 77-85.

R. Casati and A. Varzi (1994). Holes and other Superficialities. MIT Press,
Cambridge, MA.

R. Casati and A. Varzi (1996). The structure of spatial localization. Philosophical
Studies, 82(2):205-239.

R. Casati and A. Varzi (1997). Spatial entities. In Stock (1997), pages 73-96.

C. C. Chang and H. J. Keisler (1990). Model Theory. North Holland, Amsterdam,
3rd edition.

Z.-Z. Chen, M. Grigni, and C. Papadimitriou (1998a). Planarity revisited. In
F. Dehne, A. Rau-Chaplin, J.-R. Sack, and R. Tamassia, editors, Algorithms
and Data Structures, Proceedings of the 5th International Workshop, WADS’97,
Halifax, Nova Scotia, Canada, 1997, volume 1272, pages 472-473.

Z.-Z. Chen, M. Grigni, and C. Papadimitriou (1998b). Planar map graphs. In
Proceedings of the 30th Annual ACM Symposium on Theory of Computing
(STOC-98), pages 514-523, New York. ACM Press.

B. L. Clarke (1981). A calculus of individuals based on “connection”. Notre Dame

Journal of Formal Logic, 22(3):204-218.

B. L. Clarke (1985). Individuals and points. Notre Dame Journal of Formal
Logic, 26(1):61-75.

A. G. Cohn (1995). A hierarchical representation of qualitative shape based on
connection and convexity. In Frank and Kuhn (1995), pages 311-326.



BIBLIOGRAPHY 169

A. G. Cohn (1997). Qualitative spatial representation and reasoning techniques.
In G. Brewka, C. Habel, and B. Nebel, editors, KI-97: Advances in Artificial
Intelligence, volume 1303 of Lecture Notes in Computer Science, pages 1-30,

Berlin. Springer.

A. G. Cohn, B. Bennett, J. Gooday, and N. Gotts (1997). Representing and
reasoning with qualitative spatial relations about regions. In Stock (1997),
pages 97-134.

A. G. Cohn, Z. Cui, and D. A. Randell (1992). Logical and computational aspects
of spatial reasoning. In S. Pribbenow and C. Schlieder, editors, Spatial Con-
cepts: Connecting Cognitive Theories with Formal Representations. ECAI-92
Workshop. Reprinted as: Bericht Graduiertenkolleg Kognitionswissenschaft,
Universitdt Hamburg, 1993.

A. G. Cohn and J. M. Gooday (1994). Defining the syntax and the semantics
of a visual programming language in a spatial logic. In Working notes of the
AAATI Workshop on Spatial and Temporal Reasoning AAAI-94, Seattle, pages
19-27.

A. G. Cohn, D. A. Randell, and Z. Cui (1995). Taxonomies of logically defined
qualitative spatial relations. International Journal of Human-Computer Stud-
ies, special issue on Formal Ontology in conceptual Analysis and Knowledge
Representation, 43(5-6):831-846.

A. G. Cohn, L. K. Schubert, and S. C. Schubert, editors (1998). Principles of
Knowledge Representation and Reasoning: Proceedings of the sixth interna-

tional conference (KR’98), San Francisco, CA. Morgan Kaufman.

A. G. Cohn and A. Varzi (1998). Connection relations in mereotopology. In Pro-
ceedings of the 13th European Conference on Artificial Intelligence (ECAI’98),
pages 150-154.

A. Dabrowski, L. S. Moss, and R. Parikh (1996). Topological reasoning and the
logic of knowledge. Annals of Pure and Applied Logic, 78(1-3):73-110.

T. de Laguna (1922). Point, line, and surface, as sets of solids. The Journal of
Philosophy, 19:449-461.



BIBLIOGRAPHY 170

R. Diestel (1997). Graph Theory, volume 173 of Graduate Texts in Mathematics.
Springer, Berlin.

C. Dornheim (1998). Undecidability of plane polygonal mereotopology. In Cohn
et al. (1998), pages 342-353.

I. Diintsch, H. Wang, and S. McCloskey. Contact relation algebras. Preprint
available at: http://www.infj.ulst.ac.uk/~cccz23/papers/papers.html, 1998a.

I. Diintsch, H. Wang, and S. McCloskey. A relation-algebraic ap-
proach to the region connection calculus. Preprint available at:
http://www.infj.ulst.ac.uk /~cccz23/papers/papers.html, 1998b.

M. Egenhofer and D. Mark (1995). Naive geography. In Frank and Kuhn (1995),
pages 1-16.

M. J. Egenhofer (1991). Reasoning about binary topological relations. In Ad-
vances in Spatial databases, SSD ‘91 Proceedings, pages 143-160. Springer.

M. J. Egenhofer (1994). Deriving the composition of binary topological relations.
Journal of Visual Languages and Computing, 5(1):133-149.

C. Eschenbach (1994). A mereological definition of 'point’. In Eschenbach et al.
(1994).

C. Eschenbach, C. Habel, and B. Smith, editors (1994). Topological Founda-
tions of Cognitive Science. Papers from the Workshop at the 1st International
Summer Institute in Cognitive Science. University of Hamburg, Reports of the

Doctoral Program in Cognitive Science, No. 37.

C. Eschenbach and W. Heydrich (1995). Classical mereology and restricted do-
mains. International Journal of Human-Computer Studies, 43(5-6):723-740.

K. J. Falconer (1990). Fractal geometry: mathematical foundations and applica-

tions. Wiley.
M. M. Fleck (1996). The topology of boundaries. Artificial Intelligence, 80:1-27.

J. Flum and M. Ziegler (1980). Topological Model Theory, volume 769 of Lecture
Notes in Mathematics. Springer, Berlin.



BIBLIOGRAPHY 171

A. U. Frank and W. Kuhn, editors (1995). Spatial Infromation theory: A the-
oretical basis for GIS, Proceedings of the International Conference on Spatial
Information Theory, volume 988 of Lecture Notes in Computer Science, Berlin,

Heidelberg, New York. Springer.

A. Galton (1996). Taking dimension seriously in qualitative spatial reasoning. In
W. Wahlster, editor, Proceedings of the 12th European Conference on Artificial
Intelligence, ECAI 96, pages 501-505.

G. Gerla (1995). Pointless geometries. In F. Buekenhout and W. Kantor, editors,
Handbook of incidence geometries, pages 1015-1031. North-Holland, Amster-
dam.

N. M. Gotts (1994). How far can we ‘C’? Defining a doughnut using connection
alone. In J. Doyle, E. Sandewall, and P. Torasso, editors, Principles of Knowl-
edge Representation and Reasoning: Proceedings of the Fourth International
conference (KR94), pages 246-257. Morgan Kaufmann.

N. M. Gotts (1996a). An axiomatic approach to topology for spatial information
systems. Technical Report 96 25, University of Leeds.

N. M. Gotts (1996b). Formalising commonsense topology: The INCH cal-
culus. In Proceedings of the Fourth International Symposium on Arti-
ficial Intelligence and Mathematics, Lauderdale, Florida. Available at:
http://agora.leeds.ac.uk/spacenet /publications.html.

N. M. Gotts (1996¢). Topology from a single primitive relation: Defining topo-
logical properties and relations in terms of connection. Technical Report 96 23,

University of Leeds.

N. M. Gotts, J. M. Gooday, and A. G. Cohn (1996). A connection based approach

to commonsense topological description and reasoning. Monist, 79(1):51-75.

M. Grigni, D. Papadias, and C. Papadimitriou (1995). Topological inference.
In Proceedings of the 14th International Joint Conference on Artificial Intelli-
gence, pages 901-907.

J. L. Gross and T. W. Tucker (1987). Topological graph theory. Wiley.

A. Grzegorczyk (1951). Undecidability of some topological theories. Fundamenta
Mathematicae, 38:137-152.



BIBLIOGRAPHY 172

A. Grzegorczyk (1960). Axiomatizability of geometry without points. Synthesis,
12:228-235.

N. Guarino, editor (1998). Formal Ontology in Information Systems: Proceed-
ings of the First International Conference (FOIS ‘98), June 6-8, Trento, Italy,
volume 46 of Frontiers in Artificial Intelligence and Applications, Amsterdam,
Berlin, Oxford, Tokyo. IOS Press, Ohmsha.

C. W. Henson, C. G. Jockusch, L. A. Rubel, and G. Takeuti (1977). First order
topology, volume 143 of Dissertationes Mathematicae. Polish Scientific Pub-

lishers, Warszawa.

D. Hernandez (1994). Qualitative Representation of Spatial Knowledge, volume
804 of Lecture Notes in Artificial Intelligence. Springer, Berlin, Heidelberg,
New York, Tokyo.

S. C. Hirtle and A. U. Frank, editors (1997). Spatial Information Theory: A The-
oretical Basis for GIS, Proceedings of the International Conference on Spatial
Information Theory (COSIT 97), volume 1329 of Lecture Notes in Computer
Science, Berlin, Heidelberg, New York. Springer.

W. Hodges (1993). Model Theory. Cambridge University Press.

E. V. Huntington (1913). Postulates for abstract geometry. Mathematische An-
nalen, 73:522-559.

R. Jeansoulin and C. Mathieu (1995). Revisable spatial knowledge by means of
a spatial modal logic. Joint European Conference on GIS, The Hague, Nether-
lands. Available at: http://protis.univ-mrs.fr/ jeansoul /publis.html.

P. Jonsson and T. Drakengren (1997). A complete classification of tractability in
RCC-5. Journal of Artificial Intelligence Research, 6:211-221.

H. J. Keisler (1971). Model Theory for Infinitary Logic. North-Holland, Amster-
dam, Holland.

J. F. Knight, A. Pillay, and C. Steinhorn (1986). Definable sets in ordered struc-
tures II. Transactions of the American Mathematical Society, 295(2):593-605.

S. Koppelberg (1989). Handbook of Boolean algebras, volume 1. North-Holland.



BIBLIOGRAPHY 173

J. Kratochvil (1991). String graphs II: recognising string graphs is NP-hard.
Journal of Combinatorial Theory, Series B, 62:67-78.

B. Kuijpers and J. V. den Bussche (1999). On capturing first-order topological
properties of planar spatial databases. In C. Beeri and P. Buneman, editors,
Proceedings of the 7th International Conference on Database Theory (ICDT
‘99), volume 1540 of Lecture Notes in Computer Science, pages 187-198.

B. Kuijpers, J. Paredaens, and J. V. den Bussche (1999). Topological elementary
ewquivalence of closed semi-algebraic sets in the real plane. Journal of Symbolic

Logic. forthcoming.

O. Lemon and I. Pratt (1997). On the incompleteness of modal logics of space:
advancing complete modal logics of place. In M. Kracht, M. de Rijke, H. Wans-
ing, and M. Zakharyaschev, editors, Advances in Modal Logic, pages 113-130.
CSLI Publications, Stanford.

O. Lemon and I. Pratt (1999). Logics of geographic information. Journal of
Geographic Systems, 15. forthcoming.

H. S. Leonard and N. Goodman (1940). The calculus of individuals and its uses.
The Journal of Symbolic Logic, 5:45-55.

S. Leséniewski (1929). Grundziige eines neuen Systems der Grundlagen der Math-

ematik. Fundamenta Mathematicae, 18:1-81. see also Le$niewski (1983).
S. Lesniewski (1983). On the foundations of mathematics. Topoi, 2:7-25.

E. Mendelson (1997). Introduction to mathematical logic. Chapman & Hall,
London, 4th edition.

K. Menger (1940). Topology without points. Rice Institute Pamphlets, 27(3):
80-107.

L. S. Moss and R. Parikh (1992). Topological reasoning and the logic of knowl-
edge. In Proceedings of the Fourth Conference on Theoretical Aspects of Rea-
soning About Knowledge, pages 95-105, Monterey, CA.



BIBLIOGRAPHY 174

B. Nebel (1995). Computational Properties of Qualitative Spatial Reasoning:
First Results. In I. Wachsmuth, C.-R. Rollinger, and W. Brauer, editors, KI-
95: Advances in Artificial Intelligence, pages 233-244. Springer, Berlin. 19th

German Conference on Artificial Intelligence.

G. Nerlich (1994). The shape of space. Cambridge University Press, second

edition.

M. H. A. Newman (1964). Elements of the Topology of Plane Sets of Points.
Cambridge University Press, Cambridge.

J. Nicod (1930). Foundations of Geometry and Induction. International Library of
Psychology, Philosophy and Scientific Method. Routledge & Kegan Paul, Lon-
don. Includes an English translation of "La geometrie dans le monde sensible",
PhD thesis, 1924.

C. H. Papadimitriou, D. Suciu, and V. Vianu (1996). Topological queries in
spatial databases. In Proceedings of PODS’96, pages 81-92. ACM.

C. H. Papadimitriou (1997). Planar topological queries. In V. Graede, A. Brod-
ski, O. Giinther, D. Srivastava, V. Vianu, and M. Wallace, editors, Constraint
Databases and Their Applications, Second International Workshop on Con-
straint Database Systems, volume 1191 of Lecture Notes in Computer Science,

pages 1-6, Delphi, Greece. Springer.

J. Paredaens (1998). Data models and query languages for spatial databases.
Data & Knowledge Engineering, 25(1-2):29-53.

Y. Peterzil (1992). A structure theorem for semibound sets in the reals. Journal
of Symbolic Logic, 57:779-794.

A. Pillay (1987). First order topological structures and theories. The Journal of
Symbolic Logic, 52(3):763-778.

A. Pillay and C. Steinhorn (1986). Definable sets in ordered structures I. Trans-
actions of the American Mathematical Society, 295(2):565-592.

I. Pratt and D. Schoop (1998). A complete axiom system for polygonal mereo-
topology of the real plane. Journal of Philosophical Logic, 27(6):621-658.



BIBLIOGRAPHY 175

I. Pratt and O. Lemon (1997). Ontologies for plane, polygonal mereotopology.
Notre Dame Journal of Formal Logic, 38(2):225-245.

I. Pratt and D. Schoop (1999). Expressivity in polygonal, plane mereotopology.

Journal of Symbolic Logic. forthcoming.

F. P. Preparata (1985). Computational geometry : an introduction. Texts and

monographs in computer science. Springer, New York.

D. A. Randell, A. G. Cohn, and Z. Cui (1992a). An interval logic for space
based on “connection”. In B. Neumann, editor, ECAI-92: Proceedings of the

10th European Conference on Artificial Intelligence, pages 394-398, Chichester.
John Wiley.

D. A. Randell, Z. Cui, and A. G. Cohn (1992b). A spatial logic based on regions
and connection. In B. Nebel, C. Rich, and W. Swartout, editors, Principles of
Knowledge Representation and Reasoning: Proceedings of the Third Interna-
tional Conference (KR ’92), pages 165-176, Los Altos, CA. Morgan Kaufmann
Publishers.

J. Renz and B. Nebel (1997). On the complexity of qualitative spatial reasoning:
A maximal tractable fragment of the region connection calculus. In Proceedings
of the 15th International Joint Conference on Artificial Intelligence (IJCAI 97),
pages 522-527.

J. Renz and B. Nebel (1998a). Efficient methods for qualitative spatial reason-

ing. In Proceedings of the 13th European Conference on Artificial Intelligence
(ECAI’98), pages 562-566.

J. Renz and B. Nebel (1998b). Spatial reasoning with topological information. In
C. Freksa, C. Habel, and K. Wender, editors, Spatial Cognition - An interdisci-
plinary approach to representation and processing of spatial knowledge, volume

1404 of Lecture Notes in Computer Science, pages 351-372. Springer, Berlin.

J. Renz (1998). A canonical model of the region connection calculus. In Cohn
et al. (1998), pages 330-341.

N. Rescher and J. Garson (1968). Topological logic. Journal of Symbolic Logic,
33:537-548.



BIBLIOGRAPHY 176

P. Roeper (1997). Region-based topology. Journal of Philosophical Logic, 26:
251-309.

H. J. Schmidt (1979). Aziomatic Characterization of Physical Geometry, volume
111 of Lecture Notes in Physics. Springer, Berlin.

L. Schneps and P. Lochak, editors (1997). Geometric Galois Actions. 1. Around

Grothendieck’s Esquisse d’un Programme. Cambridge University Press.

M. Shiota (1997). Geometry of subanalytic and semialgebraic sets. Birkh&user,

Boston, Mass.
P. Simons (1987). Parts: a study in ontology. Clarendon Press, Oxford.

B. Smith (1995). Zur Kognition rdumlicher Grenzen: Eine mereotopologische
Untersuchung. Kognitionswissenschaft, 4(4):177-184.

B. Smith (1996). Mereotopolgy - A theory of parts and boundaries. Data &
Knowledge Engineering, 20(3):287-303.

B. Smith (1998). Basic concepts of formal ontology. In Guarino (1998), pages
19-28.

B. Smith and A. Varzi (1997). Fiat and bona fide boundaries: Towards an
ontology of spatially extended objects. In Hirtle and Frank (1997), pages 103
119.

J. Stell and M. Worboys (1997). The algebraic structure of sets of regions. In
Hirtle and Frank (1997), pages 163-174.

O. Stock, editor (1997). Spatial and Temporal Reasoning. Kluwer, Dordrecht.

W. A. Sutherland (1975). Introduction to metric and topological spaces. Clarendon
Press, Oxford.

A. Tarski (1956). Foundations of the geometry of solids. In Logic, semantics,
metamathematics: Papers from 1923 to 1938, pages 24-30. Oxford University
Press, Oxford. Translated by J. H. Woodger.

A. Tarski, A. Mostowski, and R. M. Robinson (1953). Undecidable theories.
North-Holland, Amsterdam.



BIBLIOGRAPHY 177

L. van den Dries (1996). O-minimal structures. In W. Hodges, M. Hyland,
C. Steinhorn, and J. Truss, editors, Logic: from Foundations to Applications,
pages 137-186. Oxford University Press.

L. van den Dries (1998). Tame topology and o-minimal structures, volume 248
of London Mathematical Society, Lecture Notes Series. Cambridge University

Press.

A. Varzi (1998). Basic problems of mereotopology. In Guarino (1998), pages
29-38.

A. C. Varzi (1996). Parts, wholes, and part-whole relations: The prospects of
mereotopology. Data and Knowledge Engineering, 20(3):259-286.

A. C. Varzi (1997). Boundaries, continuity, and contact. Nods, 31(1):26-58.

G. H. von Wright (1979). A modal logic of place. In E. Sosa, editor, The philosophy
of Nicholas Rescher: Discussion and Replies, pages 65-73. Dordrecht, London.

A. N. Whitehead (1919). An enquiry concerning the principles of natural know!l-
edge. Cambridge University Press, Cambridge.

A. N. Whitehead (1929). Process and Reality. The MacMillan Company, New
York.

A. N. Whitehead (1920). The concept of nature : Tarrner lectures delivered in
Trinity College. The University Press, Cambridge.

M. Ziegler (1985). Topological model theory. In J. Barwise and S. Feferman,
editors, Model-Theoretic Logics, pages 557-577. Springer, New York.



