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Abstract

In the last two decades, qualitative spatial representation and reasoning, and

in particular spatial logics, have been the subject of an increased interest from

the Artificial Intelligence community. By a spatial logic, we understand a for-

mal language whose variables range over subsets of a fixed topological space,

called regions, and whose non-logical primitives have fixed geometric mean-

ings. A spatial logic for reasoning about regions in a Euclidean space is called

a Euclidean spatial logic. We consider first-order and quantifier-free Euclidean

spatial logics with primitives for topological relations and operations, the prop-

erty of convexity and the ternary relation of being closer-than. We mainly focus

on the computational properties of such logics, but we also obtain interesting

model-theoretic results.

We provide a systematic overview of the computational properties of first-

order Euclidean spatial logics and fill in some of the gaps left by the literature.

We establish upper complexity bounds for the (undecidable) theories of log-

ics based on Euclidean spaces of dimension greater than one, which yields

tight complexity bounds for all but two of these theories. In contrast with

these undecidability results, we show that the topological theories based on

one-dimensional Euclidean space are decidable, but non-elementary.

We also study the computational properties of quantifier-free Euclidean spa-

tial logics, and in particular those able to express the property of connectedness.
It is known that when variables range over regions in the Euclidean plane, one

can find formulas in these languages satisfiable only by regions with infinitely

many connected components. Using this result, we show that the correspond-

ing logics are undecidable. Further, we show that there exist formulas that are

satisfiable in higher-dimensional Euclidean space, but only by regions with in-

finitely many connected components. We finish by outlining how the insights

gained from this result were used (by another author) to show the undecidabil-

ity of certain quantifier-free Euclidean spatial logics in higher dimensions.
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Chapter 1

Introduction

Spatial knowledge is integral to our understanding of the world. We require

spatial information for most of our activities, and our ability to acquire, manip-

ulate and apply such information is one of the main aspects of what is consid-

ered intelligent behaviour. Naturally then, there have been significant efforts

on the part of the Artificial Intelligence community to endow intelligent agents

with the ability to represent and reason with spatial knowledge. The formalisms

used to facilitate this intelligent behaviour are called spatial logics, and consist

of logical languages for describing the properties of spatial entities and the re-

lations that hold between them. But what entities, properties and relations

should one consider?

The traditional approach in mathematics is to take points to be the primitive

spatial entities and to define all other entities in terms of the points contained

in them. Further, one considers quantitative spatial properties and relations

such as the length of a line segment, the area of a triangle and the volume of a

pyramid. Although this approach indisputably remains of great importance to

us, this is not how we perceive the world around us. Much of the spatial infor-

mation that we encounter in our everyday life concerns regions in space and is

qualitative in nature. Indeed, we do not require quantitative description of the

location, shape and orientation of the regions on a political map to see that Bul-

garia and Greece share a common border, that Germany is part of Europe, that

Russia resides on two continents and that Manchester is closer to Liverpool than

it is to London. Hence, in replicating the spatial aspect of human intelligence,

it has become common to consider formalisms for representing and deducing

qualitative spatial knowledge about regions. We call these formalisms spatial

12



CHAPTER 1. INTRODUCTION 13

logics.
More formally, by a spatial logic, we understand a logical language whose

variables range over subsets of a fixed topological space, called regions, and

whose non-logical primitives have fixed qualitative geometric meanings. From

a practical point of view, the most interesting spatial logics are those for rea-

soning about regions in a Euclidean space; we call these Euclidean spatial logics.
There are several aspects to consider when defining a spatial logic, including the

logical syntax of the language, the non-logical symbols of the language (with

their fixed interpretation), the topological spaces hosting the regions and the

types of subsets of these topological spaces that are regarded as regions.

The spatial logics that we consider feature first-order or quantifier-free lan-

guages with primitives for Boolean operations and relations (such as the part-of
relation and the operations union, intersection and complementation), topolog-

ical properties and relations (such as the property of connectedness and the bi-

nary relation of being in contact), the property of convexity and the ternary

relation of being closer-than.

Once a language L for representing spatial knowledge has been selected,

we need to specify the collection of regions whose properties and relations will

be described in that language. That is, we need to provide an interpretation for

L. So, we need to select a topological space X (arbitrary or a particular one

such as R3), and then select a collection M of subsets of X whose members

regarded as regions. It is well know that the collection ℘(X ) of all subsets of

X is a complete Boolean algebra under the subset relation (a Boolean algebra

is complete if any subset of its elements has a least-upper bound and a greatest

lower bound), and it is common to choose M to be a Boolean subalgebra of

℘(X ), in which case we call M a set algebra. Evidently, for every topological

space X , ℘(X ) is a set algebra.

However, not every set algebra is suitable for modelling human-like spatial

knowledge. Indeed, it is very unlikely that one would ever refer to a region

in the set algebra ℘(R3) consisting only of points with rational coordinates, for

no physical object would occupy such a region. A common restriction is to

consider as regions only subsets of X which are regular closed in X . A region

is regular closed if it is equal to the closure of its interior, or in other words, it

is a closed set all of whose points can be approximated by points in its interior.

The collection RC(X ) of all regular closed sets in a topological space X is a
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complete Boolean algebra as well. We call a Boolean subalgebra of RC(X ) a

region algebra.

Once we have selected a collection of regions M and a language L for de-

scribing their properties and relations, we can determine whether descriptions

written in L, called L-formulas, are realisable by regions inM, or satisfiable in

M. In the special case when an L-formula ϕ is a statement about the regions

in M than can be either true or false, then ϕ is called an L-sentence, and its

truth inM is determined by its satisfiability inM. The satisfiability of logical

formulas plays an important role in mathematical logic and its applications, be-

cause checking for other important notions such as logical entailment (whether

one L-sentence entails another) and logical validity (whether an L-sentece is

true under all interpretations of L) can be reduced to checking satisfiability of

formulas.

The L-sentences that are true in M are called L-theorems of M, and the

set of all L-theorems ofM is referred to as the L-theory ofM. Characterising

logical theories is of great theoretical importance to mathematical logic. A log-

ical theory is usually characterised by the means of an axiomatisation, which

consists of a (finite or infinite) set of sentences in the theory, called axioms, and

a finite set of deduction rules. Applying the deduction rules using the axioms

and the sentences that have already been deduced, one will eventually deduce

exactly the sentences in the theory. An axiomatisation of a logical theory gives

us a procedure of systematically generating all theorems in the theory. Under

certain conditions on the axiomatisation, this procedure can be turned into an

algorithm, which can be implemented on a computer. If, in addition, the theory

is complete (i.e. if it contains every sentence or its negation), one can check for

every sentence ϕ in the language whether it is a theorem or not. This can be

done by running the procedure that generates all theorems until either ϕ or its

negation has been generated.

Determining the computational properties of a logical theory is of great im-

portance for practical applications. The most general question is whether the

satisfiability problem is decidable, i.e. whether there exists a (reasoning) al-

gorithm which takes as input an L-formula and tells us if it is satisfiable in

M. Restricting the input to L-sentences, the algorithm decides whether an L-

sentence is in the L-theory ofM. One way of showing that a complete theory is
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decidable is, of course, by providing a suitable axiomatisation. The mere exis-

tence of an algorithm which decides whether an L-sentence is an L-theorem of

M tells us little about its performance in practice. In particular, some theories

are inherently more difficult to compute than others, and this is reflected by the

performance of the respective reasoning algorithms. In general, the more ex-

pressive the logical language is, the more difficult it is to compute. Complexity
theory provides a means of measuring and comparing the computational com-

plexity of different problems, such as the satisfiability problems for different

spatial logics. Given a spatial logic with undesirable computational complexity,

it is a major challenge, to identify fragments of that logic that exhibits low com-

putational complexities. When choosing a language for reasoning about spatial

knowledge, it is of great importance to have a complete classification of spatial

logics according to their expressiveness and computational complexities.

Aims and Objectives

This thesis aims to study the model-theoretic and computational properties of

spatial logics. It has the following objectives.

• To study the axiomatisability of spatial logics.

– To survey the axiomatisations of general spatial logics—spatial logics

of set algebras and region algebras over large collections of topolog-

ical spaces (Section 3.2.1 and Section 4.2).

– To survey the latest axiomatisations of Euclidean spatial logics (Sec-

tion 3.2.2).

– To show that the topological theory of all complete region algebras

(set algebras) is different from that of all region algebras (set alge-

bras), and that the collections of all complete region algebras and all

complete set algebras are not first-order definable (Section 4.2.1).

• To study the computability and expressiveness of first-order spatial logics.

– To study the relative expressiveness of first-order languages with

topological, affine and metric primitives (Section 4.1).

– To survey the latest results regarding the computability of first-order

Euclidean spatial logics (Section 3.3.1).
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– To establish tight complexity bounds for these undecidable logics

(Section 4.3.3 and Section 4.3.4).

– To show that the first-order topological theories of region algebras

over the real line are decidable but non-elementary (Section 4.3.1

and Section 4.3.2).

• To study the computability and expressiveness of quantifier-free topologi-

cal spatial logics.

– To survey the current state of the art (Section 3.3.2 and Section 5.1).

– To show the undecidability of quantifier-free languages with connect-

edness when interpreted over the Euclidean plane (Section 5.4).

– To show the sensitivity of the languages with connectedness to Eu-

clidean regions with infinitely many components (Section 5.2 and

Section 5.3).

– To outline how the insights gained from above result were used (by

another author) to show the undecidability of certain Euclidean spa-

tial logics in higher dimensions (Section 5.5).

Thesis Structure

The thesis is organised as follows. Chapter 2 contains the mathematical pre-

liminaries required for the rest of the thesis. We recall the basic definitions and

results on many-sorted structures, Boolean algebras, computability theory, com-

plexity theory and general and Euclidean topology. We then examine the com-

putational complexity of the first- and second-order arithmetics of the natural,

rational, algebraic and real numbers, and finish by introducing and establishing

some basic properties of region algebras and set algebras.

In Chapter 3 we survey the literature on spatial logics and explain the rela-

tion between the findings of the thesis and the currently available results. First

we discuss the currently available axiomatisations for general spatial logics and

Euclidean spatial logics. Then we review the literature on the computability of

first-order and quantifier-free Euclidean spatial logics.

In Chapter 4 we investigate first-order spatial logics. Firstly, we introduce

and study the expressiveness of first-order languages with topological, affine
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and metric primitives. Then, we consider the axiomatisations of various topo-

logical theories and show that the topological theories of all complete region

algebras (set algebras) are different from those of all region algebras (set al-

gebras). Finally, we examine the computability of first-order Euclidean spatial

logics. In particular, we establish tight complexity bounds for most of the logics

that were known to be undecidable, and showed that the topological first-order

spatial logics for reasoning about linear regions (regions in R) are decidable

but non-elementary.

In Chapter 5 we study the expressiveness, computability and complexity of

quantifier-free Euclidean spatial logics with topological primitives. We consider

languages with primitives for the Boolean relations and operations, and the

property of being (interior-)connected. We recall some of the known expres-

siveness results about these languages. We show that there are formulas that

are satisfiable in Euclidean region algebras, but only by tuples featuring regions

with infinitely many connected components. We then establish the undecid-

ability of the satisfiability problems for these languages interpreted over region

algebras in the Euclidean plane. Finally, we outline how, by using some of the

ideas presented in this section, it was shown by another author that, even in

the higher-dimensional Euclidean spaces, some of the satisfiability problems

for these languages are undecidable.



Chapter 2

Mathematical Preliminaries

In this chapter we recall some mathematical notions and results in the fields of

model theory, topology, Boolean algebra, computability theory and complexity

theory.

2.1 Model Theory

In this section we discuss logical theories of many-sorted structures. We assume

prior knowledge of the corresponding definitions and results in the special case

of one-sorted structures (see e.g. [Mar02]).

Signatures and Structures

Definition 1. A signature σ consists of:

1. a set of sorts S = {0, . . . , S}, for some S ∈ N;

2. a set of relational symbols R with positive natural numbers nR and tuples

sR ∈ SnR for each R ∈ R;

3. a set of functional symbols F with positive natural numbers nf and tuples

sf ∈ Snf+1 for each f ∈ F ;

4. a set of constant symbols C with sorts sc ∈ S for each c ∈ C.

An example of a many-sorted signature is σMON = (2,∈,⊆) having two

sorts, a binary relational symbol ’∈’ with s∈ = (0, 1), and a binary relational

symbol ’⊆’ with s⊆ = (1, 1). When we describe one-sorted signatures, we skip

18
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the information concerning the sort of the signatures. So, for example, the

signature of Boolean algebras σBA is the tuple (+, ·,−, 0, 1), where ’+’ and ’·’
are binary functional symbols, ’−’ is a unary functional symbol, and ’0’ and ’1’

are constant symbols.

Definition 2. Let σ be a signature. A σ-structureM consists of:

• disjoint nonempty sets Ms for each sort s ∈ S, called the domains ofM;

• relations RM ⊆MsR(0) × · · · ×MsR(nR−1) for each R ∈ R;

• functions fM : Msf (1) × · · · ×Msf (nf ) →Msf (0) for each f ∈ F ;

• elements cM ∈Msc for each c ∈ C.

A typical σBA-structure is the tuple (℘(X),∪,∩, ·C , ∅, X), where X is any set;

℘(X) is the powerset of X; ’∪’, ’∩’ and ’·C ’ are the set-theoretical union, inter-
section and complementation; and ∅ is the empty set. A typical σMON -structure is

the tuple (X,℘(X),∈,⊆), where X is any set, ℘(X) is the powerset of X, ’∈’ is

the membership relation, and ’⊆’ is the subset relation. Note that every structure

uniquely determines its signature.

Logical Languages — Syntax and Semantics

Let σ be a signature, and fix disjoint sets of variables VARs = {xsi | i ∈ N} for

each sort s in S. For every x ∈ VARs, we say that x has a sort s.

Definition 3. The σ-terms Ts, for s in S, are the smallest sets such that:

• for every c ∈ C, c ∈ Tsc;

• for every s ∈ S and every v ∈ VARs, v ∈ Ts;

• for every f ∈ F with sf = (s0, . . . , snf
), if ti ∈ Tsi, 1 ≤ i ≤ nf , then

f(t1, . . . , tnf
) ∈ Ts0;

Every σ-structure M interprets σ-terms as functions on its domains in the

following sense.

Definition 4. Let M be a σ-structure and t be a σ-term whose variables are

among (xs1i1 , . . . , x
sn
in

), for some n ∈ N, where sj ∈ S for 1 ≤ j ≤ n. For every

tuple ā = (as1i1 , . . . , a
sn
in

) with asjij ∈Msj , 1 ≤ j ≤ n, and every sub-term t′ of t we

inductively define t′M(ā):



CHAPTER 2. MATHEMATICAL PRELIMINARIES 20

• if t′ is a constant symbol c ∈ C, then t′M(ā) := cM;

• if t′ is the variable xsjij , for 1 ≤ j ≤ n, then t′M(ā) := a
sj
ij

;

• if t′ is of the form f(ts11 , . . . , t
snf
nf ) with sf = (s0, . . . , snf

) and tskk ∈ Tsk ,

1 ≤ k ≤ nf , then t′M(ā) := fM
(
tM1 (ā), . . . , tMnf

(ā)
)
.

Definition 5. The atomic σ-formulas are given by:

• t1 = t2, where t1, t2 ∈ Ts for some s ∈ S;

• R(t1, . . . , tnR
), where R ∈ R, sR = (s1, . . . , snR

) and ti ∈ Tsi, 1 ≤ i ≤ nR.

Definition 6. The unnested atomic σ-formulas are given by:

• c = xsci , for c ∈ C and i ∈ N;

• xsj = xsi , for i, j ∈ N;

• f(x1, . . . , xnf
) = x0, for f ∈ F , and xi ∈ VARsf (i), 0 ≤ i ≤ nf ;

• R(x0, . . . , xnR−1), for R ∈ R, and xi ∈ VARsR(i), 0 ≤ i < nR.

Note that every unnested atomic formula is an atomic formula.

Definition 7. The first-order σ-language Lσ is the smallest set containing the

atomic σ-formulas such that:

• if ϕ, ψ ∈ Lσ, then ¬ϕ and (ϕ ∧ ψ) are in Lσ;

• if ϕ ∈ Lσ, s ∈ S and v ∈ VARs, then ∃vϕ is in Lσ.

A unnested formula is a formula whose atomic subformulas are unnested.

Standardly, we abbreviate: (ϕ ∨ ψ) for ¬(¬ϕ ∧ ¬ψ); (ϕ → ψ) for (¬ϕ ∨ ψ);

(ϕ ↔ ψ) for ((ϕ → ψ) ∧ (ψ → ϕ)); and ∀xϕ for ¬∃x¬ϕ. Also standardly, we

consider only formulas in which every variable is either quantified or free, but

not both.

An Lσ-formula with no free variables is called an L-sentence. An Lσ-formula

with no quantifiers is called a quantifier-free formula. Note that first-order lan-

guages uniquely determine their signatures. If L is a first-order language and

M is a structure, we say thatM is an L-structure if the signatures determined

by L andM are the same. IfM is a structure, we denote by LM the first-order

language ofM.
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Definition 8. Let L be a first-order language and M be an L-structure. Also,

let ϕ(xs1i1 , . . . , x
sn
in

) be an L-formula with sj ∈ S and x
sj
ij
∈ VARsj , for 1 ≤ j ≤ n,

and let ā = (as1i1 , . . . , a
sn
in

) with asjij ∈Msj , for 1 ≤ j ≤ n. Then ā satisfies ϕ inM,

denoted byM |= ϕ[ā], if:

• if ϕ is t1 = t2, thenM |= ϕ[ā] iff tM1 (ā) = tM2 (ā).

• if ϕ is R(t1, . . . , tnR
), thenM |= ϕ[ā] iff (tM1 (ā), . . . , tMnR

(ā)) ∈ RM;

• if ϕ is ψ1 ∧ ψ2, thenM |= ϕ[ā] iffM |= ψ1[ā] andM |= ψ2[ā];

• if ϕ is ¬ψ, thenM |= ϕ[ā] iffM 6|= ψ[ā];

• if ϕ is ∃xsjψ(x̄, xsj), for j ∈ N and s ∈ S, thenM |= ϕ[ā] if and only if for

some asj ∈Ms,M |= ψ[ā, asj ].

Let L be a first-order languages and M be an L-structure. An L-formula

ϕ(x̄) is satisfiable inM if there is a tuple ā inM satisfying ϕ(x̄) inM. We also

say that M is a model of ϕ. If ϕ is an L-sentence satisfiable in M, then it is

satisfied in M by the empty tuple, in which case we say that ϕ is true in M,

and we writeM |= ϕ. The first-order theory ofM, which is denoted by T (M),

is the set of all sentences in L which are true in M. These notions naturally

extend to classes of structures. Two formulas are logically equivalent if they are

satisfied by the same models. Every (atomic) formula is logically equivalent to

a unnested (atomic) formula.

The syntax of first-order languages can be restricted in different ways. For

example one can consider only universal sentences—sentences obtained by uni-

versally quantifying the variables of quantifier-free formulas. The resulting log-

ics are commonly referred to as quantifier-free logics, because the truth of every

universal sentence is uniquely determined by the satisfiability of the negation

of the corresponding quantifier-free formula. Constraint satisfaction problems,
which are of great importance to Artificial Intelligence, are variants of the prob-

lem of determining the satisfiability of quantifier-free formulas. Hence, it has

become much more common to consider the satisfiability of quantifier-free for-

mulas, instead of the truth of universal sentences. For a signature σ and

a σ-structure M, Sat(σ,M) denotes the set of quantifier-free σ-formulas sat-

isfiable in M. Similarly, for a class of σ-structures Σ, Sat(σ,Σ) denotes the

quantifier-free σ-formulas satisfiable in Σ.
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Second-order languages are extensions of first-order languages that feature

additional second-order variables interpreted as relations on the domains of the

interpreting structures. There exist different second-order logics depending on

the relations over which one is allowed to quantify. We will discuss the “full"
second-order logic, the monadic second-order logic and the weak-monadic second-
order logic of a given structure.

Let σ be a signature. In addition to the first-order variables, we also consider

a set of second-order variables VARs = {xsi | i ∈ N} for each finite sequence of

sorts s = (s0, . . . , sk) ∈ Sk, k ∈ N+. As before, for x ∈ VARs, we say that x

has a sort s. Note that we distinguish between the elements s of S and the

elements (s) of S1. Hence, for s ∈ S, VARs is the set of first-order variables of

sort s, and VAR(s) is the set of second-order variables of sort (s)—i.e. there are

no second-order variables of sort s. We abbreviate

S̄ := S ∪
⋃
k∈N+

Sk.

The sets of terms is the same as in the first-order case. The set of atomic

formulas is extended with

• xsi = xsj, for i, j ∈ N, k ∈ N+ and s ∈ Sk;

• xsj(t0, . . . , tk−1), for j ∈ N, k ∈ N+, s ∈ Sk, xsj ∈ VARs and ti ∈ Ts(i),
0 ≤ i < k.

The second-order σ-language L2
σ is the smallest set containing the atomic σ-

formulas such that:

• if ϕ, ψ ∈ L2
σ, then ¬ϕ and (ϕ ∧ ψ) are in L2

σ;

• if ϕ ∈ L2
σ, s ∈ S̄ and v ∈ VARs, then ∃vϕ is in L2

σ;

For a structureM, we denote by L2
M the second-order language ofM.

LetM be a σ-structure. For every s ∈ Sk, k > 0, we define

Ms := ℘(Ms(0) × · · · ×Ms(k−1)).

Let ϕ(xs1i1 , . . . , x
sk
ik

) be an L2
σ-formula with sj ∈ S̄ and x

sj
ij
∈ VARsj , 1 ≤ j ≤ k.

Further, let ā = (as1i1 , . . . , a
sk
ik

) be such that asjij ∈ Msj , 1 ≤ j ≤ n. Then, ϕ is

satisfied by ā inM, denoted byM |= ϕ[ā], iff:
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• if ϕ is t1 = t2, thenM |= ϕ[ā] iff tM1 (ā) = tM2 (ā);

• if ϕ is R(t1, . . . , tnR
), for R ∈ R, then M |= ϕ[ā] iff (tM1 (ā), . . . , tMnR

(ā)) ∈
RM;

• if ϕ is xsjij (t1, . . . , tk`), for 1 ≤ j ≤ k, ` ∈ N+ and sj ∈ S`, thenM |= ϕ[ā] iff

(tM1 (ā), . . . , tM` (ā)) ∈ asjij ;

• if ϕ is ψ1 ∧ ψ2, thenM |= ϕ[ā] iffM |= ψ1[ā] andM |= ψ2[ā];

• if ϕ is ¬ψ, thenM |= ϕ[ā] iffM 6|= ψ[ā];

• if ϕ is ∃xsjψ(x̄, xsj), for s ∈ S̄ and j ∈ N, thenM |= ϕ[ā] if and only if for

some asj ∈Ms,M |= ψ[ā, asj ].

We denote the second-order theory of a structure M by T2(M). The monadic
second-order logics are restrictions of second-order logics in which the only

second-order variables are those in VAR(s), for s ∈ S. We refer to these variables

as set variables. Weak-monadic second-order logics are variants of the monadic

second-order logics interpreting set variables as finite subsets of the domains

of the structure. This is done by setting M(s), s ∈ S, to be the set of all finite

subsets of Ms.

Definable sets. Interpretations of Theories

For the following definitions and results we refer to [HH93, Section 5].

Let σ be a signature with sorts S, M be a σ-structure and L be a fragment

of the second-order σ-language with variable sorts SL ⊆ S̄. For an L-formula

ϕ(x0, . . . , xm), with m ∈ N, s̄ ∈ Sm+1
L and xi ∈ VARs̄(i), 0 ≤ i ≤ m, we define:

ϕ(M) := {ā ∈Ms̄(0) × · · · ×Ms̄(m) | M |= ϕ[ā]}.

For s̄ ∈ Sm+1
L , m ∈ N, a set R ⊆Ms̄(0) × · · · ×Ms̄(m) is L-definable inM if there

exists an L-formula ϕ(x0, . . . , xm) such that R = ϕ(M).

Definition 9. LetM and N be structures, and LM and LN be logical languages

forM and N . An LM → LN -interpretation Γ ofM in N consists of:

• LN -formulas ψs(x1, . . . , xks), for each variable sort s in LM;
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• LN -formulas ϕΓ(x̄1, . . . , x̄k), for each unnested atomic LM-formula

ϕ(y1, . . . , yk);

• surjective mappings f sΓ : ψs(N )→Ms, for each variable sort s in LM,

such that for every unnested atomic LM-formula ϕ(xs1i1 , . . . , x
sk
ik

), with sj ∈ S̄,

1 ≤ j ≤ k, and every āsjij ∈ ψsj(N ),

N |= ϕΓ[ās1i1 , . . . , ā
sk
ik

] iff M |= ϕ[f s1Γ (ās1i1 ), . . . , f skΓ (āskik )].

Γ is called (polynomial-time) computable if the mapping ϕ 7→ ϕΓ is (polynomial-

time) computable.

Every LM → LN -interpretation provides a satisfiability-preserving LN trans-

lation of the unnested atomic LM-formulas, which can be extended to arbitrary

unnested formulas.

Definition 10. Let M and N be structures, LM and LN be logical languages

for M and N and Γ be an LM → LN -interpretation of M in N . For every

unnested LM-formula ϕ, we define an LN -formula ϕΓ recursively:

• ϕΓ is defined for unnested atomic ϕ;

• ϕΓ := ψΓ ∧ ψ′Γ, if ϕ = ψ ∧ ψ′;

• ϕΓ := ¬ψΓ, if ϕ = ¬ψ;

• ϕΓ := ∃x1 . . . ∃xns(ϕs(x1, . . . , xns) ∧ ψΓ), if ϕ = ∃xsiψ, for i ∈ N and a

variable sort s in LM.

It is routine to show by structural induction the following lemma.

Lemma 11. LetM and N be structures, and LM and LN be logical languages for
M and N . Further, let Γ be an LM → LN -interpretation of M in N . Then, for
every unnested LM-sentence ϕ,

M |= ϕ iff N |= ϕΓ.

Definition 12. Let M and N be structures, and LM and LN be logical lan-

guages forM and N . If there exists a LM → LN -interpretation ofM in N , we

say that the LM-theory ofM is definable in the LN -theory of N . If, in addition,
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the LN -theory of N is definable in the LM-theory of M, we say that the two

theories are inter-definable.

In the sequel we make use of the following well-known result (see e.g.

[HH93, Corollary 3.1.5, p.90]).

Theorem 13 (Downward Löwenheim-Skolem theorem). Let L be a first-order
language,M an L-structure with domain M , A a subset of M , and λ a cardinal
such that |L| + |A| ≤ λ ≤ |M |. Then M has an elementary substructure N of
cardinality λ whose domain contains A.

2.2 Boolean Algebras

There are various definitions of the term Boolean algebra, which differ not only

in the set of axioms that a structure has to satisfy, but also in the choice of sig-

nature for the structure. These definitions, despite their apparent differences,

are equivalent in a sense that will be demonstrated below. In this treatment,

we consider as Boolean algebras only structures whose signatures are either

σBA = (+, ·,−, 0, 1), or σ≤ = (≤).

A σBA-structure B = (B,+, ·,−, 0, 1) is called a σBA-Boolean algebra if it

satisfies the axioms:

∀x∀y∀z(x+ (y + z) = (x+ y) + z ∧ x · (y · z) = (x · y) · z);

∀x∀y(x+ y = y + x ∧ x · y = y · x);

∀x∀y(x+ (x · y) = x ∧ x · (x+ y) = x);

∀x∀y∀z(x+ y · z = (x+ y) · (x+ z) ∧ x · (y + z) = x · y + x · z);

∀x(x+−x = 1 ∧ x · −x = 0).

A σ≤-structure (B,≤) is called a σ≤-Boolean algebra if it satisfies the axioms for

partial order:

ϕrefl := ∀x(x ≤ x);

ϕasymm := ∀x∀y(x ≤ y ∧ y ≤ x→ x = y);

ϕtrans := ∀x∀y∀z(x ≤ y ∧ y ≤ z → x ≤ z);
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together with the axioms in ΦBA≤ := {ϕ∃+, ϕ∃·, ϕ∃−, ϕ∃1, ϕ∃0}, where:

ϕ∃+ := ∀x∀y∃z(ϕ+(x, y, z));

ϕ∃· := ∀x∀y∃z(ϕ·(x, y, z));

ϕ∃− := ∀x∃y(ϕ−(x, y));

ϕ∃1 := ∃x(ϕ1(x) ∧ ∀y(ϕ1(y)→ x = y));

ϕ∃0 := ∃x(ϕ0(x) ∧ ∀y(ϕ0(y)→ x = y));

and

ϕ·(x, y, z) := z ≤ x ∧ z ≤ y ∧ ∀z′(z′ ≤ x ∧ z′ ≤ y → z′ ≤ z);

ϕ+(x, y, z) := z ≥ x ∧ z ≥ y ∧ ∀z′(z′ ≥ x ∧ z′ ≥ y → z′ ≥ z);

ϕ1(x) := ∀y(y ≤ x);

ϕ0(x) := ∀y(x ≤ y);

ϕ−(x, y) := ∀z0∀z1(ϕ0(z0) ∧ ϕ1(z1)→ (ϕ+(x, y, z1) ∧ ϕ·(x, y, z0))).

Denote by ΣBA the class of σBA-Boolean algebras and by ΣBA≤ the class

of σ≤-Boolean. For every B = (B,≤) in ΣBA≤, we denote by π(B) the struc-

ture (B,+, ·,−, 0, 1), where +, · and − are the functions with respective graphs

ϕ+(B), ϕ·(B) and ϕ−(B), and 0 and 1 are the only elements of the respective

sets ϕ0(B) and ϕ1(B). Similarly, for every structure B = (B,+, ·,−, 0, 1) in ΣBA,

we denote by κ(B) the structure (B,ϕ≤(B)), where ϕ≤(x, y) := x · y = x.

Fact 14. The classes ΣBA and ΣBA≤ are equivalent in the following sense:

• for every B ∈ ΣBA≤, π(B) ∈ ΣBA;

• for every B ∈ ΣBA, κ(B) ∈ ΣBA≤;

• for every B ∈ ΣBA≤, κ(π(B)) = B;

• for every B ∈ ΣBA, π(κ(B)) = B.

So, as long as first-order logics are concerned, it makes little difference

which of the classes ΣBA and ΣBA≤ we consider.

As we already saw, every Boolean algebra B = (B,+, ·,−, 0, 1) induces a

partial order on its elements. For a, b ∈ B, a + b is the least upper bound of a

and b. It follows then, that the least upper bound of a finite subset {a0, . . . , ak+2}
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ofB is the element a0+· · ·+ak+2 ofB, which we also write as
∑k+2

i=0 ai. However,

the least upper bound of an infinite subset A of B need not exist. A complete
Boolean algebra is a Boolean algebra for which every subset A of B has a least

upper bound, denoted by
∑
A.

We recall the following standard result, (see e.g. [Kop89]).

Theorem 15 (Stone’s Representation Theorem). Every Boolean algebra is iso-
morphic to a Boolean subalgebra of (℘(X),⊆), for some set X.

2.3 Computability and Complexity

We now recall different notions of computational reductions (see e.g. [Koz06]).

We also disuss how logical interpretations induce computational reducibility of

logical theories (see e.g. [HH93, Section 5]). We assume familiarity with Turing

machines, time and space complexity classes and related standard results.

Let A and B be two languages over the alphabets Σ and Γ. A is many-one
reducible to B, denoted by A ≤m B, if there exists a total recursive function

f : Σ∗ → Γ∗ such that for all x ∈ Σ∗, x ∈ A if and only if f(x) ∈ B . If f

is polynomial time computable, then A is polynomial-time many-one reducible
to B, denoted by A ≤pm B. If f is logspace-computable, then A is logspace-
computable many-one reducible to B, denoted by A ≤logm B. Let ≤ be any of ≤m,

≤pm and ≤logm . A set A is said to be ≤-hard for a collection of sets C if B ≤ A for

every B ∈ C. A is ≤-complete for C if A is ≤-hard and A ∈ C. Most complexity

classes C which contain NP (e.g. NP, PSPACE, EXPTIME, EXPSPACE and NEXP-

TIME), are closed downward under ≤pm and ≤logm reducibilities, i.e. if A ≤pm B

and B ∈ C, then A ∈ C. The class of decidable problems is closed downward un-

der any of the three reducibilities. Finally, the complexity classes LOGSPACE and

NLOGSPACE are closed downward under ≤logm reducibility. We will extensively

use the following result about computational reductions of logical theories.

Lemma 16. Let M and N be structures, LM and LN be logical languages for
M and N with corresponding theories TM and TN . If there is an LM → LN -
interpretation ofM in N , then TM ≤m TN .

Proof. Follows from Definition 10 and Lemma 11.

If M and N are two structures, we denote by M ≤pm N the fact that

T (M) ≤pm T (N ).
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2.4 First- and Second-Order Arithmetics

We denote by ∆0
ω and ∆1

ω the first- and second-order theories of the ordered

semiring of the natural numbers (N, <,+, ·, 0, 1). ∆0
ω and ∆1

ω are also known as

the first- and second-order arithmetics. We also treat ∆0
ω and ∆1

ω as complexity

classes in the following sense. A set A for which ∆0
ω ≤m A is called ∆0

ω-hard,

and if in addition A ≤m ∆0
ω, then A is called ∆0

ω-complete. Similarly, a set A for

which ∆1
ω ≤m A is called ∆1

ω-hard, and if in addition A ≤m ∆1
ω, then A is called

∆1
ω-complete.

To show that a theory T is ∆0
ω-hard or ∆1

ω-hard, it is sufficient to define in T

(see Definition 12) another theory which is ∆0
ω-hard or ∆1

ω-hard, respectively.

Although ∆0
ω and ∆1

ω are trivially such theories, it is more convenient to work

with theories which are syntactically more economical. In Section 4.3.3 we will

make use of the ∆0
ω-hard first-order theory of the structure (N,+, ·) and the

∆1
ω-hard first-order theory of the two-sorted structure (N, ℘(N),+, ·,∈).

By contrast, to show for a theory T that T ≤m ∆0
ω or T ≤m ∆1

ω, it is suffi-

cient to show that T is definable in another theory with that property. Again,

although the most natural such theories are ∆0
ω and ∆1

ω, they are not the most

convenient to work with. Instead, in Section 4.3.4 we make use of the first-

order theories of the structures (Q, σ+
F ) and (A, σ+

F ), both of which are de-

finable in ∆0
ω, and the first-order theory of (R, σ+

F ) and the monadic second-

order theory of (Q, σ+
F ), both of which are definable in ∆1

ω, where σ+
F = (<

,+, ·, 0, 1, π, [ ], N) is defined latter on.

The following result is immediate.

Lemma 17. The first-order theory of (N,+, ·) is ∆0
ω-hard.

We now show ∆1
ω-hardness for the first-order theory of (N, ℘(N),+, ·,∈).

Lemma 18. The first-order theory of the two-sorted structure (N, ℘(N),+, ·,∈) is
∆1
ω-hard.

Proof. We define ∆1
ω in the first-order theory of M = (N, ℘(N); +, ·,∈) (recall

Definition 12). The idea is to encode every n-ary relation R on N as a subset of

N whose elements encode exactly the n-tuples in R. In the language LM, we

use the letters x, x1, x2, etc., for the variables of sort 1, and X, X1, X2, etc.,

for variables of sort 2. Fix inM a pairing mechanism and let the two families

of formulas ψnπ(x) and ψn=π(x1, . . . , xn, x), n ∈ N, be such that, M |= ψnπ [k]
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if and only if k encodes an n-tuple of natural numbers, k, n ∈ N, and M |=
ψn=π[k1, . . . , kn, k] iff k encodes the n-tuple (k1, . . . , kn), for k1, . . . , kn, k ∈ N. Let

s = {1}n, n ∈ N+, be the second-order variable sort in the language L2
σF

for

n-ary relations. We now define the sets of natural numbers that encode n-ary

relations using the formula:

ψs(X) := ∀x(X(x)→ ψnπ(x)).

For the L2
σF

-atomic formula ψ = xsi (x1, . . . , xn), we define the LM-formula

ψs∈(x1, . . . , xn, X) := ∃x(X(x) ∧ ψn=π(x1, . . . , xn, x)).

It is a standard result that in the first-order theory of (N, <,+, ·, 0, 1) one can

interpret the first-order arithmetics of the integer and the rational numbers, by

encoding each integer and rational number using a single natural number. In

a standard way, using for example Gödel’s β function ([Men97, p.186]), one

can also define finite sequences of natural numbers. Before we state all this

formally, consider the signature σ+
F = (<,+, ·, 0, 1, π, [ ], N) and the structure

Q = (Q, σ+
F ). Here, the unary relation π(x) and the binary function x[y] are

the means of encoding finite sequences of rational numbers. I.e. if π(q), then

q[0] returns the length of the sequence encoded by q, and q[n] returns the nth

element of the sequence encoded by q, for every natural 1 ≤ n ≤ q[0]. Hence,

the following is a standard result.

Lemma 19. T (Q) ≤m ∆0
ω and T2(Q) ≤m ∆1

ω.

We now proceed to showing that the first-order theory of (A, σ+
F ) is definable

in first-order theory of (Q, σ+
F ), where A is the set of algebraic numbers. Recall

that a real number is algebraic, if it is a root of a polynomial with rational

coefficients, i.e. a polynomial in Q[X]. In order to do so, we need to encode

polynomials with rational coefficients, and for that, we need to define some

operations on finite sequences of rational numbers.

By the formula ψsum(x, y), we define the set of pairs of rational numbers, the

first encoding a finite sequence of rational numbers and the second being the
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sum those numbers.

ψsum(x, y) := π(x) ∧
(
(x[0] = 0 ∧ y = 0)∨

∃z
(
π(z) ∧ x[0] = z[0]∧

∀t(N(t) ∧ 1 ≤ t ∧ t < x[0]→

z[t+ 1] = x[t+ 1] + z[t] ∧ y = z[z[0]])
))
.

By the formula ψbit×(x, y, z) we define the element by element multiplication of

two sequences.

ψbit×(x, y, z) := π(x) ∧ π(y) ∧ π(z) ∧ x[0] = y[0] ∧ y[0] = z[0]∧

∀t(N(t) ∧ 1 ≤ t ∧ t ≤ x[0]→ z[t] = x[t] · y[t]).

We identify each polynomial in Q[X] of degree n with the n + 1 tuple of its

coefficients. We define inQ the set of rational numbers that encode polynomials

in Q[X] using the formula ψQ[X].

ψQ[X](x) := π(x) ∧ x[0] > 0 ∧ x[x[0]] 6= 0

The formula ψPV (x, y, z) defines the set of triples (q1, q2, q3) ∈ Q3 for which q1

encodes a polynomial P ∈ Q[X], and P (q2) = q3:

ψPV (x, y, z) := ψQ[X](x) ∧ ∃t∃u(ψxn(x[0], y, t) ∧ ψbit×(x, t, u) ∧ ψsum(u, z)), where

ψxn(x, y, z) := N(x) ∧ π(z) ∧ x = z[0] ∧ z[1] = 1 ∧

∀t(N(t) ∧ 0 < t ∧ t < x→ z[t+ 1] = y · z[t]).

We represent algebraic numbers using root isolation (see Figure 2.1). A root

isolation of an algebraic number r is a pair of a rational polynomial P and

a bounded open rational interval i such that r is the unique root of P in i.

First, we define in Q the bounded open rational intervals together with some

operations on them. The formulas ψ()(x), ψ(.)(x, y) and ψ(())(x, y) define the set
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of intervals, the membership relation and the subset relation, respectively.

ψ()(x) := π(x) ∧ x[0] = 2 ∧ x[1] < x[2]

ψ(.)(x, y) := ψ()(x) ∧ x[1] < y ∧ y < x[2]

ψ(())(x, y) := ψ()(x) ∧ ψ()(y) ∧ ∀z(ψ(z, x)(.) → ψ(z, y)(.))

The formulas ψ()+()(x, y, z) and ψ()·′()(x, y, z) define addition and multiplication

of intervals, which will be used for defining addition and multiplication of al-

gebraic numbers. The sum and the product of two intervals (p, q) and (r, s) are

the intervals (p+ r, q + s) and (p · r, q · s), respectively.

ψ()+()(x, y, z) := ψ()(x) ∧ ψ()(y) ∧ ψ()(z) ∧ x[1] + y[1] = z[1] ∧ x[2] + y[2] = z[2]

ψ()·′()(x, y, z) := ψ()(x) ∧ ψ()(y) ∧ ψ()(z) ∧ x[1] · y[1] = z[1] ∧ x[2] · y[2] = z[2]

The formulas ψPV+(x, y) and ψPV−(x, y), are satisfied by pairs of rationals repre-

senting a polynomial and an interval such that the polynomial has, respectively,

different and same signs at the endpoints of the interval. For # ∈ {+,−} we

define:

ψPV#(x, y) := ψQ[X](x) ∧ ψ()(y) ∧

∃y1∃y2(ψPV (x, y[1], y1) ∧ ψPV (x, y[2], y2) ∧ (#1) · y1 · y2 > 0).

The set of algebraic numbers is defined by the formula ψA(x, y):

ψA(x, y) := ψQ[X](x) ∧ ψ()(y) ∧ ψPV−(x, y) ∧ ∀y′(ψ(())(y
′, y) ∧ ψPV+(x, y′)→

∃z(z > 0 ∧ ∀z′∀z′′(ψ(.)(z
′, y′) ∧ ψPV (x, z′, z′′)→ z′′ > z ∨ z′′ > −z))).

Let Q |= ψA[p, q] for some p, q ∈ Q. Then p represents a polynomial P in

Q[X], and q represents a bounded open rational interval (r, s) such that P (r)

and P (s) have different signs. So P has a root in (r, s). Further, for every

subinterval (r′, s′) of (r, s) such that P (r′) and P (s′) have the same signs, the

graph of P restricted to (r′, s′) is at a distance greater than 0 from the horizontal

axis, hence avoiding situations as the one depicted in Figure 2.1b. So P has a

unique root in (r, s). The root isolations represent the same algebraic number
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( )

(a) A positive example.

( ) ( )

(b) Two negative examples.

Figure 2.1: Examples of root isolations.

if they satisfy the formula:

ψA∼(x, y, x′, y′) := ψA(x, y) ∧ ψA(x′, y′) ∧ ∃z
(
ψ(())(z, y) ∧ ψ(())(z, y

′) ∧

ψA(x, z) ∧ ψA(x′, z) ∧ ∀z′
(
ψ(())(z

′, z) ∧ ψA(x, z′)→ ψA(x′, z′)
))
.

A root isolation (p, i) represents a rational number q if q is in the interval repre-

sented by i and q is a root of the polynomial represented by p. Clearly, if q is a

natural number, then (p, i) represents a natural number.

ψA∼Q(p, i, q) := ψA(p, i) ∧ i[1] < q ∧ q < i[2] ∧ ψPV (p, q, 0);

ψA∼N(p, i, q) := N(q) ∧ ψA∼Q(p, i, q);

ψAQ(p, i) := ∃q(ψA∼Q(p, i, q));

ψAN(p, i) := ∃q(ψA∼N(p, i, q));

Trivially, a root isolation represents 0, if it satisfies the formula

ψA0(x, y) := ψA∼Q(x, y, 0).

A root isolation (p, q) represents a positive or a negative algebraic number,

if for some r ∈ Q, (p, q, r) satisfies, respectively, the formulas ψA+(x, y, z) or

ψA−(x, y, z), defined by:

ψA+(x, y, z) := ψA∼(x, y, x, z) ∧ z[1] > 0,

ψA−(x, y, z) := ψA∼(x, y, x, z) ∧ z[2] < 0.
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The addition operation on algebraic numbers and the multiplication opera-

tion on positive algebraic numbers are defined similarly using the formulas

ψA+A(x1, y1, x2, y2, x3, y3) and ψA·′A(x1, y1, x2, y2, x3, y3). For # ∈ {+, ·′}, we de-

fine:

ψA]A(x1, y1, x2, y2, x3, y3) :=∧
n=1,2,3

ψA(xn, yn) ∧ ∃z1∃z2∃z3

(
ψ()]()(z1, z2, z3)∧∧

n=1,2,3

ψA∼(xn, yn, xn, zn) ∧ ∀z′1∀z′2∀z′3
(
ψ()]()(z

′
1, z
′
2, z
′
3)∧∧

n=1,2

(ψA∼(xn, yn, xn, z
′
n) ∧ ψ(())(z

′
n, zn))→ ψA∼(x3, y3, x3, z

′
3)
))
.

The negation operation on algebraic numbers defined by the formula

ψ−A(x, y, x′, y′) := ∃x′′∃y′′(ψA0(x′′, y′′) ∧ ψA+A(x, y, x′, y′, x′′, y′′)).

Once we have the formulas ψA0, ψA+, ψA−, ψ−A and ψA·′A, it is straightforward

to extend multiplication of positive algebraic numbers to multiplication of arbi-

trary algebraic numbers, using a formula, say, ψA·A(x1, y1, x2, y2, x3, y3).

Putting this all together, we get the following result.

Lemma 20. The first-order theory of (A, <,+, ·, 0, 1, π, [ ],N) is definable in ∆0
ω.

We now proceed to showing that the first-order theory of the structure

(R, <,+, ·, 0, 1, π, [ ],N) is definable in the monadic second-order theory of (Q, <
,+, ·, 0, 1, π, [ ],N), and hence definable in ∆1

ω. We encode real numbers in a

standard way, by using Dedekind cuts (see e.g.[Pug10]).

A set of rational numbers represents a real number if and only if it satisfies

the formula:

ψR(X) := ∃x∃y(x ∈ X ∧ y 6∈ X ∧ x < y) ∧

∀x∀y(x ∈ X ∧ y < x→ y ∈ X) ∧

∀x(x ∈ X → ∃y(x < y ∧ y ∈ X)).

Two sets of rational numbers represent the same real number if they are the

same sets, i.e.:

ψR∼(X, Y ) := X = Y.
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For defining the arithmetic operations on real numbers in terms of Dedekind

cuts, we refer to [Pug10].

A set of rational numbers A represents a rational number if the least upper

bound of A is a rational number. We define:

ψub(x,X) := ∀y(y ∈ X → y < x);

ψlub(x,X) := ψub(x,X) ∧ ∀y(ψub(y,X)→ x ≤ y);

ψR∼Q(x,X) := ψlub(x,X);

ψRQ(X) := ∃x(ψR∼Q(x,X)).

Trivially, a set of rational numbers represent a natural number if it represents a

rational number that is a natural number.

ψR∼N(x,X) := N(x) ∧ ψR∼Q(x,X);

ψRN(X) := ∃x(ψR∼N(x,X)).

We encode a finite sequence of real numbers (r1, . . . , rn) by a set A ⊆ Q whose

elements encode n-tuples in such a way that, for i = 1, . . . , n, ri is encoded by

the set Ai := {q[i] | q ∈ A}. To express this, we need a way of referring to the

set Ai. We use the formula:

ψπ[i](X, x, Y ) := ∀y(y ∈ X → y[x] ∈ Y ) ∧ ∀y(y ∈ Y → ∃y′(y′ ∈ X ∧ y′[x] = y))

If A ⊆ Q consists of rational numbers that encode n-tuples, n ∈ N, if 0 < i ≤ n,

and if Q |= ψπ[i][A, i, Ai], then Ai = {q[i] | q ∈ A}. A set of rational numbers

encodes a sequence of real numbers if it satisfies the formula:

ψRπ(X) := ∃x(x ∈ X) ∧ ∃x
(
N(x) ∧ ∀y(y ∈ X → π(y) ∧ y[0] = x) ∧

∀Y ∀y(0 < y ∧ y < x+ 1 ∧ ψπ[i](X, y, Y )→ ψR(Y ))
)
.

Two sets of rational numbers encode the same sequence of real numbers if they

satisfy the formula

ψRπ∼(X, Y ) := ∀x∀X ′∀Y ′
(
N(x) ∧ ψπ[i](X, x,X

′) ∧ ψπ[i](Y, x, Y
′)→ X ′ = Y ′

)
.
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The binary index relation is defined by the formula:

ψX[Y ](X, Y, Z) :=
(
∃x(x > 0 ∧ ψR∼N(x, Y ) ∧ ψπ[i](X, x, Z))

)
∨(

ψR∼N(0, Y ) ∧ ∀x(X(x)→ ψR∼N(x[0], Z))
)
.

As a result we get:

Lemma 21. The first-order theory of (R, <,+, ·, 0, 1, π, [ ],N) is definable in ∆1
ω.

2.5 Topology

A topological space is a tuple X = (X, τ), where X is a nonempty set, and τ is a

collection of subsets of X that contains X and ∅, and that is closed under finite

intersections and arbitrary unions. A subset of X is open in X , if it is a member

of τ . A neighborhood of a subset A of X is an open set containing A. A subset

of X is closed in X , if its complement is a member of τ . The collection of closed

sets in X contains X and ∅, and is closed under finite unions and arbitrary

intersections. The interior operation ·◦ is defined by A◦ =
⋃
{B ∈ τ | B ⊆ A},

for A ⊆ X. The closure operation ·− is defined by A− =
⋂
{B ∈ τ | A ⊆ B}, for

A ⊆ X. Note that A− = X \ (X \ A)◦ and A◦ = X \ (X \ A)−. The boundary
of a set A, denoted by δ(A), is given by A− \ A◦. A set A is regular closed if

A = A◦−. A set A is regular open if A = A−
◦. The collections RC(X ) of regular

closed sets and RO(X ) of regular open sets, form complete Boolean algebras

under set-theoretical inclusion (see e.g. [Kop89, pp.26,28]). The operations,

relations and constants are given in Table 2.1.

A base for a topological space X is a collection of open sets ρ such that every

open set in X is a union of members of ρ. For ρ we have that
⋃
ρ = X and

that for A,B ∈ ρ and p ∈ A ∩ B, there exists C ∈ ρ such that p ∈ C ⊆ A ∩ B.

Moreover, a collection of subsets ρ which satisfies these conditions, determines

a unique topology on X for which ρ is a base. It is sometimes easier to define

a topological space by specifying a base for it. For example, the metric topology
of a metric space (X, g) is the topology with base ρ which consists of all sets

Br
x = {y ∈ X | g(x, y) < r}, for x ∈ X and r ∈ R+. In a Euclidean space

Rn, n > 0, ρ consists of all n-dimensional open balls. We refer to the resulting

topology as the usual topology for Rn.
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RC(X ) RO(X )

a+ b = a ∪ b (a ∪ b)−◦

a · b = (a ∩ b)◦− a ∩ b
−a = (X \ a)− (X \ a)◦

1 = X X

0 = ∅ ∅
a ≤ b iff a ⊆ b a ⊆ b∑

i∈I ai =
(⋃

i∈I a
◦
i

)− (⋃
i∈I a

−
i

)◦∏
i∈I ai = −

(∑
i∈I −ai

)
−
(∑

i∈I −ai
)

Table 2.1: The complete Boolean algebras RC(X ) and RO(X ) of a topological
space X .

Two sets A and B are separated if A− ∩ B = ∅ and A ∩ B− = ∅. Two sets A

and B separate a set C (in X ), if A and B are separated and C = A∪B. A subset

of X is connected (in X ), if it cannot be separated by a pair of nonempty sets.

The space X is connected, if X is connected in X . A space is locally-connected
if it has a base of connected sets. A set A is a connected component of B if A

is a maximal connected subset of B. A set is interior-connected if its interior

is connected. A set A is an interior-component of a set B if A is a maximal

interior-connected subset of B.

We now show that a (regular) closed set can be separated only by (regular)

closed sets.

Lemma 22. Let A be a set in a topological space X , and let A1 and A2 be subsets
of X that separate A. Then:

i) A is closed if and only if A1 and A2 are closed;

ii) A is regular closed if and only if A1 and A2 are regular closed.

Proof. The right to left implications are immediate since the union of two (reg-

ular) closed sets is a (regular) closed set. Suppose A is closed. From A−1 ⊆
A− = A = A1∪A2 we have that A−1 ⊆ A−1 ∩ (A1∪A2) = (A−1 ∩A1)∪ (A−1 ∩A2) =

A−1 ∩ A1 = A1. Similarly, A−2 = A2. Suppose A is regular closed. From i) it

follows that A1 and A2 are closed. We will show that A◦ = A◦1 ∪ A◦2, because it

then follows that A1 = A∩ (X \A2) = A◦−∩ (X \A2) = (A◦−1 ∪A◦−2 )∩ (X \A2) =

A◦−1 ∩ (X \ A2) = A◦−1 . The inclusion A◦ ⊇ A◦1 ∪ A◦2 is trivial. Let p ∈ A◦ and



CHAPTER 2. MATHEMATICAL PRELIMINARIES 37

without loss of generality let p ∈ A1. Because A1 ∩A2 = ∅, p must be in X \A2.

Hence, p is in the set A◦ ∩ (X \ A2), which is open and contained in A1. Thus,

p ∈ A◦1.

Consider the following fact about connected subsets of connected sets.

Lemma 23. (Theorem 4 [Kur68, p.133]) Let A be a connected set in a connected
topological space X . Further, let B and C be separated sets such that A∪B ∪C =

X. Then, A ∪B and A ∪ C are connected.

Using Lemma 23, one can show the following.

Lemma 24. (Theorem 5 [Kur68, p.140]) Let X be a connected topological space,
A ⊆ X be a connected set and B be a component of X \ A. Then X \ B is also
connected.

We now discuss different properties of topological spaces. An open cover of

X is a collection of open sets covering X. A space X is compact if every open

cover has a finite subcover. X is T1 if each of every two points in X has a

neighbourhood not containing the other. X is T2 (also Hausdorff), if every two

points in X are contained in disjoint open sets. X is T3 if every point and every

closed set not containing that point are contained in disjoint open sets. A space

is T4 if every two disjoint closed sets are contained in disjoint open sets. X is

regular if it is T3 and T1. X is normal if it is T4 and T1. X is semi-regular if it

has a base of regular open sets. X is weakly regular [DW05] if it is semi-regular

and if every non-empty open set contains a non-empty regular closed set.

A space X is unicoherent [Kur68, p.162] if it is connected and if every two

connected closed sets that coverX have a connected intersection. The following

fact follows easily from this definition.

Lemma 25. Let X be a unicoherent topological space, A ⊆ X be a connected set
and B be a component of X \ A. Then δ(B) is also connected.

Proof. By Lemma 24 it follows that C := X \ B is connected. Hence, B− and

C− are connected closed sets that cover X. Since X is unicoherent, we get that

δ(B) = B− ∩ C− must also be connected.

A much more elaborate argument is required to show that Euclidean spaces

are unicoherent.
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Lemma 26. For n ≥ 0, Rn with the usual topology is a unicoherent space.

Proof. A direct consequence of Theorem 9 [Kur68, p.435] and Theorem 2 [Kur68,

p.437].

A Jordan arc in a topological space X is an injective continuous function

from the unit interval [0, 1] to X . A Jordan curve in X is an injective continuous

function from the unit circle (the points in the Euclidean plane satisfying the

equation x2 + y2 = 1) to X . We usually identify Jordan arcs and Jordan curves

with their images. An end-cut in a subset A of a topological space is a Jordan

arc contained in A◦ except for one of its endpoints which is contained in δ(A).

A cross-cut in a subset A of a topological space is a Jordan arc contained in A◦

except for its endpoints, which are contained in δ(A). We will implicitly use the

following facts about subsets of R2. A subset A of a topological space X is said

to have the curve-selection property if for every point p on its boundary, there

exists an end-cut α in A such that α ∩ δ(A) = {p}.

Lemma 27. [New64, p.112, Theorem 9.2] Let F , G be disjoint, closed subsets of
R2 such that R2 \ F and R2 \G are connected. Then R2 \ (F ∪G) is connected.

Theorem 28 (Jordan Curve Theorem). [New64, p.115, Theorem 10.2] The com-
plement of a Jordan curve Γ in R2 has two connected components having Γ as their
boundary.

Lemma 29. [New64, p.115, Theorem 11.6] If α is an end-cut in an open con-
nected set A ⊆ R2, then A \ α is connected.

Lemma 30. [New64, p.115, Theorem 11.7] If α is a cross-cut in an open con-
nected set A ⊆ R2 such that the endpoints of α lie on the same component of δ(A),
then A \ α has two connected components.

Lemma 31. [New64, p.120] Let A ⊆ R2 be an open connected set, and let α be
a cross-cut in A such that the endpoints of α lie on different components of δ(A).
Then A \ α is connected.

2.6 Boolean Algebras of Regions

Fix a topological space X = (X, τ). A subsetM of ℘(X) is called a (dense) re-
gion algebra over X , ifM is a (dense) Boolean subalgebra of RC(X ). A complete
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region algebra is a region algebra which is a complete Boolean algebra. A sub-

setM of ℘(X) is called a (dense) open region algebra over X , ifM is a (dense)

Boolean subalgebra of RO(X ). A complete open region algebra is an open region

algebra which is a complete Boolean algebra. A subset M of ℘(X) is called a

(dense) set algebra over X , if M is a (dense) Boolean subalgebra of ℘(X). A

complete set algebra is a set algebra which is a complete Boolean algebra. Let

M be a region algebra, an open region algebra or a set algebra. We refer to

the elements ofM as regions. If, for every region A inM and every connected

component B of A, B is in M, then, we say that M respects components. If

every region A inM has only finitely many connected components, thenM is

finitely decomposable.

We now show an analogue of Lemma 22 for region algebras and set algebras.

Lemma 32. Let X be a topological space, and letM be either a region algebra or
a set algebra which respects components and which is finitely decomposable. Also,
let A, B and C be subsets of X such that B and C separate A. Then A is inM if
and only if B and C are inM.

Proof. The right to left implication follows from M being a Boolean algebra.

Now, suppose that A is inM, and sinceM is finitely decomposable and respects

components, let A1, . . . , An ∈ M, n ∈ N, be the connected components of A.

By Lemma 22, B and C are disjoint sets. Since, Ai are connected sets that are

contained in B ∪ C, each of them must be contained in B or C. Because each

of B and C is covered by the Ai, it has to be equal to the union of some of the

Ai, and hence inM.

We now show some properties for region algebras over unicoherent topo-

logical spaces. First consider the following variant of Lemma 24.

Lemma 33. Let X be a connected topological space, let a be a connected region in
RC(X ), and let b be a component of −a. Then −b is connected.

Proof. (The proof is almost identical to the one of Lemma 24.) By Lemma 22,

−b can only be separated by regions in RC(X ). Let b1 and b2 be two such regions

(−b = b1 + b2 and b1 ∩ b2 = ∅). By Lemma 23, both −b + b1 and −b + b2 are

connected. Since a is connected, a ≤ b1 + b2 and b1 and b2 are separated, it can

be assumed that a and b1 are disjoint, and thus b ≤ b + b1 ≤ −a. Since b is a

component of −a we get that b1 = 0.
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We can now show the following variant of Lemma 25.

Lemma 34. Let a be a connected region in a unicoherent topological space X , and
let b be a component of −a. Then the boundary of b is connected.

Proof. By Lemma 33, −b is connected, and since X is unicoherent, δ(b) = b ∩
(−b) must also be connected.

Fix n > 0. A region algebra over Rn is called a Euclidean region algebra. We

define different Euclidean region algebras that are finitely decomposable and

respect components. The rest of the section is similar to [PH07, Section 2.3],

where different properties for Euclidean open region algebras were shown. We

start with the region algebra of regular closed semi-algebraic sets.
A subset of Rn is semi-algebraic if it can be presented as:

s⋃
i=1

ri⋂
j=1

{x ∈ Rn | fi,j(x) ∗i,j 0} ,

where fi,j ∈ R[X1, . . . , Xn] and ∗i,j is either < or =, for i = 1, . . . , s and j =

1, . . . , ri. We denote by RCS(Rn) the collection of regular closed semi-algebraic

subsets of Rn.

Lemma 35. RCS(Rn) is a dense region algebra over Rn.

Proof. We have to show that RCS(Rn) is a dense Boolean subalgebra of RC(Rn).

It is well-know that semi-algebraic sets are closed under the operations union,

intersection, complement, closure and interior (for the operations closure and

interior see Proposition 2.2.2 [BCR98, p.27]). So if A,B ∈ RC(Rn), so are

A+B = A ∪B, A ·B = (A ∪B)◦−, and −A = (Rn \ A)−. Clearly, ∅ and Rn are

semi-algebraic. The fact that RCS(Rn) is dense in RC(Rn), follows from the fact

that every closed n-ball is semi-algebraic.

We recall a fundamental property of semi-algebraic sets.

Lemma 36. [BCR98, Theorem 2.4.5] Every semi-algebraic set has a finite number
of connected components which are semi-algebraic.

We can now show the following.

Lemma 37. RCS(Rn) is finitely decomposable and respects components.
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Proof. From Lemma 36 it follows that RCS(Rn) is finitely decomposable. To

show that RCS(Rn) respects components, let A ∈ RCS(Rn) be a disconnected

set, and let B be a connected component of A. A simple induction on the num-

ber of components of A (which are finitely many) shows that B and (A \B)−

are disjoint. Hence, B and A \ B separate A. Now, by Lemma 22, B and

A \ B are regular closed, but, by Lemma 36, B is also semi-algebraic. Hence

B ∈ RCS(Rn).

We now turn to region algebras of regular-closed semi-linear sets. A half-
space in Rn is a set defined by an inequality:

a0 + a1 · x1 + · · ·+ an · xn ≤ 0,

with coefficients ai ∈ R, 0 ≤ i ≤ n. An algebraic half-space is a half-space that is

defined by an inequality with coefficients in A. An rational half-space is a half-

space that is defined by an inequality with coefficients in Q. A basic polytope
in Rn is the product, in RC(Rn), of finitely many half-spaces. A polytope in

Rn is the sum, in RC(Rn), of finitely many basic polytopes. Similarly, we define

basic algebraic polytopes and algebraic polytopes, and basic rational polytopes and

rational polytopes. Denote by RCP(Rn), RCPA(Rn) and RCPQ(Rn) the collections

of polytopes, algebraic polytopes and rational polytopes, respectively.

Lemma 38. RCP(Rn), RCPA(Rn) and RCPQ(Rn) are dense region algebras.

Proof. We have to show that RCP(Rn), RCPA(Rn) and RCPQ(Rn) are dense

Boolean subalgebras of RC(Rn). That RCP(Rn), RCPA(Rn) and RCPQ(Rn) are

Boolean subalgebras of RC(Rn) is immediate from the definitions. That these

Boolean algebras are dense in RC(Rn) follows from the fact that all rational

n-dimensional hypercubes are basic rational polytopes.

We also have the following.

Lemma 39. RCP(Rn), RCPA(Rn) and RCPQ(Rn) are finitely decomposable and
respect components.

Proof. Note that the nonempty basic polytopes are convex and hence connected.

So the elements of RCP(Rn), and in particular those of RCPA(Rn) and RCPQ(Rn),

have finitely many components as unions of finitely many connected sets. Fur-

ther, a simple induction on k shows that, for every k-tuple a1, . . . , ak of basic
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polytopes in RCP(Rn), RCPA(Rn) or RCPQ(Rn), the connected components of

a1 + · · ·+ ak are also in RCP(Rn), RCPA(Rn) and RCPQ(Rn), respectively.

The following lemma captures the fact that the properties and relations on

Euclidean regions are determined by the rational points that are contained in

those regions. This fact will be extensively used in Section 4.3 for proving upper

complexity bounds on various theories of Euclidean region algebras.

Lemma 40. For a, b, c ∈ RC(Rn),

a ≤ b ⇐⇒ for all p ∈ Qn, if p ∈ a, then p ∈ b;
closer(a, b, c) ⇐⇒ for all p, q ∈ Qn, if p ∈ a◦ and q ∈ c◦, then there exist

p′ ∈ a◦ ∩Qn and q′ ∈ b◦ ∩Qn such that d(p′, q′) ≤ d(p, q),

where for p, q ∈ Rn, d(p, q) is the distance between the points p and q.



Chapter 3

Related Work

This chapter contains a brief summary of the developments of spatial logics with

emphasis on the results which are closely related to the findings of this thesis.

We begin with a definition and some examples of spatial logics; we then discuss

axiomatisations of some spatial theories; and we end with a discussion on the

computability of first-order and quantifier-free spatial logics.

3.1 Spatial Logics

In this thesis we study formal languages for reasoning about regions in space. In

particular, we consider logical languages interpreted over collections of region

algebras or set algebras (possibly containing a single region algebra or set alge-

bra), and we call the resulting logics spatial logics. If the underlying space of the

set or region algebras in question is a Euclidean space, then we call these logics

Euclidean spatial logics. The restriction that we interpret logical languages over

Boolean algebra of subsets of some topological space is common, and indeed,

only a few of the results that we consider in the thesis concern structures which

are not set algebras or region algebras. A simple example of a spatial logic is

the first-order language of Boolean algebras interpreted over the class of all set

algebras. Of course, since the topological information in set algebras is inacces-

sible in this language, the resulting logic is just the first-order logic of Boolean

algebras, or in mereological parlance, the first-order logic of the part-of relation.

The roots of spatial logics that acknowledge the topological nature of the

interpreting structures can be traced back to the philosophers Whitehead and

43
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de Laguna. Whitehead introduced in [Whi29] the binary relation ‘x is con-

nected to y’, now widely referred to as the contact relation, while de Laguna

considered the ternary relation ‘x connects y to z’. Both authors provided

geometric postulates (or axioms) for their languages justified on an intuitive

level. Strictly speaking, neither of the two systems fit the above definition of

a spatial logic, because no formal semantics was provided for either of the

two languages. However, the two systems, especially the one proposed by

Whitehead, have had a significant influence on the development of spatial log-

ics. The contact relation, after its introduction in [Whi29], became an inte-

gral part of many formalisms for spatial reasoning, and its model-theoretic and

computational properties in different contexts are now well studied (see e.g.

[Roe97, DW05, DV06, Nen09, Sch99, Grz51, WZ00, KPHWZ10, NPH10]).

One of the first formal systems that falls into the above definition of a spatial

logic is given by McKinsey and Tarski in [MT44]. The authors considered the

first-order language of an extension of the signature of Boolean algebras with a

unary functional symbol interpreted over set algebras as the ‘closure’ operator.

Again Tarski considered in [Tar56] a second-order language with two relational

symbol interpreted over the region algebra RC(R3) as the mereological relation

part-of and the property of being spherical. (More famously, of course, Tarski

provided in [Tar59] a complete first-order axiomatisation of Euclidean geome-

try, establishing in addition its decidability.)

In the last two decades interest in spatial logics, particularly from the AI

community, has intensified. There is a vast diversity of spatial logics that has

been considered in the literature, varying in their logical syntax (e.g. first-

order, second-order, quantifier-free and modal logics), non-logical primitives

(e.g. topological, affine and metric) and interpretations. In the following two

sections we consider the model-theoretic and computational properties of those

spatial logics most closely related to the main results in this thesis.

3.2 Axiomatisations

In this section we discuss the axiomatisations of the theories of different spa-

tial logics. The discussion is divided into two parts covering, respectively, the

theories of large classes of region algebras and set algebras, and the theories of

particular Euclidean region algebras.
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3.2.1 General Spatial Logics

One way of establishing complete axiomatisations of spatial logics is by means

of representation theorems. The first such result is Stone’s representation the-

orem for Boolean algebras [Sto36], which states that every Boolean algebra B
is isomorphic to a field of sets over the set of ultrafilters of B. From the point

of view of spatial logics, this theorem provides a complete axiomatisation for

the LBA-theory of the class of all set algebras, where LBA is the first-order lan-

guage of Boolean algebras. This axiomatisation plays a fundamental role for

the axiomatisations of other notable examples of spatial logics.

One such example is the first-order logic of the class of closure algebras estab-

lished by McKinsey and Tarski in [MT44]. The language of the logic Lcl extends

the first-order language of Boolean algebras with a unary functional symbol

for the closure operation, and is interpreted over the class of all set algebras.

For the axiomatisation of this logic, the authors employed a slight modification

of Stone’s representation theorem. The axiomatisations of other spatial logics,

however, require significantly more involved extensions of Stone’s representa-

tion theorem. In [Roe97, DW05, DV06] the authors axiomatised the LC-theories

of region algebras over different collections of topological spaces, where LC is

the first-order language of Boolean algebra extended with the Whitehead’s rela-

tional symbol interpreted as the contact relation. To show completeness of their

axiomatisations, the authors used variants of Stone’s representation theorem,

which, in addition to the ultrafilters used in the original proof, required addi-

tional types of abstract points. We give a more detailed account of these results

in Section 4.2.1.

Despite the intense interest in various first-order theories of region algebras

and set algebras, there are no results in the literature regarding first-order theo-

ries of complete region algebras and complete set algebras. We address this deficit

in Section 4.2.1, where we show that the LC-theory of complete region algebras

is different from the LC-theory of all region algebras, and similarly for the Lcl-
theory of complete set algebras. We also show that the class of complete region

algebras and the class of complete set algebras are not first-order definable, i.e.

one cannot prove a representation theorem for either of the two classes. Some

of these results appeared in [Nen09].

So far we have discussed only first-order spatial logics. There are axiomati-

sations for some propositional spatial logics as well. In [BTV07], Balbiani et al.
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provided complete axiomatisations for the propositional fragment C of LC with

respect to the classes of region algebras considered in [Roe97, DW05, DV06].

(Note that the language C was first introduced in [KPHWZ08a] as an alterna-

tive to the equally expressive language BRCC8 introduced in [WZ00]; see Sec-

tion 5.1.) The axiomatisations of these propositional spatial logics comprise all

universal axioms in the respective first-order logics and finitary rules replacing

all other axioms. It turns out, however, that the finitary rules are all admissible,

i.e. every formula that can be proved with the use of these rules, can also be

proved without them. This implies that the considered classes of region alge-

bras, despite having different first-order theories, have the same propositional

theories. In [TV10], Tinchev and Vakarelov axiomatised the propositional logics

for the extension Ccc of C with predicates for counting connected components,

a language first introduced in [PH02]. Although the predicates for compo-

nent counting are LC-definable, they are not C-definable, because some of the

“defining" LC-formulas involve existential quantifiers. To acquire complete ax-

iomatisations of the considered Ccc-logics, Tinchev and Vakarelov added to the

axiomatisations of C from [BTV07] the “defining" LC-formulas which are uni-

versal, and finitary rules of inference for the “defining" LC-formulas involving

existential quantifiers. The authors showed that the finitary rules from the C-
axiomatisations are admissible even in the more expressive language Ccc, and

hence showing that the considered classes of region algebras have the same

Ccc-theories.

3.2.2 Euclidean Spatial Logics

We now discuss the axiomatisations of first-order theories of particular Eu-

clidean region algebras. An early axiomatisation of such a theory was estab-

lished by Tarski in [Tar56]. He considered the Lsph-theory of RC(R3), where

Lsph extends the second-order language of Boolean algebras with a relational

symbol for the property of being a closed ball. Tarski showed that the proposed

axiom system, which he calls the Geometry of Solids, is categorical. The result

was latter refined in [GP08], and another axiomatisation for the same theory

was provided in [Ben01]. We now turn our attention to axiomatisations of

spatial logics of region algebras over the Euclidean plane.
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2D Regions with Connectedness

Axiom systems for first-order topological languages interpreted over planar re-

gion algebras were presented in [PS98, Sch99, PH07]. In [PS98], Pratt and

Schoop established a complete axiomatisation, which we denote by Φ, of the

Lc◦-theory of the region algebra RCP(R2), where Lc◦ is the first-order relational

language with non-logical symbols ≤ and c◦ interpreted, respectively, as the

part-of relation and the property of having connected interior. In [Sch99], this

axiomatisation was adapted for the first-order language LC, which extends the

language of Boolean algebras with a single non-logical symbol C interpreted as

the contact relation. In [PH07], it was shown that the complete axiomatisation

Φ is sound with every planar region algebra satisfying certain properties, which

are discussed below. In particular it follows that all such planar region algebras,

including RCS(R2), RCP(R2), RCPA(R2) and RCPQ(R2) (see Section 2.6), have

the same Lc◦-theories.

The main result in [PH07] is that Φ is the complete axiomatisation of the

Lc◦-theory of every finitely-decomposable, splittable region algebra over R2 hav-

ing curve-selection. A region algebra M has curve-selection, if every region in

M has the curve-selection property (see Section 2.5). A region algebra M is

splittable ifM satisfies an Lc◦-formula ψsplit, which essentially ensures thatM
contains regions of various “shapes”. In addition to the axioms for Boolean al-

gebras and some basic axioms for c◦, Φ also includes the axiom ψsplit and two

axioms ensuring that the non-planar graph K3,3 and K5 are not embeddable in

the topological space underlining the region algebra. Note that unlike the prop-

erties of being splittable and planar, the properties of having curve-selection

and being finitely-decomposable are not Lc◦-definable. Of course, since Φ is a

complete axiom system, it does reflect these two properties. Firstly, Φ contains

two axioms which are entailed by the curve-selection property, but which turn

out to be sufficient to capture that property. The first axiom ensures that if the

sum of n regions has a connected interior, then the first of these regions forms

an interior-connected sum with at least one of the other regions. The second

axiom ensures that there are sufficiently many regions, by insisting that if a

region r forms an interior-connected sums with regions s and t, then r can be

partitioned into two regions each forming interior-connected sums with s and

t. Finally, to capture the property of being finitely-decomposable, Φ contains an

infinite rule of inference insisting that if a formula is satisfiable by all regions
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with finitely many components, then it is satisfiable by all regions. The axiom

system Φ is clearly sound with respect to each finitely-decomposable, splittable

region algebras over R2 having curve-selection. The difficult part, of course,

is to show that it is complete with at least one such region algebra, and in

this case RCP(R2). Using the infinite rule, the authors apply the omitting types

theorem (see e.g. [Mar02, Theorem 2.4.3]) to get a countable and finitely-

decomposable model M. Using the planarity and curve-selection axioms, it is

then showed that M is isomorphically embeddable in RCP(R2). Finally, using

thatM is splittable, i.e. contains regions of various shapes, it is shown by ap-

plication of Tarski-Vaught test (see e.g. [Mar02, Proposition 2.3.5]) that M is

in fact an elementary substructure of RCP(R2).

As we have just discussed, [PH07] showed that the region algebras RCS(R2),

RCP(R2), RCPA(R2) and RCPQ(R2) have the same Lc◦-theories. In fact, this fol-

lows from a more general result established also in [PH07]. If σ is a topologi-

cal signature, then RCS(R2), RCP(R2), RCPA(R2) and RCPQ(R2) have the same

first-order σ-theories. The result uses Tarski-Vaught test and is based on the no-

tions of homogeneous region algebras and homogeneous region subalgebras. Two

tuples of regions r̄ and s̄ in a region algebra over a topological space X are sim-
ilarly situated, denoted by r̄ ∼ s̄, if there exists a homeomorphism from X onto

itself sending r̄ to s̄. A region algebraM over a topological space X is called ho-
mogeneous, if for all similarly situated tuples of regions r̄ and s̄ and every region

r (all inM), there exists a region s (also inM) such that r̄, r ∼ s̄, s. A region

subalgebra N ofM is called a homogeneous region subalgebra, if for every tuple

r̄ of regions in N , and every region r ∈ M, there exists a region s ∈ N such

that r̄, r ∼ r̄, s. The notion of homogeneous region subalgebra almost directly

corresponds to the conditions of Tarski-Vaught test, and by showing that each

of RCPQ(R2), RCPA(R2), RCP(R2) and RCS(R2) is a homogeneous region subal-

gebra of the next, one gets that RCPQ(R2) ≺ RCPA(R2) ≺ RCP(R2) ≺ RCS(R2)

for any topological signature σ.

2D Regions with Convexity

A complete axiom system for the Lconv-theory of the region algebra RCPQ(R2)

was presented by Trybus in [Try10], where Lconv is the first-order language of

the signature (conv,≤). The result was given for the structure ROPQ(R2), but

the Lconv-structures ROPQ(R2) and RCPQ(R2) are isomorphic due to the fact
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that the closures and the interiors of convex sets are convex. The axioma-

tisation is based on properties of Lconv which were previously discovered in

[DGC99, Pra99, Dav06]. The first observation is that one can fix in RCPQ(R2)

a coordinate system by three (rational) half-planes (p, q, r) (regions satisfying

ψ/(x) := conv(x) ∧ conv(−x)) whose boundaries are straight lines intersecting

each other in three distinct points. The next step is to introduce a (count-

ably) infinite sequence of formulas, called fixing formulas, such that each fixing

formula is satisfiable by exactly one half-plane, and each half-plane satisfies

exactly one fixing formula. This is also reflected in the axiom system, which

contains axioms insisting that every fixing formula is satisfiable by exactly one

half-plane. The other direction is captured by an infinite rule of inference in-

sisting that if a formula is satisfiable by every half-plane which satisfies a fixing

formula, then the formula is satisfiable by every half-plane. The axiom system

features another infinite rule of inference insisting that if a formula is satisfiable

by all regions that are Boolean combinations of half-planes, then the formula is

satisfiable by all regions. These two inference rules play a crucial role in proving

that the system is complete. In particular, Trybus used a non-standard version of

the omitting types theorem to construct a countable modelM in which, by the

two non-standard inference rules, every element inM satisfying ψ/(x) also sat-

isfies a fixing formula, and every element inM can be expressed as a Boolean

combination of elements satisfying ψ/(x). These two facts about M allow the

author to show thatM and RCPQ(R2) are in fact isomorphic, which implies the

completeness of the system.

A natural question that is raised by Trybus in [Try10] is whether one can

apply similar techniques to establish axiomatisations of the Lconv-theories of

other Euclidean region algebras, and in particular the region algebras RC(Rn),

RCS(Rn), RCP(Rn), RCPA(Rn) and RCPQ(Rn). Before tackling this question

however, one needs to show that these Euclidean region algebras have dif-

ferent Lconv-theories. This leads us to two of the contributions of this the-

sis. In Section 4.2.1 we show that the first-order theories of (RC(Rn),C) and

(M,C) are different, whereM is any of the region algebras RCS(Rn), RCP(Rn),

RCPA(Rn) and RCPQ(Rn), and C is the contact relation. Now, since C is Lconv-
definable in each of the above region algebras (see Section 4.1), it follows

that the Lconv-theories of RC(Rn) and M are also different. In [Pra99] it was

shown that the Lconv-theory of RCPQ(Rn) is different from the Lconv-theories
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of RCS(Rn), RCP(Rn) and RCPA(Rn). As a corollary of the complexity bounds

that we establish in Section 4.3.4, we get that the Lconv-theory of RCPA(Rn) is

different from the Lconv-theories of RCP(Rn) and RCS(Rn). So, all of the above

region algebras have different Lconv-theories, except for RCS(Rn) and RCP(Rn),

for which we do not know.

Recall now that the axiomatisation of the Lconv-theory of RCPQ(R2) given in

[Try10] depends on the fact that each half-plane and each region in RCPQ(R2)

can be fixed by a unique fixing formula. Since Lconv is countable, this technique

can only be applied for countable structures. That is, any axiomatisations of

the Lconv-theories of the region algebras RC(Rn), RCS(Rn) and RCP(Rn) will

use “essentially” different techniques. So the only Lconv-theories that can be

addressed in a similar way are the theories of RCPQ(Rn) and RCPA(Rn), n ≥ 2.

3.3 Computability of Spatial Logics

In this section, we discuss work related to computability of spatial logics. The

presentation is naturally divided into two parts, discussing the computability of

first-order and quantifier-free logics, respectively.

3.3.1 First-Order Logics

Probably the first results about the computational properties of first-order (topo-

logical) spatial logics were established by Grzegorczyk in [Grz51]. He used

reductions from first-order arithmetic to show the undecidability of the first-

order logics of region algebras and set algebras over a large class of topological

spaces, including Euclidean spaces of dimension greater than one. The tech-

niques used in [Grz51] underlie many of the undecidability results regarding

spatial logics established since then. First, Grzegorczyk considered the first-

order language Lcl, which extends the language of Boolean algebras with a

unary functional symbol for the operation closure. He showed the ∆0
ω-hardness

of the Lcl-theory of every non-trivial, atomic set algebra M over a connected,

normal and second-countable topological space such that every two disjoint dis-

crete regions inM (a region inM is discrete if it is a discrete set) are contained

in two disjoint connected open regions inM. Note that the conditions imposed

on the topological space are satisfied by all Euclidean spaces except R, which
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clearly fails the last condition. Indeed, no two disjoint open intervals contain

the even and odd natural numbers respectively. To show the ∆0
ω-hardness of

each set algebra satisfying the above conditions, Grzegorczyk encoded each

natural number n by the class of all discrete regions inM consisting of exactly

n points. Whether two discrete regions a and b have the same number of points

is Lcl-definable. Indeed, this is determined by the existence of an open region d

whose components are “pairing” the points in a · (−d) and b · (−d) in the sense

that every component of d contains exactly one point in each of a · (−d) and

b · (−d), and every point in a · (−d) and b · (−d) is contained in some component

of d. Once the congruence relation is defined, it is then relatively easy to define

in Lcl the arithmetic operations and relations. Extending this idea, Grzegorczyk

showed the ∆0
ω-hardness of the LC-theory of every region algebra that satis-

fies certain axioms, and whose underlying topological space satisfy the above

mentioned properties. Since the regions in region algebras are generally not

discrete, in order to apply the techniques used in the case of set algebras, Grze-

gorczyk first encodes each discrete set by the pairs of regions the intersection of

whose boundaries is exactly that set. The additional axioms mentioned above

ensure that the region algebra contains enough regions to encode every discrete

set in the underlying topological space. Once this is done, the encodings of the

natural numbers and the arithmetic operations and relations are almost as in

the case of set algebras.

The lower complexity bounds established in [Grz51] apply to the LC-theories

of the Euclidean region algebras RC(Rn), RCS(Rn), RCP(Rn), RCPA(Rn) and

RCPQ(Rn), n > 1. However, they do not apply to the LC-theories of RC(R),

RCS(R), RCP(R), RCPA(R) and RCPQ(R), and to the best of our knowledge

no complexity bounds for these logics have been established in the literature.

We show in Section 4.3.1 and Section 4.3.2 that reasoning in these logics is

decidable but non-elementary. Note also that the lower bounds established in

[Grz51] are not shown to be tight, and, as we show in Section 4.3.3 and Sec-

tion 4.3.4, some of these logics turn out to be as expressive as second-order

arithmetic. These results appeared in [NPH10].

Grzegorczyk’s idea to encode natural numbers as pairs of spatial regions in-

tersecting in finitely many points was employed by Schaefer and Štefankovič in

[Sv04]. The authors showed that the LDIAG-theory of the collection DIAG of

disc-homeomorphs in R2 (all planar sets that are homeomorphic to the closed
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unit disc {(x, y) | x2 + y2 ≤ 1}) is as expressive as second-order arithmetic, and

hence ∆1
ω-complete. The language LDIAG is equivalent to the first-order lan-

guage of the binary relational symbol C interpreted as the contact relation. To

show that the LDIAG-theory of DIAG is ∆1
ω-hard, Schaefer and Štefankovič first

interpreted the LSTRINGS-theory of the set STRINGS of the Jordan arcs in R2,

called strings, where LSTRINGS is the first-order language whose only binary

relational symbol intersect is interpreted in the obvious way. To show that the

LSTRINGS-theory of STRINGS is ∆1
ω-hard, Schaefer and Štefankovič defined the

pairs (u, v) of strings that intersect each other in ω+1 points, called intersection

points. Each natural number n is encoded by the strings w that intersect u in

the first n intersection points on u not used by the encodings of the numbers

0, . . . , n − 1. A set of natural numbers A is then encoded by the strings that

intersect u in the intersection points of u with the encodings of the members

of A. The membership relation and the arithmetic relations and operations are

then encoded relatively easily.

The result of Schaefer and Štefankovič relies on the fact that there is a pair

of regions in DIAG whose boundaries intersect infinitely many times. Davis in

[Dav06] argues that such “pathological” regions are not suitable for reasoning

about regions occupied by physical objects. In the same paper, he considers lan-

guages featuring not only topological but also affine and metric primitives. He

shows that the theories of these languages when interpreted over a wide range

of Euclidean region algebras are either ∆0
ω- or ∆1

ω-hard. The two first-order

languages in consideration are Lconv and Lcloser over the signatures (C, conv)

and (closer), respectively, where C, conv and closer are interpreted as the re-

lation of being in contact, the property of convexity and the ternary relation

of being closer-than. Consider first the language Lconv interpreted over a pla-

nar region algebra M extending RCP(R2). Extending the techniques used in

[DGC99, Pra99], Davis constructs in M a two-dimensional affine coordinate

system, and consequently encodes the real numbers as the points on one of

the axes. He then defines the arithmetic operations and relations, and, very

importantly, a predicate identifying all natural numbers, hence establishing the

∆0
ω-hardness. Having encoded the arithmetic of natural numbers, he then de-

fines each set of natural numbers as a single real number, hence establishing the

∆1
ω-hardness. The result can be generalised to every region algebra of closed

sets in Rn, n > 1, extending RCP(Rn). Note that in the above reduction of



CHAPTER 3. RELATED WORK 53

second-order arithmetic, sets of natural numbers are encoded as real numbers,

and infinite sets of natural numbers are encoded as transcendental numbers.

Hence it is essential for the ∆1
ω-hardness result that RCP(Rn) is a subset of

M. Alternatively, if one only requires that RCPQ(Rn) is a subset of M, the

above reduction will work only up to the point where one has to encode sets

of natural numbers. That is because instead of having encoded all real num-

bers, one will have encoded all rational numbers, and, of course, the countably

many rational numbers cannot encode the uncountably many sets of natural

numbers. Nevertheless, one still gets that the Lconv-theory of every region al-

gebra that extends RCPQ(Rn) is ∆0
ω-hard. Regarding the language Lcloser, Davis

shows that it is strictly more expressive than Lconv when interpreted over re-

gion algebras over Euclidean spaces of dimension higher than one. Hence the

established lower complexity bounds for the Lconv-theories of the above region

algebras also hold for their Lcloser-theories. Using significantly different tech-

niques, Davis also shows that the Lcloser-theory of every region algebra over R
that extends RCPQ(R) is ∆0

ω-hard, and that the Lcloser-theory of every region

algebra over R extending RCP(R) is ∆1
ω-hard.

The lower complexity bounds established by Davis capture the Lconv- and

Lcloser-theories of the region algebras RC(Rn), RCS(Rn), RCP(Rn), RCPA(Rn)

and RCPQ(Rn). The only exception is the Lconv-theories of one-dimensional

region algebras. In Section 4.3.4 we show that the theories of all countable

region algebras are definable in first-order arithmetic and that the theories of

all uncountable region algebras are definable in second-order arithmetic, yield-

ing tight complexity bounds for all these theories. For the Lconv-theories of

one-dimensional region algebras, note that the properties of being convex and

connected coincide, except for the empty region. It follows then that the Lconv-
theory of a one-dimensional region algebraM is LC-definable inM, and hence

by the results established in Section 4.3.1 it is decidable. These results appeared

in [NPH10].

We now mention another undecidability result regarding the region alge-

bra RCP(R2). In [Dor98] Dornheim considered the first-order language Ldisc,
which is an extension of the language of Boolean algebras with a unary rela-

tional symbol interpreted as the property of being bounded and convex. He es-

tablished a reduction from the Post Correspondence Problem to the Ldisc-theory

of RCP(R2), establishing in this way r.e.-hardness of the latter. This, of course,
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EQ(a, b)

a b

EC(a, b)

a b

TPP(a, b)

a b

NTPP(a, b)

a b

DC(a, b)

a b

PO(a, b)

a b

TPPi(a, b)

a b

NTPPi(a, b)

a b

Figure 3.1: The eight RCC8 relations satisfied by discs in R2.

is a much weaker result than the ones established by Grzegorczyk in [Grz51]

and Davis in [Dav06], especially in the view of the recently emerged fact that

even the quantifier-free-fragment of the logic is r.e.-hard (see [KNPHZ11a]).

3.3.2 Quantifier-Free Logics

The spatial logics that have attracted most of the attention of the AI commu-

nity are quantifier-free, because the corresponding first-order logics are gener-

ally undecidable. The most intensively studied quantifier-free spatial language

RCC8 consists of eight binary relational symbols (DC, EQ, EC, PO, TPP, NTPP,

TPPi, NTPPi) for describing how regions are topologically related (see Fig-

ure 3.1). The first to observe that the satisfiability of RCC8 formulas over

arbitrary topological spaces is decidable was Bennett in [Ben94]. He trans-

lated RCC8 in the intuitionistic logic I with its topological interpretation. Each

RCC8-constraint is translated as a pair of a positive and a negative I-constraints.

Later in [Ben96], Bennett showed that RCC8 can also be translated in the

modal logic S4, using McKinsey and Tarski’s topological interpretation of S4

[MT44, MT48]. Again positive and negative S4 constraints were used. In

[RN99], Renz and Nebel corrected Bennett’s translation from RCC8 in S4 en-

suring that regions are regular closed. The fact that the resulting translation

preserves satisfiability was formally proved in [Nut99].

In Bennett’s translation from RCC8 to S4, the negative S4-constraints are

required not to be true. In the topological semantics of S4, however, this is dif-

ferent from saying that the negation of the constraint is true. Hence, as noted by
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Bennett, the procedures for consistency checking and determination of negative

constraints involve some meta-level reasoning. To capture negation within the

logical formalism, Bennett in [Ben96] extended S4 with an S5-modality, which

can be used to test the non-validity of the negative S4-constraints. As noted

in [WZ00], the resulting bimodal logic S4u was introduced in [GP92], where

it was also shown to be decidable. That the new translation also preserves the

satisfiability of RCC8-formulas was confirmed in [Nut99].

The satisfiability problem for RCC8 was shown to be NP-complete by Renz

and Nebel in [RN97]. To show membership in NP, Renz and Nebel used Ben-

nett’s (corrected) translation from RCC8 in S4u and showed that the transla-

tion of every satisfiable RCC8-formula is satisfiable by a Kripke frame having

a particular structure and size that is polynomial in the length of the original

formula. The Kripke frames in question are based on partial orders of depth

two in which every element has at most one predecessor. In [Ren98] Renz sim-

plified the structure of the Kripke frames to partial orders of depth one in which

every element has at most one predecessor. As we see later, Kripke frames of

similar structures have been used to show decidability of other quantifier-free

spatial logics. Another interesting result shown in [Ren98] is that every satisfi-

able RCC8-formula is satisfiable in all Euclidean spaces. The fact that RCC8 is

NP-hard, of course, is easy to establish. Indeed, already the fragment RCC5 of

RCC8 based on the relations EQ, PO, DC∪EC, TPP∪NTPP and TPPi∪NTPPi is
NP-hard. However, tractable fragments of RCC8 and RCC5 were identified in

[RN99, JD97] as it was done for the Allen’s interval calculus in [NB95, DJ96].

The fragments consist of positive formulas in conjunctive normal form in which

only certain types of disjunctions occur. In [RN99, JD97], the authors estab-

lished a complete classification of the maximal tractable fragments of RCC8
and RCC5, where a fragment is considered maximal if it cannot be extended

with a new type of disjunctions.

An alternative proof of the fact that the satisfiability problem for RCC8 is

in NP was established by Griffiths in [Gri08]. Griffiths showed that the sat-

isfiability problem for the conjunctive fragment of RCC8 (all conjunctions in

RCC8) is reducible in logarithmic space to the graph reachability problem and,

by [Jon75], is in NLOGSPACE. By counting the maximal number of disjunctions

in the conjunctive normal form of an RCC8-formula, he then shows that the

satisfiability problem for RCC8 is in NP.
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The language RCC8 has a rather limited expressiveness. Although one can

express in it that Germany and France share a common boundary and that they

are both in Europe, one cannot express, for example, that the United Kingdom

consists of England, Northern Ireland, Scotland and Wales. To accommodate

such expressiveness, Wolter and Zakharyaschev in [WZ00] considered the lan-

guage BRCC8 which extends RCC8 with functional symbols for taking unions,

intersections and complements of regions. Based on Bennett’s translation from

RCC8 to S4u, Wolter and Zakharyaschev provided a satisfiability preserving

translation from BRCC8 to S4u. They also showed that the S4u-translation

of every satisfiable RCC8-formula is satisfiable in a Kripke frame based on a

partial order of depth at most one and width at most two, and whose size is

linear in the size of the originalRCC8 formula. Hence the satisfiability problem

for BRCC8 over arbitrary topological spaces is NP-complete. A Kripke frame

based on a partial order of depth at most one and width at most two is called a

quasi-saw.

Unlike RCC8, not every satisfiable BRCC8-formula is satisfiable in a Eu-

clidean space. In fact, as shown in [WZ00], there exists a simple BRCC8-

formula that distinguishes connected and disconnected topological spaces. It

was also shown that BRCC8 has the same satisfiability problem over RC(Rn),

for n ≥ 1, and over the class of all complete region algebras over connected

topological spaces. Moreover, the problem turns out to be PSPACE-complete. To

establish membership in PSPACE, Wolter and Zakharyaschev showed that if a

BRCC8-formula is satisfiable over a connected topological space, then it is satis-

fiable over a quasi-saw of size exponential in the size of the formula. Then they

present an algorithm which, for every BRCC8-formula ϕ, non-deterministically

guesses a linear quasi-saw model of the S4u-translation of ϕ and then tries to

make that model connected without violating ϕ. Although making the model

connected generally requires exponentially many new points, the algorithm acts

locally, and requires only polynomial part of the whole model to be kept in the

memory at each point in time. Hence the algorithm runs in PSPACE. To show

that the satisfiability problem is PSPACE-hard, the authors established a reduc-

tion from every language L in PSPACE to Sat(BRCC8,RC(R)) by encoding runs

of a Turing machine recognising L in PSPACE.

The topological language BRCC8, although significantly more expressive



CHAPTER 3. RELATED WORK 57

than RCC8, still cannot express the fundamental topological property of con-
nectedness. Early complexity results regarding a topological language with prim-

itives for expressing connectedness constraints were given by Pratt-Hartmann

in [PH02]. The language is essentially S4ucc, an extension of S4u with unary

relational symbols c≤k and c≥k (k ≥ 1) for bounding the number of connected

components of regions from above and below. S4ucc is interpreted over the col-

lection of all complete set algebras and the corresponding satisfiability problem

is shown to be NEXPTIME-complete. To establish membership in NEXPTIME,

Pratt-Hartmann used a technique similar to the filtration method in modal logic,

and showed that every satisfiable formula is satisfiable in the set algebras of a

topological space whose size is exponential in the size of the formula. To show

that the satisfiability problem is NEXPTIME-hard, Pratt-Hartmann established a

reduction from the n-tiling problem, which is known to be NEXPTIME-hard (see

e.g. [Pap93, p. 501]).

The study of S4ucc was just the beginning of a whole series of similar in-

vestigations. In [KPHWZ08a, KPHWZ08b, KPHWZ10], various languages with

connectedness predicates were considered for region algebras and set algebras

over arbitrary and Euclidean topological spaces. For set algebras, the authors

considered the fragment S4uc of S4ucc, extending S4u only with a symbol for

expressing the property of being connected. In contrast to S4ucc, the complex-

ity of S4uc when interpreted over arbitrary or connected topological spaces,

falls from NEXPTIME-complete to EXPTIME-complete. Membership in EXPTIME

was shown by a reduction to a variant of PDL (namely PDL with converse

and nominals) known to be in EXPTIME. For reasoning about region algebras,

Kontchakov et al. considered the three basic languagesRCC8, B (the quantifier-

free language of Boolean algebras) and C (an equally expressive variant of

BRCC8) and extended each of them either with the relational symbols c≤k and

c≥k (k ≥ 1) or with the relational symbol c. The resulting extensions are de-

noted by RCC8c, RCC8cc, Bc, Bcc, Cc and Ccc, and the satisfiability problem

for each of them is polynomially reducible to the satisfiability problem for the

corresponding extension of S4u, thus inheriting the latter’s complexity upper

bound. Kontchakov et al. showed that reasoning in Cc and Ccc about region

algebras over arbitrary or connected topological spaces is as hard as reasoning,

respectively, in S4uc and S4ucc about set algebras over arbitrary or connected

topological spaces. Furthermore it was shown that every satisfiable formula in
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Cc (Ccc) can be translated in equally satisfiable formula in Bc (Bcc). Hence,

reasoning in Bc (Bcc) about region algebras over arbitrary or connected topo-

logical spaces is EXPTIME-complete (NEXPTIME-complete). Regarding the lan-

guages RCC8c and RCC8cc, it is shown that reasoning about region algebras

over arbitrary or connected topological spaces is NP-complete.

In addition to establishing the exact complexity of reasoning with connect-

edness predicates over arbitrary or connected topological spaces, Kontchakov

et al. observed an interesting fact about the expressiveness of these languages.

In particular, it was shown that the languages RCC8c, Bc and Cc can distin-

guish between RC(R), RC(R2) and RC(Rn) (n > 2). This is in stark contrast to

the languages RCC8, B and C, for which every formula satisfiable in a region

algebra over some (connected) topological space, is also satisfiable in each of

the region algebras RC(Rn) (n ≥ 1). Kontchakov et al. showed that the com-

plexity of reasoning in RCC8c and Bc about RC(R) is NP-complete, while in

the case of Cc it is PSPACE-complete. Reasoning in RCC8c in higher dimensions

was shown to remain NP-complete. For this latter result, the authors made

use of the remarkable result established by Schaefer, Sedgwick and Štefankovič

in [SSS03] regarding the satisfiability of RCC8 by disc-homeomorphs in the

Euclidean plane—a similar adaptation was previously made in [Gri08, p. 105,

Corollary 6.4.19]. Reasoning in Bc and Cc in higher dimensions is shown to in-

herit the EXPTIME lower complexity bound for reasoning about region algebras

over connected topological spaces. In this case, however, no decidable upper

bound was established. As we show in Section 5.4, for region algebras over R2,

no such upper bound exists, for the two satisfiability problem turn out to be

undecidable—a result that appeared in [KNPHZ11a, KNPHZ11b].

Another important observation made by Kontchakov et al. in [KPHWZ08a,

KPHWZ08b, KPHWZ10, KPHZ10] was that the complete region algebras

RC(Rn) and the region algebras of regular closed polytopes RCP(Rn), for n =

1, 2, do not satisfy the same RCC8c-, Bc- or Cc-formulas. This was shown by

finding formulas satisfiable in RC(Rn), n = 1, 2, but only by tuples contain-

ing regions with infinitely many components. The arguments that were used

to show these expressiveness results fail in higher dimensions, and, it was an

open problem whether the results were true for RC(Rn), n > 2. It turns out that

in each of the languages Cc and Bc, there exists a formula which is satisfiable

in region algebras over Rn, n > 1, but only by tuples some of whose regions
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have infinitely many components. This result, which is based on the fact that

Euclidean spaces are unicoherent, is presented in Section 5.2 and appeared in

[KNPHZ11a, KNPHZ11b]. We sketch in Section 5.5 how the insights gained

from it were used in an unpublished work of Pratt-Hartmann to show the unde-

cidability of the satisfiability problem for Bc and Cc when interpreted over the

region algebras RCP(Rn), n ≥ 2. It is unclear, however, how these complexity

results can be extended to the case of region algebras RC(Rn), n ≥ 3.

In [KPHZ10], Kontchakov et al. considered the effect of adding to the ba-

sic languages B, RCC8 and C the property of having a connected interior. The

resulting languages, denoted by RCC8c◦, Bc◦ and Cc◦, turn out to have expres-

siveness similar to the one of the languages RCC8c, Bc and Cc, in distinguish-

ing between RC(R), RC(R2) and RC(Rn) (n > 2), and in forcing regions with

infinitely many components in RC(R) and RC(R2). That the language Bc◦ can

force regions with infinitely many components in the region algebra RC(R2) is

shown in Section 5.3. In Section 5.2, we show that Cc◦ can force regions with

infinitely many components in each region algebra RC(Rn), n ≥ 2. This result,

however, cannot be extended for the language Bc◦. Still, there are formulas in

Bc◦ which can distinguish between RC(Rn) and RCP(Rn), n > 1, and that is

based on the existence in RC(Rn) of regions whose boundaries are pathological

in some sense (e.g. there are regions in RC(Rn) whose boundaries contain the

topologist’s sine curve, and which is not locally connected). For region algebras

over R, the satisfiability problem for the languages with interior-connectedness

are the same as for the languages with connectedness, merely because con-

nectedness and interior-connectedness coincide. Reasoning in Cc◦ about region

algebras over Euclidean spaces in dimensions higher than one is shown to be

EXPTIME-hard, and again no matching upper bound was established. It turns

out that the languages Bc◦ and Cc◦ when interpreted over RC(R2) and RCP(R2)

are again undecidable. This result is presented in Section 5.4 and appeared in

[KNPHZ11a, KNPHZ11b].



Chapter 4

First-Order Spatial Logics

Consider the veracity of the following statements about (closed) regions of a

topological space.

A1 The union of two intersecting connected regions is connected.

A2 If two non-empty regions fill the whole space, then they have a non-empty
intersection.

A3 In the interior of every non-empty region lies another non-empty region.

A1 is a standard theorem in topology, and holds in every region algebra. By

contrast, A2 and A3 hold only in some region algebras. In particular, it is not

difficult to see that, A2 holds exactly in the region algebras over connected

topological spaces, whereas, due to a much more elaborate argument [DW05],

A3 holds exactly in the region algebras over weakly-regular topological spaces

(see Section 2.5).

By choosing a suitable signature, it is routine to translate A1-A3 into first-

order logic. Consider, for example, the signature σ that extends the signature

of Boolean algebras with a predicate c(x) interpreted as “x is connected”, and

the binary relational symbol C(x, y) interpreted as “x and y have a non-empty

intersection”—also known as the contact relation. Then an Lσ-translation of

A1-A3 would be:

ψ1 := ∀x∀y(c(x) ∧ c(y) ∧ x · y > 0→ c(x+ y));

ψ2 := ∀x∀y(x > 0 ∧ y > 0 ∧ x+ y = 1→ C(x, y));

ψ3 := ∀x(x > 0→ ∃y(¬C(y,−x))).

60
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So, if Σ is the class of all region algebras considered as σ-structures, then ψ1

is in the first-order theory T (Σ) of Σ. Similarly, ψ2 is in the first-order theory

of the class of all region algebras over connected topological spaces, and ψ3 is

in the first-order theory of the class of all region algebras over weakly regular

topological spaces.

A natural question, then, is, given a logical signature σ, how to describe

the first-order σ-theory of a collection of region algebras (possibly containing

a single structure). Another interesting question is whether two (collections

of) region algebras have the same first-order σ-theories. From a computability

theory point of view, an intriguing question is whether the first-order σ-theory

T of a collection of region algebras is decidable, i.e. whether there exists an

algorithm which can determine the membership of a first-order σ-sentence in

T . Additionally, one can ask for exact classification of the complexity of every

such computational problem.

In this chapter we address these and other questions concerning first-order

spatial logics. The main results are separated in two parts. In the first part we

discuss axiomatisations of different first-order theories, and in the second part,

we discuss computability of first-order theories of set and region algebras over

Euclidean spaces. We start, however, by proving various expressiveness results

about first-order spatial logics.

4.1 Languages and Expressiveness

We now discuss the relative expressiveness of first-order Euclidean spatial log-

ics. The first-order languages that we consider feature, in addition to Boolean

primitives as defined in Table 2.1, topological, affine and metric properties and

relations. The topological primitives that we consider are the property c(x)

of being topologically connected, and the Whitehead’s contact relation C(x, y)

comprising the pairs of intersecting regions. The affine primitive that we con-

sider is the property conv(x) of being convex, which was also examined in

[Pra99, DGC99, Dav06]. Finally, we consider the metric relation closer(x, y, z),

introduced in [Dav06], comprising of all triples (a, b, c) such that a is closer to b

than it is to c.

We interpret first-order languages featuring the above topological, affine

and metric primitives over Euclidean region algebras, and, in particular, the
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region algebra RC(Rn) together with its tame Boolean subalgebras RCS(Rn),

RCP(Rn), RCPA(Rn) and RCPQ(Rn) (see Section 2.6). This results in a large

problem space that is summarised in Table 4.1. For each of these Euclidean

region algebras, we have that topological languages (those featuring primi-

tives preserved under homeomorphic transformations) are less expressive than

languages featuring the convexity predicate, which in turn are less expressive

than languages featuring the predicate closer-than. The only exceptions are

Euclidean region algebras over R, in which the convex regions are simply the

non-empty connected regions, and in this case topological languages and lan-

guages featuring the convexity predicate become equally expressive.

It is well known that first-order topological languages, and consequently

all first-order languages considered here, are sufficiently expressive to distin-

guish between RC(Rn) and its tame Boolean subalgebras RCS(Rn), RCP(Rn),

RCPA(Rn) and RCPQ(Rn). In fact, this is true even for certain quantifier-free

topological languages (see Chapter 5). However, first-order topological lan-

guages lack the expressive power to distinguish between the tame region alge-

bras over the Euclidean spaces R (see Lemma 59) or R2 (see [PH07]). Whether

this is true in higher-dimensional Euclidean spaces is an open problem. By con-

trast, the languages featuring the convexity predicate, and consequently those

featuring the predicate closer-than, are sufficiently expressive to distinguish be-

tween rational and algebraic polygons (see [Pra99]), and between algebraic

and arbitrary polygons (see Theorem 104). Both results also hold for dimen-

sions higher than 2. Whether these languages can distinguish between poly-

topes and semi-algebraic regions (i.e. between the region algebras RCS(Rn)

and RCP(Rn)), is an open problem.

We now proceed with a formal presentation of the above results. The proofs

of Lemma 41—Lemma 45 are almost identical to the one given in [PH07, Sec-

tion 2.3] for the case of open region algebras. Let LC be the first-order language

of the signature (C) whose only relational symbol C represents the binary re-

lation “contact”. Two regions a and b are in contact if a ∩ b 6= ∅. Note that

a ·b 6= 0 implies C(a, b), but not vice versa (see Table 2.1). The property of being

connected is LC-definable. Consider the LC-formula:

ψc(x) := ∀y∀z(y > 0 ∧ z > 0 ∧ x = y + z → C(x, y)).

Lemma 41. LetM be a region algebra over a topological space X such that,M is
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a complete region algebra or a finitely decomposable region algebra that respects
components. Then the property of being connected is LC-definable in M by the
formula ψc(x).

Proof. Let a ∈ M be such that M |= ¬ψc[a]. Then, there exist b, c ∈ M that

separate a, and so a is disconnected. Let a ∈ M be disconnected. Then, there

exist subsets b and c of X that separate a. By Lemma 22 and Lemma 32, b and

c are inM, soM |= ¬ψc[a].

Corollary 42. The property of being connected is LC-definable in RC(Rn),
RCS(Rn), RCP(Rn), RCPA(Rn) and RCPQ(Rn).

Proof. Lemma 41, Lemma 37 and Lemma 39.

We now show that binary relation part-of is LC-definable. Consider the LC-

formula:

ψ≤(x, y) := ∀z(C(z, x)→ C(z, y)).

Lemma 43. Let M be a dense region algebra over a weakly-regular topological
space X . Then the part-of relation is LC-definable inM by the formula ψ≤(x, y).

Proof. Clearly, if a ≤ b, for a, b ∈ M, then M |= ψ≤[a, b]. Suppose that c :=

a · (−b) is nonempty. Because X is weakly-regular, there exists a nonempty

open set A such that A− ⊆ c◦. Since M is a dense region algebra and A− is

regular closed, there exists a nonempty c′ ∈ M such that c′ ⊆ A−. So, c′ is in

contact with a, as a nonempty subset of a, and disjoint from b, as a subset of

A−. Hence, c′ is a witness forM 6|= ψ≤[a, b].

a b
A

c′

Figure 4.1: Defining the part-of relation using LC.

Corollary 44. The part-of relation is LC-definable in RC(Rn), RCS(Rn), RCP(Rn),
RCPA(Rn) and RCPQ(Rn).

Proof. Lemma 43, Lemma 38 and Lemma 35.
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Consider the first-order language Lc of the signature (c,≤), where c is a

unary predicate interpreted as the property of being “connected”, and ≤ is a

binary predicate interpreted as the relation “part-of” (see Section 2.5).

Lemma 45. LetM be finitely decomposable region algebra that respects compo-
nents. Then the contact relation is Lc-definable inM.

Proof. To define the contact relation we use the Lc-formula:

ψC(x, y) := ∃x′∃y′(x′ 6= 0 ∧ x′ ≤ x ∧ y′ 6= 0 ∧ y′ ≤ y ∧ c(x′ + y′)).

Clearly, if M |= ψC [a, b], for a, b ∈ M, then a and b are in contact. Suppose

that the regions a and b are in contact. Since M is finitely decomposable,

there exist components a′ and b′ of a and b which are also in contact. SinceM
respects components, a′ and b′ are in M, and, as such, they are witnesses for

M |= ψC [a, b].

Let Lconv and Lcloser be the first-order languages of the signatures (conv,≤)

and (closer), respectively, where conv is a unary predicate interpreted as the

property of being “convex”, ≤ is the binary predicate interpreted as the relation

“part-of” and closer is the ternary predicate interpreted as the relation “closer-

than”. A region a is convex if, for every two points p, q ∈ a, a contains the line

segment between p and q. For regions a, b and c, closer(a, b, c) if, for every pair

of points (p, q) ∈ a × c, there exists a pair of points (r, s) ∈ a × b such that

d(r, s) ≤ d(p, q), where d(p, q) denotes the distance between the points p and q.

Lemma 46 ([Dav06]). Let M be RC(Rn), RCS(Rn), RCP(Rn), RCPA(Rn) or
RCPQ(Rn). Then, the property of being convex and the part-of relation are Lcloser-
definable inM.

LetM be one of RC(Rn), RCS(Rn), RCP(Rn), RCPA(Rn) and RCPQ(Rn). We

define inM the set of hyperplanes in Rn using the Lconv-formula:

ψ/(x) := conv(x) ∧ conv(−x).

Clearly, the boundary of every a ∈ M with M |= ψ/[a] is a hyperplane. Con-

versely, every rational hyperplane in Rn is the boundary of two regions in M
each satisfying ψ/(x) in M. Two hyperplanes are parallel and distinct, if they
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are the boundaries of two regions satisfying the Lconv-formula:

ψ‖(x, y) := ψ/(x) ∧ ψ/(y) ∧ x ≤ y ∧ ¬y ≤ x.

Lemma 47. Let M be one of RCS(Rn), RCP(Rn), RCPA(Rn) and RCPQ(Rn).
Then, the contact relation is Lconv-definable inM.

Proof. (Taken from [Pra99, Theorem 5.1].) We define the contact relation using

the formula:

ψC(x, y) := ∃x′∃y′(conv(x′) ∧ conv(y′) ∧ x′ ≤ x ∧ y′ ≤ y →

∀z∀z′ψ‖(z, z′)→ ¬(x′ ≤ z ∧ y′ ≤ −z′)).

Let a, b ∈ M be in contact. SinceM is well-behaved, it is routine to show that

there exist subregions a′ and b′ of a and b, respectively, which are convex and

also in contact. No two convex regions which are in contact can be separated

by two parallel rational hyperplanes. Conversely, if a, b ∈ M are disjoint, then

every two convex subregions of a and b can be separated by two parallel rational

hyperplanes.

Showing that the contact relation is Lconv-definable in RC(Rn) requires a

different approach.

Lemma 48. The contact relation is Lconv-definable in RC(Rn).

Proof. Adopting ideas from [Pra99, Dav06], we present a proof for n = 2, which

can easily be generalised for n ≥ 1. We identify every point p in R2 with the

pairs of lines that intersect in p. A pair of regions represents a point if they

satisfy the formula:

ψ•(x, y) := ψ/(x) ∧ ψ/(y) ∧ x · y > 0 ∧ x · (−y) > 0.

A point p in R2 which is represented by regions (a, b) lies in the interior of a

convex region c exactly when a, b and c satisfy the formula:

ψ•◦(x, y, z) := x · z > 0 ∧ (−x) · z > 0 ∧ y · z > 0 ∧ (−y) · z > 0.

Two regular closed sets a, b are in contact exactly when they have a point p in
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common, which is exactly when every open convex neighbourhood of p inter-

sects a and b. Hence, the following formula defines the contact relation:

ψC(u, v) := ∃x∃y(ψ•(x, y)∧∀z(conv(z)∧ψ•◦(x, y, z)→ u · z 6= 0∧ v · z 6= 0)).

We summarise the above results in the following lemma. Recall from Sec-

tion 2.3 that, for structures M and N , M ≤pm N and M ≡pm N denote that

T (M) ≤pm T (N ) and T (M) ≡pm T (N ), respectively.

Lemma 49. Let M be one of the region algebras RC(Rn), RCS(Rn), RCP(Rn),
RCPA(Rn) and RCPQ(Rn). Then:

(M, c,≤) ≤pm (M,≤,C, c) ≡pm (M,C) ≤pm
(M, conv,≤) ≡pm (M, conv,C) ≤pm (M, closer).

Now we consider region algebras over R. We show that the region algebras

RCS(R), RCP(R), RCPA(R) and RCPQ(R) have the same LC-theories which are

LC-definable in RC(R). We start by showing that the Lc-theory of RCP(R) is

Lc-definable in RC(R). Since (RCP(R), c,≤) is a substructure of (RC(R), c,≤),

we only have to provide an Lc-formula ψRCP (x) defining in (RC(R), c,≤) the

set RCP(R). Note that RCP(R) consists of the regular closed sets in R having

finitely many components, which are exactly the regular closed sets in R having

finitely many boundary points. We define the pairs (a, b) ∈ RC(R) such that a is

a connected component of b using the formula:

ψcc(x, y) := c(x) ∧ x ≤ y ∧ ∀z(c(z) ∧ z ≤ y ∧ x ≤ z → z ≤ x).

We identify a real numbers r with the regular closed sets having r as a unique

endpoint. We define those sets using the formula:

ψcut(v) := c(v) ∧ c(−v) ∧ v 6= 0 ∧ v 6= 1.

The following formula defines the set of pairs of a real number and a connected

neighborhood of that number:

ψ�(v, u) := c(u) ∧ ψcut(v) ∧ u · v 6= 0 ∧ u · (−v) 6= 0.

The formula ψEP (v, x) defines the set of pairs of regions such that the first
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region represents an endpoint of a connected component of the second region:

ψEP (v, x) := ψcut(v) ∧ ∃y(ψcc(y, x) ∧ c(y + v) ∧ C(y,−v) ∧ (y ≤ v ∨ y ≤ −v)).

The formula ψISO_EP (x) defines the regions whose boundary points have no

accumulation points:

ψISO_EP (x) := ∀v
(
ψcut(v) ∧ ¬ψEP (v, x)→

∃u
(
ψ�(v, u) ∧ ∀v′(ψEP (v′, x)→ ¬ψ�(v′, u)

))
.

The following formula defines the regions whose boundary points are bounded:

ψBND_EP (x) := ∃u
(
c(u) ∧ ¬c(−u) ∧ ∀l(ψEP (l, x)→ ψ�(l, u))

)
.

Finally, the formula ψRCP (x) defines the set RCP.

ψRCP (x) := ψISO_EP (x) ∧ ψBND_EP (x).

Lemma 50. The Lc-theory of RCP(R) is Lc-definable in RC(R).

Corollary 51. (RCP(R), c,≤) ≤pm (RC(R), c,≤) and (RCP(R),C)) ≤pm (RC(R),C).

Proof. Lemma 50 and Lemma 42.

We will now show that

(RCPQ(R),C) � (RCPA(R),C) � (RCP(R),C) � (RCS(R),C).

Note that (RCP(R),C) � (RCS(R),C) trivially follows from RCS(R) = RCP(R).

We need the following technical lemmas.

Definition 52. Let X = (X, τ) be a topological space. Two n-tuples ā and b̄

of regular closed sets in X are similarly situated, denoted by ā ∼ b̄, if there

is a homeomorphism f : X → X such that f+ : ā 7→ b̄, where for a ⊆ X,

f+(a) = {f(x) | x ∈ a}.

Lemma 53. Let X = (X, τ), Y = (Y, σ) be topological spaces and f : X → Y
be a homeomorphism. Then f+ � RC(X ) is a bijection from RC(X ) to RC(Y).
Moreover, for a ⊆ X, f+ � cca is a bijection from cca to ccf+(a), where cca and
ccf(a) are the sets of connected components of a and f+(a), respectively.
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Proof. Since every homeomorphism f : X → Y is a bijective function preserving

the set-theoretic operations and relations, the property of being connected and

the closure and interior operations, we get that f is an isomorphism between

the structures (℘(X), c, ·◦, ·−,⊆,∩,∪) and (℘(Y ), c, ·◦, ·−,⊆,∩,∪).

Lemma 54. Every homeomorphism f : R → R induces a model isomorphism
f+ : (RCP(R),C)→ (RCP(R),C).

Proof. As a direct consequence of Lemma 53, we get that f+ � RCP(R) is a

bijection from RCP(R) to itself. Trivially,

C(a, b) ⇐⇒ a ∩ b 6= ∅ ⇐⇒

f+(a) ∩ f+(b) 6= ∅ ⇐⇒ C(f+(a), f+(b)).

Definition 55. Let R be any subset of R. By RCPR(R) we denote the set of all

elements in RCP(R) whose connected components have endpoints in R.

Lemma 56. Let R be a dense subset of R. Let ā be an n-tuple of elements in
RCPR(R) and b ∈ RCP(R). Then there is an a ∈ RCPR(R) such that āa ∼ āb.

Proof. Let r1, . . . , rk be the increasing linear ordering of the endpoints of the

connected components of the regions ā, b. Setting r0 = q0 = −∞ and rk+1 =

qk+1 = +∞, we define for i = 1, . . . , k

qi =

ri if ri ∈ R

any q ∈ (qi−1, ri) ∩ F if ri ∈ R \R.

It is always possible to select q ∈ (qi−1, ri)∩R, since R is a dense linear subset of

R. Let f : R→ R be the homeomorphism that maps [qi, qi+1] linearly to [ri, ri+1],

for i = 0, . . . , k. Clearly, f+(b) ∈ RCPR(R) since, for every r ∈ {r1, . . . , rk},
f(r) ∈ R. Finally, f+ : ā 7→ ā, since for every r ∈ {r1, . . . , rk} ∩R, f(r) = r.

Corollary 57. Let R be dense subset of R. Then for every LC-formula ψ(x, ȳ),
ā ∈ RCPR(Rn) and b ∈ RCP(R), if RCP(R) |= ψ[b, ā], then RCP(R) |= ψ[a, ā] for
some a ∈ RCPR(R).

Proof. Lemma 54 and Lemma 56.

Lemma 58. [Tarski-Vaught Test] Let A be a substructure of B. Then A � B if
and only if for every formula ϕ(x, ȳ) and ā ∈ A, if there exists b ∈ B such that
B |= ϕ[b, ā], then there exists a ∈ A such that B |= ϕ[a, ā].



CHAPTER 4. FIRST-ORDER SPATIAL LOGICS 69

Proof. See e.g. Theorem 2.5.1 [HH93, p.55].

Lemma 59. (RCPQ(R),C) � (RCPA(R),C) � (RCP(R),C).

Proof. Lemma 58 and Corollary 57.

As a result, we get the following lemma.

Lemma 60. Let M and N be any of RCPQ(R), RCPA(R), RCP(R) and RCS(R).
Then (M,C) ≡pm (N ,C) ≤pm (RC(R),C).

Proof. Lemma 59 and Lemma 50.

4.2 Axiomatisations

Let Σ be a collection of region algebras interpreting a logical signature σ. A way

of describing the first-order σ-theory T of Σ is by axiomatizing it. I.e. to list

a set of σ-sentences in T , called axioms, which logically imply all and only the

σ-sentences in T . We recall the axiomatisations of few collections of region al-

gebras, due to [DV06, DW05, Roe97], and a classic axiomatisation result about

the collection of all set algebras, due to McKinsey and Tarski [MT44].

We start with the result by McKinsey and Tarski. Let σcl = (∪,∩, C , 0, 1, −)

be an extension of the signature of Boolean algebras with a unary functional

symbol interpreted as the operation topological closure. We denote the first-

order σcl-language by Lcl. In addition to the axioms of Boolean algebra, every

set algebra considered as a σcl-structure satisfies the following axioms:

ψcl1 := ∀x(x ∩ (x)− = x);

ψcl2 := ∀x((x−)− = x−);

ψcl3 := ∀x∀y((x ∪ y)− = x− ∪ y−);

ψcl4 := 0− = 0.

Let Φcl be the set of axioms for Boolean algebras together with the formulas

ψcl1 – ψcl4, and let Tcl be the first-order σcl-theory of all set algebras. McKin-

sey and Tarski refer to the σcl-structures satisfying Φcl as closure algebras. Hence,

every set algebra interpreting σcl is a closure algebra. McKinsey and Tarski

proved the following representation theorem for closure algebras, which exten-

sively uses Stone’s representation theorem for Boolean algebras.
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Theorem 61. ([MT44, Theorem 2.6]) Every closure algebra is isomorphic to a set
algebra considered as a σcl-structure.

As a result, of course, we get that:

Corollary 62. Φcl |= Tcl.

We now turn to the more recent results by [DV06, DW05, Roe97]. Let

σCA = (+, ·,−, 0, 1,C) be the signature that extends the signature of Boolean

algebras with a binary relational symbol interpreted as the contact relation, and

let LCA be the first-order language of σCA. Recall that every region algebraM
over a topological space X forms a Boolean algebra. In addition to satisfying

the axioms of Boolean algebra, M considered as a σCA-structure satisfies the

following sentences:

ψCA1 := ∀x∀y(C(x, y)→ x 6= 0);

ψCA2 := ∀x∀y(C(x, y)→ C(y, x));

ψCA3 := ∀x∀y∀z(C(x, y + z)↔ C(x, y) ∨ C(x, z));

ψCA4 := ∀x(x = 0 ∨ C(x, x)).

If X is a weakly-regular topological space andM is a dense region algebra over

X , thenM also satisfies the extensionality axiom ψext.

ψext := ∀x(x = 0 ∨ ∃y(y 6= 0 ∧ ¬C(y,−x))) (4.1)

If X is a compact Hausdorff topological space and M is a closed base for X ,

thenM also satisfies the interpolation axiom ψint (see [PH07, Lemma 2.151]).

ψint := ∀x∀y(¬C(x,−y)→ ∃z(¬C(z,−y) ∧ ¬C(x,−z))) (4.2)

If X is a connected topological space, thenM also satisfies the formula:

ψconn := ∀x(x = 0 ∨ x = 1 ∨ C(x,−x)). (4.3)

Let ΦCA be the set of axioms for Boolean algebras together with the formulas

ψCA1 – ψCA4, let ΦECA := ΦCA∪{ψext} and let ΦNCA := ΦECA∪{ψint}. In [DV06]

the structures satisfying ΦCA, ΦECA and ΦNCA are called contact algebras, ex-
tensional contact algebras and normal contact algebras, respectively. (Note that
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in [DW05] the structures satisfying ΦECA are called Boolean contact algebras.)
Let TCA be the LCA-theory of the class ΣCA of all region algebras; let TECA be

the LCA-theory of the class ΣECA of dense region algebras over weakly-regular

topological spaces; and let TNCA be the LCA-theory of the class ΣNCA of region

algebras over compact Hausdorff topological spaces that are closed bases for

their topologies.

We have the following representation theorems.

Theorem 63.

- Every contact algebra is isomorphic to a region algebra in ΣCA.

- Every extensional contact algebra is isomorphic to a region algebra in ΣECA.

- Every normal algebra is isomorphic to a region algebra in ΣNCA.

These results were obtained, respectively, in [DV06], [DW05] and [Roe97].

As a result we get:

Corollary 64.

- ΦCA |= TCA;

- ΦECA |= TECA;

- ΦNCA |= TNCA.

All of the above axiomatisations are extensions of Stone’s representation

theorem for Boolean algebras. Since (atomless) Boolean algebras and complete

(atomless) Boolean algebras have the same first-order σBA-theories, it is only

natural to assume that region algebras and complete region algebras also have

the same first-order σCA-theories. The same assumption can be made for the

first-order σcl-theories of set algebras and complete set algebras. As we will

show in the next section, both of these assumptions turn out to be false.

4.2.1 Complete Set and Region Algebras

We denote the classes of complete region algebras in ΣCA, ΣECA and ΣNCA by

ΣCCA, ΣCECA and ΣCNCA, respectively. We will now see that the LCA-theories of

ΣCA, ΣECA and ΣNCA are different from the LCA-theories of ΣCCA, ΣCECA and
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ΣCNCA, respectively. We will provide a formula ψCCA satisfiable in every region

algebra in ΣCCA, but not satisfiable in the incomplete region algebra RCP(R2) ∈
ΣNCA. Since ΣCNCA ⊆ ΣCECA ⊆ ΣCCA and ΣNCA ⊆ ΣECA ⊆ ΣCA, ψCCA is in

the LCA-theories of ΣCCA, ΣCECA and ΣCNCA, and in none of the LCA-theories

of ΣCA, ΣECA and ΣNCA. The results in this section were presented in [Nen09],

and the idea behind them is due to my supervisor Ian Pratt-Hartman.

Note that a region algebra satisfying the LCA-formula

ψtriv := ∀x(x = 0 ∨ x = 1)

consists of at most two elements. We write a� b as a shorthand for ¬C(a,−b).
Note that, for regions a and b, a� b exactly when a is contained in the interior

of b.

Lemma 65. LetM be a complete region algebra that satisfies the formulas ψext,
ψint, ψconn and ¬ψtriv. Then, there exist regions a and {ai}i∈ω inM such that:

i) C(a,−a); ii) a =
∑

i∈ω ai;

iii) ai � ai+1; iv) ai � a.

Proof. SinceM |= ¬ψtriv, there exists some b ∈ M such that b 6= 0 and b 6= 1.

Because ofM |= ψext, there exists some a0 ∈ M such that a0 � b and a0 6= 0.

Because M |= ψint, there exists some a1 ∈ M such that a0 � a1 � b. Again,

since M |= ψint, there exists some a2 ∈ M such that a1 � a2 � b. Repeating

this argument, we can construct a sequence {ai}i∈ω such that a0 � ai � ai+1 �
b, for i ∈ ω. Because M is complete, a :=

∑
i∈ω ai exists. We are only left to

show that C(a,−a). We know that, 0 6= a0 ≤ a ≤ b 6= 1, and sinceM |= ψconn,

we get that C(a,−a).

Recall that, the LCA-formula ψc(x) defines the property of being connected

in every complete region algebra, and also in RCP(R2) (Lemma 41 and Corol-

lary 42). Now, consider the LCA-formula:

ψ�(x, y) := C(x, y) ∧ (∀z)(z ≤ x ∧ ψc(z)→ ¬C(z, y)).

Let M be a region algebra, and a, b ∈ M be such that M |= ψ�[a, b]. So,

a is in contact with b, but no connected subregion of a is in contact with b.

Clearly, ifM respects components, this would only be possible if a has infinitely
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many components. Hence, ψ�(x, y) is not satisfiable over finitely-decomposable

region algebras that respect components, and, in particular, over RCP(R2). The

LCA-formula ψCCA is given by:

ψCCA := ψext ∧ ψint ∧ ψconn ∧ ¬ψtriv → ∃x∃yψ�(x, y).

Lemma 66. IfM is a complete region algebra, thenM |= ψCCA

Proof. By Lemma 65 and M |= ψext ∧ ψint ∧ ψconn ∧ ¬ψtriv, there exist regions

a and {ai}i∈ω in M such that: a =
∑

i∈ω ai; C(a,−a); and ai � ai+1 � a, for

i ∈ ω. Taking a−1 = 0, we define, for i ∈ ω:

bi = a2i · (−a2i−1), b =
∑

i∈ω bi, bi− =
∑

j<i bj, bi+ =
∑

j>i bj,

ci = a2i+1 · (−a2i), c =
∑

i∈ω ci, ci− =
∑

j<i cj, ci+ =
∑

j>i cj.

Note that fromM being a complete region algebra, it follows that b, c, bi−, ci−,

bi+, ci+ are all inM.

We now show that, ¬C(bi, b · (−bi)), i ∈ ω. From bi− ≤ a2i−2 � a2i−1 and

bi ≤ −a2i−1 it follows that ¬C(bi, bi−). From bi+ ≤ −a2i+1 � −a2i and bi ≤ a2i it

follows that ¬C(bi, bi+). Now, since b·(−bi) = bi−+bi+, ¬C(bi, b·(−bi)). Similarly,

¬C(ci, c · (−ci)).
We now show for every connected subregion b′ of b that b′ � a. If b′ is the

empty region, this is immediate. Suppose that b′ is nonempty. Since 0 < b′ ≤ b,

there exists some i ∈ ω such that b′ · bi 6= 0. From b′ being connected and

¬C(bi, b · (−bi)), it follows that b′ ≤ bi. Hence, b′ ≤ bi ≤ a2i � a. Similarly, for

every connected c′ of c is c′ � a.

Finally, from a = b+c and C(a,−a), it follows that either C(b,−a) or C(c,−a),

but since no connected subregion of b or c is in contact with −a, we get that

M |= ψCCA.

We show that there exists a region algebra in ΣNCA, which does not satisfy

ψCCA.

Lemma 67. RCP(R2) 6|= ψCCA.

Proof. We already noted that RCP(R2) 6|= ∃x∃yψ�(x, y), and it is routine to show

that RCP(R2) |= ψext ∧ ψint ∧ ψconn ∧ ¬ψtriv.

We can now state the main result of this section.
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Theorem 68.

- The LCA-theories of ΣCA and ΣCCA are different.

- The LCA-theories of ΣECA and ΣCECA are different.

- The LCA-theories of ΣNCA and ΣCNCA are different.

Proof. Lemma 66 and Lemma 67.

We can now deduce that RC(R2) and RCP(R2) have different LCA-theories.

In fact, the following more general result holds.

Theorem 69. Let X be a connected, compact and Hausdorff topological space,
such that RC(X ) is a non-trivial region algebra. Further, let M be a finitely
decomposable region algebra over X which respects components. Then RC(X )

andM have different LCA-theories.

Although ΣCCA, ΣCECA and ΣCNCA have different LCA-theories from their

respective larger classes, in the next theorem we show that none of these classes

is LCA-definable. In other words, there is no set of LCA-formulas TCCA such that

for every LCA-structureM,M |= TCCA if and only ifM ∈ ΣCCA, and similarly

for ΣCECA and ΣCNCA.

Theorem 70. ΣCA, ΣCECA and ΣCNCA are not LCA-definable.

Proof. We make use of the Downward Löwenheim-Skolem theorem (see The-

orem 13). Since ΣCNCA ⊆ ΣCECA ⊆ ΣCCA, it suffices to show that there ex-

ists a region algebrain ΣCNCA which is elementary equivalent to a structure in

ΣNCA \ ΣCCA. Let M ∈ ΣCNCA be the region algebra RC(R) considered as an

LCA-structure. Choose Q to be the countable set of the elements of RC(R) that

are closed intervals with rational endpoints. Since, |Q| + |LCA| ≤ ω ≤ |RC(R)|,
by Theorem 13, it follows that there exists a countable elementary substructure

N ofM whose domain contains Q. We claim that N is not complete. Suppose

it is. Every closed interval r in R is the least upper bound of all elements of Q

that are contained in r, i.e. r =
⋃
{q ∈ Q | q ≤ r}. Hence, since N is complete,

every closed interval r in R will be in N . But that contradicts the fact that N is

countable.
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We extend Theorem 68 to set algebras. Let ΣCLA be the class of all set

algebras, and ΣCCLA be the class of all complete set algebras. We will show

that ΣCLA and ΣCCLA have different Lcl-theories. For every set algebra M,

we denote the collection of regular closed sets inM byMRC .

Lemma 71. Let M be a set algebra over a topological space X . MRC is a re-
gion algebra and, ifM is a complete set algebra, thenMRC is a complete region
algebra.

Proof. Clearly, X and ∅ are inMRC . Also, if a, b ∈MRC , then so are a+b = a∪b,
a·b = (a ∩ b)◦− and−a = (aC)

−. Further, ifM is a complete set algebra and ai ∈
MRC , for i ∈ I, then so are

∑
i∈I ai = (

⋃
i∈I a

◦
i )
− and

∏
i∈I ai = −

∑
i∈I −ai.

It is an easy exercise to show that there exist an Lcl → LCA-interpretation

ofMRC inM. Hence we have the following:

Lemma 72. The LCA-theory ofMRC is Lcl-definable inM (see Definition 12).

Corollary 73. There exists an Lcl-formula ψCLA such that, for everyM∈ ΣCLA:

M |= ψCLA ⇐⇒ MRC |= ψCCA.

Lemma 74. ψCLA is in the Lcl-theory of ΣCCLA.

Proof. By Lemma 71, wheneverM is a complete set algebra,MRC is a complete

region algebra. From Theorem 68 it then follows that MRC |= ψCCA. Finally,

by Corollary 73, we get thatM |= ψCLA.

However, there exists a set algebra which does not satisfy ψCLA.

Lemma 75. There exists a set algebra N such that N 6|= ψCLA.

Proof. Let N be the Boolean subalgebra of (℘(R2),∪,∩, C , 0, 1) generated by

RCP(R2). Clearly, NRC and RCP(R2) coincide. By Lemma 67 it follows that

NRC 6|= ψCCA. Hence, by Lemma 73, N 6|= ψCLA.

As a result we get that:

Theorem 76. The Lcl-theories of ΣCLA and ΣCCLA are different.

Similar to the classes of complete contact algebras, one cannot prove a rep-

resentation theorem for ΣCCLA.
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Signatures
(C) (c,≤) (C, c,≤) (conv,≤) (C, conv) (closer)

RC(R) Decidable, NONELEMENTARY ∆1
ω-complete

D RCS(R) ∆1
ω-complete

o RCP(R) Decidable, NONELEMENTARY ∆1
ω-complete

m RCPA(R) ∆0
ω-complete

a RCPQ(R) ∆0
ω-complete

i RC(Rn) ∆1
ω-complete ∆1

ω-complete ∆1
ω-complete

n RCS(Rn) ∆0
ω-hard ∆1

ω-complete ∆1
ω-complete

s RCP(Rn) ∆0
ω-hard ∆1

ω-complete ∆1
ω-complete

RCPA(Rn) ∆0
ω-complete ∆0

ω-complete ∆0
ω-complete

RCPQ(Rn) ∆0
ω-complete ∆0

ω-complete ∆0
ω-complete

Table 4.1: Complexity map of first-order Euclidean spatial logics.

Theorem 77. ΣCCLA is not Lcl-definable.

Proof. Identical to the proof of Theorem 70.

4.3 Computability of Euclidean Spatial Logics

In [Grz51] Grzegorczyk showed that the first-order theories of a wide range

of topological structures are computationally at least as hard as the first-order

arithmetic of the natural numbers, and hence are undecidable. These include

first-order theories of the complete region algebras over Rn, n > 1. In this

section, we examine the exact complexity of different first-order theories of re-

gion algebras over Euclidean spaces. First we show that the Euclidean region

algebras over R have decidable first-order theories, and we establish a lower

complexity bound for these theories. Further, we discuss the undecidability of

the theories of the Euclidean region algebras over Rn, n > 1, and establish tight

upper complexity bounds for most of them. As a consequence of the tight com-

plexity bounds, we derive a surprising model-theoretic result (Theorem 104).

The results in this section appeared as [NPH10], and are summarised in Ta-

ble 4.1.
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4.3.1 Decidability over R: Upper Bounds

We show that the LC-theory of RC(R) is definable in the monadic second-order

theory of (Q, <), which was shown to be decidable in [Rab69].

Denote by L< the monadic second-order language of (Q, <). To establish an

LC → L< interpretation Γ of RC(R) in Q, we identify each region a ∈ RC(R)

with the set of rational points contained in it, i.e. a ∩ Q. Formally, we define a

function f : ℘(R) → ℘(Q) by f(a) = a ∩ Q. We already showed in Lemma 40

that f � RC(R) is injective, hence its inverse is well defined. To complete Γ,

we introduce L<-formulas ψRC(X) and ψC(X, Y ) defining, respectively, the f -

images of the regions in RC(R), and the contact relation on RC(R).

Denote by τ the open sets in R. It is readily checked that if two open subsets

of R intersect, then they share a rational point. Similarly, if an open set and

a regular closed set intersect, then they share a rational point. We now state

these facts formally, and we will use them implicitly throughout this section.

Fact 78. Let o1, o2 be open sets in R, and a ∈ RC(R). Then o1 ∩ a = ∅ if and only
if f(o1) ∩ f(a) = ∅, and o1 ∩ o2 = ∅ if and only if f(o1) ∩ f(o2) = ∅.

The set of f -images of intervals is defined by the formula:

ψi(X) := ∀x∀y(X(x) ∧X(y) ∧ x < y → ∀z(x < z ∧ z < y → X(z))).

The set of f -images of open intervals is defined by the formula:

ψo(X) := ψi(X) ∧ ∀x(X(x)→ ∃y∃z(X(y) ∧X(z) ∧ y < x ∧ x < z)).

We encode real numbers using Dedekind cuts, i.e. we identify a real number r

with the pair (L,R) of sets of rational numbers for which L = {q ∈ Q | q ≤ r}
and R = {q ∈ Q | q ≥ r}. We define the set of these pairs by the formula:

ψR(L,R) := L ∪R = 1 ∧ L 6= 0 ∧R 6= 0 ∧ ∀x∀y(L(x) ∧R(y)→ x ≤ y).

We define the set of pairs (q, A), where q is a rational number which is isolated

from the set of rational numbers A, using the formula:

ψiso(x,X) := ∃Y1(Y1(x) ∧ ψo(Y1) ∧ ∀Y2(ψo(Y2) ∧ Y2 ⊆ X → Y1 ∩ Y2 = 0)).
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We can define the set of f -images of regular closed sets in R using the formula:

ψRC(X) := ∀x(X(x)↔ ¬ψiso(x,X)).

Lemma 79. Let t ⊆ Q. Then Q |= ψRC [t] if and only if there exists a ∈ RC(R)

such that f(a) = t.

Proof. (⇒) Let t ⊆ Q be such that Q |= ψRC [t]. We define

a =
⋃
{o | Q |= ψo[f(o)] and f(o) ⊆ t} .

Since a is open, a− must be regular closed. We have to show that f(a−) = t.

For q ∈ Q, we have that q 6∈ t if and only if Q |= ψQiso[q, t]. I.e., q 6∈ t if and

only if there exists a neighbourhood of q which is disjoint from the f -image of

every open interval contained in t. Hence, q 6∈ t if and only if q is isolated from

a, which is exactly when q 6∈ f(a−).

(⇐) Let a ∈ RC(R). We will show that Q |= ψRC [f(a)]. For q ∈ Q we have

that q ∈ f(a) if and only if every neighbourhood of q intersects a◦, which is

exactly when every neighbourhood of q intersects some open interval contained

in a◦. Hence, q ∈ f(a) if and only if Q |= ¬ψQiso[q, f(a)].

We now show how to define the contact relation. First, we define the set

of tuples (U, V,W ) in ℘(Q) such that (U, V ) represents a point r ∈ R and W

represents a connected open neighbourhood of r.

ψ�(L,R,X) := ψR(L,R) ∧ ψo(X) ∧ L ∩X 6= 0 ∧R ∩X 6= 0

Then, we define the set of tuples (U, V,W ) in ℘(Q) such that (U, V ) represents

a point r ∈ R that is in the closure of W .

ψ∈(L,R,X) := ψR(L,R) ∧ ∀N(ψ�(L,R,N)→ N ∩X 6= 0).

Finally, two regular closed sets are in contact exactly when their f -images satisfy

the formula:

ψC(X, Y ) := ∃L∃R(ψ∈(L,R,X) ∧ ψ∈(L,R, Y )).

Lemma 80. Let t and u be subsets of Q such that Q |= ψRC [t] and Q |= ψRC [u].
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Then, Q |= ψC [t, u] if and only if C(f−1(t), f−1(u)).

Proof. C(f−1(t), f−1(u)) if there exists a real number r contained in f−1(t) and

f−1(u), which is exactly when there exists a real number r every neighbourhood

o of which intersects both f−1(t) and f−1(u). Hence, C(f−1(t), f−1(u)) if there

exists a real number r such that for every neighbourhood o of r, f(o) intersects

t and u, which is exactly when Q |= ψC [t, u].

Hence we have the following:

Lemma 81. The LC-theory of RC(R) is L<-definable in Q.

Proof. The formulas ψRC(X) and ψC(X, Y ), together with the inverse function

of f � RC(R) constitute an LC → L<-interpretation of RC(R) in Q.

Theorem 82. [Rab69] The monadic second-order theory of (Q, <) is decidable.

Theorem 83. The LC-, Lc- and Lconv-theories of RC(R), RCS(R), RCP(R),
RCPA(R) and RCPQ(R) are decidable.

Proof. A direct consequence of Theorem 82, Lemma 81, Lemma 60, Lemma 49

and the fact that a region in RC(R) is convex exactly when it is nonempty and

connected.

The decidability of the theories considered in this section was shown by re-

duction to the monadic second-order theory of (Q, <), which however is known

to be non-elementary. In the following section, we show that the theories of

interest are also non-elementary.

4.3.2 Decidability over R: Lower Bounds

We now show that the Lc-theory of RCP(R) is non-elementary by introducing a

polynomial reduction from the weak-monadic second-order theory of one suc-

cessor to the Lc-theory of RCP(R). Let LS1S denotes the monadic second-order

language of the structure (N, S), where S = {(n, n+ 1) | n ∈ N} is the succes-

sor relation, and let WS1S denotes the weak-monadic second-order theory of

(N, S).1 WS1S was shown to be non-elementary by Meyer [Mey75].

1Weak-monadic second order logic is an extension of first-order logic that allows quantifica-
tion over finite subsets of the domain (see Section 2.1).
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In this section we use the term regions to denote the elements of RCP(R).

For n ∈ N, we encode the initial segment of natural numbers N = {0, . . . , n}
of N by pairs of non-overlapping regions (a, b) in RCP(R) (later defined by the

formula ψ`(x, y)) such that: the components of a + b are bounded intervals; a

is connected and nonempty; and all the components of b are on the same side

of a (see Figure 4.2). A natural number k ∈ N is encoded by the (k + 1)th

component of b closest to a. A (finite) subset of N is represented by the sum

(in RCP(R)) of the representatives of its members. First, we introduce some

a b0 b1 b2 b3 b4 b5
. . . bn

{0, 2, 5, n}

Figure 4.2: A pair of regions (a, b) in RCP(R) encoding the set N = {0, . . . , n}.
Every k ∈ N is encoded by the component bk of b. The set {0, 2, 5, n} is encoded
by the region b0 + b2 + b5 + bn.

simple formulas. The following formula defines the set of pairs of regions (a, b)

such that a is a connected component of b:

ψcc(x, y) := c(x) ∧ x ≤ y ∧ ∀z(c(z) ∧ x ≤ z ∧ z ≤ y → z ≤ x).

Consider the formula

ψord(x, y, z) := c(x)∧c(y)∧c(z)∧¬c(y+x)∧¬c(y+z)∧∀t(c(t)∧x+z ≤ t→ y ≤ t).

Regions a, b and c satisfy ψord if they are pairwise disjoint, each of them is con-

nected and the endpoints of b are between the endpoints of a and the endpoints

of c (Figure 4.3).

a b c

Figure 4.3: A tuple of regions (a, b, c) satisfying ψord(x, y, z) in RCP(R).

The formula

ψv(x, y) := ∀x′(ψcc(x′, x)→ ψcc(x
′, y)),
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defines the pairs of regions (a, b) for which every component of a is a component

of b. We define the pairs of regions encoding initial segments of N using the

formula:

ψ`(x, y) := c(x) ∧ ¬c(−x) ∧ x · y = 0 ∧ ∀z(ψcc(z, y)→ ¬c(−z)) ∧

∀z∀t(ψcc(z, y) ∧ ψcc(t, y)→ ¬ψord(z, x, t));

We need a way of extending initial segments of N. We use the following formula

to compare encodings of initial segments of N.

ψ�(x, y, z) := ψ`(x, y) ∧ ψ`(x, z) ∧ ψv(y, z) ∧

∀u∀v(ψcc(u, y) ∧ ψcc(v, z) ∧ ψord(x, v, u)→ ψcc(v, y)).

This formula defines the set of tuples of regions (a, b, c) for which:

- (a, b) and (a, c) encode initial segments N and M of N, with N ⊆M ;

- (a, b) and (a, c) are compatible, i.e. each k ∈ N is represented in (a, b) and

(a, c) by the same region. (See Figure 4.4)

a b0 = c0
. . . bn = cn cn+1 . . . cm

b c

Figure 4.4: The pairs of regions (a, b) and (a, c) are compatible encodings of
initial segments of N. The tuple (a, b, c) satisfies the formula ψ�(x, y, z).

We now define formally the encoding of natural numbers and finite sets of

natural numbers.

Definition 84. Let (c, d) be a pair of regions satisfying ψ`(x, y). Further, let

a1, . . . , as be regions such that for each ai, the pair (ai, d) satisfies ψcc(x, y).

Finally, let b1, . . . , bt be regions such that for each bi, the pair (bi, d) satisfies the
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formula ψv(x, y). We define functions f and g as follows:

f(c, d, ai) := | {a′ | RCP(R) |= ψcc[a
′, d],RCP(R) |= ψord[c, a

′, ai]} |,

g(c, d, bj) := {f(c, d, b′) | M |= ψcc[b
′, bi]} ,

f(c, d, a1, . . . , as) := (f(c, d, a1), . . . , f(c, d, as)),

g(c, d, b1, . . . , bt) := (f(c, d, b1), . . . , f(c, d, bt)).

So, given a pair (c, d) of regions which encodes an initial segment N of N (i.e.

RCP |= ψ`[c, d]), and given a component a of d, f(c, d, a) returns the number

of components of d that are between c and a. If d1, . . . , ds are components of d

and b = d1 + · · ·+ ds, then g(c, d, b) returns the set of natural numbers encoded

by d1, . . . , ds. A number k ∈ N represented by a region a is contained in a finite

A ⊆ N represented by a region b exactly when a is a connected component of b.

Thus we define:

ψ∈(x, y) := ψcc(x, y).

Let the pair of regions (c, d) represents an initial segment N of N, and let the

regions a and b represent in (c, d) some natural numbers n1, n2 ∈ N . Then

n1 + 1 = n2 exactly when: a and b are distinct components of d; a is between c

and b; and there are no components of d between a and b. This is exactly when

(a, b, c, d) satisfy the formula

ψS(x, y, x0, x1) := ψcc(x, x1) ∧ ψcc(y, x1) ∧ ψord(x0, x, y) ∧ x 6= y ∧

∀z(ψcc(z, x1) ∧ ψord(x0, z, y) ∧ z 6= y → ψord(x0, z, x)).

For every LS1S-formula ϕ, we denote by δ(ϕ) the quantifier depth of ϕ. Let

LpS1S be the set of LS1S-formulas which are in prenex normal form. We define a

translation from LpS1S to Lc.
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Definition 85. For every LpS1S-formula ϕ, we define an Lc-formula ϕΓ induc-

tively:

(xn = xm)Γ := pn = pm,

(Xn = Xm)Γ := qn = qm,

(S(xn, xm))Γ := ψS(pn, pm, r, s0),

(xn ∈ X)Γ := ψ∈(pn, qm),

(¬ψ)Γ := ¬ψΓ,

(ψ′ ∧ ψ′′)Γ := ψ′Γ ∧ ψ′′Γ,

(∃xnψ)Γ := ∃pn∃sδ(ψ)

(
ψ�(r, sδ(ψ)+1, sδ(ψ)) ∧ ψcc(pn, sδ(ψ)) ∧ ψΓ

)
,

(∀xnψ)Γ := ∀pn∀sδ(ψ)

(
ψ�(r, sδ(ψ)+1, sδ(ψ)) ∧ ψcc(pn, sδ(ψ))→ ψΓ

)
,

(∃Xnψ)Γ := ∃qn∃sδ(ψ)

(
ψ�(r, sδ(ψ)+1, sδ(ψ)) ∧ ψv(qn, sδ(ψ)) ∧ ψΓ

)
,

(∀Xnψ)Γ := ∀qn∀sδ(ψ)

(
ψ�(r, sδ(ψ)+1, sδ(ψ)) ∧ ψv(qn, sδ(ψ))→ ψΓ

)
.

Note that the mapping (·)Γ : LpS1S → Lc is polynomial-time computable, and

we now show that it also preserves satisfiability.

Lemma 86. For every:

• formula ϕ ∈ LPMon
S1S with free variables among (x1, . . . , xs, X1, . . . , Xt);

• c, dδ(ϕ) ∈M such thatM |= ψ`[c, dδ(ϕ)];

• (ā, b̄) = (a1, . . . , as, b1, . . . , bt) ∈M s+t such that:

– M |= ψ∈[ai, dδ(ϕ)], for i = 1, . . . , s, and

– M |= ψv[bi, dδ(ϕ)], for i = 1, . . . , t;

we have that:

RCP(R) |= ϕΓ[ā, b̄, c, dδ(ϕ)] ⇐⇒ N |= ϕ[f(c, dδ(ϕ), ā), g(c, dδ(ϕ), b̄)].

Proof. We proceed by induction on the complexity of ϕ. In the case when ϕ is

an atomic formula, the claim follows from the fact that f and g are injective,

and from the properties of the formulas ψS(x, y, x0, x1) and ψ∈(x, y). In the case

when ϕ is of the form ¬ψ or (ψ1 ∧ ψ2), the claim is a direct consequence of the

inductive hypothesis and the definition of (·)Γ. The only non-trivial cases are
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when ϕ is of the form ∃xnψ, ∀xnψ, ∃Xnψ or ∀Xnψ. Since the proofs of the four

cases are identical, we show only the case when ϕ is of the form ∃xnψ. We have

that ϕΓ = ∃pn∃sδ(ψ)ψ�(sδ(ψ)+1, sδ(ψ)) ∧ ψcc(pn, sδ(ψ)) ∧ ψΓ. So:

RCP(R) |= ϕΓ[ā, b̄, c, dδ(ϕ)]

⇐⇒ for some as+1, dδ(ψ) ∈ RCP(R),RCP(R) |= ψ�[c, dδ(ϕ), dδ(ψ)],

RCP(R) |= ψ∈[as+1, dδ(ψ)] and RCP(R) |= ψΓ[ā, as+1, b̄, c, dδ(ψ)]

⇐⇒ for some as+1, dδ(ψ) ∈ RCP(R),RCP(R) |= ψ�[c, dδ(ϕ), dδ(ψ)],

RCP(R) |= ψ∈[as+1, dδ(ψ)] and N |= ψ[f(c, dδ(ψ), ā, as+1), g(c, dδ(ψ), b̄)]

⇐⇒ for some nas+1 ∈ N,N |= ψ[f(c, dδ(ψ), ā, ), nas+1 , g(c, dδ(ψ), b̄)]

⇐⇒ N |= ϕ[f(ā), g(b̄)].

As a direct consequence of Lemma 86, we get that:

Lemma 87. For every sentence ϕ ∈ LpS1S

N |= ϕ ⇐⇒ RCP(R) |= ∀r∀sδ(ϕ)ψ`(r, sδ(ϕ))→ ϕΓ.

Theorem 88. [Mey75] The monadic second-order theory of the structure (N, S)

is non-elementary.

Since the mapping (·)Γ : LpS1S → Lc is polynomial-time computable, we get the

following corollary.

Corollary 89. The Lc-theory of RCP(R) is non-elementary.

More generally:

Theorem 90. The Lc- and LC-theories of RC(R), RCS(R), RCP(R), RCPA(R) and
RCPQ(R) are non-elementary.

Proof. Follows from Corollary 89, Lemma 49 and Lemma 60.

In this section we showed that, although the topological theories of region

algebras over R are decidable, they are non-elementary. In the following sec-

tion, we show that the Euclidean spatial logics in higher dimensions are all

undecidable.
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4.3.3 Undecidability over Rn: Lower Bounds

In this section we show that, for n > 1, the Lc-theory of every region subalgebra

of RC(Rn) that extends RCPQ(Rn) is ∆0
ω-hard, and that the Lc-theory of RC(Rn)

is ∆1
ω-hard. We combine ideas from [Dav06] and [Grz51].

LetM be a region subalgebra of RC(Rn) that extends RCPQ(Rn), for n > 1.

In this section, we use the term regions to denote the members ofM. For every

region a, denote by |a| the number of connected components of a. We define the

first-order theory of (N,+, ·) in the Lc-theory ofM, by encoding every natural

number k by the regions in M having k connected components. Every region

with finitely many components encodes a natural number, so we need to define

in Lc the set of all such regions. Before that, we provide an Lc-formula ψ∼(x, y)

that is satisfied by the pairs of regions (a, b) in M having the same number of

connected components.

As before, the Lc-formula

ψcc(x, y) := c(x) ∧ x ≤ y ∧ ∀z(c(z) ∧ x ≤ z ∧ z ≤ y → z ≤ x)

defines the set of pairs of regions (a, b) inM such that a is a connected compo-

nent of b.

For regions a and a′ inM, we say that a′ is a shrinking of a if and only if every

connected component of a′ is contained in a connected component of a and

every connected component of a contains exactly one connected component of

a′. The Lc-formula

ψshrink(x, y) := x ≤ y ∧ ∀y′(ψcc(y′, y)→ ψcc(x · y′, x))

defines the pairs of regions (a′, a) such that a′ is a shrinking of a. Clearly, if

a region is a shrinking of another region, then the two regions have the same

number of components.

a
e

a
e

a

e

Figure 4.5: Two regions a and e such that e is a shrinking of a.

We say that a region c is a wrapping of the regions a and b if and only if a
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and b are contained in c, and every connected component of c contains exactly

one connected component of both a and b. Evidently, the formula

ψd∼(x, y) := ∃z(x+ y ≤ z ∧ ∀z′(ψcc(z′, z)→ ψcc(x · z′, x) ∧ ψcc(y · z′, y))

defines the pairs of regions (a, b) for which there exists a region c which is a

wrapping of a and b. Again, if two regions a and b have a common wrapping,

then they have the same number of components.

In the following lemma we show that the binary relation |a| = |b| can be

expressed in terms of “shrinking” and “wrapping”.

Lemma 91. Let a, b ∈ M. Then a and b have the same number of components
exactly when there exist regions a′, b′ and c such that a′ and b′ are shrinkings of a
and b, and c is a wrapping of a′ and b′.

Proof. (⇐) Since the regions a′ and b′ have a common wrapping, |a′| = |b′|.
Further, since a′ and b′ are shrinkings of a and b, |a| = |a′| and |b| = |b′|. Hence,

|a| = |b|.

d · (−b) 6= 0

db bd′

d · (−b) = 0

b d d′

Figure 4.6: Shrinking a component d of b to a closed n-dimensional rational hy-
percube that is either disjoint from b or contained in the interior of a component
of b.

(⇒) Denote by C the set of closed n-dimensional rational hypercubes. Note

that C is dense in M. Let a and b have the same number of components. We

show how to construct shrinkings of a and b, whose components are pairwise

disjoint regions in C.

Consider a component d of a that has a nonempty interior. If d · (−b) is

nonempty, choose d′ to be a region in C that is contained in the interior of

d ·(−b). Otherwise, take d′ to be a region in C that is contained in the interior of

d. Hence, d′ is either disjoint from b, or contained in the interior of a component

of b. Define a′ =
∑
{d′ | d a component of a}. If e is a component of b that has

a nonempty interior, then e · (−a′) is nonempty. Indeed, suppose that e is part
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of a′. Since e is connected, it is part of a component d of a′. As we previously

observed, d must also be part of e, and in fact contained in the interior of e.

So, d = e and d ⊆ e◦ = d◦, which contradicts the choice of d. Hence, for

every component e of b we can choose a region e′ in C contained in e · (−a′).
Define b′ = {e′ | e is a component of b}. Let η be a countable cardinal number

(possibly infinite), and let {ai}i<η and {bi}i<η be the components of a′ and b′

that have nonempty interiors. Set c0 = a′ + b′. Note that the complement of c0

is connected so that we can connected the components a0 and b0 with regular

closed “rod” d0 maintaining the connectivity of the complement of c1 = c0 + d0.

Hence, we can connect the components a1 and b1 in the complement of c1 with

a regular closed “rod” d1 maintaining the connectivity of the complement of

c2 = c1 +d1. In general, for each i < η, we connect ai with bi in the complement

of ci with a regular closed di so that ci+1 = di + ci has a connected complement.

Finally, we take c =
∑
{ci}i<η. Clearly, c is a wrapping of a and b.

a0

b0

d0

a1

b1

d1

a2

b2

d2

a3

b3

d3

a4

b4

d4

a5

b5

d5

a6

b6

d6

a7

b7

d7

a8

b8

d8

a9

b9

d9

. . .

. . .

Figure 4.7: Connecting up the components of a and b.

As a result, we get that two regions have the same number of components if

and only if they satisfy the formula

ψ∼(x, y) := ∃x′∃y′(ψshrink(x′, x) ∧ ψshrink(y′, y) ∧ ψd∼(x′, y′))

It is easy to see that the formula

ψS(x, y) := ∃x′(ψcc(x′, x) ∧ ψ∼(x · −x′, y))

defines the pairs of regions (a, b) for which |a| = |b| + 1 (taking ℵ0 + 1 = ℵ0).

Hence, the formula

ψfin(x) := ¬ψS(x, x)
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defines the regions having finitely many connected components. Since M ex-

tends RCPQ(Rn), we get the following lemma.

Lemma 92. The function fΓ : ψfin(M)→ N defined by

fΓ(a) = |a|

is surjective.

Two regions have disjoint components if they satisfy the Lc-formula:

ψ¬C(x, y) := ∀x′∀y′(ψcc(x, x′) ∧ ψcc(y, y′)→ ¬c(x′ + y′)).

We define the arithmetic operations on natural numbers by the formulas:

ψ+(x, y, z) := ∃x′∃y′(ψ∼(x, x′) ∧ ψ∼(y, y′) ∧ ψ¬C(x′, y′) ∧ ψ∼(x′ + y′, z));

ψ×(x, y, z) := ∃u∃v[ψshrink(u, z) ∧ u ≤ v ∧ ψ∼(v, y) ∧ ∀t(ψcc(t, v)→ ψ∼(t · u, x))].

Lemma 93. Let a, b and c be regions in M having finitely many components.
Then:

M |= ψ+[a, b, c] ⇐⇒ |a|+ |b| = |c|;

M |= ψ×[a, b, c] ⇐⇒ |a| · |b| = |c|.

Proof. The only difficulty is to show that if |a|·|b| = |c|, thenM |= ψ×[a, b, c]. We

proceed as in Lemma 91, to show that there exists a shrinking c′ of c whose con-

nected components are closed n-dimensional hypercubes. It is routine to show

by induction on the number of components of b that there exist connected re-

gions {di}i<|b|, each containing exactly |a| components of c′ and ¬C(di,
∑

j 6=i dj).

Thus,M |= ψ×[a, b, c].

We have shown that:

Lemma 94. There exists an interpretation of ∆0
ω in the Lc-theory ofM.

As a result we get that:

Theorem 95. Let σ be one of the signatures (C), (c,≤), (conv,≤) and (closer), and
let M be any of RC(Rn), RCS(Rn), RCP(Rn), RCPA(Rn) and RCPQ(Rn), n > 1.
Then the first-order σ-theory ofM is ∆0

ω-hard.
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Proof. Lemma 94, Lemma 49 and Lemma 17.

We now show that the first-order theory of (N, ℘(N),+, ·,∈) is definable in the

Lc-theory of RC(Rn). We identify every set A ⊆ N with a pair of regions (a, b) in

RC(Rn) such that, for every k ∈ N, k ∈ A if and only if there exists a connected

component a′ of a with |a′ · b| = k. We define the set of such pairs using the

formula

ψset(x, y) := ∀x′(ψcc(x′, x)→ ψfin(x′ · y)).

The membership relation can then defined using the formula

ψ∈(x, y, z) := ∃x′(ψcc(x′, x) ∧ ψ∼(z, x′ · y)).

Let the regions a, b and c in RC(Rn) be such that c represents a natural num-

ber k and (a, b) represents a set of natural numbers A. Then (a, b, c) satisfies

ψ∈(x, y, z) if and only if k ∈ A. Two pairs of regions (a, b) and (a′, b′) in RC(Rn)

represent the same set of natural numbers if and only if (a, b, a′, b′) satisfy the

formula:

ψset∼(x, y, x′, y′) := ∀z(ψ∈(x, y, z)↔ ψ∈(x
′, y′, z)).

We have to define a surjective map ψset(RC(Rn))→ ℘(N).

Lemma 96. The function f ′Γ : ψset(M)→ ℘(N) is surjective, where

f ′Γ(a, b) = {|a′ · b| : a′ is a connected component of a} .

The encodings of natural numbers and sets of natural numbers are compatible

in the following sense.

Lemma 97. Let a, b, c ∈ RC(Rn). If RC(Rn) |= ψfin[a] andM |= ψset[b, c], then

M |= ψ∈[a, b, c] ⇐⇒ f(a) ∈ f ′(b, c).

We have shown the following lemma.

Lemma 98. The first-order theory of (N, ℘(N),+, ·,∈) is Lc-definable in RC(Rn),
n > 1.

As a result we also have that:
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Theorem 99. Let σ be one of the signatures (C), (c,≤), (conv,≤) and (closer).
Then the first-order σ-theory of RC(Rn), n > 1, is ∆1

ω-hard.

Proof. Lemma 98, Lemma 49 and Lemma 18.

The first-order theories of some of the structures considered in Theorem 95

and Theorem 99 are known to have even higher computational complexities. In

[Dav06] it was shown that if σ = (conv,≤) or σ = (closer), then the first-order σ-

theories of RC(Rn), RCS(Rn) and RCP(Rn), n > 1, are ∆1
ω-hard. In contrast with

the results that we established in Section 4.3.1, it was also shown in [Dav06]

that the (closer)-theories of RC(R), RCS(R) and RCP(R) are ∆1
ω-hard, and that

the (closer)-theories of RCPA(R) and RCPQ(R) are ∆0
ω-hard. These results are

summarised in the following lemmas.

Lemma 100. [Dav06, Section 5]

- The Lcloser-theories of RC(R), RCS(R) and RCP(R) are ∆1
ω-hard.

- The Lcloser-theories of RCPA(R) and RCPQ(R) are ∆0
ω-hard.

Theorem 101. [Dav06, Lemma 8] The Lconv- and Lcloser-theories of RC(Rn),
RCS(Rn) and RCP(Rn), n > 1, are ∆1

ω-hard.

In this section we discussed lower complexity bounds for a number of Eu-

clidean spatial logics. In the following section we show for all but two of these

logics that the established lower complexity bounds are tight.

4.3.4 Undecidability over Rn: Upper Bounds

In this section we establish upper complexity bounds for a number of Euclidean

spatial logics. We start with the theories of region algebras of semi-linear re-

gions.

Semi-Linear Regions

Recall from Section 2.4 the signature σ+
F = (<,+, ·, 0, 1, π, [ ], N). We show that

for n > 0 the first-order theories of the structures (RCP(Rn), closer),

(RCPA(Rn), closer) and (RCPQ(Rn), closer) are definable in the first-order the-

ories of the structures (R, σ+
F ), (A, σ+

F ) and (Q, σ+
F ), respectively. We already
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saw in Section 2.4 that (R, σ+
F ) is in ∆1

ω and that (A, σ+
F ) and (Q, σ+

F ) are in ∆0
ω.

Throughout this section R denotes any of the fields R, A and Q, R denotes the

structure (R, σ+
F ) and RCPR(Rn) denotes RCP(Rn).

Recall from Section 2.6 that the regions in RCPR(Rn) are exactly the sums of

finitely many products of finitely many half-spaces whose boundaries are n− 1-

dimensional hyperplanes definable by polynomials in R[X1, . . . , Xn]. Observe

that:

RCPR(Rn) =

{ m∑
i=1

m∏
j=1

{
(x1, . . . , xn) ∈ Rn

∣∣∣ n∑
k=1

ti,jk xk + ti,jn+1 ≤ 0
}∣∣∣

i, j = 1, . . . ,m; ti,j1 , . . . , t
i,j
n+1 ∈ R

}
.

So, for every sequence of sequences of half-spaces in RCPR(Rn)

s = ((a1,1, . . . , a1,m), . . . , (am,1, . . . , am,m)),

there exists a unique region a ∈ RCPR(Rn) such that a =
m∑
i=1

m∏
j=1

ai,j. Conversely,

every region a ∈ RCPR(Rn) is represented by some (in fact infinitely many)

sequences of that form. This allows us to identify the regions in RCPR(Rn) with

sequences of sequences of half-spaces.

We now define an interpretation of the structure (RCPR(Rn), closer) in the

structure R = (R, σ+
F ). We introduce first-order σ+

F -formulas defining in R
different n-dimensional entities related to the regions in RCPR(Rn). Every point

in Rn is identified by the sequence of its coordinates:

ψ•(x) := π(x) ∧ x[0] = n.

We encode every half-space A by the sequences of the n + 1 coefficients of a

linear polynomial inequality defining A:

ψ\(x) := π(x) ∧ x[0] = n+ 1.

Basic polytopes in RCPR(Rn) are defined by the formula:

ψbptope(x) := π(x) ∧ ∀i
(
N(i) ∧ 0 < i ∧ i ≤ x[0]→ ψ\(x[i])

)
.
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Polytopes in RCPR(Rn) are then defined by the formula:

ψptope(x) := π(x) ∧ ∀i
(
N(i) ∧ 0 < i ∧ i ≤ x[0]→ ψbptope(x[i])

)
.

We now define membership relations. Whether a point is contained in a half-

space is determined by the formula:

ψ∈\(x, y) :=
n∑
i=1

(x[i] · y[i]) + y[n+ 1] ≤ 0.

Whether a point is contained in the interior of a half-space is determined by the

formula:

ψ∈◦\(x, y) :=
n∑
i=1

(x[i] · y[i]) + y[n+ 1] < 0.

Whether a point is contained in the interior of the product of finitely many

half-spaces is determined by the formula:

ψ∈◦bptope(x, y) := 0 < y[0] ∧ ∀i
(
N(i) ∧ 0 < i ∧ i ≤ y[0]→ ψ∈◦\(x, y[i])

)
.

A point in Rn is contained the product of finitely many half-spaces a1, . . . , as in

RCPR(Rn) (s ∈ N), if it is contained in a1 · · · as and a1 · · · as has a nonempty

interior. This is determined by the formula:

ψ∈bptope(x, y) := ∃z(ψ∈◦(z, y)) ∧ ∀i
(
N(i) ∧ 0 < i ∧ i ≤ y[0]→ ψ∈\(x, y[i])

)
.

A point is contained in the sum of finitely many basic polytopes, if it is contained

in at least one of them:

ψ∈ptope(x, y) := ∃i
(
N(i) ∧ 0 < i ∧ i ≤ y[0] ∧ ψ•∈bptope(x, y[i])

)
.

Because of Lemma 40, the following formula defines the “part-of” relation in

RCPR(Rn):

ψ≤(x, y) := ∀z(ψ•(z) ∧ ψ∈ptope(z, x)→ ψ∈ptope(y, x)).

Two points in Rn represent the same polytope if they satisfy the formula:

ψptope∼(x, y) := ψ≤(x, y) ∧ ψ≤(y, x).
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The following formula determines when a point in Rn is contained in the inte-

rior of a region in RCPR(Rn):

ψ∈◦ptope(x, y) := ∃z(ψbptope(z) ∧ ψ≤(z, y) ∧ ψ∈◦bptope(x, z)).

For a1, a2, b1, b2 ∈ Rn, a1 is closer to a2 than b1 is to b2 if (a1, a2, b1, b2) satisfy the

formula:

ψ•closer(p, q, r, s) :=
n∑
i=1

(
(p[i]− q[i]) · (p[i]− q[i])

)
≤

n∑
i=1

(
(r[i]− s[i]) · (r[i]− s[i])

)
.

Finally, employing Lemma 40 we define the “closer-than" relation using the

formula:

ψcloser(x, y, z) := ∀p∀q
(
ψ∈◦ptope(p, x) ∧ ψ∈◦ptope(q, z)→

∃r∃s
(
ψ∈◦ptope(r, x) ∧ ψ∈◦ptope(s, y) ∧ ψ•closer(r, s, p, q)

))
.

We can now prove the following lemma.

Lemma 102. For n > 0, the first-order theory of (RCPR(Rn), closer) is definable
in the first-order theory of R.

Proof. Consider the interpretation defined by:

1. the formulas ψptope(x) and ψptope∼(x, y);

2. the formula ψcloser(x, y, z) corresponding to the “closer-than" relation;

3. the surjective map f : ψptope(R)→ RCPR(Rn) defined by:

f(a) =

a[0]∑
i=1

a[i][0]∏
j=1

{
(x1, . . . , xn) ∈ Rn

∣∣∣ n∑
k=1

a[i][j][k] · xk+a[i][j][n+1] ≤ 0
}
.

Hence we have established the following upper complexity bounds.

Theorem 103. Let σ be one of the signatures (C), (conv,≤) and (closer), and
n > 0. Then:

- (RCPQ(Rn), σ) is in ∆0
ω (Lemma 102, Lemma 16 and Lemma 19);

- (RCPA(Rn), σ) is in ∆0
ω (Lemma 102, Lemma 16 and Lemma 20);



CHAPTER 4. FIRST-ORDER SPATIAL LOGICS 94

- (RCP(Rn), σ) is in ∆1
ω (Lemma 102, Lemma 16 and Lemma 21).

We obtain a surprising model-theoretic result from the established complex-

ity bounds. Pratt [Pra99] observed that the first-order σconv-theories of RCP(R2)

and RCPQ(R2) are different. The observation is based on a simple geometrical

figure allowing the construction, in RCP(R2) of square roots of arbitrary lengths.

Because all real numbers constructable in this way are algebraic, one might be

tempted to think that the first-order σconv-theories of RCPA(R2) and RCP(R2)

are the same. This, however, turns out to be false, because, as we just showed,

the two theories have different complexities.

Theorem 104. The structures (RCP(Rn), conv,≤) and (RCPA(Rn), conv,≤) are
not elementary equivalent, for n ≥ 2.

Semi-Algebraic Regions

In this section we show that the first-order theories of (RCS(Rn), closer), for

n > 0 , are definable in the first-order theory of R = (R, <,+, ·, 0, 1, π, [ ], N).

To do so, we define in R the sets of semi-algebraic sets in Rn, and by the means

of n-balls we define those which are regular-closed. We fix n > 0.

We start by defining in R the set of semi-algebraic sets in Rn. Recall from

Section 2.6 that the semi-algebraic subsets of Rn are those of the form:

s⋃
i=1

ri⋂
j=1

{
x ∈ Rn

∣∣fi,j ∗i,j 0
}
,

where fi,j is a polynomial in R[X1, . . . , Xn] and ∗i,j is one of < and =, for i =

1, . . . , s and j = 1, . . . , ri.

We identify each point in Rn with the n-tuple of its coordinates. I.e. :

ψ•(x) := π(x) ∧ x[0] = n.

We now define some operations on sequences of real numbers. The formulas

ψ]r̄(x, y) := π(x) ∧ ∃z
(
π(z) ∧ y = z[z[0]] ∧ x[0] = z[0] ∧ x[1] = z[1] ∧

∀t(N(t) ∧ 1 ≤ t ∧ t < x[0]→ z[t+ 1] = z[t]]x[t+ 1])
)
,
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where ] is either + or ·, define the sum and product of the elements of a se-

quence. The formulas

ψr̄]r̄(x, y, z) := π(x) ∧ π(y) ∧ π(z) ∧ x[0] = y[0] ∧ y[0] = z[0] ∧

∀t(N(t) ∧ 1 ≤ t ∧ t ≤ x[0]→ z[t] = x[t]]y[t]),

where ] is either + or · define the element-wise sum and product of sequences.

Exponentiation can be defined by the formula

ψxn(x, y, z) := N(y) ∧ ∃t
(
π(t) ∧ t[0] = y + 1 ∧ t[1] = 1 ∧ z = t[t[0]] ∧

∀s(N(s) ∧ 1 ≤ s ∧ s ≤ y → t[s+ 1] = t[s] · x)
)
.

We identify a polynomial equation/inequality with the a sequence of real num-

bers each encoding one of the terms. For example the equation
√

2x5
1 + ex3

1x
7
4 +

5 = 0 and the inequality
√

2x5
1 + ex3

1x
7
4 + 5 < 0 are encoded by the sequences

(0, ((
√

2, ((1, 5))), (e, ((1, 3), (4, 7))), (5, ())));

(1, ((
√

2, ((1, 5))), (e, ((1, 3), (4, 7))), (5, ()))).

We define a factor to be the part of a term without the coefficient. We encode a

factor as a sequence of pairs of natural numbers such that a pair (i, p) represents

the variable xi raised to the power of p. We define the set of factors using the

formula:

ψfactor(x) := π(x) ∧ ∀y(N(y) ∧ 1 ≤ y ∧ y ≤ x[0]→

π(x[y]) ∧ x[y][0] = 2 ∧N(x[y][2])) ∧

N(x[y][1]) ∧ 1 ≤ x[y][1] ∧ x[y][1] ≤ n.

A term is then just a pair of a real number (a coefficient) and a factor:

ψterm(x) := π(x) ∧ x[0] = 2 ∧ ψfactor(x[2]).
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Polynomials, polynomial equations and polynomial inequalities are defined by:

ψPoly(x) := π(x) ∧ ∀y(N(y) ∧ 1 ≤ y ∧ y ≤ x[0]→ ψterm(x[y]));

ψPoly=(x) := π(x) ∧ x[0] = 2 ∧ x[1] = 0 ∧ ψPoly(x[2]);

ψPoly<(x) := π(x) ∧ x[0] = 2 ∧ x[1] = 1 ∧ ψPoly(x[2]).

The semi-algebraic sets are identified with the sequence of polynomial equa-

tions and inequalities that define them:

ψSAS(x) := π(x) ∧ ∀y(N(y) ∧ 1 ≤ y ∧ y ≤ x[0]→ ψPoly=(x) ∨ ψPoly<(x)).

In few steps we define the relation f(x) = y, for f ∈ R[X1, . . . , Xn], x ∈ Rn and

y ∈ R.

ψfactorV al(x, y, z) := ∃t(π(t) ∧ t[0] = x[0] ∧ z = t[t[0]] ∧

∀s(N(s) ∧ 1 ≤ s ∧ s ≤ t[0]→

ψxn(y[x[s][1]], x[s][2], t[s])));

ψtermV al(x, y, z) := ∃z′(ψfactorV al(x[2], y, z′) ∧ z = z′ · x[1]);

ψPolyV al(x, y, z) := ∃t(π(t) ∧ t[0] = x[0] ∧ ψ+r̄(t, z)

∀s(N(s) ∧ 1 ≤ s ∧ s ≤ t[0]→ ψtermV al(x[s], y, t[s])).

A point p is contained in a semi-algebraic set A if and only if p and A satisfy the

formula:

ψ•∈SAS(x, y) := ∃t
(
N(t) ∧ 1 ≤ t ∧ t ≤ y[0] ∧(

(ψPoly=(y[t]) ∧ ψPolyV al(y[t], x, 0)) ∨

(ψPoly<(y[t]) ∧ ∃s(s < 0 ∧ ψPolyV al(y[t], x, s)))
))
.

To recognise the semi-algebraic sets which are regular closed, we impose addi-

tional conditions stated in terms of open n-balls. We identify an n-ball with the

n+ 1 coefficients of its equation (
∑n

i=1(xi − ai)2 < an+1).

ψ©(x) := π(x) ∧ x[0] = n+ 1.



CHAPTER 4. FIRST-ORDER SPATIAL LOGICS 97

Whether a a point lies in the interior of a ball is determined by the formula

ψ•∈©(x, y) :=
n∑
i=1

(x[i]− y[i])2 < x[n+ 1],

and whether a point is isolated from a semi-algebraic set is determined by the

formula

ψ�(x, y) := ∃z(ψ©(z) ∧ ψ•∈©(x, z) ∧ ∀t(ψ•(t) ∧ ψ•∈©(t, z)→ ¬ψ•∈SAS(t, y))).

Consider the function fn : ℘(Rn)→ ℘(Qn) given by:

fn(a) := a ∩Qn.

A set of rational points is an fn-image of a regular closed set if it contains exactly

the rational points that are dense in it, i.e. exactly the points which cannot be

isolated from it by an open ball. This is defined by the formula:

ψRCS(x) := ψSAS(x) ∧ ∀y(ψ•∈©(y, x)↔ ¬ψ�(y, x)).

Two regular closed semi-algebraic sets are the same if they satisfy:

ψRCS∼(x, y) := ∀t(ψ•(t)→ (ψ•∈SAS(t, x)↔ ψ•∈SAS(t, y))).

The formula ψcloser(x, y, z) is a direct translation of the definition of the relation

“closer-than”.

ψcloser(x, y, z) := ∀p∀q(ψ•∈SAS(p, x) ∧ ψ•∈SAS(q, z)→

∃r∃s(ψ•∈SAS(r, x) ∧ ψ•∈SAS(s, y) ∧
n∑
i=1

(r[i]− s[i])2 ≤
n∑
i=1

(p[i]− q[i])2)).

We can now show that:

Lemma 105. For n > 0, the first-order theory of (RCS(Rn), closer) is first-order
definable in R.

Proof. Consider the interpretation defined by:

1. the formulas ψRCS(x) and ψRCS∼(x, y);
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2. the formula ψcloser(x, y, z) corresponding to the “closer-than" relation;

3. the surjective map f : ψRCS(R)→ RCS(Rn) defined by:

f(a) = {(k[1], . . . , k[n]) | R |= ψ•[k],R |= ψ•∈SAS[k, a]} .

We have established the following upper complexity bounds.

Theorem 106. Let σ be one of the signatures (C), (conv,≤) and (closer). Then
the first-order σ-theory RCS(Rn) is in ∆1

ω, n > 0.

Proof. Follows from Lemma 105, Lemma 16 and Lemma 21.

Non-tame Regions

In this section we show that for n > 0 the first-order theory of the structure

(RC(Rn), closer) is second-order definable inQ = (Q, <,+, ·, 0, 1, π, [ ], N), which

we already saw in Section 2.4 to be in ∆1
ω.

Recall that a subset of Rn is regular closed if and only if it contains exactly

the points that are dense in it. So, we can identify each region in RC(Rn) with

the set of rational points that it contains. A point is “dense in” (as opposed to

“isolated from”) a set if no open neighbourhood of the point is disjoint with the

set. Again, we make use of the mapping fn : ℘(Rn)→ ℘(Qn), defined by:

fn(a) := a ∩Qn.

As usual, we identify each rational point with its coordinates.

ψ•(x) := π(x) ∧ x[0] = n.

We identify each rational balls in Rn with the n + 1 coefficients of its equation

(
∑n

i=1(xi − ai)2 < an+1).

ψ©(x) := π(x) ∧ x[0] = n+ 1.

We can determine when a rational point lies in the interior of a ball using the

formula

ψ•∈©(x, y) :=
n∑
i=1

(x[i]− y[i])2 < x[n+ 1].
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Also, we determine when rational point being isolated from a set using the

formula

ψ�(x,X) := ∃z(ψ©(z) ∧ ψ•∈©(x, z) ∧

∀t(¬(ψ•∈©(t, z) ∧X(t)))).

A set of rational points is an fn-image of a regular closed set if it contains exactly

the rational points that are dense in it. This is determined by the formula:

ψRC(X) := ∀x(X(x)→ ψ•(x)) ∧ ∀x(X(x)↔ ¬ψ�(x,X)).

Two regular closed sets are equal if and only if they contain the same set of

rational points. This is determined by the formula:

ψRC∼(X, Y ) := ∀x(X(x)↔ Y (x)).

We determine whether point is contained in a regular closed set using the for-

mula:

ψ∈◦(x, y) := ∃y(ψ©(y) ∧ ψ•∈©(x, y) ∧ ∀t(ψ•∈©(t, z)→ t ∈ X)).

Let a1, a2, b1, b2 ∈ Qn. Then a1 is closer to a2 than b1 is to b2 if and only if the

encodings of a1, a2, b1 and b2 satisfy the formula:

ψ•closer(x, y, z, t) :=
n∑
i=1

(x[i]− y[i])2 ≤
n∑
i=1

(z[i]− t[i])2.

Because of Lemma 40, we can define the ternary relation “closer-than" using

the formula:

ψcloser(X, Y, Z) := ∀x∀z
(
ψ•(x) ∧ ψ•(z) ∧ ψ∈◦(x,X) ∧ ψ∈◦(z, Z)→

∃x′∃y(ψ•(x
′) ∧ ψ•(y) ∧ ψ∈◦(x′, X) ∧ ψ∈◦(y, Y )

∧ψ•closer(x′, y, x, z))
)
.

Putting this all together, we get the following lemma:

Lemma 107. For n > 0, the first-order theory of (RC(Rn), closer) is second-order
definable in Q.



CHAPTER 4. FIRST-ORDER SPATIAL LOGICS 100

Proof. Consider the interpretation defined by:

1. the formulas ψRC(X) and ψRC∼(X, Y );

2. the formula ψcloser(X, Y, Z) corresponding to the relation “closer-than”;

3. the inverse of fn as a surjective map.

As a corollary we get the following upper complexity bounds:

Theorem 108. Let σ be one of (C), (conv,≤) and (closer). Then the first-order
theory of (RC(Rn), σ) is in ∆1

ω.

Proof. Follows from Lemma 105, Lemma 16 and Lemma 19.

4.4 Conclusion

In this chapter we considered first-order spatial logics. We discussed axiomati-

sations of theories of set algebras and region algebras over different topological

spaces. We showed that the theories of the corresponding complete set alge-

bras and region algebras are different (Theorem 68, Theorem 76) which, of

course, raises the problem of finding axiomatisations of these theories. Addi-

tionally, we examined the computational properties of various Euclidean spatial

logics. We showed that the region algebras over R have decidable topological

theories (Theorem 83), which are all non-elementary (Theorem 90). In higher

dimensions, all Euclidean region algebras have undecidable theories, which are

sufficiently expressive to encode first-order arithmetic (Theorem 95) and, in

some cases, second-order arithmetic as well (Theorem 99, Theorem 101). We

established the exact complexity bounds for all but two of these theories (Theo-

rem 103, Theorem 106 and Theorem 108), which helped us to derive a surpris-

ing model-theoretic result about the region algebras of polytopes and algebraic

polytopes (Theorem 104).

The study of spatial logics over arbitrary topological spaces is of great the-

oretical interest. However, from practical point of view, the most interesting

spatial logics are the Euclidean spatial logics. As we established in this chapter,

the only decidable Euclidean spatial logics are those over R, which are arguably

suitable for reasoning about regions occupied by physical objects. The undecid-

ability of Euclidean spatial logics in higher dimensions motivates the pursuit of
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decidable fragments of these logics. In the following chapter we study the com-

putational properties of the spatial logics that have gained most of the attention

of the AI research community—the quantifier-free Euclidean spatial logics.



Chapter 5

Quantifier-Free Euclidean Spatial
Logics

From an AI perspective, the most interesting spatial logics are the ones that

can be used in practice. Given that most reasonable first-order spatial logics are

undecidable, a natural thing to do is to examine the computational properties of

spatial logics with simpler logical syntax. In this chapter we focus on quantifier-

free spatial logics featuring topological and Boolean primitives.

Due to the limited expressiveness of quantifier-free logics, the choice of dif-

ferent signatures leads to essentially different quantifier-free logics. Consider

for example the signature σC = (C) consisting only of the binary relational

symbol interpreted as the contact relation (two regions are in contact if they

share a point). As we discussed in Section 4.1, the Boolean primitives and the

property of being connected are definable in the first-order σC-logic of most

reasonable region algebras. The situation with the corresponding quantifier-

free logic is completely different—not only that connectedness and the Boolean

operations and relations are not definable, but one can hardly define any sensi-

ble relation other than the contact relation, its complement and the property of

being a non-trivial region (different from the empty set and the whole space).

This naturally leads to a significant increase in the number of “non-equivalent”

topological signatures for quantifier-free spatial logics.

In this chapter we study the expressiveness and the computational proper-

ties of various quantifier-free Euclidean spatial logics. We start by introducing

102
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the logics and discussing some of their properties. We then show that the Eu-

clidean spatial logics that can express some notion of connectedness are sen-

sitive to regions with infinitely many components. And we finish by showing

that the satisfiability problem for each of these logics is undecidable. The re-

sults in Section 5.2, Section 5.3 and Section 5.4 are joint work with Roman

Kontchakov, Ian Pratt-Hartmann and Michael Zakharyaschev, and were pre-

sented in [KNPHZ11a, KNPHZ11b]. The undecidability result in Section 5.5 is

due to Ian Pratt-Hartmann and is still unpublished.

5.1 Languages and Expressiveness

We consider quantifier-free languages featuring Boolean primitives, as defined

in Table 2.1, together with some of the following topological primitives: the

property c(x) of being (topologically) connected, the property c◦(x) of hav-

ing a connected interior and the Whitehead’s contact relation C(x, y) compris-

ing the pairs of intersecting regions. We interpret these languages over Eu-

clidean region algebras, and, in particular, the region algebra RC(Rn) together

with its tame Boolean subalgebra RCP(Rn). (It is not necessary to consider

the Euclidean region algebras RCS(Rn), RCPA(Rn) and RCPQ(Rn), since they

all satisfy the same topological quantifier-free formulas as RCP(Rn)). Most

quantifier-free spatial languages considered in the literature are completely

insensitive to Euclidean interpretations. However, languages featuring both

Boolean and connectedness primitives, can distinguish between region alge-

bras over different lower-dimensional Euclidean spaces, and are also sensitive

to the presence of non-tame regions when interpreted over region algebras over

R and R2 [KPHZ10]. The satisfiability problems of the resulting Euclidean spa-

tial logics were known to have high computational complexity (EXPTIME-hard

[KPHZ10]), but it was not known whether they were even decidable. We look

into the exact complexities of these Euclidean spatial logics, and we also address

the expressiveness of the languages with Boolean and connectedness predicates

in higher-dimensional Euclidean spaces. First, however, we will discuss these

logics in the context of other quantifier-free spatial logics considered in the lit-

erature.

The best studied quantifier-free spatial logic RCC8 is based on the eight

jointly exhaustive and pairwise disjoint binary topological relations EQ, EC, DC,
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PO, TPP, NTPP, TPPi and NTPPi, which are defined in Table 5.1 and illustrated

in Figure 3.1. A fragment of RCC8 that is insensitive to how the boundaries of

the regions are related is RCC5. RCC5 is based on the relations EQ, DC ∪ EC,

PO, TPP ∪ NTPP and TPPi ∪ NTPPi. RCC8 was initially introduced in [EF91],

and once it was presented to the AI community in [RCC92], it became the sub-

ject of intense scientific research. Notably, it was shown that when interpreted

over Euclidean spaces, RCC8 is so inexpressive that it is insensitive not only to

the type of Euclidean regions that its variables are mapped to, but also to the

dimension of the space hosting those regions. In particular, it was shown in

[Ren98] that every satisfiable RCC8-formula is also satisfiable in RC(Rn) and

RCP(Rn), n ≥ 1. Formally, taking Σ to be the collection of all region algebras,

we have:

Name Symbol Definition
Equal EQ(a, b) a = b
Disconnected DC(a, b) a ∪ b 6= ∅, a ∩ b = ∅
External Contact EC(a, b) a ∩ b 6= ∅, a◦ ∩ b◦ = ∅
Partially Overlapping PO(a, b) a◦ ∩ b◦ 6= ∅, a 6⊆ b, b 6⊆ a
Tangential Proper Part TPP(a, b) a ⊆ b, a 6⊆ b◦

Inverse Tangential Proper Part TPPi(a, b) b ⊆ a, b 6⊆ a◦

Non-Tangential Proper Part NTPP(a, b) a ⊆ b◦, a ∪ b 6= ∅
Inverse Non-Tangential Proper Part NTPPi(a, b) b ⊆ a◦, a ∪ b 6= ∅

Table 5.1: The primitives in RCC8.

Theorem 109. [Ren98] Sat(RCC8,Σ) = Sat(RCC8,RC(Rn)), (n ≥ 1), and
Sat(RCC8,Σ) = Sat(RCC8,RCP(Rn)), (n ≥ 3).

Regarding computability, it is known that satisfiability ofRCC8, and evenRCC5,

are NP-complete.

Theorem 110. [RN97] The membership problems for Sat(RCC8,Σ) and
Sat(RCC5,Σ) are NP-complete.

A maximal tractable fragment of RCC8 was identified in [RN97], and the max-

imal tractable fragments of RCC5 were completely classified in [JD97].

The limited expressiveness of RCC8 stimulated the investigation of various

extensions of the language. One way of extending RCC8 is to include in the

language symbols for expressing the Boolean primitives: sum (+); product (·);
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complement (−); the empty region (0); and the region occupying the whole

space (1). The resulting language was originally introduced in [WZ00] under

the name BRCC8. It was observed in [WZ00] that BRCC8 is sensitive to con-

nected spaces. In particular, the formula

x+ y = 1 ∧ DC(x, y) ∧ x 6= 0 ∧ y 6= 0

is satisfiable in the region algebra of a topological space if and only if the space

is disconnected. An equally expressive version of BRCC8 is the quantifier-free

language C of the signature (+, ·,−, 0, 1,C), where C is the contact relation. C
was introduced in [KPHWZ08a], where it was noted that the RCC8 relations

are C-definable (see Table 5.2).

EQ(x, y) ⇐⇒ x = y
DC(x, y) ⇐⇒ ¬C(x, y)
EC(x, y) ⇐⇒ x · y = 0 ∧ C(x, y)
PO(x, y) ⇐⇒ x · y 6= 0 ∧ x 6≤ y ∧ y 6≤ x
TPP(x, y) ⇐⇒ x ≤ y ∧ y 6≤ x ∧ C(x,−y)
NTPP(x, y) ⇐⇒ ¬C(x,−y) ∧ y 6≤ x

Table 5.2: Defining the RCC8 relations in C.

In [WZ00] it was shown that checking the satisfiability of C-formulas in region

algebras over arbitrary topological spaces is NP-complete (the same complexity

as that of RCC8). However, checking the satisfiability of C-formulas in dense

region algebras over Rn, n > 0, is PSPACE-complete. More generaly, taking Σc

to be the collection of region algebras over connected topological spaces, we

have the following:

Theorem 111. [WZ00] Sat(C,Σ) is NP-complete. IfM is a dense region algebra
over Rn (n > 0), then Sat(C,Σc) and Sat(C,M) coincide and are both PSPACE-
complete.

It is natural to expect a topological language to be able to express the prop-

erty of being connected. However, neither RCC8, nor its extension BRCC8 have

this ability. In addition to the property of being connected, denoted by c(a), one

can also consider the less standard property of being interior-connected, denoted

by c◦(a). A region is interior-connected, if it has a connected interior. Clearly,

every interior-connected region is also connected. (See Figure 5.1.)
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a a a a a

¬c(a) ∧ ¬c◦(a) c(a) ∧ ¬c◦(a) c(a) ∧ c◦(a)

Figure 5.1: Examples of disconnected, connected and interior-connected planar
regions.

Various spatial logics with connectedness were studied in the literature [PH02,

KPHWZ08b, KPHWZ08a, KPHZ10, KPHWZ10, KNPHZ11a, KNPHZ11b]. From

these we consider the logics of the six languages RCC8c, RCC8c◦, Cc, Cc◦, Bc
and Bc◦ ([KPHWZ08b, KPHWZ08a]) when interpreted over the Euclidean re-

gion algebras RC(Rn) and RCP(Rn), n ≥ 1. The languages RCC8c and RCC8c◦

extend RCC8 with predicates for, respectively, the property of being connected

and the property of being interior-connected. The languages Cc, Cc◦, Bc and

Bc◦ are defined analogously, by taking B to be the quantifier-free languages for

Boolean algebras. Considering Bc and Bc◦ allows us to examine the computabil-

ity and expressiveness of (interior-)connectedness in the absence of other topo-

logical primitives.

Enhancing the three basic languages RCC8, B and C with the ability to

express (interior-)connectedness substantially increases their expressiveness.

Consider for example the Bc◦-formula Gm(x1, . . . , xm) given by:

m∧
i=1

(
c◦(xi) ∧ (xi > 0)

)
∧

∧
1≤i<j≤m

(
c◦(xi + xj)

)
∧ (xi · xj = 0)

)
.

As noted in [KNPHZ11a], the formula G3(x1, x2, x3) is not satisfiable in RC(R),

and hence also in RCP(R), but is satisfiable in RCP(Rn), and hence also in

RC(Rn), n > 1. Indeed, as shown in Figure 5.2a, no three non-overlapping

closed intervals have pairwise connected unions, but, as shown in Figure 5.2b,

there are connected polygons with that property.

Similarly, the formula G5(x1, . . . , x5) is not satisfiable in RC(R2), (and hence

also in RCP(R2)), but is satisfiable in RCP(Rn), (and hence also in RC(Rn)),

n > 2. To see the former, suppose that G5(x̄) is satisfiable by a tuple of planar

regions (r1, . . . , r5). Choose points pi in the interiors of ri, i = 1, . . . , 5. By

c◦(ri + rj), 1 ≤ i < j ≤ 5, there exist Jordan arcs αi,j ⊆ (ri + rj)
◦ connecting pi

and pj. Moreover, these arcs can be selected to be pairwise disjoint (except at
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r3

¬c◦(r2 + r3)

r3

¬c◦(r1 + r3)

r1 r2

(a) No three non-overlapping intervals
form connected sums with each other.

r1
r2

r3

(b) G3(x1, x2, x3) is easily satisfi-
able by regions in RCP(Rn), n >
1.

Figure 5.2: The formula G3(x1, x2, x3) satisfiable in R2, but not in R.

their endpoints), and hence establishing a drawing of the non-planar graph K5.

(Figure 5.3 depicts four planar regions that satisfy G4(x̄), and hence containing

an embedding of the graph K4 in the plane.) On the other hand, since every

graph, and in particular K5, can be embedded in Rn, n > 2, the formula G5(x̄)

is easily satisfiable in RCP(Rn).

Figure 5.3: Four regions satisfying the formula G4(x̄) and containing an embed-
ding of the graph K4.

Another manifestation of the enhanced expressiveness of the languages fea-

turing (interior-)connectedness is their ability to sense the presence of non-

tame regions—i.e. regions having infinitely many connected components or

regions not having the curve-selection property (see Section 2.5). Consider, for

example the Bc◦-formula wiggly(x1, x2, x3) given by:

3∧
i=1

c◦(x1 + x2 + x3) ∧ ¬c◦(x1 + x2) ∧ ¬c◦(x1 + x3) [PH07, p.23].

The formula “says” that there exist three interior-connected regions whose sum

is interior-connected, but the sum of the first region with any of the other two
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is not interior-connected. It was shown in [PH07, Lemma 2.56] that no regions

in RCP(Rn), n > 1, satisfy wiggly(x1, x2, x3). On the other hand, as shown in

Figure 5.4, there exist regions in r1, r2, r3 ∈ RC(R2) that satisfy wiggly(x1, x2, x3).

Taking rn+2
i = ri × Rn, i = 1, 2, 3, we get a satisfying tuple of wiggly(x1, x2, x3)

in RC(Rn+2).

r1

r2

r3

Figure 5.4: Three planar regions that satisfy the formula wiggly(x1, x2, x3).

Consider now the region algebras RC(R) and RCP(R). Let ψ1
ω(x̄) be the

following RCC8c-formula:

c(x) ∧ EC(x, y1) ∧ EC(x, y2) ∧ EC(x, y3) ∧ DC(y1, y3) ∧ DC(y1, y3) ∧ EC(y1, y2).

An easy inspection shows that no tuple of finitely-decomposable regions in

RC(R) satisfies ψ1
ω(x̄). However, as can be seen in Figure 5.5, ψ1

ω(x̄) is satis-

fiable in RC(R) by regions some of which have infinitely many components.

s3 r s2s1s2s1

Figure 5.5: Regions in RC(R) satisfying ψ1
ω(x̄)

It is significantly more challenging to show sensitivity of the languages Bc
and Cc to tameness in Rn, n > 1. In Section 5.2 we show that there are Bc- and

Cc-formulas satisfiable over RC(Rn), but only by tuples featuring regions with

infinitely many components. In Section 5.3 we show the same for the languages

Bc◦ and Cc◦ in the Euclidean plane. Before we do so, we show how to define in

Bc and Bc◦ the complement of the contact relation for a large class of regions

in RC(Rn), n > 1.
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a
a′
a

b′

b

b

Figure 5.6: Regions (a, b, a′, b′) satisfying ψDC2 inM.

5.1.1 Separating Regions Using Connectedness

Recall that the language Bc is a (genuine) restriction of the language Cc whose

only topological primitive (c) is interpreted as the property of being connected.

Although Cc is strictly more expressive than Bc, most of the established (posi-

tive) expressiveness results for Cc (in particular when interpreted in Euclidean

spaces of dimension greater than 1) can be extended for Bc. For this section

we fix M to be one of the region algebras RC(Rn) and RCP(Rn), n > 1, and

we use the term regions to refer to the elements ofM. We identify Bc-formulas

ψ(x, y, z̄) which are satisfiable only by tuples (a, b, c̄) in M for which a and b

are disjoint. Moreover, we would like these formulas to be satisfiable by as

many pairs of disjoint regions as possible. The results in this section apeared in

[KNPHZ11a].

The formulas that we consider are all based on the following fact about

connected sets.

Lemma 112. Let X be a topological space. Then two connected subsets of X are
in contact if and only if their union is connected.

Hence, the formula

ψDC1(x, y) := x = 0 ∨ y = 0 ∨ c(x) ∧ c(y) ∧ ¬c(x+ y)

defines the DC relation for the connected regions inM.

This can easily be generalised for regions contained in disjoint connected

regions. Evidently, the formula

ψDC2(x, y, x′, y′) := ψDC1(x+ x′, y + y′)

is satisfiable by tuples of regions (a, b, a′, b′) for which a and b are disjoint

(see Figure 5.6).
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a
a

b
b

b

Figure 5.7: A pair of regions (a, b) that cannot satisfy ψDC2 inM.

Note that ψDC2(x, y, z̄) is satisfied only by tuples (a, b, c̄) such that a is con-

tained in an interior-component of −b and vice versa. As depicted in Figure 5.7,

if a and b are two disjoint regions such that “pieces” of b lie in different interior-

components of −a, then there would exist no region b′ such that b + b′ is both

connected and disjoint from a. Although the interior of −a is disconnected,

we can easily partition a into regions a1 and a2 whose complements are inte-

rior connected. We can partition b into regions b1 and b2 in a similar manner.

Then, applying ψDC2(x, y, x′, y′), we can ensure that ai and bj, i, j = 1, 2, are

disjoint, which would be sufficient for a and b to be disjoint as well. Consider

the formula

ψDC3(x, y, z̄) := x = x1 + x2 ∧ y = y1 + y2 ∧
∧

i,j=1,2

ψDC2(xi, yj, xi,j, yi,j).

Evidently, if a tuple of regions (a, b, c̄) satisfies ψDC3(x, y, z̄), then a and b are

b aa b

(a)

b2 a2

a1 b1

a2 b2

(b)

b2 a2

a1

b2

b1

a2

b1,2

(c)

Figure 5.8: Partitioning disjoint regions into regions with interior-connected
complements.

disjoint. Consider now the disjoint regions a and b depicted in Figure 5.8a.

Both −a and −b have disconnected interiors, however, there are regions c̄ such

that (a, b, c̄) satisfies ψDC3. To see that, partition a and b into regions a1, a2, b1
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and b2 as shown in Figure 5.8b. Clearly,M |= ψDC2[a1, b1, 0, 0], and as shown in

Figure 5.8c, there exists a region b1,2 such thatM |= ψDC2[a1, b2, 0, b1,2].

Can we always do that? I.e. if a and b are two disjoint regions, can we

always find regions c̄ such thatM |= ψDC3[a, b, c̄]? The answer is no. Consider,

for example, the disjoint regions a and b depicted in Figure 5.9a. For every

region b′, if b + b′ is connected, then it separates the components of a. Hence,

there are no regions a′ and b′ such that (a, b, a′, b′) satisfies ψDC2(x, y, x′, y′) in

M. Arguing in a similar way, it is not difficult to see that for the disjoint regions

a and b depicted in Figure 5.9b there are no regions c̄ such that (a, b, c̄) satisfy

ψDC3.

b′a

b

a

b

(a)

a

b
a

b

a

b
a

b

(b)

Figure 5.9: Examples of regions that cannot satisfy ψDC2 and ψDC3 inM.

In this section we showed how to force non-contact constraints in RC(Rn)

and RCP(Rn), n > 1, in the language Bc. The results are based on the fact

that two connected regions are disjoint if and only if their sum is disconnected

(Lemma 112). Observe that if we replace in Lemma 112 “connected” with

“interior-connected”, the result will no longer be true, due to the fact that there

are connected regions which are not interior-connected (see Figure 5.1). How-

ever, in the following section we show that interior-connectedness can be used

to force non-contact constraints in the Euclidean plane.

5.1.2 Separating Regions Using Interior-Connectedness

The aim of this section is to define in the language Bc◦ the non-contact relation

for a large collection of regions in RC(R2) and RCP(R2). For the following

results we extensively use planarity arguments and, hence, they fail for higher-

dimensional Euclidean spaces. Recall that a Jordan arc in a topological space X
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is an injective continuous function from the unit interval [0, 1] to X . A Jordan
curve in X is an injective continuous function from the unit circle (the points

in the Euclidean plane satisfying the equation x2 + y2 = 1) to X . If α is a

Jordan arc, and p and q are points on α such that q occurs after p, we denote

by α[p, q] the segment of α from p to q, i.e. the restriction of α to the interval

[α−1(p), α−1(q)]. The results in this section apeared in [KNPHZ11a].

To avoid notational clutter we use the same symbols to represent the vari-

ables of Bc◦-formulas and the regions that those variables get assigned to. For

instance, consider the formula disc(a) := c◦(a) ∧ c◦(−a), whose only variable is

a. We can then say that if a polygon a satisfies disc(a) (i.e. RCP(R2) |= disc[a]),

then a and its complement have connected interiors.

Consider the formula frame◦(a0, . . . , an−1) given by:∧
0≤i<n

(
c◦(ai) ∧ c◦(ai + abi+1c) ∧ ai 6= 0

)
∧
∧
j−i>1

ai · aj = 0,

where bkc denotes k mod n. This formula allows us to construct Jordan curves

in the plane, in the following sense.

Lemma 113. Let n ≥ 3, and suppose frame◦(a0, . . . , an−1). Then there exist Jor-
dan arcs α0, . . . , αn−1 such that α0 . . . αn−1 is a Jordan curve lying in the interior
of a0 + · · ·+ an−1, and αi ⊆ (ai + abi+1c)

◦, for all i, 0 ≤ i < n.

Proof. For all i (0 ≤ i < n), pick p′i ∈ a◦i , and pick a Jordan arc α′i ⊆ (ai + abi+1c)
◦

from pi to pbi+1c. For all i (2 ≤ i ≤ n), let pbic be the first point of αi−1 lying

on αbic, and let p′′1 be the first point of α′0 lying on α′1. For all i (2 ≤ i < n), let

αi = α′i[pi, pi+1], let α′′1 = α′1[p′′1, p2], and let α′′0 denote the section of α′0 (in the

appropriate direction) from p0 to p′′1. Now let p1 be the first point of α′′0 lying on

α′′1, let α0 = α′′0[p0, p1], and let α1 = α′′1[p1, p2]. It is routine to verify that the arcs

α0, . . . , αn−1 have the required properties.

We say that a region r is quasi-bounded if either r or −r is bounded. We can

now prove the following.

Lemma 114. There exists a Bc◦-formula ψ◦DC1(r, s, v̄) with the following proper-
ties: (i) ψ◦DC1(r, s, v̄) entails ¬C(r, s) over RC(R2); (ii) if the regions r and s can be
separated by a Jordan curve, then there exist polygons v̄ such that ψ◦DC1(τ1, τ2, v̄);
(iii) if r, s are disjoint polygons such that r is quasi-bounded and R2 \ (r + s) is
connected, then there exist polygons v̄ such that ψ◦DC1(τ1, τ2, v̄).
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M1P0

µ0

P1

µ1

P2

µ2

τ2

τ1

τ0

n0

n2

n1

Figure 5.10: A Jordan curve Γ = τ0τ1τ2 separating m1 from m2 (Lemma 114).

Proof. Let v̄ be the tuple of variables (t0, . . . , t5,m1,m2), and let ψ◦DC1(r, s, v̄) be

the formula

frame◦(t0, . . . , t5) ∧ r ≤ m1 ∧ s ≤ m2 ∧m1 ·m2 = 0 ∧

(t0 + · · ·+ t5) · (m1 +m2) = 0 ∧
∧

i=1,3,5
j=1,2

c◦(ti +mj).

Property (i) follows by a simple planarity argument. By frame◦(t0, . . . , t5) and

Lemma 113, let αi, for 0 ≤ i ≤ 5, be such that Γ = α0 · · ·α5 is a Jordan curve

included in (t0 + · · ·+ t5)◦. Further, let τi = α2iα2i+1, 0 ≤ i ≤ 2 (Figure 5.10).

Note that all points in a2i+1, 0 ≤ i ≤ 2, that are on Γ are on τi. By c◦(t2i+1 +m1),

0 ≤ i ≤ 2, let µi ⊆ (m1 + t2i+1)◦ be a Jordan arc with endpoints M1 ∈ m◦1 and

Ti ∈ τi ∩ t◦2i+1. We may assume that these arcs intersect only at their common

endpoint M1, so that they divide the residual domain of Γ which contains M1

into three sub-domains ni, for 0 ≤ i ≤ 2, with δ(ni) ∩ τi = ∅. The existence of

a point M2 ∈ m2 in any ni, 0 ≤ i ≤ 2, will contradict c◦(t2i+1 + m2). Indeed,

suppose that there is a point M2 ∈ n◦2. By c◦(t2i+1 +m2), there exists an arc ν2 ⊆
(t5 +m2)◦ connecting T2 and M2. Since the two points lie in different residual

domains of δ(n2), ν2 must intersect δ(n2). Because δ(n2) is a subset of µ0 ∪ µ1 ∪
τ0∪τ1 = µ0∪µ1∪α0α1∪α2α3, it is contained in (m1 + t1)◦∪(m1 + t3)◦∪(t0 + t1)◦∪
(t1 + t2)◦ ∪ (t2 + t3)◦ ∪ (t3 + t4)◦. Hence, by the non-overlapping constraints,

δ(n2) must be disjoint from ν2 ⊆ (t5 +m2)◦. So, m2 must be contained entirely
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in the residual domain of Γ not containing M1. Similarly, all points in m1 must

lie in the residual domain of Γ containing M1. It follows that m1 and m2 are

disjoint, and by r ≤ m1 and s ≤ m2, that r and s are disjoint as well. For

Property (ii), let Γ be a Jordan curve separating r and s. Now thicken Γ to

form an annular element of RCP(R2), still disjoint from r and s, and divide

this annulus into the five regions t0, . . . , t5 as shown (up to similar situation)

in Figure 5.11. Choose m1 and m2 to be the connected components of −(t0 +

· · · + t5) containing r and s, respectively. For Property (iii), it is routine using

Lemma 27-Lemma 31 to show that there exists a piecewise linear Jordan curve

Γ in R2 \ (r + s) separating r and s.

r

rr

s
s

t0

t1

t2t3
t4

t5

Γ

m1

m2

Figure 5.11: Separating a polygon from a disjoint quasi-bounded polygon by an
annulus.

Lemma 115. There exists a Bc◦-formula ψ◦DC2(r, s, v̄) with the following proper-
ties: (i) ψ◦DC2(r, s, v̄) entails ¬C(r, s) over RC(R2); (ii) if r, s are disjoint quasi-
bounded polygons, then there exist polygons v̄ such that ψ◦DC2(τ1, τ2, v̄).

Proof. Let ψ◦DC2(r, s, v̄) be the formula

r = r1 + r2 ∧ s = s1 + s2 ∧
∧

1≤i≤2
1≤j≤2

ψ◦DC1(ri, sj, ūi,j),

where ψ◦DC1 is the formula given in Lemma 114. Property (i) is then immediate.

For Property (ii), it is routine to show that there exist polygons r1, r2 such that

r = r1 + r2 and R2 \ ri is connected for i = 1, 2; let s1, s2 be chosen analogously.

Then for all i (1 ≤ i ≤ 2) and j (1 ≤ j ≤ 2) we have that ri ∩ sj = ∅ and, by

Lemma 27, that R2 \ (ri + sj) connected. By Lemma 114, let ūi,j be such that

ψ◦DC1(ri, sj, ūi,j).
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5.2 Infinitely Many Components with Connected-

ness

We will now show that the languages Cc, Cc◦ and Bc are sensitive to tame-

ness in a large class of topological spaces. We will introduce a Cc-formula ψ∞
such that ψ∞ is satisfiable over RC(Rn), n ≥ 2, but any tuple of regions in a

region algebra over a unicoherent topological space that satisfies it, features

regions with infinitely many components. We then transform ψ∞ to Cc◦- and

Bc-formulas having the same property. The results in this section apeared in

[KNPHZ11a, KNPHZ11b] and are joined work of the authors. As before, we use

the same symbols to denote the variables of Cc-, Cc◦- and Bc-formulas and the

regions that these variables get assigned to.

We present the Cc-formula ψ∞ in groups of conjuncts. First we take four

regions in RC(X ) d0, . . . , d3 that partition X :

d0 + d1 + d2 + d3 = 1 ∧
∧

0≤i<j<4

di · dj = 0. (5.1)

We also require non-empty subregions ai of di (0 ≤ i < 3), and a non-empty

region t: ∧
0≤i<j<4

(
0 < ai ∧ ai ≤ di

)
∧ t 6= 0. (5.2)

The configuration of regions we have in mind is depicted in Figure 5.12, where

the di are arranged so that the components of d1 are “wrapped around” the

components of d0, the components of d2 are “wrapped around” the components

of d1, and so on. The region t passes through every component of the di while

avoiding the regions ai. To enforce a configuration of this sort, we need the

following three formulas, for 0 ≤ i ≤ 3:

c(ai + dbi+1c + t), (5.3)

¬C(ai, dbi+1c · (−abi+1c)) ∧ ¬C(ai, t), (5.4)

¬C(di, dbi+2c), (5.5)

where bkc = k mod 4. Formulas (5.3) and (5.4) ensure that each component

of ai is in contact with abi+1c, while (5.5) ensures that no component of di can
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touch any component of dbi+2c.

d0a0 d1a1 d2a2 d3a3 d0a0 d1a1 d2a2 d3a3

t

· · ·· · ·

Figure 5.12: Planar regions satisfying ψ∞.

Denote by ψ∞ the conjunction of the constraints (5.1)-(5.1). As shown in

Figure 5.12, ψ∞ is satisfiable in RC(R2). By taking tn+2 = t × Rn and similarly

for an+2
i and dn+2

i , (0 ≤ i < 3), we get a satisfying tuple for ψ∞ in RC(Rn+2).

Note that the regions di in Figure 5.12 have infinitely many components.

We will now show that in locally-connected unicoherent spaces, ψ∞ is only

satisfiable by tuples featuring regions having infinitely many components.

Theorem 116. Let X be a locally connected unicoherent space. If ψ∞ is satisfiable
by a tuple b̄ of regions in RC(X ), then some of the regions in b̄ have infinitely many
components.

Proof. Let bi = di · (−ai). We construct a sequence of components Xi of dbic and

open sets Vi connecting Xi to Xi+1 (Figure 5.13). By the first conjunct of (5.2),

let X0 be a component of d0 containing points in a0. Suppose Xi has been

constructed, for i ≥ 0. By (5.3) and (5.4), there exists a point q ∈ Xi ∩ abi+1c.

Since q /∈ bbi+1c ∪ dbi+2c ∪ dbi+3c, and because X is locally connected, there exists

a connected neighbourhood Vi of q such that Vi ∩ (bbi+1c ∪ dbi+2c ∪ dbi+3c) = ∅,
and so, by (5.1), Vi ⊆ dbic+ abi+1c. Further, since q ∈ abi+1c, Vi∩ a◦bi+1c 6= ∅. Take

X ′i+1 to be a component of abi+1c that intersects Vi and Xi+1 the component of

dbi+1c containing X ′i+1.

To see that the Xi are distinct, let Si+1 and Ri+1 be the components of −Xi+1

containing Xi and Xi+2, respectively. It suffices to show Si+1 ⊆ S◦i+2. Note that

the connected set Vi must intersect δ(Si+1). Evidently, δ(Si+1) ⊆ Xi+1 ⊆ dbi+1c.

Also, δ(Si+1) ⊆ −Xi+1; hence, by (5.1) and (5.5), δ(Si+1) ⊆ di ∪ dbi+2c. By

Lemma 34, δ(Si+1) is connected, and therefore, by (5.5), is entirely contained



CHAPTER 5. QUANTIFIER-FREE EUCLIDEAN SPATIAL LOGICS 117

X0 X1 X2 X3 X4 X5
V0 V1

S1R1

V2

S2R2

V3

S3R3

V0

S4R4

Figure 5.13: The sequence {Xi, Vi}i≥0 generated by ψ∞. (Si+1 and Ri+1 are the
‘holes’ of Xi+1 containing Xi and Xi+2.

either in dbic or in dbi+2c. Since Vi ∩ δ(Si+1) 6= ∅ and Vi ∩ dbi+2c = ∅, we have

δ(Si+1) 6⊆ dbi+2c, so δ(Si+1) ⊆ di. Similarly, δ(Ri+1) ⊆ di+2. By (5.5), then,

δ(Si+1) ∩ δRi+1 = ∅, and since Si+1 and Ri+1 are components of the same set,

they are disjoint. Hence, Si+1 ⊆ (−Ri+1)◦, and since Xi+2 ⊆ Ri+1, also Si+1 ⊆
(−Xi+2)◦. So, Si+1 lies in the interior of a component of −Xi+2, and since

δ(Si+1) ⊆ Xi+1 ⊆ Si+2, that component must be Si+2.

We extend this result to the language Cc◦. All occurrences of c in ψ∞ have

positive polarity. Let ψ◦∞ be the result of replacing them with the predicate c◦.

In the configuration of Figure 5.12, all connected regions mentioned in ψ∞ are

in fact interior-connected; hence ψ◦∞ is satisfiable over RC(Rn). Since interior-

connectedness implies connectedness, ψ◦∞ entails ψ∞ in a common extension of

Cc◦ and Cc. Hence:

Theorem 117. The Cc◦-formula ψ◦∞ is satisfiable over RC(Rn), n ≥ 2. If X is a
locally connected unicoherent space and ψ◦∞ is satisfiable by a tuple b̄ of regions in
RC(X ), then some of the regions in b̄ have infinitely many components.

To extend Theorem 116 to the language Bc, notice that all occurrences of

C in ψ∞ are negative. We shall eliminate these using only the predicate c.

We use the techniques developed in Section 5.1.1. We replace ¬C(ai, t) with

ψDC2(ai, t, a0 + a1 + a2 + a3, 0), which is clearly satisfiable by the regions on Fig-

ure 5.12. Further, we replace ¬C(ai, bbi+1c) with ψcDC2(ai, bbi+1c, s, t). As shown

in Figure 5.14, there exists a region s satisfying this formula. Instead of dealing
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d0a0
d1a1

d2a2
d3a3

d0a0
d1a1

d2a2
d3a3

t

· · ·· · ·
s

Figure 5.14: Satisfying ψDC2(a0, s, b1, t) and ψDC2(a0, s, b2, t).

with ¬C(di, di+2), we consider the equivalent:

¬C(ai, bbi+2c) ∧ ¬C(bi, abi+2c) ∧ ¬C(ai, abi+2c) ∧ ¬C(bi, bbi+2c).

We replace ¬C(ai, bbi+2c) by ψcDC2(ai, bbi+2c, s, t), which is satisfiable by the re-

gions depicted in Figure 5.14. We ignore ¬C(bi, abi+2c), because it is logically

equivalent to ¬C(ai, bbi+2c), for different values of i. We replace ¬C(ai, abi+2c)

by ψcDC2(ai, abi+2c, a
′
i, a
′
bi+2c), which is satisfiable by the regions depicted on Fig-

ure 5.15. The fourth conjunct is then treated symmetrically. Transforming ψ∞

d0a0 d1a1 d2a2 d3a3 d0a0 d1a1 d2a2 d3a3 d0a0

a′0
a′0

a′0

a′2

a′2

Figure 5.15: Satisfying ψcDC2(a0, a
′
0, a2, a

′
2).

in the way just described, we obtain a Bc-formula ψc∞, which implies ψ∞ (in the

language Cc) and which is satisfiable by the arrangement of RC(Rn). Hence, we

obtain the following:

Theorem 118. The Bc-formula ψc∞ is satisfiable over RC(Rn), n ≥ 2. If X is a
locally connected unicoherent space and ψc∞ is satisfiable by a tuple b̄ of regions in
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RC(X ), then some of the regions in b̄ have infinitely many components.

To show that in the region algebras RC(Rn), n > 1, the languages Cc, Cc◦ and

Bc are sensitive to regions with infinitely many components we extensively used

the fact that Rn is a unicoherent topological space. In the following section, we

show that the language Bc◦ is sensitive to regions in RC(R2) with infinitely many

components—a result entirely based on planarity arguments.

5.3 Infinitely Many Components with Interior Con-

nectedness

We show that there exists a Bc◦-formula which is satisfiable in RC(R2), but

only by tuples containing regions with infinitely many components. The result

is based on the Jordan curve theorem (Lemma 28), which asserts that every

Jordan curve Γ in the Euclidean plane (image of an injective continuous map

of the unit circle into R2) separates R2 into two connected sets having Γ as

their common boundary. The results in this section apeared in [KNPHZ11a,

KNPHZ11b] and are joined work of the authors. The techniques used are similar

to the ones used in [KPHZ10] for showing the corresponding results for the

languages Cc and Bc. We start by demonstrating a technique that will be used

repeatedly in the course of the main proof.

Consider the formula stack◦(a1, . . . , an) given by:∧
1≤i<n

(c◦(ai + · · ·+ an) ∧ ai · ai+1 = 0) ∧
∧
j−i>1

¬C(ai, aj),

This formula allows us to construct in the Euclidean plane sequences of arcs in

the following sense.

Lemma 119. Let a1, . . . , an be regions in RC(R2) satisfying stack◦(a1, . . . , an), for
n > 1. Then every point p1 ∈ a◦1 can be connected to every point pn ∈ a◦n

by a Jordan arc α = α1 · · ·αn−1 such that for all i (1 ≤ i < n), each segment
αi ⊆ (ai + ai+1)◦ is a non-degenerate Jordan arc starting at some point pi ∈ a◦i.

Proof. By c◦(a1 + · · ·+ an), let α′1 ⊆ (a1 + · · ·+ an)◦ be a Jordan arc connecting

p1 to pn (Figure 5.16). By the non-contact constraints, α′1 has to contain points

in a◦2. Let p′2 be one such point. For 2 ≤ i < n we suppose α1, . . . , αi−2, α′i−1
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and p′i to have been defined, and proceed as follows. By c◦(ai + · · · + an), let

α′′i ⊆ (ai + · · ·+ an)◦ be a Jordan arc connecting p′i to pn. By the non-contact

constraints, α′′i can intersect α1 · · ·αi−2α
′
i−1 only in its final segment α′i−1. Let

pi−1 be the first point of α′i−1 lying on α′i; let αi−1 be the initial segment of

α′i−1 ending at pi−1; and let α′i be the final segment of α′′i starting at pi−1. It

remains only to define αn−1, and to this end, we simply set αn−1 := α′n−1. To

see that pi, 2 ≤ i < n, are as required, note that pi ∈ αi ∩ αi−1. By the disjoint

constraints pi must be in ai. If pi was in δ(ai), it would also have to be in δ(ai−1)

and δ(ai+1), which is forbidden by the disjoint constraints. Hence pi ∈ a◦i,

1 ≤ i ≤ n. Given ai · ai+1 = 0, 1 ≤ i < n, this also guarantees that the arcs αi
are non-degenerate.

p1

p2

α1

α′1

p′2

α′′2

α′1

α2

. . .
αn−2

pn−1 pn−1′

α′n−2

α′′n−1

pnαn−1

Figure 5.16: The constraint stack◦(a1, . . . , an) ensures the existence of a Jordan
arc α = α1 · · ·αn−1 which connects a point p1 ∈ a◦1 to a point pn ∈ a◦n.

Now that we can construct Jordan curves and sequences of Jordan arcs us-

ing the Bc◦-formulas frame◦ (see Lemma 113) and stack◦, respectively, we are

ready to show that the language Bc◦ is sensitive to regions with infinitely many

components when interpreted in R2.

Theorem 120. There is a Bc◦-formula satisfiable over RC(R2), but only by regions
with infinitely many components.

Proof. We first write a Cc◦-formula, ψ∗∞ with the required properties, and then

using the results established in Section 5.1.2 we show that all occurrences of C

can be eliminated.

Let s, s′, a, a′, b, b′, ai,j and bi,j (0 ≤ i < 2, 1 ≤ j ≤ 3) be variables. The
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Figure 5.17: A tuple of regions satisfying (5.6)–(5.9): the pattern of compo-
nents of the ai,j and bi,j repeats forever.

constraints

frame◦(s, s′, b, b′, a, a′) (5.6)

stack◦(s, bi,1, bi,2, bi,3, b) (5.7)

stack◦(bbi−1c,2, ai,1, ai,2, ai,3, a) (5.8)

stack◦(abi−1c,2, bi,1, bi,2, bi,3, b) (5.9)

are evidently satisfied by the arrangement of Figure 5.17.

Let ψ∗∞ be the conjunction of (5.6)–(5.9) as well as all conjuncts

r · r′ = 0, (5.10)

where r and r′ are any two distinct regions depicted in Figure 5.17. Note that

the regions ai,j and bi,j have infinitely many connected components. We will

now show that this is true for every satisfying tuple of ψ∗∞.

By (5.6), we can use Lemma 113 to construct a Jordan curve Γ = σσ′ββ′αα′

whose segments are Jordan arcs lying in the respective sets (s + s′)◦, (s′ + b)◦,

(b+b′)◦, (b′+a)◦, (a+a′)◦, (a′+s)◦. Further, let σ0 = σσ′, β0 = ββ′ and α0 = αα′

(Figure 5.18a). Note that all points in s, a and b that are on Γ are on σ0, α0 and

β0, respectively. Let o′0 ∈ σ0 ∩ s◦, and let q∗ ∈ β0 ∩ b◦. By (5.7) and Lemma 119
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q

p

r
σ0

β0

α0

(a) The arcs α0, β0 and σ0.

o′0

o0

q∗q0

β0,1

β0,2

β0,3U0

U ′0

(b) The regions U0 and U ′0.

Figure 5.18: Establishing infinite sequences of arcs I.

U0

e′0

e0

p∗p0

α0,1

α0,2

α0,3V0

W0

(a) The regions V0 and W0.

q0

p0

o0 e0

U0

V0 α0,2

W0

β1

α1

(b) The regions redrawn.

Figure 5.19: Establishing infinite sequences of arcs II.

we can connect o′0 to q∗ by a Jordan arc β′0,1β0,2β
′
0,3 whose segments lie in the

respective sets (s+ b0,1)◦, (b0,1 + b0,2 + b0,3)◦ and (b+ b0,3)◦ (Figure 5.18b). Let

o0 be the last point on β′0,1 that is on σ0 and let β0,1 be the final segment of β′0,1
starting at o0. Similarly, let q0 be the first point on β′0,3 that is on β0 and let β0,3

be the initial segment of β′0,3 ending at q0. Hence, the arc β0,1β0,2β0,3 divides one

of the regions bounded by Γ into two sub-regions. We denote the sub-region

whose boundary is disjoint from α0 by U0, and the other sub-region we denote

by U ′0. Let β1 := β0,3β0[q0, r] ⊆ (b+ b0,3 + b1,3)◦.

We will now construct a cross-cut α0,1α0,2α0,3 in U ′0. Let e′0 ∈ β0,2 ∩ b◦0,2
and p∗ ∈ α0 ∩ a◦. By (5.8) and Lemma 119 we can connect e′0 to p∗ by a
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o′1

o1

q∗q1

β1,2

V0

U1

U ′1

α1

(a) The regions U1 and U ′1.

U1

e′1

e1

p∗p1

α1,1

α1,2

α1,3V1

W1

(b) The regions V1 and W1.

Figure 5.20: Establishing infinite sequences of arcs III.

Jordan arc α′0,1α0,2α
′
0,3 whose segments lie in the respective sets (b0,2 + a0,1)◦,

(a0,1 + a0,2 + a0,3)◦ and (a+ a0,3)◦ (Figure 5.19a). Let e0 be the last point on α′0,1
that is on β0,2 and let α0,1 be the final segment of α′0,1 starting at e0. Similarly, let

p0 be the first point on α′0,3 that is on α0 and let α0,3 be the initial segment of α′0,3
ending at p0. By (5.10), α0,1α0,2α0,3 does not intersect the boundaries of U0 and

U ′0 except at its endpoints, and hence it is a cross-cut in one of these regions.

Moreover, that region has to be U ′0 since the boundary of U0 is disjoint from

α0. So, α0,1α0,2α0,3 divides U ′0 into two sub-regions. We denote the sub-region

whose boundary contains β1 by W0, and the other sub-region we denote by V0.

Let α1 := α0,3α0[p0, r] (Fig 5.19b). Note that α1 ⊆ (a+ a0,3 + a1,3)◦.

We can now forget about the region U0, and start constructing a cross-cut

β1,1β1,2β1,3 in W0. As before, let β′1,1β1,2β
′
1,3 be a Jordan arc connecting a point

o′1 ∈ α0,2 ∩ a◦0,2 to a point q∗ ∈ β1 ∩ b◦i such that its segments are contained

in the respective sets (a0,2 + b1,1)◦, (b1,1 + b1,2 + b1,3)◦ and (b+ b1,3)◦. As before,

we choose β1,1 ⊆ β′1,1 and β1,3 ⊆ β′1,3 so that the Jordan arc β1,1β1,2β1,3 with

its endpoints removed is disjoint from the boundaries of V0 and W0. Hence

β1,1β1,2β1,3 has to be a cross-cut in V0 or W0, and since the boundary of V0 is

disjoint from β1 it has to be a cross-cut in W0 (Figure 5.20a). So, β1,1β1,2β1,3

separates W0 into two regions U1 and U ′1 so that the boundary of U1 is disjoint

from α1. Let β2 := β1,3β1[q1, r] ⊆ (b+ b0,3 + b1,3)◦. Now, we can ignore the

region V0, and reasoning as before we can construct a cross-cut α1,1α1,2α1,3 in

U ′1 dividing it into two sub-regions V1 and W1.

Evidently, this process continues forever. Now, note that by construction
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Figure 5.21: Separating a0,2 from b0,2 by a Jordan curve.

and (5.10), W2i contains in its interior β2i+1,2 together with the connected com-

ponent c of b1,2 which contains β2i+1,2. On the other hand, W2i+2 is disjoint

from c, and since Wi ⊆ Wj, i > j, b1,2 has to have infinitely many connected

components.

So far we know that the Cc◦-formula ψ∗∞ forces infinitely many components.

Now we replace every conjunct in ψ∗∞ of the form ¬C(r, s) by ψ◦DC1(r, s, v̄),

where v̄ are fresh variables each time. By Lemma 114, the resulting formula ψ∞
entails ψ∗∞, so we only have to show that it is still satisfiable. By Lemma 114

(ii), it suffices to separate by Jordan curves every two regions in Figure 5.17

that are required to be disjoint. It is shown in Figure 5.21 that there exists a

curve which separates the regions b0,2 and a0,2. All other non-contact constraints

are treated analogously.

Since RCP(R2) contains only regions with finitely many components, we get

that the region algebras RC(R2) and RCP(R2) satisfy different Bc◦-formulas.

Corollary 121. Sat(Bc◦,RC(R2)) 6= Sat(Bc◦,RCP(R2)).

In this section we showed that in the Euclidean plane the languages Bc◦

and Cc◦ are sensitive to regions having infinitely many components. We applied

a simple but powerful tool for constructing sequences of arcs lying in certain

Euclidean regions. In the following section we use a generalised version of this

technique to show that the satisfiability problems for the languages Cc, Cc◦, Bc
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and Bc◦ are undecidable when interpreted over the region algebras RCP(R2)

and RC(R2).

5.4 Undecidability: The Plane Case

In this section we show that the problems Sat(L,RC(R2)) and Sat(L,RCP(R2)),

for L any of the languages Bc, Cc, Bc◦ or Cc◦ are undecidable. We do so via a

reduction from the Post correspondence problem (PCP). The result is based on

planarity arguments that fail in Euclidean spaces of different dimensions. The

proof is involved and lengthy, and will be presented only as a sketch. It requires

some technical results, which will be presented in full. The results in this section

apeared in [KNPHZ11a, KNPHZ11b] and are joined work of the authors.

Our first task is to find a Cc-formula stack (similar to the Bc◦-formula stack◦

from the previous section) that will help us to construct sequences of Jordan

arcs lying in certain regions. For that we need to introduce the notion of a

3-region. A 3-region is a triple a = (a, ȧ, ä) of elements of RC(R2) such that

0 6= ä � ȧ � a, where r � s abbreviates ¬C(r,−s). It helps to think of

a = (a, ȧ, ä) as consisting of a kernel, ä, encased in two protective layers of shell.

As a simple example, consider the sequence of 3-regions a1, . . . , a5 depicted

in Figure 5.22, where the inner-most regions form a sequence of externally

touching polygons.

a1 a2
a3 a4

a5

ȧ1 ȧ2
ȧ3 ȧ4

ȧ5

ä1 ä2
ä3 ä4

ä5

Figure 5.22: A chain of 3-regions satisfying stack(a1, . . . , a5).

We define the Cc-formula stack(a1, . . . , an), by:∧
1≤i≤n

c(ȧi + äi+1 + · · ·+ än) ∧
∧
j−i>1

¬C(ai, aj).

It is readily seen that the 3-regions a1, . . . , a5 satisfy the above formula. Note

that if stack(a1, . . . , an+1), then also stack(a2, . . . , an+1) and stack(a1, . . . , an). The
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Figure 5.23: Proof of Lemma 122.

following lemma is crucial for the results in this section.

Lemma 122. Let a1, . . . , an be 3-regions satisfying stack(a1, . . . , an), for n ≥
3. Then, for every point p0 ∈ ȧ1 and every point pn ∈ än, there exist points
p1, . . . , pn−1 and Jordan arcs α1, . . . , αn such that:

(i) α = α1 · · ·αn is a Jordan arc from p0 to pn;

(ii) for all i (0 ≤ i < n), pi ∈ ȧi+1 ∩ αi; and

(iii) for all i (1 ≤ i ≤ n), αi ⊆ ai.

Proof. Since ȧ1 + ä2 + · · · + än is a connected subset of (a1 + ȧ2 + · · ·+ ȧn)◦,

let β1 be a Jordan arc connecting p0 to pn in (a1 + ȧ2 + · · ·+ ȧn)◦. Since a1 is

disjoint from all the ai except a2, let p1 be the first point of β1 lying in ȧ2, so

β1[p0, p1] ⊆ a◦1 ∪ {p1}, i.e., the arc β1[p0, p1] is either included in a◦1, or is an

end-cut of a◦1. (We do not rule out p0 = p1.) Similarly, let β′2 be a Jordan arc

connecting p1 to pn in (a2 + ȧ3 + · · ·+ ȧn)◦, and let q1 be the last point of β′2
lying on β1[p0, p1]. If q1 = p1, then set v1 = p1, α1 = β1[p0, p1], and β2 = β′2. so

that the endpoints of β2 are v1 and pn. Otherwise, we have q1 ∈ a◦1. We can

now construct an arc γ1 ⊆ a◦1 ∪ {p1} from p1 to a point v1 on β′2[q1, pn], such

that γ1 intersects β1[p0, p1] and β′2[q1, pn] only at its endpoints, p1 and v1 (upper

diagram in Figure 5.23). Let α1 = β1[p0, p1]γ1, and let β2 = β′2[v1, pn].

Since β2 contains a point p2 ∈ ȧ3, we may iterate this procedure, obtaining

α2, α3, . . . αn−1, βn. We remark that αi and αi+1 have a single point of contact by

construction, while αi and αj (i < j−1) are disjoint by the constraint ¬C(ai, aj).

Finally, we let αn = βn (lower diagram in Figure 5.23).

We can add a ‘switch’ w to the formula stack(a1, . . . , an), in the following
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sense. If w is a region variable, consider the formula stackw(a1, . . . , an)

¬C(w · ȧ1, (−w) · ȧ1) ∧ stack((−w) · a1, a2, . . . , an),

where w · a denotes the 3-region (w · a, w · ȧ, w · ä). The first conjunct of

stackw(a1, . . . , an) ensures that any component of ȧ1 is either included in w or in-

cluded in −w. The second conjunct then has the same effect as stack(a1, . . . , an)

for those components of ȧ1 included in −w. That is, if p ∈ ȧ1 · (−w), we can

find an arc α1 · · ·αn starting at p, with the properties of Lemma 122. However,

if p ∈ ȧ · w, no such arc need exist. Thus, w functions so as to ‘de-activate’ the

formula stackw(a1, . . . , an) for any component of ȧ1 included in it.

As a further application of Lemma 122, consider the formula frame(a0, . . . , an)

given by:

stack(a0, . . . , an−1) ∧ ¬C(an, a1 + . . .+ an−2)∧

c(ȧn) ∧ ȧ0 · ȧn 6= 0 ∧ än−1 · ȧn 6= 0. (5.11)

This formula allows us to construct Jordan curves in the plane, in the following

a0

a1

a2
a3

a4

an−1an

Figure 5.24: 3-regions satisfying the formula frame(a0, . . . , an).

sense:

Lemma 123. Let n ≥ 3, and suppose frame(a0, . . . , an). Then there exist Jordan
arcs γ0, . . . , γn such that γ0 . . . γn is a Jordan curve, and γi ⊆ ai, for all i, 0 ≤ i ≤
n.

Proof. By stack(a0, . . . , an−1), let α0, . . . , αn−1 be Jordan arcs in the respective

regions a0, . . . , an−1 such that, α = α0 · · ·αn−1 is a Jordan arc connecting a

point p′ ∈ ȧ0 · ȧn to a point q′ ∈ än−1 · ȧn (see Figure 5.25). Because ȧn is a
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connected subset of the interior of an, let αn ⊆ a◦n be an arc connecting p′ and

q′. Note that αn does not intersect αi, for 1 ≤ i < n − 1. Let p be the last point

on α0 that is on αn (possibly p′), and q be the first point on αn−1 that is on αn

(possibly q′). Let γ0 be the final segment of α0 starting at p. Let γi := αi, for

1 ≤ i ≤ n− 2. Let γn−1 be the initial segment of αn−1 ending at q. Finally, take

γn to be the segment of αn between p and q, reversed if necessary. Evidently,

the arcs γi, 0 ≤ i ≤ n, are as required.

p′ α0

α1

. . .

q′αn−1

αn−2

p′ p
γ0

γ1 = α1

. . .

q′q
γn−1

γn−2 = αn−2

γn

Figure 5.25: Establishing a Jordan curve.

Our final technical preliminary is a simple device for labelling the compo-

nents of regions in order to encode certain information.

Lemma 124. Suppose r, t1, . . . , t` are regions such that

(r ≤ t1 + · · ·+ t`) ∧
∧

1≤i<j≤`

¬C(r · ti, r · tj), (5.12)

and let X be a connected subset of r. Then X is included in exactly one of the ti,
1 ≤ i ≤ `.

Proof. If X ∩ t1 and X ∩ t2 are non-empty, then X ∩ t1 and X ∩ (t2 + · · · + t`)

partition X into non-empty, non-intersecting sets, closed in X.

When (5.12) holds, we may think of the regions t1, . . . , t` as ‘labels’ for any

connected X ⊆ r—and, in particular, for any Jordan arc α ⊆ r. Hence, any

sequence α1, . . . , αn of such arcs encodes a word over the alphabet {t1, . . . , t`}.

We now turn to the proof of the main theorem of this section. First we give a

detailed sketch of the proof for the language Cc, and then, using the techniques

described in Section 5.1, we extend it to the languages Cc◦, Bc and Bc◦.

Theorem 125. For L ∈ {Bc◦,Bc, Cc◦, Cc}, Sat(L,RC(R2)) is r.e.-hard, and
Sat(L,RCP(R2)) is r.e.-complete.
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Proof. Let a PCP-instance w = ({0, 1} , T,w1,w2) be given, where T is a finite

alphabet, and wi : T
∗ → {0, 1}∗ a word-morphism (i = 1, 2). We call the ele-

ments of T tiles, and, for each tile t, we call w1(t) the lower word of t, and w2(t)

the upper word of t. So the question is whether there is a sequence of tiles such

that the concatenation of their upper words is the same as the concatenation

of their lower words. We only consider PCP-instances whose upper and lower

words are non-empty—a restriction that simplifies the encoding, but does not

affect the undecidability of the problem.

We define a formula ϕw consisting of a large conjunction of Cc-literals,

which, for ease of understanding, we introduce in groups. Whenever conjuncts

are introduced, it can be readily checked that—provided w is positive—they are

satisfiable by elements of RCP(R2). (Figures 5.26, 5.28, 5.35 and 5.36 depict

part of a satisfying assignment; this drawing is additionally useful as an aid to

intuition throughout the course of the proof.) The main object of the proof is

to show that, conversely, if ϕw is satisfied by any tuple in RC(R2), then w is

positive. Thus, the following are equivalent:

1. w is positive;

2. ϕw is satisfiable over RCP(R2);

3. ϕw is satisfiable over RC(R2).

This establishes the r.e.-hardness of Sat(L,RC(R2)) and Sat(L,RCP(R2)) for

L = Cc; we then extend the result to the languages Bc, Cc◦ and Bc◦ using

the techniques established in Section 5.1.

The proof proceeds in four stages.

Stage 1. In the first stage, we define the ‘frame’ of the rest of the construction.

What we have in mind is the 3-regions s0, . . . , s9, s′8, . . . , s
′
1, d0, . . . , d6 as depicted

in Figure 5.26. We force a similar configuration using the formulas:

frame(s0, s1, . . . , s8, s9, s
′
8, . . . , s

′
1), (5.13)

(s0 ≤ ḋ0) ∧ (s9 ≤ d̈6), (5.14)

stack(d0, . . . , d6). (5.15)

together with a non-contact constraint

¬C(r, r′) (5.16)
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d3d1 d2 d5d4s0 s9

s1

s2

s3

s4

s5

s8

s7

s′1

s′2

s′3

s′4

s′5

s′8

s′7

s6

s′6

d0 d6

Figure 5.26: A tuple of 3-regions satisfying (5.13)–(5.15).

for every two of the depicted 3-regions r and r′ that are not drawn as being

in contact. Recall that r is the outer-most region of a 3-region r, while we

depict r by drawing its inner-most region r̈. Thus, for example, (5.16) includes

¬C(s0, d1), but not ¬C(s0, d0) of ¬C(d0, d1).

Now suppose s0, . . . , s9, s′8, . . . , s
′
1, d0, . . . , d6 is a collection of arbitrary 3-

regions in the Euclidean plane satisfying (5.13)–(5.16). Using Lemma 123 one

can show that there exist Jordan arcs γ0, . . . , γ9, γ
′
8, . . . , γ

′
1 contained in the re-

spective regions s0, . . . , s9, s
′
8, . . . , s

′
1, such that Γ = γ0 · · · γ9 · γ′8 · · · γ′1 is a Jor-

dan curve. Using Lemma 122, one can also show that there exist Jordan arcs

χ1 ⊆ (d0 + d1), χ2 ⊆ d2 + d3 + d4 and χ3 ⊆ d5 + d6 such that χ1χ2χ3 is a Jor-

dan arc that is a chord in Γ with endpoints on γ0 and γ9. This configuration of

arcs is depicted in Figure 5.27, where γi,j denotes the Jordan arc γi . . . γj, and

similarly for γ′i,j. Note that these Jordan arcs separate the Euclidean space into

three open sets exactly one of which is unbounded. Figure 5.27 depicts only

one of three possible cases—the one when χ2 is part of the boundary of the two

bounded sets. The choice of the unbounded region does not affect the encod-

ing of the PCP and from now on will be disregarded. We refer to the open set

whose boundary contains the arcs γ6 and χ2 as ‘lower window’, and, similarly,

we refer to the open set whose boundary contains the arcs γ′6 and χ2 as ‘upper

window’.

Stage 2. In this stage, we we construct two sequences of arcs, {αi} and {βi} of
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γ0 γ9

γ′6

γ6

χ2χ1 χ3

γ1,5

γ′1,5

γ7,8

γ′7,8

Figure 5.27: The arcs γ0, . . . , γ9, γ′1, . . . , γ
′
8 and χ1, χ2, χ3.

indeterminate length n ≥ 1, such that the arcs αi lie in the lower window. In

the sequel, we write bkc to denote k modulo 3. Let a, b, ai,j and bi,j (0 ≤ i < 3,

1 ≤ j ≤ 6) be 3-regions, and let z be a region satisfying the formulas:

(s6 ≤ ä) ∧ (s′6 ≤ b̈) ∧ (s3 ≤ ȧ0,3), (5.17)

stackz(abi−1c,3, bi,1, . . . , bi,6, b), (5.18)

stack(bi,3, ai,1, . . . , ai,6, a). (5.19)

The arrangement of polygonal 3-regions depicted in Figure 5.28 (with z as-

signed appropriately) is one such satisfying assignment. Again we add non-

contact constraints ¬C(r, s) for every two 3-regions r and s in Figure 5.26 or

Figure 5.28 not depicted as being in contact on either of the two figures.

Using Lemma 122 and arguing as in the proof of Theorem 120, one can

show that there exist non-empty sequences of arcs {ηi} and {ζi} arranged as

shown in Figure 5.29 and such that ζi ⊆ abi−1c,3 + bbic,1 + · · · + bbic,6 + b and

ηi ⊆ bbic,3 + ai,1 + · · · + abic,6 + a. To ensure that the two sequences are indeed

non-empty, we add the constraint

¬C(s3, z). (5.20)

We also need to ensure that the sequences are finite, i.e. the ‘switch’ z in (5.18)

does ‘fire’ at some point. To do so, we add the constraint

c(b0,5 + d3), (5.21)
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as6

bs′6

s3

a0,3
d3

b1,1b1,2b1,3

b1,5

b1,4

b1,6

a1,1a1,2a1,3

a1,5

a1,4

a1,6

b2,1b2,2b2,3

b2,5

b2,4

b2,6

a2,1a2,2a2,3

a2,5

a2,4

a2,6

b0,1b0,2b0,3

b0,5

b0,4

b0,6

a0,1a0,2a0,3

a0,5

a0,4

a0,6

b1,1b1,2b1,3

b1,5

b1,4

b1,6

a1,1a1,2a1,3

a1,5

a1,4

a1,6

Figure 5.28: A tuple of 3-regions satisfying (5.17)–(5.19). The arrangement
of components of the ai,j and bi,j repeats an indeterminate number of times.
The 3-regions a, b and one component of a0,3 are shown in dotted lines. The
3-regions s3, s6, s′6 and d3 are as in Figure 5.26, but not drawn to scale.

which guarantees that ηi and χ2 lie in the same residual domain of Γ. Due to

the non-contact constraints in (5.16), we get that each ηi intersects χ2. Further,

if we assume that the ηi are infinitely many, we will get an infinite sequence of

points Pi ∈ bbic,5 (i ∈ ω) occurring consequently on the Jordan arc χ2, which

is a compact set. Any such sequence must have an accumulation point on χ2,

and it will be a common point for the three disjoint regions b0,5, b1,5 and b2,5—a

contradiction. Hence the sequences {ηi} and {ζi} are indeed finite, and let n be

their length.

η1

ζ1

η2

ζ2

η3

ζ3

η4

ζ4

η5

ζ5

η6

ζ6

η7

ζ7

η′n

ζ ′n

χ2

Figure 5.29: The arcs ηi and ζi.

Now we ‘re-package’ the arcs {ζi} and {ηi}, as illustrated in Figure 5.30.
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Further, defining, for 0 ≤ i < 3,

ηi

ζi αi

βi

Figure 5.30: ‘Re-packaging’ of ζi and ηi into αi and βi: before and after.

ai = a1−i,3 + bi,1 + · · ·+ bi,4 + ai,1 + · · ·+ ai,4

bi = bi,2 + · · ·+ bi,5,

we get for 1 ≤ i ≤ n that

αi ⊆ abic

βi ⊆ bbic.

Note that the arcs αi are located entirely in the ‘lower window’, and that each

arc βi connects αi to a point on γ′6.

We repeat the same with the ‘upper’ and ‘lower’ windows exchanged. We

add to ϕw constraints for regions a′i,j, b
′
i,j, a

′
i, b
′
i that establish sequences of arcs

{ζ ′i}, {η′i}, (1 ≤ i ≤ n′) arranged as shown in Figure 5.31. Again, we ‘re-

package’ these Jordan arcs into the Jordan arcs {α′i} and {β′i} so that

α′i ⊆ a′bic

β′i ⊆ b′bic

for 1 ≤ i ≤ n′. Now, the arcs α′i are located entirely in the ‘upper window’, and

each arc β′i connects α′i to a point on γ6.

Stage 3. In this stage we extend ϕw to ensure that the Jordan arcs βi and β′i

establishes a 1-1 mapping between the Jordan arcs αi to α′i, and in particular

that n = n′.

Recall that αn and α′n′ contain some points in z. Ensuring that z is connected

and contained in the interior of a region z∗, we can join these points by a Jordan
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ζ ′1

η′1

ζ ′2

η′2

ζ ′3

η′3

ζ ′4

η′4

ζ ′5

η′5

ζ ′6

η′6

ζ ′7

η′7

ζ ′n′

η′n′

χ2

Figure 5.31: The arcs η′i and ζ ′i.

arc β∗ lying in the interior of z∗. Restricting z∗ to be disjoint from the regions

bi,j and b′i,j for i (0 ≤ i < 3) and j (1 ≤ i ≤ 6) we ensure that β∗ is (essentially)

as shown in Figure 5.32.

α1

α′1

α2

α′2

α3

α′3

α4

α′4

α5

α′5

α6

α′6

αn

α′n′

χ2
β∗

Figure 5.32: The arc β∗.

Further, we add to ϕw the constraints

¬C(a′i, bj) ¬C(ai, b
′
j) ¬C(bi, b

′
j)

for 0 ≤ i < 3, 0 ≤ j < 3, i 6= j. One can show by induction that each

βi (1 ≤ i ≤ n) crosses αi and α′i (1 ≤ i ≤ n′), and, similarly, that each β′i

(1 ≤ i ≤ n′) crosses αi and α′i (1 ≤ i ≤ n′). Hence, the arcs βi establish a

1–1 correspondence between the arcs αi and α′i as depicted in Figure 5.33. Of

course, this implies that n = n′.

The conjuncts of ϕw introduced so far are the same for each instance of the

PCP. The part of ϕw that is specific for each instance of the PCP are introduced

in the following stage. We use as a running example the instance of the PCP

v, which is given in Table 5.3. The ‘tile’ representation of v and one of its

solutions are depicted in Figure 5.34. The formula ϕw, however, is presented in
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α1

α′1

β1

β′1

α2

α′2

β2

β′2

α3

α′3

β3

β′3

α4

α′4

β4

β′4

α5

α′5

β5

β′5

α6

α′6

β6

β′6

αn

α′n′

βn

β′n′χ2
β∗

Figure 5.33: The 1–1 correspondence between the αi and the α′i established by
the βi and the β′i.

S = {0, 1} w1(1) = 0 w1(2) = 01 w1(3) = 110
T = {1, 2, 3} w2(1) = 100 w2(2) = 00 w2(3) = 11

Table 5.3: A running example of the PCP denoted by v.

the general case.

0

100

1

01

00

2

110

11

31

110

11

3

01

00

2

110

11

3

0

100

1

Figure 5.34: The PCP-instance v (left) together with one of its solutions (right).

Stage 4. In this stage, we ‘label’ the arcs β1, . . . , βn, with regions representing

the elements of {0, 1}, defining in this way a word σ over {0, 1}n. Further, we

label the arcs α1, . . . , αn defining a word τ over the alphabet T of length m,

and, symmetrically, we label the arcs α′1, . . . , α
′
n defining a word τ ′ over T of

length m′. We then synchronise the labellings to ensure that τ = τ ′ and that

w1(τ) = w2(τ ′) = σ. What we have in mind is depicted in Figures 5.35 and

5.36.

We label the arcs βi with regions l0 and l1 representing, respectively, the

letters 0 and 1, by direct application of the technique shown in Lemma 124. If

ϕw is satisfied, then each component of b0, b1 and b2, and hence each of the arcs

β1, . . . , βn, will be contained in exactly one of the regions l0 and l1. Hence, the

arcs β1, . . . , βn will define a word σ ∈ {0, 1}n.
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t′3,1

t3,1

t′3,2

t3,2

t′2,1

t3,3

t′2,2

t2,1

t′3,1

t2,2

t′3,2

t3,1

t′1,1

t3,2

t′1,2

t3,3

t′1,3

t1,1

z∗

l1

l1

l1

l1

l0

l0

l0

l0

l1

l1

l1

l1

l1

l1

l0

l0

l0

l0

Figure 5.35: Satisfying ϕv: the regions ti,j, t′i,j, l0, l1.

Consider now the arcs α1, . . . , αn. Take T = {t1, . . . , t`}, and define for j

(1 ≤ j ≤ `): σj := w1(tj); σ′j := w2(tj); u(j) := |σj| and u′(j) := |σ′j|. We

introduce regions tj,k (1 ≤ j ≤ `, 1 ≤ k ≤ u(j)), where tj,k represents the

kth letter in the word σj, and we call these regions ‘position labels’. Using

Lemma 124, we add to ϕw constraints ensuring that each components of ai
(0 ≤ i ≤ 2) is ‘labelled with’ one of the ‘position labels’. This ensures that

each of the arcs α1, . . . , αn is labelled with exactly one of the tj,k. Further, we

add non-contact constraints to ensure that the labels are organised into blocks,

E1, . . . , Em such that, the sequence of labels each block Eh reads tj,1, . . . , tj,u(j),

for some j (1 ≤ j ≤ `).

Symmetrically, we label the arcs α′i (1 ≤ i ≤ n) with ‘position labels’{
t′j,k | 1 ≤ j ≤ `, 1 ≤ k ≤ u′(j)

}
, again ensuring that these labels are organised

into m′ contiguous blocks, E ′1, . . . , E
′
m′ such that in the hth block, E ′h, the se-

quence of labels reads t′j,1, . . . , t
′
j,u′(j), for some j (1 ≤ j ≤ `).

We now need to synchronise the three labellings to ensure that σ = w1(τ) =

w1(τ ′) and that τ = τ ′. The first task is straight forward—we just add to ϕw the

constraints:

¬C(lh, tj,k) the k’th letter of σj is not h

¬C(lh, t
′
j,k) the k’th letter of σ′j is not h.
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t3,1
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t′3,2

t3,2

t2,1

t3,3

t′2,2

t2,1

t3,1

t2,2

t′3,2

t3,1

t1,1

t3,2

t′1,2

t3,3

t′1,3

t1,1

z∗d3

g0

g′0

g0

g′0

d2

g1

g′1

g1

g′1

d3

g0

g′0

g0

g′0

d1

g1

g′1

g1

g′1

Figure 5.36: Satisfying ϕv: the regions g0, g
′
0, g1, g

′
1, d1, . . . , dl.

To show that τ = τ ′, we use establish a 1-1 correspondence between the ini-

tial ‘position labels’ of the blocks E1, . . . , Em and the initial ‘position labels’ of

the blocks E ′1, . . . , E
′
m′. To do so we introduce regions gi, g′i (0 ≤ i ≤ 1). Us-

ing Lemma 122, we extend ϕw to ensure that gi connect the components of

tj,1 to s′6 and, symmetrically, that g′i connect the components of t′j,1 to s6 (see

Figure 5.36). By adding non-contact constraints for the regions not shown as

being in contact in Figure 5.36, we guarantee that |τ | = |τ ′|. Further, we label

the regions g0 and g1 with ‘pattern labels’ d1, . . . , d`, where each dk represents

the tile tk (1 ≤ k ≤ `). Finally, by adding the constraints:

¬C(tj,k, dj′) (j 6= j′)

¬C(t′j,k, dj′) (j 6= j′)

where 1 ≤ j ≤ `, 1 ≤ k ≤ u(j) and 1 ≤ j′ ≤ `, we make sure that blocks

Ej and E ′j represent the same letter of T , which secures τ = τ ′. Hence, if ϕw

is satisfiable in RC(R2), then w is a positive instance of the PCP. On the other

hand, as shown for v in Figures 5.26, 5.28, 5.35 and 5.36, if an instance w of

the PCP has a solution, one can satisfy the formula ϕw by regions in RCP(R2).

We have established the r.e.-hardness of the problems Sat(Cc,RC(R2)) and

Sat(Cc,RCP(R2)). We must now extend these results to the other languages

considered here. We deal with the languages Cc◦ and Bc as in Section 5.1.

Let ϕ◦w be the Cc◦ formula obtained by replacing all occurrences of c in ϕw
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with c◦. Since all occurrences of c in ϕw are positive, ϕ◦w entails ϕw. On the

other hand, the connected regions satisfying ϕw can always be selected to be

interior-connected, and thus satisfy ϕ◦w as well.

For the language Bc, observe that, as in Section 5.1, all conjuncts of ϕw

featuring the predicate C are negative, including those needed for the definition

of a 3-region. Recall from Section 5.1.1 that

ϕDC2(r, s, r′, s′) := c(r + r′) ∧ c(s+ s′) ∧ ¬c((r + r′) + (s+ s′)),

and consider the effect of replacing any literal ¬C(r, s) from (5.16) with the

Bc-formula ϕDC2(r, s, r′, s′) where r′ and s′ are fresh variables, and let the for-

mula obtained be ψ. It is easy to see that ψ entails ϕw; hence if ψ is satisfiable,

then w is a positive instance of the PCP. To see that ψ is satisfiable, consider

the satisfying tuple of ϕw. Note that if r and s are 3-regions whose outer-most

elements r and s are disjoint (for example: r = a0,1, s = a0,3), then r and

s have finitely many connected components each being a disc-homeomorph.

Hence, it is easy to find r′ and s′ in RCP(R2) satisfying the corresponding for-

mula ϕDC2(r, s, r′, s′). Figure 5.37 represents the situation in full generality. We

may therefore assume, that all such literals involving C have been eliminated

from ϕw.

r r′ r . . . r r′ r

s s′ s . . . s s′ s

Figure 5.37: Satisfying ϕDC2(r, s, r′, s′)

We also have to show that we can replace the implicit non-contact con-

straints that come with the use of 3-regions by suitable Bc-formulas. For ex-

ample, a 3-region variable r involves the implicit constraints ¬C(r̈,−ṙ) and

¬C(ṙ,−r). Since the two conjuncts are identical in form, we only show how

to deal with ¬C(ṙ,−r). Because the complement of −r is in general not con-

nected, a direct use of ϕDC2 will result in a formula which is not satisfiable.

Instead, we represent −r as the sum of two regions s1 and s2 with connected

complements, and then proceed as before. In particular, we replace ¬C(ṙ,−r)
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by:

−r = s1 + s2 ∧ ϕDC2(ṙ, s1, r1, s1) ∧ ϕDC2(ṙ, s2, r2, s2).

For i = 1, 2, ṙ + ri is a connected region that is disjoint from si. So, ṙ is disjoint

from s1 and s2, and hence disjoint from their sum −r := s1 + s2. Figure 5.38

shows regions si, ri, for i = 1, 2, which satisfy the above formula. Let ψw be

s1

s2

ṙ ṙ ṙ

(a) The region −r is the sum of s1 and s2.

s2

ṙ ṙ ṙ

r2

(b) The mutually disjoint connected regions ṙ + r2 and s2.

s1

ṙ ṙ ṙ

r1

(c) The mutually disjoint connected regions ṙ + r1 and s1.

Figure 5.38: Eliminating the conjuncts of the form ¬C(−r, ṙ).

the result of replacing all the conjuncts (explicit or implicit) containing the

predicate C, as just described. We have thus shown that, if ψw is satisfiable over

RC(R2), then w is positive, and that, if w is positive, then ψw is satisfiable over
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RCP(R2).

The final case we must deal with is that of Bc◦. We use the r.e.-hardness

results already established for Cc◦, and proceed, as before, to eliminate oc-

currences of C. Since all the polygons in the tuple satisfying ϕ◦w are quasi-

bounded, we can eliminate all occurrences of C from ϕ◦w using Lemma 114 (iii).
This completes the proof of Theorem 125.

In this section we showed that the satisfiability problem for the four lan-

guages considered by us are undecidable when interpreted over the region

algebras RC(R2) and RCP(R2). To do so, we adapted the techniques used in

Section 5.3 for forcing regions with ℵ0 components in the Euclidean plane. In

the following section we show how the techniques used in Section 5.2 for recog-

nising regions in Rn with ℵ0 components can be used to establish undecidability

of the satisfiability problem for the corresponding languages when interpreted

over the region algebras RCP(Rn).

5.5 Undecidability: The Polyhedral Case

In this section we further investigate the configurations of regions in region al-

gebras over unicoherent topological spaces that can be forced using quantifier-

free topological languages. In particular, we show that the graphs of the com-

ponents of certain partitions of such region algebras are trees. This fact proved

significant, for it was used by Ian Pratt-Hartmann to show the undecidability

of the satisfiability problems for the languages Cc, Bc and Cc◦ when interpreted

over RCP(Rn) (n > 1). The undecidability result is still unpublished, however,

the authors of [KNPHZ11a] are currently preparing a journal paper including

it. For completeness, we provide a rough sketch of its proof, emphasising how

the tree component structure of the partitions is used. The actual encoding of

the PCP is similar to the one presented in Section 5.4 and will be described here

only on intuitive level.

As we already mentioned, the undecidability of Sat(L,RCP(Rn)), for L ∈
{Cc,Bc, Cc◦}, is shown by a reduction of the Post correspondence problem

(PCP). The encoding of a solution of a PCP-instance hinges on the notion of

a sub-cyclic partition, some of whose properties were already implicitly studied

in Section 5.2. A sub-cyclic (k-)partition in a region algebra M is a tuple of
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regions r̄ = (r0, . . . , rk−1) inM satisfying the Cc-formula scycle given by:

r0 + · · ·+ rk−1 = 1 ∧
∧

0≤i,j<k

ri · rj = 0 ∧
∧

bj−ic>1
bi−jc>1

¬C(ri, rj),

where bic denotes i (mod k). Note that if r̄ satisfies scycle, then every rotation

s̄ of r̄ will also satisfy scycle. (A sequence s̄ is a rotation of another sequence r̄

if for some j and every 0 ≤ i < k, si = rbi+jc.) For every sequence of regions

r̄ = (r0, . . . , rk−1) in a region algebra M, the component graph of r̄ is defined

as the graph H(r̄) = (V,E), where V is the set of the connected components

of the regions ri, and E is the restriction of the contact relation to V 2, i.e. for

r, s ∈ V , (r, s) ∈ E ⇐⇒ C(r, s) ⇐⇒ r ∩ s 6= ∅. Although in general the

component graph of a sub-cyclic partition may have arbitrary structure, it turns

out that in finitely decomposable region algebras over unicoherent spaces it is

always a trees (connected graphs with no simple cycles). Before we prove this

crucial property, we make some further observations.

s0 s1 s2

u0
v1 u1

Figure 5.39: A simple path in the component graph of a sub-cyclic partition.

Lemma 126. LetM be a finitely-decomposable region algebra over a unicoherent
topological space, and let r̄ be a sub-cyclic k-partition with component graph H(r̄).
Further, let s0s1s2 be a simple path in H(r̄). If ui, for i = 0, 1, is the component of
−si containing si+1, then u1 � u0, i.e. ¬C(u1,−u0).

Proof. Take v1 to be the component of −s1 containing s0 (see Figure 5.39). It

suffices to show that v1 and u1 are different components of −s1. Indeed, if this

is the case, we will then have that u1 � −v1 ≤ −s0. I.e. u1 will be contained in

the interior of −s0. Since u1 is connected, it has to be contained in the interior

of a component of −s0, and since u1 ∩ s1 6= ∅ and s1 ≤ u0, that component has

to be u0. Hence u1 � u0.

To see that v1 6= u1, we show that their boundaries are disjoint by making

use of the fact that the space is unicoherent. Without loss of generality, we
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may assume that s1 is a component of r1. We know from Lemma 33 that the

boundary of v1, δ(v1), is connected, and because r̄ is a sub-cyclic partition,

δ(v1) ⊆ r0 + r2. Hence, by ¬C(r0, r2), δ(v1) is contained in exactly one of the

regions r0 and r2. Now, since δ(v1) is connected, δ(v1) has to be contained in a

component of r0 or r2 and it has to be disjoint from all the other components of

these two regions. Hence, δ(v1) must be contained in s0. Similarly, δ(u1) must

be contained in s2. If we assume that δ(u1) and δ(v1) have a point in common

we will get that s0 and s2 are in contact. This, however, contradicts the two

possible cases for s0 and s2: when they are (different) components of one of the

regions r0 and r2; and when one of them is a component of r0 and the other a

component of r2. Hence, v1 6= u1, and as a result u1 � u0.

e1 e2

A0 A0A1 A1A2 A2A3 A3A4 A4A5 A5A6 A6A7 = B3 = w∗ A7 = B3 = w∗

B0

B0

B1

B1

B2 B2

Figure 5.40: Two simple paths Ā = {A0, . . . , A7} and B̄ = {B0, . . . , B3} in the
component graphs of the sub-cyclic partitions r̄ and s̄. The partition Ā refines
the partition B̄ within each of the regions e1 and e2. The two refinements are
independent, which allows the encoding of the tiles of arbitrary PCP-instances.

Lemma 127. Let X be a unicoherent topological space,M a finitely-decomposable
region algebra over X , and r̄ = (r0, . . . , rk−1) be a sub-cyclic partition inM. Then
the component graph H(r̄) is a tree.

Proof. First, since M is connected and finitely decomposable, H(r̄) must be

finite and connected. Assume that H(r̄) is not a tree. Then there has to be
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a simple cycle s0, . . . , sm−1, for some m > 2. Take ui (0 ≤ i < m) to be the

component of −si containing sbi+1c, where bic now denotes i (mod m). By

Lemma 126, we have that ui � ubi−1c, for 0 ≤ i < m. Since � is transitive,

we get that u0 � u0, which in connected spaces implies that u0 is either 0 or 1.

This, however, is not the case, because, for example, s0 and s2 are disjoint and

non-empty.

Lemma 127 plays a key role in establishing the undecidability of

Sat(L,RCP(Rn)), for n > 1 and L ∈ {Cc, Cc◦,Bc}. In the rest of the section

we will show how it can be used to encode any solution to a positive PCP-

instance by regions in RCP(Rn). For the rest of the section we fix n > 1 and we

use the term region to denote the elements of RCP(Rn).

Consider two sub-cyclic partitions r̄ = (r0, . . . , r3) and s̄ = (s0, . . . , s3):

scycle(r0, r1, r2, r3) scycle(s0, s1, s2, s3),

and two non-empty regions e1 and e2 (see Figure 5.40). For k = 1, 2 define

ek · r̄ := (ek · r0, . . . , ek · r3) and ek · s̄ := (ek · s0, . . . , ek · s3). Clearly, both the

regions in ek · r̄ and the regions in ek · s̄ partition the region ek. One can find a

Cc-formula which ensure that the partition ek · r̄ is a refinement of the partion

ek · s̄, i.e. each component of a region in ek · r̄ is contained in a component of a

region in ek · s̄.
Just as we did in Section 5.2, we force every component of ri · ek, for 0 ≤

i < 4 and k = 1, 2, either to be in contact with a component of rbi+1c · ek, or to

be contained in a fixed component w∗ of one of the regions in r̄. Further, we

can ensure that there exists a component A0 of r0 that intersects both e1 and e2.

Hence, we can construct two sequences of regions

Ā1 = (A0 = A1
0, . . . , A

1
m(1) = w∗)

Ā2 = (A0 = A2
0, . . . , A

2
m(2) = w∗),

where Aki is a component of rbic, for 0 ≤ i < m(k), and Aki · ek is in contact with

Aki+1 · ek, for 0 ≤ i < m(k)− 1. By construction, however, the sequences Ā1 and

Ā2 are simple paths in the component graph H(r̄), and by Lemma 127 the two
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sequences must coincide. Hence, we may skip the superscripts and write:

Ā = {A0, . . . , Am = w∗} .

Now consider the sub-cyclic partition s̄. Recall that each component of a

region in ek · r̄ is contained in a component of a region in ek · s̄. However, if t is

a component of a region in r̄, then t · e1 and t · e2 will in general be contained in

different components of different regions in s̄. So, every Ai · ek, for (0 ≤ i < m)

and k = 1, 2, is contained in some component B̂k
i of a region in s̄. Thus we have

the following two sequences

(B̂1
0 , . . . , B̂

1
m)

(B̂2
0 , . . . , B̂

2
m)

of components of regions in s̄. By removing the neighbouring duplicates, we

obtain the sequences

B̄1 = (B1
0 , . . . , B

1
`(1))

B̄2 = (B2
0 , . . . , B

2
`(2)),

where `(1) < m and `(2) < m. Adding further constraints, one can show that

Bk
i is a component of si, for k = 1, 2 and (0 ≤ i < `(k)). As a consequence, we

get that B̄1 and B̄2 are simple paths in H(s̄) starting and ending at the same

nodes. Again, by Lemma 127, these paths must coincide, and we can therefore

ignore the k-superscripts and write:

B̄ = {B0, . . . , B`} .

It is now only a matter of ‘labelling’ the components of the regions in r̄,

s̄, e1 · r̄ and e2 · r̄ to encode a solution of a PCP-instance. Fix a PCP-instance

w = ({0, 1} , T,w1,w2), where T = {t0, . . . , tp} is a finite alphabet, and wi : T
∗ →

{0, 1}∗ a word-morphism (i = 1, 2). We introduce regions `0 and `1 representing

the letters 0 and 1, and ‘label’ with them the components of the regions in

r̄. Further, we introduce regions ti (0 ≤ i ≤ p), called pattern labels, and

we use them to ‘label’ the components of the regions in s̄. In this way, the

sequences (A0, . . . , Am) and (B0, . . . , B`) encode the two words υ ∈ {0, 1}m+1
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and τ ∈ T `+1, respectively. What we are left to show is that w1(τ) = υ and

w2(τ) = υ.

For each k = 1, 2, we introduce regions tki,j, for (0 ≤ i ≤ r) and (0 ≤ j ≤
|wk(i)|), called position labels, and we use them to label the components of the

regions in ek · r̄. Further, we ensure that if a region B ∈ B̄ is labelled with a

pattern label ti, (0 ≤ i ≤ p), then, for k = 1, 2, the subsequence (ek ·Aq(0), . . . , ek ·
Aq(|ti−1|)) of Ā contained in ek ·B encodes the word (tki,0, . . . , t

k
i,|ti|−1). By making

certain that every position label is correctly labeled with one of the regions `0

and `1, we ensure that w1(τ) = υ and w2(τ) = υ. Hence, for every PCP-instance

w there exists a Cc-formula that is satisfiable over RCP(Rn) exactly when w has

a solution. Using the same techniques as those in Section 5.2, we can show that

this also holds for the languages Bc and Cc◦. As a result we get the following

theorem.

Theorem 128. Let L be one of the languages Cc, Bc and Cc◦, and n > 1. Then
Sat(L,RCP(Rn)) is r.e.-complete.

5.6 Conclusion

In this chapter we considered quantifier-free languages for qualitative spatial

reasoning. In particular, we focused on the languages Cc, Cc◦, Bc and Bc◦,
which feature symbols for connectedness predicates and Boolean operations. It

was known from previous studies that these languages are sensitive to lower-

dimensional Euclidean interpretations, i.e. for each of these languages L, the

region algebras RC(R), RC(R2) and RC(R3) satisfy different L-formulas [KPHZ10].

It was also known that the satisfiability problems for these languages when

interpreted over Euclidean region algebras of dimension at least two are EX-

PTIME-hard, with certain exceptions for the language Bc◦ [KPHZ10]. Using

the fact that Euclidean spaces are unicoherent, we showed that the languages

Cc, Cc◦ and Bc contain formulas which are satisfiable in the region algebras

RC(Rn), for (n > 1), but only by tuples containing regions with infinitely many

connected components. We also argued that using similar techniques one can

show the undecidability of the satisfiability problem for the languages Cc, Cc◦

and Bc when interpreted over the region algebras RCP(Rn), for (n ≥ 2). Apply-

ing very different techniques based on planarity arguments, we further showed

that the four languages contain formulas that are satisfiable in RC(R2), but
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only by tuples containing regions with infinitely many components. Using the

same techniques, we also showed that the satisfiability problems for the four

languages when interpreted over RC(R2) or RCP(R2) are undecidable.

The above undecidability results are in stark contrast with the relatively

low computational complexity of other studied quantifier-free Euclidean spatial

logics. For example, the satisfiability problems for the languages RCC8, RCC8c
and C with respect to Euclidean interpretations are all decidable—NP-complete

in the case of RCC8 and RCC8c and PSPACE-complete in the case of C—and

that in spite of the fact that in the languages RCC8c and C one can express con-

nectedness constraints and Boolean constraints, respectively. It is only when

both these types of constraints are present in a language that its computational

complexity increases dramatically. This leaves us with the major challenge of

identifying languages featuring both connectedness and Boolean constraints,

but having decidable satisfiability problem with respect to Euclidean interpreta-

tions. A natural strategy for achieving this is to restrict the interaction between

Boolean and connectedness constraints in each of the languages Cc, Cc◦, Bc and

Bc◦. Another open problem is to determine the computational properties of the

languages Cc, Cc◦ and Bc when interpreted over the region algebras RC(Rn),

for (n ≥ 3).



Chapter 6

Conclusion

This thesis has investigated certain formal systems, called spatial logics, for rea-

soning about regions in space. Spatial logics are of particular interest to the

AI community as a means to enable an intelligent agent to represent and rea-

son about spatial knowledge. From practical point of view, the most interest-

ing spatial logics are those for reasoning about regions in Euclidean space; we

call these Euclidean spatial logics. The collection of regions is assumed to be

a Boolean algebra of arbitrary or regular closed subsets of some topological

space, and is called respectively a set algebra or a region algebra; we add the

word complete in case the Boolean algebra is complete.

It has long been understood that most interesting first-order spatial logics

have undecidable satisfiability problems, and much early research consequently

focused on their axiomatic characterisations and model-theoretic properties.

However, various mathematical problems remained open. Some

quantifier-free Euclidean spatial logics, such asRCC8,RCC8c and BRCC8 were

known to have relatively low computational complexities (NP and PSPACE).

However, quantifier-free Euclidean spatial logics with both connectedness and

Boolean primitives were known to have significantly higher computational com-

plexity (at least EXPTIME-hard), and they were not even known to be decidable.

The aims of this study were to survey the latest results on the model-theoretic

and computational properties of spatial logics, and to solve some of the prob-

lems which were left open in the literature.

The present study has made several contributions. The first is presented

in Section 4.2.1, and concerns the first-order theories of complete region al-

gebras in the language LC, the language of Boolean algebras augmented with

147
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Whitehead’s contact relation. LC-structures satisfying certain axioms are known

in the literature as (Boolean) contact algebras. We showed that the LC-theory

of complete region algebras is different from the LC-theory of all region alge-

bras (Theorem 68). A similar result was obtained for complete region alge-

bras over different collections of topological spaces. The result was extended

to the first-order theory of complete set algebras in the language Lcl, the lan-

guage of Boolean algebras augmented with Kuratowski’s closure operation. Lcl-
structures satisfying certain axioms were introduced by McKinsey and Tarski

under the name of closure algebras.
The second major contribution of this study is presented in Section 4.3, and

concerns the computability of first-order spatial logics. The first-order theories

of many higher-dimensional Euclidean spatial logics had been known to be un-

decidable. This research presented here, however, shows that the topological

theories of region algebras over the real line are all decidable (Section 4.3.1),

but non-elementary (Section 4.3.2). Another finding, which is presented in Sec-

tion 4.3.3, is the improved lower complexity bounds on the topological theories

of the region algebras RC(Rn), n > 1. Further, a number of upper complex-

ity bounds were obtained for the (undecidable) Euclidean spatial logics, yield-

ing tight complexity bounds for all but two these logics (see Section 4.3.4).

These complexity results imply the surprising model-theoretic result that the

region algebra of polytopes (RCP(Rn)) and the region algebra of algebraic poly-

topes (RCPA(Rn)) have different Lconv-theories, where Lconv is the language of

Boolean algebras augmented with the property of being convex.

The third major contribution of this study is presented in Section 5, and

concerns the expressiveness and computability of quantifier-free spatial logics.

This research focuses on languages with Boolean primitives and connectedness

predicates interpreted over region algebras over Euclidean spaces. One of the

most significant findings is that there exist formulas in the languages Cc, Bc and

Cc◦ that are satisfiable in RC(Rn), n > 1, but only by tuples containing regions

with infinitely many components. The methods that were used in establishing

this result were applied in an unpublished work of Pratt-Hartmann to show

that the satisfiability problem for any of the languages Cc, Bc and Cc◦ over

the polygonal region algebras RCP(Rn), n > 1, is undecidable. Both these

results rely on the fact that Euclidean spaces are unicoherent. Another finding,

based this time on planarity arguments, is that the language Bc◦ also contains a
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formula that is satisfiable in RC(R2), but only by tuples containing regions with

infinitely many components. Using a similar construction, it was further shown

that the satisfiability problem for each of the languages Cc, Bc, Cc◦ and Bc◦,
when interpreted over RC(R2) or RCP(R2), is undecidable.

Future Work

Various questions remain open, and we conclude with a survey of these. The LC-

theories of region algebras over different classes of topological spaces have been

recently axiomatised [Roe97, DW05, DV06]. The finding that these theories

are different from the LC-theories of the complete region algebras over the

respective topological spaces (see Section 4.2.1) raises the problem of obtaining

axiomatisations of the latter theories. Similarly, the problem of obtaining an

axiomatisation of the Lcl-theory of the class of complete set algebras is now

also open.

Another question motivated by the current study concerns the degree of

undecidability of first-order theories of region algebras. Although this study

has filled in many of the gaps left in the literature, it was unable to establish

tight complexity bounds for the LC-theories of the region algebras RCP(Rn) and

RCS(Rn), n > 2, and established only ∆0
ω-hardness and membership in ∆1

ω. For

n = 2, the corresponding problem was resolved using the previously obtained

result that the LC-structures RCP(R2) and RCS(R2) are elementary equivalent

to the LC-structure RCPQ(R2), and hence have theories that are ∆0
ω-complete.

Whether a similar result can be obtained for n > 2 is an open problem.

Further model-theoretic research is suggested by the finding that RCP(Rn)

and RCPA(Rn) have different Lconv-theories. It is known that these two theo-

ries are different from the Lconv-theory of RCPQ(Rn), which has been recently

axiomatised for n = 2 [Try10]. As discussed in Section 3.2, it is suspected that

the axiomatisation can be extended to the Lconv-theory of RCPA(Rn), but since

it relies on the fact that the structure is countable, the techniques employed

cannot be extended to the Lconv-theory of RCP(Rn).

Another problem that remains unsolved is to determine the computational

properties of the languages Cc, Cc◦ and Bc when interpreted over the region

algebras RC(Rn), n ≥ 3. The natural strategy for doing so is to try to extend

the decidability or undecidability results for other quantifier-free topological

languages when interpreted over Rn, n ≥ 3. Furthermore, the undecidability
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of the satisfiability problem of quantifier-free topological languages interpreted

over Euclidean spaces poses the major challenge of identifying fragments of

these languages featuring connectedness and Boolean constraints, and having

decidable satisfiability problems. Since the languages are quantifier-free, the

only possible strategy for achieving this is to restrict the interaction between

Boolean and connectedness constraints in each of the languages Cc, Cc◦, Bc
and Bc◦. It is our hope that detailed analysis of the undecidability proofs of

Chapter 5 might provide some clues as to the most appropriate kinds of restric-

tions to examine.
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Euclidean spatial logics, 41

extensional contact algebras, 67

extensionality axiom, 67

factor, 91

half-space, 39

algebraic, 39

rational, 39

interior, 33

interpolation axiom, 67

interpretation

(polynomial-time) computable, 23

Jordan arc, 36, 106

Jordan curve, 36, 106

metric topology, 34

neighborhood, 33

normal contact algebras, 67

open cover, 35

polytope, 39

algebraic, 39

basic, 39

rational, 39

Post correspondence problem, 119

quantifier depth, 78

region, 37

regular closed, 34

semi-algebraic set, 38
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