LOGICS OF AMBIGUITY

A THESIS SUBMITTED TO THE UNIVERSITY OF M ANCHESTER
FOR THE DEGREE OF DOCTOR OF PHILOSOPHY
IN THE FACULTY OF SCIENCE AND ENGINEERING

2004

By
Nickie J. Player

Department of Computer Science



Contents

Abstract
Declaration
Copyright

Acknowledgements

Dedication

1 Introduction

1.1 Ambiguity . . . . . ..o
1.1.1 A Taxonomy of Ambiguities . . . . . ... ... ... ...
1.1.2 Disambiguation and Resolution . . . ... ... ... ...

1.2 Underspecification . . . . .. .. ... oL

1.3 Thesis Plan . . . . . .. ... . o

Statistical Resolution

2.1 Resolving Lexical Ambiguity . . . . . . ... ... ... ... ...
2.1.1 The Problem . . ... .. .. ... ... ... ...
2.1.2 Current Solutions . . . . . . . .. ... 0L

2.2 Resolving Categorical Ambiguity . . . ... ... ... ... ...

2.3 Resolving Syntactic Ambiguity . . . ... . ... ... ... ...
2.3.1 Probabilistic Context-Free Grammars (PCFGs) . . . . . .
2.3.2 Attachment Ambiguity . . . . . . .. ... ...

2.4 Resolving Scope Ambiguity . . . ... ... ... ..

2.5 Resolving Ambiguity arising from Anaphora . . . . ... ... ..

10

11
11
11
16
17
20



3 Underspecified Representation Languages
3.1 A Logical Connective for Ambiguity . . . . . . ... ... ... ..
3.2 Holes and Constraints . . . . . . .. ... ... ... ...
3.21 The Language H . . . . . . . . . ...
3.2.2 Predicate Logic Unplugged . . . . . . ... .. ... ....
3.2.3 Minimal Recursion Semantics . . . . .. ... .. .. ...
3.2.4 The Constraint Language for Lambda Structures . . . . .
3.2.5 Underspecified Discourse Representation Theory . . . . . .
3.3 Raising. . . . . . . .
3.3.1 Ambiguous Predicate Logic . . . .. ... .. ... ....
3.3.2  Quantifier Raising and Storage . . . ... ... ... ...
3.3.3 The Language R . . . . . . . .. ... ...

3.4 Summary . ... ..o

4 Interpretation

4.1 Partial Logic . . . . .. ... .
4.1.1 Partial Logic and Ambiguous Logic . . . . . . .. ... ..
4.1.2 Partial Logic and Classical Logic . . . .. ... ... ...
4.1.3 Is Partial Logic Suited to the Ambiguity Problem?
414 Summary . . . ... oL e

4.2 Non-Recursive Satisfaction Definitions . . . . . . ... ... ...
4.2.1 Strong and Weak Satisfiability . . . . . .. .. .. ... ..
4.2.2 Computational Complexity . . . . . . ... ... ... ...

5 Relative Expressive Power
5.1 Comparing Expressive Power . . . . . . .. .. .. ... .....
5.2 Reducing a Hole Languageto @ . . . . . . . .. ... ... ....
5.2.1 Transcribing QinH . . . ... ... L.
5.2.2 Transcribing {1 in @ . . ... ... ... ... ..
5.3 Reducing Quantifier Raisingto @ . . . . .. .. ... .. ... ..
5.3.1 Transcribing Qin APL . . . ... ... .. ... .....
5.3.2 Transcribing APLin Q . . . .. ... ... ... .....

6 A Generic Perspective
6.1 Setting the Scene . . . . .. . ... Lo
6.2 The Axiomatisations . . . . . . . . .. . ... L.

52
93
95
95
64
65
69
79
83
83
86
89
95

97
98
98
108
110
111
111
112
113

119
120
122
122
124
127
127
128



6.2.1 Axiomatisation of Satisfaction . . . . . . . . . .. .. ... 143

6.2.2 Axiomatisation of Disambiguation . . . . . . . ... .. .. 146

6.3 Proving the Reduction Theorem . . . . . . . .. ... ... ... .. 154
6.4 Summary . . . ... Lo 155

7 Conclusion 157



Abstract

The broad goal of Natural Language Processing is to enable communication be-
tween humans and computers without resorting to tightly constrained artificial
languages. Unfortunately, natural language is plagued by ambiguity. In fact,
ambiguity is the principal reason why the goal of Natural Language Processing
remains out of reach. There are currently two approaches to the ambiguity prob-
lem: resolution and underspecification. Resolution aims to decide which of the
possible interpretations of an ambiguous expression is ‘correct’; (this is usually
achieved using contextual or pragmatic information). By contrast, underspecifi-
cation aims to mirror ambiguity in natural language by ambiguity in the formal
(‘underspecified’) language. The idea behind underspecification is simple enough:
to encode the ambiguous content of natural language expressions in single com-
pact representations. A further development of this scheme is to endow the Un-
derspecified Representations with a semantics, and reason over them: so—called
‘Underspecified Logic’.

The focus of the thesis is a study of the plethora of Underspecified Logics and
the relationships between them. The preferred view of underspecified semantics
presented in the thesis is captured by the slogan: The meaning of an Under-
specified Representation is given by the set of its readings. With this slogan in
mind, the expressive power of current Underspecified Representation Languages
is investigated in detail.

It is shown that, in terms of expressive power, all current Underspecified Rep-
resentation Languages are equivalent. This equivalence is established by math-
ematically precise translation procedures between each of the languages. Fur-
thermore, ambiguous (weak) satisfiability (with respect to any Underspecified
Representation Language) is reduced to classical satisfiability. Importantly, the
size of this reduction is (polynomially) bounded by the size of the input Under-

specified Representations.



The interest of these results resides in the link they establish between a math-
ematically very manageable Underspecified Representation Language and other
more linguistically natural languages. The reduction of (weak) ambiguous satisfi-
ability to classical satisfiability suggests that the enterprise of looking for theorem
provers for (weak) ambiguous satisfiability is of little theoretical interest. In short,
a study of the relationships between the various systems for representing ambigu-
ity and an appraisal of these systems in terms of expressive power form the main
contribution of the thesis.

Keywords: Ambiguity, Logic, Underspecification, Resolution, Expressive Power.



Declaration

No portion of the work referred to in this thesis has been
submitted in support of an application for another degree
or qualification of this or any other university or other

institution of learning.



Copyright

Copyright in text of this thesis rests with the Author. Copies (by any process)
either in full, or of extracts, may be made only in accordance with instruc-
tions given by the Author and lodged in the John Rylands University Library of
Manchester. Details may be obtained from the Librarian. This page must form
part of any such copies made. Further copies (by any process) of copies made in
accordance with such instructions may not be made without the permission (in
writing) of the Author.

The ownership of any intellectual property rights which may be described
in this thesis is vested in the University of Manchester, subject to any prior
agreement to the contrary, and may not be made available for use by third parties
without the written permission of the University, which will prescribe the terms
and conditions of any such agreement.

Further information on the conditions under which disclosures and exploita-

tion may take place is available from the head of Department of Computer Science.



Acknowledgements

I would like to thank the following people.
Dr Tan Pratt—Hartmann for his unyielding guidance, support and enthusiasm.

Dr Ian Pratt—Hartmann and his wife Cornelia for their kind offer of accommoda-

tion during my long weekends in Manchester.

My wife Kirsty Lauren (to whom I am deeply indebted) for her love, support,

patience and understanding throughout my Postgraduate education.

My son Reuben John and my daughter Corrin Rae for their love, and for provid-

ing a playful diversion during the final stages of my research.

My parents Linda and Eddie for their support and for teaching me the value of

education.

The Engineering and Physical Sciences Research Council (EPSRC) for their fi-

nancial support throughout my Postgraduate education.

Finally, I would like to thank an anonymous friend who advised me not to begin

7

the thesis with the words “let € be a large negative number



Dedication

This thesis is dedicated to my wife Kirsty Lauren Player, to my son Reuben John
Player and to my daughter Corrin Rae Player; their love gives me life. T would
also like to dedicate this thesis to the memory of my sister Debbie Jane Gray

(1972-2000) who will remain forever in my heart.

Footprints in the Sand
One night a man had a dream. He dreamed he was
walking along the beach with the Lord. Across the
sky flashed scenes from his life. For each scene, he
noticed two sets of footprints in the sand: one
belonging to him, and the other to the Lord. When
the last scene of his life flashed before him, he
looked back at the footprints in the sand. He
noticed that many times along the path of his life
there was only one set of footprints. He also noticed
that it happened at the very lowest and saddest
times in his life. This really bothered him and he
questioned the Lord about it. “Lord, You said that
once I decided to follow You, You’d walk with me all
the way. But I have noticed that during the most
troublesome times in my life, there is only one set
of footprints. I don’t understand why when I needed
You most You would leave me.” The Lord replied,
“My son, My precious child, I love you and I would
never leave you. During your times of trial and
suffering, when you see only one set of footprints, it
was then that I Carried You.”

(Author unknown)

10



Chapter 1
Introduction

Time flies like an arrow, fruit flies like a banana.

1.1 Ambiguity

Natural language ambiguity is a well-known and much-studied area of research
spanning many disciplines including Linguistics, Philosophy, Cognitive Psychol-
ogy and Computer Science. We (informally) use the term ‘ambiguity’ in its usual
sense; that is, we call a word or sentence ‘ambiguous’ if it can be understood
or interpreted in more than one way. The existence of such ‘multiplicities of
meanings’ is most often viewed as problematic. Moreover, it is widely believed
that ambiguity remains ‘the main single obstacle for various Natural Language
Processing tasks’ (van Deemter, 1996, p.1). The word ‘ambiguity’ is used (in
the literature) to refer to a variety of linguistic phenomena; for example, lexical
ambiguity, structural ambiguity, scope ambiguity, distributive ambiguity and am-
biguity arising because of anaphora and/or ellipsis. These phenomena are only
related in that they all give rise to uncertainty at the level of semantic interpreta-
tion; that is, they are all ‘types’ (or ‘sources’) of ambiguity. We begin the thesis
with a taxonomy of the types of ambiguity.

1.1.1 A Taxonomy of Ambiguities

There are six main types of ambiguity: lexical, structural, scope, ambiguities
arising from anaphora, ellipses or the interaction of both. Ambiguity occurring

because of multiple word sense is called lexical ambiguity. Lexical ambiguity is

11



CHAPTER 1. INTRODUCTION 12

divided into three sub-groups: homonymy, polysemy and categorical ambiguity.
Homonymous words are those with several unrelated meanings. For example,
‘bark’ can refer to the outer ring of a tree or the noise made by a dog (or even
a type of boat if written ‘barque’). Polysemous words are those with several
related meanings, each meaning constituting a partial representation of the overall
concept. An example of a polysemous word is ‘open’ since it has many meanings
involving unfolding, expanding, being unobstructed or unengaged, and so on. In
a nutshell, the meanings of polysemous words can be traced back to a common
etymology, whereas those of homonymous words cannot. Polysemy is often quite
subtle; consider the sentences ‘I walked through the door’ and ‘I took the door off
its hinges’. The two occurrences of the noun ‘door’ do not have the same sense
here (since the first seems to refer to a space and the second to a physical object).
Many words are both homonymous and polysemous, having some senses related
and some not; ‘ground’ and ‘jam’ are such words. A word suffers from categorical
ambiguity if it has multiple senses which belong to different syntactic categories.
For example, ‘sink’ may be used as a noun referring to a plumbing fixture, or a
verb meaning to become submerged. The task of deciding the syntactic category
of an (occurrence of an) ambiguous word is usually referred to as (part—of-speech)
tagging.

The second type of ambiguity listed is structural ambiguity; a sentence suffers
from structural (or syntactic) ambiguity if there is more than one parse of it. Con-
sider the sentence, ‘the police shot the rioters with guns’. Ignoring any contextual
or common sense information, this sentence might mean that either ‘the police
used guns to shoot the rioters’ or ‘the police shot those rioters who were armed
with guns’. The phrase structures of these two readings are depicted in figures
1.1 and 1.2 respectively. Consider also the sentence ‘sailors only like blonde girls
and ladies’; this sentence is (structurally) ambiguous because we do not know
whether it is asserted that ‘sailors only like blonde girls and blonde ladies’ or
that ‘sailors only like blonde girls and ladies of any hair colour’. This ambiguity
occurs because there is uncertainty in precisely what the conjunct ‘and’ should
coordinate. Dik (Dik, 1972, pp.227-249), among others, supports our view that

ambiguities arising as a result of coordination are syntactic phenomena.! Another

IDik divides (structural) ambiguities arising as a result of coordination into three sub—
groups: functional ambiguities, hierarchical ambiguities and relational ambiguities. We omit
any further discussion of these subgroups. Instead, we refer the interested reader to Dik’s work
(Dik, 1972, pp.227-241).



CHAPTER 1. INTRODUCTION 13

S

TN

N VP

Det police v

the v \PP
VANEAN
/\,

shot, Det with guns

the rioters

Figure 1.1: A possible phrase structure of the structurally ambiguous sentence
‘the police shot the rioters with guns’.

/\
/\ /\

Det

the police shot Det
the N

N

rioters with guns

Figure 1.2: An alternative phrase structure of the structurally ambiguous sentence
‘the police shot the rioters with guns’.



CHAPTER 1. INTRODUCTION 14

type of structural ambiguity is attachment ambiguity. According to Manning and
Schiitze: A pervasive problem in parsing natural language is resolving attach-
ment ambiguities (Manning and Schiitze, 1999, p.278). A well-known example is
the sentence: ‘I saw a man with a telescope’. Due to attachment ambiguity, this
sentence has two distinct interpretations: An analysis where the prepositional
phrase [with a telescope|pp is part of the object noun—phrase has the semantics
“the man who had a telescope”; an analysis where the PP has a higher attach-
ment (perhaps as daughter of [the] VP) is associated with a semantics where the
seeing is achieved by means of a telescope (Hindle and Rooth, 1993, p.1). In
fact, many sentences in which a prepositional phrase is preceded by an object
noun—phrase suffer from this type of syntactic ambiguity.

The third type of ambiguity listed is scope ambiguity. A sentence suffers from
(operator) scope ambiguity if it contains more than one operator (for example,
negation and a quantifier) and the ‘scoping relation’ between these operators is
uncertain. Consider the sentence, ‘every man loves a woman’; this sentence is am-
biguous due to operator scope ambiguity (or, more specifically, quantifier scope
ambiguity). One possible reading is ‘there is one woman who is loved by every
man’ and the other ‘every man loves a separate woman’. In the first reading, ‘a’
out-scopes ‘every’, in the second reading this scoping relation is reversed; we also
say that ‘a’ takes wide scope in the first reading and narrow scope in the second.
Scope ambiguity has become a popular area of inquiry in recent years; however,
it is widely accepted that ‘while not all scoping can be determined independently
of context, certain sentences have strong preferences toward a particular scop-
ing’ (Allen, 1995, p.351).2 Indeed, these preferences may be so strong that we
sometimes fail to notice such ambiguities. Closely related to operator scope ambi-
guity is distributive (or collective) ambiguity, which results from the use of plural
quantifiers. Consider for example, the sentence ‘two teachers marked three exam-
ination papers’. It is not clear whether it is asserted that ‘two teachers marked
three examination papers each’, or that ‘two teachers marked three examination
papers between them’. It is important to realise that the phrase structure of a
scope ambiguous sentence may be unique, and therefore scope ambiguity is not
an example of syntactic ambiguity.

Ambiguity may also arise because of anaphora; such ambiguities are some-

times called referential ambiguities. Consider the sentence ‘I saw a cat chase

2Allen discusses preference at an introductory level (Allen, 1995, pp.159-163).



CHAPTER 1. INTRODUCTION 15

a mouse; it was black’. Because we are uncertain about what the anaphor ‘it’
refers to, we cannot be sure whether it is the cat or the mouse which is black. We
share Dalrymple’s view that anaphoric ambiguity is not an example of structural

ambiguity and that:

The relation between an anaphor and its antecedent is often repre-
sented diacritically, by coindexing. It is well-known, though, that this
relation is in fact not a syntactic relation, but a particular semantic
relation. (Dalrymple, 1993, p.99)

Ellipsis too can cause ambiguity; for example, in sentences like ‘Peter knows a
richer man than Paul’. Because of ellipsis (that is, omission) we can interpret this
sentence as meaning either ‘Peter knows a man who is richer than all the people
Paul knows’ or ‘Peter knows some man who is richer than Paul’. Although we
have chosen to treat ambiguity arising as a result of ellipsis autonomously, the
question of whether this type of ambiguity should be classed as structural or not
is controversial (Aronoff and Rees—Miller, 2001, p.426). We will not discuss the
argument here, instead we recommend Lappin’s work (Lappin, 1996, pp.145-175)
as a good starting point. Finally, ambiguity can arise because of the interaction
between anaphora and ellipsis; such ambiguities are sometimes referred to as
strict/sloppy ambiguities. For example, consider the sentence ‘John likes his car;
Michael does too’. Ambiguity occurs here because of the interaction between
the anaphor ‘his’ and the ellipsis permitted by the phrase ‘does too’; so that, we
cannot be sure whether to interpret the second clause as ‘Michael likes John’s car’
(‘strict’ reading), or ‘Michael likes his own car’ (‘sloppy’ reading). The standard
approach to dealing with ellipsis is based on the following hypothesis:

The completed phrase structure of the elliptical clause corresponds to
the structure of the previous clause. Once the structural correspon-
dence between the two clauses is identified, the semantic interpreta-
tion of the previous clause can be updated with the new information in
the elliptical clause to produce the new interpretation. (Allen, 1995,
p.451)

Suppose that the first clause of the sentence ‘John likes his car; Michael does too’

has the following semantic interpretation:

like(john , car—belongs—to(john)).



CHAPTER 1. INTRODUCTION 16

To generate the semantics of the second clause, Allen suggests that we must
abstract ‘john’ from the semantic interpretation of the first clause, and there are

two distinct ways of doing this:

Ap [like(p, car-belongs—to (john))] and
Ap [like(p, car—belongs—to (p))].

resulting in the two distinct interpretations of the original sentence. In the sequel,

we indicate the source of ambiguities only where such a specification is significant.

1.1.2 Disambiguation and Resolution

We refer to the process of obtaining the possible readings of a sentence as dis-
ambiguation. For example, disambiguating the sentence ‘the ball was wonderful’
yields two readings, resulting from the (lexical) ambiguity of the word ‘ball’.
Clearly, the information communicated by an ambiguous sentence is very much
dependent upon how we disambiguate it. On hearing an ambiguous statement,
it is sometimes impossible to determine which reading(s) the speaker intended to
communicate. It is important from the outset to be clear about the difference be-
tween the processes of ‘disambiguation’ and ‘resolution’. In resolving ambiguity
we must decide which particular reading(s) the speaker intended to communicate.
In disambiguation, by contrast, we simply list all possible readings without any
preferences.

Unfortunately, all natural languages display a remarkable degree of ambigu-
ity. However, in practice many ambiguities are resolvable; for example, Hirst
claims that ‘although many sentences of English have more than one parse, there
is usually a unique preferred parse for a sentence after semantics and discourse
are considered’ (Hirst, 1987, p.9). Once an ambiguity has been resolved it be-
comes unproblematic and therefore, faced with an ambiguity, perhaps the best
line of attack is resolution. This belief is shared by van Deemter (among others):
‘ambiguities that can be resolved, by taking context, prosody, or even common
sense knowledge into account are probably better resolved’ (van Deemter, 1998,
p.24). But what if insufficient information is available to allow resolution of all

ambiguities?



CHAPTER 1. INTRODUCTION 17

1.2 Underspecification

One way of dealing with unresolved ambiguities, which has become popular in
Computational Semantics, is (semantic) underspecification. Indeed, this ap-
proach has become so popular that ‘it often seems as if semantics has entered
an age of underspecification’ (Blackburn and Bos, 1999a, p.83). The basic idea
behind underspecification is simple enough: to encode the ambiguous content of
natural language expressions in single compact (Underspecified) Representations.

Underspecification may be summed up as follows:

The key idea is to derive a single, compact description of all readings
instead of the (exponential number of) readings themselves. (Egg et
al., 2001, p.457)

There are arguments against allowing ambiguities to occur in formal lan-
guages. In fact, artificial languages, such as the predicate calculus, are most
often devised to eliminate expressions with more than one interpretation. En-
derton asserts that ‘formal languages allow us to escape from the imprecision
and ambiguities of natural language’ (Enderton, 1972, p.15). Cann expresses the
opinion that avoiding ambiguity is a central feature of the ‘logical language’ L,:
L, is ‘a logical language into which sentences of English are translated in order to
circumvent the problems of ambiguity and underdeterminacy found in the object
language’ (Cann, 1993, p.27). Thomason goes further still, claiming that ‘there is
no serious point to constructing an artificial language that is not disambiguated’

(Thomason, 1974, p.6). However, Alshawi offers an opposing view:

... natural languages exhibit such partiality with respect to quantifier
scope, anaphora, underspecified relations, and so on. It would there-
fore seem reasonable that expressions of formal languages that are
meant to capture the meaning of natural language sentences should
also exhibit this type of partiality. (Alshawi, 1996, p.146)

Having outlined some of the arguments surrounding underspecified represen-
tation we make no further reference to this issue in the sequel. Instead, we
concentrate on studying the relationships between the plethora of current Under-
specified Representation Languages. In fact, our study of underspecification will

go deeper than representation alone; we will study Underspecified Logics. An



CHAPTER 1. INTRODUCTION 18

Underspecified Logic is (informally) defined as ‘a pair consisting of a proper un-
derspecified semantic representation formalism and a deductive component that
directly operates on these structures’ (Konig and Reyle, 1996, p.1). Given an
ambiguous natural language (declarative) sentence, we would like to find an Un-
derspecified Representation with which we can reason. The basic idea is to reason
with ambiguous formulae, reach ambiguous conclusions and worry about resolu-
tion afterwards, if at all. To see why such an approach might be successful,
consider the scope ambiguous sentence every man loves a woman. If we analyse
this statement in isolation, then it is not clear whether it is asserted that ‘there
exists one woman whom is loved by every man’ (for example, Marilyn Monroe),
or that ‘every man loves a possibly separate woman’ (for example, his wife). How-
ever, if we choose to ignore this ambiguity, we may still be able to draw sensible
inferences from this sentence. For example, if it is further asserted that John is
a man, then we may infer that John loves a woman, from either reading of the
original sentence. Indeed, it is widely believed that ‘not only is it very difficult
to resolve quantifier scope, it is also often unnecessary’ (Copestake et al., 1999,
p.3). Van Deemter makes the more general point that ‘partial understanding
[of ambiguous sentences| is often enough for making inferences’ (van Deemter,
1996, p.204). There are numerous arguments in the literature suggesting why
Underspecified Logic might provide a sensible way to proceed; we now turn our
attention to an informal discussion of some of these arguments.

Consider the well-known example due to Hobbs:

A politician can fool most voters on most issues most of the time, but
no politician can fool all voters on every single issue all of the time.?
(Hobbs, 1983, p.1)

Each of the two clauses (separated by the comma) permits 4!=24 different order-
ings of its quantifiers. Disambiguating the clauses independently yields 4!.4!=576
readings in total. Even though this statement has many readings (though some
are equivalent), humans are able to make sense of it with relative ease. Muskens

claims that:

... ambiguities in natural language can multiply so fast that no person

3Hobbs’ example is actually “In most democratic countries most politicians can fool most
of the people on almost every issue most of the time” which Hobbs claims has 120 different
readings, or ‘quantifier scopings’ (Hobbs, 1983, p.1).



CHAPTER 1. INTRODUCTION 19

or machine can be expected to process a text of even moderate length
by enumerating all possible [readings]. (Muskens, 1999, p.311)

This observation has led to the conjecture that humans reason in an underspeci-
fied manner, since it seems unlikely that we can carry out the calculations required
to reason over all readings. Poesio refers to this proposal as the underspecifica-
tion hypothesis (Poesio, 1994, p.4). However, there are arguments supporting the
claim that humans find processing ambiguous sentences a more difficult task than
processing unambiguous sentences. For example, there is experimental evidence
(Mohanty, 1983) that there is a significant increase in a person’s heart rate when
required to interpret ambiguous sentences (compared to unambiguous sentences)!
We now consider two practical reasons for adopting an underspecified approach
to ambiguity.

Reasoning over natural language is fraught with difficulties. Given an am-
biguous sentence there is sometimes little evidence to suggest which reading(s)
may be disregarded. Furthermore, such evidence usually comes from contextual
information or semantic insight. This situation presents serious difficulties for
computer scientists interested in Natural Language Processing because, in a nut-
shell, ‘computers are stupid. We can’t appeal to their semantic insight because
they don’t have any’ (Blackburn and Bos, 1999, p.30). As a consequence, many
computer systems with natural language input suffer from interpretational dead-
lock. That is, many computer systems require resolution of all ambiguities. If a
system ceases operation because of unresolved ambiguity it is said to suffer from
interpretational deadlock. It is also well-known that reasoning over all the read-
ings of a sentence leads to a combinatorial explosion.* Suppose that we have n
sentences, each of which is ambiguous between just two distinct readings. Multi-
plying up each ambiguity means that, when combined, these sentences will have
2" readings. Underspecification is a proposed solution to the problem of dead-
lock. It is also widely believed that underspecification reduces the computational
burden experienced when reasoning with ambiguous information. In particular,
it is widely believed that reasoning with Underspecified Representations is (com-
putationally) more efficient than reasoning over an enumeration of readings. In
fact, underspecification is often described as ‘a recent approach to controlling

the combinatorial explosion caused by ambiguity’ (Egg et al., 2001, p.457). This

4Poesio provides an introduction to this problem (Poesio, 1996, pp.1-3).



CHAPTER 1. INTRODUCTION 20

view is supported by Koller: ‘these [underspecified] approaches all aim at control-
ling the combinatorial explosion of sentences with multiple ambiguities’ (Koller
et al., 2003, p.1). Indeed, Bos attributes the birth of underspecified semantics
to computational considerations and claims that ‘the so called Combinatorial
Explosion Puzzle, a well-known problem in this area, can be successfully tack-
led using Underspecified Representations’ (Bos, 1995, p.133). However, to date,
there is no evidence to support or refute this claim. That is, the issue remains of
whether reasoning with Underspecified Representations really is computationally
less expensive than reasoning over an enumeration of readings. We will explore
a number of computational issues in the sequel; however, an evaluation of the
expressive power of the various Underspecified Representation Languages will be

the main focus of this thesis.

1.3 Thesis Plan

As we have said, there are currently two approaches to the ambiguity problem:
resolution and underspecification. Resolution aims to decide which of the possible
interpretations of an ambiguous expression is ‘correct’; this is usually achieved us-
ing contextual or pragmatic information. By contrast, underspecification aims to
mirror ambiguity in natural language by ambiguity in the formal (Underspecified
Representation) Language. Our overall aim is to evaluate underspecification. In
the next chapter (chapter two) we investigate the legitimacy of this relatively new
enterprise; in particular, we report on the success of the older and (notionally)
simpler approach — resolution. Once we have established that there is a need for
underspecification, our goal will be to gain a clear understanding of the plethora
of Underspecified Logics and the relationships between them.

Underspecified Logics consist of two components: a mathematically precise
language, the expressions of which (compactly) represent the ambiguous content
of natural language sentences, and a framework for reasoning over these expres-
sions. We will treat these components independently to reflect our belief that
representation and reasoning are orthogonal issues.

In the third chapter we begin our study of underspecification; in particular, we
define the syntax and disambiguation procedure for each current Underspecified
Representation Language. We will compare these languages with one another

and assess their (relative) expressive power in chapter five. We gain a clear



CHAPTER 1. INTRODUCTION 21

understanding of the relative expressive power of each language by providing
translation procedures between them. However, we will insist that in each case,
(the size of) our translated formulas is polynomial in the size of the formulas from
which they were translated. Without this restriction our results would in some
sense destroy the original motivation behind underspecification — compactness of
representation.

In chapter four, we study the various frameworks for reasoning with am-
biguous formulas; we will split the current proposals into two groups: ‘recursive
satisfaction definitions’ and ‘non-recursive satisfaction definitions’. We call an
underspecified semantic framework a recursive satisfaction definition if it is such
that the interpretation of any non—atomic formula is defined only in terms of the
interpretations of its immediate subformulas. By contrast, we shall see that non—
recursive satisfaction definitions may be captured by the slogan: The meaning
of an Underspecified Representation is given by the set of its readings. The best—
known recursive satisfaction definition is a proposal based on Partial Logic® due
to van Eijck and Jaspars (van Eijck and Jaspars, 1996, pp.5-11). However, we
argue that only non-recursive satisfaction definitions provide sensible semantic
frameworks for underspecification. We shall justify this view in the sequel; for
now, we note that it is shared by Schiehlen, among others:

Two things are required for underspecification: (1) a formalism for
compact representation of interpretation classes (Underspecified Rep-
resentations) and individual interpretations (fully specified represen-
tations) and (2) a disambiguation device to connect Underspecified
Representations with fully specified representations. (Schiehlen, 1997,

pp.1-2)

In short, a study of the relationships between the various systems for repre-
senting ambiguity and a generic study of the expressive limits of Underspecified
Representation Languages form the main contribution of the thesis.

Our aim in the following chapter is to assess the need for underspecification.
Actually, we present the next chapter as evidence that ambiguity resolution is

limited, and therefore we will argue that underspecification is worth investigating.

SPartial Logic was introduced by Blamey (Blamey, 1986).



Chapter 2
Statistical Resolution

The fisherman’s catch was miserable.

Ambiguity makes automated natural language understanding (or, more cor-
rectly, Natural Language Processing — NLP) a difficult task. Therefore, we would
very much like to eliminate all ambiguities. Resolution aims to do exactly this;
that is, resolution aims to decide between the possible readings of an ambiguous
expression. In this respect, resolution is (notionally) the simplest approach to
the ambiguity problem. However, we will argue that resolution is not completely
adequate and therefore our study of underspecification is worthwhile. In arguing
our case, we provide a flavour of (the best-known) current statistical approaches
to resolution and an indication of how successful these approaches are. In this
chapter, we will abuse some of the terminology introduced earlier; in particular,
we refer to the task of resolving lexical ambiguities as ‘word sense disambigua-
tion’. Our reason for doing so is simply that we wish to use the terminology in
the same way that it is currently used in the literature and we believe that our

use of the term ‘disambiguation’ should be clear from context anyway.

2.1 Resolving Lexical Ambiguity: Word Sense

Disambiguation

Lexical ambiguities are pervasive even in ‘specialised’ texts such as the journals
Time and Computer Science (Harper, 1957a), (Harper, 1957b), (Krovetz and
Croft, 1992), (Krovetz, 1997). It is usually viewed as desirable, if not essential,

22



CHAPTER 2. STATISTICAL RESOLUTION 23

that Natural Language Processing systems can resolve lexical ambiguities. The
kind of Natural Language Processing systems we have in mind serve a variety
of purposes, including: machine translation (between languages, for example,
English and French), information retrieval', hypertext navigation (for example,
keyword search), automated speech processing and so on.?

We begin our presentation with some terminology. The terms ‘context win-

", ‘context frame’ and ‘micro—context’ (of a word occurrence) appear fre-

dow
quently in the literature. The concept underlying these terminologies was first

elucidated by Weaver:

If one examines the words in a book, one at a time as through an
opaque mask with a hole in it one word wide, then it is obviously
impossible to determine, one at a time, the meaning of the words. ..
But if one lengthens the slit in the opaque mask, until one can see not
only the central word in question but also say N words on either side,
then if NV is large enough one can unambiguously decide the meaning
of the central word. (Weaver, 1949, p.21)

Weaver does not indicate how large N should be, but this issue has been in-
vestigated, first by Kaplan (Kaplan, 1950) and later by Choueka and Lusignan
(Choueka and Lusignan, 1985). In the sequel, we will use the term contezt instead

of ‘context window’, ‘context frame’ or ‘micro—context’.

2.1.1 The Problem

The resolution of lexical ambiguities in unrestricted text is one of the most dif-
ficult tasks of Natural Language Processing (Dagan and Itai, 1994, p.1). The
task of resolving lexical ambiguities is frequently referred to as word sense dis-

ambiguation. The word sense disambiguation problem can be stated as follows:

Problem 2.1.1 (Word Sense Disambiguation). The aim of word sense dis-
ambiguation is to map each word (occurrence) in a particular text to its ‘correct
sense’; that is, to determine which of the senses of an ambiguous word is invoked

by a particular occurrence of that word.

!There is evidence to suggest that resolving lexical ambiguities does not significantly improve
the performance of information retrieval systems (Krovetz and Croft, 1992), (Krovetz, 1997),
and evidence that it does (Strzalkowski, 1995)!

2The question of whether or not these endeavours benefit at all from word sense disambigua-
tion is addressed by Kilgarriff (Kilgarriff, 1997).



CHAPTER 2. STATISTICAL RESOLUTION 24

But what is meant by the term ‘sense’ (of a word) and how do we know
whether or not a sense is ‘correct’”? Unfortunately, neither of these fundamental
questions is easy to answer. Therefore, we now take a brief excursion to discuss
each of them in turn.

We view the term ‘sense’ as being synonymous with the term ‘possible read-
ing’; ‘the precise definition of a sense is, however, a matter of considerable debate
within the community’ (Ide and Véronis, 1998, p.3). We would like to define word
senses as the ‘mental representations’ of the meanings of words, (since we are try-
ing to imitate human natural language understanding). However, it has proved
very difficult to model such mental representations in practice. Most research fol-
lowing this approach involves experiments in which human subjects are given the
quite unnatural task of grouping word occurrences with similar meanings. Unfor-
tunately, it has been shown that agreement on these groupings between human
subjects is low (Jorgenson, 1990). In practice, the (lists of) senses of words are
most often taken from everyday dictionaries, thesauri or bilingual dictionaries.
An immediate problem with all of these sources is the inherent disparity between
them; for example, in the (number, grouping and content of) word definitions (or
‘senses’) given in different dictionaries. That is, the use of these sources raises
the question: which particular dictionary should we use, and why?

Suppose for a moment that we are completely satisfied with our set of word
senses; the question still remains — what does it mean to say that one (or more?)
of these senses is ‘correct’ for a particular word occurrence? Given the subtlety of
many natural language ambiguities it is hardly surprising that human agreement
on word sense assigning tasks is less than perfect. The actual level of human
agreement in experimental conditions ranges between 65% and 99% depending
upon whether the words under consideration have distinct senses (high agree-
ment) or closely related senses (low agreement), (Manning and Schiitze, 1999,
p.234). This fact alone suggests that even the most sophisticated word sense dis-
ambiguation algorithm will fail to be completely adequate. However, we would
still like to know just how successful state—of-the—art word sense disambiguation

algorithms are.

3Kilgarriff suggests that it is common for senses to be induced simultaneously in natural
language. For example, Kilgarriff claims that the word ‘competition’ in the sentence ‘For
better or worse, this would bring competition to the licensed trade’ induces two senses: ‘the
act of competing’ and ‘the competitors’ (Kilgarriff, 1993).



CHAPTER 2. STATISTICAL RESOLUTION 25

It would seem unfair (but not impossible!) to expect an automated Natu-
ral Language Processing system to out—perform humans. Perhaps therefore, we
should only measure machine performance (at word sense disambiguation tasks)
against human capability (at the same tasks). Indeed, human performance is
usually used as an ‘upper bound’ for evaluating the success of word sense disam-
biguation procedures. It is also sometimes appropriate to set a lower bound for
evaluating word sense disambiguation procedures. The need for a lower bound
is most evident for those words with a strongly preferred sense, regardless of
context. For example, suppose that some word w has just two senses s and s’
and that in some (sufficiently large) corpus 95% of all occurrences of w invoke
sense s. It is trivial to write a disambiguation algorithm with an approximate 5%
‘error rating’ on w, (by mapping all occurrences of w to s regardless of context).
Clearly, under these circumstances, any salutary word sense disambiguation al-
gorithm would have to map at least 95% of occurrences of w to their correct
sense!

Fortunately, for theoretical purposes, we can circumvent the difficulties dis-
cussed above with a neat simplification of the problem. The basic idea is to
ignore any real ambiguity in the source text and instead, create artificially am-
biguous pseudo-words?, such as ‘river-banana’ which we define to have just two
senses, ‘river’ and ‘banana’. We simply replace all occurrences of ‘river’ and all
occurrences of ‘banana’ in the original text with the term ‘river—banana’. The
idea is then to treat the text with the pseudo-words as ambiguous (the source
text), and the original text (containing real ambiguous words) as disambiguated.
The ‘senses’ of a pseudo—word are well-defined, they are simply the terms to the
immediate left and the immediate right of the hyphen symbol occurring in it.
We can also easily manufacture our pseudo—words so that it is always trivial to
determine their ‘correct’ senses.

Having briefly discussed some of the issues surrounding the word sense dis-
ambiguation problem, we now report on the success of the best-known solutions
to it.

2.1.2 Current Solutions

Quite recently (that is, in the past fifty years), it was widely believed that the word

sense disambiguation problem was intractable, and that sense ambiguity could

4Pseudo—words were first used in this way by Yarowsky (Yarowsky, 1993).



CHAPTER 2. STATISTICAL RESOLUTION 26

not be resolved by electronic computer either current or imaginable (Bar—Hillel,
1964, p.175). The modern sceptic (at worst) claims that word sense disambigua-
tion is a so—called Al-complete problem, meaning that its solution presupposes
“the synthesis of all human—level intelligence”. We shall see that current word
sense disambiguation procedures are not completely adequate — the best of which
resolve approximately 96% to 97% of lexical ambiguities correctly. We will there-
fore argue that there is room for a fresh approach to lexical ambiguity — namely,
underspecification.

Early attempts at automated word sense disambiguation were impeded by the
unavailability of machine-readable lexical resources. Indeed, ‘hand—crafting’ such
resources proved to be a prodigious task; the difficulty caused by this problem
is sometimes referred to as the ‘knowledge acquisition bottleneck’. Fortunately,
large scale machine-readable lexical resources (such as dictionaries, thesauri and
corpora) became widely available during the 1980’s. The arrival of these re-
sources led to the birth of a new breed of word sense disambiguation procedure.
Word sense disambiguation algorithms are often split into two categories: those
which are described as being knowledge—driven and those which are data—driven
(or corpus—based). Knowledge—driven word sense disambiguation techniques use
external sources, such as dictionaries, thesauri and encyclopedias. By contrast,
data—driven techniques exploit knowledge of previously disambiguated instances
of the target words from corpora. We now briefly describe current (well-known)

knowledge—driven followed by data—driven word sense disambiguation procedures.

Knowledge—Driven Word Sense Disambiguation

In this section, we describe dictionary-based, thesaurus-based and bilingual-
dictionary—based word sense disambiguation techniques. The simplest dictionary—
based word sense disambiguation algorithm is one in which we view each alterna-
tive dictionary definition of a word as ‘describing’ a distinct sense of that word.
To disambiguate a word occurrence w, we look at the words occurring in each of
its dictionary definitions (one definition at a time) and then try to match each of
these words (taken from the dictionary definitions) to the words in the context of
w. To disambiguate, we simply select (the sense associated with the dictionary
definition with) the best match. This method was first formalised by Lesk (Lesk,
1986), who provides the following example:



CHAPTER 2. STATISTICAL RESOLUTION 27

Example 2.1.2. Suppose that in a particular dictionary the word cone is as-
signed the following two alternative definitions:

1. amass of ovule-bearing or pollen—bearing scales or bracts in trees of the pine
family or in the cycads that are arranged usually on a somewhat elongated

axis,

2. something that resembles a cone in shape: such as a crisp cone-shaped

wafer for holding ice cream.
(Lesk, 1986, p.24)

If the words ‘pine’ and ‘tree’ appear in the context of some occurrence of cone
then we should assign that occurrence the sense described by definition 1 above;
assuming that overall, there is a bigger overlap between (the words in) the context
of the occurrence of ‘cone’ and the words in definition 1 than there is between

the context of ‘cone’ and the words in definition 2.

In general, for any word occurrence w, each sense of w is given a ‘score’
based on the overlap between the bag® of words in the dictionary definition®
of w (describing that sense) and the bag of words in the context of w. The
sense with the greatest score is then selected as being the preferred (or ‘most
likely’) disambiguation of w. In practice, Lesk’s method only achieves between
50% and 60% correct disambiguation (Lesk, 1986, p.26). A simple modification
of Lesk’s technique is to expand the contexts of word occurrences, by adding
to each context all of the synonyms (obtained from a thesaurus) of each of its
elements. This modification was first suggested by Pook and Catlett (Pook and
Catlett, 1988). However, Pook and Catlett do not evaluate the success of their
modification.

Other dictionary-based word sense disambiguation algorithms typically use
some measure of ‘relatedness’ between words (which are sometimes referred to as
‘metrics of semantic preference’). For any two words w and w’, computing the
metric of semantic preference between w and w' invariably involves counting the
number of words that co—occur in at least one (dictionary) definition of w and at

least one (dictionary) definition of w'. These metrics are then used to compare the

A bag is just a set with repeated elements.
6The bag of words occurring in the dictionary definitions of a word w is sometimes referred
to as the signature of w.



CHAPTER 2. STATISTICAL RESOLUTION 28

target word with words in the surrounding context. To disambiguate a word w,
we select the sense of w which is most closely related to the words in the context
of w. This approach is generally attributed to Wilks and Fass (Wilks and Fass,
1990). Unfortunately, Ide and Véronis report that this method achieves just 45%
accuracy on sense identification, and 90% accuracy on homograph identification
in experiments on the single word ‘bank’ (Ide and Véronis, 1998, p.9). That
is, Ide and Véronis report that Wilk’s method is twice as successful at choosing
between homonymous (related) senses of the word ‘bank’ as it is at choosing
between polysemous (unrelated) senses.

Another (relatively) popular approach is to exploit ‘meta-level knowledge’ of
some sort, for example, the type (or subject matter) of the target text (Krovetz
and Croft, 1989), (Guthrie et al., 1991), (Liddy and Paik, 1993). Usually, this
meta-level knowledge is ‘written into’ the algorithms by assigning every (dic-
tionary definition of each) word a box code and a subject code. Intuitively, box
codes encode ‘type restrictions’ on nouns, adjectives and on (the arguments of)
verbs; examples of box codes are: abstract, human and collective. Subject
codes classify words by subject; for example, physics, popular—culture and so
on. Stevenson and Wilks report that an implementation which uses only subject
codes achieves 79% precision (Stevenson and Wilks, 1999, p.1). Therefore, we
argue that dictionary—based word sense disambiguation techniques are limited;
we now turn our attention to the use of thesauri in word sense disambiguation.

The rationale behind the use of thesauri, (for example, Roget’s International
Thesaurus, sixth edition — Kipfer & Chapman, 2002), for word sense disambigua-
tion can be summarised as follows: ‘the categories listed for a word in Roget’s
index tend to correspond to sense distinctions; thus selecting the most likely
category provides a useful level of sense disambiguation’ (Yarowsky, 1992, p.1).
The basic idea is that the categories (or ‘semantic categories’) of the words in
a context should determine the ‘semantic category’ of the context as a whole,
and the semantic category of the context as a whole determines the sense of the
target word(s). Walker was the first author to suggest this method (Walker,
1987, p.254). However, in an experiment on the five (highly) ambiguous words
interest, point, power, state and terms, Black reports only 50% correct disam-
biguation using Walker’s technique (Black, 1988, p.187). Another (well-known)
thesaurus—based word sense disambiguation algorithm, due to Yarowsky, consists
of the following three steps, which we paraphrase from Yarowsky (Yarowsky, 1992,



CHAPTER 2. STATISTICAL RESOLUTION 29

p.2):

1.

Scan the corpus’ for occurrences of words which appear as categories in the

thesaurus, and collect the (100 word) context of each such occurrence.

. Identify ‘salient’ words in the collective context, and weight appropriately.

Intuitively, a salient word is one which appears significantly more often in
the contexts of a category than at other points in the corpus, and hence is

a better than average indicator for that category. This is formalised with a

P(w|RCat)
P(w) >

pearing in the context of a Roget category divided by the overall probability

mutual-information—like estimate the probability of a word w ap-

that w occurs in the corpus.

Use the resulting weights to predict the appropriate (thesaurus) category
for the target word(s). When any of the salient words appear in the con-
text of the target word, there is evidence that the target word belongs to
the indicated category. If several such words appear, the evidence is com-
pounded. Using Bayes’ rule, we sum their weights, over all words in context,

and determine the category ‘Rcat’ which maximises:

P(w|Rcat).P(Rcat)
H;C log ( Plw) ) .

On the twelve ambiguous words tested, (star, ride, gallery, core, bass, bow, taste,

interest, issue, duty, sentence and slug) Yarowsky reports an overall accuracy of

92% (Yarowsky, 1992, p.6). Therefore, we argue that thesaurus—based word sense

disambiguation is also limited. We now turn our attention to the use of bilingual

dictionaries in word sense disambiguation.

The basic idea behind the use of bilingual sources in word sense disambigua-

tion is:

... to use a bilingual lexicon to find all possible translations of each
lexically ambiguous word in the source sentence, and then use sta-
tistical information gathered from target language corpora to choose
the most appropriate alternative. ... Our model defines the different

“senses” of a source word to be all its possible translations to the

"Yarowsky uses (the June 1991 version of) Grolier’s Encyclopedia.



CHAPTER 2. STATISTICAL RESOLUTION 30

target language, as listed in the bilingual lexicon. (Dagan and Itai,
1991, pp.4-5)

Dagan and Itai map an ambiguous construct from one language to another, in the
hope that they will obtain representations in which each sense corresponds to a
distinct word. This approach benefits from the fact that typically, an ambiguous
word and its translation (into another language) do not share the same senses
(this is especially true in unrelated languages); that is, ‘this approach exploits the
differences between mappings of words to senses in different languages’ (Dagan
and Itai, 1991, p.1). For example, the (English) word ‘duty’ has two (related)
senses — ‘a kind of tax’ and ‘an obligation’. However, no single word in French
has the same ambiguity. Instead, the word ‘duty’ is usually translated to either
of the French words droit (the tax) or devoir (the obligation), this example is
used by Charniak (Charniak, 1996a, p.148). Having translated each ambiguous
word into a set of words in a different language using a bilingual dictionary,
we still need to choose between these translated words — since the translated
words correspond to the senses of the target word. Dagan and Itai’s answer is
simply to count occurrences of droit and devoir (in a French corpus) and use their
relative frequencies to estimate P(tax) and P(obligation) respectively. That is,
‘the plausibility of selecting a target word is determined by the plausibility of the
tuples [that is, foreign translations| which are obtained from it. The plausibility
of alternative target tuples is in turn determined by their relative frequency in
the corpus’ (Dagan and Itai, 1991, p.8). Dagan and Itai incorporate confidence
intervals into their algorithm (making decisions only when their confidence is 90%
or higher) based on the maximum-likelihood estimator (Agresti 1990). When
tested on a set of examples of Hebrew to English translations, selected randomly
from foreign news sections in the Israeli press, this model was only applicable to
70% of the ambiguous words occurring in the data, and it disambiguated just 92%
of these words correctly — amounting to a 64.4% success rating (Dagan and Itai,
1991, p.3). This low value should not surprise us, since Dagan and Itai’s method
ignores the contexts of the target words and instead uses the relative frequencies
of their translations (senses) in a foreign corpus. We have classified Dagan and
Itai’s method as being knowledge—driven since their technique uses a bilingual
lexicon for defining the senses of words. But in fact, since Dagan and Itai use the
relative frequencies of words in the foreign corpus to estimate the probabilities of

the alternative senses of words, their algorithm is also data—driven.



CHAPTER 2. STATISTICAL RESOLUTION 31

As we have seen, the usefulness of dictionaries, thesauri and bilingual dic-
tionaries in word sense disambiguation is somewhat limited, mainly because of
inconsistencies and the lack of sufficient pragmatic information in these sources.
It is widely believed that the kind of pragmatic information needed can be ob-
tained from corpora. Consider for example the word ‘ash’. It is quite possible
that ‘ash’ might co—occur frequently with the words ‘cigarettes’, ‘tobacco’ and
‘tray’ in texts and that none of these words occur in any of the dictionary defini-
tions of ‘ash’. Data-driven word sense disambiguation is based on the hypothesis
that corpora contain useful pragmatic information which cannot be obtained from
dictionaries. We now investigate the extent to which such pragmatic information

can improve resolution techniques for lexical ambiguity.

Data—Driven Word Sense Disambiguation

The idea behind data—driven word sense disambiguation is to disambiguate words
using information gained by ‘training’ on corpora, rather than using information
taken from external knowledge sources such as dictionaries. This training can
be carried out on either ‘disambiguated’ (that is, unambiguous) corpora or ‘raw’
(that is, ambiguous) corpora. We begin by looking at those word sense disam-
biguation algorithms which use disambiguated corpora; that is, those techniques
which depend upon ‘supervised learning’ from ‘sense-tagged’ corpora.

The best—known such algorithm is the Bayesian Classifier (Gale et al., 1992b).
As we have indicated, this algorithm assumes that we have a corpus available in
which each ambiguous word is labelled with its correct sense.® Gale’s algorithm
is a specialised version of the so—called Naive Bayes Classifier. We therefore
begin by describing the Bayes Classifier, which uses Bayes’ Decision Rule when
choosing a class — the rule that minimises the probability of error (Duda and
Hart, 1973). Suppose that we wish to disambiguate some word occurrence w in
context c. Suppose also that w has senses si,...,s, where n € N. Then Bayes’

Decision Rule can be applied as follows:

Rule 2.1.3 (Bayes’ Decision Rule). Decide s if P(s|c) > P(sk|c) for all s # s
with s € {s1,...,s,}and 1 < k < n.

Rule 2.1.4 (Bayesian Classification). Assign w sense s where

8In fact, Gale et al. use a large corpus of parallel English and French, taken from the
“Hansards” — the proceedings of the Canadian parliament.



CHAPTER 2. STATISTICAL RESOLUTION 32

s = arg max, P(s;|c)

P(c|sk)-P(sk)

= arg max, — 50,

= arg max, P(c|sy)P(sx) since P(c) is constant.

We use the notation arg max, f to denote the argument z for which f has max-

imal value.

The application of the Naive Bayes Assumption in this case amounts to the
assumption that the elements of the context ¢ are conditionally independent.

That is, we make the following independence assumption:

Rule 2.1.5 (Naive Bayes Assumption). Let v range over the bag of words

occurring in context c. Then,

P(c|s) = P({v|vEc}|se) = [ P(vlsk)-

vee

Note that, we use the symbol ‘€’ instead of (the regular) ‘€’ to indicate that we

are referring to membership of a bag, not set membership.

Because this model ignores any order and structure in ¢, it is sometimes
referred to as the ‘bag of words model’. We can now modify our decision rule

using the Naive Bayes Assumption.

Rule 2.1.6 (Decision Rule for Naive Bayes). Assign w sense s if
§ = arg maxg, [HP(U|5k) - P(sg)]-
vée
We compute P(v|sg) and P(sg) using our labelled training corpus as follows:

C(v, sg) an . :C(sk)
C(Sk) d P( k)

P(v]s) =

where C(v, si) denotes the number of occurrences of v in all of the contexts of w
which are tagged with sense sy, in the corpus, C(si) is the number of occurrences of
w with sense sy, in the corpus, and C'(w) is simply the total number of occurrences

of w in the corpus.



CHAPTER 2. STATISTICAL RESOLUTION 33

Gale et al. report just 90% correct disambiguation on the five words duty,
land, language, position and sentence in the Hansard (English—French) corpus
(Gale et al., 1992). Charniak (Charniak, 1996a, pp.147-150) and Manning and
Schiitze (Manning and Schiitze, 1999, pp.235-239) present detailed overviews of
Gale et al.’s algorithm.

As we have indicated, Gale’s algorithm ignores any structure in contexts,
(the Naive Bayes Assumption). We now turn our attention to a technique, due
to Brown et al. (Brown et al., 1991), in which we search contexts for a single
feature which reliably indicates which sense of the target word is being used. In
this respect, Brown’s method stands in direct opposition to Gale’s (modified)
Bayesian Classifier. But what sort of features give us the sort of information we
need for word sense disambiguation? Consider the French word prendre, which
translates into either (of the English words) ‘take’ or ‘make’. If prendre occurs
with décision as its object then it most often translates to ‘make’; if prendre takes
measure as its object then it translates to ‘take’. Therefore, (in this case) the
object of the target word prendre is a good indicator of its sense. Similarly, the
tense of the French word vouloir is a good indicator of how we should translate
it into English, (past tense suggests ‘to want’ and conditional tense suggests ‘to
like’).? Brown et al. achieve a 20% improvement in the performance of a machine
translation system as a result of incorporating their algorithm into that system
(Manning and Schiitze, 1999, p.241). However, even the improved algorithm
disambiguates just 45% of sentences correctly.

Apart from high error, these ‘labelled—corpus-based’ methods suffer from an-
other serious disadvantage: disambiguated corpora are expensive and difficult to
obtain. Consequently, these methods are often tested on a very small number
of words, usually of order 10. Despite the expense, several attempts have been
made to manufacture suitable artificial (that is, disambiguated) corpora. There
are two ways of creating artificial corpora: the first is to somehow disambiguate
a raw corpus manually and label sense occurrences; the second is to create ar-
tificial ambiguities using pseudo—words (as we discussed earlier in this chapter).
The first of these methods (sense labelling a raw corpus) is usually achieved us-
ing a ‘bilingual corpus’. Bilingual corpora are often produced by multi-national

organisations such as the European Union, the United Nations or the Canadian

9Both of these examples are copied from Brown’s paper (Brown et al., 1991).



CHAPTER 2. STATISTICAL RESOLUTION 34

Parliament (which routinely produce documents in several languages). Such tran-
scripts provide good sentence alignment between translations and have proved to
be relatively successful tools in word sense disambiguation. Brown et al. (Brown
et al., 1991) and Gale, Church and Yarowsky (Gale, Church and Yarowsky, 1992a)
use the Canadian Hansard for word sense disambiguation.

The lack of disambiguated data has led some researchers to experiment with
the use of raw (ambiguous) corpora; techniques which use raw corpora are com-
monly referred to as unsupervised disambiguation techniques. Unsupervised dis-
ambiguation cannot assign senses (that is, semantic labels) to word occurrences;
instead, unsupervised disambiguation aims to achieve word sense ‘discrimination’
(to discriminate between groups without labelling them). Recall that Gale’s al-
gorithm requires us to calculate P(v|sy), for each word occurrence w to be dis-
ambiguated, where v ranges over the elements in the context of w and s; is a
sense of w. This calculation uses empirical evidence taken from a labelled corpus,
(that is, a training set). By contrast, since no such training set is available, in
Schiitze’s unsupervised algorithm, P(v|sy) is calculated as follows: start with a
random initialisation of the ‘parameters’ P(v|s;) and then re—estimate them us-
ing the iterative EM (Expectation—-Maximisation) algorithm. Details of the EM
algorithm are provided by Manning and Schiitze (Manning and Schiitze, 1999,
pp.518-527). The main advantage of this method is that it does not require
any disambiguated material. Another (possible) advantage is that the algorithm
tends to split dictionary senses into ‘finer—grained’ senses. However, the ‘cluster
groups’ identified by unsupervised word sense disambiguation procedures rarely
coincide with dictionary senses or human sense assignment. Furthermore, al-
though Schiitze’s algorithm is good at differentiating between fine-grained pol-
ysemous word senses it sometimes fails to spot homonymy. Therefore, Manning
and Schiitze suggest that unsupervised disambiguation is probably best suited
to topic specific texts, such as a Chemistry book (since they hypothesise that,
in such sources, polysemy is harder to resolve than homonymy, and homonymy
is less frequent than polysemy anyway). A summary of Schiitze’s algorithm is
provided by Charniak (Charniak, 1996a, pp.151-155) and Manning and Schiitze
(Manning and Schiitze, 1999, pp.253-256). A number of other unsupervised al-
gorithms have been suggested by various authors; for example, Zernik (Zernik,
1991), Pereira et al. (Pereira et al., 1993), Dolan (Dolan, 1994), Pederson and
Bruce (Pederson and Bruce, 1997) and Chen and Chang (Chen and Chang, 1998).



CHAPTER 2. STATISTICAL RESOLUTION 35

However, unsupervised disambiguation algorithms are not as successful as we
might hope; in general, performance is approximately 5% to 10% lower than that
of the best dictionary—based algorithms (Manning and Schiitze, 1999, p.256).
Indeed, Pederson and Bruce report just 65% correct disambiguation (Pederson
and Bruce, 1997) even though, on the corpus used, 73% of the instances could
be correctly disambiguated just by (blindly) choosing the most frequent sense of
each word! Levow presents a summary of best—known current data—driven word
sense disambiguation techniques (Levow, 1997). This concludes our presentation
of data—driven word sense disambiguation.

We have seen that current knowledge-driven and (to an even greater extent)
data—driven (supervised and unsupervised) word sense disambiguation algorithms
are somewhat limited. Other (best-known) word sense disambiguation algorithms
include those due to Quillan (Quillan, 1969), Hayes (Hayes, 1978), Hirst (Hirst,
1987), Luk (Luk, 1995) and Yarowsky (Yarowsky, 1995). Unfortunately, other
current approaches to word sense disambiguation are (in general) even worse than
those which we have discussed. We therefore argue that the problem of lexical
ambiguity might profit from the enterprise of underspecification.

Information about state-of-the-art word sense disambiguation algorithms
(and how successful they are) is collated and updated as part of the SENSE-
VAL (the Evaluation of Word Sense Disambiguation Systems) project. Kilgar-
riff and Palmer (Kilgarriff and Palmer, 2000) and Edmonds (Edmonds, 2002)
present brief summaries of this project.'® Kilgarriff and Palmer claim that the
best word sense disambiguation algorithm evaluated by the SENSEVAL project
achieves 77% correct disambiguation (compared to human performance of 95% at
the same task) and the best unsupervised algorithm tested achieved 63% correct
sense discrimination (Kilgarriff and Palmer, 2000). Other useful surveys of word
sense disambiguation algorithms have been written by Guthrie (Guthrie et al.,
1996), Abney (Abney, 1996), Resnik and Yarowsky (Resnik and Yarowsky, 1997)
and Ide and Véronis (Ide and Véronis, 1998).

So far, we have omitted from our discussion any mention of the task of re-
solving categorical ambiguities. Deciding the grammatical categories of words is
known as part-of-speech tagging (or just ‘tagging’). In the literature, word sense
disambiguation and tagging are dealt with separately, ‘partly because of the dif-

ference between the nature of the problem[s|, and partly because of the methods

OFurther information is also currently available online at http://www.senseval.org/.



CHAPTER 2. STATISTICAL RESOLUTION 36

that have been used to approach them’ (Manning and Schiitze, 1999, p.231). We
now turn our attention to the tagging problem. Having argued that current word
sense disambiguation algorithms are limited, we now investigate the success of

current tagging techniques.

2.2 Resolving Categorical Ambiguity: Tagging

Many words suffer from categorical ambiguity (that is, at least two of their senses

belong to different grammatical categories).!!

In tagging we try to determine
which category is most likely for a particular occurrence of a word in a sentence.
Therefore, ‘tagging is a case of limited syntactic disambiguation’ (Manning and

Schiitze, 1999, p.341). We state the tagging problem as follows:

Problem 2.2.1 (Part—of-Speech Tagging). Given a sentence containing one
or more ambiguous words, determine the most likely grammatical category for

each word.

Obviously, categorical ambiguity is the only reason why tagging is non—trivial,
since without it, all we would need to do is map every word to its unique category.
It is important to understand why tagging is not the same as ‘parsing’. Parsing
is the process of reconstructing the derivations (or ‘phrase structure trees’) that
give rise to a particular sequence of words. Tagging, on the other hand, is the
process of determining the syntactic categories of the words in a sentence (and not
the phrase structure). Tagging is generally considered to be an easier task than
word sense disambiguation; however, the most successful tagging algorithms still
only achieve about 97% accuracy — even though a simple algorithm, in which we
always choose the most frequent categories (determined from tagged corpora'?)
tags 90% of words correctly (Charniak, 1996a, p.49). Therefore, we must evaluate
tagging algorithms against a 90% lower bound bench-mark. Clearly, frequency of
usage is very useful information in tagging, but what other information is avail-
able? One source of information we might use is our knowledge about grammar.
For example, consider the sentence ‘heavy boats sink’. Suppose that we wish to

establish which grammatical category the occurrence of ‘sink’ should belong to:

"DeRose claims that in the Brown Corpus, 4100 (out of 39440) words suffer from categorical
ambiguity — about 10% (DeRose, 1988).

12We say that a corpus is tagged if each word in that corpus is labelled (or ‘tagged’) with its
part—of—speech.



CHAPTER 2. STATISTICAL RESOLUTION 37

verb (meaning to become submerged) or noun (referring to a plumbing fixture).
According to elementary linguistics, and in particular standard grammar, a sen-
tence may be constructed from an adjective followed by a noun (a noun—phrase)
followed by a verb (a verb—phrase), but not from an adjective followed by two
nouns. That is, grammars (typically) permit us to parse ‘heavy boats sink’ as

follows:

[[[heaVy]Adj [boats]y Jxp [sink]]y |,
but not

* [[[heavy] g [boats]y |xp [sink]]y ]s-

We infer that in this sentence, ‘sink’ must be tagged ‘verb’. But how far can
such (generic) syntagmatic constraints get us? Unfortunately, Greene and Ru-
bin’s (syntagmatic) ‘rule-based’ tagger tags just 77% of words correctly (Greene
and Rubin, 1971). It would therefore seem that we need to seek out a more
sophisticated solution.

Most tagging algorithms use local contextual information (of each target
word). For example, if the word to be tagged is preceded by ‘the’ then the
target word is almost certainly part of a noun-phrase. Suppose that w;, de-
notes the sequence of (natural language) words wy, ..., w,. We want to find a
sequence of grammatical categories (or ‘tags’) ty,...,t,, which we denote %,
that maximises P (1 ,|w; ). It is not surprising that estimating this probability
directly from corpora is in reality (currently) infeasible, due to the size of the com-
putations involved. Fortunately, we can proceed using approximation methods.
Before we discuss these methods we re—write the above conditional probability

function using Bayes’ Rule:

P(wl,n|t1,n)

P(tl,n‘wl,n) - ‘P(/u)1 )

- P(t1n)-
Since we want to maximise P(t; ,|w;,) we can eliminate the denominator of the
above expression. Therefore, the simplified task is to find a sequence of tags ¢,

which maximises
P(wla”|tlsn) ) P(tla”)' (2'1)

The above probabilities are usually approximated by applying particular inde-
pendence assumptions. We now discuss (the best-known) current methods of

approximating the probabilities in expression 2.1.



CHAPTER 2. STATISTICAL RESOLUTION 38

A (relatively) well-known way of approximating the required probabilities is to
use n—gram models, usually bigram or trigram models. Under the n—gram model,
P(wynlt1,) is approximated by assuming that the assignment of any particular
tag is independent of (the assignment of) all other tags, except the previous
n — 1. In the bigram (or 2-gram) model this means that only the previous two

tags matter; that is,
n

P(ty,) ~ H P(t;[ti—1),

i=1
where ? is a ‘virtual’ tag with probability 1. We also assume that a word appears
in a category independently of the words in the preceding or succeeding categories,

this is approximated by:

n

P(wl,n tl,n) ~ HP(’U}At,)
i=1
Therefore, 2.1 can be approximated as:
n
P(wypnltyn)-P(trn) = [ [ Plwilts).P(tilti-). (2.2)
i=1
That is, under the bigram model we must find the sequence of tags ¢i,...,1%,

which maximises 2.2. We cater for the first word of any sentence by creating
a ‘virtual’ tag (or ‘pseudo-tag’) which we denote ‘first’ to take the value of
to. But how do we compute P(w;|t;) and P(t;|t;—1)? Let ¢ and ¢’ be (distinct)
elements of the tag set. Then,

P(t']t) =

where C(t,t') is the number of times the tag t is followed by the tag ¢’ in the
(tagged) corpus, and C(t) is the number of words tagged by ¢ in the (tagged)

corpus. Also, if w is any word in the lexicon then,

P(w|t) = ¢

where C(w,t) is the number of occurrences of w which are assigned tag t in
the (tagged) corpus. At best, this approach tags just 95% of word occurrences
correctly (Samuelsson and Voutilainen, 1997).



CHAPTER 2. STATISTICAL RESOLUTION 39

We now take a brief excursion to spell out the relationship between the n—
gram models we have been discussing and Markov models (Markov, 1913). Both
Markov models and n-gram models represent situations which give rise to a
sequence of random variables that are not independent, but are such that the
value of any variable in the sequence depends on the value of its predecessors.
The Markov assumption is that, to calculate the value of the next variable in the
sequence we need only to know the value of the current variable (and not all of its
predecessors). This assumption is commonly referred to as the ‘limited horizon’
assumption. Formally, suppose that X = (Xi,..., Xr) is a sequence of random
variables taking values in some finite set S = {s1,...,s,} called the ‘state space’

such that the so—called ‘limited horizon’ property holds:

Limited Horizon

P(Xt—i—l = $k|X1, e ,Xt) = P(Xt+1 = 8k|Xt),

then we call X a ‘Markov Chain’. Markov chains are used to model the probability
of linear sequences of events. For our purposes, we will view the sequence of tags
in a text as a Markov Chain. We assume that the tag assigned to each word
depends only on the previous tag (and no earlier tags) and that this dependency
does not change as we continue to tag other words (so—called ‘time invariance’).
It should be clear that (n'"—order) Markov models are the same as n—grams (the
last element of the n—gram being the element that we are predicting). Therefore,
in the sequel, we treat the terms ‘n—gram Model’ and ‘(n'"~order) Markov Model’
as being synonymous. End of excursion.

Unfortunately, using approximation 2.2 to tag text is computationally ineffi-
cient, since such a scheme requires us to evaluate over all possible taggings. A
popular way of refining the ‘Markov Model Tagger’, which successfully tackles this
problem, is to augment the tagger with Viterbi’s (iterative) algorithm (Viterbi,
1967). Viterbi’s algorithm enables us to efficiently compute two fundamental
functions: the first is a function which tells us the probability that tag ¢ is as-
signed to a word w; the second tells us the most likely tag ¢; for word w; given that
(we currently know that) the word w; ; is tagged by ¢; ;. A detailed discussion
about how Viterbi’s algorithm increases the efficiency of Markov Model Taggers
is provided by Manning and Schiitze (Manning and Schiitze, 1999, pp.349-351)
and Allen (Allen, 1995, pp.202-204).



CHAPTER 2. STATISTICAL RESOLUTION 40

Unfortunately, even with Viterbi’s algorithm, Markov Model Tagging is still
not trouble—free. Throughout, we have (implicitly) assumed that all of the words
occurring in the sentences we wish to tag also appear in the tagged corpus (that
is, in our training set). However, it is quite common for words to appear in the
target text but not in the tagged corpus. Clearly, we must find some way of pro-
cessing these ‘unknown words’. Recall that simply selecting the most frequent
tag for each word results in 90% accuracy; it should therefore not surprise us that
‘the differing accuracy of different taggers over different corpora is often mainly
determined by the proportion of unknown words, and the smarts [that is, ‘the
technical tricks’] built into the tagger to guess the part—of-speech of unknown
words’ (Manning and Schiitze, 1999, p.351). But how should we make these
guesses? Well, the most sensible way to proceed is to try to use features of the
unknown words (and of their contexts) to make informed guesses as to which
(grammatical) categories they should belong to. The information gathered from
such features is usually expressed as a set of rules (these rules are sometimes
referred to as context frame rules). In addition to contextual information, many
taggers use morphological information; such as, if a word ends with the string
‘ing’ and is preceded by a verb then it too must be a verb. Some taggers go
further still, using aspects of punctuation and capitalisation to choose the tags of
unknown words. In some natural languages this information can be quite prof-
itable; for example, in German, capitalisation is very informative, in particular
about how we should tag unknown nouns. Weischedel et al. (Weischedel et al.,
1993) implement a tagger which combines elements of these ideas; their algorithm
better than halves the error rate for unknown words (from about 40% to about
20%). However, even with refinements, ‘the better models typically perform at
about the 95% level of correctness: that is, about one word in twenty is given the
wrong part—of-speech’ (Charniak, 1996a, p.49).

Another approach to tagging is Brill’s transformation—based learning algo-
rithm (Brill, 1995). In common with Markov Tagging, Brill’s technique needs
a tagged corpus as training set. The key idea is to re—tag the entire corpus by
assigning each word its most frequent tag (introducing about a 10% error rate).
A training model is then applied to our re-tagged version of the corpus until it
achieves a tagging which is close to correct — that is, until our re-tagging is almost
undone. The transformations that the training model used to perform this can

then be applied to a new text (once we have re-tagged it by mapping each word



CHAPTER 2. STATISTICAL RESOLUTION 41

to its most frequent tag). Brill reports about 97% accuracy using this method
(Brill, 1995, p.23).

There are many other tagging algorithms currently in use, including those sug-
gested by the following (non—exhaustive list of) authors: Cherry (Cherry, 1978),
Jelinek (Jelinek, 1985), Garside (Garside, 1987), Church (Church, 1988), Benello
(Benello et al., 1989), Karlsson (Karlsson, 1990), Kupiec (Kupiec, 1992), Char-
niak (Charniak et al., 1993), Schmid (Schmid, 1994), Voutilainen (Voutilainen,
1995), Daelemans (Daelemans et al., 1996), Ratnaparkhi (Ratnaparkhi, 1996) and
Thorsten (Thorsten, 2000). However, as we have seen, even the most successful
tagging algorithms are not completely adequate — tagging at best 97% of words
correctly (Manning and Schiitze, 1999, p.371). So once again we have seen that
state—of-the—art resolution is somewhat limited, supporting our argument that
our study of underspecification is worthwhile. This completes our presentation
of part—of-speech tagging. We now turn our attention to resolution methods for

syntactic ambiguities, so—called probabilistic parsing techniques.

2.3 Resolving Syntactic Ambiguity: Probabilis-

tic Parsing and Attachment Resolution

Many sentences have more than one possible phrase structure and therefore more
than one parse.!® Our aim is to use probabilities to predict which of the possible
parses of a sentence is most likely, that is, we want to resolve syntactic (or ‘struc-
tural’) ambiguities using probability theory. The possible structures of a sentence
are traditionally represented as parse trees. Conventional parsing aims to take
a sentence s and compute its parse trees ¢t according to some pre-determined
grammar G. Probabilistic (or ‘statistical’, or even ‘stochastic’) parsing aims to
rank these parse trees by plausibility, or perhaps just to return the most likely
parse. That is, probabilistic parsers disambiguate and rate how likely different
parses are as they parse; by contrast, conventional parsers simply list all possible
parses and perhaps choose between them using semantics or world knowledge

afterwards. We define the probabilistic parsing task as follows:

Problem 2.3.1 (Probabilistic Parsing). Given a sentence with more than one
possible parse, determine the most likely parse for that sentence.

13Gee Church and Patil (1982) and Martin et al. (1987) for an indication of just how bad the
situation is!




CHAPTER 2. STATISTICAL RESOLUTION 42

The simplest approach to probabilistic parsing is to count the number of times
each Context—Free Grammar (CFG) rule is used in a (parsed) corpus and then
use this information to estimate the probability that the rule will be used in the
target text. That is, we estimate the probabilities of rules based on their relative
frequency in the (parsed) corpus. Algorithms which exploit this idea are called
Probabilistic Context—Free Grammars (PCFGs).

2.3.1 Probabilistic Context—Free Grammars (PCFGs)

A Probabilistic Context—Free Grammar is simply a Context—Free Grammar aug-
mented with empirically estimated probabilities attached to each rule; that is, a
PCFG is a ‘CFG with probabilities added to rules, indicating how likely different
rewritings are’ (Manning and Schiitze, 1999, p.382).1

Consider the (fairly typical) CFG rule VP — V NP. Suppose that, in our
training corpus exactly 300 constituents are assigned the ‘category’ VP and that
exactly 118 of these ‘use’ the rule VP — V NP. Then, under the PCFG model,
we can estimate the probability that this rule will be used in the target text as
follows:

P(VP — V NP|VP) = U8 0393,
300
But how do these probabilities enable us to select ‘most likely’ parses? To answer
this question we paraphrase an example from Manning and Schiitze (Manning
and Schiitze, 1999, pp.384-385).

Consider the simple PCFG in table 2.1 which we denote G.'°> Let s denote
the (syntactically ambiguous) sentence ‘astronomers saw stars with ears’. Under
grammar G, sentence s has two possible parses which we depict by trees ¢; and
to in figures 2.1 and figure 2.2 respectively. To find the probability of a tree in a
PCFG model we simply multiply the probabilities of the rules that built its local
subtrees; that is, the probability of each parse is the product of the probabilities

of all of the rules used in the parse tree. Therefore,

14Probabilistic Context—Free Grammars were introduced by Booth and Thomson (Booth and
Thomson, 1973).
15This table is copied from Manning and Schiitze (Manning and Schiitze, 1999, p.384).



CHAPTER 2. STATISTICAL RESOLUTION 43

S — NP VP 1.0 NP — NP PP 04
PP—-PNP 1.0 NP — astronomer 0.1
VP> VNP (.7 NP — ears 0.18
VP —- VP PP 0.3 NP — saw 0.04
P — with 1.0 NP — stars 0.18
V — saw 1.0 NP — telescopes 0.1

Table 2.1: A simple Probabilistic Context-Free Grammar (PCFG).

N

NP().l VPO.?
astronomers Vi NP4
saw NPy.1s PP

/\

stars P1_0 NPO.18

with ears

Figure 2.1: One of two possible parses of the structurally ambiguous sentence
‘astronomers saw stars with ears’. We denote this tree t;. Note that non—terminal
nodes are subscripted with the probability of the local tree they dominate.



CHAPTER 2. STATISTICAL RESOLUTION 44

N

NPg.1 VPg.3

| N

astronomers VPy.; PP,

/N /N

Vio NPy.18 Pio NPy.18

saw stars with ears

Figure 2.2: One of two possible parses of the structurally ambiguous sentence
‘astronomers saw stars with ears’. We denote this tree t,. Note that, again
non—terminal nodes are subscripted with the probability of the local tree they
dominate.

P(t1]s',G) =~ 1.0x0.1x0.7x1.0x0.4x0.18x1.0x 1.0 x 0.18
= 0.0009072,

P(ty]s',G) ~ 1.0x0.1x0.3x0.7x1.0x0.18 x 1.0 x 1.0 x 0.18
0.0006804.

But how can we justify multiplying probabilities in this way to estimate likeli-
hood? According to Charniak, we can derive the product rule for tree proba-
bilities given certain assumptions about subtree independence (Charniak, 1996a,
p.76). These assumptions are: the probability of a subtree does not depend on
where in the string the words it dominates are (place invariance assumption); the
probability of a subtree does not depend on words not dominated by the subtree
(context free assumption); and, the probability of a subtree does not depend on
nodes in the derivation outside the subtree (ancestor free assumption).!6 We de-
duce that the most likely parse for astronomers saw stars with ears is t, since
P(ti|s',G) > P(t]s', G). We note in passing that ), P(t|s’, G) is the probability
that (according to grammar G) sentence s’ occurs in the target text (Manning
and Schiitze, 1999, p.383). Charniak (Charniak, 1996b) uses the relative fre-

quency of local trees in the Penn Treebank to assign probabilities to the rules of

16These assumptions are listed by Manning and Schiitze (Manning and Schiitze, 1999, p.384)
and a derivation of the multiplication of probabilities rule from these assumptions is provided
by Charniak (Charniak, 1996a, pp.78-79).



CHAPTER 2. STATISTICAL RESOLUTION 45

his PCFG. A treebank is exactly what its name suggests it is: a bank (or col-
lection) of (parse) trees. The best—known treebank is the Penn Treebank which
consists of (parsed) sentences taken from the Wall Street Journal. As we might
expect Charniak’s technique is somewhat limited; in fact Charniak reports just
88% accuracy (Charniak, 1996b).

One advantage of PCFGs is that they can be used to rule out unnatural
computer—generated parses. For example, the sentence ‘list the sales of the prod-
ucts produced in 1973 with the products produced in 1972’ is reported to have
455 (computer-generated) parses (Martin et al., 1987); however, it seems highly
unlikely that any human would generate all of these parses. It is hoped that
PCFGs might help to eliminate those parses that are syntactically possible but
highly unlikely. An obvious disadvantage of PCFGs is that they ignore all lexical
and contextual information and instead use only structural information. It is not
surprising therefore that ‘these techniques [only] identify the correct parse about
50 percent of the time’ (Allen, 1995, p.212). To improve this situation, some
authors have tried combining PCGFs with various other theories. For example,
Magerman and Mitchell (Magerman and Mitchell, 1991) combine a PCFG with
Church’s trigram part—of-speech tagger. Magerman and Mitchell report that
their (‘PEARL’) algorithm parses 88% of a 40 sentence text segment correctly.
This completes our presentation of PCFGs. Manning and Schiitze (Manning and
Schiitze, 1999, ch.11, pp.381-404) and Charniak (Charniak, 1996a, pp.75-101)
present comprehensive introductions to PCFGs.

Other, more general, parsing techniques are split into two categories: lexi-
calized and non—lexicalized. A probabilistic parser is said to be lexicalized if it
exploits knowledge of lexical dependencies (between words); by contrast, non—
lexicalized parsers ignore lexical information. The best-known non-lexicalized
parsers are: Probabilistic Context—Free Grammars and Data—Oriented Parsing
(Bod, 1996), (Bod, 1998), (Bod et al., 2003), (Sima’an et al., 1994). Unfortu-
nately, even the best non-lexicalized probabilistic parsers are less than 90% accu-
rate. The best—known lexicalized parsers are History—Based Grammars (Black et
al., 1993), the SPATTER algorithm (Magerman ,1995), Dependency—Based parsing
(Collins, 1996) and Attribute—Value Grammars (Abney, 1997). Unfortunately, it
is reported that these algorithms only parse between 75% (HBG) and 88% (DBP)

of sentences correctly.



CHAPTER 2. STATISTICAL RESOLUTION 46

2.3.2 Attachment Ambiguity

As we said in the introduction; many sentences in which a prepositional phrase is
preceded by an object noun—phrase suffer from attachment ambiguity; for exam-
ple, ‘I saw a man with a telescope’. Fortunately, ‘in most cases simple statistics
can determine which attachment is the correct one’ (Manning and Schiitze, 1999,
p.279). But where do we obtain these ‘simple statistics’ from? Our first port—
of—call is, as it has been so often, the corpus: we simply count co—occurrences of
the verb (saw in our example) and the preposition (with) and compare this with
the number of co—occurrences of the noun (telescope) and the preposition (with).
This idea is explained by Hindle and Rooth:

Our proposal is to use co—occurrence of verbs and nouns with prepo-
sitions in a large body of text as an indicator of lexical preference.
Thus, for example, the preposition to occurs frequently in the context
send NP —, that is after the object of the verb send. This is evidence
of a lexical association of the verb send with to. Similarly, from oc-
curs frequently in the context withdrawal —, and this is evidence of a
lexical association of the noun withdrawal with the preposition from.
(Hindle and Rooth, 1993, p.3)

In general the goal is to develop a ‘procedure to guess whether a preposition is
attached to the verb or its object when a verb and its object are followed by a
preposition’ (Hindle and Rooth, 1993, p.10). Hindle and Rooth make the (sim-
plifying) assumption that, in every case of attachment ambiguity, the preposition
attaches either to the verb or the noun (ignoring the fact that the preposition may
be licensed by neither — in sentences such as ‘The supreme court today agreed to
consider reinstating the murder conviction of a New York City man who confessed
to killing his former girlfriend after police illegally arrested him at home’).!” For
any preposition p, Hindle and Rooth choose to either attach p to the verb v or

to the noun n using a likelihood ratio A as follows:

P(Attach(p) = v|v, n)
P(Attach(p) = njv,n) |

A(v,n,p) = log, (2.3)
We choose verb attachment for large positive values of A and noun attachment
for large negative values. The probabilities in 2.3 are estimated by looking at

17This sentence is used by Hindle and Rooth (Hindle and Rooth, 1993, p.8).




CHAPTER 2. STATISTICAL RESOLUTION 47

relative frequencies (of noun and verb attachment) in corpora.

Unfortunately, Hindle and Rooth report a 20% error rate for their so—called
‘Lexical Association’ algorithm (compared to a 12% to 15% human error rate
for the same task). Further, when tested on a set of 800 sentences (taken from
a 13 million word sample of Associated Press stories from 1989), the Lexical
Association procedure recognised about 85% of the 586 actual noun attachment
examples as noun attachments, and just 70% of the actual verb attachments as
verb attachments (Hindle and Rooth, 1993, p.18). In this section, we have seen
that current resolution techniques for syntactic ambiguity are limited. In the
following section we will assess current resolution methods for operator scope

ambiguity.

2.4 Resolving Scope Ambiguity: Scopal Prefer-

ences

It is widely accepted that ‘scopal ambiguities are problematic for language pro-
cessing systems; resolving them might lead to a combinatorial explosion’ (Gambéck
and Bos, 1998, p.433). Consider for example, the sentence ‘everyone didn’t go to
the movie’. We can either interpret the quantifier everyone as having scope over
the negative not (meaning that not one person went to the movie), or we can
interpret the negation as having scope over the quantifier (meaning that at least
one person didn’t go to the movie).!® The task of resolving scope ambiguity is

simply:

Problem 2.4.1 (Resolution of Scope Ambiguity). Given a sentence with
more than one operator (for example, a quantifier and a negation or two quanti-

fiers) determine the intended ‘scoping relation’ between these operators.

It is hypothesised that humans (subconsciously) use some sort of ‘rules—of-
thumb’ when processing scope ambiguous sentences; these rules-of-thumb are
usually referred to as scopal preferences. In this section we present a (very brief)
appraisal of scopal preferences. The simplest example of a scopal preference is the
so—called left-to—right principle (or sometimes ‘linear order principle’): “In simple

sentences the leftmost quantified phrase generally takes wide scope”. Consider

18This example is paraphrased from Manning and Schiitze (Manning and Schiitze, 1999,
p.111).



CHAPTER 2. STATISTICAL RESOLUTION 48

for example the scope ambiguous sentence ‘every kid climbed a tree’. According
to the left—to-right principle ‘every kid’ should (take wide) scope over ‘a tree’ —
suggesting that we should ‘prefer’ the reading that corresponds to the formula
Vr(kid(z) — Jy(tree(y) A climed(z,y))), which of course we do. It has been sug-
gested that the leftmost quantified phrase ‘every kid’ takes wide scope over ‘a
tree’ because it is processed first (Lakoff, 1971). However, this principle proves to
be too simplistic to resolve an acceptable proportion of scopal ambiguities. For
example, the sentence ‘I saw a picture of each child’ has the preferred reading in
which ‘each child’ takes wide scope, and not narrow scope as the left—to-right prin-
ciple would predict. Indeed, it is widely accepted that ‘order has little to do with
the determination of quantifier scope’ (Ioup, 1975, p.37). Ioup justifies this claim
by taking lots of example sentences from fourteen different natural languages. As
an alternative, Ioup proposes two hierarchies to account for scopal preferences
across languages. The first hierarchy suggested is: “generally quantifiers whose
determiner is ‘each’ or ‘the’ (take wide) scope over indefinites which in turn scope
over plural quantifiers (such as ‘all’, ‘most’ etc.)”. However, van Lehn provides
empirical evidence (based on human preferences) that this hierarchy is not quite
correct and that usually ‘each’ outscopes ‘every’ which outscopes ‘all’ which in
turn outscopes plural ‘the’ (van Lehn, 1978). The second hierarchy suggested by
Toup is: “generally, noun—phrases in subject position should (take wide) scope
over noun—phrases in the indirect object position which in turn scope over noun—
phrases in object position”. In an experiment (on 40 human subjects) Kurtzman
and MacDonald found that this preference coincided with human judgement in
just 85% of the sentences tested (Kurtzman and MacDonald, 1993).

Another suggestion links the C-command property (from government and
binding theory) and scopal preference (Jackendoff, 1972 and Reinhart, 1983).
Specifically, it is proposed that “a quantified expression takes scope over another
quantified expression if the latter is in the C—command domain of the former at s—
structure”. This principle is sometimes called the C—command principle of scopal
preference (Kurtzman and MacDonald, 1993). Another scopal preference, due to
May, is the so—called scope constraint which states that “a quantifier cannot take
scope outside of the clause in which it appears” (May, 1977). Unfortunately (and
perhaps unsurprisingly), it has been shown, mostly by Kurtzman and MacDonald,
that all of these principles are subject to a significant number of exceptions.

Gambéck and Bos (Gambéck and Bos, 1998) present an approach to scopal



CHAPTER 2. STATISTICAL RESOLUTION 49

resolution in terms of Underspecified Representation Structures, (in the sequel we
will study these structures in detail). Gambéck and Bos report that their algo-
rithm resolves about 80% of scope ambiguous expressions correctly. Alshawi et al.
(Alshawi et al., 1992) use a variety of scopal resolution techniques — including a
score which measures how far quantifiers are raised through their QLF structures.
Full details of this approach to scope ambiguity (with respect to the Core Lan-
guage Engine) are presented by Moran (Moran, 1988). Unfortunately, the best
(current) techniques for resolving scope ambiguity are less than 90% accurate.
Therefore, once more we argue that resolution is limited. This completes our
discussion on scopal resolution. We conclude this chapter with a brief assessment

of resolution techniques for ambiguities arising as a result of anaphora.

2.5 Resolving Ambiguity arising from Anaphora

Consider the sentence ‘I saw a cat chase a mouse; it was black’. Because we
are uncertain about what the anaphor ‘it’ refers to, we cannot be sure whether
it is the cat or the mouse that is black.'® We focus our discussion on Ge’s (Ge
et al., 1998) approach to this problem, since it is fairly representative of other
current techniques. Given an anaphor, a probability is assigned to each of its
potential antecedents (or ‘referents’); for each potential antecedent its probability
reflects the likelihood that it is the correct candidate. We are interested in how
these probabilities are estimated. One available source of information is the
distance (measured in words) between the pronoun and the candidate antecedent:
“the greater the distance the lower the probability”. In addition, the actual
words appearing in the noun-phrase of the candidate antecedent can provide
clues about gender, number and animaticity of the candidate antecedent. Ge’s
algorithm also exploits empirical observations such as: “noun—phrases that are
mentioned repeatedly are preferred”. Ge et al. train their model to be responsive
to these sources of information on a corpus in which all referential ambiguities are
resolved. Ge’s algorithm has two separate modules: ‘one collects the statistics on
the training corpus and the other uses these probabilities to resolve pronouns in
the corpus’ (Ge et al., 1998, p.5). Unfortunately, Ge reports just 84% accurate

pronoun resolution.

9Whether or not anybody would utter such an obviously ambiguous sentence in the first place
is questionable — see Grice’s Maxim of Manner (Grice, 1975); in particular, ‘avoid ambiguity’!



CHAPTER 2. STATISTICAL RESOLUTION 90

An example of a non-statistical approach to anaphora resolution is presented
by Mitamura et al. (Mitamura et al., 2002). Their algorithm has two steps:

The first step is to identify possible antecedents by applying a set of
pre-defined constraints. The second step is to eliminate candidates
by applying a set of selection rules (heuristics) in a particular order.
(Mitamura et al., 2002, p.3)

To select the correct antecedent, a set of ten heuristic rules are applied, these

include:
1. Prefer an antecedent that is also an anaphor.

2. If two antecedents occur in the form: (np1) of (np2), prefer (np1). But if
(np1l) is one of ‘type’, ‘length’; ‘size’, or ‘part’ then prefer (np2).

3. Prefer antecedents that attach to the same syntactic constituent (or part—

of-speech or grammatical function) as the pronoun.
4. Prefer antecedents that are conjunctions.

5. Prefer the most recent antecedent.
(Mitamura et al., 2002, pp.4-5)

Central to this algorithm is that these heuristics are ranked in order of significance
(the most significant being first); that is, ‘it is important that not every heuristic
is tried for each anaphor, and sequential ordering is used to rank the heuristics’
(Mitamura et al., 2002, p.4). This is in contrast to other methods which apply
every heuristic to every anaphor and use a weighted sum technique to make a
final selection.

Mitamura et al. report that, when implemented into the KANTOO system, their
algorithm achieves about 90% correct resolution (Mitamura et al., 2002, p.1).
Other work on the resolution of anaphoric ambiguity includes that of Carbonell
and Brown (Carbonell and Brown, 1988), Dagan and Itai (Dagan and Itai, 1990),
Kennedy and Boguraev (Kennedy and Boguraev, 1996) and Mitkov (Mitkov,
1999). Ge et al.’s account provides a good introduction to this topic, including
an overview of previous work (Ge et al., 1998, sec.7, pp.9-10). This completes

our presentation of resolution techniques. Readers interested in the resolution of



CHAPTER 2. STATISTICAL RESOLUTION ol

ambiguity arising as a result of ellipsis are referred to the work of Kehler (Kehler,
1993).

In this chapter, we have presented a brief appraisal of current ambiguity res-
olution techniques. We have seen that none of these algorithms is completely
adequate, since in each case there is a considerable degree of error (between
about 60% and 98%). Perhaps the situation is so bad that Bar—Hillel’s belief is
justified:

... the quality of fully autonomous mechanical translation, even when
restricted to scientific or technological material, will never approach
that of qualified human translators. (Bar—Hillel, 1964, p.182)

We argue that, since ambiguity resolution is limited, underspecification (a scheme
which stands in opposition to resolution) is worth investigating. We begin our
investigation of underspecification with a presentation of current Underspecified

Representation Languages (sometimes ‘URLs’).



Chapter 3

Underspecified Representation

Languages

Visiting relatives can be boring.

On first considering the logical properties of ambiguous expressions, we might
feel that the apparatus of ordinary first—order logic is adequate. More specifically,
we might try to capture the ambiguous content of natural language sentences
using disjunction. However, we argue that a disjunctive theory of ambiguity is
incompatible with compositional theories of meaning. Consider for example, the

sentences:

Nick is mad, (3.1)
Nick is not mad. (3.2)

Suppose that these sentences have two readings each (due to the lexical ambigu-
ity of the word ‘mad’ — meaning either ‘insane’ or ‘angry’). Under a disjunctive
theory of ambiguity we would encode the ambiguous content of sentence 3.1 using
the first-order formula ‘insane(nick) V angry(nick)’. If we assume that negated
natural language sentences should be (systematically) interpreted as the negation
of the interpretations of their non—negated counterparts, then to obtain a repre-
sentation of 3.2 we would simply negate our representation of 3.1 resulting in the
formula ‘—(insane(nick) V angry(nick))’. However, we argue that under a disjunc-
tive theory of ambiguity we would intuitively represent the ambiguous content

of sentence 3.2 by the first-order formula ‘—insane(nick) V —angry(nick)’ which

52



CHAPTER 3. UNDERSPECIFIED REPRESENTATION LANGUAGES 53

is not logically equivalent to ‘—(insane(nick) V angry(nick))’. Clearly, such an
interpretation fails to do justice to the way ambiguity interacts with logical con-
structions in English sentences; so that for example, negation cannot be treated
systematically. Therefore we may rule out a disjunctive theory of ambiguity.!
We now describe the current approaches to underspecified representation, focus-
ing on the syntax and formal disambiguation procedure of each language. In the
sequel we will use the word ‘disambiguation’ to refer to a product as well as a
process (since we feel that within context, our use of this term is clear). We call
any unambiguous disambiguation a ‘total disambiguation’; the term ‘total dis-
ambiguation’ is therefore synonymous with ‘possible reading’. Throughout this

thesis, we denote the language of ordinary first—order logic L.

3.1 A Logical Connective for Ambiguity

The Underspecified Representation Language described by van Eijck and Jaspars
(van Eijck and Jaspars, 1996, pp.5—-11) is motivated by a consideration of local
ambiguities (for example, lexical or referential ambiguities). A binary connective
(called ambiguation) denoted ‘7’ is introduced to capture the notion of a sentence
being ambiguous between two distinct readings; thus, the formula ¢; 7 @9 is am-
biguous between the readings (or “disambiguations”) ¢; and . Ambiguity only
occurs in this language as a result of the ambiguation connective. Consider for
example the sentence ‘every bank is mossy’, which we claim incorporates lexical
ambiguity, since the lexeme ‘bank’ might mean either ‘mud wall’ or ‘financial
institution’. We can represent the ambiguous content of ‘every bank is mossy’ in

the language of van Eijck and Jaspars by the formula,
Vz [ (mud_wall(z) ? financial_inst(z)) — mossy(z)].

We shall see that this formula encodes precisely the information we intend it to;
that is, we shall see that this formula has exactly two (total) disambiguations
‘Vr(mud_wall(z) — mossy(z))’ and ‘Vz(financial inst(z) — mossy(z))’, which
correspond to the two possible readings of ‘every bank is mossy’.

We denote the first-order ambiguous language Q (for “Question-Mark”).

Van Deemter presents a more detailed argument against a disjunctive theory of ambiguity
(van Deemter, 1996, pp.205-208).



CHAPTER 3. UNDERSPECIFIED REPRESENTATION LANGUAGES 54

Definition 3.1.1 (Syntax of Q). The language Q is the set of formulas gen-
erated by the usual formation rules for £ (the language of ordinary first—order

logic) together with the rule:
if r, 7' € Q, then (7 ?7') € Q.

As indicated earlier, we think of 7?7’ as a formula which is ambiguous be-
tween 7 and 7n’. For any ¢ € Q, a disambiguation of ¢ is a formula obtained
by replacing zero or more occurrences of the 7—operator in ¢ by either its left or
right operand, not necessarily uniformly. We will use the following definition of

disambiguation in Q:

Definition 3.1.2 (Disambiguation). Let 7 € Q. We define the disambigua-

tions of m by induction as follows:

If 7 is an atom, 7 is the only disambiguation of 7.

If 7 = —m; then ¢ is a disambiguation of 7 if and only if ¢ = -y,

where ¢; is a disambiguation of 7.

If 7 = m A then ¢ is a disambiguation of 7 if and only if ¢ = @ Ao,

where ¢; is a disambiguation of m; and s is a disambiguation of 7.

If 7 = m V7y then ¢ is a disambiguation of 7 if and only if ¢ = ¢ Vs,

where ¢; is a disambiguation of m; and 5 is a disambiguation of 7.

If m = m — my then ¢ is a disambiguation of 7 if and only if ¢ = ; —
9, where ¢; is a disambiguation of m; and ¢ is a disambiguation of

9.

If # = m, 77y then ¢ is a disambiguation of 7 if and only if ¢ is a
disambiguation of m; or a disambiguation of 5. The formula w1 7 7o

is also a disambiguation of .

If 7 = Vzm; then ¢ is a disambiguation of 7 if and only if ¢ = Vzy,,

where ¢; is a disambiguation of 7.

A formula with no occurrences of ‘7’ is called unambiguous. A total dis-
ambiguation of ¢ will be any unambiguous disambiguation of ¢. For exam-
ple, the formula ¢; — (27 (w3 A ¢4)) has total disambiguations ¢; — 9 and
©1 — (3 A py). It is important to realise that, by definition, for any ¢ € Q, all
the total disambiguations of ¢ are well-formed formulas of ordinary first—order



CHAPTER 3. UNDERSPECIFIED REPRESENTATION LANGUAGES 55

logic (£) and that all formulas of Q have at least one disambiguation. Further-
more, it is trivial to write a linear time algorithm which can compute a single
(total) disambiguation of any ¢ € Q (by simply deleting the right operand of
each occurrence of the ambiguation connective). We also note that the disam-
biguations of @1 7 (2 7 3) are exactly those of (17 pa) 7 ¢3; that is, it is clear
(inductively) that the ambiguation connective is associative. Therefore, although
“?” is a binary connective, it makes perfect sense to write formulas of the form
w17 ...7¢, for any n > 1. The main strength of this language is its mathematical
simplicity. However, this simplicity is not without cost; we shall see that Q is
not the most intuitive language for dealing with operator scope ambiguities. This

completes our presentation of the language Q.

3.2 Holes and Constraints

In this section we present four reasonably well-known (in the sub—culture of
Computational Semantics) Underspecified Representation Languages: Predicate
Logic Unplugged (Bos, 1995), Minimal Recursion Semantics (Copestake et al.,
1995), the Constraint Language for Lambda Structures (Egg et al., 1998) and
Underspecified Discourse Representation Theory (Reyle, 1993). Henceforth we
use the acronyms PLU, MRS, CLLS and UDRT to refer to these languages. We
group PLU, MRS, CLLS and UDRT together to mirror our belief that they are
the same, excepting some cosmetic differences. We begin by presenting a language
which we base on Bos’ PLU. In doing so, we aim to capture the key features of
PLU, MRS, CLLS and UDRT. We call this language H (for “Hole Semantics”);
however, it is important to stress that we will be rather liberal (for the sake of
clarity and generality) in our interpretation of Bos’ Hole Semantics (Bos, 1995).
In the sequel, we will specify exactly how each of PLU, MRS, CLLS and UDRT

differ from H and why we believe that these differences need not concern us.

3.2.1 The Language H

Consider the declarative sentence ‘every man loves a woman’. We may translate

this sentence into ordinary predicate logic in either of two ways (because it is



CHAPTER 3. UNDERSPECIFIED REPRESENTATION LANGUAGES 56

scope ambiguous), namely

Vz (man(z) — Jy(woman(y) A loves(z,y))) or
Jy(woman(y) A Vz(man(z) — loves(z, y))).

Using the language Q, we could ‘glue’ these two readings together with the am-
biguation connective ‘?’. However, doing so would mean disambiguating the
original sentence and then recreating the ambiguity from these disambiguations.
This strategy is viewed as unnatural by van Eijck and Jaspars (van Eijck and
Jaspars, 1996, p.11) and is certainly inefficient from a computational perspective,
since in general, the size of such a formula will be exponential in the number
of readings of the original sentence. Van Eijck and Jaspars express a desire to
‘represent, scope underspecification by means of a notation that allows unscoped
operators as ingredients of formulas’ (van Eijck and Jaspars, 1996, p.11), # is
such a language.

A clear (and efficient) informal description of Hole Semantics must involve the
use of pictures and examples. We therefore begin with a diagram representing
the formula in H which captures the ambiguous content of the (scope ambiguous)

sentence ‘every man loves a woman’.

Example 3.2.1. We would like to write an expression of H with the disambigua-
tions Vz(man(z) — Jy(woman(y)Aloves(z,y))) and Jy(woman(y)AVz(man(z) —
loves(z,y))). We claim that exactly these disambiguations are encoded by the

following H expression, which we (informally) depict using a diagram:

/\

I : Vz(man(z) — hy) l : Fy(woman(y) A hs)

\ /

I3 : loves(z, y)

The formulas occurring at the nodes of this diagram are taken from the syntax
of ordinary first—order logic, except that any subformula can be replaced by a hole
(the holes in our diagram are represented by the symbols hgy, h; and hsy). These
formulas are sometimes referred to as h—formulas. The key idea is that holes

can be filled (or ‘plugged’) by other formulas (which may themselves contain



CHAPTER 3. UNDERSPECIFIED REPRESENTATION LANGUAGES 57

holes); that is, we will be able to substitute formulas for holes. Therefore, in a
sense, holes may be viewed as meta—variables over formulas. Each formula in
the diagram is assigned a unique label (I1, l,...) to avoid the difficulties which
would otherwise arise as a result of duplicate copies of formulas. The arrows in
our diagram represent constraints. The existence of an arrow between two nodes
means that under any plugging, the formula at the head of the arrow must be
a subformula of the formula at its tail. To disambiguate an H-expression, we
must first find a one-to—one map (or ‘plugging’) between holes and (the labels
of) formulas which ‘satisfies’ the constraints of that #-expression. We then use
this plugging to (recursively) replace holes with formulas, until eventually there
are no holes left. The result is a (completely assembled) hole—free formula (an
element of £) which we call a ‘disambiguation’. Note that, in general, we have no
guarantee that we will be able to do this. In a nutshell, our diagram represents
a partial order on holes and formulas; disambiguation aims to make this order
more specific. That is, disambiguation can be viewed as the process by which such
constraint diagrams are ‘collapsed’ by ‘plugging’ holes with formulas in agreement
with the constraints.

The only pluggings which satisfy the constraints in example 3.2.1 are p, where
p(ho) = li, p(h1) = l> and p(he) = I3 and p', where p'(ho) = lo, p'(h1) = I3 and
p'(h2) = 1. By inserting formulae into holes according to these pluggings, we ob-
tain Vz(man(z) — Jy(woman(y) Aloves(z,y))) and Jy(woman(y) AVz(man(z) —
loves(z,y))) respectively. We now make these ideas more concrete, starting with
the formal syntax of H.

Let H and L be countably infinite sets, such that H is disjoint from all the for-
mulas in £ and H does not contain hy. Denote by £ the set of formulas obtained
by regarding the elements of H as (syntactically speaking) additional proposition
letters (O—ary predicate symbols). We will always write H = {hy, ho,...} and

L = {ll,lg, .. }

Definition 3.2.2 (Unconstrained Hole Representation). An Unconstrained
Hole Representation (or UHR) is a function & : L' — L where L' is a finite,
nonempty subset of L. If £ is a UHR, we denote the domain L' of £ by L(§) and
the set {h € H|h occurs in &(I) for some | € L(§)} by H(§).

We can now represent the sentence ‘every man loves a woman’ more formally:



CHAPTER 3. UNDERSPECIFIED REPRESENTATION LANGUAGES 58

Example 3.2.3. Let £ be a UHR with

&(l)) = Va(man(z) — hy),
£(ly) = Fy(woman(y) A hy),
£(l3) = loves(z,y).

Then L(§) = {l1,l2,l3} and H(§) = {hi, ha}. For ease of reading we display ¢ in
the following way:

{l; : Vz(man(z) — hy), lo : Jy(woman(y) A hy), I3 : loves(z,y)}.

We refer to the elements of L as labels and to the elements of H as holes.
Intuitively, labels identify fragments of logic and holes identify places in those

fragments into which material can be inserted.

Definition 3.2.4 (Constrained Hole Representation). A Constrained Hole
Representation (CHR) is a pair (£, C) where £ is a UHR and C C H(£) x L(§).
Denote by H the set of CHRs.

Example 3.2.5. Let £ be as in example 3.2.3. Then (&, {(h1,12)}), (&, {(h2,l1)})
and (&,0) are all CHRs. The first corresponds (as we shall see below) to the
unambiguous formula Vz(man(z) — Jy(woman(y) Aloves(z, y))); the second cor-
responds to the unambiguous formula Jy(woman(y) AVz(man(z) — loves(z,y)));
the third is ambiguous between the two. Note that, (£, () is the same CHR as we
depicted pictorially in example 3.2.1 on page 56.

Our next goal is to specify how the elements of H are to be disambiguated.
Notation 3.2.6. Let ho denote a fixed object, called a root; recall that hg ¢ H.

Blackburn and Bos explain that ‘the hole hg will play a special role . .. it’s used
to state constraints, but it won’t be used in formulas’ (Blackburn and Bos, 1999a,
p.84). We will see how the hole hy is used as a technical device to ensure that,
under substitution, our ‘top level’ formula is completely assembled. If H' C H,
denote by H{ the set H' U {hg}. Similarly, if £ is a UHR, Hy(¢) = H(§) U {ho}-

We refer to hg, in addition to the elements of H, as a hole.

Definition 3.2.7 (Plugging). Let £ be a UHR. A plugging for £ is a function
p: Ho(€) — L(§)-



CHAPTER 3. UNDERSPECIFIED REPRESENTATION LANGUAGES 59

Notation 3.2.8. Given any plugging p for a UHR &, we define an associated
map p: LHo — LT by:

p(h) = &(p(h)) if h € Hy(§),

() = « if ais an atom but a ¢ H(¢),
p(—e) = —Db(y),

pleny) = ble) Ap(¥),

pleVvy) = ple) VoY),

ple—=v) = ble) = bY),

p(Vzp) = Vap(e).

We denote the result of n iterations of a function f by f(™. If, for some n,
P () = prt(4)), we write p*(1p) = p™(¢); otherwise p*(2)) is undefined.

Definition 3.2.9 (Descendant). Let (£,C) be a CHR and p be a plugging for
the UHR . Given h,h' € H(£), we say that b’ is a child of h (relative to £ and
p) if &' occurs in p(h) = &(p(h)). Likewise, we say that h' is a descendant of h if
there is a sequence h' = hg,...,h, = h (m > 1) such that h; is a child of h;4
forall i (0 <i<m).

We will use our definition of descendant to characterise exactly those pluggings
which describe well-formed formulas of £. Obviously, any such plugging must
fill all holes with labels. In addition, we must avoid infinite loops in the plugging
process; that is, we will need to rule out those pluggings which are cyclic, oth-
erwise the plugging process will never terminate. The following definition makes

these ideas more formal:

Definition 3.2.10 (Admissible Plugging). The plugging p is said to be ad-
missible for (¢, C) if the following conditions hold:

1. p: Hy(§) — L(&) is a bijection,
2. No h € H(§) is a descendant of itself,

3. For all (h,l) € C, either p(h) = I, or p(h’) = [ for some h' € H(£) such that

h' is a descendant of A.

Intuitively, a plugging specifies which fragments of £ (identified by labels) are

to be inserted into which holes in Hy(£). As we have said, an admissible plugging



CHAPTER 3. UNDERSPECIFIED REPRESENTATION LANGUAGES 60

has the property that this insertion process assembles all the fragments of £ into
a single formula of £ which gets inserted into the root hg. Formally, we have:

Lemma 3.2.11. Let ({,C) be a CHR and p an admissible plugging. Then p*(ho)
exists and is an element of L. Moreover, p*(hy) contains at least one copy of
every formula &(1) where | € L(£).

Proof of Lemma 3.2.11. Note that the constraints C' play no role in this result.
That p*(ho) exists and that p*(hy) € L follow from the fact that H (&) is finite
and no h € H(§) is a descendant of itself. That is, because H (&) is finite and no
h € H(&) is a descendant of itself, each of the formulas p™ (k) for fixed n € N
must have bounded depth, and (since H() is finite) we know that the sequence
of formulas p™ (hg) for n = 1,2, ... must converge, therefore p*(ho) exists. That
every fragment £(I) gets included in p*(ho) follows from the fact that p is onto
and again from the fact that no h € H(&) is a descendant of itself. O

It is important to realise that some CHRs may have no admissible pluggings.
This arises if, for example, |Ho(€)| # |L(€)| or if the constraints in C' force some
hole to be a descendant of itself. However, we make no attempt to ban these

representations from H. This leads us to the following definition:

Definition 3.2.12 (Disambiguation). Let (£,C) € H. Then a disambiguation
of (&, C) is any formula p*(hg), where p is an admissible plugging for (£, C).

From what has just been said, it is clear that some elements of H have no
disambiguations. For example, neither of the CHRs & = {l; : pV hy, Iy : ¢ A ho}
with C' = @, or gl = {lg : p\/ hg, l4 q A h4, l5 : ’f‘} with C' = {<h4,l3>, <h3,l4>}

have any admissible pluggings.

Example 3.2.13. Consider the CHR (&, ()) where £ is defined in example 3.2.3.
The pluggings
pr:  hAyly, hyi— 1y, Ayils and
p2: hyly, hy 3, Ry

are the only admissible pluggings of (&, (). It is simple to verify that

pi(ho) = Vz(man(z) — Jy(woman(y) A loves(z,y))) and
p3(ho) = Fy(woman(y) A Vz(man(z) — loves(z,y)))

are therefore exactly the disambiguations of (&,0).



CHAPTER 3. UNDERSPECIFIED REPRESENTATION LANGUAGES 61

Note that the CHR (&, {(h1,l2)}) has p; as its only admissible plugging, since
pa(h1) = I3 # Iy and hy has no descendants (relative to py). Likewise, the CHR
(&,{(h2,11)}) has ps as its only admissible plugging.

We now take a brief excursion to investigate the computational complexity
of checking CHRs for the existence of admissible pluggings. We refer to this
checking problem (that is, the problem of determining whether a CHR has any
disambiguation at all) as the plugging problem.?

Lemma 3.2.14. The plugging problem for expressions of H is NP-complete.

We will prove the NP-hardness of the plugging problem for H by showing

3 can be encoded in terms of the plugging prob-

that the bin packing problem
lem. More precisely, the problem that we will use is actually a special case of
bin packing called ‘k—partition’; details of which are provided by Papadimitriou

(Papadimitriou, 1994, p.216, problem 9-5-32). We repeat this problem below:

Problem 3.2.15. Let £ > 2 be a fixed integer. The k-partition problem is the

following special case of bin packing: we are given n = km integers aq,...,a,
adding up to mC, such that k_i1 < a; < % for all 2. That is, the numbers are

such that their sum fits exactly in m bins, but no £ 4+ 1 of them fit into one bin,
neither can any k£ — 1 of them fill a bin. The question is then: can we find a
partition of these numbers into m groups of k, such that the sum in each group

is precisely C?

For k = 3,4,..., the k—partition problem is NP—complete. In fact, the bin
packing problem and the k—partition problem are strongly NP—complete. An
NP-—complete problem is strongly NP—complete if, after restricting any instance
of length n to contain integers of size at most p(n) (where p is polynomial), it is
still NP—complete. A strongly NP—complete problem remains NP-complete even
if we choose to represent its instances using inefficient notation such as unary
notation — since the use of such inefficient notation only increases the size of the
reduction by a polynomial amount. From a detailed consideration of the NP—
hardness proof of the bin packing problem (Papadimitriou, 1994, pp.204-206,
Thm.9-11) we may take the size of a problem instance of the k—partition problem
to be given by >_"" | a;. In other words, we do not assume binary encoding. (This

will be important for our purposes). We are now ready to prove lemma 3.2.14.

2The plugging problem is sometimes referred to as the satisfiability problem — for example,
by Koller et al. (Koller et al., 2000).
3Papadimitriou discusses bin packing in detail (Papadimitriou, 1994, pp.204-206).



CHAPTER 3. UNDERSPECIFIED REPRESENTATION LANGUAGES 62

hi Ria;+1

Figure 3.1: The encoding of the i! item of (a4, ..., a,,m,C).

7/ AN
7/ N
7/ AN
7/ N
Ve AN
7/ AN
7/ N
7/ AN
7/ N
Ve AN
4 C+1 .
lig: Pja licy1: Picn

Figure 3.2: The encoding of the j* bin of (a1, ..., a,, m,C).

Proof of Lemma 3.2.14. We will encode the 4-partition problem in terms of the
plugging problem for H. Let {(ai,...,a,, m,C) be the 4-partition problem in-

stance we wish to encode. We must construct a formula r({a1, ..., a,,m,C)) € H
which has a disambiguation if and only if (a4, ..., a,, m,C) has answer ‘yes’. We
encode the i'" item a; (for 1 < i < n) of (a4, ..., a,, m,C) by the labelled formula

li © hix N ... A hjqq1 which we represent pictorially in figure 3.1. We encode
the j** bin of (ai,...a,, m,C), which has capacity C for 1 < j < m, by the
labelled formulas /;1 : Pj1,...,ljcy1 : Pjc41 together with the set of constraints
{{hj,ljx)|1 < k < C+1}. Each P, (for 1 < k< C+1) is just a proposition
letter. We depict our encoding of the j* bin in figure 3.2. Putting these fragments
together, we construct a CHR which has the form illustrated in figure 3.3. This

reduction is formally expressed as follows:

r({ar,...,an,m,C)) = {lithia A . hig,, |1<i<n}U
{lo:hog N ... Nhom}U
ik Pip|1<j<m; 1<k <C+13,
{(lik hos) [1<F<m; 1< k< C+1})



CHAPTER 3. UNDERSPECIFIED REPRESENTATION LANGUAGES 63

h0,1 hO,m
N N hi1 hia;+1

2 C+1 N 2 C,+1 \\
o- -~ 00- -0
l1,1 li,c+1 lmy lm,c+1

Figure 3.3: The encoding of (ai,...,a,,m,C). (Note that there should be n
copies of the right-hand fragment; one for each 1 < i < n).

Given a plugging p, we can define an assignment of items to bins: assign item a;
to bin j if and only if /; is a descendant of h; according to the plugging p. We
claim that p is an admissible plugging only if our assignment is a solution to the
4-partition problem instance (as, ..., a,, m,C). Suppose that p is an admissible
plugging of r({ai,...,a,,m,C)) and suppose that h; (for some 1 < j < m)
has descendants l;,...,l; for some i1,...,4 € [1,n]. Then the number of holes
created under h; by £(1;,), . .., &(l;,) (that is, by the formulas labelled by I;,, ...,
respectively) is precisely a;, + - - -+ a;, + 1. But since these holes are plugged by
lii, ..., li,cq1 we have a;; + -+ +a; +1=C+1; that is, a;, +---+a; = C.

ik

Hence assigning a;,,...a;, to bin j fills it exactly. The proof of the converse is
similar; that is, we manufacture an admissible plugging of r({ay, ..., a,, m,C))
using a successful assignment (of items to bins) for {(as, ..., a,, m, C) by plugging
&(1;) into any hole dominated by hg ; if a; is assigned to bin C;. We know that this
reduction is polynomial because the size of the problem instance of 4—partition
is given by > | a;. O

We note in passing that if we choose to restrict the syntax of H so that each
‘H—-formula may contain at most one hole, then the plugging problem becomes
much simpler. In fact, under such circumstances, the plugging problem amounts
to looking for a linear order (subject to a ‘no—cycle’ constraint) and it is therefore
in P. This completes our presentation of the Underspecified Representation Lan-
guage H. We now discuss the differences between our version of Hole Semantics
H and Bos’ (1995) PLU.



CHAPTER 3. UNDERSPECIFIED REPRESENTATION LANGUAGES 64

3.2.2 Predicate Logic Unplugged

Our version of Hole Semantics is very similar to Bos’ PLU (Bos, 1995). Indeed,
we view H and PLU merely as notational variants of one another, accordingly,
we will not make a full presentation of PLU here.* Instead, we will specify how
the syntax of PLU differs from that of H. Readers uninterested in the details of
Bos’ PLU may skip to the next section. There are two basic differences between
the syntax of PLU and H:

1. As we have seen, CHRs in H are pairs (£,C). By contrast, Underspecified
Representations in PLU are triples (H, L,C), where the first element H
is a set of holes; the second element L is a set of labelled formulas (these
formulas may take the elements of H as subformulas — Bos calls the elements
of L h—formulas); and the third element C is a set of pairs taken from
(H U L)% In fact, the set C (called the set of ‘constraints’) takes the form:
C = {k1 < ko | k1,ko € HU L}. By contrast, the constraints in the CHRs
of H are all of the form (h,l) with h € H(§) and | € L(§). Therefore, PLU
seems to allow a freer use of constraints than #; that is, the elements of a
PLU constraint can be either holes or labels, whereas in H the first element

of a constraint pair must be a hole and the second must be a label.

2. Bos restricts the syntax of PLU in an (abortive) attempt to characterise
exactly those expressions which have at least one disambiguation. To do
this, Bos imposes a ‘meta—constraint’ on the syntax of PLU, permitting only
those expressions whose constraint diagram forms an upper semi-lattice.’

An upper semi-lattice is defined as follows:

Definition 3.2.16 (Upper Semi-Lattice). An upper semi-lattice (or
join semi-lattice) is a poset (A, <) (where < is a partial order over set A)
such that for all a,b € A, there exists a supremum (least upper—bound) of

a and b, and this supremum is in A.

By contrast, we do not impose any such restriction on the syntax of .

Fortunately, nothing really important hinges on these differences between H and

PLU; we justify this view by addressing the two points above in turn:

4A complete presentation of PLU is presented by Bos (Bos, 1995) and Monz and de Rijke
(Monz and de Rijke, 1998).
SLandman presents a gentle introduction to lattices (Landman, 1991, p.234-283).



CHAPTER 3. UNDERSPECIFIED REPRESENTATION LANGUAGES 65

1. Let ¥ = (H, L,C) be an Underspecified Representation in PLU. Since H
denotes the set of holes used in U, this set is equivalent to the set H ()
in the CHR (&,C) with £ : L' — L. Also, because L is just the set of
labelled h—formulas of ¥ it is equivalent to the set L(§), provided we let L’
be exactly the set of labels used in ¥. Finally, the freer use of constraints
in PLU (compared with H) does not give PLU superior expressive power.
This claim hinges on the fact that it makes no sense to allow formulas
without holes to dominate anything. Therefore, instead of putting a label [
into the first element of a constraint pair, we can put the holes occurring in
the formula labelled by [/ in its place. Also, since all formulas are uniquely
labelled, we can express that a hole h is dominated by some other hole A’
by asserting that the label(s) of the formula(s) in which A occurs is (are)
dominated by A'.

2. Unfortunately, Bos does not prove that every PLU expression whose con-
straint diagram forms an upper semi-lattice has at least one admissible
plugging, nor that admissible pluggings always yield well-formed formulas
of £ as disambiguations. Moreover, it is easy to show that Bos’ upper
semi-lattice restriction is necessary but not sufficient. It is interesting to
note that similar constraints are discussed by van Genabith and Crouch,
but they claim that the lattice constraint stems from purely linguistic con-
siderations (van Genabith and Crouch, 1996, pp.5-6); by contrast, Bos’
meta—constraint has no linguistic basis. We therefore dismiss Bos’ (not

very interesting or useful) restriction on the syntax of PLU.

In general, our version of H is mathematically cleaner than Bos’ PLU. For exam-
ple, Bos does not specify how the Underspecified Representations of PLU should
be disambiguated (at least not in a mathematically precise way). In this respect,
our version of Hole Semantics provides a clearer and more precise alternative to
PLU. We now turn our attention to MRS.

3.2.3 Minimal Recursion Semantics

We claim that MRS is just a notational variant of a subset of Hole Semantics;

accordingly, we do not make a full presentation of MRS here.® Instead, we now

6A complete presentation of MRS is presented by Copestake et al. (Copestake et al., 1999).



CHAPTER 3. UNDERSPECIFIED REPRESENTATION LANGUAGES 66

turn to the task of describing how the syntax of MRS differs from that of H.
Readers uninterested in the details of MRS can skip to the next section.

In common with Underspecified Representations in PLU, Underspecified Rep-
resentations in MRS contain three elements: a ‘top hole’ (like hg in ), a set of
labelled h—formulas (called elementary predications in MRS) and a set of con-
straints (which, in common with the constraints of H, we view as a set of pairs).
There are five principal differences between H and MRS. We begin by listing

these differences and then we will argue that they are not important.

1. The syntax of MRS allows ‘h—formulas’ to be co—indexed, the syntax of
‘H does not. That is, an expression of MRS may contain two (or more)
h-formulas I/; : ¢ and [; : ¢ sharing a common label; by contrast, every

h—formula in a H-expression is assigned a unique label.

2. The notation used to represent quantified noun—phrases in MRS is different
to that in H. For example, in MRS the quantifier ‘every’ may be repre-
sented by ‘every(z, hi, ho)’ where h; is a ‘scope’ (or ‘restriction’) argument
place-holder and hs is a ‘body’ (or ‘focus’) argument place-holder; such

expressions are not permitted by the syntax of H.

3. Instructions for ‘surface level’ pluggings can be encoded within MRS h—
formulas; by contrast, this is not possible in 4. For example, it is per-
missible for an MRS expression to contain both of the labelled h—formulas
li : every(z,hj, hy) and h; : man(z). Because man(z) is labelled by hj,
which occurs as a hole in every(z, h;, h;) any plugging of the MRS expres-
sion containing both of these h—formulas must fill ~; with man(z). This
notation cannot be exactly copied in H, because in any expression (£, C) of
H, the sets H() and L(€) are disjoint.

4. Although syntactically speaking the constraints of both MRS and H are
pairs, MRS constraints are not interpreted as ‘dominance constraints’ (as
their counterparts are in H). Instead, constraints in MRS are interpreted
in terms of the ‘equality modulo quantifiers’ (QEQ) condition:

Definition 3.2.17 (QEQ Condition). A hole h is QEQ (Equal Modulo
Quantifiers) to some label [ just in case h = [ or there is some (non—
repeating) chain of one or more labelled (quantified) h—formulas F, ..., E,

such that A is equal to the label of E;, [ is equal to the ‘body argument’



CHAPTER 3. UNDERSPECIFIED REPRESENTATION LANGUAGES 67

hole of E, and, for all pairs in the chain E,,, E, the label of E,,; is
equal to the ‘body argument’ of E,,. If h is QEQ [ then we write A <, [.

(Note that, despite its name, this relation is not symmetric).

5. The notion of ‘pluggings’ does not occur in MRS. Instead, in MRS holes
(called ‘handle arguments’) are associated with h—formulas by ‘equating’
holes and labels. If a hole A is ‘equal’ to label [ in the MRS expression
¢ (that is, all instances of [ in 1 are replaced by h) then to (partially)
disambiguate 1, we must substitute the conjunction of the formulas now
labelled by A into each occurrence of the hole h. It is hoped that this process
will ‘collapse’ expressions of MRS into well-formed formulas of L.

There are no other differences between MRS and ‘H. We will now argue that all of
these differences may be trivially dismissed. We deal with each of the differences

in turn:

1. Co-indexing of h—formulas in MRS basically amounts to a notational vari-
ant of conjunction. That is, the way in which co—indexed h—formulas are
interpreted in MRS means that, we can replace any two co—indexed h-—
formulas /; : ¢ and [; : ¥ occurring in an MRS expression with the single
labelled h-formula /; : ¢ A 1 which has the same interpretation as the orig-
inal pair of MRS h—formulas. Since terms like /; : ¢ A7) are permitted by
the syntax of (labelled) h—formulas in #, this apparent difference between

MRS and H need not concern us.

2. Although the notation used to represent quantified noun—phrases in MRS
looks different to that in H we can easily interchange between these no-
tational alternatives. That is, the MRS h—formulas ‘every(z, h1, he)’ and
‘some(x, h1, he)’ have the same interpretation as the h—formulas ‘Vz(h; —
ho)’ and ‘z(hy A hy)’ of H respectively. Therefore, this difference too can

be ignored.

3. We can deal with any ‘surface level’ pluggings encoded in an expression of
MRS simply by doing the substitution that they encode. For example, if
both of the labelled h-formulas [; : every(z, h;, hx) and h; : man(z) occur
in some MRS expression we can replace them with the single labelled h-

formula [; : Vz(man(z) — hy). Thus we have managed to capture exactly



CHAPTER 3. UNDERSPECIFIED REPRESENTATION LANGUAGES 68

the information encoded in the two original labelled h-formulas in a single
labelled h—formula which is recognised by the syntax of .

4. Clearly, dominance (or synonymously, ancestorship) is not the same as the
QEQ relation. The natural question to ask then is: Which of “<” (dom-
inance) and “<,” (QEQ) is more expressive? Copestake et al. claim that
‘the “<,” relation corresponds to an equality condition or a very specific
form of [the] outscopes [or dominance] relation’ (Copestake et al., 1999,
p.10). Indeed, it is quite transparent that for any pair (h,[), with A a hole
and [ a label, if A <, [ then h < [. However, the converse of this statement
is false. So what class of constraints can be expressed using dominance (<)
but not QEQ (<,)? Well, the “<,” relation can only be satisfied by those
pairs whose elements are equal or whose elements occur as the labels and
holes of h-formulas in a quite specific way. But this restriction is not really
interesting, since in terms of expressive power it has only a slight (nega-
tive) impact. For example, it is difficult to represent expressions in which
scope ambiguity arises as the result of the interaction of negation and any
other operator(s) using QEQ constraints. Thus, we claim that, MRS is a
notational variant of a (not very interesting) subset of . Having made this

observation, we do not feel that it merits any further discussion.

5. In ‘H and MRS, to disambiguate a formula, every hole in that formula must
be assigned a unique label. In #H we use a bijection (or ‘plugging’) between
holes and labels to describe this assignment; by contrast, in MRS holes are
associated with (unique) labels by equating each hole to some unique label.
Clearly, this difference between the way holes are associated with labels
in H and the way they are associated in MRS is not significant. Another
possible alternative would be to define ‘pluggings’ as permutations of holes

over a fixed ordering of labels (or visa versa).

We have argued that MRS is a notational variant of a subset of H. The inter-
pretation of constraints in MRS is a (not very useful) restriction of the notion of
ancestorship used in H. All of the syntactic differences between the two languages
are cosmetic and we have shown how to (trivially) interchange between expres-
sions in one language and expressions in the other. We now turn our attention to
another constraint language, CLLS, in which formulae are regarded as trees and
Underspecified Representations are defined in terms of partially specified trees.



CHAPTER 3. UNDERSPECIFIED REPRESENTATION LANGUAGES 69

3.2.4 The Constraint Language for Lambda Structures

Since its conception, CLLS (Egg et al., 1998) has been studied in some detail;
(most of this research has been conducted as part of the CHORUS project).” We
claim that all of the differences between CLLS and H are immaterial. Before
we list these differences, we need to acquaint ourselves with the basic technical
apparatus of CLLS. As usual, we begin with an informal overview.
Underspecified Representations in CLLS encode meta—level constraints over
object—level formulas (that is, formulas of ordinary first—order logic £). These
Underspecified Representations are interpreted by a special class of models. A
model is a finite (labelled) tree structure; we allow only those labelled tree struc-
tures which are (notational variants of) well-formed formulas of £ to be models
in CLLS. For any Underspecified Representation ¢ of CLLS, the set of models
which satisfy ¢ is the same as the set of well-formed formulas which satisfy the
(meta—level) constraints encoded by ¢. Therefore, the disambiguations of an Un-
derspecified Representation in CLLS are its models. The syntax of CLLS allows
us to express five types of (meta—level) constraint: dominance, labelling, inequal-
ity, scope parallelism and lambda binding. For our purposes, it will be possible
to restrict this syntax: we will allow only three types of constraint, dominance
(denoted ‘<1*’), labelling (denoted ‘") and inequality (denoted ‘#’).® Informally,
if X and Y are tree nodes then we say that ‘X dominates Y’ (written X <* Y)
if the ‘path’ beginning at the (unique) ‘root’ node and terminating at node Y
passes through node X. The root node dominates everything. Informally, the
relation symbol ‘" will be used as follows: we will write X : f(Xi,...,X,) to
indicate that the node X is labelled by the symbol ‘f’ and has children (from
left to right) Xi,..., X, respectively. The use of the these symbols and the basic
idea behind CLLS are best explained using an example. Consider once more the

scope ambiguous sentence ‘every man loves a woman’.
Example 3.2.18. We claim that the CLLS Underspecified Representation
© = vy <" vy Avg Q" vg Avy Vo (vs) Avsg :— (vy,v5) A vy : man(vg)

Avg = x A vy : Fy(vr) Ay A(vs, vg) A vg : woman(vig) A vig @ Y

N5 <* V11 N\ Vg <* V11 AN V11 : 10V€S(’U12, U13) ANV ANvig Yy

"See http://www.coli.uni sb.de/cl/projects/chorus.html for information about the
CHORUS project.
8 A complete account of CLLS is presented by Egg et al. (Egg et al., 2001).



CHAPTER 3. UNDERSPECIFIED REPRESENTATION LANGUAGES 70

V31— vyt A
V4 D IMan Vs Vg - woman V9
Vg : T V10 - y
V11 : loves
Vg 1 X V13 Y

Figure 3.4: A representation of the CLLS Underspecified Representation which
encodes the ambiguous content of the sentence ‘every man loves a woman’.



CHAPTER 3. UNDERSPECIFIED REPRESENTATION LANGUAGES 71

encodes the disambiguations of the sentence ‘every man loves a woman’. This

formula may be depicted diagrammatically as shown in figure 3.4.

The exact relationship between CLLS Underspecified Representations and
partial tree diagrams (like figure 3.4) is made clear by Koller and Niehren:

A constraint graph is a directed graph with node labels and [two]
kinds of edges: solid edges and dotted edges. Nodes of the graph
stand for variables in a constraint; node labels together with solid
edges stand for labelling constraints ... and dotted lines stand for

dominance constraints. (Koller and Niehren, 1999, p.33)

To find a model of ¢ we must find a labelled tree structure which satisfies all of
the (dominance and labelling) constraints encoded by ¢. In doing so, we must
assign labelled nodes to ‘meta—variables’, (the meta—variables in our example
are vq,...,v13). In our example, there are two structure/assignment pairs which
satisfy ¢, namely the labelled trees corresponding to the formulas Vz(man(z) —
Jy(woman(y) A loves(z, y))) and Jy(woman(y) A Va(man(z) — loves(z,y))). We
now make these ideas more formal; we begin with the syntax of CLLS.

Definition 3.2.19 (CLLS Constraint). Let X, X;,..., X,, and Y be elements
of an infinite set of meta—variables and f be an n—ary function symbol. A CLLS
constraint ¢ is a conjunction of atomic constraints; there are atomic CLLS con-

straints for dominance, labelling and inequality:
=X TYV|X:f(Xy,...,X,) | X£Y |pAY.

To define what we mean by the term ‘disambiguation’ within the context of
CLLS we must first specify precisely which class of structures we will accept as
models of CLLS constraints. To do this we will need the familiar notion of a
finite tree: V = {u,v,w,...} is a finite set of nodes and E C V x V is a set of
edges, such that (V, E) is a graph with the in-degree of each node being at most
1 and exactly one node having in—degree 0 (called the root). Let (V, E) be a finite
tree and 3 be some set of symbols such that |V| = |X|. We call any bijection
L:V — ¥ a labelling function of tree (V, E) over ¥. We call any pair consisting
of a tree and a labelling function over X a labelled tree over X. We refer to the
set ¥ as the node labels of the labelled tree ((V, E), L). In short, a labelled tree

is a tree and an assignment of symbols to the nodes of that tree.



CHAPTER 3. UNDERSPECIFIED REPRESENTATION LANGUAGES 72

Definition 3.2.20 (Satisfaction). Let 7" be a labelled tree with node labels
nodes(7’) and var be a set of meta—variables. A tree structure ¥ = (7, v) where

v : var — nodes(T) is said to satisfy a CLLS constraint if
1. ¥ = X <*Y if and only if v(X) dominates v(Y’), and

2. ¥ =X f(Xq,...,X,) if and only if v(X) is labelled by f and has children
v(X1),...,v(Xy), and

3. T =X #Y if and only if v(X) # v(Y).

We restrict the class of tree structures further still, to only those which are
labelled in such a way that they represent well-formed formulas of £. We call
such tree structure formula structures. We are now ready to define what we mean

by the term ‘disambiguation’ within the context of CLLS.

Definition 3.2.21 (Disambiguation). Let ¢ be a CLLS constraint and ¥ be
a formula structure. If ¥ = ¢ then we call (the well-formed formula represented

by the tree) T a disambiguation of .

It is easy to see that the formulas Vz(man(z) — Jy(woman(y) A loves(z,y)))
and Jy(woman(y) A Vz(man(z) — loves(z,y))) are disambiguations of the CLLS
constraint ¢ from example 3.2.18.

We must now specify how CLLS differs from . At first sight this task may
appear hopeless, since CLLS is a first-order constraint language over formulas
whereas H consists of CHR structures and a completely separate disambiguation
module (involving admissible pluggings and so on). However, nothing important
hinges upon this difference. Indeed, the only real difference between CLLS and
‘H is that in CLLS every Underspecified Representation has either no disam-
biguations (or “solutions”) or infinitely many, by contrast, this is not true of #.
This is because CLLS allows new symbols to be artificially introduced in order
to find solutions to the constraints encoded in its formulas. For example, the
CLLS constraint represented in figure 3.4 has infinitely many solutions, for ex-
ample e(f(a,b), g(c,d)), where e is any new (artificially introduced) symbol. By
contrast, for any CHR &, if {;c is a disambiguation of £ then any symbol occurring
in é must also occur in €. That is, we do not permit artificial constructions in H.

This discrepancy is noted by Koller:



CHAPTER 3. UNDERSPECIFIED REPRESENTATION LANGUAGES 73

X:f U:g

Y:a Z b Ve W:d
Figure 3.5: A CLLS constraint which has infinitely many solutions.

In Hole Semantics, the interpretation is given by means of pluggings,
where the holes and labels are identified. In contrast, dominance
constraints are interpreted by embedding descriptions into trees that

may contain more material. (Koller et al., 2003, p.1)

This anomaly does give CLLS one (manufactured) advantage over H: it allows
us to establish that for a particular fragment of dominance constraints (called
normal dominance constraints) the ‘plugging problem’ (that is, the problem of
determining whether a CLLS constraint has a solution) is solvable in polynomial
time (Koller et al., 2000, p.10, Thm.4-7). However, the implications of artificially
‘inventing’ new symbols on demand (particularly within linguistic contexts) are
not made explicit by Koller et al. (Koller et al., 2000). Indeed, the whole en-
terprise of looking for a class of Underspecified Representations for which the
plugging problem has low complexity is questionable. To begin with, for any
(‘real-life’) natural language sentence S, it is (in general) easy to answer the
question: does S have a disambiguation? Secondly, (‘real-life’) linguistic ambi-
guity problems do not get large enough to make complexity issues important. For
our purposes, it is simple to ‘fix’ the unnatural ability in CLLS to invent new
symbols — for any CLLS formula ¢, we simply insist that ¥ = ¢ only if v maps
var(yp) onto nodes (7). With this sensible restriction, CLLS is equivalent to H.

Koller presents a simple back-and-forth encoding between Hole Semantics
and CLLS dominance constraints (Koller et al., 2003, p.4, Thm.4). We now take
a brief excursion to reproduce Koller’s description of the encoding. Roughly, any
variable occurring only on the left-hand side of a labelling constraint is called a
‘root’; any variable occurring only on the right—hand side of a labelling constraint
is called a ‘hole’. Koller claims that any formula of PLU can be mapped onto a

CLLS constraint with the same interpretation as follows:

9This restriction is the equivalent to Koller’s ‘constructive solutions’ restriction (Koller et
al., 2003, p.3).



CHAPTER 3. UNDERSPECIFIED REPRESENTATION LANGUAGES 74

We first encode every labelled formula [ : f(hq,...,h,) as the
labelling constraint [ : f(hq,...,h,). We encode every H constraint
I < h as a dominance constraint h <1* [ — except if A is the unique top
hole and does not occur as a hole in a labelled formula. Finally, we
add a constraint [ # [’ for every label [. (Koller et al., 2003, p.4)

Similarly, any CLLS constraint ¢ can be mapped onto a PLU formula with the

same interpretation as follows:

We first split the variables var(y) into holes and labels: roots
become labels and holes become holes. Then we encode every la-
belling constraint X : f(Xy,...,X,) as the labelled formula X :
f(Xi,...,X,), and we encode every dominance constraint X <* Y
as the constraint Y < X. Finally, we add a top hole symbol hy and
the constraint [ < hy for every label I. (Koller et al., 2003, p.4)

In order to state the exact relationship between CLLS and PLU Koller places
extra restrictions on each of these languages. The following definitions are used

for this purpose:

Definition 3.2.22 (Proper PLU Underspecified Representation). An Un-
derspecified Representation U in PLU is called proper if it has the following

properties:
1. U has a unique top element, from which all other nodes in the graph can
be reached.

2. The graph of U is acyclic.

3. Every hole and every label occurs exactly once in the labelled h-formulas
of U.

Definition 3.2.23 (Normal CLLS Constraint). A CLLS constraint ¢ is called

normal if it has the following properties:

1. Every variable occurs in a labelling constraint.

2. Let X be any variable. Then X occurs at most once on the right—hand side
of a labelling constraint and X cannot occur on the left-hand side of two
different labelling constraints. Variables that do not occur on the left-hand
side of any labelling constraint are called holes; variables that do not occur

on a right—hand side of any labelling constraint are called roots.



CHAPTER 3. UNDERSPECIFIED REPRESENTATION LANGUAGES 75

3. If X <* Y occurs in ¢ then X is a hole and Y is a root.
4. If X and Y are not holes then there is a constraint X # Y in ¢.

Definition 3.2.24 (Compact CLLS Constraint). A CLLS constraint is called

compact if no variable occurs in two different labelling constraints.

Definition 3.2.25 (Constructive Solutions). Suppose that the tree structure
T = (T,v) satisfies the CLLS constraint ¢. Then ¥ is called a constructive
solution if every node in ¥ is denoted by a variable in Var(y) on the left-hand
side of a labelling constraint, where Var(y) denotes the set of meta—variables

occurring in ¢.

Intuitively, a solution is called constructive if it consists only of material men-
tioned in the labelling constraint. Once the syntax of CLLS and PLU have been
refined using these definitions it is possible to show that CLLS and PLU are

essentially the same:

Theorem 3.2.26 (Koller). Compact normal dominance constraints ¢ with acyclic
graphs and proper PLU Underspecified Representations U can be encoded into each
other, in such a way that the pluggings of U and the constructive solutions of ¢

correspond.

Proof of Theorem 3.2.26. A detailed proof is presented by Koller (Koller et al.,
2003, p.4, Thm.4). O

The framework of CLLS is a mathematically precise Underspecified Repre-
sentation Language for which key complexity issues are well understood. We
conclude this section by (briefly) reviewing some of the more interesting aspects
of the research completed by the CHORUS team to date. We have seen that the
disambiguations of CLLS constraints are exactly the solutions to the constraints
encoded in that constraint (where solutions are labelled trees). But how do we
solve such constraints, and how hard is it in general to determine whether or not
a given set of dominance constraints has a solution at all? Both of these questions
are addressed by Koller et al. (Koller et al., 1998). The plugging problem'® for
CLLS (that is, the problem of determining whether or not a set of dominance
constraints actually has a solution) is shown to be NP-—complete (Koller et al.,

1998). We now take a brief excursion to sketch the proof of this claim.

10The CHORUS team use the term ‘satisfiability problem’ instead of ‘plugging problem’.



CHAPTER 3. UNDERSPECIFIED REPRESENTATION LANGUAGES 76

The proof that the plugging problem for CLLS is in NP is presented by Koller
et al. (Koller et al., 1998); we begin by outlining the key features of the algorithm
used in this proof. The algorithm consists of three steps. The first step is to guess
(nondeterministically) for each pair X, Y of variables in ¢ whether X dominates
Y or not:

(Choice) true - X <*Y or - X <*Y,

where or stands for nondeterministic choice. In the second step ¢ is saturated
according to seven propagation rules: In the third step unsatisfiable constraints
are detected by applying four clash rules: This algorithm is described by Koller:

After the initial guessing step, the algorithm applies all instances of
all propagation and clash rules. We call a constraint to which no
clash rule can be applied clash—free, the result of applying all possible
rules to a constraint for as long as the constraint is clash-free its
saturation, and a constraint which is its own saturation saturated. The
algorithm outputs that its input is satisfiable if it can find a clash—
free saturation (that is, can apply the guessing step in such a way
that subsequent propagation and clash rules won’t produce false);
otherwise, it outputs that the input is unsatisfiable. (Koller et al.,
1998, p.b)

Koller uses this algorithm to prove the soundness and completeness of CLLS:

Proposition 3.2.27 (Soundness). A satisfiable dominance constraint has a

clash—free saturation.

Proposition 3.2.28 (Completeness). A saturated and clash—free constraint is
satisfiable.

We are most interested in the result that the plugging problem for CLLS is
in NP:

Proposition 3.2.29. The plugging problem of the positive existential fragment

over dominance constraints (and, of course, all smaller languages) is in NP.

Complete details of the proof of proposition 3.2.29 are provided by Koller et
al. (Koller et al., 1998, pp.4-11).
To show that the plugging problem is NP-hard, we must construct a poly-

nomial transformation from some (already known) NP—complete problem to the



CHAPTER 3. UNDERSPECIFIED REPRESENTATION LANGUAGES 77

plugging problem in CLLS. Koller et al. show NP-hardness by reduction from
3-SAT (Koller et al., 1998, p.11, Thm.1 and Koller, 1999, p.19, Thm.4-19). That
is, Koller et al. show that: any formula ¢ in 3-CNF is satisfiable (that is, there is
a valuation satisfying ¢) if and only if there is a tree structure which satisfies the
encoding of ¢ in CLLS. Complete details are presented by Koller et al. (Koller et
al., 1998, pp.11-14) and Koller (Koller, 1999, pp.79-91). We note in passing that
Koller and Niehren also present an approach to solving (general) CLLS constraints
using concurrent programming in OZ (Koller and Niehren, 1999 pp.70-82), along
with a brief introduction to OZ (Koller and Niehren, 1999, pp.41-66).

We conclude our discussion of CLLS by sketching the details of the main result
reported by Koller et al. (Koller et al., 2000, p.10, Thm.4-7): that there exists a
fragment of dominance constraints (that is, the class of ‘normal’ constraints) for

which the CLLS plugging problem is solvable in deterministic polynomial time.

Definition 3.2.30 (Normal Constraint). A CLLS constraint ¢ is called nor-

mal only if all four of the following conditions hold:

No overlap X # Y is a constraint in ¢ if and only if X and Y are distinct
variables that are both labelled in ¢ (possibly with the same label).

Tree shaped fragments Any variable X occurring in ¢ appears at most once

as a parent and at most once as a child in any labelling literal of ¢.

Dominances go from holes to roots (We call any unlabelled variable which
appears in the constraints of ¢ a hole of ). If X <* Y is a constraint in
¢ then X and Y are unlabelled in ¢, furthermore, ¥ must occur in some

child position in ¢.

No empty fragments If X <* Y is a constraint in ¢ then there exist Z and
f such that Z : f(...X ...) is a constraint in ¢; that is, every hole in ¢

occurs in some child position.

Before we can outline the proof that the plugging problem is solvable in de-
terministic polynomial time for (the fragment consisting of) normal dominance
constraints, we require some definitions involving cycles. Recall that, in an undi-
rected graph, a simple cycle is a tour (along edges) which starts and ends at a
particular node but otherwise visits each node at most once. We say that two
edges are adjacent in a cycle if one is traversed immediately after the other. For

our purposes the important definition is that of a hypernormal cycle:



CHAPTER 3. UNDERSPECIFIED REPRESENTATION LANGUAGES 78

Definition 3.2.31 (Hypernormal Cycle). A cycle in an undirected graph is
called hypernormal if it does not contain two adjacent edges that ‘emanate’ from

the same node. (An edge ‘emanates’ from the node at its tail).
The key result obtained by Koller is:

Proposition 3.2.32. A normal dominance constraint is satisfiable if and only if

its undirected constraint graph has no simple hypernormal cycles.

This result is significant because Althaus et al. show that, for any normal
constraint graph G(¢), we can test G(¢p) for the presence of simple hypernormal
cycles by solving a perfect weighted matching problem on a specific auxiliary graph
of G(p) (Althaus et al., 2000, p.7, Lem.5-1).}! Fortunately the perfect weighted
matching problem can be solved in deterministic polynomial time (Althaus et al.,
2000, p.8, Thm.5-1).12

In a nutshell, the plugging problem for the CLLS fragment consisting of only
normal dominance constraints is reduced to the (deterministic polynomial time)
perfect weighted matching problem, via hypernormal cycles. Therefore, given a
normal constraint of CLLS, we can test in polynomial time whether or not it
has a solution (and therefore we can test for the existence of disambiguations).
A graph algorithm is provided by Althaus et al. which enumerates the solved
forms of satisfiable normal dominance constraints (Althaus et al., 2000, pp.16—
22). Solved forms describe infinite families of solutions; in practical terms, the
solutions in a solved form are all equivalent. The idea is that each solved form
of ¢ is a disambiguation of ¢. Solved forms are used to eliminate the problem
caused by the ability to invent new symbols in CLLS; namely the problem that
every CLLS constraint has either zero or infinitely many solutions.!3

Koller et al. express the opinion that normal dominance constraints form ‘a
natural fragment of dominance constraints whose restrictions should be unprob-
lematic’ (Koller et al., 2000, p.1). However, as we have discussed, CLLS is not
free of peculiarities. Indeed, the proof that the plugging problem for normal
constraints is in P is dependent upon the (unnatural) ability of CLLS to accept
solutions which incorporate new ‘invented’ symbols. It should therefore not sur-

prise us that, even if we restrict the syntax of H so that all CHRs are normal,

HKoller et al. provide a detailed account of this auxiliary graph (Koller et al., 2000, Sec.4-2,
pp.5-6).

12This result was first proved by Galil et al. (Galil et al., 1986).

I3Note that ‘solved forms’ and ‘constructive solutions’ serve the same purpose.



CHAPTER 3. UNDERSPECIFIED REPRESENTATION LANGUAGES 79

the plugging problem for H remains NP—complete (since, unlike CLLS, we are
unable to invent new symbols in #).

We have omitted some of the less important features of CLLS from our pre-
sentation for the sake of clarity. For example, CLLS is equipped with specific
apparatus that deals with the interaction of scope ambiguity and ellipsis; that is,
CLLS has specific apparatus for dealing with strict/sloppy ambiguities. The el-
lipsis in sentences suffering from strict/sloppy ambiguities enforces a ‘parallelism’
in the scopes of the clauses; so that, for example, in the sentence ‘every student
read a book, several researchers did too’ the noun—phrase ‘every student’ has
wide (narrow) scope if and only if the noun—phrase ‘several researchers’ has wide
(narrow) scope. CLLS attempts to capture this parallelism. Moreover, the com-
plete framework of CLLS includes apparatus for A-binding and quantifier—binding
constraints. The details of how A-binding and quantifier—binding constraints are
incorporated into the framework of CLLS are presented by Egg et al. (Egg et
al., 2001, pp.3-22). Egg et al. also present an algorithm which maps natural
language sentences onto CLLS constraints (Egg et al., 2001, Sec.5, pp.22-27);
unfortunately, an analysis of the relationship between natural language and the
various Underspecified Representation Languages is beyond the scope of this the-
sis.

Finally, we note that MRS structures can be ‘efficiently translated’ into CLLS
dominance constraints (Niehren and Thater, 2003). However, this result is not a
surprise to us since we claim that PLU, MRS, CLLS and UDRT are essentially
all the same anyway. This completes our discussion about CLLS, we now turn
our attention to UDRT.

3.2.5 Underspecified Discourse Representation Theory

The (total) disambiguations of an expression in any of the Underspecified Rep-
resentation Languages we have seen so far are well-formed formulas of £; by
contrast, the disambiguations of expressions in UDRT are well-formed expres-
sions in the language of ordinary Discourse Representation Theory (DRT). We
therefore begin by sketching the syntax of ordinary DRT.!*

MKamp and Reyle present a detailed account of DRT (Kamp and Reyle, 1993, ch.1 & ch.2);
we are only interested in DRT as a prerequisite to UDRT.



CHAPTER 3. UNDERSPECIFIED REPRESENTATION LANGUAGES 80

XYy
John(x)
Mary(y)
x likes y

Figure 3.6: A DRS representing the sentence ‘John likes Mary’.

Discourse Representation Theory

The expressions of DRT are called Discourse Representation Structures (DRSs).
Consider the sentence ‘John likes Mary’. This sentence may be represented by the
DRS in figure 3.6. The variables in the top section of the box are called discourse
referents; the top section of the box itself is referred to as the universe, and it
may only contain discourse referents. The bottom section of DRSs consists of
conditions. Intuitively, the condition ‘John(x)’ means ‘x stands for the individual
denoted by John’. The condition ‘x likes y’ is to be understood in the obvious way
under instantiation of ‘x’ with ‘John’ and ‘y’ with ‘Mary’. To save space we will
linearise the DRS notation, writing [z, y | John(z), Mary(y), z likes y] instead of
the usual ‘box notation’ demonstrated in figure 3.6; that is, we use a vertical
bar to separate the universe from the conditions instead of a horizontal line.!s
Consider also the expression ‘John knows prolog, he loves it’. This expression
may be represented by the DRS:

[,y,u,v|John(z), prolog(y), x knows y, u = z, v =y, u loves v]

The discourse referents ‘u’ and ‘v’ are used as ‘markers’ for the anaphora per-
4 )

mitted by ‘he’ and ‘it’ respectively. The ‘=’ sign is used to assign appropriate

antecedents to each of these markers. Finally, simple DRSs like those we have

seen may be combined as follows: if xy and x' are DRSs then so are , ,
‘ XA x ‘ and ‘X =¥ ‘ Blackburn and Bos present a detailed account of how DRSs

are constructed from natural language inputs (Blackburn and Bos, 1999b, pp.37—
57). The order in which the rules of this algorithm are applied is completely
determined by the syntactic structure of the sentence being processed.

Finally, we note that it is trivial to translate simple DRSs into first-order
logic. To translate a simple DRS into a formula of first-order logic we simply
take the conjunction of its conditions and prefix this conjunction by a string of

existential quantifiers — one for each discourse referent (changing any predicates

15We borrow our linear notation from Muskens (Muskens, 1996, pp.146-147).



CHAPTER 3. UNDERSPECIFIED REPRESENTATION LANGUAGES 81

lT : [D]

/ \

Iy : [X|Vz(man(z) — O)] l> : [Y|Jy(woman(y) A O)]

— i

I3 : [X,Y|loves(z,y)]

Figure 3.7: A UDRS encoding the ambiguous content of the sentence ‘every man
loves a woman’.

in infix notation to the more standard prefix notation). For example, the DRS
representing the sentence ‘John likes Mary’ becomes Jzy(John(x) A Mary(y) A
likes(z,y)). Embedded DRS are translated in the obvious way (Blackburn and
Bos, 1999b, pp.22-27). Now that we know a little about ordinary DRT we are
ready to describe the underspecified version — UDRT.

Underspecified Discourse Representation Theory

An Underspecified Discourse Representation Structure (UDRS) consists of one or
more DRSs together with some structural information. In fact, the key features
of UDRT are very similar to those of Bos’ PLU (Bos, 1995). Consider for ex-
ample, the sentence ‘every man loves a woman’. The ambiguous content of this
sentence may be captured by the UDRS depicted in figure 3.7 As before, we insert
fragments of formulas into occurrences of the hole symbol (this time ‘0 instead
of hg, hi, ha,...) subject to a partial order over the fragments. Since UDRT and
PLU are so alike, we do not make a full presentation of UDRT here; instead we
catalogue the differences between UDRT and H.!6

1. A fully assembled UDRS (or more correctly a ‘disambiguated’ UDRS) is a
DRT; by contrast, all disambiguations in H are well-formed formulas of L.

2. Only one ‘hole’ symbol is recognised by the syntax of UDRT (‘0’); whereas,
an infinite stock of hole symbols (hg, h1, ho, . . .) is available to the h—formulas
of H.

3. The ‘structural constraints’ in UDRT are expressed as a partial order ‘<’
over the set of labels; however, the constraints in any CHR ¢ are pairs (h, ()
with h € H(§) and | € L(£).

16 A full account of UDRT is presented by Reyle (Reyle, 1995).




CHAPTER 3. UNDERSPECIFIED REPRESENTATION LANGUAGES 82

4. As with Bos’ PLU (Bos, 1995), the syntax of UDRT is restricted so that
every UDRS forms an upper semi-lattice; by contrast, we place no such

restriction on the syntax of H.

We will now argue that, for our purposes, nothing important hinges on any of

these differences. As before, we deal with each of them in turn.

1. Since we have already said that it is trivial to translate DRSs into formulas

of £ this difference need not concern us.

2. To allow the holes occurring in UDRSs to be recognised by the syntax of
‘H we simply need to number each occurrence of ‘0’°; we must also replace

the symbol ‘Iz’ by the special hole symbol ‘h;’ .

3. Suppose that [ < I'is a ‘constraint’ in some UDRS which we wish to encode
as a CHR. Suppose also that the (newly numbered) holes Oy, ..., O, occur
in the DRT labelled by [. Then the set of constraints {(0, '), ..., (0,,")}
contains exactly the same information as the original constraint [ < ['.
Therefore, we can easily ‘translate’ any UDRT constraint into an equivalent

set of H—constraints.

4. Finally, although the syntax of UDRT is restricted so that only upper semi—
lattices are recognised, we have already discussed and dismissed this restric-

tion with respect to PLU on page 65 (point 2).

Therefore we claim that UDRT is a notational variant of a sub-language of H
(just as PLU is a notational variant of a sub—language of #). That is, UDRT
does not, in any interesting sense, provide us with an alternative Underspecified
Representation Language to H. This completes our presentation of UDRT.

We have seen that H, PLU, MRS, CLLS and UDRT are all notational variants
of one another (or at least notational variants of sub-languages of each other),
modulo some not very interesting differences. We have also seen that some of the
theoretical results in CLLS depend upon the (unnatural) ability of this language
to construct (artificial) new nodes. We now turn our attention to three Under-
specified Representation Languages which are all closely related to the earliest

form of underspecification — Storage.



CHAPTER 3. UNDERSPECIFIED REPRESENTATION LANGUAGES 83

3.3 Raising

In this section, we report on three more Underspecified Representation Lan-
guages: Ambiguous Predicate Logic (van Eijck and Jaspars, 1996, pp.11-19),
Storage (Cooper, 1983) and Quasi-Logical Form (Alshawi, 1992). Once more, we
group these three languages together to reflect our belief that they share a com-
mon underlying structure. We begin by presenting Ambiguous Predicate Logic

since we believe that this language (probably) subsumes the others.

3.3.1 Ambiguous Predicate Logic

Ambiguous Predicate Logic (APL) is an Underspecified Representation Language
in which we can represent scope underspecification by means of a notation that
allows unscoped operators as the ingredients of formulas (van Eijck and Jaspars,
1996, p.11). The basic idea behind this language is best conveyed using an ex-
ample. Consider once again the sentence ‘every man loves a woman’. We claim

that the ambiguous content of this sentence can be represented by the formula:
(Vz(man(z) — O), Jy(woman(y) A O))loves(z, y).

In common with UDRT the symbol ‘0’ is used in APL to denote a ‘hole’ or ‘free—
slot’” into which other material may be inserted. The expressions ‘Vz(man(z) —
O(z))’ and ‘Jz(woman(z) A O(z))’ are therefore called operators. Syntactically,
operators are generated by the usual formation rules for well-formed formulas
of L, except that in each operator exactly one (token of a) subformula must be
replaced by the ‘0’ symbol. To disambiguate a formula in this language we simply
‘pull out’ all of its operators (to the front of the subformula in which they occur)
one—by—one; ambiguity is introduced by the indeterminacy in the order in which
we do this. Suppose that in our example, we choose to pull out the operator

Vz(man(z) — O) first. Doing so gives us:
(Jy(woman(y) A O))Vx(man(z) — O)loves(z, y).

Once an operator has been pulled out it is then applied. Applying an operator

means to replace the symbol ‘00’ occurring in it by the material to the immediate



CHAPTER 3. UNDERSPECIFIED REPRESENTATION LANGUAGES 84

right—hand side of the operator; in our example, we obtain:
(Jy(woman(y) A O))Vx(man(z) — loves(z, y)).
A final application results in the £—formula:
Jy(woman(y) A Vz(man(z) — loves(z,y))).

It is not difficult to imagine that pulling the operators out in the opposite order
yields:
Vz(man(z) — Jy(woman(y) A loves(z, y))).

We now make these ideas formal, beginning with the syntax of APL.

The syntax of APL consists of terms t (defined as in ordinary first—order
logic), formulae ¢ (defined as in first—order logic, except that there are possibly
underspecified operations), operators « (expressions which contain a free—slot O
into which formulae may be placed), and conterts C' (which are ordered lists of
operators). We reproduce the BNF definitions presented by van Eijck and Jaspars
(van Eijck and Jaspars, 1996, p.13); letting n > 1,

n= clu,
n= Rty ) | 2@ (o1 A2) | (01 V p2) [ Fup | Yop | (Cr,. .., Cr)e,
Ol -al(aAp)[(pAa)l(aVe)|(pVa)|Tva|Voa|(C,...,Cha,

t= afCa.

ao 6 =
[l

A context is either an operator (a simple context) or a finite non—empty (ordered)
list of operators (a complex contert). The idea is that we may choose between
contexts (ordered lists of operators), but once we have selected a context we are
forced to pull out the bottom operator in that context (list). That is, unordered
lists of contexts are used to express (a restricted class of) partial orders over
operators. An unordered list of contexts may be viewed as analogous to a cigarette
machine. Each context is comparable to a column of the cigarette machine,
while operators are analogous to individual packets of cigarettes. We may choose
between columns (contexts), but we may only select the bottom packet (operator)
from any column (context) we choose. However, we note in passing that this

scheme does not allow us to express all partial orders:

Observation 3.3.1. Contexts do not allow us to express all partial orders.



CHAPTER 3. UNDERSPECIFIED REPRESENTATION LANGUAGES 85

(%1 V2

U3 V4

Figure 3.8: A partial order which cannot be expressed using contexts.

Proof of Observation 3.3.1. The partial order depicted in figure 3.8 cannot be

expressed in terms of contexts (because we cannot duplicate elements). O

It should be clear that, a formula in APL is ambiguous only if it contains a
non-singleton list of contexts; the ambiguity arises as a result of the indetermi-
nate order in which the contexts should be applied. Before we can define a disam-
biguation procedure for APL. we must specify the exact process for substituting
formulas into operators. The list of contexts 01, ..., C, may be abbreviated to

01 More generally, we will use the notation CZ to denote Cj, Cit1, ..., Ci_1, Cj.

Definition 3.3.2 (Substitution Map). Let ¢ and ¢ be formulas of APL, «
be an operator, and C} be a (possibly singleton) list of contexts. We define a

substitution map s : APL — APL recursively, as follows:

s[(O)¢] = o,
sl(-a)g]l = —s(a)gl,
slland)p] = s[(a)e] A,
sl Aa)pl = ¥ As[(a)yg],
s[(Fza)p] = Fzs[(a)y],
s((Vea)p] = Vas[(a)gl,
s[(Cla)g]l = (CHsl(a)gl.

We are now ready to spell out how we disambiguate formulas of APL.

Definition 3.3.3 (Disambiguation) Let 51 be an unordered list of contexts
with C; = (a1, - - ., Q) for 1 <4 < n and let ¢ be a formula of APL. Then we



CHAPTER 3. UNDERSPECIFIED REPRESENTATION LANGUAGES 86

define the set of disambiguations of (@)(p to be:

—_

d((CL,, (i - - - Qim, ), CiF 1)) =

{d((@:, (01 - i), i)l (Qim)T])|1 < i <y 7 € d(w)}-

Clearly, for any formula ¢ in APL the set of disambiguations of ¢ is non—

empty. We conclude our presentation of APL with an example.

Example 3.3.4. Consider the (scope) ambiguous sentence ‘every child is not
clever’. We may represent the disambiguations of this sentence by the predicate
calculus formulas Vz(child(z) — —clever(z)) and —(Vz(child(z) — clever(z))).
We claim that, the Underspecified Representation of ‘every child is not clever’ in
APL should be ¢ = (Vz(child(z) — O), ~0O)clever(x). The set of disambiguations

of ¢ are derived as follows:
d((Va(child(z) — 0), =O)clever(z)) =
{d((Vm(child(m) — 0))s[(~O)clever(z))),
d((~0)s[(Vz(child(z) — D))clever(x)])}

- {d((Vw(child(m) — O))=clever(z)), d((~0)¥z(child (z) — clever(z)))}

- {s[(Vx(child(a:) — O))~clever(z)], s[(~0)Vz(child (z) — clever(x))]}

- {Vx(child(x) — —clever(z)), = (Vz(child(z) — clever(x)))}.
There are no other disambiguations of ¢ and therefore we have obtained exactly
the disambiguations we had hoped for.

This concludes our presentation of APL. We now turn our attention to two

purely linguistic approaches to underspecification.

3.3.2 Quantifier Raising and Storage

Operator scope ambiguity is often dealt with using Quantifier Raising or Storage
techniques. The best—known examples of these approaches are Cooper Storage
(Cooper, 1983), which was later modified by Keller (Keller, 1986), and Quasi-
Logical Forms (Alshawi, 1992). Unfortunately, Underspecified Representation

Languages like these are all too often technically ill-defined. Therefore we will



CHAPTER 3. UNDERSPECIFIED REPRESENTATION LANGUAGES 87

not make a complete presentation of Storage and Quasi—Logical Forms (though
we will give an overview); instead, we will present our attempt at a rational

reconstruction of the key features of these languages (which we will call R).

An Overview of Storage

Storage techniques provide a natural approach to underspecification. The basic
idea behind Storage is: for any natural language sentence, we assign a Store to
each node of its parse tree. Each Store incorporates a list of quantifiers, which
are associated with nodes lower down in the tree. Given a scope ambiguous sen-
tence, the order in which the quantifiers are retrieved from the Store determines
the disambiguations of that sentence. Consider the sentence ‘every man loves a

woman’. We may represent this sentence by the Cooper Store
(loves(z1, 22), (APVz(man(z) — Pz), 1), (AP.3y(woman(y) A Py),2))).

Notice that quantified noun—phrases are represented by indexed A—expressions
(called ‘operators’) and these A\—expressions fill the argument places of the verb—
phrase ‘loves’. The process of disambiguating Stores is usually referred to as
‘retrieval’. Informally, retrieval means to pull each of the operators out to the
front of the Store (one-by-one) while at the same time performing the necessary
B-reductions. Cooper Stores can be ambiguous precisely because the order in
which the operators within a Store are pulled out is not necessarily fixed. The

rule for pulling out operators is:

Rule 3.3.5 (Cooper Retrieval). Let 0, and o3 be (possibly empty) sequences of
indexed operators and let (¢, 01, (3, 1), 09) be a Store. Then the Store (5Az;.p, 01, 09)
is a (partial) disambiguation of {(p, o1, (8,1), 09).

I

Applying the rule to the operator indexed by ‘1’ in our example (that is,

(loves(z1, 29), (APVz(man(z) — Pz), 1), (AP.3y(woman(y) A Py),2))) gives us:
(APNz(man(z) — Px)Azloves(z1, z2), (AP.Jy(woman(y) A Py), 2)).
By (B-—converting the first element twice we obtain:

(Vz(man(z) — loves(z, 22)), (AP.3y(woman(y) A Py),2)).



CHAPTER 3. UNDERSPECIFIED REPRESENTATION LANGUAGES 88

Applying the retrieval process to the A—expression indexed by ‘2’ yields:
((AP3y(woman(y) A Py))AzoVx(man(z) — loves(z, z3))).
Two further S—conversions give us:
(Jy(woman(y) A Vz(man(xz) — loves(z, y)))).

Retrieving the two A\—expressions in the opposite order (that is, ‘2’ then ‘1’) would
give us the Cooper Store with the single element Vz(man(z) — Jy(woman(y) A
loves(z,y))).-

A well-known modification of Cooper Storage is to allow the nesting of Stores,
so—called Keller Storage (Keller, 1986). We will delay any discussion about the
nesting of operators until our presentation of the language R (which we believe

captures the key features of Storage and Quasi—Logical Form).

An Overview of Quasi-Logical Form

Quasi-Logical Form (QLF) was the first Underspecified Representation Language
to be used in a real-world Natural Language Processing application — namely,
the Core Language Engine (CLE). The syntax of QLF is quite complex and
many of the details are not relevant to our present discussion (for example, QLFs
contain detailed linguistic information concerning tense, aspect, plurality and so
on). We therefore discuss Moran’s (heavily) simplified version of QLF (Moran,
1988). The basic idea is as follows: for any natural language sentence we can
construct a QLF which encodes the meaning of that sentence by treating each
verb—phrase as a predicate, and noun—phrases as terms in the argument positions
of those predicates. Each term (representing a noun—phrase) is assigned a unique
index and different scope relations (over those noun-phrases) are represented by
specifying an order over the indices. In an unresolved (ambiguous) QLF, the order
between all of these indices is (at least partly) unspecified; by contrast, a QLF is
resolved (disambiguated) once the order between these indices is fixed. Perhaps
the best way to get a feel for QLF is by looking at an example. Consider once
again the sentence ‘every man loves a woman’. We claim that the ambiguous
content of this sentence may be captured by the following (heavily simplified)
QLEF:
s : loves(term(+m, V, \XX.man(X)), term(+w, 3, \Y.woman(Y))).



CHAPTER 3. UNDERSPECIFIED REPRESENTATION LANGUAGES 89

Notice that the two noun-phrases are represented as terms that are the arguments
of their syntactic mother, the loves verb-phrase. The first element of each of
these terms is its unique index, the second element specifies the type of quantifier
the term represents, and the third element is the so—called ‘restriction’ of the
quantifier. The initial symbol of our example QLF ‘s’ is a ‘meta—variable’ which
under disambiguation must be instantiated with an ordered list of indices (which
specifies an order of the noun—phrases). There are just two ways of instantiating
s in our example (that is, just two ways of ordering +m and +w) and these

instantiations specify two distinct disambiguations in the obvious way:

[+m, +w| : loves(term(+m,V, \X.man(X)), term(+w, 3, \Y.woman(Y))) =
Vx(man(x) — Jy(woman(y) A loves(x,y))).

[+w, +m| : loves(term(+m,V, \X.man(X)), term(+w, 3, \Y.woman(Y))) =
dy(woman(y) A Vx(man(x) — loves(x,y))).

This completes our overview of QLF.
Now that we know a little about Storage and QLF we can present our attempt

at a rational reconstruction of these languages, which we call R (for “raising”).

3.3.3 The Language R

As with our presentation of H, we begin our presentation of the language R
with our running example: ‘every man loves a woman’. We can represent the

ambiguous content of this sentence using the following R—formula:
loves(Vz(man(z) — O(z)), 3z(woman(x) A O(z))).

The symbol ‘00 is used in R to denote a ‘hole’ or ‘free—slot’ into which other mate-
rial may be inserted. The expressions ‘Vz(man(z) — O(z))’ and ‘Jz(woman(z) A
O(x))’ are therefore called operators. Syntactically, operators are generated by
the usual formation rules for well-formed formulas of £, except that in each op-
erator exactly one (token of a) subformula must be replaced by the ‘0’ symbol.
Disambiguation is achieved in R by raising these operators (one-by-one). Am-

biguity is introduced by the indeterminacy in the order in which operators are



CHAPTER 3. UNDERSPECIFIED REPRESENTATION LANGUAGES 90

raised. The raising operation consists of two steps: ‘movement’ and ‘application’.
Suppose that we choose to raise the operator Vz(man(xz) — O(z)) first. To raise
an operator to predicate P we begin by ‘moving’ it to the left-hand side of P. In
our example, having decided to raise the operator Vz(man(z) — O(z)) first, we
have no further choices to make (since there is only one predicate which we can

raise it to); hence we obtain:
Vz!(man(z") — O(z))loves(z', 3z(woman(x) A O(z))).

Note that, upon movement, the name of the ‘main variable’ (or magjor variable)
in the operator is changed; (in our case from z to z'). Notice also that the
argument position in the predicate ‘loves’ left vacant as a result of the move-
ment operation is filled by a copy of (the new name for) the main variable,
(shown in bold font); this copy of the main variable is sometimes called its
trace. Now we can ‘apply’ Vz/(man(z’) — O(z)) to loves(z', 3x(woman(z) A
O(z))); application simply consists of replacing an occurrence of the symbol O
by the expression to its right-hand side. We therefore obtain Vz(man(xz) —
loves(z’, 3z(woman(x) A O(x)))). It remains only to raise (that is, move then
apply) the remaining operator 3z(woman(z) A O(z)) to obtain Jz”(woman(z)” A
Vz!(man(z') — loves(z’, 2”"))). Raising the operators in the opposite order yields
Vz!(man(z') — 32" (woman(z") A loves(z',2"))). We now make these ideas more

formal, beginning with the syntax of R.

Definition 3.3.6 (Operators and Formulas). We define operators o and for-

mulas ¢ co-recursively:

a == 0@)|-alpAalane|lp—ala— o|Ve(p — a)|Fz(e A a),
$ == P(n)(gl""aé‘n)‘_'90|90/\¢‘Q0_>¢a

where P(™ is an n-ary predicate, ¢ is a formula and each & for 1 < i < n is

either a term (that is, a constant or variable) or an operator.

Before we can formalise the raising procedure, we need a precise definition of

the term ‘major variable’.

Definition 3.3.7 (Major Variable). Let a be an operator of R, ¢ be a formula
of R and z be a variable. The major variable of an operator is defined recursively

as follows:



CHAPTER 3. UNDERSPECIFIED REPRESENTATION LANGUAGES 91

1. The major variable of O(z) is x.

2. The major variable of the operators o, p A, a A @, ¢ = o, @ — @,
Vz(p — «) and 3z(p A ) is the major variable of .

We are now ready to define the raising procedure.

Definition 3.3.8 (Raising). Let ¢ be a formula and « be a token of an operator
occurring in ¢. Let z be the major variable of o and z” be a ‘new’ variable (that

is, a variable which does not occur in ¢). Define a function raise as follows:

raise(p, ) = afz"/x, p[z"/a]/0O].

As usual z[y/z] denotes the result of replacing all occurrences of z in x with
y’s. We make the sensible restriction that free variables cannot be raised beyond
their binders. That is, we only permit raising which does not increase the number
of free variables. We shall see why this restriction is necessary in example 3.3.10.
Disambiguation in R is achieved by repeated application of the raising procedure.
A formula is totally disambiguated once raise has been applied to all of its

operators.

Lemma 3.3.9. Let ¢ € R contain n > 0 operators. Repeated application of

raise will terminate, and the result will be a well-formed formula of L.
Proof of Lemma 3.3.9. Obvious. O

We conclude our presentation of the language R with an adapted version of
a well-known example (Hobbs and Shieber, 1986, p.2).'

Example 3.3.10. Consider the scope ambiguous sentence ‘every artist who ad-
mires a bee—keeper despises a carpenter’. According to Hobbs and Shieber, out
of the six combinatorial ways of permuting the three quantifiers (‘every’, ‘a’ and
‘a’), one reading is ‘missing’ (or ‘disallowed’); namely the reading in which ‘every
artist’ outscopes ‘a carpenter’ which in turn outscopes ‘a bee-keeper’ (Hobbs and
Shieber, 1986, p.2). We note in passing that to ban unwanted readings Hobbs and
Shieber’s algorithm incorporates the rule that: ‘a quantifier from elsewhere in a
sentence cannot come after the quantifier associated with the head noun and be-

fore the quantifier associated with a noun—phrase in the head noun’s complement

"The example we have adapted is ‘Every representative of a company saw most samples’
(Hobbs and Shieber, 1986, p.2).



CHAPTER 3. UNDERSPECIFIED REPRESENTATION LANGUAGES 92

[or in a relative clause embedded in any phrase whose head is the head noun)’
(Hobbs and Shieber, 1986, p.3). We shall see that this restriction has the same
effect as our free variable constraint. We claim that the following R—formula

encodes exactly the disambiguations allowed by Hobbs and Shieber:

despises(Vz(artist(z) — O(z)) A admires(z, Jy(beekeeper(y) A O(y))),
Jz(carpenter(z) A O(2))).

We conclude our presentation of R by working through the derivation of
the disambiguations of our version of the Hobbs and Shieber example. Readers
uninterested in the details of this derivation may skip to the next section.

Our representation of ‘every artist who admires a bee—keeper despises a car-
penter’ contains three operators, which we refer to as operators A, B and C as

follows:

Operator A: Vz(artist(z) — O(z)) A admires(x, Jy(beekeeper(y) A O(y))),
Operator B: Jy(beekeeper(y) A O(y)),

Operator C: Jz(carpenter(z) A O(z)).

Suppose that we choose to raise the operator A first. Then the first two steps of

the raising process yield:

V! (artist(z’ — O(z)) A admires(z’, Jy(beekeeper(y) A O(y))))
despises(z’, 3z(carpenter(z) A O(2))).

Which, after application becomes:

V' (artist(a’ — despises(z’, 3z(carpenter(z) A O(z)))A
admires(z', Jy(beekeeper(y) A O(y))))).

We now have a choice in the order in which we raise the operators B and C.
Raising B before C yields:

32’ (carpenter(z’ A Jy' (beekeeper(y') A V! (artist(z’ —
despises(z', 2') A admires(z', ¢')))))).



CHAPTER 3. UNDERSPECIFIED REPRESENTATION LANGUAGES 93

Whereas, raising C before B yields:

Jy' (beekeeper(y') A 32’ (carpenter (2’ A V! (artist(z' —
despises(z', 2') A admires(z',y'))))).

Now suppose that we choose to raise operator C first (instead of A). Then the

first step of the derivation is:

32/ (carpenter(z') A O(z)z(artist(z) — O(z)))A
admires(z, Jy(beekeeper (y) A O(y)), 2')).

The second step is:

32’ (carpenter(z') A despises(Vz (artist(z) — O(x))A
admires(z, Jy(beekeeper (y) A O(y)), 2')).

As before, we are now faced with a choice; we can either raise operator A or

operator B next. Raising A before B yields:

Jy' (beekeeper(y') A Vz(artist(z') — 32’ (carpenter(z)A
despises(z', 2') A admires(z’, y'))).

Raising B before A yields:

V! (artist(z") — ' (beekeeper(y') A 32’ (carpenter(z)A

despises(z', 2') A admires(z', y')).

Finally, we could have chosen to raise operator B before all else. Doing so would

initially give us:

Jy' (beekeeper(y') A O(y))despises(Vz (artist(z) — O(z))A
admires(z, y'), 3z(carpenter(z) A O(z))).



CHAPTER 3. UNDERSPECIFIED REPRESENTATION LANGUAGES 94

An application step yields:

Jy' (beekeeper(y') A despises(Vx(artist(z) — O(z))A
admires(z, y'), 3z(carpenter(z) A O(z)))).

We now seem to have a choice between which of A and C to raise next. Raising

A before C gives us:

32/ (carpenter(z') A Vz'(artist(z') — Jy'(beekeeper(y')A
despises(z', 2') A admires(z',y')))).

However, we claim that our algorithm does not allow us to reverse this order;
that is, we claim that our free variable condition prevents us from raising B then
C then A. Suppose for a moment that we do not realise that raising operator C

next will lead to a violation of our constraint; raising C next would give us:

32’ (carpenter(z') A Jy'(beekeeper(y') A despises(Vz(artist(z) —
O(z))) A admires(z, y'), 2')).

Our final step would then be to raise operator A as follows:

V! (artist(z') — O(z)) A admires(z', y') 32’ (carpenter(2')A
Jy'(beekeeper(y') A despises(z', 2'))).

However, this step raises the first occurrence of the variable 3’ beyond its binder
and therefore according to our free variable condition we cannot proceed. That
is, although this formula contains three operators and therefore 3! = 6 possible
orderings of these operators, one of these is banned by our restriction that raising
cannot increase the number of free variables. Furthermore, we have verified that
our free variable condition bans the same reading that Hobbs and Shieber ban.
We conclude this section by examining the differences between APL and R.

These differences are:

1. In R each occurrence of the ‘0’ symbol is immediately proceeded by a
variable; by contrast, the symbol ‘0’ is used in APL to replace entire sub-

formulas.



CHAPTER 3. UNDERSPECIFIED REPRESENTATION LANGUAGES 95

2. In R we cannot raise variables past their binders; however, there is no
analogous constraint in APL.

3. The syntax of APL permits unordered lists of contexts (ordered sequences

of operators); this unordered list of sequences cannot be replicated in R.
We discuss each of these differences in turn:

1. The reason for attaching variables to operators in R is to ensure that when
an operator is raised it leaves behind the correct ‘trace’. In APL, we must
construct our formulas so that this information is encoded explicitly. There-
fore, the treatment of variables in R is a little more sophisticated than it is

in APL, though nothing really important hinges upon this difference.

2. Since the free variable constraint in R is essentially a meta—level constraint
it can just as easily be used to restrict disambiguations in APL. However,
we note in passing that the absence of such a restriction makes it far more
difficult to represent sentences like ‘every artist who admires a bee—keeper

despises a carpenter’ in APL compared with R.

3. Because we can express the ‘cigarette machine’ structure in APL but not in
R we believe that APL is probably more expressive than R and therefore
that APL probably subsumes R.

This concludes our presentation of the language R.
In this section we have presented our rational reconstruction of Storage and
QLF, namely: R. The language R is generalised by APL. Therefore, in the

sequel, we concern ourselves only with APL.

3.4 Summary

There are eight relatively well-known (in the sub—culture of Computational Lin-
guistics) Underspecified Representation Languages: A Logical Connective for
Ambiguity (van Eijck and Jaspars, 1996, pp.5-11), Predicate Logic Unplugged
(Bos, 1995), Minimal Recursion Semantics (Copestake et al., 1995), the Con-
straint Language for Lambda Structures (Egg et al., 1998), Underspecified Dis-
course Representation Theory (Reyle, 1993), Ambiguous Predicate Logic (van
Eijck and Jaspars, 1996, pp.11-19), Storage (Cooper, 1983 and Keller, 1986) and



CHAPTER 3. UNDERSPECIFIED REPRESENTATION LANGUAGES 96

Quasi—Logical Form (Alshawi, 1992). Until now, little has been known about the
relationships between these languages. In this chapter we have begun to address
this issue, by reducing the eight languages into just three types, namely : Q, H
and R. Furthermore, the syntax and/or disambiguation procedure of some of
these languages (in fact, at least three) had, until now, been poorly defined. For
all three types of Underspecified Representation Language we have specified a
precise syntax and disambiguation procedure as well as making some interesting
observations along the way. Now that we have presented a complete account of
state—of-the—art Underspecified Representation Languages, the natural question
to ask is: What use are they? In particular, we are interested in how we should
interpret (and reason over) Underspecified Representations. We devote the next

chapter to an investigation of this issue.



Chapter 4
Interpretation

Police Help Dog Bite Victim!

In the previous chapter we reported on current Underspecified Representa-
tion Languages: Q, H and APL (or, more correctly: Q, PLU, MRS, CLLS,
UDRT, APL, Storage and QLF). We will now investigate the various schemes
for reasoning over these Underspecified Representation Languages. That is, in
this chapter we will evaluate current definitions of ambiguous satisfiability and
ambiguous logical consequence. Throughout the chapter, a semantic framework
is said to be a recursive satisfaction definition if it is such that the interpretation
of any non—atomic formula is defined only in terms of the interpretations of its
immediate subformulas. The best-known current recursive satisfaction definition
is Partial Logic. We also evaluate non-recursive satisfaction definitions. We call
a semantic framework a non—recursive satisfaction definition if it is such that the
meaning of any Underspecified Representation is given by the meanings of its set
of readings. There are currently two non—recursive satisfaction definitions, with
the notions of strong and weak satisfiability as their basis, respectively.

Our reason for presenting the various semantic frameworks for underspecifica-
tion separately from our presentation of the current Underspecified Representa-
tion Languages is that we believe that these components (that is, representation
and interpretation) are orthogonal. We will therefore discuss the current semantic
frameworks in terms of the (mathematically) simplest Underspecified Represen-

tation Language, Q.

97



CHAPTER 4. INTERPRETATION 98

4.1 Partial Logic

One suggestion that has been made for understanding the semantics of Under-
specified Representations involves a three-valued logic system which is reminis-
cent of Blamey’s Partial Logic (Blamey, 1986). In fact, we will show that the
Ambiguous Logic in question (van Eijck and Jaspars, 1996, pp.5—11) is the same
as Partial Logic, despite the fact that its authors claim otherwise (Jaspars, 1997,
p.7). Establishing the equivalence of these two logics will allow us to transport
many of the results obtained with respect to Partial Logic into Ambiguous Logic.
Of particular interest to us is the observation that Partial Logic (and hence also
the Ambiguous Logic) is not as much of a departure from classical logic as we
might expect; specifically, there is no real difference between partial satisfiability
and classical satisfiability. Furthermore, we will argue that van Eijck and Jaspars’
Ambiguous Logic is of little use anyway, since their framework fails to capture

the intuition which they claim it does.

4.1.1 Partial Logic and Ambiguous Logic

In this section we will make a formal comparison between Partial Logic and the

Ambiguous Logic presented by van Eijck and Jaspars.

The Ambiguous Logic

We begin by describing the semantic framework presented by van Eijck and Jas-
pars (van Eijck and Jaspars, 1996, pp.5-11); in this section, we will generally refer
to this framework as ‘the Ambiguous Logic’. The structures used to interpret the
Ambiguous Logic are exactly the same as those used in Classical Logic. That is,

a structure of the Ambiguous Logic consists of:
1. A non-empty set |2| called the domain or universe.

2. For each n—ary predicate R of the language there is an n—ary relation R* C
|2|"; that is, R* is a set of n—tuples whose elements are members of the

universe.

3. For each n-ary function f of the language there is an n—ary function on
A, A — |



CHAPTER 4. INTERPRETATION 99

4. For each constant ¢ of the language there is an element of the universe
e |l

We now specify how formulas are to be interpreted in the Ambiguous Logic;
that is, we reproduce exactly the semantic framework proposed by van Eijck and
Jaspars (van Eijck and Jaspars, 1996, p.5).

Let %A be an ordinary first—order model, and let g denote a variable assignment
which maps object-level variables to elements of the domain of 2. We define two

relation symbols ‘=’ and ‘=’ as the smallest relations satisfying:

AgEL,
A9+ 1,

Ql,g ):R(tl,...,tn) if Ql):cl R(tl,...,tn),
A, g = R(t1, ... ta) if A, gl R(ts,... 1)

(The subscript ¢l indicates that we are referring to the usual classical notion of

satisfiability). Non-atomic formulas are interpreted inductively as follows:

A,g = if A g=o,
A,g =3¢ if Ag k=,

A,gk= (g1 ANp2) if A g =@ and A, g = ¢,
A, g = (o1 Apa) if A g =1 or A g =,
(
(

A, g = (p17¢2) if A gl and A, g | v,
?

A g = (p17¢2) if A g=p1and A g = po.
The set of connectives {L,—, A, 7} will be used throughout; implication and

disjunction are defined in the usual way (in terms of negation and conjunction).

The interpretation of quantified formulas is the same as it is in Classical Logic:

A, g EVrp if A h = @ for all h such that h(y) = g(y) whenever y # x,
A, g g Vzy if A h = ¢ for some h such that h(y) = g(y) whenever y # x.

But why do we claim that this system is three-valued logic? Very roughly, any
propositional formula is assigned the value T if all of its disambiguations are true,
L if all of its disambiguations are false, and * otherwise. That is, a propositional
formula is assigned the value * if and only if the truth—values of its disambigua-

tions are not all the same. Jaspars makes this idea formal by introducing the



CHAPTER 4. INTERPRETATION 100

following abbreviations (Jaspars, 1997, pp.3—4):

L = (pA-p),
T = =(pA-p),
* = (p7)

where p denotes a propositional variable. Jaspars observes that:

It is easy to see how partiality is induced by the ambiguity opera-

tor: take V(p) =1 and V(¢g) = 0 then V |~ (p7q) and V N (p?q).
(Jaspars, 1997, p.5)

Jaspars also states that the connectives of the Ambiguous Logic may be inter-
preted as three—valued Boolean functions with truth—values true, false and un-

defined (Jaspars, 1997, p.7). The corresponding functions are written as [—], [A]
and [7].

false if ¢ = true,
[-](t) = ¢ true if ¢ = false,
undefined if ¢ = undefined.

true if t1 =ty = true,
[Al(t1,t2) = { false if t, or ty = false,

undefined otherwise.

true if t1 =ty = true,
[7](t1,t2) = < false if t1 =ty = false,

undefined otherwise.

We abbreviate (and extend) this idea (to include quantified formulae) by defining
a function A, : @ — {T,*, L} as follows:

T if A g k=,
* otherwise.

The earlier definitions of the two turn—style relations can now be written in terms

of truth—tables (at least for the propositional fragment of Q) as presented in



CHAPTER 4. INTERPRETATION 101

£
S
£
S

~
£

_| .

(¢

el e I e e | RS
o A A x e
e e R S e
R o x>
e A% o« oo HI<
= % % % % % % %

Figure 4.1: Truth—tables of Van Eijck and Jaspars’ Ambiguous Logic.

figure 4.1. Finally, we report on van Eijck and Jaspars’ notion of (ambiguous)

logical implication:

Definition 4.1.1 (Logical Implication). If I''A C Q then, I' |z, A if for all

pairs (2, g) with 2 a model and g a variable assignment:

if A, g =y for all v € T', then A, g = ¢ for some § € A and,
if A, g =4 for all § € A, then A, g =~ for some v € T.

Van Eijck and Jaspars attribute this double-barrelled consequence relation
to Blamey’s Partial Logic (van Eijck and Jaspars, 1996, p.5).! In fact, Blamey
defines logical implication in terms of rejecting models (Blamey, 1986, p.58).
However, it is trivial to show that, for any I'; A € Q the pair (I', A) is rejected by
all (model/assignment) pairs (2, g) if and only if " =, A. In the sequel, we will
interchange between the double turn-style notation and the term ‘rejecting’. This
completes our presentation of the Ambiguous Logic, we now turn our attention

to a similar scheme — Partial Logic.

A Comparison between Ambiguous Logic and Partial Logic

Partial Logic was developed to model situations in which sentences are not exclu-
sively either ‘true’ or ‘false’; that is, it is proposed that a truth—value gap exists.?

More precisely, any sentence of Partial Logic may be either ‘true’ (T), ‘false’ (L)

!Blamey defines a notion of logical implication which is essentially identical to that above.
We shall see that this definition is also closely related to monotonicity in Partial Logic.

2Partial Logic has been applied to a number of phenomena including: presupposition, con-
ditional assertion, sortal incorrectness and semantic paradox.



CHAPTER 4. INTERPRETATION 102

or ‘neither—true—nor—false’ (x). Blamey uses the apparatus of three—valued logic
to discuss Partial Logic in the natural way. However, not all researchers support

such a view; for example, van Fraassen asserts that:

[It has become] the custom of logicians to treat ‘is neither—true-nor—
false’ on par with ‘has a third value which is neither True nor False’.
My thesis will be that this supposition is not quite correct. (van
Fraassen, 1966, p.67)

However, Partial Logic is essentially three—valued according to the criterion de-
scribed by Simons (Simons, 1999, p.86). We adopt the view that although truth—
value gaps and third truth-values are not (philosophically) equal in status, we
may treat them as such for practical purposes. This view is shared by Langholm
(Langholm, 1996), among others. Therefore, in the sequel, we treat Partial Logic
as being three—valued without any further discussion.

The truth—tables for Partial Logic (Blamey, 1986, p.7) are identical to those
we presented in figure 4.1, except that the column heading ‘@ 7’ is replaced by
‘o xx Y’; however, the truth-values of ¢ xx 1) are the same as those of ¢ 7.
The treatment of quantified formulas in Partial Logic is also the same as it is in
the Ambiguous Logic. Furthermore, the syntax of Partial Logic is very similar
to the syntax of Q. In fact, we may identify any sentence of Partial Logic with a
sentence in Q (and visa versa) by defining a bijection which maps all occurrences
of the Partial Logic symbol ‘xx’ (interjunction) to the symbol ‘?” (ambiguation)
of Q, leaving everything else unchanged. Blamey uses additional (Partial Logic)
connectives such as transplication ( /), but all of these may be defined in terms of
T, L, =, A and xx; hence omitting them does not reduce expressive power. The
models used in the Ambiguous Logic are exactly those of Classical Logic (with
the difference that in Ambiguous Logic formulas can be ‘*’); by contrast, ‘empty
models’ are permitted in Partial Logic. Furthermore, in Partial Logic structures
may include a non-denoting symbol ® in their domains. We do not incorporate
the symbol ® in our analysis, nor do we consider models with empty domains.?

Ignoring these minor details, the obvious question to ask now is: Is the se-
mantics of van Eijck and Jaspars’ Ambiguous Logic the same as the semantics of

Partial Logic? Jaspars claims that it is not; in a footnote Jaspars asserts that:

3Van Orman Quine discusses the implications of permitting empty domains (Van Orman
Quine, 1954).



CHAPTER 4. INTERPRETATION 103

The clear difference [between Partial Logic and Ambiguous Logic]
is that in the case of Partial Logic, propositional variables can be
undefined as well, while we [in Ambiguous Logic| enforce bivalence
for variables. (Jaspars, 1997, p.7)

That is, atomic propositions may be assigned the value * in Partial Logic but in
Ambiguous Logic they may not. However, we shall see that this distinction is
less significant than we might expect. We use the following definition to simplify

the discussion:

Definition 4.1.2 (Decisive Model). A model 2 is decisive with respect to
assignment g if, under assignment g, 2 assigns every atomic formula either T or
1.

In the sequel, we discuss both ‘models’ (models of Partial Logic) and ‘decisive
models’ (models of Ambiguous Logic). Note that, by definition, any decisive

model is also a model.

Definition 4.1.3 (Satisfiable). A formula ¢ € Q is satisfiable if there exists
some model 2 and some assignment function g such that 2, g = ¢.

Definition 4.1.4 (Decisively Satisfiable). A formula ¢ € Q is decisively sat-

isfiable if there exists some decisive model 2 with respect to some assignment g
such that 2, g = ¢.

We will now make a formal comparison between satisfiability and decisive
satisfiability. In doing so, we will exploit the following result which involves an
important theme in Partial Logic — monotonicity (Blamey, 1986, Sec.6-2, pp.52—
55):

Lemma 4.1.5. Monotonicity is preserved by the formulas of Partial Logic. That
18, for any ¢ € Q, for models A and B and variable assignment g, if the atoms
occurring in @ are precisely 01, ...,0, then the following statement holds: If
A,00;) =T = By(0i)) =T and Ay(0;)) = L = By(6;) = L forl < i< n
then A,(p) =T = By(p) =T and Ay(p) = L = B,(¢) = L.

Proof of Lemma 4.1.5. Routine structural induction on formulas. O

We are now in a position to spell-out the relationship between satisfiability

and decisive satisfiability.



CHAPTER 4. INTERPRETATION 104

Lemma 4.1.6. For any I' C Q, I' is satisfiable if and only if I' is decisively
satisfiable.

Proof of Lemma 4.1.6. Suppose [ is satisfied by 2 with respect to assignment g;
that is, A, g = ¢ for all ¢ € I'. Let 6 range over the atoms which occur in T'.

Define a decisive model 8 with respect to assignment g by:

%9(9):{ T i A (0) =T,

1 otherwise.

It is immediate (from lemma 4.1.5) that 8, g = I'. The converse is trivial, since

any decisive model is a model. O

Lemma 4.1.6 establishes that in @, if we have a procedure for establishing sat-
isfiability in Ambiguous Logic, then we automatically have a decision procedure
for Partial Logic (and visa versa). We might now ask: is the notion of logical
implication in the Ambiguous Logic the same as it is in Partial Logic? Before we
can answer this question we must introduce some terminology and notation.

Blamey defines the term ‘rejects’ as follows: a model/assignment pair (2, g)
rejects a pair (I'; A) (where I and A are sets of sentences) if either A (y) = T
for all v € T" and A,(5) # T for all § € A, or Ay(y) # L for all v € T' and
™A,(0) = L for all 6 € A. We use the notation = to represent a relation
defined exactly as =, except that, ):Dec denotes a relation between decisive models
(equipped with assignment functions) and formulas; we note in passing that ):Dec C
=. In both Partial Logic and Ambiguous Logic, logical implication is defined as:
I' =, Aif and only if (T', A) has no rejecting model/assignment pair (%4, g). The
question is then: is decisive logical implication really different (to Blamey’s logical
implication)? To answer this question we need only to consider the following
simple example: Let @ be an atom, then the pair ({# A =60}, {L}) has no decisive
rejecting models, that is: {§ A =0} = L. But ({6 A -6}, {L}) has a (non-
decisive) rejecting structure defined by 2,(6) = *. Clearly this observation serves
as a counter—example to the hope that for any I'; A C Q, the pair (I',A) is
rejected in a model if and only if (T, A) is rejected in a decisive model. However,

we do have the following interesting lemmas:

Lemma 4.1.7. Let ')A C Q. Assume without loss of generality that the n—

ary predicate symbols occurring in I' U A are among {pi},.;, and that {g;},, and



CHAPTER 4. INTERPRETATION 105

{ri}, < are sets of n—ary predicates such that all three sets of predicate symbols are
(pairwise) disjoint. Define a map 1: Q@ — Q as follows:

i(zy, -z ) = @@y, .., 20) 2T,y 20),
(=)t = = (eh),
(APt = ot Ay,
(@)t = o7yl

(Vop)t = Va(eh).

Then (T, A) is rejected if and only if (I'1, AY) is rejected by a decisive model,
where T't denotes the result of applying the map 1 to all of the sentences in T.

Proof of Lemma 4.1.7. Suppose (2, g) rejects (I'; A). Define a decisive model B

with respect to assignment g as: For any tuple (ai,...,a,) € [A|",
if p*(ay,...,a,) =0 then ¢®P(ai,...,a,) =0 and rP(ay,...,a,) =0,
if p*(ai,...,an) =1 then ¢®P(ai,...,a,)=1 and rP(ai,...,a,) =1,
if p*(a1,...,an,) =% then ¢P(ai,...,a,) =0 and rP(ai,...,a,) =1

By induction, for any non-atomic formula ¢ € Q we have ©*9 = ©®9 where ¢ is
any assignment function. Conversely, suppose that B is a decisive model which

rejects (I'f, At). We define a model 2 with respect to assignment g as:

pray,...,a,) =0 iff ¢®(a,...,a,) =0and r>(ay,...,a,) =0,
pHay,...,a,) =1 iff ¢®(ar,...,a,) =1and rP(ay,...,a,) =1,
pHay,...,a,) =% iff ¢P(ar,...,a,) =0#71P(a1,...,0,) = 1.

The remainder of the proof is a simple induction over all ¢ € Q as before. O

Corollary 4.1.8. Let I'; A C Q. Then I' &= A if and only if T'f = A', where
= is the usual double-barrelled consequence relation over all models and = is

the double-barrelled consequence relation over all decisive models.

Proof of Corollary 4.1.8. Immediate from lemma 4.1.7 and from the definition of

):Dec . |:|



CHAPTER 4. INTERPRETATION 106

Corollary 4.1.8 shows how to reduce (general) logical implication to logical
implication in a decisive setting. We now establish a reduction in the opposite
direction, that is, from logical implication over decisive models to (general) logical

implication.

Lemma 4.1.9. Let 0; (1 < i < n) range over the atoms which occur in I' U A
where I';, A C Q are finite. Define w to be the sentence of L given by,

W = /\ (01 \% _‘01)

1<in

Then T = A if and only if (WA ATD) E (w = AA).

Proof of Lemma 4.1.9. Note that, if 2 is a model of @ and ¢ is an assignment
function then 2,(w) = T if and only if A is decisive (on the atoms 6, .. .6,) with
respect to assignment g, otherwise 2,(w) = *. We now present a (contrapositive)
proof: Suppose A, (WAAT) =T and Ay(w = AA) # T. Given A, (WAAT) =T
truth—tables imply that 2 (w) = T and A,(AT) = T. Because A (w) =T, A is
a decisive model with respect to g. Also, by assumption Ay (w — A A) # T and
given that we have 2 (w) = T we may use truth-tables to infer that % (A A) #
T. We now have A, (AT) =T and A (A A) # T; observation of the truth-table
for conjunction implies that ,(y) = T for all v € I, and that it is not the case
that 2,(0) = T for all 6 € A. Hence 2 is a decisive model with respect to g and
the pair (2, g) rejects (I, A), therefore I’ béDeC A. Alternatively, suppose that
Ay(w — AA) = L and Ay(w A AT) # L. By truth-tables A(w - AA) = L
implies that Ay(w) = T and AG(A A) = L. Thus A is decisive with respect to g.
Truth—tables show that if a conjunction is non—false then both conjuncts must be
non—false. Since A (w A AT') # L we have A, (AT) # L. So that A, (AA) =L
and 2, (AT') # L, and therefore I' & A.

Conversely, suppose 2 is decisive with respect to g, A,(y) = T for all v €
I', and that 2A,(5) # T for all 6 € A. Truth-tables yield 2A,(AT') = T and
A,(AA) # T. Since 2 is decisive with respect to g, 2A,(w) = T. Truth-tables
show that 2,(w A AT) = T since both conjuncts are true. Similarly, because
A, (AA) #T and Ay(w) = T truth-tables imply that 2A,(w — A A) # T. Thus
(A, g) rejects ({w A AT}H{w — AA}) and therefore (w A AT) £ (w — AA).
Alternatively, suppose 2 is decisive with respect to g, A,(6) = L for all § € A,
and A,(y) # L for all v € I'. Then A, (A A) = L and A, (AT) # L. Truth-
tables yield A,(w - AA) = L and (w A AT') # L in a similar manner to that



CHAPTER 4. INTERPRETATION 107

above. Hence (w A AT) £ (w — AA). O

In this section, we have established that the Ambiguous Logic of van Eijck
and Jaspars is essentially equivalent (in terms of satisfiability and logical impli-
cation) to Partial Logic. We might wonder if there is a deeper reason for this
connection. Malinowski notes that ‘simple Partial Logic is semantically an exten-
sion of the Kleene strong system’ (Malinowski, 1993) and, Pinkal suggests that
‘Kleene proposes a system ... that comes close[r] to the intuitive concept of se-
mantic (linguistic) indefiniteness’ (Pinkal, 1985). So perhaps the reason for the
relationship between the Ambiguous Logic and Partial Logic might lie in the fact
that we regard sentences involving partiality, the indefinite and ambiguity with
a similar amount of suspicion!

Now that we know that the Ambiguous Logic is the same as Partial Logic
we can transfer results from Partial Logic to the Ambiguous Logic. The main

theorems in Blamey’s presentation of Partial Logic are:

Theorem 4.1.10 (Blamey). Every monotonic three—valued boolean connective

can be defined in terms of the connectives in the set {1, =, A, 7}.

Theorem 4.1.11 (Blamey). Let ['A,YX C Q. Then there exists a model
of ¥ which rejects (U'; A) if and only if for every finite subset Tg of T, Ag of
A and Xy of X there is a model of X which rejects (T'g, A).

Now that we have made clear the relationship between the Ambiguous Logic
and Partial Logic, we ask: How sensible is Partial Logic (and therefore the Am-

biguous Logic)? Blamey claims that he provides

... two particular accounts of how the triclassificatory semantics of
Partial Logic can play a role which does not, in any interesting sense,

give rise to an alternative to Classical Logic. (Blamey, 1986, p.44)

However, Blamey’s discussion is quite philosophical in style, and unfortunately,
lacks mathematical clarity. Therefore, we conclude this section, by making a

concrete comparison between Partial Logic and Classical Logic.*

4This issue is explored in some detail by Langholm (Langholm, 1996, pp.32—-41).



CHAPTER 4. INTERPRETATION 108

4.1.2 Partial Logic and Classical Logic

In this section we will investigate the relationship between Partial Logic and
Classical Logic; in particular, we will compare partial satisfiability with classical
satisfiability. We begin by defining three maps; one of which moves negations
inwards in the standard way, the other two simply replace all occurrences of ‘7’

by conjunction and disjunction respectively.

Definition 4.1.12 (Maps N, C & D). We define maps N,C,D : Q@ — Q as

follows:

oV = for atomic ¢,
(pop)N = N oy for any binary connective o of Q,
(Qzp)N = Q" for any quantifier Q and variable z of Q.

We define N for formulae prefixed by a negation symbol as follows,

(=)™ = - if pis a literal,
)™ = ",
Clen)Y = (~e)" v ()",
Cleve)™ = (me)¥ A ()7,
e?e)Y = (~e)V T ()7,
(Vzp)¥ = 3x((-e)Y),
(=3zp)™ Va((=o)").

For any ¢ € Q we denote by ¢ the result of replacing all occurrences of ‘?’ in
¢ with ‘A’. Similarly ¢ denotes the result of replacing all occurrences of ‘?” in
@ with V.

Lemma 4.1.13. Let 2 be a partial model and g be an assignment function. Then
for all p € Q:

1. A g = ¢ if and only if A, g E' (V)¢ and
2. A, g F if and only if A, g = ~(p")"

where = and = denote the Partial Logic relations (defined in 4.1.1, page 99) and

=" denotes the usual classical relation “E=".

Proof of Lemma 4.1.13. We prove this lemma in two steps:

Step 1: We show by induction on the complexity of formulae that for all ¢ € Q,



CHAPTER 4. INTERPRETATION 109

A,9 = ¢ if and only if A, g = " (and A, g = ¢ if and only if A, g =5 V). To
prove Step 1, we need only to consider formulas which are prefixed by a negation
symbol (since for those formulas which are not prefixed by a negation symbol,
Step 1 is trivial). We proceed by induction over formulas; though, for brevity,
we present just two of the cases. Suppose that A, g = —(¢ 7). By looking at
truth-tables we know that in Partial Logic =(¢ 7)) = —¢ 7?7 -1 and therefore
2,9 = —¢? ). Hence, by definition of the map N, we have A, g = (—=(¢ ?9))V.
Similarly, suppose that 2,9 E —Vzy. Then A, g 5Vzy by definition of the
turn-style relations. Again, by definition of the turn-style relations we have
A, g 5 Vxy if and only if A, h = ¢ for some h such that h(y) = g(y) whenever
y # x. By inductive hypothesis we know that 2, h = ¢ for some h such that
h(y) = g(y) whenever y # x. Once again, by definition of the turn—style relations
A g = —¢" for some h such that h(y) = g(y) whenever y # z and therefore
2, g = dz((—p)Y). The other cases are similar.

Step 2: For all p € Q such that ¢ is in negation normal form (that is, N has
been applied), A, g = ¢ if and only if A, g = ©° (and A, g = ¢ if and only
if A,g E' —pP). As with Step 1, we will prove Step 2 by induction on the
complexity of formulae. Since ¢ is in negation normal form the base case of our
(inductive) proof is ‘p is literal’. The base case is trivial anyway (since C' and D
leave literals unchanged). Furthermore, we can omit negated formulae from the
inductive steps. Again, for brevity, we consider just two inductive cases. Suppose
that 2,9 &= ¢?7¢. Then ™A, g = ¢ and ™A, g = ¢ by definition of the Partial
Logic relation =. By inductive hypothesis we have 2, g E' ©¢ and A, g ' ¢
and therefore %A, g = o A ¢C; that is, A, g =" (p?)¢. Similarly, suppose
that A, g =5 ¢ 7 then 2, g = ¢ and A, g =5 7. By inductive hypothesis we have
A, g =" —P and A, g E' P, Therefore A, g ' —¢P A—P and, by de Morgan’s
rule A, g E' —(p” Vv ). By definition of the map D we have 2, g =" —(p ? )P

as required. The other cases are similar. O

A ‘notational variant’ of this result is presented by van Eijck and Jaspars (van
Eijck and Jaspars, 1996, p.24, Cor.16).

So far in this chapter we have established that the Ambiguous Logic presented
by van Eijck and Jaspars is the same as Partial Logic and that Partial Logic can
be understood in terms of Classical Logic anyway. We conclude our study of van
Eijck and Jaspars’ proposal (Partial Logic) by evaluating its suitability to the
ambiguity problem.



CHAPTER 4. INTERPRETATION 110

4.1.3 Is Partial Logic Suited to the Ambiguity Problem?

In this section we assess the suitability of Partial Logic as a framework for in-
terpreting and reasoning over Underspecified Representations. Very roughly, van
Eijck and Jaspars claim that their logic (and in particular the double turn—style
notation we presented on page 99) characterises the following intuition: an am-
biguous formula is ‘true’ if and only if all of its readings are (classically) true
and ‘false’ if and only if all of its readings are (classically) false. Van Eijck and

Jaspars formalise this claim as follows (van Eijck and Jaspars, 1996, p.5):
e 2 = S, means that every reading of the sentence S is true in model 2,
e 2A £ S, means that every reading of S is false in 2,
e 2 NS means that at least one reading of S is false in 2,
e A A S, means that at least one reading of S is true in 2.

We will show that, unfortunately, the logic proposed by van Eijck and Jaspars fails
to coincide with these glosses. The following lemma establishes the relationship
between van Eijck and Jaspars’ glosses (page 110) and the formal definition of

the double turn—style notation (page 99) for propositional formulae.

Lemma 4.1.14. For any model A and any propositional sentence ¢ € Q:
1. A = ¢ if and only if A =" & for all total disambiguations @ of ¢ and,
2. A 3¢ if and only if A ¥ ¢ for all total disambiguations @ of ¢,

where = and = denote the Partial Logic relations and =" denotes the usual clas-

sical relation “E7.

Proof of Lemma 4.1.14. Proceed by induction on the complexity of formulae:

The base case is trivial since atomic formulae are unambiguous and thus ¢ = .
We present just two inductive steps here, since the omitted cases are similar; we
begin with negation. Suppose that 2 = —¢, then by definition of the Partial
Logic turn-style relations 2 = . By inductive hypothesis 2 ' ¢ for all total
disambiguations @ of ¢. Finally, it is clear that for any ¢ € Q we have ~($) = =¢;
that is, the set consisting of the disambiguations of ¢ prefixed with negation

symbols is equal to the set of disambiguations of —p. Therefore, A E' =o.
Similarly, suppose that 2 =] ¢; ? ¢5. Then by definition of the o relation A = ¢,



CHAPTER 4. INTERPRETATION 111

—~

and 20 = ¢5. By inductive hypothesis we therefore have 2 £ o1 and A £ 3
for all total disambiguations p; of ¢; and for all total disambiguations @5 of
2. By definition of ‘disambiguation’ in Q we have 2 ' (@2) for all total
disambiguations (WQ) of (¢1 7 @2). The other cases are similar. O]

Unfortunately, the above lemma does not hold for quantified formulae. To
prove this claim, we need only to construct a formula ¢ € Q such that for some
model 2 and assignment function g we have 2, g = ¢ and 2, g =’ ¢ for all total
disambiguations @ of ¢. We claim that the formula ¢ = Jz[(B(z) ? Ba2(z)) A
M (x)] is such a counter—example. Suppose that both of the formulas 3z (B (x) A
M (x)) and 3z (Bs(z) A M(z)) — that is, all of the total disambiguations of ¢ — are
(classically) satisfied by %A, but that ‘3z’ requires a different witness in each case.
Then, according to the semantic framework proposed by van Eijck and Jaspars,
2 = . Intuitively, suppose that 2 interprets B as ‘is a financial institution’,
Bs as ‘is a mud wall’ and M as the property ‘is mossy’. Then 2 corresponds to
a (quite realistic) ‘possible world’ in which there is at least one mossy financial
institution and at least one mossy mud wall, but in which there does not exist a
mossy financial institution which is also a mud wall! This counter—example shows
that the semantics proposed by van Eijck and Jaspars somehow fails to capture
the intuition intended. That is, the intuitive and formal definitions of the double

turn—style notation do not completely coincide.

4.1.4 Summary

In this section we have seen that the Ambiguous Logic proposed by van Eijck
and Jaspars fails to capture their intended notions of satisfaction (page 111) and
that, in terms of satisfiability and logical consequence, their logic is equivalent to
Partial Logic (lemma 4.1.6, lemma 4.1.7 and lemma 4.1.9). We have also seen that
satisfaction in Partial Logic is reducible to satisfaction in classical logic anyway
(lemma 4.1.13). We therefore dismiss this Ambiguous Logic (Partial Logic) and

instead concentrate on non-recursive satisfaction definitions.

4.2 Non—Recursive Satisfaction Definitions

We say that a semantic framework is a non—recursive satisfaction definition if

it is such that the meaning of any Underspecified Representation is completely



CHAPTER 4. INTERPRETATION 112

determined by the meanings of its disambiguations. We now evaluate current
non-recursive satisfaction definitions.

It is fundamental to this approach that the Underspecified Representation
Language, in our case @, has no semantics of its own beyond the semantics for
the unambiguous sub-language £. Thus, we never speak of the truth or falsity of
a formula ¢ in a structure, except where ¢ is unambiguous. However, we redefine
the semantic notions of satisfiability, validity and entailment so that they apply

to ambiguous formulas.

4.2.1 Strong and Weak Satisfiability

We begin with satisfiability. In this section we let A be any Underspecified Rep-

resentation Language such that 4 has a well-defined disambiguation procedure.

Definition 4.2.1 (Satisfiable). Let ¢ € A. We say that ¢ is weakly (strongly)
satisfiable if some (every) total disambiguation @ of ¢ is classically satisfiable.
Similarly, we say that ¢ is weakly (strongly) unsatisfiable if some (every) total

disambiguation @ of ¢ is classically unsatisfiable.

Notice that this definition involves quantification over disambiguations, and in
some sense quantification over models. For example, p? —p is strongly satisfiable
(since the separate occurrences of p may be satisfied by different models) and
© A —p is not necessarily a contradiction®, since, for example, if ¢ = p? ¢ then
p A —q is a total disambiguation of ¢ A = and p A —q is obviously classically
satisfiable.

Definition 4.2.2 (Validity & Entailment). Let p,9 € A. We say that ¢ is
weakly (strongly) valid if, for some (every) disambiguation @ of ¢, @ is classically
valid. We say that ¢ weakly (strongly) entails 1 if, for some (every) disambigua-

tion @ of ¢, and some (every) disambiguation ¥ of ¥, © classically entails .

Under this view, once we have specified the set of disambiguations of an

Underspecified Representation, there is nothing further one needs to do.

Observation 4.2.3. Let o, € A. Then ¢ is weakly (strongly) unsatisfiable if
and only if ¢ is not strongly (weakly) satisfiable; ¢ is weakly (strongly) valid if
and only if —p is not strongly (weakly) satisfiable; and ¢ weakly (strongly) entails
W if and only if ¢ — ¥ is weakly (strongly) valid.

SWe use the term ‘contradiction’ here to mean ‘strongly unsatisfiable’.



CHAPTER 4. INTERPRETATION 113

Proof of Observation 4.2.3. Obvious. O

Our notions of strong and weak entailment (first reported by van Deemter)
are sometimes denoted ‘v’ and ‘=33 respectively (van Deemter, 1996, p.216).
For sure, other possibilites exist, for example van Deemter defines two other rela-
tions ‘Eva’ and ‘E3y’, but we dismiss these since no analogue of observation 4.2.3
holds. It is clear that non-recursive satisfaction definitions provide a more sensi-
ble framework for interpreting Underspecified Representations than Partial Logic.
Therefore we will conclude this chapter with a more detailed investigation into
non-recursive satisfaction definitions; in particular, we will investigate complexity

issues within this setting.

4.2.2 Computational Complexity of Strong and Weak Sat-
isfiability

In this section we will investigate the computational complexity of strong and
weak satisfiability. The main result of this section is that strong satisfiability
(with respect to Q) can be reduced to ordinary satisfiability. We begin by defining

logical equivalence in our semantic framework:

Definition 4.2.4 (Logical Equivalence). Let ¢,9 € Q. We say that ¢ and ¢
are logically equivalent, written ¢ = 1), if every disambiguation of ¢ is logically
equivalent to some disambiguation of ¢, and every disambiguation of ¥ is logically
equivalent to some disambiguation of ¢.

In the sequel, it will sometimes be convenient to write formulas in ‘negation
normal form’ as we discussed on page 108. We reproduce the relevant material

below:

Definition 4.2.5 (Negation Normal Form). We denote by ¢~ the result of
moving negations inwards using the usual rules for £ together with the additional

rule
(= ()Y = (=)™ 7 (=)Y).

A formula of the form ¢~ for ¢ € Q is said to be in negation normal form.

Example 4.2.6.

Bz (—p(z)?q(z)) V Vop(x) V Veq(z))™ = Va(p(z)?q(z)) A 3z-p(z) A Fz—q(z)



CHAPTER 4. INTERPRETATION 114

Lemma 4.2.7. Let o € Q. Then ¢ = o~.

Proof of Lemma 4.2.7. Follows from the fact that —(¢ 7)) = —¢ ? ). O

Strong Satisfiability

The next lemma contains the main idea in the reduction of strong satisfiability

to ordinary satisfiability.

Lemma 4.2.8. Let ¢ be a formula in negation normal form containing a sub-
formula o of the form ¥(g) ? m(y), where ¥ and © are unambiguous and have no
free variables other than . Let ¢[a/pa(y,uw)] be the result of replacing o in @
by po(J,u) where p, is a new predicate letter (of appropriate arity) and u is a

variable not appearing in . Let ¢’ be the formula

Vupla()/pa(F, w)] AVG(Pa(Y)la) = $(G)) AVY(Pa(F,7a) = (7)),

where 1o, and r, are new constants. Then ¢ is strongly satisfiable if and only if

' is strongly satisfiable.

Proof of Lemma 4.2.8. Suppose ¢' is strongly satisfiable and let ¢* be any dis-
ambiguation of . To show that ¢* is satisfiable, let ¢"* be the disambiguation
of ¢' obtained by making the same disambiguation choices in the subformula
©la(y) /pa(y,u)] as were made in the disambiguation ¢*. Suppose also without
loss of generality that ¢* disambiguates « in favour of the left—hand reading (7).
Choose 2 and g such that 2, g = ¢, so that, in particular,

A, 9 = VY(pa(y) la) = V() A ela(y)/pa(y; la)].

Since pu (7, la) occurs only positively in ¢[a(y)/pa(T,la)], it is easy to see that

A, g E ¢*. The converse is even more straightforward. O

Lemma 4.2.8 can now be used to reduce strong satisfiability in Q linearly
to satisfiability in £. Of course that is hardly surprising: first-order logic is
so expressive that it is easy to simulate the effects of the ?—operator. Indeed,
it is worth noting that the reduction provided by lemma 4.2.8 is an ‘expensive’
reduction, in that it introduces an extra variable. Thus, the translation in the next

theorem which it provides does not preserve membership in certain fragments of



CHAPTER 4. INTERPRETATION 115

Q. most obviously, the propositional fragment PQ and the two-variable fragment

Q>.

Theorem 4.2.9. There exist a number ¢ and a function f : Q — L such that,
for all ¢ € Q, |f(@)| < c|¢| and ¢ is strongly satisfiable if and only if f(p) is

satisfiable. Moreover, f is computable in linear time.

Proof of Theorem 4.2.9. We first convert ¢ to negation normal form and then
apply lemma 4.2.8 to remove occurrences of 7 one-by—one, starting from the
innermost. In the construction of ¢’ in lemma 4.2.8, the material in the ‘input’

formula ¢ is never duplicated. This explains the linear time bound. O

The non-trivial nature of strong satisfiability becomes clear by looking at the
propositional fragment of Q (henceforth, PQ). Recall that a formula is strongly
satisfiable if and only if it is not weakly unsatisfiable (observation 4.2.3).

Theorem 4.2.10. The problem of determining weak unsatisfiability in PQ is

Y2 —complete.

Proof of Theorem 4.2.10. To show that a problem II with input string z is in
Y2, it suffices (Garey and Johnson, 1979, pp.163-164, Thm.7-4) to find a ternary
relation 7(z,y, z), checkable in polynomial time, such that II(z) if and only if
there exists a string y such that for all strings z we have r(z, y, z), where the sizes
of y and z are constrained to be polynomially bounded in the size of x. But this
characterisation fits the definition of weak unsatisfiability exactly, where r(z, y, 2)

is given by:

r(z,y, z) if and only if y is a disambiguation of v and z is a truth-value

assignment in the propositional variables of y such that z falsifies y.

By another standard result (Garey and Johnson, 1979, p.166, Thm.7-6) the prob-
lem B, is YE—complete, where By is the problem of determining the truth—value

of a quantified propositional formula ¢ of the form
dpy...dpVaq .. . Vg E,

with £ a Boolean expression in the variables pq,...,p;,q1,...,q. But By can be

reduced to the problem of determining weak unsatisfiability for the ambiguous



CHAPTER 4. INTERPRETATION 116

propositional calculus. For, given a formula ¢ of the above form, it is easy to see
that the ambiguous propositional calculus formula

(pl‘?_‘pl) NN (p]?_'p]) AN -FE.

is weakly unsatisfiable if and only if ¢ is true. O

Conjecture 4.2.11. The problem of determining strong satisfiability in PQ s
not polynomially reducible to the problem of determining satisfiability in the propo-

sitional fragment of L.

Proof of Conjecture 4.2.11. Immediate from theorem 4.2.10, assuming that X5 ¢
NP. O

This is good evidence that the introduction of ambiguity operators increases
the difficulty of determining (strong) satisfiability. But of course, the best—known
algorithms for solving both types of problems run in worst—case exponential time,
so the practical implications of this observation are unclear.

The question naturally arises as to whether analogous complexity—class results
hold for larger decidable fragments of £ than the propositional fragment. How-
ever, very simple considerations show that, in many cases, they do not. Given
that an ambiguous formula ¢ € Q has at most 2/l disambiguations, in any frag-
ment Ly where the problem of determining unsatisfiability is EXPTIME-hard
adding ambiguous operators will not change the complexity class of the problem

of determining either weak or strong unsatisfiability.

Weak Satisfiability

It would be easy to adapt theorem 4.2.9 to obtain an analogous translation reduc-
ing weak satisfiability in Q to satisfiability in £. However, it turns out that, for
weak satisfiability, we can do a little better. We begin by repeating the definition

of map D (defined previously on page 108) as a reminder:

Definition 4.2.12 (Map D). Let ¢ € Q. We denote by P the result of replac-

ing all occurrences of 7 in ¢ by V.

Example 4.2.13.

(Vz(p(x) ? ¢(z)) A 3z—p(z) A Fz=q(2))P = Vz(p(z) V q(x)) A Fz—p(z) A Fz—q(z).



CHAPTER 4. INTERPRETATION 117

In PQ, moving negations in is practically all that is required to reduce weak
satisfiability to ordinary satisfiability:

Theorem 4.2.14. Let ¢ € PQ. Then ¢ is weakly satisfiable if and only if the

unambiguous formula (¢N)P is satisfiable. Hence, the problem of determining

weak satisfiability in PQ is NP-complete (but of course this is obvious anyway).

Proof of Theorem 4.2.14. Routine induction on the complexity of ¢P. O

Unfortunately, theorem 4.2.14 does not generalise to the whole of Q: the

formula
:= = (Jz(—p(z) ? ~q(z)) V Vap(z) V Vzq(z)),

is a counter—example. However, the following slightly more complicated construc-

tion does work:

Lemma 4.2.15. Let ¢ be a formula in negation normal form containing a sub-
formula o of the form ¥(§) ? m(y), where ¥ and © are unambiguous and have no
free variables other than §. Let p|a/pa ()] be the result of replacing o in ¢ by
Pa(7), where p, is a new predicate letter. Let ¢’ be the formula

elo/pa(®)] A (Vy(pa(y) = (1)) V Vi (pa(y) = (1)),

introduced in lemma 4.2.8, then @ is weakly satisfiable if and only if ¢’ is weakly
satisfiable.

Proof of Lemma 4.2.15. Similar to the proof of lemma 4.2.8. O

Lemma 4.2.15 guarantees that the problem of determining weak satisfiability
is linearly reducible to the corresponding problem in unambiguous first—order
logic. However, the translation involved in theorem 4.2.16 is ‘cheaper’ than that
for theorem 4.2.9 in that no extra variable is required. In particular, membership
in the propositional and two-variable fragments is preserved.

Theorem 4.2.16. There exist a number ¢ and a function f : Q@ — L such
that, for all o € Q, | f(¢)| < c|p| and ¢ is weakly satisfiable if and only if f(p) is
satisfiable. Moreover, f is computable in linear time, and preserves membership in

the propositional fragment, the two—variable fragment and the guarded fragment.



CHAPTER 4. INTERPRETATION 118

Proof of Theorem 4.2.16. Similar to the proof of theorem 4.2.9. O

This concludes our investigation into the complexity of strong and weak sat-
isfiability.

In this chapter we have investigated the best-known schemes for interpreting
Underspecified Representations: Partial Logic and non-recursive satisfaction def-
initions. We have argued that Partial Logic may be disregarded because it fails
to capture the ‘correct’ intuition (page 111) and it turns out that partial satisfia-
bility can be reduced to classical satisfiability anyway (lemma 4.1.13). Therefore,
we believe that the only sensible underspecified semantic frameworks are those
such that the meaning of any Underspecified Representation is completely deter-
mined by the meanings of its set of readings. Accordingly, we spent some time
investigating the complexity of strong and weak satisfiability.

To recapitulate, in the previous chapter we defined the current Underspecified
Representation Languages, and in this chapter we have advocated non-recursive
satisfactions (rather than recursive satisfaction definitions) as the most sensible
way to interpret expressions in these languages. We are now in a good position to
investigate the relationships between the current Underspecified Representation
Languages (with respect to our preferred semantic framework). We devote the

next chapter to this issue.



Chapter 5
Relative Expressive Power

The landlord painted all the walls with cracks.

Mathematicians are like Frenchmen: whenever you say something to
them they translate it into their own language, and at once it is some-

thing entirely different.
GOETHE, Maxims and Reflections (1829)

Our goal in this chapter is to gain a clear understanding of the relative ex-
pressive power of each current Underspecified Representation Language. We shall
try to satisfy this goal by looking for ‘translation procedures’ between these lan-
guages. By describing how to translate between two Underspecified Representa-
tion Languages, we are able to make clear the link between them. For example,
the language Q is motivated by a consideration of local ambiguities (such as, lex-
ical ambiguities); by contrast, the language H is clearly most suited to operator
scope ambiguities. We are therefore interested in the precise relationship between
these two languages. Furthermore, establishing that all current Underspecified
Representation Languages have the same expressive power might help unify the
discussion. There has been some recent interest in encoding Underspecified Rep-
resentation Languages in terms of one another; in particular, it has been shown
that there are back—and—forth maps between Predicate Logic Unplugged and the
Constraint Language for Lambda Structures (Koller et al., 2003) and between
Minimal Recursion Semantics and the Constraint Language for Lambda Struc-
tures (Niehren and Thater, 2003). However, we have argued that H, PLU, MRS,

119



CHAPTER 5. RELATIVE EXPRESSIVE POWER 120

CLLS and UDRT are all the same anyway, excepting cosmetic differences. Simi-
larly, we argued that APL, Stores, QLF and R are also the same as each other,
again excepting cosmetic differences. Indeed, Koller admits that ‘many of these
formalisms seem very similar to each other’ (Koller et al., 2003, p.1). Our aim is
to define back—and—forth translations between those Underspecified Representa-
tion Languages which do not look similar to each other; that is, between ‘H and
Q and between APL and Q.

It is trivial to translate any formula from any Underspecified Representation
Language into an (‘equivalent’) formula of Q, by disambiguating it and then con-
joining its disambiguations using the ambiguation connective (assuming that the
Underspecified Representation Language is sensible; that is, assuming that we
can disambiguate its expressions). However, such a strategy is very inefficient
from a computational perspective (because of the combinatorial explosion prob-
lem) and would therefore, in a sense, destroy the original motivation for using
Underspecified Representations. For this reason, we consider only those trans-
lations for which the size of each translated formula is polynomial in the size of
the original formula, and henceforth the term ‘translation’ will be used exclu-
sively for this purpose. We now translate our hole language H into Q (and visa
versa); we choose Q because it seems very different to the other Underspecified

Representation languages and partly because of its mathematical simplicity.

5.1 Comparing Expressive Power

Our aim is to show that the two very different Underspecified Representation
Languages @ and H have equivalent expressive power, in the sense that any
expression in one of them can be translated (or ‘transcribed’) by an expression
in the other, with at most a polynomial increase in the size of the transcription.
We claim that our results apply, with trivial modifications, to PLU (Bos, 1995),
MRS (Copestake et al., 1999), CLLS (Egg et al., 1998) and UDRT (Reyle, 1993).

Clearly, before we can proceed we must make our ideas more precise. Of

particular interest to us are notions of expressive equivalence.

Definition 5.1.1 (Logical Equivalence). Suppose that A and B are Under-
specified Representation Languages and let « € A and § € B. We say that «

and 3 are logically equivalent if



CHAPTER 5. RELATIVE EXPRESSIVE POWER 121

1. every disambiguation of « is logically equivalent to some disambiguation of
5, and

2. every disambiguation of 3 is logically equivalent to some disambiguation of

«.

Note that “logically equivalent” is used in (1) and (2) in the sense of ordinary

first—order logic.

Observation 5.1.2. Logical equivalence is an equivalence relation. Moreover, if
a € A and B € B are logically equivalent, o is weakly (strongly) satisfiable if and
only if B is.

Proof of Observation 5.1.2. Routine. O

However, logical equivalence is a rather severe measure of expressive power

and, in particular, we believe that the following conjecture is correct:

Conjecture 5.1.3. There is no map f : H — Q (and similarly no map f :
APL — Q) such that for all p € H (p € APL), with at least one disambiguation,
@ is logically equivalent to f(p) and |f(p)| < p(|¢|) where p is a polynomial.

Fortunately, all is not lost; the following notion appears frequently in first—

order logic.

Definition 5.1.4 (Classical Transcription). Let ¢,¢ € £. We say that ¢

transcribes ¢ if
1. 9 entails ¢, and

2. for every structure 2 interpreting only the primitives of ¢, and such that

A = ¢, there exists a unique expansion B of 2 interpreting the primitives
of 1 such that B = 1.

Thus, transcriptions are just like the formulas they transcribe, except that
they may introduce new ‘defined’ predicates. As an example of the importance of
this notion, we mention the result that every formula ¢ in the two—variable frag-
ment of £ (without equality) has a transcription ¢ in the Godel fragment. This
result may be taken to show that the Godel fragment has at least the expressive

power of the two—variable fragment without equality. The classic example is of



CHAPTER 5. RELATIVE EXPRESSIVE POWER 122

course that of Skolemization: If ¢ is any formula of first—order logic, then its
Skolemization is a transcription of ¢.
Extending the notion of transcription for underspecification follows the same

pattern as logical equivalence:

Definition 5.1.5 (Underspecified Transcription). Let « € A and 3 € B be

Underspecified Representations. We say that 8 transcribes « if
1. every disambiguation of § transcribes some disambiguation of «, and
2. every disambiguation of « is transcribed by some disambiguation of 3.

Thus, if § transcribes «, we may take 3 to express what o expresses.
We spend the rest of this chapter proving that A can be transcribed in Q

(and visa versa) and that APL can be transcribed in Q (and visa versa).

5.2 Reducing a Hole Language to O

We begin by transcribing Q in ; in the sequel we will transcribe H in Q.

5.2.1 Transcribing Q in H

Before we define our transcription we state a useful result about Q:

Lemma 5.2.1. Every ¢ € Q has a transcription ¢’ € Q of the form

o N N\ VE(u(T) > (0:791)), (5.1)

1<i<n

where the o; (1 < i < n) are new predicate letters and the formulas ¢; (0 < i< n)

and ¢¥; (0 < i< n) are unambiguous.

Proof of Lemma 5.2.1. We say that an occurrence of a connective (or atomic
formula) is of depth n+1 in formula ¢ € Q if, when ¢ is viewed as a tree, n nodes
dominate the node labelled by that connective (or atomic formula). Suppose that
the deepest occurrence of the 7—operator in ¢ is of depth n. Note that, we cannot
assume that this occurrence of the ?7—operator is uniquely the deepest. Therefore,
suppose that there are £ > 1 occurrences of the 7—operator at depth n. We will

refer to these occurrences as 7, ..., ?®%) Let the left and right operands of ?(/)



CHAPTER 5. RELATIVE EXPRESSIVE POWER 123

for each 1 < 7 < k be denoted ¢; and ; respectively. Obviously ¢;,¢; € L
because ?\) is among the deepest ?—operators in ¢. Let ¢, denote the result of
replacing each ¢, 7)), (for each 1 < j < k) by a new predicate letter which we
denote o;(;). Then let

o =00 n \ VE(a(T;) ¢ (97 ¢)).

1<k

Suppose that we disambiguate ¢ as:

T=po A N\ Veilos(z) ¢ ¢;)
15k
and that 2, g |= 7. Let B be an expansion of 2 defined by: of = {a |2 |= ¢,[al}.
It is then almost immediate that B = ¢. O

Thus, the expressive power of Q is not enhanced by the ability to embed

?—operators.

Lemma 5.2.2. Given ¢ € Q we can compute (in polynomial time) an element
(&,C) € H such that (€, C) is a transcription of ¢.

Proof of Lemma 5.2.2. We may assume without loss of generality that ¢ is of the

form given in formula (5.1). Define

§ = {lo: 9o A Nigicn VTi(0i(Ti) < hit) } U
{lix:@iN(higV T),
lig i A(hisVT),
li’32T|1<i<n},

C = {(hi,lin), (hir,lig), (i, lig) |1 <i < n}.

where Iy and the [;; (1 < i < n, 1 < j < 3) are elements of L and the h;;
(1 <i<n,1<j<3) are elements of H. The constraints C ensure that each
hole h;; is plugged with either of the expressions ¢; A (hia V T) or ¥; A (his V' T).
Here, the conjuncts (h;s V T) and (h;s V T) act as ‘rubbish bins’ into which
other expressions are ‘thrown’. Thus, in assembling p*(hg) for a plugging p, the
conjunct VZ;(;(£;) <> hi1) gets filled as either

V.’E_Z(O{z(.fz) <~ (QOZ A ((wz A (T V T)) V T))) or



CHAPTER 5. RELATIVE EXPRESSIVE POWER 124

Vi (ai(zi) < (i A (@i A(TVT))VT))),

which are logically equivalent to Viz;(o;(Z;) <> ¢;) and VZ;(a;(T;) <> ;) respec-
tively. The result is then immediate. 0

Unfortunately, we shall see that it is less straightforward to transcribe H in
Q than it is to transcribe Q in H.

5.2.2 Transcribing H in Q

Theorem 5.2.3. Given (£,C) € H, with at least one disambiguation, we can
compute an element ¢ € Q such that ¢ is a transcription of (§,C) and |p| <
p([(&,C)|) where p is some polynomial function.

We devote the rest of this section (that is, section 5.2.2) to proving theorem
5.2.3.

Proof of Theorem 5.2.3. Throughout, let (¢, C) be fixed. Denote by @ the tuple
of variables (in some order) occurring free in any £(1) for [ € L(£). Expand the

signature of ¢ with the following primitives:

- for each h € Hy(§) and each [ € L(§):

a proposition letter py

- for each h,h' € H(¢) and each m (1 < m < |H(§)|):

proposition letters descy , and descy ,

- for each h € Hy(¢):

a predicate letter 7, with the same arity as %

The intuition behind the transcription is as follows. If we think of pj; as stating
that £() ‘plugs’ into hole h, then any structure interpreting all the p,; determines
a subset p of H x L. Our translation of (£, C) will force (the bijection defined
by the set of pairs) p to be an admissible plugging for (£, C'), and will force the
nr () to be satisfied by the same tuples as the corresponding formulas p*(h). In



CHAPTER 5. RELATIVE EXPRESSIVE POWER 125

the sequel, we adopt the following abbreviations:

CHOOSE” := A\ (pnt? ~pny),

leL(¢)
heHy(£)

BIJECTION := A \/ pwun A\ V pu

heHo (&) IEL(€) leL(§) heHo(§)

A /\ (P A Ph)

heHy(§)
LI'eL()
12l

A /\ “(Phy A Drry)-
h,h’EHo(&)

IEL(E)
h£h!

Of course, the expression CHOOSE' is ambiguous. We will use ‘CHOOSE’ to
refer to an arbitrary disambiguation of CHOOSE’. We will also use the following

abbreviations:

DESCENDANTS := /\ {desc,ll,,h < \/ ( (&) s.t. £(1) contains h’) }

h,h'€H (&)

A /\ /\ {dech}j}Zl “ \/ (desc;'f,’h A desc,ll,,h,,) }

LSm<(|H(§)[=1) h,h'€H(§) h
A /\ {desch:,h — \/ dechfyh},
h,h/€H(€ 1<m<|H(€)|

NONCYC := /\ —descp,p,
heH(§)

CONSTRAINTS := A\ (;oh,lv \V (ph,,l/\desch',h)),
(h,1)eC W eH(E)

OKAY := BIJECTION A NONCYC A CONSTRAINTS.

Note that any disambiguation CHOOSE of CHOOSE' fixes truth-values for all
the py;. Hence, all structures satisfying a fixed disambiguation CHOOSE and the
formula DESCENDANTS give the same truth—values for all p,; and all descpy,
and therefore the same truth—value for the formula OKAY.



CHAPTER 5. RELATIVE EXPRESSIVE POWER 126

Observation 5.2.4. If p C Hy(&) x L(§) is a relation defined by
(h,1) € p if and only if = CHOOSE — py,

then:
1. BIJECTION is true if and only if p is a bijection from Hy(&) to L(&).

2. If BIJECTION is true, descy p is true if and only if h' is a descendant of
h according to the plugging p.

3. If BIJECTION s true, NONCYC A CONSTRAINTS is true if and only if
p s an admissible plugging for (&, C).

Let ¢y be any disambiguation of (£, C) and, for [ € L, let \; be the formula
obtained by replacing every h € £(l) by the corresponding atom 7y, (). Then we
transcribe (£, C) as:

¢ = CHOOSE’ADESCENDANTS

A (OKAY — <n0(ﬂ) A /\hleefLI(()g) (Phg — Vi(nn(T) < Al))))

N <—|OKAY — (QO() N /\hEHo(ﬁ) V’a—!?’lh(’lj)) > .

It remains to show that ¢ is indeed a transcription of (&, C).
Let ¢’ be any disambiguation of ¢ and let CHOOSE denote the (same) dis-
ambiguation of the subformula CHOOSE’. Define a plugging p : Hy(§) — L(&)

as:

p: h— [ if and only if = CHOOSE — pp.

Suppose 2, g = ¢’ for some model 2 and assignment g. If %A, g | OKAY then
by observation 5.2.4 (on page 125) we know that p is admissible and therefore by
lemma 3.2.11 (on page 60) p must describe a disambiguation of (£, C) which we
denote p*(hy). Since A, g = OKAY, 7, (@) can only be satisfied by the same tuples
as the corresponding formula p*(hg) and therefore the conjunct ng(@) effectively
asserts that A, g = p*(hy). Otherwise, A, g = “OKAY in which case 2, g = ¢o
where (g is our ‘default’ disambiguation of ¢. Therefore every disambiguation of

¢ entails some disambiguation of (§,C).



CHAPTER 5. RELATIVE EXPRESSIVE POWER 127

Let p*(ho) be a disambiguation of (£, C) such that 2, g = p*(hy) with p :
Hy (&) — L(&) an admissible plugging. Suppose that 9B is the expansion of A
defined by:

pp; = T if and only if p(h) =1,
desc,?ih, = T if and only if &’ is a descendant of A,
for each h € Hy(&), we define 1> = {@ | the tuple 4 satisfies p*(h) in A}.

Let ¢’ be the disambiguation of ¢ obtained from p*(hg) by disambiguating CHOOSE’
as follows: for all h and [ select disambiguation pj; only if p(h) = [, select —pp
otherwise. That is, p determines a disambiguation of CHOOSE’ and hence an
interpretation for the py;. It follows that 98, ¢ = ¢’. The remainder of the proof

is similar. 0

We remark that it may not (in general) be possible to compute the above
transcription in polynomial time, because of the need to generate the “default”
disambiguation ¢y. However, this fact is likely to be of little interest in linguistic
applications, where default disambiguations (that is, ‘in—situ’ interpretations of
quantifiers) can be polynomially generated. We now turn our attention to the

task of transcribing APL in Q (and visa versa).

5.3 Reducing Quantifier Raising to O

Our treatment of APL in this section is analogous to our treatment of H in the
previous section. That is, in this section, we present a transcription of APL in Q
(and visa versa) which we attribute to Dr. Tan Pratt—Hartmann (Department of

Computer Science, The University of Manchester, England).

5.3.1 Transcribing Q in APL

The translation from Q to APL is easy:

Lemma 5.3.1. There exists a function f: Q@ — APL such that, for all ¢, f(p)

is a transcription of ¢, and | f(p)| is less than some multiple of |p].

Proof of Lemma 5.3.1. If ¢ is atomic, we define f(¢) = ¢. In addition, we set
(=) = =1 (), fleny) = F(e)Nf (), f(eVY) = F(o)VF (), f(Vap) =Vaf(p)



CHAPTER 5. RELATIVE EXPRESSIVE POWER 128

and f(Jzp) = Jxf(p). Finally, we set

fle?9) = (f(@) A (L = 0), f([$) A (L —0))L.

By induction on the complexity of ¢, ¢ and f(p) are logically equivalent in the
sense of definition 4.2.4 (on page 113). Clearly then, f(y) is a transcription of
®. U

5.3.2 Transcribing APL in Q

Having succeeded in showing that every formula ¢ € Q has a linear-size tran-
scription (in fact, a logically equivalent formula) in APL in the size of ¢, we
might hope that the same relation holds in reverse. The following result dashes

any such hope.

Lemma 5.3.2. There exists no function f : APL — Q such that, for all ¢, f()

is a transcription of ¢, and |f(p)| is less than some multiple of |¢|.

Proof of Lemma 5.3.2. Consider the APL—formulas
on = (Vi O, ... Va,0, 310, .. 3y, O) e (T4, - -+ Ty Yty - - -5 Yn)

for n > 1, with r, a 2n—ary predicate letter. It is easy to see that ¢, has at least
(n!)? pairwise logically nonequivalent disambiguations, for any two orderings of
the quantifiers which alternate between universal and existential will be logically
nonequivalent.

Suppose that f(¢,) is a formula of APL of size bounded by cn, where ¢ is
a constant. Then f(¢,) contains fewer than cn occurrences of 7, and hence has
fewer than 2°" disambiguations. But, for constant ¢, n! > 2" where n is large.
Since logically nonequivalent formulas of £ cannot have identical transcriptions

(obvious), f(¢,) cannot be a transcription of ¢,, for all n. O

Although a linear—space translation from APL to @ is not possible, however,
we now proceed to show that a quadratic-space translation is. Very roughly,
the idea is to construct a formula of Q whose disambiguations are exactly the
specifications of all strict total orders of a given set {a1,...,a,}. With a little

care, we can construct this formula in such a way that its size is quadratic in n.



CHAPTER 5. RELATIVE EXPRESSIVE POWER 129

We need hardly mention that

/\ (CLZ' < CLj?CLj < ai),
1<i<j<n

is not a solution!

In the sequel, we shall be using the following notation. If n > 1, we take
A ={ay,...,a,} to be a set of pairwise distinct individuals, and <, to be a strict
partial order on this set. We take [,m to be integers such that 1 < ! < n and
0 < m < I. For all such values of I, m, we take <;,, to be a binary relation (but

not necessarily a partial order) satisfying the following conditions:
R1 <, is a strict total order on the set {ai, ..., a;}.

R2 <, is a strict total order on the set {a1, ..., an, @141}

R3 No other elements are related by <;,.

R4 <, U <, contains no cycles.

If m = 0, the set {ai,...,am,a+1} in condition R2 is to be read as {a;11}. It
follows that, if m =1 < n — 1, conditions R1 and R2 state that <;,, is a total
order on {ai,...,a;41}, and so are unaffected if we replace [ by [ + 1 and m by
0. If | = m =n — 1, conditions R1, R2 and R4 state that <;,, is a total order
on {ay,...,a,} extending <,. In the sequel, we always use the abbreviations:

irreflex = VaVy(r <y — -y < x),

trans = VaVyVz((z <yAy<z)—z < 2),
subset, = VzVy(z <,y — 2z <y).

Given the relations <, and <;,, satisfying conditions R1-R4, we construct the
formulas ¢;,, ¢, and ’yl’j m 1 the signature with the binary predicates <, <,, <r

and names a4, ..., a, as follows:



CHAPTER 5. RELATIVE EXPRESSIVE POWER 130

am = MNai<ajla; <imaj},
¢ = Mai<pajla <paj} AN <poajfai £ a5},
cr = VaVylz <ry o V{z=aAy=0a;[1<i<j<n}),
(5£ m cm N ¢p A e A fdrreflex,
fy{’,m = Jw(a <TWAWLap Ao <WAW < Qyp)V
Jw(a <TwAw <A a <pwAw < agq)V
Fw(a; <TWAW L G AN Ay < WA W < ap41)V
Fw(ay <TWAW KT QA Ay S WAW <p Qrpy)-

Thus, ¢, asserts that the positive instances of <;,, satisfy the predicate <; ¢,
lists the positive and negative instances of <, on A; and c; fixes the binary pred-
icate < to be exactly the (non-strict) ordering on the a; given by the indices.
The formula (5{’, . adds to these the condition that < expresses an irreflexive rela-
tion. The formula ’){ m 15 a little more complicated. Roughly, it tells us whether
the constraints on the ordering of the ay,...,a, given by <;, and <, together
fix the ordering of the ‘next’ pair of elements, a;.; and a,,1;. More precisely, we

have:

Lemma 5.3.3. Letn > 2,1 <1 <n, 0<m <. Let <, be a strict partial
order on the distinct elements ay, ..., an, let <, be a binary relation satisfying
R1-R4, and let <. be the transitive closure of <;m U <, (so that <. is a partial
order). Let the formulas 7£m and 5£m be as defined above. Then, if <. orders

4

arp1 and Gy, we have |= &, — v],,; otherwise, we have = &7, — =Y/,

Proof of Lemma 5.3.3. Suppose ;41 <. ap11- Then there exists a sequence

aj+1 = b(), ceey bN = Qm+1 (52)

with the by, chosen from among the elements {ai,...,a,} and either by, <, bp11
or b, <iym bpy1 for all A (0 < h < N). Assume without loss of generality that
(5.2) is a shortest such sequence. Let h now be the smallest integer such that
by € {a1,...,a;}. (There must be such a by, because by = a,, +1 € {a1,...,aq1};
moreover, this integer must be positive, since by = a;11 & {a1,...,qa;}). By R4,
Am+1 Lim bn, and so by R1, by, <;m amy1. Moreover, since (5.2) is shortest,
h=N—-1or h = N. Now, either b,_1 <;m by or by_1 <, b,. Suppose that
bh—1 <im bn. Then R3 ensures that b,_; = a;41 and by, € {as,...,a,}, so that



CHAPTER 5. RELATIVE EXPRESSIVE POWER 131

h =1 and the sequence (5.2) becomes (filling in the ordering relations):

41 <im b1 <iym Gmia (5.3)

with by € {a1,...,an}. Suppose, on the other hand, b,_; <, by. Since by, ..., b1
& {a1,...,q;}, R3 ensures that by <, ... <, by, so that by <, by, hence again
h =1 and (5.2) becomes:

a1 <p b1 <im At (5.4)

with b, € {ay,...,a;}. It follows that, if a;11 <. @41, then = (5ﬁm — 7/, where
7" is the formula:

w(a <Tw AW L am A aipr <WAW < A1)V

Fw(a <Tw AW <o A ap <p WAW K Qrtr)-

By exactly similar reasoning, if a1 <. @41, then = (52 m — 7", where 7" is the

formula;:

Fw(a <Tw AW L7 am Ay < wWAW < aggq)V
Fw(ar STWAW K QA1 SWAW < Ar41).
Thus, if <. orders a;y1 and a1, then = 5£m — yfm.

Conversely, suppose <. does not order a;;; and a,,+1. Then there certainly
does not exist an a; (1 < i < m) such that a;41 <;m a; and a; <;m Gmi1- By
R1 and R2, <;,, is total on both {ai,...,a;} and {ai,...,an, @141}, so that
c,m A irreflex decides all formulas of the form a; < a; within these sets. Given

that ¢y fixes the extension of <; exactly, we must have
E (¢ A cym Arreflex) — =Fw(ar <TwAw < am A a1 < WA W < Gpgr)-

Furthermore, if <, does not order a;;1 and a,,11, there certainly does not exist
an a; (1 <@ <) such that a;41 <p a; and a; <;pm ams1. By R1, <, is total on

{ai,...,a;}, so by similar reasoning to the above we must have

= (cp Aer A ey Adrreflex) — —3w(ay <t w AW <pag A appg <p WAW < Qpgy)-



CHAPTER 5. RELATIVE EXPRESSIVE POWER 132

The final two disjuncts of 77, are dealt with similarly, and we have

vy D
): 6l,m - ﬁ,}/l,m
as required. O

Armed with the formula 7{’ m» We can construct a formula of @ whose disam-
biguations are exactly those formulas specifying total orderings of the a4,..., a,

extending <,,.

Definition 5.3.4. Let A = {a1,...,a,} be a set (with the a; pairwise distinct)
and let <, be any partial order on A. If <t is any strict order on A, let

Cr = /\{a, < a; | a; < CLj},

and let the formula ¢, be as defined as above. We write Q(<,, A) for the set of

all formulas of the form
¢p A trans A irreflex A subset, A cr

where <7 is a total order on A extending <,,.

Thus, an element of Q(<,, A) is simply a formula listing some total ordering
on A extending <,, conjoined with a specification of <, and general facts about
< and <,,.

Lemma 5.3.5. Let A ={ay,...,a,} be a set (with the a; pairwise distinct) and
let <, be any partial order on A. Then we can construct a formula w(<,, A) whose
size is bounded by a quadratic function of n, such that: (i) every disambiguation
of w(<p, A) is logically equivalent to some formula in Q(<p, A); (i) for every
formula in Q(<,, A), there is at least one disambiguation of w(<,, A) logically

equivalent to it.

Proof of Lemma 5.3.5. Let | and m be integers such that 1 </ <nand 0 < m <

l. We define w;,, inductively as follows:

LL)LO = T,
Wi+1,0 = Wiy ifl<li<n-— 1,
—— P
Wim+l = Wim A (_'%,m = (141 < Gt ? Gmg1 < Qi41))

ifl<li<nand 0 <m<L.



CHAPTER 5. RELATIVE EXPRESSIVE POWER 133

We prove by induction that, for all [, m such that 1 <l <nand 0 <m < [:

1. for every disambiguation Wi of Wy, we can find a relation <; ., satisfying
R1-R4 such that

= (cp A trans Airreflex A subset,) — (wy,, < cim); (5.5)

2. for every relation <;,, satisfying R1-R4 we can find a disambiguation wy,,
of wy m, such that (5.5) holds.

Setting

w(<p, A) = ¢, A trans A irreflex A subset, A wp—1n-1

then proves the lemma.
We proceed by induction on the pair /,m with 1 </ <nand 0 < m < L.

(The symbol x is used for later reference.)

Base case: Let [ = 1 and m = 0. The unique <;, satisfying R1-R4 is the

empty relation, so that ¢; o = T. Since wi o = T, the result is trivial.

First inductive case: Suppose the result holds for the pair [, m such that 1 <
Il =m < n—1. If a relation <;;; satisfies R1-R4 then the very same
relation can be written <;; also satisfying R1-R4, and visa versa. Since

wi41,0 = wy, the result holds for the pair [ + 1,0 also.

Second inductive case Suppose the result holds for the pair [,m such that
1<l <mnand0<m<I. Toestablish (1), let w/,,,, be a disambiguation
of wim+1, and suppose without loss of generality that wf,, ,, disambiguates
the subformula a1 < Gmi1 7 Gmy1 < @41 Of Wimt1 a8 a1 < Gy1- (The

other case proceeds analogously). Then we may write:

wl*,m—|—1 = wl*,m A (_"Yf,m — 41 < Qt1)s (5.6)

where wj,, is a disambiguation of w;,,. By inductive hypothesis, we can
find <;,, satisfying R1-R4 such that

= (cp A trans A irrefelx A subset,) — (W], < Cim)- (5.7)

Now define:

<tm+1- = <im U{<al+17 am+1)}'



CHAPTER 5. RELATIVE EXPRESSIVE POWER 134

We need to derive
= (cp A trans Airrefex A subset,) — (W), 1 € Clmy1)- (5.8)

* Let <, be the transitive closure on A of <;,, U <,. We have two cases,

depending on whether <. orders a;; and a,,,1.

Suppose on the one hand that <. does order a;;1 and a,,1. Then
= (cp A trans A subset,) — (Cm <> Crm+1)- (5.9)
Moreover, by lemma 5.3.3,
= (cp Adrreflex A cim) = V)

hence
= (cp Arreflex) — ((cim A W) = Wima1)- (5.10)

From (5.6), (5.7), (5.9) and (5.10), (5.8) follows easily.
Suppose on the other hand that <. does not order a;;1 and a1 By
construction, we have
Clim+1 '= Clm N Q41 < Q1. (5.11)
Moreover, by lemma 5.3.3,
= (cp Adrreflex A cim) = =Y s

hence

= (cp Adrreflex) — ((cim A Wipi1) = @1 < Gmyr). (5.12)

From (5.6), (5.7), (5.11) and (5.12), (5.8) follows easily.

To establish (2) let <;,,11 be a relation satisfying R1-R4, and suppose
without loss of generality that a;11 <, @m+1- (The other case proceeds

analogously). Let

<tym = <tym+1 \ {41, Gmy1) }-



CHAPTER 5. RELATIVE EXPRESSIVE POWER 135

By inductive hypothesis, we can find a disambiguation wy,, of w;m, such
that (5.7) holds. Now form the disambiguation of

Wim+1 = Wim A (ﬁﬁm = (141 < Omg1 7 g1 < G141))

by disambiguating wym, as wy,, and 11 < Gpi1? i1 < Q41 A8 Q1 <
am+1- Hence we may again write (5.6). Having established (5.6) and (5.7),
our task is again to derive (5.8). From this point, the proof of (2) proceeds

from the point marked * identically as for (1).
U

We note in passing that, in general, more than one disambiguation of w(<,, A)
may pick out the same ordering of the ai,...,a,. On the other hand, w(<,, A)
involves exactly n? — n + 2 occurrences of the ?-operator, and hence has at most
97’142 disambiguations. Bearing in mind that n! grows at an intermediate rate
between 2" and 2("”), this means that w(<p, A) is ‘efficient’, in that it does not
introduce too many unnecessary (logically equivalent) disambiguations. In the
sequel, we shall write w(<p;as,...,a,) for w(<,, A), where A ={a4,...,a,}

We now come to the reduction of the language APL to Q. Specifically, we

show:

Theorem 5.3.6. There exist a constant ¢ and a function f : APL — Q such
that, for all ¢ € APL, f(p) is a transcription of ¢ with | f(p)| < c|¢|?.

Proof of Theorem 5.3.6. We employ the following abbreviations in the proof:

first(z) = Ajgicn i <z,
prec(z,y) = T <YANiqicn (@ <aiAa; <y),
last(z) = Aicicn ™7 < ai.

Thus, with respect to the ordering <, first(a;) states that a; comes first, prec(a;, a;)
that a; immediately precedes a; and last(a;) that a; comes last.
We define functions g : APL — Q and h : APL — £ (where £ denotes the



CHAPTER 5. RELATIVE EXPRESSIVE POWER 136

language of ordinary first—order logic) by simultaneous recursion on ¢ as follows:

h(p) := ¢ if ¢ is atomic g(p) := T if ¢ is atomic
h(—¢) = —h(y) 9(—) == g(¥)

h(¢ Am) == h(¢) A h(r) g AT) = g(y) A g(m)
h(y V) = h(¢) V h(r) gV )= g(¥) Ag(m)
h(Vzy)) == Vah(y)) g(Vz) := g(¥)

h(Fey) = 3wh(p) 9(Ga9) = ().

Finally,

h((<psan, .. an)) = Niqicn(last(a;) = s:(0)),

9(<pran,.. o)) = w(<piar,...an) A /\1<ign 9(ei(ri(v))) A g(P)A
Vo(s0(7) > h(1h))A
Aicica YO(R(a(ri()) <> 5i(0))A
Aicicn(first(ai) = Vo(so(v) > 14(0)))A

/\1<z‘,j<n(prec(aia a;) = Yo(r;(v) <> 5(v))).

In the clauses defining h((<p;ai,...,a,)¥) and g((<p;u,...,an)9), v is the
tuple of variables appearing free in any of the «; or in 9, the a4, ..., a, are fresh
names, the symbols < and <; appearing in w(<p;ai,...,a,) are fresh binary
predicates and the symbols sq,...,s, and r,...,r, are fresh predicates with the
same arity as v.

It helps to think of h(yp) as the ‘actual’ translation of ¢, with g(¢) a con-
junction of auxiliary conditions ensuring that this translation is correct. Notice
that h(y) is always unambiguous, with any ambiguity in ¢ having been shunted
off into g(¢). Moreover, all occurrences of the ?—operator in g(y) are confined
to the conjuncts w(<,; a1, ..., a,), which correspond one-to—one to operator lists
(<p; i, ..., 0p) occurring in .

Every disambiguation of ¢ can be thought of as an ordering decision for ev-
ery operator list (<,; o, ..., q,) occurring in ¢. Given an ordering decision for
the operator list (<,; a1, ..., ®,), lemma 5.3.5 guarantees that the corresponding

conjunct w(<p;ay,...,a,) in g(p) will have a disambiguation which orders the



CHAPTER 5. RELATIVE EXPRESSIVE POWER 137

individuals a4,...,a, in exactly the same way. Conversely, every disambigua-
tion of g(¢) can be thought of as a disambiguation decision for every conjunct
w(<p; a1, --.,a,) occurring in g(y). Lemma 5.3.5 guarantees that any disam-
biguation decision for the conjunct w(<jp;as,...,a,) will order the individuals
ai,...,a, consistently with <,, and thus induce an ordering of the corresponding
operator list w(<p;@1,...,0,) in . In this way, we can speak about a disam-
biguation of ¢ corresponding to a disambiguation of ¢g(¢). Note that a single
disambiguation of ¢ may correspond to several (logically equivalent) disambigua-
tions of g(¢), because one ordering of the individuals a4, ..., a, may be fixed by
several (logically equivalent) disambiguations of w(<p; a1, ..., ay).

We show by induction on ¢ that, if ¢* is a disambiguation of ¢ corresponding

to a disambiguation g(¢)* of g(y), then

1. if /A is any structure not interpreting the fresh symbols introduced in the

definition of g(¢), then we can expand 2 to a structure A* such that A* =
9(e)";

2. Eglp)” = Vo(h(p) < ¢").

Thus, g(¢)* A h(p) is a transcription of ¢*. By definition 5.1.5 on page 122 (and
5.1.4 on page 121),

f(p) =g(p) ANh(p)

is a transcription of ¢. Moreover, |f(p)| is visibly quadratic in |¢|, and so the
theorem is proved.

Each part of the claim is proved by structural induction on ¢. The only
interesting case is the inductive step for ¢ = (<p; a4, ..., a,)1. Other cases are

left for the reader to verify.

(1) Suppose that 2 interprets none of the fresh symbols introduced in g(yp).
If g(p)* is a disambiguation of g(¢), where ¢ = (<p;q,...,00)¢, let g(¥)*,
g(a;(ri(v)))* (1 €@ < n) and w(<p;ai,...,a,)*, be induced disambiguations of
the subformulas g(v¢), g(c;(ri(v))) and w(<p;ai,...,an,), respectively.

Since the symbols in w(<p;as,...,a,) are fresh, we can certainly choose an
expansion A* such that A* = w(<p; a1, ...,a,)*. We may suppose without loss
of generality that w(<p;as,...,a,)* fixes a; < ay < --- < a,. (This simplifies the
notation). By inductive hypothesis, we can ensure that 2* = g(v)*, and, since
s¢ is fresh, we can ensure that 2A* = Vo(so() <> h(1))).



CHAPTER 5. RELATIVE EXPRESSIVE POWER 138

Since r; is fresh, we can ensure that A* = Vu(ri(v) <> so(v)). Moreover, by
inductive hypothesis, we can ensure that 2A* = g(aq(r1(v)))*, and, since s; is
fresh, we can ensure that 2* = Vo(s1(v) <> h(a1(r1(v)))). Now we can proceed
similarly, securing A* = g(aa(r2(9)))*, ..., A" E g(a,(r.(?)))*, and fixing the
extensions of 9, Sg, . .., Ty, Sp. At the end of this process, A* = g((aq,. .., a,))*

as required.

(2) Suppose A = g(p)*, where ¢ = (ai,...,a,). As usual, let g(¢)*,
g(a;(r;i(9)))* for (1 < i < n) and w(<,;a1,...,a,)* be the induced disambigua-
tions of the relevant subformulas of g(¢). Certainly, then, we have 2 = g(¥)*,
and A = g(a(ry(v)))* for all ¢ (1 < 7 < n). By inductive hypothesis, 2 =
Vo(h(y) < ¥*), and A = Vo(h(a(ri(0))) < a(r;(v)))* for all i (1 < i< n). As-
suming without loss of generality that w(<,; a1, ...,a,)* fixes a1 < ag < --- < ay,

we have

F((<pian,..,on)¥)" = Aigicn 9(i(ri(v))) A g(¥)A
V(s0(0) > h(1h))A

Nicicn YO(R((ri(D))) <> 5:(0))A
Vo (so() > 7m1(D)))A

/\1<z’<n Vo(ri(v) <> si41(0))).
Hence we have

A = Vo(so(v) + ¥%)
A = Vo(a(r(0))* <> s;(9)) for all ¢ (
A = Vo(si(v) <> riqp1(v))  forall i (

<1<n
<i < n).

Performing repeated substitutions, we arrive at

A= ap (o (-- . as(af(¥7)) ),
hence
A= ¢" < hp).

Thus,
= g(p)" = Vo(¢" <> h(p))

as required. O



CHAPTER 5. RELATIVE EXPRESSIVE POWER 139

In this chapter we have established the expressive equivalence of @, ‘H and
APL, by showing that every formula in one of these languages can be ‘translated’
(or, more correctly, ‘transcribed’) into a formula in any of the others. In doing so,
we insisted that the size of the translated formulas was not too great compared
to the size of the original; otherwise, the problem of finding such a formula would
be trivial, and the translations produced would undermine the motivation for
employing ambiguous representations in the first place. In the next chapter we
will extend our study by investigating the expressive power of Underspecified

Representation Languages from a more abstract view—point.



Chapter 6
A Generic Perspective

At this pharmacy we dispense with accuracy.

In this chapter we take a more abstract look at the expressive power of Under-
specified Representation Languages. In particular, we reduce ambiguous (weak)
satisfiability, with respect to any Underspecified Representation Language, to
classical satisfiability. That is, we show that: if a is an Underspecified Repre-
sentation in some Underspecified Representation Language, then we can write a
formula v, € L such that « is weakly satisfiable if and only if v, is classically
satisfiable. Our motivation for doing this is clear; a reduction (of weak satisfia-
bility to classical satisfiability) gives us some indication of where the limitations
of underspecification lie (in terms of expressive power at least). Furthermore, our
reduction suggests that the enterprise of looking for theorem provers for weak
satisfiability is of little theoretical interest. We now make these ideas concrete.

In the sequel, we restrict our discussion to only those Underspecified Repre-
sentation Languages which are equipped with some formal procedure for disam-

biguating their elements. The following definition makes this restriction formal:

Definition 6.0.7 (Computable Disambiguation Procedure). Let A be an
Underspecified Representation Language. We say that A has a computable dis-
ambiguation procedure if there exists a (deterministic) Turing machine M such
that, given any « € A as input, M terminates leaving all of the disambiguations

of a (separated by colons) on its tape and nothing else.

Clearly, any Underspecified Representation Language for which there does not

exist a computable disambiguation procedure is of little use anyway! We will also

140



CHAPTER 6. A GENERIC PERSPECTIVE 141

insist that for any a € A, every disambiguation of « involves only the variables
Tg, - - - Tp(n,) Where n, is the size of «, and p is a fixed polynomial. Since all
current Underspecified Representation Languages satisfy this condition anyway,
we do not believe that it is problematic.

With these sensible restrictions in mind we can state the final theorem of the

thesis:

Theorem 6.0.8 (Reduction of Weak Satisfiability). Let « be an Underspeci-
fied Representation in some Underspecified Representation Language A, such that
A has a computable disambiguation procedure and every disambiguation of a in-
volves only the variables xo, ... Tpm,) where ng is the size of o, and p is a fized
polynomial. Then there exists a formula 1, € L, of size bounded by p(n,), such
that « is weakly satisfiable if and only if 1V, 1s classically satisfiable.

The remainder of this chapter is devoted to proving theorem 6.0.8; our main
task is to define 1),, the formula at the heart of this theorem. In the next section

we aim to provide an outline of what this will involve.

6.1 Setting the Scene

In writing v, we will be required to axiomatise the notions of ‘satisfaction’ and ‘is—
a—disambiguation—of’ within a formula algebra. Although we cannot write down
axioms whose models are formulas, we can write axioms of a theory of formulas.
Thus, our formula algebra is comparable to a term algebra (Hodges, 1992). The
basic intuition is simple enough: the expression is—a—disambiguation—of (x, y), for
example, is an atomic formula in our formula language in which z is a term
denoting formula which is a disambiguation of the ambiguous formula denoted
by the term y.

As has been mentioned, the key idea throughout will be that v, is written in
a (meta-level) ‘formula language’ which we denote L. Before we can define 1,
we must explain what the meta—level language is.

Let £ be any first—order language, with signature o. Assume for simplicity
that £ is function—free and that the variables in £ are z;, for i € N. Let L}
be the first-order language having signature ¢ with the additional items listed
in figure 6.1. Since o has no function symbols, every term ¢ of L is either a

constant or a variable. We would like to use £ to ‘talk about’ the formulas of



CHAPTER 6. A GENERIC PERSPECTIVE 142

Individual  “z;” 1€N
constants:  “r” where r is a predicate letter of o
“c” where c is an individual constant of o
Function “=” (unary)
symbols: B VA (binary)
‘T« (binary)
{apply™|n > 0} where apply™ has arity n + 1
Predicates: {sat™|n > 0} where sat(™ has arity 2n + 1
term-parse (binary)
parse (ternary)
dism, (unary)

{select™™|0 < m < n} of arity 2n + 2m

Figure 6.1: The items to be added to the signature o.

L; in particular, we would like to ‘describe’ any formula of £ using a term of L.

The following definition formalises this idea:

Definition 6.1.1 (Describing Terms). Let ¢ € £. We define the £-term ¢,

the term describing ¢, inductively as follows:

- if @ is r(ty, ...

if t; is Zj and “ti” is “c

- if ¢ is = then ¢, is “="(ty),

[{1P )]

if t; is c,

,t,) then t, is apply(“r”,“t,”,...,“t,”), where “t;” is “z;”

if ¢ is ¢ — 7 then ¢, is “—=7(ty, tx),
if ¢ is ¢ V m then t, is “V”(ty, tx),
if ¢ is ¢ A m then t, is “A”(ty, tr),

if o is Va0 then t, is “V” (“z;”, “t,7),

- if ¢ is 3zt then B, is “37(“z;”, “1,7).

Now we know what the meta-language L' is, we can define our formula 1,:

o = @o A Jv(disma(v) A Jg(sat™ (v,7))),



CHAPTER 6. A GENERIC PERSPECTIVE 143

where N = p(n,) and n, is the size of a (and p is a fixed polynomial). Under our
view, v is a variable which intuitively ranges over formulas and y is an N-tuple
of variables which intuitively range over non-linguistic objects. The predicate

(M) aims to capture the (usual) notion of satisfaction, and we would like the

sat
predicate dism,(v) to hold if and only if the formula (described by the term)
v is a disambiguation of the Underspecified Representation . The formula g
will ensure (among other things) that the predicates sat®™) and dism, have the
‘correct’ interpretation. The next section is devoted to constructing ¢y. In the

final section (section 6.3) we will prove theorem 6.0.8.

6.2 The Axiomatisations

Our plan in this section is as follows: we will first write a set of axioms to ensure
that we can interpret the predicate sat(™ (which occurs in the formula 1, used in
theorem 6.0.8) as we have suggested. We then turn to the rather more complicated
task of axiomatising the notion of ‘is—a—disambiguation—of’ (with respect to any
Underspecified Representation Language A with a computable disambiguation
procedure). We split this second task into two parts. In part one, we will write
a formula of £ which (in effect) encodes runs of the Turing machine M4 (that is,
the Turing machine which writes the disambiguations of o € A). In part two, we
will write axioms for the (ternary) predicate symbol ‘parse’ which we will use to
(in effect) convert the strings written on M4 into (formula describing) terms of
the meta-language L.

Our first task is to write a set of axioms which capture the notion of satisfac-

tion.

6.2.1 Axiomatisation of Satisfaction

Before we can write our axioms we must first introduce some technical apparatus:

Definition 6.2.1 (Selection Function). Given any function s: {1,...,m} —
{1,...n} we can define a function mapping n—tuples from a fixed set A to m—

tuples of A as follows:
S: <a1, ey an) — <a5(1), ey as(m)).

Note that, this is actually an abuse of notation. We call such a function a selection



CHAPTER 6. A GENERIC PERSPECTIVE 144
function (over A), because it instructs us how to select the elements of the tuple
s(1)s - - - » Qs(m) from the tuple ay, ..., ay,.

Result 6.2.2. Let select™™ (T1y ooy Ty Ty e X YL o Uns YLy - - 5 Yh) DE the

NV @=zny=1y).

(1<i<m) (1<j<n)

formula given by

Then for any structure A, any n—tuples @, b and m—tuples @ and b, we have
A = select™™a,a’, b, 0] if and only if there exists a selection function s :
{1,...,m} = {1,...n} such that s: a > a and s: b+ V.

Proof of Result 6.2.2. Suppose 2 = select (™™ [@,b,a',b']. For 1 < i < m, define
s(7) = j where j is the smallest integer k£ such that a} = a) and b} = bg. Then s is

a selection function mapping @ to @’ and b to b’. The converse is even easier. []

(N

We are now ready to write an appropriate set of axioms for sat!™, as before,

N =p(na)-

Definition 6.2.3 (Axioms of Satisfaction). Let SAT®") denote the conjunc-
tion of the following set of formulas — which we refer to as the azioms of satis-

faction:

{vyvy' Vi(sat™ (“A (v, "), §) ¢ (sat®™ (v, §) Asat™ (0", 7)),
Vuvg(sat™ (“=7(v), 7) « —sat™ (v, 7)),
YV, ... Yy, (sat™) (“F7(w,v), y1 . .. yn)
< Iy Vigenw= @A sat™ (U, Y1, Ui 1 Yy Yidts - - - Un)))s
/\1gz'<j<N T “333'”,
Aicmen Noeo VT4 - -z Vg(sat™) (apply™ (“r”, 2t ... 2 ), )
oyt Ty (select ™™ (xy sy x Ll g yh)

Ay}

Recall that o is the signature of our underlying (object—level) language £ and
apply(m) is a primitive function of our meta-language £'. Intuitively, apply(m)
represents the result of applying its first argument to its other arguments, and v
and ¢/ intuitively range over L£!-terms, which in turn describe formulas of £. We
are now ready to make a formal statement about how we would like the predicate

sat®™) to be interpreted:



CHAPTER 6. A GENERIC PERSPECTIVE 145

Lemma 6.2.4 (Correctness of SAT™)). Let o(z) be any formula of £ involving
only variables from T = x1...xy. Let t, be the term in LT describing ¢. Finally,
let 6,(y) be the LT —formula sat™) (¢, y) where § is an N-tuple of variables. Then,
if A= SAT®™  we have for any N-tuple a, A = dyla] if and only if A = ¢lal.

Proof of Lemma 6.2.4. Proceed by structural induction over ¢.

Base Case: Suppose that ¢ is r(z'), where Z' is a selection from zy,...,zxy.
Then 2A = ¢la] implies that A = r[a@’] where @ is the corresponding
selection from @. Let “2” be the corresponding selection from the con-
stants “zi’,..., “z,”. Thus, by Result 6.2.2, a, a' satisfy (z,z') where

W(z,2) = select™™ (%7 “g”' 7 7'). Therefore, if d,(7) is
3y (select ™™ (z, “z”, ..., ‘o, 5, 7) AT(F))

then 2 k= 6,[a]. Hence @ satisfies sat™) (apply™ (“r”, “z”), %) in 2, because
A = SAT™). Thus, A k= 6,[a). The converse is similar.

Inductive Steps: We present just two of the inductive cases (negation and ex-
istential quantification), since the other cases are similar. Suppose that
¢ = ¢ and A |= 6,[a] where 5, = sat™(t_y, 7). Since A = SAT™) we
have A = —sat®™)(ty, 7). That is, 2 = —dy[a] where &, = sat®™ (¢, 7).
By inductive hypothesis, 2 = —[a] and therefore 2 = ¢la]. The con-
verse is similar. Now suppose that ¢ = Jz;,9 and A = d,[a; ... an]| where
by = sat®™ (ta,,¢, 7). Since A |= SAT™) | there exists a’ such that

A= sat(N)[f, a1...a4j-10 Gj41...an],
where f = t?lf. That is,
A= dylar...aj-1d aji1-..an].
By inductive hypothesis,
A= Ylar...aj-1d aji1...an],

and therefore

A ): gO[CLl v Qi1 G5 Qg1 - .aN].



CHAPTER 6. A GENERIC PERSPECTIVE 146

Again, the converse is similar.
]

In this section, we have written a set of axioms SAT®) which capture the
notion of satisfaction. This axiomatisation ensures that sat™ (which is a pred-
icate symbol in our meta-language L' and a key feature of the formula v,) is
interpreted ‘correctly’ (lemma 6.2.4). In the next section, we will write a set of

axioms DISM,, to capture the notion of ‘is—a—disambiguation—of’.

6.2.2 Axiomatisation of ‘is—a—disambiguation—of’

In this section we turn our attention to the rather complicated task of axioma-
tising the notion of ‘is—a—disambiguation—of’. Recall that theorem 6.0.8 applies
only to those Underspecified Representation Languages with ‘computable dis-
ambiguation procedures’. An Underspecified Representation Language A is said
to have a computable disambiguation procedure if there exists a (deterministic)
Turing machine M such that, given any o € A as input, M terminates leaving
all of the disambiguations of « (separated by colons) on its tape, and nothing
else. In the sequel, we will consider a special Turing machine M, — which is an
adapted version of M — such that M, computes only the disambiguations of the
specific Underspecified Representation « (and terminates). The main aim of this
section is to write an £'—formula ¢, such that any model of ¢y, corresponds
to a run of M, (and visa versa). We note in passing that many aspects of our
encoding will look similar to those found in standard proofs of the undecidability
of first—order satisfiability.

The plan of this section is as follows: We begin by writing down an £—formula
¢n, which (in effect) encodes runs of M,. We will then write axioms for a
predicate ‘parse’, which we will use to (in effect) convert strings of symbols written
on the tape of M, into (formula describing) terms of the meta-language L.
Finally, we will show that all of this material enables us to interpret the predicate

dism,, as we have suggested.

!Garey and Johnson provide a detailed account of such an encoding (Garey and Johnson,
1979, pp.19-22).



CHAPTER 6. A GENERIC PERSPECTIVE 147

<Sla 01, Sia O-i: 51)

<SZ7 02, Séa O-é: 62)

<S’fb7 0-717 S’l”L? 0-7,’117 6”)

Table 6.1: A depiction of the program of M,.

Encoding the Runs of the Turing Machine M,

Our aim in this sub—section is to write a formula ¢,,, such that there is a one—
to—one correspondence between the models of ¢y, and the runs of M,. That is,
we aim to write a formula @), such that any model of ¢, contains a ‘picture’
of a run of M,.

Let A be any Underspecified Representation Language, o € A and M, be a
deterministic Turing machine which terminates leaving all of the disambiguations
of a (separated by colons) on its tape, and nothing else. We depict the ‘program’
of M, as a finite table (see table 6.1). We interpret any row (Sk, ok, S, 0}, Ok)
(for 1 < k£ < n) of table 6.1 as follows: if M, is currently in state Sy reading
symbol oy, from the finite alphabet of the language £ (together with the symbol
‘’) then M, changes state to S}, writes symbol o}, (taken from the same alphabet
as o) and moves to the successor of the current square if §;, = +1, or moves to
the immediate predecessor of the current square if §;, = —1.

We are now ready to write out our formula ¢, which, as we have said, in
effect encodes runs of M,. We help ourselves to the signature displayed in figure
6.2 (in addition to that mentioned earlier), with the indicated intended (intuitive)
interpretations. Note that we treat “squares” and “times” as different objects:
the former satisfy the unary predicate square, the latter, the unary predicate
time. Technically, it is probably not necessary to separate times and squares; but
we do so to make our exposition clearer.

Since M, only has a finite number of states, we only have a finite number of



CHAPTER 6. A GENERIC PERSPECTIVE 148

y<z y is less than z
succ(z, 2') | 2’ is the successor of z
square(z) | x is a square of M,

time(t) t is a time

H(z,t) the head is at square x at step ¢
Is(t M, is in state S at step ¢
Ty(z,t) square x contains o at step ¢

Figure 6.2: Symbols in the extended version of the signature of o.

(corresponding) predicates Is. By assumption, one of these states is the halting
state, which we shall denote HALT. Thus, our signature contains the predicate
Iyarr, and we read Iyapr(t) as “M, is in the state HALT at step t”. In the
sequel, tenq is a (new) constant symbol which intuitively denotes the time of
the first halting state of M,. Similarly, senq is a (new) constant symbol which
intuitively denotes the rightmost square written on by the time ¢¢,q. Finally, we
let Ogq and Opy be constants which intuitively denote the first square and the
start time of M, respectively.

We begin our encoding with some routine background material. The following

formula ensures that the predicate succ is interpreted ‘correctly’:

Vz(square(xz) — —succ(z, 0sq)) A Vz(square(z) — Jy(square(y) A succ(z,y)))A
V1V Vy((square(z,) A square(z2) A square(y) A succ(zy, y) A succ(za,y)) —
T1 = Ta)A

VaVy,Vya ((square(z) A square(y;) A square(yz) A succ(x, y1) A suce(z, yz)) —
Y1 = y2)A

Vy((square(y) A =(y = 0sq)) — Jz(square(x) A succ(z,y))).

We will also need a copy of the above formula ‘relativised’ to time instead of
square; that is, we need a duplicate of the above formula with all occurrences

)

of ‘square’ replaced by ‘time’ and all occurrences of ‘Ogq’ replaced by ‘Ory’. To
save space, we will not write out this formula. We will also need a formula which

ensures that the symbol ‘<’ is interpreted ‘correctly’; the following formula serves



CHAPTER 6. A GENERIC PERSPECTIVE 149

this purpose:

Vz(square(z) — —(z < z))A

VaVyVz((square(z) A square(y) Asquare(z) Az < yAy < z) =z < 2)A
VaVy((square(z) A square(y)) = (z <yVy <z Vz=y))A
Vz(square(z) = —(z < 0sq))A

VaVy((square(z) A square(y) A succ(z,y)) — (z < yA

—Jz(square(z) Az <z Az <y)))A

=succ(0sq, Osq)-

Once again, we will also need a copy of this formula in which all occurrences of
‘square’ are replaced by ‘time’ and all occurrences of ‘Og,’ are replaced by ‘Opp,’.
We now write formulas corresponding to each row in the table of M,. For

each row (1 < k < n) in table 6.2.2 we write a formula as follows:

If 6, = +1 then write:

VaVa' Vvt (Is, (t) A Ty, (z,t) A succ(t,t') A H(z,t) A succ(z, z')
— Ig (') AT (z,1") A H(2',1)).

If 6, = —1 then write:

Vavz'VivE' (Is, (t) A Ty, (%, t) A succ(t, t') A H(z,t) A succ(z', x)
— IS;c (t’) A T";c (x, t') A H(x', t')),

The following formula states the initial conditions of M, and that the head of

M, can only be in one place at any given time:

I()(OTm) A H(Osq, OTm) A VSIJT() (SIJ, OTm)/\
VaVa'Vt((H (z,t) A H(z',t)) — 2 =2)

Finally, we must ensure that our special constant symbols can be interpreted as

we want them to be:

Vz(square(x) — Vi((time(t) At < teng A H(2,t)) = T < Send))-



CHAPTER 6. A GENERIC PERSPECTIVE 150

[ J [ ] ®e ... e ..
A A
Osq send

The elements of square

A A
OTII'I tend

The elements of time*

Figure 6.3: An intuitive depiction of a substructure of 2, where 2 is any model

The conjunction of all of the above formulas is denoted ¢, . We claim that there
is a one-to—one correspondence between models of the formula ¢j,, and runs of
the Turing machine M,.

All of the models of ¢y, contain a substructure which is two copies of the
natural numbers, one in the extension of square (with initial element 0Osq) and
the other in the extension of time (with initial element Ory,). In fact, all models
of ¢y, have an two initial segments which contain only finite successors of 0,
followed by (possibly empty) less ‘well-behaved’ segments (which are isomorphic
to zero or more copies of the integers).? The situation is best explained using a
diagram. If A = ¢u, then A contains the substructure depicted in figure 6.3.
Therefore, in the sequel we will be able to talk about the domain elements of any
structure A (such that 2 = @5, ) as ‘squares’, ‘times’ (and so on) of M, because
of the obvious one-to—one correspondence between the models of ¢;;, and runs of

M, (as illustrated in figure 6.3). For example, T,, can be thought of as a relation

2The reason for the existence of these less well-behaved substructure lies in our inability to
axiomatise the natural numbers.



CHAPTER 6. A GENERIC PERSPECTIVE 151

between squares (elements of square®) and times (elements of time®). That is, we
interpret the relation 2 = T, [s,t] as ‘meaning’ that oy, is written on square s at
time ¢ in the run of M, encoded by the structure 2 (where 2 = ¢, ). Now that

we have encoded M,, we turn our attention to the task of axiomatising parsing.

Axiomatisation of Parsing

Given a structure 2 interpreting the Turing machine paraphernalia (that is, 2 =
¢, ) and given finite successors s, s’ (of Ogq) and ¢ (of Oty ), we can make sense
of the statement “a formula ¢ has been written on the tape of M, at time step
g between squares s and s’.” It means that there exist objects so,..., s, in the
extension of square with sy = s and s, = s’ and 2 = succ|s;, s;41], for 0 < i < n,
such that the string of symbols oy . . . 0, (where for all i, o; is the unique symbol
such that 2 = T,,[s;, q]), spells out the formula ¢, just as one would write it on
a piece of paper. Our task in this section is to write axioms for the (ternary)
predicate ‘parse’, which (in effect) will convert such a string into a term t,,

describing the formula ¢ in the meta-language L.

Definition 6.2.5 (Axioms of Parsing). Let

the set of formulas listed below — which we refer to as the azioms of parsing:

Sﬂﬁarse denote the conjunction of

1. For each variable v mentioned in «:

“o

VyVz(To (Y, tena) — (term-parse(y, z) <> z = “v”))

2. For each individual constant ¢ mentioned in a:

“w.,n

VyVz(Te(y, tena) — (term-parse(y, z) <> z = “¢”))
3. For atomic formulas we have:

Yo - - Yyont1V21 - . . V2r ((Tr (Yo, tena) Asuce (Yo, y1) AT (Y1, tena) Asucc(yr, y2)
A term-parse(ya, 21) A succ(yz, y3) A T.(y3, tend) A
succ(ys, ¥a) A . .. A term-parse(Yon, 2,) A succ(Yon, Yon+1)A
T)(?JQnH, tena)) — (Parse(Yo, Yoni1,2) <> 2 = apply(")( T 21,5 2)))



CHAPTER 6. A GENERIC PERSPECTIVE 152

4. Negation is dealt with as follows:

VyoVy1VyaV2V2' (T-(Yo, tena) A succ(yo, y1) A parse(ys, ya, 2')

— (parse(yo, y2, 2) <> z = “=7(2")))
5. Similarly, for conjunction we have:

Yo . .. VysV2V2'V2" ((T (Yo, tena) A succ(yo, y1) A parse(yy, ya, 2')A

n

succ (Y2, y3) A Th(Ys, tena) A suce(ys, ya) A parse(ya, ys, 2") A suce(ys, ys) A
T)(ys, tena)) — (Parse(yo, ys, 2) 4> z = “A (2',2")))

6. Existential quantifiers are dealt with as follows:

Vyo ... VysV2V2'V2" ((T5(yo, tena) A succ(yo, y1) A term-parse(yq, 2')A

"

succ(y1, y2) A T((y2, tena) A succ(ya, y3) A parse(ys, ya, 2") A succ(ya, ys) A
,‘T’)(y5atend)) — (parse(yo,%,z) oz = “Elﬂ(ZI,Z”)))

7. Disjunction and universal quantifiers can be parsed analogously.

We must now check that our axioms g, .. allow the predicate parse to be

interpreted correctly.

Result 6.2.6. Let 2 be any structure such that A = Qu, N Qarse- If @ well-
formed formula ¢ is written on the tape of M, between the squares s and s' at
termination, then parse(y,y’, z) is satisfied by the tuple (s,s',a) if and only if

_
a—tw.

Proof of Result 6.2.6. Proceed by structural induction on ¢ € L£: The base case
is ¢ = r(m,...,7,) where r is an n-ary predicate symbol in £ and the 7; (for
1 < i < n) are ordinary terms. Since 2 = ), the antecedent of the formula
listed as item 3 in the definition of g, <. has the interpretation depicted in figure
6.4. Tt is clear (from the items listed as 1 and 2 in the definition of ¢y, ) that any
pair (s, a) satisfies term-parse(y, z) in 2 if and only if a = “7” where “7” denotes
“c/ if 7 is x; and “7” denotes “c” if 7 is ¢. Since the tuple (s, s', a) satisfies the
antecedent of the formula listed as item 3 in the definition of @7, ., the consequent

of the same formula ensures that: the tuple (s, s', a) satisfies parse(y, ', z) in A



CHAPTER 6. A GENERIC PERSPECTIVE 153

7" ( Zl A y Z'I'I, )

Yo Y1 Y2 Ys Yon—-1  Yon Yon+1

Figure 6.4: An intuitive depiction of item 3 in the definition of 7, ..

if and only if a = apply(”)(“r”%, L “Tn”m). Hence a = tf‘(n ) where
ty(ri,...,ra) denotes the Li—term describing (71, ...,7,). The inductive steps are
even easier. O

The Correctness of the Axiomatisation of Disambiguation

We are now ready to complete our axiomatisation of ‘is—a—disambiguation—of’.

Let ¢4, denote the formula:

Vy(dism, (v) ¢ 3232 (2 < Send A ' < Sena A parse(z, z', v)

A JyFy' (suce(y, z) Asuce(z’, ") AT (Y, tend) AT.(Y' tend))))

Finally, let DISM,, denote the conjunction ¢az, A ¢puse N Pism- We must now
check that our formula DISM, works; that is, we must verify that the predicate

dism, can be interpreted as we want it to be.

Lemma 6.2.7 (Correctness of DISM,). Let o be an Underspecified Repre-
sentation in some Underspecified Representation Language A such that A has a
computable disambiguation procedure. Let the structure 2l interpret the language
LT with A = DISM, and let ¢ € L. Then for all a € dom(2A), 2A | dismg[a] if

and only if a = t% for some @, such that ¢ is a disambiguation of «.

Proof of Lemma 6.2.7. Suppose A = ¢%,,,- We know, by definition of ¢, that
there exist domain elements s, s’ such that the tuple (s, s, a) satisfies the formula
T < Send NT' < Seng Aparse(z,x’,v) in A. Because 2 = ¢y, we can interpret this
formula as ‘saying’: at termination some disambiguation of « is written on the
tape of M, between squares s and s’. We denote this disambiguation ¢. Finally,
because A = %, . we know that a = 3 by result 6.2.6.

Conversely, suppose that a = ti‘ for some ¢ € L such that ¢ is a disambigua-
tion of a. Since M, writes all of the disambiguations on its tape (and nothing

else) there must exist squares s and s’ such that ¢ is written on the tape of M,



CHAPTER 6. A GENERIC PERSPECTIVE 154

between s and s'. Therefore, by result 6.2.6, parse(x,z’, z) is satisfied by the
tuple (s, s',a) in A. Because Senq is the last ‘written on’ square of M,, the tuple
(s, ', a) must also satisfy the formula z < Seng Az’ < Senq Aparse(z, z’,v) in 2 and

therefore, since the tuple (s, s', a) satisfies ¢, in 2, we have 2 = dism,[a]. O

In this section, we have written a set of axioms DISM, which capture the
notion of ‘is—a—disambiguation—of’, and we have showed that our axiomatisation
works (lemma 6.2.7). We are now ready to bring together all of the work we
have done in this chapter; that is, we are ready to prove our final theorem (the-
orem 6.0.8).

6.3 Proving the Reduction Theorem

We are now ready to prove theorem 6.0.8 which we re-state below.

Reduction Theorem. Let o be an Underspecified Representation in some Un-
derspecified Representation Language A, such that A has a computable disam-
biguation procedure and every disambiguation of « involves only the variables
Tg, - - - Tp(n,) where ng is the size of a, and p is a fived polynomial. Then there
exists a formula 1, € L, of size bounded by p(ny,), such that « is weakly satisfiable
if and only if 1, is classically satisfiable.

Proof of the Reduction Theorem (Theorem 6.0.8). Let SAT®™) and DISM, be as
defined above and let ¢y denote the conjunction SAT™) ADISM,. We claim that

the following formula suffices:
e = o A Fv(dismy (V) A Eg(sat(N)(y, 7)))-

Suppose that « is weakly satisfiable. Then there exists a structure 2 and
a tuple @ such that for some disambiguation ¢(Z) of «, @ satisfies ¢(Z) in
2A. Let B be an expansion of 2 such that B SAT™ A DISM,; that is
B = @o. We claim that it is easy to modify the disambiguation procedure,
if necessary, so that every disambiguation of o does have an expansion sat-
isfying SAT™) A DISM,,, without affecting weak satisfiability. This modifica-
tion need only to relativise all quantification in SAT™ A DISM,, to a domain
of non-linguistic objects, thus ‘Vz;..." is replaced by ‘Vz;(real-obj(z;) — ...)’
and ‘Jz;..." is replaced by ‘Jz;(real-obj(x;) A ...)". This avoids problems in



CHAPTER 6. A GENERIC PERSPECTIVE 155

which the disambiguations of « interfere with the technical linguistic apparatus
of SAT™) A DISM,,. Since B = DISM,, there must be an element a € dom(B)
such that a = t?, where ¢, is the term describing ¢. Hence, by lemma 6.2.7,
9B = dism,[a]. Furthermore, since B = SATY) and B k= ¢[a] by lemma 6.2.4
B = 6,[a] where 6,(9) := sat™(t,,7). Clearly then, the tuple (a, @) satisfies the
formula dism,(v) A sat®™) (v, ) in B and by assumption B | ¢, and therefore
the formula

e = o A Jv(dismg (v) A ng(sat(N)(V, 7))

is satisfiable, as required.

Conversely, suppose that 1, is satisfiable. Then there exists a structure 2
and a tuple (a, @), such that % = ¢y and (a,a) satisfies dism,(v) A sat™™ (v, 7)
in 2. Since 2 = ¢o and in particular 2 | DISM, we have a = ti‘ for some ¢
such that ¢ is a disambiguation of «, by lemma 6.2.7. Also, since by assumption
A = sat™[a,a) we have A = la], by lemma 6.2.4. Thus, ¢ is a satisfiable

disambiguation of o and so « is weakly satisfiable. O

6.4 Summary

In this chapter, we have demonstrated that weak satisfiability (with respect to any
Underspecified Representation Language) is reducible to classical satisfiability.
Specifically, given any Underspecified Representation o we have demonstrated
how to engineer a formula v, € L with the following property: « is weakly
satisfiable if and only if v, is classically satisfiable. This result gives us some idea
of what the (expressive) limitations of underspecification are. It also suggests
that the enterprise of looking for theorem provers for weak satisfiability is of
little theoretical interest. We conclude this chapter by briefly discussing how
theorem 6.0.8 relates to some of our earlier results regarding relative expressive
power.

Recall that in chapter 5, we proved that: the Underspecified Representa-
tion Language Q can be ‘transcribed’ in # and visa versa (lemma 5.2.1 and
lemma 5.2.2); and that Q can be transcribed in APL and visa versa (lemma 5.3.1
and theorem 5.3.6).3 At first sight, theorem 6.0.8 might seem to subsume our ear-

lier results; since, if we can ‘reduce’ any Underspecified Representation Language

3Tt is important to remember that we use the term ‘transcription’ in a special sense, defined
on page 121.



CHAPTER 6. A GENERIC PERSPECTIVE 156

to classical logic, then we must be able to ‘reduce’ any pair of Underspecified
Representation Languages to one another (via classical logic if necessary)! How-
ever, in theorem 6.0.8 we prove that the Underspecified Representation o and
the corresponding L—formula 1), are ‘equisatisfiable’ (we did not show that they
are transcriptions of one another). Trivially, for any formulas a and g, if a and
[ transcribe one another then a and § must be equisatisfiable; however, the con-
verse of this statement is false. We therefore claim that the results in chapter 5
are not comparable to theorem 6.0.8. In the final chapter we evaluate our results

in more detail.



Chapter 7
Conclusion

Statistics show that every 11 seconds a man is mugged here in New York. We are

here today to interview him.

Ambiguity poses a real problem for Natural Language Processing. Unfortu-
nately, there are many different sources of ambiguity and all natural languages
are highly ambiguous. There are currently two approaches to the ambiguity
problem: resolution and underspecification. Resolution aims to select the most
likely reading(s) (usually from context); by contrast, the aim of underspecification
is to encode the readings of ambiguous expressions in compact Underspecified
Representations (enumerating readings upon need). Resolution is (notionally)
the simpler option, but we argue that it is somewhat limited and therefore un-
derspecification is worth investigating. An Underspecified Logic consists of two
components: a formal language in which we can explicitly encode the various
types of ambiguity (a so—called ‘Underspecified Representation Language’) and
a framework for interpreting Underspecified Representations. We present these
components separately since we believe that the issues of representation and in-
terpretation are orthogonal.

Although there are currently eight Underspecified Representation Languages
(presented in chapter 3), we argue that in fact there are only three types. We
also investigate the best-known frameworks for interpreting the expressions of
these languages: a recursive satisfaction definition (Partial Logic) and two non—
recursive satisfaction definitions (based on strong and weak satisfiability respec-
tively). However, we argue that Partial Logic is of little use, since it fails to cap-

ture the intuition intended by its authors, and in any case, partial satisfiability is

157



CHAPTER 7. CONCLUSION 158

reducible to classical satisfiability. Therefore, we prefer non—recursive satisfaction
definitions (that is, we prefer the meaning of any Underspecified Representation
to be completely determined by the meanings of its set of disambiguations). With
this interpretational scheme in mind, we are able to investigate the (relative) ex-
pressive power of the various Underspecified Representation Languages. In fact
we argue that all current Underspecified Representation Languages have equiv-
alent expressive power. Moreover, we establish that weak satisfiability is always
reducible to classical satisfiability (regardless of the Underspecified Representa-
tion Language we choose).

Thus, we now have a sound understanding of the relationships between the
various Underspecified Representation Languages and of the frameworks used to
interpret them.

What is the significance of our contribution? The interest in mapping the
current Underspecified Representation Languages into one another resides in the
link this establishes between a mathematically very manageable Underspecified
Representation Language (namely, Q) and other more linguistically natural lan-
guages (for example, % and R). To establish the expressive equivalence of two
Underspecified Representation Languages A and A" we show that every formula
in one of these languages can be ‘translated’ into a formula in the other. In
translating between two languages it is imperative that the size of the translated
formula should be polynomial in the size of the original formula. Without this
restriction it would be trivial to map any formula of any current Underspecified
Representation Language into an ‘equivalent’ formula of Q by disambiguating
the original formula and then recreating the ambiguity by joining up the dis-
ambiguations obtained (using the ambiguation connective ‘?’). However, such a
strategy is inefficient because of the so—called ‘combinatorial explosion problem’
and would therefore destroy the original motivation for using Underspecified Rep-
resentations. The most convincing translation between two formulas ¢ € A and
f(p) € A" would be one in which every disambiguation of ¢ is the same as (or
logically equivalent to) some disambiguation of f(¢) and every disambiguation of
f(p) is the same as (or logically equivalent to) some disambiguation of ¢. How-
ever, we believe that there is no such translation between any of the languages
Q, H and APL (conjecture 5.1.3). We therefore use the (less severe) notion of
‘transcription’ in place of ‘logical equivalence’ to translate between the formulas
of different Underspecified Representation Languages.



CHAPTER 7. CONCLUSION 159

The final theorem of the thesis is that weak satisfiability is reducible to classi-
cal satisfiability. Our reduction of weak satisfiability to classical satisfiability pro-
vides some indication of where the limitations of underspecification lie (in terms
of representation). Furthermore, this reduction suggests that the enterprise of
designing theorem provers for weak satisfiability should be of little interest to the
theorist. The proof of the final theorem requires us to axiomatise the notions
of ‘satisfaction’ and ‘is—a—disambiguation—of’ within a ‘formula algebra’. It is
important to realise that the final theorem does not subsume our earlier results
(that is, our maps between Q and H and between Q and APL) since ‘transcrip-
tion’ is a stronger notion than ‘equisatisfiability’. That is, for any Underspecified
Representations a and f, if « transcribes 8 (and visa versa) then « and [ are
equisatisfiable; however, the converse is false.

There has been recent interest in mapping some of the current Underspecified
Representation Languages into each other; in particular, Predicate Logic Un-
plugged has been mapped into the Constraint Language for Lambda Structures
and visa versa (Koller et al., 2003) and Minimal Recursion Semantics has been
mapped into the Constraint Language for Lambda Structures and visa versa
(Niehren and Thater, 2003). However, these three languages (PLU, MRS and
CLLS) all ‘look’ similar and we claim that they are merely notational variants
of one another. We have presented the first back—and—forth map between two
very different Underspecified Representation Languages, H and Q (and similarly
between APL and Q). The significance of this contribution is that it allows us
to better understand the landscape of underspecification and, in particular, how
the various Underspecified Representation Languages relate to one another. In
practical terms, it means that in many cases, results obtained for one language
can be interpreted within the context of another.

The focus of future research should be an evaluation of underspecification
from a more practical perspective. In particular, the main question remains: is
underspecification really more efficient than resolution? In addition, it would
be useful to audit the various schemes for mapping natural language expressions
onto Underspecified Representations. Currently, such systems are available for
PLU (Blackburn and Bos, 1999a, pp.89-91), MRS (Copestake et al., 1995, sec.5,
pp.13-24), CLLS (Egg et al., 2001, pp.22-27), UDRT (Reyle, 1993), QLF (Al-
shawi and Crouch, 1992) and Stores (Blackburn and Bos, 1999a, pp.70-82). But



CHAPTER 7. CONCLUSION 160

it is difficult to compare these since each of them is written with a distinct Un-
derspecified Representation Language in mind. A more theoretical issue is the
relationship between strong satisfiability and classical satisfiability; we conjecture
that strong satisfiability is reducible to classical satisfiability (an analogue of the
final theorem). It would also be interesting to further our investigation of strong
and weak satisfiability and, in particular, their complexity in various decidable
fragments.

In this thesis, we have established that there is really only one sensible way
to interpret Underspecified Representations (based on strong/weak satisfiability).
Using this scheme, we have proved that all current Underspecified Representation
Languages have the same expressive power and that the only sensible notion of

ambiguous satisfiability is reducible to classical satisfiability anyway!



Bibliography

Abney, S. (1996). Part—of-Speech Tagging and Partial Parsing. In Young, S.
and Bloothooft, G., editors, Corpus—Based Methods in Language and Speech
Processing, pages 118-136. Kluwer Academic Press, Dordrecht.

Abney, S. (1997). Stochastic Attribute-Value Grammars. Computational Lin-
guistics, 23:597-618.

Agresti, A. (1990). Categorical Data Analysis. John Wiley & Sons.

Allen, J. (1995). Natural Language Understanding. The Benjamin/Cummings
Publishing Company Incorporated.

Alshawi, H. (1992). The Core Language Engine. MIT Press, Cambridge.

Alshawi, H. (1996). Underspecified First-Order Logics. In Peters, S. and van
Deemter, K., editors, Semantic Ambiguity and Underspecification, number 15
in CSLI lecture notes, pages 145-158. CSLI, Stanford, CA.

Alshawi, H., Carter, D., Crouch, R., Pulman, S., Rayer, M., and Smith, A.
(1992a). CLARE: A Contextual Reasoning and Cooperative Response
Framework for the Core Language Engine. Technical Report CRC-028, SRI

International, Cambridge.

Alshawi, H., Carter, D., Crouch, R., Pulman, S., Rayner, M., and Smith, A.
(1992b). CLARE: A Contextual Reasoning and Cooperative Response Frame-

work for the Core Language Engine. SRI International, Cambridge Computer
Science Centre, Cambridge, UK. SRI Project 8468.

Althaus, E., Duchier, D., Koller, A., Mehlhorn, K., Niehren, J., and Thiel, S.
(2000). An Efficient Graph Algorithm for Dominance Constraints. Submit-
ted.

161



BIBLIOGRAPHY 162

Aronoff, A. and Rees Miller, J., editors (2001). The Handbook of Linguistics.
Blackwell Handbooks in Linguistics, number 8. Oxford, Blackwell.

Atwell, E. (1987). Constituent—Likelihood Grammar. In Garside, R., Leech, G.,
and Sampson, G., editors, The Computational Analysis of English: A Corpus
based Approach. Longman, London.

Bangalore, S. (1997). Performance Evaluation of Supertagging for Partial Parsing.
The 5th International Workshop on Parsing Technologies. Boston.

Bar Hillel, Y. (1964). Language and Information. Adison-Wesley.

Benello, J., Mackie, A. W., and Anderson, J. A. (1989). Syntactic Category
Disambiguation with Neural Networks. Computer Speech and Language,
3:203-217.

Black, E. (1988). An Experiment in Computational Discrimination of English
Word Senses. IBM Journal of Research and Development, 232:185-194.

Black, E., Jelinek, F., Laferty, J., Magerman, D. M., Mercer, R., and Roukos, S.
(1993). Towards History—Based Grammars: Using Richer Models for Proba-
bilistic Parsing. In Proceedings of the 31st Annual Meeting of the Association
for Computational Linguistics (ACL’93), pages 31-37.

Blackburn, P. and Bos, J. (1999a). Representation and Inference for Natural
Language: A First Course in Computational Semantics. Available online at

http://www.comsen/.org. vol.l.

Blackburn, P. and Bos, J. (1999b). Working with Discourse Representation The-
ory: An Advanced Course in Computational Semantics. Available online at

http://www.comsen/.org. vol.2.

Blamey, S. (1986). Partial Logic. In Gabbay, D. and Guenthner, F., editors, The
Handbook of Philosophical Logic, volume 3, pages 1-70. D. Reidel Publishing
Company.

Bod, R. (1996). Data—Oriented Language Processing: An Overview. Technical
Report LP-96-13, Institute for Logic, Language and Computation, Univer-

sity of Amsterdam.



BIBLIOGRAPHY 163

Bod, R. (1998). Beyond Grammar: An Ezperience—Based Theory of Language.
CSLI Publications, Stanford CA.

Bod, R., Scha, R., and Sima’an, K., editors (2003). Introduction to Data—Oriented
Parsing. CSLI Publications, University of Chicago Press.

Bodirsky, M., Erk, K., Koller, A., and Niehren, J. (2001). Underspecified Beta
Reduction. In Proceedings of the 39th Annual Meeting of the Association for
Computational Linguistics (ACL’2001), Toulouse.

Booth, T. L. and Thomson, R. A. (1973). Applying Probability Measures to
Abstract Languages. In IEEE: Transactions on Computers, volume C-22,
pages 442-450.

Bos, J. (1995). Predicate Logic Unplugged. In Proceedings of the 10th Amsterdam
Colloquium, pages 133-143.

Brill, E. (1995). Transformation-Based Error-Driven Learning and Natural Lan-
guage Processing: A Case Study in Part—of-Spech Tagging. Computational
Linguistics, 21:543-565.

Bronnenburg, W., Hunt, H. C., Landsbergen, S. P. J., Scha, R., Schoenmarkers,
W., and van Utteren, E. (1979). The Question—Answering System PHLIQA1.

Natural Communication with Computers, 2.

Brown, P. F., Della Pietra, S. A., Della Pietra, V. J., and Mercer, R. L. (1991).
Word Sense Disambiguation using Statistical Methods. In Proceedings of
the 29th Annual Meeting of the Association for Computational Linguistics
(ACL’91), volume 29, pages 264-270.

Cann, R. (1993). Formal Semantics: An Introduction. Cambridge Textbooks in
Linguistics. Cambridge University Press, 1994 edition.

Carbonell, J. and Brown, R. (1988). Anaphora Resolution: A Multi-Strategy
Approach. In Proceedings of the 12th International Conference on Compu-
tational Linguistics (COLING’98), Budapest, Hungary.

Charniak, E. (1996a). Statistical Language Learning. MIT Press, Cambridge,

Massachusetts, paperback edition.



BIBLIOGRAPHY 164

Charniak, E. (1996b). Tree-Bank Grammars. In Proceedings of the 13th National
Conference on Artificial Intelligence (AAAI’96), pages 1031-1036.

Charniak, E., Hendrickson, C., Jacobson, N., and Perkowitz, M. (1993). Equa-
tions for Part—of-Speech Tagging. In Proceedings of the 11th National Con-
ference on Artificial Intelligence (AAAI’93), Menlo Park. MIT Press.

Chen, J. N. and Chang, J. S. (1998). Topical Clustering of MRD Senses based
on Information Retrieval Techniques. Computational Linguistics (Special
Issue), 24(1).

Cherry, L. (1978). PART: A System for Assigning Word Classes to English Texts.
In ATET Memorandum. Bell Laboratories, Murray Hill, New Jersey.

Choueka, Y. and Lusignan, S. (1985). Disambiguation by Short Contexts. Com-
puters and the Humanities, 19:147-158.

Church, A. (1956). Introduction to Mathematical Logic, volume 1. Princeton

University Press, third edition.

Church, K. (1988). A Stochastic Parts Program and Noun Phrase Parser for
Unrestricted Texts. In Proceedings of the 2nd Conference on Applied Natural

Language Processing, Austin, Texas.

Church, K. W. and Patil, R. S. (1982). Coping with Syntactic Ambiguity or
How to Put the Block in the Box on the Table. Computational Linguistics,
8:139-149.

Collins, M. J. (1996). A New Statistical Parser based on Bigram Lexical Depen-
dencies. In Proceedings of the 34th Annual Meeting of the Association for
Computational Linguistics (ACL’96), pages 184-191.

Collins, M. J. (1997). Three Generative, Lexicalized Models for Statistical Pars-
ing. In Proceedings of the 35th Annual Meeting of the Association for
Computational Linguistics (ACL’97) and Proceedings of the 8th Conference

of the Furopean Chapter of the Association for Computational Linguistics
(EACL’97).

Cooper, R. (1983). Quantification and Syntactic Theory. The Syntactic Language
Library, number 21, D. Reidel. Dordrecht.



BIBLIOGRAPHY 165

Cooper, R., Crouch, R., van Eijck, J., Fox, C., van Genabith, J., Jaspars, J.,
Kamp, H., Pinkal, M., Poesio, M., Pulman, S., and Vestre, E. (1994).
FraCaS, A Framework for Computational Semantics: Describing the Ap-
proaches. CWI Report: LRE 62-051.

Copestake, A., Flickinger, D., Malouf, R., Riehemann, S., and Sag, I. A. (1995).
Translation using Minimal Recursion Semantics. In Proceedings of the 6th In-
ternational Conference on Theoretical and Methodological Issues in Machine
Translation (TMI’95), Leuven, Belgium.

Copestake, A., Flickinger, D., Sag, I. A., and Pollard, C. (1999). Minimal Recur-

sion Semantics: An Introduction. Draft.

Daelemans, W., Zavrel, J., Berck, P., and Gillis, S. (1996). MBT: A Memory—
Based Part—of-Speech Tagger Generator. In Proceedings of the 4th Workshop
on Very Large Corpora (WVLC’96), pages 14-27.

Dagan, I. and Itai, A. (1990). Automatic Processing of Large Corpora for the
Resolution of Anaphora References. In Proceedings of the 13th International
Conference on Computational Linguistics (COLING’90), volume 3, pages
330-332, Helsinki, Finland.

Dagan, I. and Itai, A. (1994). Word Sense Disambiguation using a Second Lan-
guage Monolingual Corpus. Computational Linguistics, 20:563-596.

Dalrymple, M. (1993). The Syntaz of Anaphoric Binding. Number 36 in CSLI

lecture notes. CSLI Publications.

Dalrymple, M., Shieber, S. M., and Pereira, F. (1991). Ellipsis and Higher—Order
Unification. Linguistics and Philosophy, 14:399-452.

Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977). Maximum Likelihood
from Incomplete Data via the EM Algorithm. The Journal of the Royal
Statistical Society, 39:1-38.

DeRose, S. (1988). Grammatical Category Disambiguation by Statistical Opti-

mization. Computational Linguistics, 14:31-39.

Dik, S. C. (1972). Coordination: Its Implications for the Theory of General
Linguistics. North-Holland Publishing Company, second edition.



BIBLIOGRAPHY 166

Dolan, W. B. (1994). Word Sense Ambiguation: Clustering Related Senses. In
Proceedings of the 15th International Conference on Computational Linguis-
tics (COLING’9/), pages 712-716, Kyoto, Japan.

Duda, R. O. and Hart, P. E. (1973). Pattern Classification and Scene Analysis.
Wiley, New York.

Dummet, M. A. E. (1975). Truth and other Enigmas. Duckworth, London.

Edmonds, P. (2002). SENSEVAL: The Evaluation of Word Sense Dis-
ambiguation Systems. ELRA Newsletter 7(3). Currently available at

http://www.cs.unt.edu/¥ada/senseval/publications/senseval.pdf.

Egg, M., Koller, A., and Niehren, J. (2001). The Constraint Language for Lambda
Structures. Journal of Logic, Language and Information, 10(2):457-485.

Special edition on Underspecification.

Egg, M., Neihren, J., Ruhrberg, P., and Feiyu, X. (1998). Constraints over
Lambda Structures in Semantic Underspecification. In Proceedings of the
17th International Conference on Computational Linguistics (COLING’98)

and 36th Annual Meeting of the Association for Computational Linguistics
(ACL’98), pages 353-359, Montreal Canada.

Enderton, H. B. (1972). A Mathematical Introduction to Logic. London Academic
Press, New York.

Erk, K., Koller, A., and Niehren, J. (2000). Processing in the Constraint Language
for Lambda Structures. The Journal of Language and Computation, 0(0):1-
37. Oxford University Press.

Fernando, T. (1995). A Logical Connective for Ambiguity Requiring Disambigua-
tion. In Underspecification, Events and More Dynamic Semantics, edited by
J. Groenendijk.

Gale, W., Church, K., and Yarowsky, D. (1992a). Using Bilingual Materials to
develop Word Sense Disambiguation Methods. In Proceedings of the 3rd In-
ternational Conference on Theoretical and Methodological Issues in Machine
Translation (TMI’92), pages 101-112.



BIBLIOGRAPHY 167

Gale, W. A., Church, K. W., and Yarowsky, D. (1992b). A Method for Disam-
biguating Word Senses in a Large Corpus. Technical report, AT&T Bell
Laboratories, Murray Hill, New Jersey.

Galil, Z., Micali, S., and Gabow, H. (1986). An O(evlogv) Algorithm for Find-
ing a Maximal Weighted Matching in General Graphs. SIAM Journal of
Computing, 15:120-130.

Gambéck, B. and Bos, J. (1998). Semantic—-Head Based Resolution of Scopal Am-
biguities. In Proceedings of the 12th International Conference on Computa-
tional Linguistics (COLING’98) and Proceedings of the 36th Annual Meeting
of the Association for Computational Linguistics (ACL’98), pages 433-437.

Garey, M. and Johnson, D. (1979). Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman and Company.

Garside, R. (1987). The CLAWS Word-Tagging System. In Garside, R., Leech,
G., and Sampson, G., editors, The Computational Analysis of English: A
Corpus—Based Approach. Longman, London.

Ge, N., Hale, J., and Charniak, E. (1998). A Statistical Approach to Anaphora
Resolution. In Proceedings of the 6th Workshop on Very Large Corpora
(WVLC’98), pages 161-170.

Green, G. (1996). Ambiguity Resolution and Discourse Interpretation. In Peters,
S. and van Deemter, K., editors, Semantic Ambiguity and Underspecification,
number 55 in CSLI lecture notes. CSLI, Stanford, CA.

Greene, B. B. and Rubin, G. M. (1971). Automatic Grammatical Tagging of

English. Technical report, Brown University, Providence, RI.

Grice, H. P. (1975). Logic and Conversation. In Cole, P. and Morgan, J. L.,
editors, Syntaz and Semantics 3: Speech Acts, pages 41-58. Academic Press,
New York.

Guthrie, J. A., Guthrie, L., Wilks, Y., and Aidinejad, H. (1991). Subject De-
pendant Co-occurrence and Word Sense Disambiguation. In Proccedings of
the 29th Annual Meeting of the Association for Computational Linguistics
(ACL’91), pages 146-152, Berkeley, California.



BIBLIOGRAPHY 168

Guthrie, L., Pustejovsky, J., Wilks, Y., and Slator, B. M. (1996). The Role of Lex-
icons in Natural Language Processing. Communications of the Association
for Computing Machinery (ACM’96), 39:63-72.

Harper, K. E. (1957a). Contextual Analysis. Mechanical Translation, 4(3):70-75.
Harper, K. E. (1957b). Semantic Ambiguity. Mechanical Translation, 4(3):68—69.

Hayes, P. J. (1978). Mapping Input into Schemas. Technical Report 29, Depart-

ment of Computer Science, University of Rochester.

Hindle, D. and Rooth, M. (1993). Structural Ambiguity and Lexical Relations.
Computational Linguistics, 19:103-120.

Hirst, G. (1987). Semantic Interpretation and the Resolution of Ambiguity. Stud-
ies in Natural Language Processing. Cambridge University Press.

Hobbs, J., Stickel, M., and Martin, P. (1993). Interpretation as Abduction. Ar-
tificial Intelligence, 63(1 & 2):69-142.

Hobbs, J. R. (1983). An Improper Treatment of Quantification in Ordinary En-
glish. In Proceedings of the 21st Annual Meeting of the Association for Com-
putational Linguistics (ACL’83), pages 57-63, Cambridge, Massachusetts.

Hobbs, J. R. and Shieber, S. M. (1986). An Algorithm for Generating Quantifier
Scoping. Computational Linguistics, 13:47-63.

Hodges, W. (1977). Logic: An Introduction to Elementary Logic. Penguin Books,
1991 edition.

Hodges, W. (1992). Model Theory. Number 42 in Encyclopedia of Mathematics
and its Applications. Cambridge University Press.

Ide, N. and Véronis, J. (1990). Mapping Dictionaries: A Spreading Activation
Approach. In Proceedings of the 6th Annual Conference of the UW Centre
for the New Ozford English Dictionary, pages 52-64.

Ide, N. and Véronis, J. (1998). Word Sense Disambiguation: The State of the
Art. Computational Linguistics, 24:1-40. An Introduction to the Special

Issue on Word Sense Disambiguation.



BIBLIOGRAPHY 169

Ioup, G. (1975). Some Universals for Quantifier Scope. In Kimball, J., editor,
Syntaz and Semantics, volume 4, pages 37-58. Academic Press, New York.

Jackendoff, R. (1972). Semantic Interpretation in Generative Grammar. MIT

Press, Cambridge, Massachusetts.

Jaspars, J. (1997). Minimal Logics for Reasoning with Ambiguous Expressions.
Technical Report 94, Universitiat des Saarlandes. CLAUS Report.

Jelinek, F. (1985). Markov Source Modelling of Text Generation. In Skwirzyn-
ski, J. K., editor, The Impact of Processing Techniques on Communications,
volume E91 of NATO ASI, pages 569-598. Nijhoff, Dordrecht.

Jelinek, F., Lafferty, J., Magerman, D., Mercer, R., Patnaparkhi, A., and Roukos,
S. (1994). Decision Tree Parsing using a Derivational Model. In Proceedings

of the Human Language Technology Workshop, pages 272-277.

Jorgensen, J. (1990). The Psychological Reality of Word Senses. Journal of
Psycholinguistic Research, 19:167-190.

Kamp, H. and Reyle, U. (1993). From Discourse to Logic: Introduction to Model
Theoretic Semantics of Natural Language, Formal Logic and Discourse Rep-

resentation Theory. Kluwer Academic Publishers, student edition.

Kaplan, A. (1950). An Experimental Study of Ambiguity and Context. Mechan-
tcal Translation, pages 36-46. Published, 1955.

Karlsson, F. (1990). Constraint Grammar as a Framework for Parsing Running

Text. In Proceedings of the 4th International Conference on Computational
Linguistics (COLING’90), pages 168-173.

Kehler, A. (1993). A Discourse Copying Algorithm for Ellipsis and Anaphora
Resolution. In Proceedings of the 6th Conference of European Chapter of
the Association for Computational Linguistics (EACL’93), pages 203-212,
Utrecht.

Keller, W. (1986). Nested Cooper Storage: The Proper Treatment of Quantifi-
cation in Ordinary Noun Phrases. In Reyle, U. and Rohrer, C., editors,
Natural Language Parsing and Linguistic Theory, Studies in Linguistics and
Philosophy, pages 432-437. Reidel.



BIBLIOGRAPHY 170

Kennedy, C. and Boguraev, B. (1996). Anaphora for Everyone: Pronominal
Anaphora Resolution without a Parser. In Proceedings of the 10th Interna-
tional Conference on Computational Linguistics (COLING’96), pages 113—
118, Copenhagen, Denmark.

Kilgarriff, A. (1993). Dictionary Word Sense Distinctions: An Enquiry into their
Nature. Computers and the Humanities, 26:365—387.

Kilgarriff, A. (1997). What is Word Sense Disambiguation Good For. In Pro-
ceedings of the NLP Pacific Rim Symposium’97, Phuket, Thailand.

Kilgarriff, A. (1998). Gold Standard Datasets for Evaluating Word Sense Disam-
biguation Programs. Computer Speech and Language, 12(3).

Kilgarriff, A. and Palmer, M. (2000). Introduction to the Special Issue on SEN-
SEVAL. Computers and the Humanities, 34(1-2):1-13.

Kleene, S. C. (1952). Introduction to Metamathematics. North-Holland, Amster-

dam.

Koller, A. (1999). Constraint Languages for Semantic Underspecification. Mas-
ter’s thesis, University of Saarlandes.

Koller, A., Mehlhorn, K., and Niehren, J. (2000). A Polynomial-Time Fragment
of Dominance Constraints. In Proceedings of the 38th Annual Meeting of the
Association for Computational Linguistics (ACL’2000), Hong Kong.

Koller, A. and Niehren, J. (1999). Scope Underspecification and Processing. A
Reader for the European Summer School on Logic, Linguistics and Informa-
tion 1999 (ESSLLI’99).

Koller, A., Niehren, J., and Thater, S. (2003). Bridging the Gap between Un-
derspecification Formalisms: Hole Semantics as Dominance Constraints. In
Proceedings of the 11th Meeting of the European Chapter of the Association
for Computational Linguistics (EACL’2003), Budapest, Hungary.

Koller, A., Niehren, J., and Treinen, R. (1998). Dominance Constraints: Al-
gorithms and Complexity. In Proceedings of the 3rd conference on Logical

Aspects of Computatioal Linguistics, Grenoble.



BIBLIOGRAPHY 171

Konig, E. and Reyle, U. (1996). A General Reasoning Scheme for Underspecified
Representations. In Hans J. Ohlbach and Reyle, U., editors, Logic and its
Applications: Festchrift for Dov Gabbay. Kluwer Academic Press. Part 1.

Kooij, J. G. (1971). Ambiguity in Natural Language: An Investigation of Certain
Problems in Linguistic Description. North—Holland Linguistic Series. North—
Holland, Amsterdam.

Kripe, S. (1975). Outline of a Theory of Truth. Journal of Philosophy, 74:690—
716.

Krovetz, R. (1997). Homonymy and Polysemy in Information Retrieval. In Pro-
ceedings of the 35th Annual Meeting of the Association for Computational
Linguistics (ACL’97) and the 8th Meeting of the European Chapter of the
Association for Computational Linguistics (EACL’97), pages 7279, Madrid,
Spain.

Krovetz, R. and Croft, W. B. (1989). Word Sense Disambiguation using Machine
Readable Dictionaries. In Proceedings of the 12th Annual International Asso-
ciation for Computing Machinery (ACM) and Conference and Research and
Development in Information Retrieval, (SIGIR’89), pages 127-136, Cam-
bridge, Massachusetts.

Krovetz, R. and Croft, W. B. (1992). Lexical Ambiguity and Information Re-
trieval. In Association for Computing Machinery (ACM): Transactions on

Information Systems, volume 10, pages 115-141.

Kupiec, J. (1992). Robust Part—of-Speech Tagging using a Hidden Markov Model.
Computer Speech and Language, 6:225-242.

Kurtzman, H. S. and MacDonald, M. C. (1993). Resolution of Quantifier Scope
Ambiguities. Cognition, 48:243-279.

Lakoff, G. P. (1971). Semantic Interpretation in Generative Grammar. In Stein-
berg, D. A. and Jakobovits, L. A., editors, Semantics: An Interdisciplinary
Reader in Philosophy, Linguistics, Anthropology, and Psychology. Cambridge
University Press, United Kingdom.

Landman, F. (1991). Structures in Linguistics and Philosophy. Number 45 in
Studies in Linguistics and Philosophy. Kluwer Academic Publishers.



BIBLIOGRAPHY 172

Langholm, T. (1996). How Different is Partial Logic. In Doherty, P., editor,
Partiality, Modality and Nonmonotonicity, Studies in Logic, Language and
Information, pages 3-43. CSLI Publications.

Lappin, S. (1996). The Handbook of Contemporary Semantic Theory. Oxford,
Blackwell.

Lesk, M. (1986). Automatic Sense Disambiguation: How to Tell a Pine Cone
from an Ice Cream Cone. In Proceedings of the 1986 SIGDOC Conference,
pages 24-26, New York. Association for Computing Machinery (ACM).

Levow, G. (1997). Corpus—Based Techniques for Word Sense Disambiguation.
Technical Report. AIM-1637.

Liddy, E. D. and Paik, W. (1993). Statistically Guided Word Sense Disambigua-
tion. In Proceedings of the AAAI Fall Symposium Series, pages 98-107.

Luk, A. K. (1995). Statistical Sense Disambiguation with Relatively Small Cor-
pora using Dictionary Definitions. In Proceedings of the 33rd Annual Meeting
of the Association for Computational Linguistics (ACL’95), pages 181-188.
Cambridge, Massachusetts.

Magerman, D. M. (1995). Statistical Decision-Tree Models for Parsing. In Pro-
ceedings of the 33rd Annual Meeting of the Association for Computational
Linguistics (ACL’95), pages 276-283. Cambridge, Massachusetts.

Magerman, D. M. and Mitchell, M. P. (1991). PEARL: A Probabilistic Chart
Parser. In Proceedings of the European Chapter of the Association for Com-
putational Linguistics Conference (EACL’91), Berlin, Germany.

Malinowski, G. (1993). Many—Valued Logics. Number 25 in Oxford Logic Guides.

Oxford Science Publications.

Manning, C. D. and Schiitze, H. (1999). Foundations of Statistical Natural Lan-
guage Processing. The MIT Press, Cambridge, Massachusets, London, Eng-
land.

Markov, A. A. (1913). An Example of Statistical Investigation in the Text of
‘Eugene Onyegin’ illustrating Coupling of “Tests’ in Chains. In Proceedings
of the Academy of Sciences, volume 7, pages 153-162, St. Petersburg.



BIBLIOGRAPHY 173

Martin, W. A.; Church, K. W., and Patil, R. S. (1987). Preliminary Analysis of a
Bredth-First Parsing Algorithm: Theoretical and Experimental Results. In
Bolc, L., editor, Natural Language Parsing Systems. Sringer—Verlag, Berlin.
Also published as an MIT LCS Technical Report TR—-261.

May, R. (1977). The Grammar of Quantification. PhD thesis, Massachusetts
Institute of Technology (MIT).

Mitamuran, T., Nyberg, E., Torrejon, E., Svoboda, D., Brunner, A., and Baker,
K. (2002). Pronominal Anaphora Resolution in the KANTOO Multilin-
gual Machine Translation System. In Proceedings of the 2002 International
Conference on Theoretical and Methodological Issues in Machine Translation
(TMI’2002).

Mitkov, R. (1999). Multilingual Anaphora Resolution. Computational Linguis-
tics, 14. Special issue on Anaphora Resolution in Machine Translation and
Multilingual NLP.

Mohanty, A. K. (1983). Perceptual Complexity of Lexical, Surface Structure, and
Deep Structure types of Ambiguous Sentences and Change in Heart Rate.
The Journal of Psycolinguistic Research, 12(3):339-352.

Monz, C. (1999). Underspecified Theorem Proving with Different Kinds of Am-
biguity. Master’s thesis, Institute for Computational Linguistics (IMS) Uni-
versity of Stuttgart, Germany.

Monz, C. and de Rijke, M. (1998). A Tableaux Calculus for Ambiguous Quantifi-
cation. In de Swart, H., editor, Automated Reasoning with Analytic Tableaux
and Related Methods, TABLEAX’98, LNAI 1397, pages 232-246. Springer—
Verlag.

Moran, D. B. (1988). Quantifier Scoping in the SRI Core Language Engine. In
Proceedings of the 26th Annual Meeting of the Association for Computational
Linguistics (ACL’88), Buffalo, New York.

Muskens, R. (1989). Going Partial in Montague Grammar. In Bartsch, R.,
van Benthem, J., and van Boas, P., editors, Semantics and Contextual Fz-

pression, number 11 in Groningen-Amsterdam Studies in Semantics, pages
175-220. Foris Publications.



BIBLIOGRAPHY 174

Muskens, R. (1996). Combining Montague Semantics and Discourse Representa-
tion. Linguistics and Philosophy, 19(1):143-186. Kluwer Academic Publish-

ers.

Muskens, R. (1999). Underspecified Semantics. In Reference and Anaphoric
Relations, volume 72 of Studies in Linguistics and Philosophy, pages 311—
338. Kluwer Academic Publishers.

Nederhof, M. J. and Satta, G. (2002). Probabilistic Parsing Strategies. In Dassow,
J., Hoeberechts, M., Jiirgensen, H., and Wotschke, D., editors, Descriptional
Complezity of Formal Systems (DCFS): Pre—Proceedings of a Workshop,
pages 216-230, London, Canada. University of Western Ontario. Report No.
586.

Niehren, J., Pinkal, M., and Ruhrberg, P. (1997). On Equality up to Constraints
over Finite Trees, Context Unification, and One-Step Rewriting. In Proceed-
ings of the 14th CADE. Springer—Verlag.

Niehren, J. and Thater, S. (2003). Bridging the Gap between Underspecification
Formalisms: Minimal Recursion Semantics as Dominance Constraints. In

Proceedings of 41st Meeting of the Association of Computational Linguistics
(ACL’2003), pages 367-374.

Origgi, G. and Sperber, D. (2000). Evolution, Communication and the Proper
Function of Language: A Discussion of Millikan in the light of Pragmatics
and the Psychology of Misreading. In Curruthers, P. and Chamberlain, A.,
editors, Evolution and the Human Mind: Language, Modularity and Social

Cognition. Cambridge University Press.

Pereira, F. and Schabes, Y. (1992). Inside-Outside Reestimation from Partially
Bracketed Corpora. In Proceedings of the 13th Annual Meeting of the Asso-
ciation for Computational Linguistics (ACL’92), pages 128-135.

Pereira, F., Tishby, N., and Lilian, L. (1993). Distributional Clustering of English.
In Proceedings of the 31st Annual Meeting of the Association for Computa-
tional Linguistics (ACL’93), pages 183-190, Ohio State University, Colum-
bus, Ohio.

Pinkal, M. (1985). Logic and the Lexicon: The Semantics of the Indefinite. Stud-

ies in Linguistics. Kluwer Academic Publishers.



BIBLIOGRAPHY 175

Poesio, M. (1994). Ambiguity, Underspecification and Discourse Interpretation.
In Proceedings of the 1st International Workshop on Computational Seman-
tics (IWCS’94).

Poesio, M. (1996). Semantic Ambiguity and Perceived Ambiguity. In Peters, S.
and van Deemter, K., editors, Semantic Ambiguity and Underspecification,
number 15 in CSLI lecture notes. CSLI, Stanford, CA.

Pook, S. L. and Catlett, J. (1988). Making Sense of Searching. In The Online
Information Conference. Published, 1998.

Quillian, M. R. (1969). The Teachable Language Comprehender: A Simulation
Program and the Theory of Language. In Communications of the Association
for Computing Machinery (ACM), volume 12(8), pages 459-476.

Radford, A. (1997). Syntaz: A Minimalist Introduction. Cambridge University
Press. An abridged version of Syntactic Theory and the Structure of English.

Ratnaparkhi, A. (1996). A Maximum Entropy Model for Part—of-Speech Tag-
ging. In EMNLP 1, pages 133-142.

Reinhart, T. (1983). Anaphora and Semantic Interpretation. Croom Helm, Lon-

don.

Resnik, P. and Yarowsky, D. (1997). A Perspective on Word Sense Disambigua-
tion Methods and their Evaluation. In Proceedings of SIGLEX 97, pages
76-86, Washington DC.

Reyle, U. (1993). Dealing with Ambiguities by Underspecification: Construction,
Representation and Deduction. The Journal of Semantics, 10(2):123-179.

Reyle, U. (1995). On Reasoning with Ambiguities. In Proceedings of the Furopean
Chapter of the 6th Meeting of the Association for Computational Linguistics
(EACL’95), pages 1-8, Dublin.

Reyle, U. (1996). Co-indexing Labelled DRSs to Represent and Reason with
Ambiguities. In Peters, S. and van Deemter, K., editors, Semantic Ambiguity

and Underspecification, number 15 in CSLI lecture notes, pages 145-158.
CSLI, Stanford, CA.



BIBLIOGRAPHY 176

Riezler, S., King, T. H., Kaplan, R. M., Crouch, R., Maxwell, J. T., and John-
son, M. (2000a). Parsing the Wall Street Journal using a Lexical-Functional
Grammar and Discriminative Estimation Techniques. In Proceedings of

the 40th Annual Meeting of the Association for Computational Linguistics
(ACL’2002), Philadelphia, PA.

Riezler, S., Kuhn, J., Prescher, D., and Johnson, M. (2000b). Lexicalized Stochas-
tic Modelling of Constraint-Based Grammars using Log-Linear Measures
and EM Training. In Proceedings of the 38th Annual Meeting of the Associ-
ation for Computational Linguistics (ACL’2000), Hong Kong.

Samuelsson, C. and Voutilainen, A. (1997). Comparing a Linguistic and a
Stochastic Tagger. In Proceedings of the 35th Annual Meeting of the As-
sociation for Computational Linguistics (ACL’97), pages 246-253.

Schabes, Y., Roth, M., and Osborne, R. (1993). Parsing the Wall Street Journal
with the Inside-Outside Algorithm. In Proceedings of the 6th Conference

of the Furopean Chapter of the Association for Computational Linguistics
(EACL’93), pages 341-347.

Schiehlen, M. (1997). Disambiguation of Underspecified Discourse Representa-
tion Structures under Anaphoric Constraints. Technical Report 188, The

University of Stuttgart, Germany. Verbmoboil Project.

Schmid, H. (1994). Probabilistic Part—of-Speech Tagging using Decision Trees.
In International Conference on New Methods in Language Processing, pages
44-49, Manchester, England.

Sima’an, K. (1996). Computational Complexity of Probabilistic Disambiguation
by means of Tree-Grammars. In Proceedings of the 16th International Con-
ference on Computational Linguistics (COLING’96), pages 1175-1180.

Sima’an, K., Bod, R., Krauwer, S., and Scha, R. (1994). Efficient Disambiguation
by means of Stochastic Tree Substitution Grammars. In Proceedings of the

International Conference on New Methods in Langauge Processing.

Simons, P. (1999). Maccoll and Many—Valued Logic: An Exclusive Conjunction.
Nordic Journal of Philosophical Logic, 1:85-90.



BIBLIOGRAPHY 177

Spector, C. C. (1997). Saying One Thing, Meaning Another. Thinking Publica-

tions.

Stevenson, M. and Wilks, Y. (1999). Combining Weak Knowledge Sources for
Sense Disambiguation. In Proceedings 1JCAI’99.

Strzalkowski, T. (1995). Information Retrieval using Robust Language Process-
ing. In AAAI Spring Symposium on Representation and Acquisition of Lex-
itcal Information, pages 104-111, Stanford.

Thomason, R. H. (1974). Formal Philosophy: Selected Papers of Richard Mon-

tague. Yale University Press, New Haven and London.

Thorsten, B. (2000). TnT: A Statistical Part—of-Speech Tagger. In Proceedings
of the 6th Applied Natural Language Processing Conference, Seattle, WA.

Van Dalen, D. (1932). Logic and Structure. Universitext, Springer—Verlag, third

edition.

Van Deemter, K. (1996). Towards a Logic of Ambiguous Expressions. In Peters,
S. and van Deemter, K., editors, Semantic Ambiguity and Underspecification,
number 55 in CSLI lecture notes. CSLI, Stanford, CA.

Van Deemter, K. (1998). Ambiguity and the Principle of Idosyncratic Interpre-
tation. The Journal of Semantics, 15(1):5-36.

Van Eijck, D. J. N. (1998). The Logic of Syntax Trees.

Van Eijck, D. J. N. and Jaspars, J. (1996). Ambiguity and Reasoning. Technical
Report ISSN 0169-118X,CSR9616, Centrum voor Wiskunde en Informatica
(CWI).

Van Fraassen, B. C. (1966). Singular Terms, Truth—Value Gaps and Free Logic.
The Journal of Philosophy, 63:481-495.

Van Genabith, J. and Crouch, R. (1996). F-Structures, QLFs and UDRSs. Tech-
nical Report CA-2196, Dublin City University, School of Computer Appli-

cations.

Van Lehn, K. A. (1978). Determining the Scope of English Quantifiers. Techni-
cal Report AI-TR—-483, Artificial Intelligence Laboratory, MIT, Cambridge,

Massachusetts.



BIBLIOGRAPHY 178

Van Orman Quine, W. (1954). Quantification and the Empty Domain. The
Journal of Symbolic Logic, 19(3).

Viterbi, A. (1967). Error Bounds for Convultional Codes an Asymptotically Op-
timum Decoding Algorithm. In IEEE Transactions on Information Theory,

volume IT13, page 260.

Voutilainen, A. (1995). A Syntax Based Part—of-Speech Analyser. In Proceedings

of the European Chapter of the Association for Computational Linguistics
(EACL’95).

Walker, D. (1987). Knowledge Resource Tools for Accessing Large Text Files. In
Nirenberg, S., editor, Machine Translation: Theoretical and Methodological

Issues. Cambridge University Press.

Weaver, W. (1949). Translation. In Locke, W. N. and Booth, A. D., editors,
Machine Translation of Languages, pages 15-23. John Wiley & Sons, New
York. Published, 1955.

Weischedel, R., Meteer, M., Schwartz, R., Ramshaw, L., and Palmucci, J. (1993).
Coping with Ambiguity and Unknown Words through Probabilistic Models.
Computational Linguistics, 19:359-382.

Wilks, Y. A. and Fass, D. (1990). Preference Semantics: A Family History. Tech-
nical Report MCCS-90-194, Computing Research Laboratory, New Mexico

State University, Las Cruces, New Mexico.

Willis, A. and Manandhar, S. (1999). The Availability of Partial Scopings in Un-
derspecified Semantic Representation. In Proceedings of the 3rd International

Workshop of Computational Semantics, Tilburg, The Netherlands.

Yarowsky, D. (1992). Word—Sense Disambiguation using Statistical Models of
Roget’s Categories Trained on Large Corpora. In Proceedings of the In-

ternational Conference on Computational Linguistics (COLING’92), pages
454-460.

Yarowsky, D. (1993). One Sense per Collocation. In Proceedings of ARPL Human
Language Technology Workshop, pages 266-271, Princeton, New Jersey.



BIBLIOGRAPHY 179

Yarowsky, D. (1995). Unsupervised Word Sense Disambiguation Rivaling Super-
vised Methods. In Proceedings of the 33rd Annual Meeting of the Association
for Computational Linguistics (ACL’95), pages 189196, Cambridge, Mas-

sachusetts.

Zernik, U. (1991). Trainl vs Train2: Tagging Word Senses in a Corpus. In
Proceedings of Intelligent Text and Image Handling (RIAO’91), pages 567—
585, Barcelona, Spain.



