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Abstract

Path-Functional Dependencies and the Two-Variable
Guarded Fragment with Counting

Georgios Kourtis

A thesis submitted to the University of Manchester
for the degree of Doctor of Philosophy, 2017

We examine how logical reasoning in the two-variable guarded fragment with
counting quantifiers can be integrated with databases in the presence of certain
integrity constraints, called path-functional dependencies. In more detail, we
establish that the problems of satisfiability and finite satisfiability for the two-
variable guarded fragment with counting quantifiers, a database, and binary path-
functional dependencies are EXPTIME-complete; we also establish that the data
complexity of these problems is NP-complete. We establish that query answering
for the above fragment (with a database and binary path-functional dependen-
cies) is 2-EXPTIME-complete with respect to arbitrary models, and provide a
2-EXPTIME upper bound for finite models. Finally, we establish that the data
complexity of query answering is coNP-complete, both with respect to arbitrary
and finite models.
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1 | Introduction

At the beginning of the twentieth century, one of the most important open prob-
lems in mathematics was the so-called decision problem. It was originally pro-
posed by David Hilbert as part of his famous program for the formalization of
mathematics. The decision problem asks for an algorithm which given an arbi-
trary sentence of first-order logic decides whether it is satisfiable (i.e. whether it
has a model). The discovery of such an algorithm would be of great value, as
it would allow—at least in theory—an automatic derivation for a large part of
mathematics. Unfortunately it was shown in 1936, independently by Church and
Turing, that no such algorithm exists.

This negative result did not discourage mathematicians. Various results were
produced thereafter, showing that certain restricted versions of the decision prob-
lem are solvable. These versions correspond to certain classes of first-order sen-
tences, referred to as decidable fragments of first-order logic, which arise by setting
syntactic restrictions to first-order logic. (A class of sentences is said to be de-
cidable if there is an algorithm to decide whether any given sentence in it is
satisfiable; otherwise, it is said to be undecidable.) The main focus was initially,
for historic reasons, on fragments which arise by imposing restrictions on the or-
der of quantifiers of sentences in prenex normal form, like the ∃∗∀∗ class and the
∃∗∀∃∗ class.

During the last three decades the interest shifted toward fragments with a
bounded number of variables and, later, the guarded fragment. This was mainly
due to important applications in areas like hardware and software verification,
database theory, and descriptive complexity theory. In the case of fragments with
a bounded number of variables, the line between decidability and undecidabil-
ity is drawn quickly: first-order logic (with equality) with one or two variables
is decidable; three or more variables make it undecidable. Two-variable first-
order logic retains its decidability even with the addition of counting quantifiers,

11



CHAPTER 1. INTRODUCTION 12

i.e. quantifiers of the form ∃≤C , ∃=C , and ∃≥C , where C is a (natural) number.
Using such quantifiers one can succinctly express requirements about the number
of objects having a certain property, which makes them very useful in a knowl-
edge representation setting, where one might be interested to write statements
like ‘every professor supervises at most ten students’.

The guarded fragment was an attempt to explain and generalize the nice
computational properties of modal logic, which is the starting point for many in-
teresting logics with important applications (e.g. description logics can be viewed
as variants of modal logics). The guarded fragment dictates that quantifiers
be relativised (guarded) by atoms, i.e. quantifiers can only appear in the form
∀ȳ α(x̄, ȳ)→ ϕ(x̄, ȳ) or ∃ȳ α(x̄, ȳ)∧ϕ(x̄, ȳ), where x̄, ȳ are tuples of variables and
α is an atom. (One gets quantified formulas in this exact form, albeit with only
two variables, when translating from modal to first-order logic.) This fragment is
decidable and remains decidable after particularly powerful extensions (e.g. with
fixpoint operators). Adding counting quantifiers to the guarded fragment with
three or more variables makes it undecidable. However, the two-variable guarded
fragment with counting is decidable. The latter fragment properly contains the
description logicALCQI, which makes it important in a knowledge representation
setting.

Guarded fragments have an interesting model theory. Most notably, models
of guarded fragments are ‘tree-like’, in the sense that if a sentence has a model,
then it has a model of bounded tree-width. Models of the two-variable guarded
fragment with counting quantifiers are ‘locally tree-shaped’, in the sense that
they can be taken to contain no cycles of length less than a fixed number Ω.
The latter fact is crucial to our thesis: it allows us to succinctly ‘describe’ cer-
tain configurations in models using guarded two-variable formulas with counting
quantifiers. (This is not possible when cycles of arbitrary length are allowed to
exist.) Roughly speaking, our aim is to take advantage of this property to study
the interaction between the two-variable guarded fragment with counting and
certain concepts from database theory (in particular certain types of integrity
constraints).

Logic, in general, plays a central role in database theory. Among other things,
it is useful for establishing the computational complexity of queries, studying the
expressive limitations of query languages, comparing the expressive capabilities
of different query languages, and reasoning about data integrity. In fact, SQL,
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the most popular query language of the last few decades, is first-order logic in
disguise. New generation information systems also allow querying data in the
presence of a given logical theory (often referred to as a background theory), which
codifies implicit information about the data. Description logics are perhaps the
most popular logics used currently in such systems. Because the two-variable
guarded fragment with counting contains ALCQI and this logic is very common,
our work is relevant to the theory and implementation of such systems.

Data in an information system are rarely unrestricted: various forms of con-
straints are imposed upon them. An important type of constraints, both in the-
ory and in practice, are functional dependencies. Functional dependencies dictate
that certain values in a database record determine other values in that record.
For example, in the database table employee(name, surname, nin, tel) recording the
name, surname, national insurance number, and telephone number of a com-
pany’s employees, we may assume that no two distinct entries (employees) have
the same national insurance number. That is, if a and b are entries (employees)
in the table, then

a.nin = b.nin =⇒ a = b. (1.1)

(1.1) is an example of a unary functional dependency. Of course, we may wish
to write a constraint like

a.nin = b.nin & a.tel = b.tel =⇒ a = b, (1.2)

which is an example of a binary functional dependency. In general, if the are n
conjuncts in the antecedent of a functional dependency like the above, then this
dependency is said to be n-ary or to have arity n.

Many applications require the representation of data into complex hierarchies
of objects. For example, we may wish to represent the data for a company’s
employees in the following form:

employee

name nin address

road postcode

In addition, we may want to enforce the condition that the national insurance
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number and the postcode of the address of an employee fully determine the em-
ployee, that is,

a.nin = b.nin & a.address.postcode = b.address.postcode =⇒ a = b. (1.3)

The above constraint is an example of a path-functional dependency. As with
functional dependencies, the number of conjuncts in the antecedent of a depen-
dency like (1.3) determines its arity. For example, (1.3) has arity 2, i.e. it is a
binary path-functional dependency.

In this thesis, we study path-functional dependencies in the context of first-
order logic and, in particular, the two-variable guarded fragment with counting
quantifiers. In that case, because we are unable to write expressions like (1.3),
we introduce abbreviations for path-functional dependencies and annotate our
formulas with such abbreviations. Then, when interpreting the annotated formu-
las, we make sure to enforce the constraints that the dependencies dictate. For
example, instead of (1.3) we write

PFD[nin, address.postcode].

To state that every employee has at most two supervisors under the constraint
that employees are fully determined by their national insurance number and the
postcode of their address, we write

∀x(employee(x)→ ∃≤2y supervises(y, x)) : PFD[nin, address.postcode].

We say that an expression like the above is (finitely) satisfiable if there exists
a (finite) model satisfying the formula on the left side that does not violate
the constraints imposed by the dependency on the right side. We also speak of
(finite) satisfiability in the context of a database. For our purposes, a database is a
finite set of ground literals—i.e. atomic statements or negated atomic statements
featuring only constants as arguments. For example, in the context of the above
examples, a subset of a company’s database might be

{empoyee(Alice), empoyee(Bob), supervises(Alice,Bob)}.

In general, we say that an expression of the form ∆, ψ : ℘1, . . . , ℘k, where ∆
is a database, ψ is a guarded two-variable sentence with counting quantifiers,
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and ℘1, . . . , ℘k are path-functional dependencies, is (finitely) satisfiable if there
exists a (finite) model that interprets the constants in ∆ and satisfies each literal
in ∆, satisfies ψ, and does not violate the constraints dictated by ℘1, . . . , ℘k.
Satisfiability is the most important problem for our purposes, because we can
reduce query answering to it.

The literature on path-functional dependencies takes two directions: The first
is akin to the study of functional dependencies in classical database theory and
involves, among other things, querying data (organized in a hierarchical form as
in the example that we gave earlier) under the restrictions imposed by sets of
path-functional dependencies, without considering logical (background) theories.
The second revolves around integrating path-functional dependencies into knowl-
edge representation systems based on description logics (and thus may involve
background theories, something common in reasoning with description logics).

Aims of the thesis

Our aim is to study the computational complexity of reasoning for the two-
variable guarded fragment with counting quantifiers in the presence of path-
functional dependencies and a database. Our main focus will be on binary path-
functional dependencies. As we will see in Chapter 6, unary path-functional
dependencies are quite simple to deal with. Binary path-functional dependen-
cies, on the other hand, present serious difficulties that require a much more
involved approach. We will also see in Chapter 8 (Section ‘Future work’), that
the binary case provides a template to handle path-functional dependencies of
arbitrary arity (again, the proof is quite involved and tedious, so we will just give
a proof sketch due to lack of time). In particular:

• We establish the complexity of satisfiability and finite satisfiability for the
two-variable guarded fragment with counting quantifiers in the presence of
a database (without path-functional dependencies).

• We use the above result to establish the complexity of satisfiability and finite
satisfiability for the two-variable guarded fragment with counting quantifiers
in the presence of binary path-functional dependencies and a database.

• We establish the (combined) complexity of conjunctive query answering
(with respect to both finite and arbitrary models) in the presence of binary
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path-functional dependencies and a logical (background) theory of guarded
two-variable sentences with counting quantifiers. We also establish the data
complexity of the above problem.

Structure of the thesis

The thesis is organized as follows. Chapters 2 – 4 present some background ma-
terial. In Chapter 2 we mention relevant notions from logic (including first-order
logic and description logics) and the theory of computation. In Chapter 3 we
mention related work from computational logic, database theory, and descrip-
tive complexity (mainly expressiveness of query languages). In Chapter 4 we
formally introduce the guarded fragment and the two-variable guarded fragment
with counting, we present two results relevant to the model theory of those frag-
ments (the first, due to Grädel, mostly for completeness; the second, due to
Pratt-Hartmann, because it provides the foundation for our further work), and
discuss the relationship between the two-variable guarded fragment with counting
quantifiers and the description logic ALCQI.

Chapters 5 – 7 contain our contributions. In Chapter 5 we extend the proof
due to Pratt-Hartmann [PH07] that the (finite) satisfiability problem for the
guarded two-variable fragment with counting quantifiers is EXPTIME-complete
so as to accommodate the presence of a database. We were unable to find a way
to use Pratt-Hartmann’s result directly, so his proof had to be adapted. The
original proof is by reduction of the (finite) satisfiability problem for the above
fragment to the existence of a solution for a set of linear equations/inequalities.
We show how to add to the original system (which we leave untouched) a set of
inequalities that take the database into consideration and then prove that those
inequalities have the desired effect.

In Chapter 6 we study (finite) satisfiability for the two-variable guarded frag-
ment with counting quantifiers in the presence of a database and (binary) path-
functional dependencies. We show how to systematically eliminate the dependen-
cies, leaving us with a ‘plain’ (finite) satisfiability problem for the above fragment
with a database (which can be solved using the methods in Chapter 5). The ap-
proach in this chapter is based on the fact that models of the two-variable guarded
fragment with counting quantifiers can be assumed to contain no small cycles.
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Using this observation, one can identify putative violations of each given depen-
dency with certain kinds of acyclic graph walks. These walks can be decomposed
into components described by guarded two-variable formulas with counting quan-
tifiers, and can either be forbidden or checked within the database.

In Chapter 7 we first establish a 2-EXPTIME upper bound for the (combined)
complexity of query answering (with respect to both infinite and finite models)
for the two-variable guarded fragment with counting quantifiers in the presence of
path-functional dependencies (and a database). We do that by working through
Pratt-Hartmann’s proof in [PH09], which establishes an upper (and lower) bound
for the data complexity of query answering for the above fragment (without path-
functional dependencies). The main approach is exactly the same—it reduces
query answering to satisfiability—so we just work out some subtleties having to
do with path-functional dependencies, and carefully examine the new bounds (in
the original result the query was fixed, but we allow it to vary). We obtain a lower
bound for query answering with respect to arbitrary models from a result due to
Lutz [LST05], concerning query answering for the description logic ALCQI. We
then establish that the data complexity of (finite) satisfiability for the guarded
fragment with counting quantifiers in the presence of path-functional dependen-
cies and a database is NP-complete. Finally, we use the latter result to obtain
that the data complexity for our first problem in the chapter is coNP-complete,
again based on the work from [PH09].



2 | Preliminaries

In this chapter we introduce some important notions from mathematical logic
and the theory of computation.

2.1 First-order logic

A signature provides names for constants, relations, and functions, in a domain
of interest.

Definition 2.1. A signature or vocabulary is a triple σ = 〈Const; Rel; Func〉, where
Const is a collection of constant symbols (denoted c1, . . . , c`), Rel is a collection of
relation symbols (denoted p1, . . . , pm), and Func is a collection of function symbols
(denoted f1, . . . , fn). With each signature is also associated a function

α : Rel ∪ Func→ {1, 2, . . .},

assigning to each relation and function symbol an arity.

A signature is said to be relational if it contains no function symbols. All the
signatures that we deal with in this thesis are relational. A signature containing
neither any constants nor function symbols is said to be purely relational.

Structures are used for interpreting the language of first-order logic.

Definition 2.2. Let σ be a signature. A σ-structure S = 〈S, {cSi }, {pSj }, {fS
k }〉

consists of a universe S, and an interpretation of

• each constant symbol ci from σ as an element cSi ∈ S;
• each relation symbol pj from σ as a relation pSj ⊆ Sα(pj);
• each function symbol fk from σ as a function fS

k : Sα(fk) → S.

18
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For example, a directed graph G = (V,E) is a structure over the purely rela-
tional signature σ = 〈E〉. By convention we use fraktur letters (A,B,C,D, . . .)
for structures and roman letters (A,B,C,D, . . .) for universes correspondingly.
A structure is said to be finite if its universe is finite. If A is a σ-structure
and A0 ⊆ A, we define A|A0 to be the σ-structure B whose universe is the set
B = A0 ∪ {cA | c is a constant symbol in σ}, with cB = cA for every constant
symbol c in σ, and pB, fB being the restriction to B of pA, fA respectively, for
each relation symbol p and function symbol f in σ.

We now define the language of first-order logic (with equality), which is actu-
ally a family of languages, one for each signature σ.

Definition 2.3. The alphabet of first-order logic comprises, for each signature σ,
the symbols in σ, and, in addition:

(i) the propositional symbols ¬ (not), ∧ (and), ∨ (or);
(ii) the quantifiers ∀ (for all) and ∃ (there exists);

(iii) the punctuation symbols ‘(’ and ‘)’;
(iv) a set of countably many variable symbols Vars = {x0, x1, x2, . . .}.

Definition 2.4. The set of terms of first-order logic, over a signature σ, are the
expressions t generated by the grammar

t := x | c | f(t1, . . . , tn),

where x is a variable, c is a constant symbol in σ, f is a function symbol in σ of
arity n, and t1, . . . , tn are terms.

Definition 2.5. The set of formulas of first-order logic, over a signature σ, are
the expressions χ generated by the grammar

χ := p(t1, . . . , tn) | s = t | ¬(ϕ) | (ϕ) ∧ (ψ) | (ϕ) ∨ (ψ) | ∀x(ϕ) | ∃x(ϕ),

where p is a relation symbol in σ of arity n, t1, . . . , tn and s, t are terms, ϕ, ψ are
formulas, and x is a variable.

We usually omit the parentheses when no confusion arises. We also use various
letters (possibly with subscripts and usually from the end of the roman alphabet)
other than x to denote variables. We may also use symbols other than c, p, and f
for constant, relation, and function symbols respectively; the type of such symbols
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will always be clear from context. Finally, we use the following abbreviations for
convenience: ϕ→ ψ for ¬ϕ∨ψ and ϕ↔ ψ for (ϕ→ ψ)∧ (ψ → ϕ), where ϕ and
ψ are formulas.

A formula is said to be quantifier-free if it contains no quantifiers. A formula
is said to be in prenex normal form if it is of the form Qx1 . . .Qxnψ, where Q is ∀
or ∃, and ψ is a quantifier-free formula. An atom or atomic formula is a formula
of the form p(t1, . . . , tn), where p is a relation symbol and t1, . . . , tn are terms;
an atom is ground if it contains no variables, and function-free if it contains no
function symbols.

Definition 2.6. The free variables of a term or formula are defined recursively
as follows:

• Constant terms have no free variables.
• The (only) free variable of a term x is x.
• The free variables of t1 = t2 are the free variables of t1 and t2.
• The free variables of p(t1, . . . , tn) are the free variables of t1, . . . , tn.
• The free variables of f(t1, . . . , tn) are the free variables of t1, . . . , tn.
• The free variables of ¬ϕ are the free variables of ϕ.
• The free variables of ϕ ∧ ψ or ϕ ∨ ψ are the free variables of ϕ and ψ.
• The free variables of ∀xϕ or ∃xϕ are the free variables of ϕ, except x.

A sentence is a formula having no free variables. Variables that are not free
are called bound. If x̄ is the tuple of all free variables appearing in a formula ϕ,
we write ϕ(x̄).

We are now ready to define the semantics of first-order logic. Let σ be a
signature and A be a σ-structure. A valuation for A is a function π : Vars → A;
if π is a valuation, a ∈ A, and x ∈ Vars, we define πax : Vars→ A as

πax(y) =

 π(y) if y 6= x,

a otherwise.

The value of a term t (over σ) in A under the valuation π, denoted JtKAπ , is defined
recursively as follows:

• JcKAπ = cA, for each constant symbol c in σ.
• JxKAπ = π(x), where x ∈ Vars.
• Jf(t1, . . . , tn)KAπ = fA(Jt1KAπ , . . . , JtnKAπ), for each function symbol f in σ.
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The satisfiability relation for first-order logic is defined as follows:

Definition 2.7. Let σ be a signature, A be a σ-structure, and π be a valuation
for A; let ϕ be a formula over σ. We define (A, π) |= ϕ recursively as follows:

• if ϕ is p(t1, . . . , tn), then (A, π) |= ϕ iff 〈Jt1KAπ , . . . , JtnKAπ〉 ∈ pA;
• if ϕ is s = t, then (A, π) |= ϕ iff JsKAπ = JtKAπ ;
• if ϕ is ¬ψ, then (A, π) |= ϕ iff (A, π) |= ψ does not hold;
• if ϕ is ψ1 ∧ ψ2, then (A, π) |= ϕ iff (A, π) |= ψ1 and (A, π) |= ψ2;
• if ϕ is ψ1 ∨ ψ2, then (A, π) |= ϕ iff (A, π) |= ψ1 or (A, π) |= ψ2;
• if ϕ is ∀xψ, then (A, π) |= ϕ iff (A, πax) |= ψ, for all a ∈ A;
• if ϕ is ∃xψ, then (A, π) |= ϕ iff (A, πax) |= ψ, for some a ∈ A.

If (A, π) |= ϕ we say that A satisfies ϕ under the valuation π.

Notice that when a structure A satisfies a formula ϕ under a valuation π, the
satisfaction of ϕ depends only on the values that π assigns to ϕ’s free variables.
In other words, if (A, π) |= ϕ, then, for any valuation π′ that agrees with π on the
values of ϕ’s free variables, (A, π′) |= ϕ. For this reason, we often write A |= ϕ(ā),
where ā is a tuple of elements in A, same in number as ϕ’s free variables, say
x̄, to denote that (A, π) |= ϕ for any valuation π that assigns the elements in
ā to the corresponding free variables in x̄. It also follows from the above that
the satisfaction of any sentence is independent of any valuation; thus, if ϕ is a
sentence, we write A |= ϕ to denote that (A, π) |= ϕ, for any valuation π.

If ϕ is a sentence, a structure A such that A |= ϕ is said to be a model of ϕ;
ϕ is said to be satisfiable if it has a model and finitely satisfiable if it has a finite
model. If Γ is a set of sentences, we say that A is a model of Γ if A |= γ for each
γ ∈ Γ. If Γ is a set of sentences and ϕ is a sentence, we say that Γ entails ϕ,
denoted Γ |= ϕ, if every model of Γ is also a model of ϕ; we say that Γ finitely
entails ϕ, denoted Γ |=fin ϕ, if every finite model of Γ is also a model of ϕ.

A fragment of first-order logic1 is a formal language whose syntax is a restric-
tion of the syntax (i.e. the definition of terms and formulas) of first-order logic.
(Trivially, first-order logic itself is a fragment of first-order logic.) For instance,
the two-variable fragment of first-order logic allows the use of only two variables,

1The word ‘fragment’ on its own also appears in the literature, referring to a formal language
updating the syntax and semantics of some logic. As a matter of fact, the two-variable fragment
with counting and with path-functional dependencies introduced later is not a fragment of
first-order logic, as it extends its syntax with annotations for path-functional dependencies and
provides semantics for these annotations, in addition to the semantics of first-order logic.
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say x and y, and the fragment ∃∗∀∗ (known as the Bernays-Schönfinkel class)
allows only formulas of the form ∃x̄∀ȳ ϕ(x̄, ȳ), where ϕ is quantifier-free. (We
remark that the semantics for fragments of first-order logic remains the same.)
A fragment has the finite model property if any satisfiable sentence in it is also
finitely satisfiable.

For any given fragment F of first-order logic, we are interested in the following
problems:

• Sat(F): given a sentence ϕ in F , is it satisfiable?
• FinSat(F): given a sentence ϕ in F , is it finitely satisfiable?

We refer to Sat(F) as the satisfiability problem and to FinSat(F) as the finite
satisfiability problem for F . In the context of databases (where a database is sim-
ply a set of ground, function-free atoms or negations of atoms—see Section 5.1),
we are also interested in the following satisfiability problems:

• DSat(F): given a database ∆ and a sentence ϕ in F , is the sentence ∧(∆∪
{ϕ}) satisfiable?

• DFinSat(F): given a database ∆ and a sentence ϕ in F , is the sentence∧(∆ ∪ {ϕ}) finitely satisfiable?

We refer to DSat(F) as the data satisfiability problem and to DFinSat(F) as the
data finite satisfiability problem for F .

With respect to databases, we are also interested in the following problems:

• DQAns(F): given a database ∆, a sentence ϕ in F , a formula ψ(x̄), and a
tuple of constants ā from ∆, same in length with x̄, does ∆, ϕ |= ψ(ā)?

• DFinQAns(F): given a database ∆, a sentence ϕ in F , a formula ψ(x̄), and
a tuple of constants ā from ∆, same in length with x̄, does ∆, ϕ |=fin ψ(ā)?

We refer to DQAns(F) as the query answering problem and to DFinQAns(F) as
the finite query answering problem for F . The sentence ϕ is called a background
theory and the formula ψ is called a query. Perhaps the most important type
of queries are conjunctive queries, since they arise very often in practice; a con-
junctive query is a formula of the form ∃ȳ η(x̄, ȳ), where η(x̄, ȳ) is a conjunction
of function-free atoms. A conjunctive query is boolean if it contains no free vari-
ables. In this thesis, we are only interested in conjunctive queries so, without
mention, we will take ψ in the problems DQAns(F) and DFinQAns(F) above
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to be a conjunctive query. The problem of (finite) query answering for boolean
conjunctive queries is referred to as (finite) query entailment. In the sequel we
consider, for simplicity, only boolean conjunctive queries.

We remark on the importance of background theories in modern query an-
swering. A background theory adds semantics to the data in a given database,
and thus allows inferences based on implicit facts about the data. For example,
imagine that a university provides either a laptop or a desktop to each of its
students, and that it wants to know how many computers it has distributed in
total. Then, a background theory may say that ‘a computer is either a laptop
or a desktop’ and the query to compute the required results would be ‘return
the number of computers belonging to students in the database’. This example
may seem contrived, but in practical situations (e.g. in knowledge representa-
tion with ontologies) background theories may comprise hundreds of thousands
of sentences, and their implications can be entirely non-trivial.

One often wishes to consider versions of DSat(F) and DFinSat(F) where the
background theory is fixed, and versions of DQAns(F) and DFinQAns(F) where
the background theory and the query is fixed. For, in practice, the background
theory and the query are significantly smaller than the corresponding database,
and it is only the varying size of the database that affects the performance of
query execution. We use the same notation for these new versions of the above
problems, but with the fixed quantities as subscripts: DSatϕ(F), DFinSatϕ(F),
DQAnsϕ,ψ(F) and DFinQAnsϕ,ψ(F).

We also use the same notation in the context of the fragment GC2DP2, i.e. the
two-variable guarded-fragment with counting and binary path-functional depen-
dencies, which, strictly speaking, is not a fragment of first-order logic, but it does
provide an analogous notion of satisfiability. Thus, Sat(GC2DP2) is the satisfi-
ability problem for GC2DP2, FinSat(GC2DP2) is its finite satisfiability problem,
and DSat(GC2DP2), DFinSat(GC2DP2) are the ‘data’ analogues of the latter two
problems. In addition, DQAns(GC2DP2) and DFinQAns(GC2DP2) are the query
and finite query answering problem for GC2DP2 respectively. Later, when we
define the notion of a path-functional dependency and wish to discuss the last
four problems with a fixed background theory, query, and a fixed path-functional
dependency ℘, we also add it as a subscript, that is, we write DSatϕ,℘(GC2DP2),
DFinSatϕ,℘(GC2DP2), DQAnsϕ,ψ,℘(GC2DP2) and DFinQAnsϕ,ψ,℘(GC2DP2) cor-
respondingly.
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The computational complexity of the problem DQAns(F), for a fragment F ,
is referred to as its combined complexity; the computational complexity of the
problem DQAnsϕ,ψ(F), for a fragment F , is referred to as its data complexity.
We also use these descriptions for the corresponding problems of GC2DP2, and
also for their finite counterparts (depending on context).

2.2 Description logics

Description logics are a very popular family of logics used in industrial strength
knowledge representation systems [Baa03]. Notably, they are important in rela-
tion to the Semantic Web, as they underly the Web Ontology Language (OWL)
[G+09]. From a logical perspective, description logics are fragments of first-order
logic; they can also be viewed as variants of modal logics [Sch91] and are, thus,
relevant to the guarded fragment—and the other way around [Gra98]. We are
mainly interested in the description logic ALCQI, used in Section 7.1.

The basic blocks for building expressions for a description logic are atomic
concepts and atomic roles. Atomic concepts are analogous to unary predicates
in first-order logic (e.g. Human, Elephant, Fox) and atomic roles are analogous
to binary predicates (e.g. childOf, parentOf). One can construct more general
concepts using atomic concepts and roles, and various boolean constructors such
as conjunction (u), disjunction (t), and negation (¬), as well as two restriction
constructors—the existential (∃r.C) and the universal (∀r.C), where r is an atomic
role and C is a (not necessarily atomic) concept.

We now proceed to define the syntax and semantics for the logic ALC, which
is the most basic description logic.

Definition 2.8 (ALC syntax). Let C be a set of concept names and R be a set
of role names. Then, ALC-concepts are defined recursively:

(i) >, ⊥, and every concept name C ∈ C is an ALC-concept;

(ii) if C,D are ALC-concepts and r ∈ R, then C tD, C uD, ¬C, ∃r.C, and ∀r.C
are ALC-concepts.

Definition 2.9 (ALC semantics). An interpretation I = (∆I , ·I) consists of a
non-empty set ∆I , called the domain of I, and a function ·I mapping each ALC-
concept to a subset of ∆I , and every role name to a subset of ∆I×∆I , such that,
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for all ALC-concepts C,D and all role names r,

>I = ∆I , ⊥I = ∅,

(C t D)I = CI ∪ DI , (C u D)I = CI ∩ DI , ¬CI = ∆I \ CI ,

(∃r.C)I = {x ∈ ∆I | for some y ∈ ∆I , (x, y) ∈ rI and y ∈ CI},

(∀r.C)I = {x ∈ ∆I | for all y ∈ ∆I s.t. (x, y) ∈ rI , y ∈ CI}.

In general, a knowledge base is made up of two parts: a terminological and an
assertional one. The assertional part, called the ABox, is a set of assertions like
PhD : Degree and (Alice,Bob) : sisterOf; it is analogous to the body of data in a
database. The terminological part, called the TBox, is a set of concept hierarchies
like Panda v Mammal; it is analogous to a database schema.

Definition 2.10. A concept inclusion is an expression of the form C v D, where
C,D are ALC-concepts. An interpretation I is a model of a concept inclusion
C v D if CI ⊆ DI . A finite set of concept inclusions is called a TBox. An
interpretation I is a model of a TBox T if it is a model of every concept inclusion
in T . When C v D and D v C, for two ALC-concepts C,D, we write C ≡ D.

Definition 2.11. An assertional axiom is an expression of the form x : C or
(x, y) : r, where C is a concept and r is a role. An interpretation I is a model of
an assertional axiom x : C if xI ∈ CI , and of (x, y) : r if (x, y)I ∈ rI . A finite set of
assertional axioms is called an ABox. An interpretation I is a model of an ABox
A if it is a model of every assertional axiom in A.

Definition 2.12. A knowledge base is a pair (T ,A), where T is a TBox and A
is an ABox. An interpretation I is a model of a knowledge base (T ,A), if it is a
model of T and a model of A.

If an interpretation I is a model of Υ (where Υ is a concept inclusion, asser-
tional axiom, TBox, ABox, or a knowledge base), we write I |= Υ.

There are various ways to extend the (limited for many applications) expres-
sive capabilities of ALC. Two of those ways that are of interest to us lead to
the description logic ALCQI. Formally, ALCQI extends ALC by allowing the
following features:

Qualified number restrictions Two restriction operators 6n r.C and >n r.C,
where n is a (natural) number (encoded in binary), r is a role, and C is an
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ALCQI-concept, interpreted as follows:

(6n r.C)I = {x ∈ ∆I : |{y ∈ ∆I : (x, y) ∈ rI and y ∈ CI}| ≤ n},

(>n r.C)I = {x ∈ ∆I : |{y ∈ ∆I : (x, y) ∈ rI and y ∈ CI}| ≥ n}.

Inverse roles If r is a role, then r− (the inverse of r) is also a role, interpreted
as follows:

(r−)I = {(x, y) ∈ ∆I ×∆I : (y, x) ∈ rI}.

The definitions of a TBox, ABox, and knowledge base for ALCQI remain un-
changed, except for using ALCQI-concepts instead of ALC-concepts and allowing
inverse roles.

As an example of what can be expressed in ALCQI, consider the TBox that
consists of the following concept inclusions:

Student v Undergraduate t Graduate

Student v >1 attends.Course u 66 attends.Course

Student v ∃supervises−.Professor

It states that a student is either undergraduate or postgraduate, attends from
one to six courses, and is supervised by a professor.

The main reasoning tasks associated with a description logic are:

Satisfiability A concept C is satisfiable with respect to a TBox T if there exists
an model I of T such that CI is non-empty.

Subsumption A concept C is subsumed by a concept D with respect to a TBox
T , denoted C vT D, if CI ⊆ DI , for every model I of T .

Equivalence Two concepts C and D are equivalent with respect to a TBox T ,
denoted C ≡T D, if CI = DI , for every model I of T .

Disjointness Two concepts C and D are disjoint with respect to a TBox T if
CI ∩ DI = ∅, for every model I of T .

The following problem is more relevant for our purposes [GHLS08]:

Query entailment Let V be a countably infinite set of variable names. An atom
is an expression C(v) or r(v, v′), where C is a concept name, r is a role name,
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and v, v′ ∈ V . A conjunctive query is a non-empty, finite set of atoms, meant
to be viewed as the conjunction of its elements. Let Var(q) denote the set of
variables occurring in the query q. Let I be an interpretation, q a conjunctive
query, and π : Var(q)→ ∆I a total function. We write

• I |=π C(v) if π(v) ∈ CI ;
• I |=π r(v, v′) if (π(v), π(v′)) ∈ rI .

If I |=π α, for all α ∈ q, we write I |=π q and call π a match for I and q. We
say that I satisfies q and write I |= q if there is a match π for I and q. If
I |= q for all models I of a knowledge base K, we write K |= q and say that
K entails q. A related problem to query entailment is query answering, where
one asks for the tuples (assignments) that satisfy a query q. It is known that
these problems are mutually reducible [CDGL98, HT00].

2.3 Computability and complexity

In this section, we overview some standard concepts; for more details see [Pap03,
AB09]. The model of computation we use is the Turing machine:

Definition 2.13. A (deterministic) Turing machine is a tuple 〈Q,Σ, , δ, q0, F 〉,
say M , where

• Q is a finite, non-empty set of states;
• Σ is a finite, non-empty set of symbols, called the alphabet of M ;
• is the blank symbol, allowed to occur infinitely often on the tape;2

• δ : (Q \ F )× Σ→ Q× Σ× {L, S,R} is the transition function of M ;
• q0 ∈ Q is the initial state;
• F = {qacc, qrej} ⊆ Q is the set of final states: the accepting state (qacc) and

the rejecting state (qrej);

A Turing machine requires for its operation: (i) a tape divided into cells; (ii)
a head that can read or write symbols on the tape (one symbol at each cell) and
move left or right (one cell at a time); and (iii) a state register that stores the
state of the machine (among the states in Q).

Before its operation, a Turing machine M is initialized with an input x ∈ Σ∗

on the tape (with blanks everywhere else), its head on the first symbol of x,
2We assume that does not occur in Σ.
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and its state register set to q0. From that point onward, the operation proceeds
according to the transition function δ. Suppose that the machine is at state q
and the head is at a cell containing the symbol σ. If q ∈ F , then the machine
halts. Otherwise, it performs a step: let δ(q, σ) = (q′, σ′, d); M updates its state
register to q′ from q, the cell where the head is located to σ′ from σ, and moves
the head according to d: left if d = L, right if d = R, and does not move at all
if d = S. Note that it is not necessary for M to halt. If, for a given input x, M
halts and its state is qacc, we say that x was accepted; if it halts and its state is
qrej, we say that x was rejected. (The terms ‘succeed’ and ‘fail’ also appear in the
literature.) By convention, in the former case we take M ’s output M(x) to be 1,
and in the latter we take M(x) to be 0.

Without loss of generality, we take Σ = {0, 1}. A language is a subset of
{0, 1}∗. We say that a Turing machine M decides a language L when, for all
x ∈ {0, 1}∗, M(x) = 1 ⇔ x ∈ L and M(x) = 0 ⇔ x 6∈ L. A language is called
decidable if there is a Turing machine that decides it. The canonical undecidable
language is the one corresponding to Turing’s halting problem [Tur36]. Others
include the languages corresponding to tiling problems [Wan60, Wan65], and,
of course, Hilbert’s decision problem [Chu36a, Chu36b, Tur36]. The notion of
decidability easily generalizes to functions: a function f : {0, 1}∗ → {0, 1}∗ is
said to be computable if the relation L = {〈x, y〉 | f(x) = y} is decidable.

To measure the complexity of operation for a given Turing machine M one
proposes so-called complexity measures, two of the most common being running
time (i.e. the number of steps M performs until it halts) and space (i.e. the
maximum number of cells that are updated, possibly more than once, with a
symbol from M ’s alphabet). The running time and space of a Turing machine are
measured as a function (from N to N) of its input size.3 Thus arises a classification
of decidable languages into classes, called complexity classes, according to the
running time or space of the Turing machine that decides them:

• For a given function f : N → N, TIME(f(n)) is the class of languages
decidable by a deterministic Turing machine whose running time is at most
f(n), where n is the size of the input.

3We mention that not all functions from N to N are suitable for measuring complexity:
one usually focuses on time or space constructible functions. A function f : N → N is time
(resp. space) constructible if it is non-decreasing and computable by a Turing machine whose
running time (resp. space used) on an input n is at most c · f(n), for some constant c ∈ N.
The functions used in complexity theory are almost always time or space constructible, so one
usually suppresses the requirement for time or space constructibility.
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• For a given function f : N → N, SPACE(f(n)) is the class of languages
decidable by a deterministic Turing machine using space at most f(n),
where n is the size of the input.

So-called linear speedup theorems are known for the classes TIME(f(n)) and
SPACE(f(n)), for all ‘reasonable’ functions f(n): roughly speaking, the above
classes remain the same, up to a constant multiple of the function f(n).

The following abbreviations are common:

• P = PTIME = ⋃
k≥1 TIME(nk): deterministic polynomial time.

• EXPTIME = ⋃
k≥1 TIME(2nk): deterministic exponential time.

• 2-EXPTIME = ⋃
k≥1 TIME(22nk ): deterministic double exponential time.

• L = LOGSPACE = SPACE(log(n)): deterministic logarithmic space.4

• PSPACE = ⋃
k≥1 SPACE(nk): deterministic polynomial space.

Another important notion is that of a non-deterministic Turing machine. This
model of computation does not contribute any additional benefit to deterministic
Turing machines in terms of the languages they can decide—in fact, any non-
deterministic Turing machine can be simulated, at a cost, by a deterministic one.
Nevertheless, it enables a significant simplification in defining various problems
that arise very often in practice. A non-deterministic Turing machine is defined
exactly like a deterministic one, but with the following difference:

δ ⊆ ((Q \ F )× Σ)× (Q× Σ× {L, S,R})

is no longer a function but a relation, the transition relation.
After the initialization of a non-deterministic Turing machine N with an input

x and its state register set to q0, its operation is dictated by its transition relation.
Instead of taking one step at a time like its deterministic analogue, N takes at
each point all the steps dictated by δ simultaneously. N halts simply if any
sequence of steps leads to a final state. However, if it halts, the condition of
acceptance and rejection is much different: N accepts an input x if any sequence
of steps during N ’s computation leads to the accepting state qacc; it rejects if all
the sequences of steps lead to the rejecting state qrej. The running time of N is
defined to be the largest sequence of steps leading to a final state, and the space

4The space of the input is not counted.
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used by N is defined to be the largest amount of space used in any sequence of
steps leading to a final state.

The classes NTIME(f(n)) and NSPACE(f(n)) are the non-deterministic coun-
terparts of the classes TIME(f(n)) and SPACE(f(n)) respectively. Linear speedup
theorems also exist for such non-deterministic classes, similarly to the determin-
istic ones. Some common abbreviations are:

• NP = ⋃
k≥1 NTIME(nk): non-deterministic polynomial time.

• NEXPTIME = ⋃
k≥1 NTIME(2nk): non-deterministic exponential time.

• NL = NLOGSPACE = NSPACE(log(n)): deterministic logarithmic space.5

• NPSPACE = ⋃
k≥1 NSPACE(nk): non-deterministic polynomial time.

The following relations among deterministic and non-deterministic complexity
classes are all well-known:

• TIME(f(n)) ⊆ NTIME(f(n));
• SPACE(f(n)) ⊆ NSPACE(f(n));
• NTIME(f(n)) ⊆ SPACE(f(n));
• NSPACE(f(n)) ⊆ TIME(clogn+f(n)), for some constant c.

Savitch’s theorem [Sav70] tells us that non-determinism does not add any
significant advantage with respect to space; for example, it follows from it that
PSPACE = NPSPACE. However, whether this is the case for time too remains
one of the biggest questions of complexity theory (e.g., does P = NP?).

The following inclusions are well known (we remark that L = NL does not
follow from Savitch’s theorem):

L ⊆ NL ⊆ P ⊆ NP ⊆ PSPACE ⊆ EXPTIME ⊆ NEXPTIME ⊆ 2-EXPTIME.

One of the early goals of complexity theory was to establish equivalence among
problems in a given complexity class C (most notably NP). To do that, one needs
the notion of a reduction:

Definition 2.14. Let L1 and L2 be two languages. We say that L1 reduces6 to
L2, denoted L1 ≤ L2, if there exists a function f : {0, 1}∗ → {0, 1}∗, computable
in polynomial time, such that x ∈ L1 ⇔ f(x) ∈ L2, for all x ∈ {0, 1}∗.

5The space of the input is not counted.
6There are various types of reductions. The reductions we use are known as many-to-one

polynomial-time reductions, also known as Karp reductions.
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Let C be a complexity class. A language L is said to be C-hard if, for any
language L′ in C, L′ ≤ L. If, in addition, L is in C, L is said to be C-complete.7

Perhaps the most extensively studied class in connection with its complete lan-
guages is NP. Hundreds of languages are known to be NP-complete [GJ79], some
of which are:

• SATISFIABILITY: contains all the pairs 〈ψ, α〉, where ψ is (encodes) a propo-
sitional formula in conjunctive normal form and α is (encodes) a truth as-
signment that satisfies ψ.

• 3COLOURING: contains all the pairs 〈G,χ〉, where G is (encodes) an undi-
rected graph and χ is an assignment of three colours, say 0, 1, and 2, to the
vertices of G such that no two adjacent vertices have the same colour.

• INTEGER-LINEAR-PROGRAMMING: contains all the pairs 〈A, b〉, where A is
an m × n integer matrix and b is an m-vector, such that there exists a
non-negative integer vector x for which Ax ≤ b.

Finally, we mention that there exist other computational models used in finite
model theory, e.g. automata and circuits, but none of these is of use to us. Circuits
are briefly mentioned in Section 3.4; for more details see [Vol13].

For the sake of brevity, no problem or algorithm mentioned in the sequel is
stated in terms of Turing machines; this is, however, possible in principle.

7To define hardness and completeness for L and NL, one needs a different type of reduction,
called a log-space reduction.



3 | Related Work

In this chapter we overview some results relevant to our research. Of particular
interest are Sections 3.1 and 3.3.

3.1 Computational logic

After the results by Church [Chu36a, Chu36b] and Turing [Tur36] on the un-
solvability of Hilbert’s decision problem, i.e. the impossibility of finding an al-
gorithm for determining the satisfiability of arbitrary first-order sentences, the
original question was revised: are there any syntactic classes of first-order sen-
tences for which satisfiability is algorithmically decidable? Originally, the main
focus was on prefix classes, i.e. classes of formulas in prenex normal form with
restrictions on the order of quantifiers. A full classification of such classes with
respect to decidability [DGL79, Lew79, Gol84, Für81] and computational com-
plexity [Grä90, KV90a, Lew80, BGG01] ended up taking a few decades.

Later the focus shifted towards finite-variable fragments, mainly because of
their use in finite model theory and descriptive complexity [CFI92, DLW95,
Imm82, Imm91, IK89, KV90a, KV90b, Var95]. The most important fragment
in this category is the two-variable fragment, because its satisfiability problem
is decidable and NEXPTIME-complete [Mor75, Lew80, Für84, GKV97], but the
satisfiability problem for the three-variable fragment is undecidable, as the latter
fragment properly contains the undecidable class ∀∃∀ [GK72, KMW62, BGG01].
In this regard, the two-variable fragment draws the boundary between decidabil-
ity and undecidability for finite-variable fragments. The two-variable fragment
has the finite-model property, so its satisfiability and finite satisfiability prob-
lems coincide. The satisfiability problem for the two-variable fragment with
counting is also known to be decidable and NEXPTIME-complete, both with
respect to arbitrary models and finite models [GOR97, PST97, PH05]. The

32
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latter fragment does not have the finite model property; indeed, the sentence
∀x∃=1y r(x, y)∧∀x∃≤1y r(y, x)∧∃x∀y ¬r(y, x) is satisfiable only in infinite mod-
els.

Modal logic [BDRV01, BvBW06] is another important and thoroughly stud-
ied branch of mathematical logic. It extends propositional logic with two modal
operators 2 (box) and 3 (diamond), originally intended to capture the notions of
necessity and possibility. The introduction of relational semantics for modal logic
by Kripke [Kri59, Kri63, Kri71] precipitated a flurry of interest, with modal logics
being used in many areas to reason about time, knowledge, belief, and computa-
tion. That was partly due to their good computational behaviour: satisfiability
for modal logic is decidable, and it remains decidable for many powerful exten-
sions of the basic language, e.g. with path quantifiers or fixed-point operators.
(In terms of complexity, satisfiability for basic modal logic is PSPACE-complete
[Lad77], and for the latter two extensions it is EXPTIME-complete [EH85, EJ88].)
From the perspective of first-order logic, (basic) modal logic embeds in the two-
variable fragment, and this is a partial explanation for its decidability—a better
one being its tree-model property [Var96].

The guarded fragment of first-order logic was introduced by Andréka, Neméti,
and van Benthem [ANvB98] as a generalization of modal logic and an attempt to
explain its good computational properties. The main insight for this project was
that, when translated to first-order logic, modal formulas always lead to quanti-
fiers relativised (guarded) by atoms. This was thought to be the feature causing
the good behaviour of modal logic, as it also leads to a ‘tree-like-model prop-
erty’ [Grä99], compatible with Vardi’s view on the matter [Var96]. The guared
fragment has the finite-model property and its (finite) satisfiability problem is
EXPTIME-complete for predicates of bounded arity and 2-EXPTIME-complete
for arbitrary predicates [Grä99]. These bounds remain true even after the addi-
tion of fixed-point operators [GW99] (as with modal logic). Conjunctive query
answering without a background theory is 2-EXPTIME-complete [BGO10], with
respect to both finite and arbitrary models.

As already mentioned, description logics can be viewed as variants of modal
logics [Sch91], and thus exhibit a similar computational behaviour. We are mainly
interested in the description logic ALCQI, which is used in the sequel. Reason-
ing for ALCQI is known to be EXPTIME-complete, both with respect to finite
models [LST05] and arbitrary models [Gia95, DGL96]. The complexity of query
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entailment (and answering) for ALCQI is 2-EXPTIME-complete [Lut08]. (We use
the latter result in Section 7.1.)

Of particular interest is the two-variable guarded fragment with counting, as
it is a proper superset of the description logic ALCQI (see Section 4.3). This
fragment does not have the finite model property, so its satisfiability and finite
satisfiability problems do not coincide. Kazakov [Kaz04] showed that satisfiability
for the two-variable fragment with counting is EXPTIME-complete by providing
a translation to the three-variable guarded fragment. Later, Pratt-Hartmann
[PH07], whose approach we employ in Chapter 5, showed that finite satisfiability
for the above fragment is also EXPTIME-complete; his method can be generalized
to handle infinite models too. (We mention that adding counting quantifiers to
the three-variable guarded fragment leads to undecidability.) The complexity of
(finite) conjunctive query answering for the above fragment in the presence of
a background theory is unknown. (We provide a 2-EXPTIME algorithm for this
problem in Chapter 7.) There is, however, a bound for the data complexity of
the latter problem, which is coNP-complete [PH09].

Finally, it is worth mentioning that ten Cate and Segoufin [tCS11, StC13] gave
an alternative explanation for the good computational properties of modal logic,
by introducing the unary negation fragment of first-order logic, which only allows
the negation of formulas with one free variable. An even bigger fragment that
contains both the guarded fragment (and, thus, modal logic) and the unary nega-
tion fragment is the guarded negation fragment [BtCS11, BtCS15]. The latter
fragment dictates that negation, and not quantifiers, be guarded by atoms. The
satisfiability problem for the unary negation and the guarded negation fragment
is 2-EXPTIME-complete, both with respect to finite and arbitrary models.

3.2 The relational model

During the early years of database systems, data was stored in an unordered
manner using the means provided by the underlying operating system. It was soon
realized that this approach obscured the process of querying the data, and that it
was necessary to have data models, which would abstract the logical structure of
the data from the underlying implementation details. Various data models were
proposed; the one that became most popular, however, was Codd’s relational
model [Cod70].
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country
name continent capital population currency

Colombia S. America Bogotá 47.12m Col. Peso
United States N. America Washington 318.9m U.S. Dollar

United Kingdom Europe London 64.1m Pound
France Europe Paris 66.03m Euro

Germany Europe Berlin 80.62m Euro
Nigeria Africa Abuja 173.6m Naira
China Asia Beijing 1.357b Renminbi
Japan Asia Tokyo 127.3m Yen

Australia Australia Canberra 23.13m Aus. Dollar

Table 3.1: A table containing information about some countries.

With the relational model, data is stored in relations. A relation is similar
to a mathematical relation, but it has named attributes that take values from a
given domain. In more detail, to each relation R is associated a relation schema,
specifying its name, its arity α(R) (this is the number of its attributes), and a
set of attributes A1, . . . , Aα(R). (In the sequel we often speak of attributes in a
relation instead of its schema for simplicity.) A relation R, then, consists of a
set of tuples 〈d1, . . . , dα(R)〉, where each di (1 ≤ i ≤ α(R)), corresponding to the
attribute Ai, is a constant (or data value) from a countably infinite domain Di.
By convention, relations are represented as tables, see Table 3.1 for instance.

A database schema is a finite set of relation schemas, where no two relations
are allowed to have the same name. A database instance (or, simply, a database)
∆ over a database schema Σ is a collection of relations, one for each relation
schema in Σ. The set of constants that appear in a database instance is called
its active domain.

The purpose of having data inside a database is to execute queries against it,
i.e. to ask questions about its contents. For example, some of the questions that
one can ask with respect to the relation in Table 3.1 are:

(i) What is the population of Nigeria?
(ii) Are there any countries in Europe with different currency?

(iii) Which continents (in the table) have more than one country?
(iv) Which countries have a currency containing the word ‘Dollar’?

The corresponding answers to these questions are:

(i) 173.6m.
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(ii) Yes.
(iii) Europe, Asia.
(iv) United States, Australia.

Notice that queries (i), (iii), and (iv) above require a set of answers, and
query (ii) requires just a ‘yes’ or ‘no’ answer. Queries of the latter type are called
boolean.

One needs to be careful about the semantics of the queries executed against
a database. Take, for example, query (i) above, about the population of Nigeria.
Assuming that the information in the database is correct, one may take the
result of the query as a fact about the world, i.e. that the population of Nigeria
is 173.6m. Similarly, if one is looking for a train line connecting Liverpool to
the Isle of Man and none exists in the National Rail database, then one can
conclude that none exists in reality. Such queries are said to be under the closed-
world assumption, which is the assumption that a statement is true if its truth
follows from the database. (Conversely, everything that does not follow from the
database is false.) Most commercial database systems follow this assumption.

In contrast, the result of queries like (iii) above does not represent a state
of the world, but a state of knoweledge about the world. Indeed, the fact that
Table 3.1 contains a single country from South America does not mean that South
America contains a single country. Similarly, if one does not find Patrick Fluff
in Wikipedia, it does not follow that Patrick Fluff does not exist. Queries that
are interpreted that way are said to be under the open-world assumption. This
assumption is more commonly followed by knowledge representation systems.

Of course, queries are meant to be executed by machines, thus it is necessary
to have query languages to formally define the queries. The most popular query
language, on which many practical query languages like SQL are based, is the re-
lational algebra, introduced by Codd [Cod70]. It uses a small number of primitive
operations on relations, and provides ways of combining them.

Let R be a relation with attributes A1, . . . , Ak. If s = 〈d1, . . . , dk〉 is an R-
tuple, and B ⊆ {A1, . . . , Ak}, we denote by s[B] the restriction of s on B, i.e. the
result of deleting from s the constants corresponding to any attribute not in B.

The primitive operations of relational algebra are the following:

• If R is a relation with attributes A1, . . . , Ak, then its projection on a set of
attributes B ⊆ {A1, . . . , Ak}, denoted πB(R), is the relation {s[B] : s ∈ R}.
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language
cname lang

Colombia Spanish
United States English

United Kingdom English
France French

Germany German
Nigeria English
China Chinese
Japan Japanese

Australia English

Table 3.2: The official languages of the countries in Table 3.1.

• If R1 is a relation with attributes A1, . . . , Ak, B1, . . . , Bm and R2 is a relation
with attributes B1, . . . , Bm, C1, . . . , Cn, then the natural join of R1 and R2,
denoted R1 ./ R2, is the relation {s ∪ t : s ∈ R1 and t ∈ R2} with attributes
A1, . . . , Ak, B1, . . . , Bm, C1, . . . , Cn, where s ∪ t denotes the (R1 ./ R2)-tuple
whose components are the corresponding constants of the R1-tuple s and
the R2-tuple t, without repeating common attributes.

• If R1 and R2 are two relations with attributes A1, . . . , Ak and having the
same domain for the values corresponding to each attribute, then the union
of R1 and R2, denoted R1 ∪R2, is simply the set-theoretic union of R1 and
R2, i.e. R1 ∪R2 = {s : s ∈ R1 or s ∈ R2}.

• If R1 and R2 are two relations with attributes A1, . . . , Ak and having the
same domain for the values corresponding to each attribute, then the dif-
ference of R1 and R2, denoted R1−R2, is simply the set-theoretic difference
of R1 and R2, i.e. R1 −R2 = {s : s ∈ R1 and s 6∈ R2}.

• If R is a relation with attributes A1, . . . , Ak and A,B ∈ {A1, . . . , Ak}, a
selection on R by A = B, denoted σA=B(R), is the relation {s ∈ R : s[A] =
s[B]}. We often abuse the previous definition by using binary relations
other than = (e.g. ≤, ≥, 6=) and/or a constant in place of B.

• If R is a relation with attributes A1, . . . , Ak, A ∈ {A1, . . . , Ak}, and B is a
new attribute name, the renaming in R of A to B, denoted %A/B(R) is a
relation exactly the same as R, except that attribute A is renamed to B.
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Definition 3.1. Let Σ be a database schema comprising the relations R1, . . . , Rk.
The set of relational algebra expressions over Σ are the expressions E generated
by the following grammar:

E = R1 | · · · | Rk | πA(E) | E ./ E | E ∪ E | E − E | σA=B(E) | %A/B(E).

We often refer to relational algebra expressions simply as queries. The evalu-
ation of a relational algebra expression for a given database ∆ is the process of
computing the relation it specifies according to the operations defined above.

As an example, in addition to Table 3.1, consider Table 3.2 with the official
language of each country in Table 3.1. Then, the expression

πname, lang(σcontinent=Europe(country ./ %cname/name(language)))

returns the names and official languages of the European countries (in the above
tables), i.e.

{〈United Kingdom,English〉, 〈France,French〉, 〈Germany,German〉}.

Viewing each of the above relations as a set of ground atoms over the re-
lational signature 〈country(·, ·, ·, ·, ·), language(·, ·)〉, we can write the above
expression as a conjunctive query (recall Section 2.1). Indeed, let

ϕ(x, y) := ∃z1∃z2∃z3(country(x,Europe, z1, z2, z3) ∧ language(x, y)).

It is clear that the set {〈x, y〉 | x, y ∈ D and ϕ(x, y)}, where D is the set of
constants appearing in Tables 3.1 and 3.2, is exactly the set returned by the
above relational algebra expression. This is not a coincidence:

Theorem 3.2 (Codd [Cod72]). Relational algebra and relational calculus (i.e. first-
order logic) have the same expressive power.

Furthermore, the translation of relational algebra to and from relational cal-
culus can be performed in polynomial time. This is important because it enables
the use of logical methods in the theory of databases.
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3.3 Integrity constraints

One serious limitation of the relational model is its lack of semantics [SS75,
Ken79]. A way to remedy this limitation is by extending it to capture more se-
mantics [Cod88]; another way is by specifying integrity constraints known as data
dependencies. Data dependencies are, in simple terms, specifications that identify
certain database states as illegal. Some extensively studied types of data depen-
dencies are functional dependencies [Cod70, Arm74], multivalued dependencies
[Zan76, Fag77], join dependencies [Ris78], and tuple- or equality-generating de-
pendencies [BV81, Fag82]. We give a brief description for each of the above.

Functional dependencies Given relation R from a relation schema Σ, we say
that a set of attributes X in R functionally determines a set of attributes Y in
R, denoted X → Y , if, for each pair of tuples s, t ∈ R,

πX(s) = πX(t) =⇒ πY (s) = πY (t).

In words, two tuples having the same values of X must have the same values
of Y . This kind of dependencies is related to the Boyce-Codd normal form
(BCNF), used in database normalization.

Multivalued dependencies Given relation R from a relation schema Σ, we say
that a set of attributes X in R multi-determines a set of attributes Y in R,
denoted X � Y , if, for each pair of tuples s, t ∈ R such that πX(s) = πX(t):

(i) there exists a tuple u ∈ R with πX(u) = πX(s), πY (u) = πY (s), and
πZ(u) = πZ(t), for all attributes in R \ (X ∪ Y );

(ii) there exists a tuple v ∈ R with πX(v) = πX(s), πY (v) = πY (t), and
πZ(v) = πZ(s), for all attributes in R \ (X ∪ Y ).

This kind of dependencies is related to the fourth normal form (4NF), used in
database normalization.

Join dependencies A join dependency is an expression ./[X1, . . . , Xk], where
X1, . . . , Xk is a partition of the set of attributes in a relation R (from a rela-
tional schema Σ). We say that R satisfies ./[X1, . . . , Xk] if R = ./ki=1πXi(R).
According to the above, multivalued dependencies are a special case of join
dependencies: X � Y is equivalent to ./[XY,X(R \ Y )].
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Tuple- and equality-generating dependencies This kind of dependencies pro-
vides a unifying framework, based on mathematical logic, for many types of
dependencies (including the above). Their definition comes from the observa-
tion that dependencies usually require the existence of certain tuples or com-
ponents of tuples in a relation (hence the term ‘generating’) given the existence
of other tuples. These required tuples can be new (as with multivalued or join
dependencies) or already in the relation (as with functional dependencies); they
can either be obtained from the existing tuples (as in all the above cases) or
not (cf. inclusion dependencies [AHV95]). Tuple-generating dependencies are
first-order logic sentences of the form

∀x1 . . . ∀xn[ϕ(x1, . . . , xn)→ ∃z1, . . . , zk ψ(y1, . . . , ym)],

where {z1, . . . , zk} = {y1, . . . , ym} \ {x1, . . . , xn}, ϕ is a (possibly empty) con-
junction of atoms, and ψ a non-empty conjunction of non-equality atoms. An
equality-generating dependency is exactly like a tuple-generating dependency,
but with ψ being a non-empty conjunction of equality atoms.

To clarify the above let us give some examples. For functional dependencies,
suppose that we have a database containing a relation

student(name, surname, address,mark, honours),

and that the degree classification (honours) is determined from the mark as de-
scribed in the following table:

mark honours
above 70% 1st
60%− 70% 2:1
50%− 60% 2:2
40%− 50% 3rd

Then, we have the dependency mark → honours. Notice, in that case, that we
cannot have two tuples with the same mark but different degree classification.

For multivalued dependencies, suppose that we have a database containing
the relation apply(id, college, hobby) of students applying to colleges. Then, the
existence of some tuples in the database may imply the existence of other tuples,
as seen in the following tables:
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id college hobby
73 Oxford piano
73 Cambridge violin

⇒

id college hobby
73 Oxford piano
73 Cambridge violin
73 Oxford violin
73 Cambridge piano

Indeed, if the student is allowed to declare more than one hobby, we may fill in
undeclared hobbies for each college, based on the ones declared elsewhere. Thus,
in the example above, we have college� hobby. (Such operations are not always
legal, e.g. for security reasons.) Join dependencies are similar, but include more
attributes.

Notice that the first example above is equivalent to the equality-generating
dependency

∀x1 · · ·x5y1 · · · y3y5[(student(x1, x2, x3, x4, x5)∧
student(y1, y2, y3, x4, y5))→ x5 = y5],

and the second to the tuple-generating dependency

∀x1x2x3y2y3[(apply(x1, x2, x3) ∧ apply(x1, y2, y3))→
(apply(x1, x2, y3) ∧ apply(x1, y2, x3))].

One of the most valuable tools for studying dependencies is an algorithm
called the chase. It originated in the work of Aho, Beeri, and Ullman [ABU79],
and Meier, Mendelzon, and Sagiv [MMS79]; see also [Fag82, BV84, DNR08].
The chase has applications in such diverse areas as query implication [MMS79,
MSY81], query containment [CM77, ASU79, JK82, CDGL02, MHF03], and data
integration and exchange [Len02, FKMP05, Her10]. For applications to query
answering under integrity constraints see [CLR03, Ros06, Ros11, CGK08].

Path-functional dependencies [Wed89, Wed92, IW94, vBW94] are a general-
ization of functional dependencies, better suited for semantic data models [SFL83,
Bor85, Cod88, MBW80, SS80, Zan83] and object-oriented databases [BDK92,
CBB+97, KLW95, VDBVGAG97, AK89]. Whereas with functional dependencies
we have (sets of) attributes determining other (sets of) attributes, with path-
functional dependencies we have (sets of) paths of attributes determining other
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(sets of) paths of attributes. For example, the dependency

student.hall.address.postcode→ student.college.city

is a path-functional dependency stating that the postcode of the address of a stu-
dent’s hall of residence determines the city of the college they are attending. Key
path-functional dependencies are a special class of path-functional dependencies,
with which one is able to express that a set of attribute paths fully determines
an object. For example, the dependency

student.name, student.surname, student.birthday→ id

is a key path-functional dependency, stating that a student is fully identified by
their name, surname, and birthday. In addition to semantic data models and
object-oriented databases, path-functional dependencies have been studied in the
context of description logics [KTW01, TW04, TW05, TW08].

Our work generalizes the research on path-functional dependencies in two
ways: (i) it establishes the complexity of (satisfiability and) query answering
with path-functional dependencies and a background theory (which was a miss-
ing feature in the original research); and (ii) it extends the results related to
description logics (which take into account a background theory in the form of
an ontology) to a more general logical setting.

3.4 Expressiveness and complexity

The equivalence of relational algebra and relational calculus (Theorem 3.2) has
enabled the use of many techniques from logic and (finite) model theory for the
mathematical study of relational algebra. For any query language, in general, two
properties are of particular interest: its expressiveness (i.e. the types of queries
that it can express) and its complexity of evaluation. These two quantities are
related by the empirical law that the more expressive a language becomes, the
hardest it is to evaluate queries in it.

Both the expressiveness and complexity of relational calculus are well under-
stood. For example, it can be shown by a simple compactness argument that
relational calculus cannot express the reachability relation; that is, it cannot ex-
press that two nodes in a graph are connected by a path of arbitrary length. (It
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can, however, express that two nodes are connected by a path of length n, for
any fixed natural number n.) In general, it cannot define relations that require
some sort of recursion. One of the most useful tools for proving inexpressibility
results are Ehrenfeucht-Fräıssé games [Fra50, Fra84, Ehr61]. We mention that
many of the techniques used in model theory fail in the context of finite models
(Ehrenfeucht-Fräıssé games being one of the few that ‘survive’), thus finite model
theory has been developed to deal with finite models. A central object of study in
this theory is expressiveness of various languages (e.g. first-order logic, infinitary
logics, fixed-point logics). See Libkin [Lib13] for more details.

In regard to complexity, it is known that the data complexity of evaluat-
ing (arbitrary) first-order queries is in AC0 [Imm89], and thus in LOGSPACE.
The combined complexity of evaluating (arbitrary) first-order queries is PSPACE-
complete [Sto74, Var82]. (In practice, the complexity of evaluating queries, e.g. in
SQL, is not as bad: usually the queries are small compared to the database, so
the data complexity is a better measure; in addition, the analysis that led to the
above bound for combined complexity is worst case.) Allowing counting does not
change much: the data complexity of query evaluation for first-order logic with
counting is in TC0 [BIS90], and thus in LOGSPACE; the combined complexity
is PSPACE-complete (the upper bound is straightforward and the hardness fol-
lows from the hardness of the same problem for plain first-order logic, discussed
above).

Things get better when we restrict our attention to conjunctive queries: the
data complexity remains the same, but the combined complexity becomes NP-
complete [CM77]. These results remain true if one allows unions of conjunctive
queries; see [SY80, vdM97, KMT98] for other related extensions. The combined
complexity of query evaluation for first-order logic with k-variables (k ≥ 2) is
PTIME-complete [Var95].
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In this chapter we introduce the guarded fragment and the two-variable guarded
fragment with counting. Fundamental to our thesis is the central role of trees
in the model theory of guarded fragments: (i) models of the guarded fragment
are ‘tree-like’ [Grä99]; and (ii) models of the two-variable guarded fragment with
counting (finite or infinite) are ‘locally’ tree-shaped, in the sense that they can
be taken to have no cycles of length less than an arbitrarily large, fixed number
Ω [PH09]. (We mention that a tree-model property is more straightforward with
respect to infinite models for the two-variable guarded fragment with counting,
as demonstrated by Kazakov [Kaz04].) The latter fact allows us to succinctly
‘describe’ certain configurations that we want to detect or avoid in models, and
is used extensively throughout this thesis. For this reason, we repeat the proof of
fact (ii) and, for completeness, also the proof of fact (i). Finally, we discuss the
relationship between the description logic ALCQI and the guarded two-variable
fragment with counting.

4.1 The guarded fragment

We now formally introduce the guarded fragment. For a given formula γ, free(γ)
denotes the set of free variables that appear in γ.

Definition 4.1. The guarded fragment of first-order logic, denoted GF , is defined
inductively as follows:

• Atomic formulas are in GF .
• GF is closed under boolean combinations.
• If x̄, ȳ are tuples of variables, α(x̄, ȳ) is atomic, and ϕ(x̄, ȳ) is a formula in GF

such that free(ϕ) ⊆ free(α) = {x̄, ȳ}, then the formulas ∃ȳ(α(x̄, ȳ)∧ϕ(x̄, ȳ))
and ∀ȳ(α(x̄, ȳ)→ ϕ(x̄, ȳ)) are in GF .

44
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To reduce clutter, we write formulas of the form ∃ȳ(α(x̄, ȳ) ∧ ϕ(x̄, ȳ)) as
(∃ȳ.α)ϕ(x̄, ȳ) and ∀ȳ(α(x̄, ȳ)→ ϕ(x̄, ȳ)) as (∀ȳ.α)ϕ(x̄, ȳ).

It is straightforward to establish a normal form for GC2-formulas, that is, for
every guarded sentence ϕ we can compute (in polynomial time) an equisatisfiable
sentence

ψ := ∃x̄C(x̄) ∧
m∧
i=1

(∀x̄i.αi)∃ȳi ψi(x̄i, ȳi), (4.1)

where C is a new relation symbol and ψi, for each i (1 ≤ i ≤ m), is quantifier-free.
(See [Grä99] for more details.) Henceforth, we restrict our attention to sentences
of the above form.

We first introduce some standard concepts. The term ‘type’ is quite common
in model theory (see, for example, [Mar06]), where it usually refers to a more
general notion than the one we use here (the notion of a type that we use is often
referred to as an atomic type).

Definition 4.2. Let σ be a relational signature. A σ-literal is an atomic formula
or the negation of an atomic formula over σ. A k-type is a maximal consistent
set of σ-literals in the variables x1, . . . , xk. (It is often useful to view a k-type
as the conjunction of the formulas that constitute it.) For a given σ-structure A

and a tuple (a1, . . . , ak) ∈ Ak, we denote by tpA[a1, . . . , ak] the unique k-type τ
such that A |= τ(a1, . . . , ak). In this case, we say that τ is realized by (a1, . . . , ak)
or that (a1, . . . , ak) realizes τ .

We now establish a ‘tree-like-model property’ for GF . The rest of this section
basically repeats [Grä99], but is included for completeness. As already mentioned,
an important fact for our thesis is that models of the two-variable guarded frag-
ment with counting (to be introduced later) are ‘locally’ tree-shaped, i.e. they
can be taken to contain no small cycles. Grädel’s result shows that—even in a
more general logical setting with predicates of arity greater than two—models of
guarded sentences can be taken to be ‘tree-like’, in the sense that if a sentence is
satisfiable then it is satisfiable in a model that resembles (in a way that will be
made precise) a tree.

Definition 4.3. The size of a k-type is the number of distinct components in
any tuple that realizes it. (The size of a k-type may be smaller than k if the type
contains equalities.) A (k + `)-type τ ′ extends a k-type τ if τ ⊆ τ ′. Further, τ ′

extends τ by m new elements if τ ′ extends τ , and m is the difference between the
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sizes of τ ′ and τ . A k-type τ is a reduction of an m-type τ ′, k ≤ m, if there exists
a substitution ρ : {1, . . . , k} → {1, . . . ,m} such that, for any tuple (a1, . . . , am)
that realizes τ ′, (aρ(1), . . . , aρ(k)) realizes τ .

Definition 4.4. Let ψ be a guarded sentence and let n be the number of dis-
tinct variables in ψ. We call a witness for the satisfiability of ψ the tuple
(T, τ0, ext1, . . . , extm), where:

• T = ⋃
k≤n T

(k), where for all k ≤ n, T (k) is a set of k-types, and T is closed
under reductions, i.e. if τ ∈ T and τ− is a reduction of τ , then τ− ∈ T .

• τ0 ∈ T is such that τ0(x̄) |= C(x̄).

• For each conjunct (∀x̄i.αi)∃ȳi ψi(x̄i, ȳi), where x̄i = (x1, . . . , xki) and ȳi =
(y1, . . . , y`i), exti : T (ki) → T (ki+`i) is an extension function such that

(i) exti(τ) extends τ ;
(ii) exti(τ) |= αi(x̄)→ ψi(x̄, ȳ).1

We now prove that the existence of a witness is necessary for satisfiability.

Lemma 4.5. Let ψ be a guarded sentence. If ψ is satisfiable, then it has a
witness.

Proof. Let A be a model of ψ. For all k ≤ n, let T (k) be the set of all k-types
realized in A; set T = ⋃

k≤n T
(k). Choose a tuple ā0 such that A |= C(ā0) and

set τ0 = tpA[ā0]. Now, for the definition of the extension functions, let ā =
(a1, . . . , aki) ∈ Aki be a tuple such that A |= αi(ā). Clearly, since A |= ψ, which
implies A |= (∀x̄i.αi)∃ȳi ψi(x̄i, ȳi), there exists a tuple ā′ = (a1, . . . , a`i) ∈ A`i

such that A |= ψi(ā, ā′). Define exti : T (ki) → T (ki+`i), as

exti(τ) =

 tpA[ā, ā′] if τ = tpA[ā],
τ otherwise.

One can easily verify that each exti (1 ≤ i ≤ m) satisfies Definition 4.4.
1That is, given a structure A and a tuple ā = (a1, . . . , aki) ∈ Aki such that A |= αi(ā) and

tpA[ā] = τ , exti(τ) gives us the type τ ′ that any tuple ā′ = (a1, . . . , aki , a
′
1, . . . , a

′
`i

) ∈ Aki+`i

extending ā should realize in order for it to satisfy ψi, i.e. for A |= ψi(ā′) to hold. Clearly, in
such a case, τ ′ must extend τ .
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We are now ready to prove that the guarded fragment has the tree model
property; that is, every satisfiable guarded sentence is satisfiable in a tree-like
model. However, we must first make precise what we mean by ‘tree’ or ‘tree-
like’ in this case, as predicates of arbitrary arity are allowed, thus we are usually
unable to have trees in the pure graph-theoretic sense. Another notion from graph
theory plays a more important role here: the notion of tree-width. Intuitively,
this measures how close a graph is to being a tree. We generalize that for an
arbitrary relational structure.

Definition 4.6. Let σ be a relational vocabulary and A be a σ-structure. We say
that A is a k-tree if there exists a tree S = (V,E) and a function F : V → {X ⊆
A : |X| ≤ k}, assigning to every node v of S a set F (v) of at most k elements of
A, such that:

(i) For every σ-atom α(x1, . . . , xr) and every tuple (a1, . . . , ar) ∈ Ar such that
A |= α(a1, . . . , ar), there exists a node v of S such that {a1, . . . , ar} ⊆ F (v).

(ii) For every element a of A, the set of nodes {v ∈ V | a ∈ F (v)} is connected.

Further, we say that A has bounded degree if, for every node of S, the number of
its neighbours is bounded by some fixed c ∈ N.

Theorem 4.7. Let ψ be an arbitrary guarded sentence with k variables. If ψ is
satisfiable, then there exists a k-tree with bounded degree which is a model of ψ.

Proof. To begin with, we may assume, Lemma 4.5, that ψ has a witness

(T, τ0, ext1, . . . , extm).

Our goal is to construct a model B of ψ that is a k-tree. We will simultaneously
construct the tree S = (V,E) and the function F (according to Definition 4.6),
as well as the substructure F(v) ⊆ B, v ∈ V , induced by F (v). For the universe
of B, we set B = ⋃

v∈V F (v).
We start with the root λ of S. Our intention here is to make F(λ) |=

∃x̄C(x̄) hold. Let r be the arity of C. We set F (λ) = {λ1, . . . , λr} and set
tpB[λ1, . . . , λr] = τ0. F(λ) is now fully specified and clearly F(λ) |= ∃x̄C(x̄), as
intended.

For the construction of the rest of the nodes in S, the idea is the following:
Suppose the tree has been (inductively) constructed up to level l and let u be
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a leaf of S. To make sure that there is a substructure F(w) ⊆ B, for some w
in S, such that F(w) |= αi(x̄i) → ∃ȳi ψi(x̄i, ȳi), let ki, `i be the lengths of x̄i, ȳi
respectively. For every tuple b̄ = (b1, . . . , bki) ∈ F (u)ki such that F(u) |= αi(b̄)
and it is not already the case that F(u) |= αi(b̄)→ ∃ȳi ψi(b̄, ȳi), create a new node
w in S, connected by an edge with u, and set F (w) = {b1, . . . , bki , b

′
1, . . . , b

′
`i
},

where b′1, . . . , b′`i are new elements,2 i.e. they are not already in B. Note that, at
this point, F(u) is already fully specified, thus we can use exti which, given the ki-
type of (b1, . . . , bki), will return the (ki + `i)-type to which (b1, . . . , bki , b

′
1, . . . , b

′
`i

)
must be set.

In more detail, for each i, 1 ≤ i ≤ m, and each tuple b̄ = (b1, . . . , bki) ∈ F (u)ki ,
we create a new node w in S, connected by an edge with u, if and only if:

(i) at least one bj, 1 ≤ j ≤ ki, is a new element at u;
(ii) F(u) |= αi(b̄);

(iii) if τ = tpF(u)[b̄] and τ ′ = exti(τ), then τ ′ extends τ by at least one element.

Further, if these conditions are satisfied, we set F (w) = {b1, . . . , bki , b
′
1, . . . , b

′
`i
},

as described previously, and set

tpF(w)[b1, . . . , bki , b
′
1, . . . , b

′
`i

] = exti(τ) = exti
(
tpF(u)[b1, . . . , bki ]

)
.

At this point, F(w) is fully specified. Note that, for all v in S, the number of
elements in F(v) is less than or equal to k, since ψ has at most k variables.

This inductive construction generates an infinite tree. So far, though, we have
only specified what happens for tuples (b1, . . . , br) whose elements are subsets of
F (v), i.e. {b1, . . . , br} ⊆ F (v), for some v in S. Call these tuples local. Given
that conditions (i) – (iii) are satisfied, we have described how to extend all local
tuples using the exti functions. To complete our construction, we impose that
B |= ¬R(b̄), for all non-local tuples b̄ and all relation symbols R in ψ. This
ensures that no guard αi will be made true by a non-local tuple in B, thus we
can completely disregard these cases. Guardedness is very convenient in that
respect.

We now have to prove that B is indeed a model of ψ. As mentioned above, we
have F(λ) |= ∃x̄C(x̄), where λ is the root of S, thus B |= ∃x̄C(x̄), since F(λ) ⊆ B.

2Note that b′
1, . . . , b

′
`i

need not necessarily be distinct. This will only be the case if the
type that exti returns, extends the type of (b1, . . . , bki

) by exactly `i elements. However, for
simplicity and without loss of generality, we will assume here that these elements are distinct.
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Let b̄ = (b1, . . . , bki) ∈ Bki , 1 ≤ i ≤ m. If B |= ¬αi(b̄), there is nothing to prove.
Hence, suppose that B |= αi(b̄). Clearly, the elements of b̄ must be contained in
some node of S, otherwise it would be the case that B |= ¬αi(b̄). Let u be the
first node in S such that {b1, . . . , bki} ⊆ F (u). Then, at least one of b1, . . . , bki
must be a new element in F (u), otherwise there would be a parent node of u
containing all of them. Conditions (i) and (ii) are thus satisfied at F (u).

Regarding condition (iii), let τ = tpF(u)[b̄] and τ ′ = exti(τ). If τ ′ does not
extend τ by any new elements, then τ ′ must already be realized in F(u), since τ
is maximally consistent (by definition) and it already fully specifies b̄. If τ ′ does
extend τ by at least one new element, then condition (iii) is also satisfied at F (u),
which means that u must have a successor node w in S. Then, it must be the
case that F(w) |= αi(x̄i)→ ∃ȳi ψi(x̄i, ȳi), thus τ ′ is realized in w. In any case, τ ′

is realized in B, therefore B |= αi(x̄i)→ ∃ȳi ψi(x̄i, ȳi), 1 ≤ i ≤ m. It follows that
B |= (∀x̄i.αi)∃ȳi ψi(x̄i, ȳi), 1 ≤ i ≤ m, whence B |= ψ.

This establishes a ‘tree-like-model property’ for GF . This property allows one
to establish the finite model property for GF . We will also provide a proof of
the latter result (this is, again, from [Grä99]); the uninterested reader may skip
the rest of this section. The proof is based on an important result due to Herwig
[Her95], which extends a result due to Hrushovski [Hru92]. Of critical importance
here is the notion of a partial isomorphism, which is a first-order notion analogous
to modal bisimulation [VB91, dR95].

Definition 4.8. Fix a pure relational vocabulary σ and let A, B be two σ-
structures. Further, let p : A0 � B0, where A0 ( A and B0 ( B, be an injective
map from a proper subset of A to a proper subset of B. p is called a partial
isomorphism from A to B if:

• For all a1, a2 ∈ A0, a1 = a2 iff p(a1) = p(a2).
• For all n-ary relation symbols R in σ and all a1, . . . , an ∈ A0,

RA(a1, . . . , an) iff RB(p(a1), . . . , p(an)).

An automorphism of a structure A is a bijective partial isomorphism from A to
itself.

Theorem 4.9 (Herwig [Her95]). Let A be a finite structure with finite relational
vocabulary. Then, there exists a finite extension A+ (called a Herwig extension)
of A such that:
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(i) Every partial isomorpism of A extends to an automorphism of A+.
(ii) Let ā = (a1, . . . , am) be a tuple such that A |= β(a1, . . . , am) for some

atomic formula β(x1, . . . , xm) in which all of x1, . . . , xm occur. Then, there
exists an automorphism g of A+ such that g(ā) is in A.

Theorem 4.10. Every satisfiable guarded sentence has a finite model.

Proof. Let ψ be a satisfiable guarded sentence in the form of (4.1), and let B be
the tree model constructed in the proof of Theorem 4.7. Recall that S = (V,E) is
a (maybe infinite) tree of bounded degree and F is a function, assigning to each
node in S a set of k elements in B, where k is the number of variables in ψ.

Observe, initially, that because ψ has a fixed, finite vocabulary, and for each
node v in S we have |F (v)| ≤ k, there is a finite number of substructures F(v) ⊆ B

induced by the sets F (v), up to isomorphism. Consequently, there exists a finite
subtree S ′ of S that contains all nodes in S, up to isomorphism. That is, for every
node v in S there exists a node u in S ′, such that F(v) and F(u) are isomorphic.
Let A ⊆ B be the substructure induced by A = ⋃

u∈S′ F (u), and let A+ be a
Herwig extension of A. We will prove that A+ |= ψ.

To begin with, A |= ∃x̄C(x̄) thus A+ |= ∃x̄C(x̄), since A, as explained above,
must contain a substructure isomorphic to F(λ), where λ is the root of S, and
F(λ) |= ∃x̄C(x̄).

Regarding conjuncts (∀x̄i.αi)∃ȳi ψi(x̄i, ȳi), 1 ≤ i ≤ m, let ā = (a1, . . . , aki) ∈
(A+)ki such that A+ |= αi(ā). By Herwig’s theorem, there exists an automor-
phism g of A+ such that ā′ = g(ā) lies in A. Since ā and ā′ are isomorphic, it
is also the case that A |= αi(ā′). But, then, there must be a node v in S ′ such
that {a1, . . . , aki} ⊆ F (v). Let u be the successor node of v in S—without loss of
generality we may assume that there exists one.

By construction, u being a successor of v, it must be the case that F(u) |=
αi(ā′) and F(u) |= ∃ȳiψi(ā′, ȳi). Now, by definition, S ′ must contain a node w
such that F(u) and F(w) are isomorphic. Note that F(u) is not necessarily a
substructure of A but, since w is in S ′, F(w) ⊆ A. Let p be an isomorphism from
F(u) to F(w) and let ā′′ = p(ā′). Clearly, F(w) |= αi(ā′′) and F(w) |= ∃ȳiψi(ā′′, ȳi).
But, again by Herwig’s theorem, p can be extended to an automorphism f in A+.
Then, the composition f◦g is also an automorphism and (f◦g)(ā) = f(g(ā)) = ā′′.
It follows that F(w) |= ∃ȳi ψi(ā, ȳi), thus A+ |= ∃ȳi ψi(ā, ȳi), since F(w) ⊆ A ⊆
A+. Therefore, A+ |= (∀x̄i.αi)∃ȳi ψi(x̄i, ȳi), 1 ≤ i ≤ m, hence A+ |= ψ.
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4.2 The two-variable guarded fragment with
counting

We restrict our attention to first-order languages using the variables x and y, the
usual boolean connectives, the quantifiers ∀, ∃, ∃≤C , ∃≥C and ∃=C (for all C > 0),
and the equality predicate (written as =). In the logics we consider, function
symbols are not allowed. If ϕ is any formula, the length of ϕ, denoted ‖ϕ‖, is
the number of symbols it contains. We remark that the numbers in counting
quantifiers are encoded in binary, and the length of formulas is computed using
this binary representation.

Definition 4.11. The guarded two-variable fragment GC2 is the smallest set of
formulas satisfying the following conditions:

• Atomic two-variable formulas are in GC2.
• Boolean combinations of GC2-formulas are in GC2.
• If ϕ is a GC2-formula with at most one free variable and u is a variable

(i.e. either x or y), then ∀uϕ and ∃uϕ are in GC2.
• If ϕ is a GC2-formula, α is a binary predicate (guard), and u is a vari-

able, then the formulas ∀u(α → ϕ), Qu(α ∧ ϕ) and Quα, where Q ∈
{∃,∃≤C ,∃≥C ,∃=C}, are in GC2.

Notice that, according to the above definition, constant symbols cannot be
used in GC2-formulas: they are reserved only for use inside databases. In the
sequel, formulas (not involving constants) that are obviously logically equivalent
to a GC2-formula will typically be counted as GC2-formulas by courtesy; this
relaxation allows certain formulas to be written in a more natural way than the
above syntax strictly demands.

The following lemma introduces a normal form for GC2-formulas, analogous
to that originally defined in [Sco62].

Lemma 4.12. Let ψ be a GC2-formula. We can compute in time polynomial in
‖ψ‖, a sentence

ϕ := ∀xα ∧
∧

1≤j≤n
∀x∀y(ej(x, y)→ (βj ∨ x = y))

∧
∧

1≤i≤m
∀x∃=Ci y(fi(x, y) ∧ x 6= y),
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such that: (i) α is a quantifier-free formula in one variable x, not involving
equality; (ii) n, m are positive integers; (iii) ej is a binary predicate different
from =; (iv) βj is a quantifier-free formula in the variables x, y, not involving
equality; (v) Ci is a positive integer; (vi) fi is a binary predicate other than =;
and (vii) ϕ is finitely satisfiable if and only if ψ is.

Proof. Omitted, see [PH07].

Referring to the normal form in Lemma 4.12, the predicates fi will be called
counting predicates (in the context of a given ϕ in normal form).

Remark 4.13. It was shown in [Kaz04] that the satisfiability problem for GC2 is
EXPTIME-complete, and in [PH07] that the finite satisfiability problem for GC2 is
EXPTIME-complete. It is important in this regard that constants are not allowed
to appear in GC2-formulas. It is easy to show (by encoding a grid of exponential
size) that if even a single constant is allowed, one immediately gets an NEXPTIME
lower bound for (finite) satisfiability.

For the rest of this section we fix a signature σ of unary and binary predicates
and a GC2-sentence ϕ over σ in normal from as in Lemma 4.12. Referring to the
normal form of ϕ, we let C = max1≤i≤m{Ci}.

We now introduce some conventions regarding the use of k-types (recall Defi-
nition 4.2). Since the fragment we are concerned with only allows two variables,
we only ever use 1- and 2-types. For convenience we fix the following notation:
we use the letters π and τ , possibly with subscripts, to denote 1- and 2-types
respectively. Let τ be a 2-type; we denote by τ−1 the 2-type which is the result
of transposing the variables x and y in τ .

Let τ be a 2-type, A be a structure, and let a, b ∈ A be two distinct elements.
If tpA[a, b] = τ , we define tp1(τ) = tpA[a] and tp2(τ) = tpA[b]. That is, any 2-type
τ induces two 1-types tp1(τ) and tp2(τ): the 1-type of the ‘starting endpoint’ of
τ and the 1-type of the ‘terminal endpoint’ of τ . Note that tp2(τ) = tp1(τ−1).

The notions of a message-type (invertible or non-invertible) and chromaticity
are from [PH05].

Definition 4.14. Let τ be a 2-type. We say that τ is a message-type if fi(x, y) ∈
τ , for some counting predicate fi (1 ≤ i ≤ m). For τ a message-type, if τ−1 is
also a message-type, we say that τ is invertible; otherwise, τ is non-invertible.
Finally, if τ is a 2-type such that neither τ nor τ−1 is a message-type, we say that
τ is silent.
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If π is a 1-type, involving (only) the variable x, we denote by π[y/x] the result
of replacing all occurrences of x in π by y.

Definition 4.15. Let π and π′ be 1-types over σ. The vacuous type correspond-
ing to π and π′, denoted π × π′, is the 2-type

π ∪ π′[y/x] ∪ {¬r(x, y),¬r(y, x) | r binary predicate in σ}.

Lemma 4.16. Suppose A |= ϕ and consider the structure A∗, obtained by re-
placing any silent 2-type in A by its corresponding vacuous type, i.e. having

tpA∗ [a, b] =

 tpA[a]× tpA[b] if tpA[a, b] is silent,
tpA[a, b] otherwise.

Then A∗ |= ϕ.

Proof. Evident.

The concept of chromaticity, introduced in the following definition, provides
an important simplification for the structures considered later.

Definition 4.17. Let A be a structure. We say that A is chromatic if the
following are true:

• For all a, b ∈ A such that a 6= b and tpA[a, b] is an invertible message-type,
we have tpA[a] 6= tpA[b].

• For all pairwise distinct a, b, c ∈ A such that tpA[a, b] and tpA[b, c] are
invertible message-types, we have tpA[a] 6= tpA[c]. (Note that, because of
the above, tpA[a], tpA[b] and tpA[c] must be pairwise distinct.)

In other words, a structure A is chromatic if, for all a ∈ A, all elements a′ ∈ A
that are reachable from a by a path of 1 or 2 invertible message-types have
distinct 1-types (and different from the 1-type of a). Given any GC2-formula ϕ,
the following lemma shows that any model of ϕ can be converted to a chromatic
model by interpreting not-too-many new unary predicates.

Lemma 4.18. Given a formula ϕ in normal form, if ϕ has a model then it has
a chromatic model over the same domain.



CHAPTER 4. GUARDED FRAGMENTS 54

Proof. The following repeats [PH07]. Let A be a model of ϕ. Define the graph
G = (A,E1 ∪ E2), where

E1 = {(a, b) ∈ A2 | a 6= b and tpA[a, b] is an invertible message-type},

E2 = {(a, c) ∈ A2 | a 6= c and there exists b ∈ A s.t. (a, b), (b, c) ∈ E1}.

That is, G is the graph on A that has edges between any two distinct elements
a, a′ ∈ A that are connected by a path of 1 or 2 invertible message types in A.

It is evident (by the normal form) that for each a ∈ A there are at most mC
elements b ∈ A such that tpA[a, b] is an invertible message-type and for each of
those b there are at most mC elements c ∈ A (or mC − 1 if we disregard b)
such that tpA[a, b] is also an invertible message-type. Thus, the degree of G is at
most (mC)2. Now, G can be coloured with (mC)2 + 1 colours using the standard
greedy algorithm, such that no edge joins two nodes of the same colour. Those
colours can be encoded using d(mC)2 + 1e new predicates to obtain a chromatic
model.

Thus, we can ensure that all the models we are working with are chromatic
by using not-too-many new unary predicates.

We now proceed to formally define the notion of cycles. In addition to the
standard, graph-theoretic definition we also introduce the notion of a ‘strong’
cycle. Further, the cycles that we are concerned with may contain distinguished
elements, belonging to a given set K—in a database setting, K will be taken to
be the active domain of a given database.

Definition 4.19. Let A be a structure over a relational signature τ . We call a
sequence of distinct elements a0, . . . , an−1 (n ≥ 3) in A a cycle if, for all i with
0 ≤ i ≤ n − 1, for some r in τ , A |= r(ai, ai+1) or A |= r(ai+1, ai)—where the
addition inside the indices is performed modulo n. If a structure contains no
cycles, we call it acyclic. The length of a cycle a0, . . . , an−1 is n—the number of
edges that it comprises, when viewed as graph.

Let A be a structure over a domain A, and let K ⊆ A be a set of distinguished
elements. A cycle in A is strong if, for any consecutive pair of elements a and b

in that cycle, either both a, b ∈ K or tpA[a, b] is an invertible message-type.
We now lay the foundations for a ‘no-small-cycles’ lemma, which is funda-

mental to our thesis: given any model A of a GC2-formula ϕ (in normal form),
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we can obtain a new model B of ϕ in which no small cycles—i.e. cycles having
length less than a fixed number Ω—appear. The following repeats [PH09].

Let A be a structure over a relational signature σ, and k be a positive inte-
ger. For each i ∈ {1, . . . , k} let Ai be a copy of A with the domains Ai being
pairwise disjoint. We denote by A×k the structure with domain A1∪ . . .∪Ak and
interpretations qA×k = ⋃k

i=1 q
Ai , for each predicate q in σ. The following simple

lemma tells us that if a GC2-formula has a finite model, it has arbitrarily large
finite models (and even infinite, in fact).

Lemma 4.20. Let ϕ be a GC2-formula and A be a structure over the signature
of ϕ, such that A |= ϕ. Then, for all positive integers k, A×k |= ϕ.

Proof. Immediate. (Guardedness is the key here.)

For the rest of this section, we suppress (for convenience) all references to
Lemma 4.20: if we assume A |= ϕ, we will take for granted that A×k |= ϕ, for
any positive integer k.

Lemma 4.21. Suppose A |= ϕ and that B,B′ are disjoint subsets of A, such
that |B| ≥ (mC)2 +mC+1 and |B′| ≥ mC+1. Then, there exist elements b ∈ B
and b′ ∈ B′ such that tpA[b, b′] is silent.

Proof. Pick any B′0 ⊆ B′, such that |B′0| = mC + 1. By our normal form, no
more than mC(mC + 1) elements in B can receive messages originating from B′0.
By the cardinality of B, let b ∈ B be an element that receives no message from
any element of B′0. Now, there can be at most mC elements of B′0 that receive
a message from b. By the cardinality of B′0, let b′ ∈ B′0 ⊆ B′ be an element that
receives no message from b. Evidently, tpA[b, b′] is silent.

Suppose A |= ϕ and let K ⊆ A be a set of distinguished elements. For any
pair of elements a, b ∈ A we say that b is directly accessible from a if either (i)
a = b, (ii) tpA[a, b] is a message-type, or (iii) a and b are both in K.3 Further, for
any a, b ∈ A, we say that b is accessible in ` steps from a if there exists a sequence
of elements a0, . . . , a` of A such that a0 = a, a` = b, and for all i (0 ≤ i < `), ai+1

is directly accessible from ai.
3In future, K will be taken to be the set of constants appearing inside a given database. For

this reason, we may assume that each element of K is connected with (or accessible from) any
other element of K—if not we can ensure this by interpreting a new predicate.
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The following lemma tells us that, if A |= ϕ, by ‘copying’ A enough times,
we can be sure to find for any pair of elements a, b ∈ A such that tpA[a, b] is
invertible, (i) an ‘inaccessible’, ‘identical’ with a, b pair of elements c, d, and (ii)
two elements e, f whose 1-types are the same with a, b respectively, their 2-type
is silent, and d does not send a message to e. Such elements c, d, e, f are used
later to expand any strong cycle whose first two elements are a and b.

Lemma 4.22. Suppose A |= ϕ and let K ⊆ A be a set of distinguished elements
in A. Let Ω ≥ 4 and N ≥ 2(|K|+ 1)((mC)Ω − 1))/(mC − 1) + 2 be two natural
numbers, and consider the structure A×N with domain A×N , as described above.
Let a, b ∈ A×N , such that tpA×N [a, b] = µ is an invertible message-type. Then,
there exist distinct elements c, d, e, f ∈ A×N \K, such that:

(i) tpA×N [c, d] = µ;
(ii) neither c nor d is accessible from either a or b in Ω− 2 steps;

(iii) tpA×N [e] = tpA×N [a] and tpA×N [f ] = tpA×N [b];
(iv) tpA×N [e, f ] is silent;
(v) tpA×N [d, e] is not a message-type.

Proof. According to the normal form in Lemma 4.12, the number of accessible
elements from either a or b in Ω− 1 steps is bounded by

2(|K|+ 1)
Ω−1∑
i=0

(mC)i = ((mC)Ω − 1))/(mC − 1) < N.

Then, by the construction of A×N , we can choose an element c ∈ A×N \K such
that c sends a message of type µ, and c is not accessible from either a or b in Ω−1
steps. Let d be the ‘recipient’ of the message that c sends, i.e. tpA×N [c, d] = µ. It
follows that d is not accessible from a or b in Ω− 2 steps.

For the rest of the proof, refer to Figure 4.1. Let E be the set of elements
in A×N \ K having the same 1-type as a, and let F be the set of elements in
A×N \ K having the same 1-type as b. It is clear by the construction of A×N ,
that |E|, |F | ≥ N , from which, because Ω ≥ 4, it follows that

|E|, |F | ≥ 2((mC)4 − 1)/(mC − 1) + 2

= 2((mC)3 + (mC)2 +mC + 2).
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Now, observe that

|E \ {a, b, c, d}| ≥ |E| − 4 = 2mC((mC)2 +mC + 1),

since, at worst, E = F and a, b, c, d ∈ E. Similarly,

|F \ {a, b, c, d}| ≥ 2mC((mC)2 +mC + 1).

Thus, we can select subsets E1, . . . , EmC and F1, . . . , FmC of E \ {a, b, c, d} and
F \ {a, b, c, d} respectively, all of which are pairwise disjoint and, for all i (1 ≤
i ≤ mC), |Ei|, |Fi| ≥ (mC)2 +mC+1. (Note that this is possible even if E = F .)
By Lemma 4.21, we can select for each i (0 ≤ i ≤ mC) a pair of elements ei ∈ Ei
and fi ∈ Fi such that tpA×N [ei, fi] is silent.

Finally, notice (due to our normal form) that d cannot send more than mC

messages. Because d already sends a message to c, it can send at most mC − 1
messages whose ‘recipient’ is inside one of the sets Ei (1 ≤ i ≤ mC). Thus, there
exists an i (1 ≤ i ≤ mC) such that no element of Ei receives a message from d;
hence, we can pick e to be the element ei ∈ Ei and f to be the corresponding
element fi ∈ Fi. (In Figure 4.1, for example, e = e1 and f = f1.) It is clear, then,
that the elements c, d, e, and f have the required properties.

In the following lemma we show how one can remove all ‘short’ strong cycles
from a model of ϕ.

Lemma 4.23. Suppose A |= ϕ and let K ⊆ A be a set of distinguished elements
in A; let Ω be a positive integer. We can find a model B |= ϕ, such that: (i)
K ⊆ B, (ii) A|K = B|K , and (iii) B contains no strong cycles of length less than
Ω. Moreover, if A is finite, we can ensure that B is finite.

Proof. We assume without loss of generality that Ω ≥ 4 and mC > 1. Consider
the structure A×N , for N = 2(|K|+ 1)((mC)Ω−1))/(mC−1) + 2. Now, suppose
that γ = a0, a1, . . . , a`−1 (, a`) is a strong cycle in A×N ; note that the length of γ
is `. Assume, without loss of generality, that a0 6∈ K. We show how to destroy
γ, ensuring that only new larger cycles are created in the process.

Let a = a0, b = a1, and µ = tpA×N [a, b] (µ is an invertible message-type).
Let c, d, e, and f be elements of A×N , having the properties guaranteed by
Lemma 4.22. We wish to modify A×N so as to ensure that the 2-type connecting



CHAPTER 4. GUARDED FRAGMENTS 58

a b

c d

e1

E1

f1

F1

e2

E2

f2

F2

emC

EmC

fmC

FmC

E Fµ

µ

µ−1

µ−1

mC − 1

Figure 4.1: The sets E,F and (some of the) messages sent by their elements,
used in the proof of Lemma 4.22. The lines with two arrows represent invertible
message-types, the lines with one arrow represent non-invertible message-types,
and the dashed lines represent silent 2-types.
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a b a b

c d c d

e f e f

⇒

( )

( )

( )

( )

tpA×N [e, f ]

tpA×N [a, d]

tpA×N [e, d]

Figure 4.2: The transformation of A×N (left part) to B′ (right part), to ensure
that the 2-type of a and d is silent. The lines with arrows and dashed lines are
as in Figure 4.1. The arrows in parenthesis indicate a 2-type which may or may
not be a message-type.

a and d is silent. To this end, we define a new structure B′, which the same as
A×N , except that

tpB′ [a, d] = tpA×N [e, f ],

tpB′ [e, d] = tpA×N [a, d],

tpB′ [e, f ] = tpA×N [e, d].

This transformation is depicted in Figure 4.2. It is clear that B′ |= ϕ, since the
above assignments just rearrange 2-types, without changing the total number of
messages sent (and received).

We now destroy the strong cycle γ in B′ by performing more rearrangements
of 2-types, as before. Let B be the same as B′, except that

tpB[a, b] = tpB′ [a, d],

tpB[a, d] = tpB′ [a, b],

tpB[c, b] = tpB′ [c, d],

tpB[c, d] = tpB′ [c, b].

This transformation is depicted in Figure 4.3. Again, it is clear that B |= ϕ; in
addition, any new strong cycle created as a result of the above is longer than γ.
(See [PH09] for more details.) By repeating this process for every strong cycle,
one eventually obtains the required result.
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a b a b

c d c d

⇒( )

( )

tpB′ [a, b]
tpB′ [c, d]

tpB′ [a, d]

tpB′ [c, b]

Figure 4.3: The transformation of B′ (left part) to B (right part), destroying the
strong cycle γ whose first two elements are a and b. The lines with arrows and
dashed lines are as in Figures 4.1 and 4.2. The arrows in parenthesis indicate a
2-type which may or may not be a message-type.

In the following lemma, we show how to destroy any cycle (strong or other-
wise). It is one of the most important tools for this thesis.

Lemma 4.24. Suppose A |= ϕ and let K ⊆ A be a set of distinguished elements
in A; let Ω be a positive integer. We can find a model B |= ϕ, such that: (i)
K ⊆ B, (ii) A|K = B|K , and (iii) B contains no cycles of length less than Ω.
Moreover, if A is finite, we can ensure that B is finite.

Proof. We only concern ourselves with finite models, but the proof generalizes to
infinite models with minor adjustments. Let B′ be a finite model of ϕ, with the
properties guaranteed by applying Lemma 4.23 to A. We create a tree of copies
of B′ that allows us to ‘divert’ non-invertible messages within a copy of B′ to
elements of another copy of B′, destroying cycles in the process. Let

S = {(a, b) ∈ B′ ×B′ | a 6= b and tpB′ [a, b] is a non-inv. message-type},

and let Y = |S|. We define S∗Ω to be the set of sequences of elements of S of
length ≤ Ω. We denote the length of any sequence σ ∈ S∗Ω by ‖σ‖; ε denotes the
empty sequence, and the concatenation of two sequences σ, τ ∈ S∗Ω is written as
σ, τ or simply στ . For convenience, sequences of S∗Ω having length 1 are identified
with the corresponding elements of S.

Let B′ε = B′, and, for each σ ∈ S∗Ω \ {ε}, let B′σ be a new copy of B′,
with domain B′σ; for any a ∈ B′, denote by aσ the corresponding element of
B′σ. We assume that all the sets B′σ in this definition are pairwise disjoint. Let
B′′ be the structure such that B′′ = ⋃

σ∈S∗Ω B′σ and qB
′′ = ⋃

σ∈S∗Ω q
B′σ , for each

predicate q in the signature of ϕ. (K remains a subset of B′ = B′ε.) It follows
from Lemma 4.20 that B′′ |= ϕ—in fact, B′′ is B′×N for N = (Y Ω+1−1)/(Y −1).
B′′, pictured as a tree of height Ω + 1, can be seen in Figure 4.4.
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B′σ1,σ1,...,σ1 B′σ1,σY ,...,σY
B′σY ,σ1,...,σ1 B′σY ,σY ,...,σY

B′σ1,σ1 B′σ1,σY
B′σY ,σ1 B′σY ,σY

B′σ1
B′σY

B′ε

Y Y

Y

Ω + 1

Figure 4.4: B′′ pictured as a tree. The members of S are numbered, for conve-
nience, as σ1, . . . , σY .

We now modify the structure B′′ to obtain the required B. As a simple
preprocessing step, we replace (by Lemma 4.16) every silent 2-type connecting
two elements a and b, not both in K, with the corresponding vacuous type tpA[a]×
tpA[b]. Hence, we may assume that all cycles in B′′ consist of message types
(except for their parts inside K). Recall that, by Lemma 4.23, B′′ does not
contain any strong cycles of length < Ω; thus, no cycle in B′′ of length < Ω
consists solely of invertible message-types.

Let a, b ∈ B′ε be distinct and not both in K. If tpB′′ [a, b] is a non-invertible
message-type, we redirect the message from b to the corresponding element bσ ∈
B′σ, where σ = (a, b), at the second tier of the tree. Formally, we set

tpB[a, b] = tpB′′ [a]× tpB′′ [b],

tpB[a, b(a,b)] = tpB′′ [a, b].

We then move to the second tier of the tree. Let σ ∈ S∗Ω with ‖σ‖ = 1,
and let aσ, bσ ∈ B′σ be distinct. If tpB′′ [aσ, bσ] is a non-invertible message-type,
we redirect the message from bσ to the corresponding element bσ′ ∈ B′σ′ , where
σ′ = σ (a, b), at the third tier of the tree. Formally, we set

tpB[aσ, bσ] = tpB′′ [aσ]× tpB′′ [bσ],

tpB[aσ, bσ (a,b)] = tpB′′ [aσ, bσ].

After performing the above reassignments, we move to the third tier, fourth tier,
and so forth until we reach the bottom tier.
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a b a b

aσ1 bσ1
aσ1 bσ1

aσΩ bσΩ
aσΩ bσΩ

⇒

Figure 4.5: The whole series of the transformations described in the proof of
Lemma 4.24, for a given pair of elements a and b, not both in K. The dashed
lines represent vacuous 2-types.

For the bottom tier, let σ ∈ S∗Ω with ‖σ‖ = Ω, and let aσ, bσ ∈ B′σ be distinct.
If tpB′′ [aσ, bσ] is a non-invertible message-type, we redirect the message from bσ to
the corresponding element b(a,b) ∈ B′(a,b), at the second tier of the tree. Formally,
we set

tpB[aσ, bσ] = tpB′′ [aσ]× tpB′′ [bσ],

tpB[aσ, b(a,b)] = tpB′′ [aσ, bσ].

On completion, it is clear that B |= ϕ, since the numbers of messages have
not changed—only their ‘recipients’. In addition, there cannot be any cycles of
length < Ω in B, and the other requirements of the lemma are also satisfied. See
Figure 4.5 for an illustration.

Remark 4.25. When we use Lemma 4.24 in the presence of a database, we
always take K to be the active domain of this database, and we never explicitly
mention this for the sake of brevity.

4.3 Relation to description logics

We now provide a translation from the description logic ALCQI to GC2, which
will allow us to use the fact that query entailment for ALCQI is 2-EXPTIME-
complete [Lut08] to obtain a lower bound for the same problem with respect to
GC2 with a database (and path-functional dependencies).
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The translation from ALCQI to GC2 is done with the following two simulta-
neous recursive functions (A is an atomic concept):

tx(A) = A(x)

tx(¬C) = ¬tx(C)

tx(C t D) = tx(C) ∨ tx(D)

tx(C u D) = tx(C) ∧ tx(D)

tx(∃r.C) = ∃y r(x, y) ∧ ty(C)

tx(∃r−.C) = ∃y r(y, x) ∧ ty(C)

tx(∀r.C) = ∀y r(x, y)→ ty(C)

tx(∀r−.C) = ∀y r(y, x)→ ty(C)

tx(6n r.C) = ∃≤ny r(x, y) ∧ ty(C)

tx(>n r.C) = ∃≥ny r(x, y) ∧ ty(C)

ty(A) = A(y)

ty(¬C) = ¬ty(C)

ty(C t D) = ty(C) ∨ ty(D)

ty(C u D) = ty(C) ∧ ty(D)

ty(∃r.C) = ∃y r(x, y) ∧ tx(C)

ty(∃r−.C) = ∃y r(y, x) ∧ tx(C)

ty(∀r.C) = ∀y r(x, y)→ tx(C)

ty(∀r−.C) = ∀y r(y, x)→ tx(C)

ty(6n r.C) = ∃≤ny r(x, y) ∧ tx(C)

ty(>n r.C) = ∃≥ny r(x, y) ∧ tx(C)

With the above, we can translate a given TBox T and a given ABox A as follows
(we denote by ψ[y/x] the result of replacing all occurrences of x in ψ by y):

t(T ) =
∧

CvD∈T
∀x(tx(C)→ tx(D)),

t(A) =
∧

a:C∈A
tx(C)[a/x] ∧

∧
(a,b):r∈A

r(a, b).

For a given knowledge base K = (T ,A), it is clear that the query entailment
problem K |= q is equivalent to the query entailment problem ∆, ϕ |= q′ (of GC2),
where ∆ = t(A), ϕ = t(T ), and q′ = ∃v̄q, for v̄ = Var(q).



5 | GC2 with a Database

In this chapter we establish that (finite) satisfiability for GC2 with a database,
denoted GC2D, is EXPTIME-complete. We do that by adapting the techniques
used in [PH07], which establishes the same bound for GC2 (without a database).
We reuse a lot of the material in [PH07], making modifications and adding ex-
tensions so as to accommodate the presence of a database. In particular, for
a given database ∆ and a background theory ϕ, we provide a set of additional
inequalities that guarantee (and enforce) the availability of elements that realize
the constants in ∆, in any model of ∆, ϕ (assuming one exists). The hard part is
to write exactly the necessary number of inequalities—the naive approach leads
to a doubly exponential number. We then show that these inequalities have the
desired effect, i.e. that if there is a (finite) model of ∆, ϕ, then the system of the
original equations/inequalities in [PH07] together with our new inequalities has
a solution and, conversely, if there is a solution, then there is a (finite) model of
∆, ϕ.

5.1 Preliminaries

Definition 5.1. Fix a relational signature σ. A database is a set (conjunction) of
ground (function-free) literals over the signature σ. A database ∆ is consistent if
for any tuple ā of constants and any predicate symbol r in σ, {r(ā),¬r(ā)} 6⊆ ∆.
A database ∆ is complete if for any σ-literal l(ā) 6∈ ∆ involving a tuple ā of
constants in σ, ∆ ∪ {l(ā)} is inconsistent. Given a database ∆, a completion
for ∆ is any complete set ∆∗ ⊇ ∆ of ground (function-free) literals in the same
signature. The set of constants that appear in a database is called the active
domain of the database.

Since we will be working with two-variable fragments, we may assume that the
atoms that appear inside a given database are unary or binary. This does not have

64
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any effect in the type of relations that we can store in a database, since relations
of arbitrary arities can be easily ‘emulated’ in this model. For example, a tuple
t = (Bob,Wright,Essex) in the relation student(name, surname, city) corresponds
to an entry {student(t), name(t,Bob), surname(t,Wright), city(t,Essex)}.

Remark 5.2. For the rest of the thesis we adopt the unique name assumption,
i.e. we assume that distinct constants are interpreted by distinct elements of a
given universe. This assumption is very common in the setting of description
logics (see, e.g., [Baa03]), though it is not made in OWL [G+09].

Remark 5.3. All the elements in a database ∆ are assumed to be neigbours, in
the sense that for any two elements a, b ∈ D, where D is the active domain of ∆,
there is an atomic predicate p such that either p(a, b) or p(b, a) is in ∆. For, if
that is not the case, we can introduce a new binary predicate q and extend the
database with the statements {q(a, b) | a, b ∈ D}.

We slightly abuse the notion of a k-type—which is defined with respect to
a structure A, in Definition 4.2—to talk about 1- and 2-types of elements in a
database ∆. Assuming ∆ is complete, for each constant c in its active domain, the
1-type of c in ∆, denoted tp∆[c], is the set tp∆[c] containing all the unary predi-
cates (say in the variable x) that hold for c in ∆ (including c(x)). The definition
of the 2-type for two constants c1, c2 ∈ ∆, denoted tp∆[c1, c2], is analogous.

For the rest of this chapter we fix a relational signature σ, a sentence ϕ over σ
in the normal form of Lemma 4.12, and a database ∆ over σ; we denote the active
domain of ∆ by D. As in the previous chapter, we let, referring to the normal
form of ϕ, C = max1≤i≤m{Ci}. For convenience, we often equivocate between
constants and their denotations. Thus, depending on context, D may also denote
the set of elements in a model that interpret the constants in ∆. Further, we often
speak of the satisfiability of ∆, ψ0, . . . , ψk−1 (where ψ0, . . . , ψk−1 are arbitrary GC2-
sentences), when formally we mean the satisfiability of ∧(∆ ∪ {ψ0, . . . , ψk−1}).

Let Π = π0, . . . , πP−1 be an enumeration of the 1-types over σ. It is clear that
P is a power of 2, thus p = logP is an integer. For reasons that will become clear
later, we will need to index the previous sequence using bit-strings as follows: Let
ε denote the empty string and define Πε = Π to be the whole sequence. Now,
let s be a bit-string such that 0 ≤ |s| < p and let Πs = πj, . . . , πk−1 be the
sub-sequence of Π indexed by s. Define (recursively) Πs0 and Πs1 to be the first
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and second halves respectively of the sub-sequence indexed by s; that is,

Πs0 = πj, . . . , π(j+k)/2−1 and Πs1 = π(j+k)/2, . . . , πk−1.

When |s| = p, it is clear that Πs corresponds to one exactly 1-type πj. Sometimes
for convenience we will denote this type by πs. Note that, in this case, s is the
binary representation of the subscript j. Moreover, we sometimes use the notation
π ∈ Πs meaning that the 1-type π is in the sequence indexed by s.

We now explain how to index 2-types in a similar manner. We first fix some
notation for convenience. From now on, we will use the letter s to denote an ar-
bitrary bit-string indexing a sequence of invertible message-types and t similarly
for non-invertible message-types or silent 2-types.

We index (sequences of) invertible message-types according to their terminal
1-types using bit-strings as follows: Let Λ be the set of all invertible message-
types (over σ). Fix any 1-type π, let s be any bit-string with 0 ≤ |s| ≤ p, and
define

Λπ,s = {λ ∈ Λ | tp1(λ) = π and tp2(λ) ∈ Πs},

i.e. Λπ,s is the set of all invertible message-types ‘starting’ from an element of
1-type π and ‘ending’ on an element of 1-type indexed by s.

Remark 5.4. Each of the sets Λπ,s will usually contain more than one 2-type.
This is true even when |s| = p, as there are several ways one could ‘connect’ an
element of 1-type π with another element of (possibly different) 1-type π′. Recall,
however, that we have restricted our attention to chromatic models. In that case
(by definition) we are guaranteed that no element sends an invertible message-
type to an element of the same 1-type and any element a of 1-type π can send an
invertible message to no more than one element b of type π′ (6= π). Thus, when
|s| = p, there can be at most one element b ∈ A \ {a} such that tpA[a, b] ∈ Λπ,s.

In a similar way, we use bit-strings to index sequences of 2-types that are not
invertible message-types. Fix any 1-type π and let

Mπ = µπ,0, . . . , µπ,Q−1

be an enumeration of all 2-types τ with tp1(τ) = π that are either non-invertible
message-types or silent 2-types. In other words, Mπ is an enumeration of all
2-types τ with tp1(τ) = π such that τ−1 is not a message-type. It follows, then,
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that Q is a power of 2, thus q = logQ is an integer. Now, define Mπ,ε = M , and
for any bit-string t with |t| < q, recursively define

Mπ,t0 = µj, . . . , µ(j+k)/2−1 and Mπ,t1 = µ(j+k)/2, . . . , µk−1.

Note that if |t| = q, then Mπ,t contains a single 2-type µπ,j, which we often write
as µπ,t for convenience.

5.2 Spectra and tallies

To motivate the introduction of spectra and tallies we now give an overview of
our approach. Our goal is to provide an exponential-time algorithm for the finite
satisfiability of GC2 with a database. We do that by ‘translating’ our input into
a system of exponentially many linear equations/inequalities that specify how
often certain (local) configurational properties are realized in a model. These
configurational properties are characterized in terms of spectra and tallies. We
then show how to ‘recover’ a model given only the solutions to that system.

By vector we understand an m-dimensional vector over N. (Recall the normal
form of Lemma 4.12; m is defined there.) We denote the vector (C1, . . . , Cm) by
C and the m-dimensional zero vector by 0. For any two vectors v and w, we
write v ≤ w if every component of v is less than or equal to the corresponding
component of w; similarly for <, ≥ and >. For the rest of this chapter, we fix
C = max1≤i≤m{Ci}. The number of vectors u such that u ≤ C is evidently
bounded by (C + 1)m, and thus by an exponential function of ‖ϕ‖.

Definition 5.5. Let A be a structure interpreting σ and let a ∈ A be an element
of 1-type π, i.e. π = tpA[a]. Let s be any bit-string of length at most p and
define the s-spectrum of a, denoted by spA

s [a], to be the m-element vector v =
(v1, . . . , vm) where, for 1 ≤ i ≤ m,

vi = |{b ∈ A \ {a} : A |= fi(a, b) and tpA[a, b] ∈ Λπ,s}|.

Definition 5.6. Let A be a structure interpreting σ and let a ∈ A be an element
of 1-type π. Let t be any bit-string with |t| < q and define the t-tally of
a, denoted by tlAs [a], to be the m-element vector w = (w1, . . . , wm) where, for



CHAPTER 5. GC2 WITH A DATABASE 68

1 ≤ i ≤ m,

wi = |{b ∈ A \ {a} : A |= fi(a, b) and tpA[a, b] ∈Mπ,t}|.

Informally, spA
ε [a] records the number of outgoing fi arrows (1 ≤ i ≤ m) from

a that are part of an invertible message-type. The same applies to spA
s [a], but here

we only count fi arrows that are part of invertible message-types in Λπ,s. Tallies
are defined in a similar way, but with respect to non-invertible message-types.

Let s be any bit-string with |s| < p and fix a 1-type π. For a given structure
A, each vector v specifies a set of elements of A, i.e. the set of elements of type π
that have s-spectrum v. The following lemma encapsulates the observation that
this set can also be characterized as the union of sets of elements of type π whose
s0- and s1-spectra add up to v. The same idea applies to tallies. This provides
an important intuition, used in Section 5.3 when transforming our formula to a
system of equations/inequalities.

Lemma 5.7. Let A be a model of ∆, ϕ and let a ∈ A with tpA[a] = π. Let s, t
be any bit-strings with |s| < p and |t| < q. Then, the following equations hold:

spA
ε [a] + tlAε [a] = C (5.1)

spA
s0[a] + spA

s1[a] = spA
s [a] (5.2)

tlAt0[a] + tlAt1[a] = tlAt [a] (5.3)

Proof. Equation (5.1) is immediate from the definition of spectra and tallies and
the normal form in Lemma 4.12. For Equation (5.2), notice that the set Λπ,s can
be partitioned into two subsets Λπ,s0 and Λπ,s1, and this induces a partition of the
outgoing fi arrows from a (1 ≤ i ≤ m); Equation (5.2) is then evident. Likewise
for Equation (5.3).

Let τ be any 2-type. With τ we associate an m-dimensional vector Cτ , whose
ith component is given by

(Cτ )i =

 1 if fi(x, y) ∈ τ,
0 otherwise.

Using this notation, some interesting observations can be made. Let t be a bit-
string with |t| = q and let A be a structure and a ∈ A. Now, consider the (only)
2-type µπ,t in Mπ,t and, if µπ,t is non-silent, let n be the number of messages
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of type µπ,t sent by a, i.e. n is the number of elements b ∈ A \ {a} such that
tpA[a, b] = µπ,t. It is clear, then, that tlAt [a] = nCµπ,t . On the other hand, if µπ,t
is silent, we have tlAt [a] = Cµπ,t = 0.

In the case of s-spectra with |s| = p, in a chromatic model A, each element
a ∈ A with non-zero s-spectrum induces a (unique) vector Cλ, where λ is the
invertible 2-type indexed by s. Recall by Remark 5.4 that, given that A is
chromatic, no element may send more than one message whose type is in Λπ,s.

Lemma 5.8. Let A be a chromatic model of ϕ. Let a ∈ A, π be a 1-type and s be
a bit-string with |s| = p. If tpA[a] = π and spA

s [a] 6= 0, then there exists λ ∈ Λπ,s

with spA
s [a] = Cλ such that a sends a message of type λ to some b ∈ A \ {a}.

Conversely, if there exists λ ∈ Λπ,s such that a sends a message of type λ to some
b ∈ A \ {a}, then tpA[a] = π and spA

s [a] = Cλ.

Proof. Suppose tpA[a] = π and spA
s [a] 6= 0. As discussed previously, there exists

a unique b ∈ A \ {a} such that λ = tpA[a, b] ∈ Λπ,s. Clearly, then, spA
s [a] = Cλ.

Conversely, suppose a sends a message of type λ ∈ Λπ,s to some element b ∈
A \ {a}. Evidently, then, tpA[a] = π and b is unique, thus spA

s [a] = Cλ.

5.3 Translation to linear programming

We now show how to reduce the question for the (finite) satisfiability of ∆, ϕ to the
problem of determining whether a certain system of linear equations/inequalities
has a solution over N. The solutions of these equations count how often various
local configurations appear in a model. These configurations are:

• Realizations of each invertible message-type λ.
• Elements of 1-type π having s-spectrum u, for all vectors u ≤ C.
• Elements of 1-type π having t-tally u, for all vectors u ≤ C.
• Elements of 1-type π whose s-spectrum u is obtained as the sum of an

s0-spectrum v and an s1-spectrum w, for v,u,w ≤ C and for all s with
|s| < p.
• Elements of 1-type π whose t-tally u is obtained as the sum of a t0-tally

v and a t1-tally w, for v,u,w ≤ C and for all t with |t| < q.

To each of those configurations we associate a variable which is intended to
capture how many times it appears in a model. These variables and the properties
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Variable Intended meaning of its value
xλ |{a ∈ A : for some b ∈ A \ {a}, tpA[a, b] = λ}|
yπ,s,u |{a ∈ Aπ : spA

s [a] = u}|
zπ,t,u |{a ∈ Aπ : tlAs [a] = u}|
ŷπ,s,v,w |{a ∈ Aπ : spA

s0[a] = v and spA
s1[a] = w, whenever |s| < p}|

ẑπ,t,v,w |{a ∈ Aπ : tlAt0[a] = v and tlAt1[a] = w, whenever |t| < q}|

Table 5.1: Variables and their intended meanings, for a finite model A of ∆∪{ϕ}.
Recall, Aπ = {a ∈ A | tpA[a] = π}.

that they capture can be seen in Table 5.1. We remark here that these are not
single variables but classes of variables. Unless specified otherwise, the ranges of
the subscripts of these variables are as follows: π ranges over all 1-types in Π, λ
ranges over all invertible message-types, s ranges over all bit-strings with |s| ≤ p,
t ranges over all bit-strings with |t| ≤ q, and u,v,w vary over all vectors ≤ C.
(Similarly for their primed counterparts π′, λ′, s′, t′,u′,v′ and w′.) That is, we
have one variable xλ for each invertible message-type λ, one variable yπ,s,u for
each possible combination of π ∈ Π, s with |s| ≤ p and u ≤ C, and so on.

Henceforth, given a structure A, we will denote the set of elements in the
universe A of A having 1-type π by Aπ, that is

Aπ = {a ∈ A | tpA[a] = π}.

We now write several equations/inequalities that a given structure A has
to satisfy for it to be a model of ∆ ∪ {ϕ}. For convenience we provide these
constraints in four stages: the first three capture the requirements that ϕ imposes
and the fourth one ensures that the database is satisfied. Note, again, that each
of the following equations/inequalities represents a class of equations/inequalities
for different values of s, t, v, u, etc.

Let E1 be the following classes of constraints, where π, u, etc., vary as de-
scribed previously, and for the bit-strings s and t we also require that |s| < p

and |t| < q:

yπ,ε,u = zπ,ε,C−u (5.4)

yπ,s,u =
∑
{ŷπ,s,v′,w′ | v′ + w′ = u} (5.5)
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zπ,t,u =
∑
{ẑπ,t,v′,w′ | v′ + w′ = u} (5.6)

yπ,s0,v =
∑
{ŷπ,s,v,w′ | v + w′ ≤ C} (5.7)

yπ,s1,w =
∑
{ŷπ,s,v′,w | v′ + w ≤ C} (5.8)

zπ,t0,v =
∑
{ẑπ,t,v,w′ | v + w′ ≤ C} (5.9)

zπ,t1,w =
∑
{ẑπ,t,v′,w | v′ + w ≤ C} (5.10)

1 ≤
∑
{yπ′,ε,u′ | π′ a 1-type, u′ ≤ C} (5.11)

Lemma 5.9. Let A be a finite model of ϕ. The constraints E1 are satisfied when
the variables take the values specified in Table 5.1.

Proof. Omitted; see [PH07].

Before continuing we need some extra terminology. Let τ be any 2-type; we
say that τ is forbidden if the following formula is unsatisfiable (referring to the
normal form in Lemma 4.12):

∧
τ ∧ α(x) ∧ α(y)∧∧

1≤j≤n

(
(ej(x, y)→ (βj(x, y)) ∧ (ej(y, x)→ (βj(y, x))

)
.

A forbidden 2-type cannot be assigned to any pair of elements in a model, as it
directly conflicts with the requirements imposed by the normal form. Such a 2-
type, however, can easily be identified (since the above formula is purely boolean)
in time bounded by an exponential function of ‖ϕ‖.

Let E2 be the following classes of constraints, where π and λ vary as described
previously, u 6= 0, and for the bit-strings s and t also require that |s| = p and
|t| = q:

yπ,s,u =
∑
{xλ′ | λ′ ∈ Λπ,s and Cλ′ = u} (5.12)

xλ−1 = xλ (5.13)

xλ = 0, whenever tp1(λ) = tp2(λ) (5.14)

xλ = 0, whenever λ is forbidden (5.15)

zπ,t,u = 0, whenever µπ,t is forbidden (5.16)

zπ,t,u = 0, whenever u is not a scalar multiple of Cµπ,t (5.17)
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Lemma 5.10. Let A be a finite, chromatic model of ϕ. The constraints E2 are
satisfied when the variables take the values specified in Table 5.1.

Proof. Omitted; see [PH07].

Let E3 be the following classes of constraints, where π varies as described, t
varies over all bit-strings with |t| = q, and u 6= 0:

zπ,t,u > 0 ⇒
∑
{yπ′,ε,u′ | π′ = tp2(µπ,t) and u′ ≤ C} > 0 (5.18)

Lemma 5.11. Let A be a finite model of ϕ. The constraints E3 are satisfied
when the variables take the values specified in Table 5.1.

Proof. Omitted; see [PH07].

We now turn our attention to the constraints that our database enforces. We
first introduce, for each constant c ∈ D, the sets

Λc = {λ ∈ Λ : tp∆[c, c′] = λ, for some c′ ∈ ∆ \ {c}},

and
Mc = {µ ∈Mtp∆[c] : tp∆[c, c′] = µ, for some c′ ∈ ∆ \ {c}}.

That is, Λc is the set of invertible message-types ‘connecting’ c to another element
in ∆; similarly, Mc is the set of non-invertible message-types or silent 2-types
‘connecting’ c to another element in ∆. Assuming that ∆ is complete, Λc and
Mc can be read from ∆. It should be obvious that if ∆, ϕ is to be satisfied, any
model of ∆, ϕ has to contain an element that (at the very least) sends all the
messages in Λc ∪Mc.

Fix a constant c ∈ D. By the indexing of invertible message-types described
in Section 5.1, to each λ ∈ Λc corresponds a bit-string s with |s| = p such
that λ ∈ Λtp∆[c],s; for the sake of brevity, we often abuse the notation for set
membership, writing s ∈ Λc, to mean that λ ∈ Λc. Notice that no confusion
arises from this notation, because we are working with chromatic models; hence
each constant c ∈ ∆ can send at most one invertible message whose type is in
Λtp∆[c],s, for any given s with |s| = p (recall Remark 5.4). We also write t ∈Mc,
where t is a bit-string with |t| = q, to mean that the non-invertible message-type
or silent 2-type µtp∆[c],t is in Mc.
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Now, fix a finite model A of ∆, ϕ. For each constant c ∈ D, let cA ∈ A be the
element interpreting c, and let π = tpA[cA] (= tp∆[c], assuming ∆ is complete).
We use γcπ,s to denote the s-spectrum of cA in A, for all s with |s| ≤ p, and δcπ,t

to denote its t-tally, for all t with |t| ≤ q. The meaning of these symbols will
remain fixed for the rest of the chapter. According to Lemma 5.7, γcπ,ε+ δcπ,ε = C,
γcπ,s = γcπ,s0 + γcπ,s1 (for all s with |s| < p), and δcπ,t = δcπ,t0 + δcπ,t1 (for all
t with |t| < q). It is also clear (since cA realizes c) that if λ ∈ Λc and s is
such that λ ∈ Λπ,s, then γcπ,s = Cλ; further, if µ = µπ,t ∈ Mc, there exists
n ≥ |{c′ ∈ D \ {c} : tp∆[c, c′] = µ}| such that δcπ,t = n ·Cµ.

For a given bit-string x, we denote by seg(x) the set of all proper prefixes of
x. We also define seg+(x) = seg(x) ∪ {x}. For example,

seg(1101) = {ε, 1, 11, 110},

seg+(1101) = {ε, 1, 11, 110, 1101}.

For each invertible type λ, let ηλ be the number of elements in the database
that send an invertible message of type λ (to another database element). For the
next set of constraints, the subscripts range as follows:

• π ∈ Π∆, where Π∆ = {tp∆[c] : c ∈ D};
• s ∈ ⋃c∈D{seg(s′) : s′ ∈ Λc};
• t ∈ ⋃c∈D{seg(t′) : t′ ∈Mc}.

Let E4 be the following classes of constraints, where λ varies as usual and the
other subscripts vary as described above:

xλ ≥ ηλ (5.19)

yπ,ε,u ≥ 1, when u = γcπ,ε and π = tp∆[c] (5.20)

zπ,ε,u ≥ 1, when u = δcπ,ε and π = tp∆[c] (5.21)

ŷπ,s,v,w ≥ 1, when v = γcπ,s0, w = γcπ,s1, and π = tp∆[c] (5.22)

ẑπ,t,v,w ≥ 1, when v = δcπ,t0, w = δcπ,t1, and π = tp∆[c] (5.23)

Lemma 5.12. Let A be a finite model of ∆, ϕ, with ∆ complete. The constraints
E4 are satisfied when the variables take the values specified in Table 5.1.

Proof. The constraints (5.19), (5.20) and (5.21) are evident. For (5.22), let c ∈ D
be a constant and let π = tp∆[c]. Pick any s ∈ ⋃{seg(s′) : s′ ∈ Λc}. By definition,
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γcπ,s0 and γcπ,s1 are the s0- and s1-spectrum (respectively) of an element a ∈ A that
realizes c. But then, referring to Table 5.1, a is one of the elements ‘recorded’ by
the variable ŷπ,s,v,w, for v = γcπ,s0 and w = γcπ,s1. Consequently, ŷπ,s,v,w ≥ 1, when
v = γcπ,s0 and w = γcπ,s1. Thus, the constraints (5.22) are satisfied. Similarly, the
constraints (5.23) are also satisfied.

For any bit-string x, let

flip(x) = seg+(x) ∪ {yā : ya ∈ seg+(x) and |a| = 1},

where ā is the complement of the bit a, i.e. 0̄ = 1 and 1̄ = 0. For example,

flip(1101) = {ε, 1, 11, 110, 1101} ∪ {0, 10, 111, 1100}.

Notice that, for any bit-string x, |flip(x)| = 2 · |x|+1. Now, observe that, for each
constant c ∈ D, the vectors γcπ,s (π = tp∆[c]) used in E4 are exactly those with
s ∈ ⋃{flip(s′) : s′ ∈ Λc}; similarly, the vectors δcπ,t (π = tp∆[c]) in E4 are exactly
those with t ∈ ⋃{flip(t′) : t′ ∈ Mc}. Thus, the number of vectors γcπ,s and δcπ,t

required to write E4 is linear in the size |∆| of ∆.
Let E = E1 ∪ E2 ∪ E3 ∪ E4. Note that the size ‖E‖ of E is bounded above by

an exponential function of ‖ϕ‖.

Lemma 5.13. Let ∆ and ϕ be as above, with ∆ complete. If ∆, ϕ is finitely
satisfiable, then E has a solution over N.

Proof. Lemmas 5.9 – 5.11, and 5.12.

We remark that the vectors γcπ,s and δcπ,t (for all possible values of s and t) are
defined in terms of a putative finite model A of ∆, ϕ. Lemma 5.13 tells us that if
such a model exists, then E has a solution over N. However, the values of these
vectors cannot be obtained from ∆ for E4 to be written in the first place. This
issue is easily fixed: since only the vectors γcπ,s, for s ∈ ⋃{flip(s′) : s′ ∈ Λc}, and
δcπ,t, for t ∈ ⋃{flip(t′) : t′ ∈ Mc}, are required (for each constant c ∈ D, where
π = tp∆[c]), all possible values of these vectors can be tried. In more detail, we
need to find vectors γcπ,s, for each s ∈ ⋃{flip(s′) : s′ ∈ Λc}, and δcπ,t, for each
t ∈ ⋃{flip(t′) : t′ ∈Mc}, such that

γcπ,ε + δcπ,ε = C (5.24)
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γcπ,s0 + γcπ,s1 = γcπ,s, for s ∈ {seg(s′) : s′ ∈ Λc} (5.25)

δcπ,t0 + δcπ,t1 = δcπ,t, for t ∈ {seg(t′) : t′ ∈Mc} (5.26)

and, in addition,
γcπ,s = Cλ, (5.27)

if λ ∈ Λc and s is such that λ ∈ Λπ,s, and

δcπ,t = n ·Cµ, (5.28)

for some n ≥ |{c′ ∈ D \ {c} : tp∆[c, c′] = µ}|, when µ = µπ,t ∈Mc. (Observe that
all the bit-strings that appear as subscripts in Equations 5.24 – 5.28 are either in⋃{flip(s′) : s′ ∈ Λc} or in ⋃{flip(t′) : t′ ∈Mc}.) Recalling that all the vectors we
are dealing with are ≤ C, the required vectors can be found in time exponential
with respect to ‖ϕ‖. Finally, it is clear that if such vectors do not exist, ∆, ϕ is
not finitely satisfiable. (See the proof of Theorem 5.18 for more details.)

5.4 Obtaining a model from the solutions

To construct a model given a solution of E over N, we will start with sets of
elements Aπ of the right cardinality, for each 1-type π, and gradually build the
message-types (or silent-types for that matter) that those elements ‘want’ to send.
Fix some 1-type π and let Aπ be a set with cardinality

|Aπ| =
∑
{yπ,ε,u′ | u′ ≤ C}.

Think of Aπ as the set of elements that ‘want’ to have 1-type π. We now define
the functions fπ,s and gπ,t that give us the spectra and tallies for each element
a ∈ Aπ. Think of fπ,s(a) as the s-spectrum that a ‘wants’ to have and gπ,t(a) as
the t-tally that a ‘wants’ to have (when a model is eventually built). For those
functions to agree with the solutions of the previous system of constraints, we
need to ensure that

|f−1
π,s(u)| = yπ,s,u, (5.29)

|g−1
π,t(u)| = zπ,t,u. (5.30)
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Furthermore, we need to make sure that, for all a ∈ Aπ,

fπ,ε(a) + gπ,ε(a) = C, (5.31)

fπ,s0(a) + fπ,s1(a) = fπ,s(a), (5.32)

gπ,t0(a) + gπ,t1(a) = gπ,t(a). (5.33)

Finally, for each set Aπ where π = tp∆[c], we wish to enforce the existence of
an element bc ∈ Aπ such that, for all s ∈ Λc and all t ∈Mc,

fπ,s(bc) = γcπ,s, (5.34)

gπ,t(bc) = δcπ,t. (5.35)

Such an element bc can be used to realize the constant c, when a model is even-
tually built.

The following lemma guarantees that the above requirements can be satisfied.

Lemma 5.14. Suppose that xλ, yπ,s,u, zπ,t,u, ŷπ,s,v,w, ẑπ,t,v,w are (classes of)
natural numbers satisfying the constraints E given above. Fix any 1-type π ∈ Π,
and let Aπ be a set of cardinality ∑{yπ,ε,u′ | u′ ≤ C}. Then there exists a system
of functions on Aπ

fπ,s : Aπ → {u | u ≤ C} and gπ,t : Aπ → {u | u ≤ C},

for each bit-string s with |s| ≤ p and t with |t| ≤ q, satisfying the following
conditions:

(i) Equations (5.29) and (5.30) hold for all vectors u ≤ C.
(ii) If |s| < p and |t| < q, Equations (5.31) – (5.33) hold for all a ∈ Aπ.

In addition, the above functions fπ,s and gπ,t can be chosen such that if c ∈
D is a constant and π = tp∆[c], there exists an element bc ∈ Aπ satisfying
Equations (5.34) and (5.35) (for each s ∈ Λc and t ∈Mc).

Proof. Decompose Aπ into pairwise disjoint sets Au of cardinality |Au| = yπ,ε,u,
for each vector u ≤ C. Note that, since yπ,ε,u might be zero, some of those
sets could be empty. However, if π = tp∆[c], for some c ∈ D, we have by the
constraints (5.20) that Au 6= ∅ for u = γcπ,ε.

We construct the functions fπ,s, where 0 < |s| ≤ p by induction on s. Suppose
s = ε; for each u ≤ C, and for all a ∈ Au, set fπ,ε(a) = u and gπ,ε(a) =
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C − u. These assignments clearly satisfy (5.29) and (5.30), keeping in mind
the constraints (5.4). Now, assume that fπ,s has been defined, for some s with
0 ≤ |s| < p. For every vector u ≤ C, decompose the set f−1

π,s(u) into subsets
Av,w with cardinality |Av,w| = ŷπ,s,v,w, for all v, w such that v + w = u. This is
possible from the constraints (5.5) and Equation (5.29). For all a ∈ Av,w, set

fπ,s0(a) = v and fπ,s1(a) = w.

Notice that Equation (5.32) holds as required.
That fπ,s0 and fπ,s1 both satisfy Equation (5.29) is guaranteed by the con-

straints (5.7) and (5.8). Clearly, fπ,s0(a) = v if and only if for some vector w′

such that v + w′ ≤ C, a ∈ Av,w′ . Thus, we have

|f−1
π,s0(v)| =

∣∣∣⋃{Av,w′ : v + w′ ≤ C}
∣∣∣ = yπ,s0,v.

Similarly, we have

|f−1
π,s1(w)| =

∣∣∣⋃{Av′,w : v + w′ ≤ C}
∣∣∣ = yπ,s1,w.

This completes the induction for the functions fπ,s. The construction of the
functions gπ,t is completely analogous.

Finally, suppose that π = tp∆[c], for some constant c ∈ D. In that case, we
have to ensure the existence of an element bc ∈ Aπ that satisfies Equation (5.34),
for all s ∈ Λc. During the initial decomposition of Aπ into sets Au, bc is chosen
to be any element in the (non-empty) set Au, where u = γcπ,ε. To ensure that bc
satisfies (5.34) for all s ∈ Λc, the stronger condition that bc satisfies (5.34) for all
s ∈ L = ⋃{flip(s′) : s′ ∈ Λc} can be enforced. Notice that Equation (5.34) can
be written in the (more convenient for our purpose) form

bc ∈ f−1
π,s(γcπ,s); (5.36)

thus, we show how to enforce (5.36), for all s ∈ L.
Notice, initially, that, by the above construction of the functions fπ,s, fπ,ε(bc)

will be set to γcπ,ε, i.e. bc will be in the set f−1
π,ε (γcπ,ε). Now suppose that, by

inductive hypothesis, bc is in the set f−1
π,s(γcπ,s), for some s ∈ L with |s| < p.

When decomposing the set f−1
π,s(γcπ,s) into subsets Av,w as described above, the

constraints (5.22) guarantee that, when v = γcπ,s0 and w = γcπ,s1, Av,w will be
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non-empty. Thus, when v = γcπ,s0 and w = γcπ,s1, Av,w can be chosen such that
bc is in it. Then, by the above construction of the functions fπ,s, fπ,s0(bc) will be
set to γcπ,s0 and fπ,s1(bc) to γcπ,s1. Equivalently, bc will be in the set f−1

π,s0(γcπ,s0) and
the set f−1

π,s1(γcπ,s1). This (inductively) establishes (5.36)—and thus (5.34)—for all
s ∈ L. A similar argument establishes Equation (5.35) for bc.

Lemma 5.15. Let the functions fπ,s and gπ,t be constructed as in Lemma 5.14.
Then, for all a ∈ Aπ, we have

∑
{fπ,s′(a) : |s′| = p}+

∑
{gπ,t′(a) : |t′| = q} = C.

Proof. Simple induction; see [PH07].

We are now ready to prove the converse of Lemma 5.13.

Lemma 5.16. Let ∆, ϕ and E be as defined above. Assuming ∆ is complete, if
E has a solution over N then ∆, ϕ is finitely satisfiable.

Proof. Let xλ, yπ,s,u, zπ,t,u, ŷπ,s,v,w, ẑπ,t,v,w be (classes of) natural numbers satis-
fying E . Notice that, for all positive integers k, the (classes of) natural numbers
kxλ, kyπ,s,u, kzπ,t,u, kŷπ,s,v,w, kẑπ,t,v,w also satisfy E . Thus, we may assume that
all solutions are greater than or equal to 3mC.

We start by defining the universe A of our model A. Let

A =
⋃
{Aπ | π is any 1-type over σ},

where each set Aπ has cardinality

|Aπ| =
∑
{yπ,ε,u′ | u′ ≤ C}

and the sets Aπ are pairwise disjoint. Think of Aπ as the elements of A that
‘want’ to have 1-type π. Note that A 6= ∅, by the constraint (5.11).

Let the functions fπ,s, gπ,t, and the elements bc (for each c ∈ D) be as con-
structed in Lemma 5.14. Think of fπ,s(a) as the s-spectrum that a ‘wants’ to
have and gπ,t(a) as the t-tally that a ‘wants’ to have; we are only interested in
the values of these functions for |s| = p and |t| = q. Think of bc (for each c ∈ D)
as the element that ‘wants’ to realize the constant c. Decompose each Aπ into
sets f−1

π,s(u), for each vector u with 0 < u ≤ C. By the constraints (5.12) and
Equation (5.29), decompose each of those f−1

π,s(u) into pairwise disjoint (possibly
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empty) sets Aλ with |Aλ| = xλ, for all invertible message-types λ ∈ Λπ,s with
Cλ = u. Think of Aλ as the set of elements in Aπ that ‘want’ to send a single
invertible message of type λ. The decompositions into sets Aλ must be performed
with the following restriction: if c sends an invertible message of type λ to another
database element, bc must be assigned to the set Aλ. By the constraints (5.19),
the cardinality of Aλ is such that the latter assignment of bc to Aλ is valid. The
above process is repeated for all possible different values of s (with |s| = p), and
each decomposition should be thought of as independent of each other. Anal-
ogously, Aπ is decomposed into pairwise disjoint sets g−1

π,t(u) and, again, those
decompositions should be thought of as independent of each other.

Based on the above decompositions, we specify for each a ∈ Aπ a ‘mosaic
piece’ and show how to assemble these pieces into a model of ϕ. A mosaic piece
is, informally, a collection of the messages that a ‘wants’ to send. This collection
might contain more than one message of each type (or zero for that matter). Let
a ∈ Aπ; the mosaic piece corresponding to a contains:

(i) a single message labeled λa,s for each bit-string s with |s| = p if fπ,s(a) 6= 0,
where λa,s is the (unique) 2-type λ for which a ∈ Aλ;

(ii) na,t messages labeled µπ,t for each bit-string t with |t| = q, where na,t is
the (unique) natural number such that gπ,t(a) = na,t · Cµπ,t . Notice that
if gπ,t(a) = 0 then na,t = 0, otherwise na,t exists by the constraints (5.17)
and Equation (5.30).

The mosaic piece corresponding to a is depicted in Figure 5.1.
Let a ∈ A and define Ca to be the vector (Ca,1, . . . , Ca,m) whose ith coordi-

nate Ca,i records the number of messages in the mosaic piece of a containing an
outgoing fi arrow—i.e. messages having label ν for which fi(x, y) ∈ ν. Clearly
(see Figure 5.1),

Ca =
∑
{fπ,s′(a) : |s′| = p}+

∑
{gπ,t′ : |t′| = q}

and, by Lemma 5.15,
Ca = C. (5.37)

We now build A in four steps as follows.

Step 1 (Fixing the 1-types) For all 1-types π and all a ∈ Aπ, set tpA[a] = π.
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λa,0

λa,1

λa,P−1

µπ,0

na,0

µπ,0

µπ,1

na,1

µπ,1

µπ,R−1

na,R−1 µπ,R−1

Figure 5.1: The messages sent by a ∈ Aπ. For each j (0 ≤ j < P ), a may or
may not send a message labeled λa,j (hence the dotted lines); if it does, then
λa,j ∈ Λπ,j. For each k (0 ≤ k < R), a sends na,k messages labeled µπ,k; but the
numbers na,k can be zero.

Since the sets Aπ are pairwise disjoint, no clashes arise. For each c ∈ D, let
cA = bc.

Step 2 (Fixing the invertible message-types) We first assign the invertible
message-types for all pairs cA0 , cA1 ∈ A (corresponding to constants c0, c1 ∈ D

respectively), as dictated by D. For, if c0 and c1 are connected by λ in ∆, then cA0
will ‘want’ to have spectrum Cλ (by Lemma 5.14) and will have been assigned to
Aλ; similarly, cA1 will ‘want’ to have spectrum Cλ−1 and will have been assigned to
Aλ−1 . We then put, by the constraints (5.13), all other λ-labeled messages and all
λ−1-labeled messages in one-to-one correspondence, for each invertible message of
type λ. Thus, if a sends a λ-labeled message and b ‘wants to receive it’ (i.e. sends
a λ−1-labeled message), we set tpA[a, b] = λ. To ensure that each assignment
tpA[a, b] (a, b ∈ A) is valid, we need only check that a and b are distinct. But,
since xλ > 0, by the constraints (5.14) we must have tpA[a] 6= tpA[b], hence,
by construction, a and b belong to the pairwise distinct sets AtpA[a] and AtpA[b].
Moreover, since every element sends at most one invertible message of each type,
no conflicts with the present assignment will arise in future assignments. Finally,
all the elements cA ∈ A (corresponding to constants c ∈ D) are distinct, because
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they belong to distinct sets Aπ (where π = tp∆[c]).

Step 3 (Fixing the non-invertible message-types) Start by decomposing each
set Aπ into three pairwise disjoint (possibly empty) sets Aπ,0, Aπ,1 and Aπ,2 having
at least mC elements each, if |Aπ| ≥ 3mC, and with the following restriction: if
cA ∈ Aπ, for some constant c ∈ D (i.e. π = tp∆[c]), pick these three sets in a way
such that cA ∈ Aπ,0.

Let µπ,t be any non-invertible message type, with π = tp1(µπ,t) and ρ =
tp2(µπ,t) being its starting and terminal 1-types. Let a ∈ A be an element that
sends na,t > 0 messages of type µπ,t. Clearly, then, a ∈ Aπ and there is a
vector u > 0 such that gπ,t(a) = u, hence g−1

π,t(u) is non-empty. As a result,
zπ,t,u = |g−1

π,t(u)| > 0, thus, by the constraints (5.18), ∑{yρ,ε,u′ | u′ ≤ C} > 0.
This implies that Aρ is non-empty since, clearly, |Aρ| = ∑{yρ,ε,u′ | u′ ≤ C},
hence |Aρ| ≥ 3mC by our choice of solution. This means that, by our preliminary
decomposition, Aρ has been partitioned into three sets Aρ,0, Aρ,1 and Aρ,2 having
at least mC elements each.

Suppose, for the moment, that a is not equal to the interpretation of any
constant. By our initial decomposition Aπ has also been partitioned into three
sets Aπ,0, Aπ,1 and Aπ,2; since a ∈ Aπ, let j be such that a ∈ Aπ,j, 0 ≤ j ≤ 2. Let
k = j+1 (mod 3) and select na,t elements b from Aρ,k that have not already been
chosen to receive any messages (invertible or non-invertible) and set, for each one
of those, tpA[a, b] = µπ,t. Note that there are enough elements in Aρ,k to choose
from, as a can send at most mC messages (of invertible or non-invertible type).

On the other hand, suppose that a = cA1 , for some constant c1 ∈ D. Further,
suppose that there is a constant c2 ∈ D to which c1 sends (in ∆) a message of
type µπ,t, i.e. tp∆[c1, c2] = µπ,t. Notice that cA2 must lie in Aρ: in Step 1, to each
constant c we assigned an element cA = bc ∈ Atp∆[c]; hence, cA2 ∈ Atp∆[c2] = Aρ.
(In fact, by the decompositions at the beginning of this step, cA2 ∈ Aρ,0.) Thus,
we may set tpA[cA1 , cA2 ] = µπ,t. Now, decrement the value na,t to take account
of the fact that a non-invertible message of type µπ,t has been dealt with, and
proceed as before.

It is clear, at this point, that no clashes arise with any of the assignments in
Steps 1 or 2. Furhter, no clashes arise in future assignments in this step due to the
incremental (modulo 3) reuse of the partitioned sets: an element a sending a non-
invertible message of type µ to another element b cannot accidentally receive a
non-invertible message of type µ′ from b. For example, if a ∈ Aπ,0, then b ∈ Aρ,1
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and b’s messages will be sent to elements c ∈ Aπ,2. Moreover, suppose that
a = cA1 ∈ Aπ, for some c1 ∈ D, sends a non-invertible message to an element
b = cA2 ∈ Aρ, for some c2 ∈ D. Due to our initial decomposition, cA1 and cA2 belong
to Aπ,0 and Aρ,0 respectively; thus, no clash can arise with future assignments by
accidentally setting cA1 to be the recipient of a non-invertible message sent by cA2 ,
because such a message will be sent to Aπ,1.

Step 4 (Fixing the remaining 2-types) Taking advantage of guardedness here,
if tpA[a, b] has not already been defined, set it to be the 2-type

π ∪ ρ[y/x] ∪ {¬γ | γ is a guard-atom not involving =},

where π = tpA[a], ρ = tpA[b] and ρ[y/x] is the result of replacing x by y in ρ.
Note that, since C1, . . . , Cm are by assumption positive integers, a and b certainly
send some messages and, thus, the constraints (5.15) and (5.16) ensure that both
α ∧ ∧ π and α ∧ ∧ ρ are satisfiable.

This completes the definition of A and we now show that A |= ∆, ϕ. Referring
to the normal form in Lemma 4.12, notice that none of the above steps violates
the conjuncts

∀xα ∧
∧

1≤j≤n
∀x∀y(ej(x, y)→ (βj ∨ x = y)).

Furthermore, the conjuncts

∧
1≤i≤m

∀x∃=Ci y(fi(x, y) ∧ x 6= y)

are all satisfied taking into account Equation (5.37) and the fact that none of the
2-types assigned in Step 4 is a message type. The database is satisfied due to
Lemma 5.14 and our assignment of the sets Aλ, at the beginning of this proof.
For each constant c ∈ D, the element that realizes c in A is cA (chosen at the
beginning of the proof).

Now, observe that all the constraints in E have the forms

x1 + . . .+ xn = x,

x1 + . . .+ xn ≥ c,

x = 0,
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x1 = x2,

x ≥ c,

x > 0 ⇒ x1 + . . .+ xn > 0,

where x, x1, . . . xn are variables and c is a constant. Recall that the size ‖E‖ of E
is exponential in the size of ‖∆ ∪ {ϕ}‖. Our goal is to find a solution of E in N.

The following lemma shows that we can transform a system of the above form
into an integer programming problem which, in turn, can be regarded as a linear
programming problem. This is important because linear programming is in P,
whereas integer programming is in NP. The original version is due to Calvanese
[Cal96].

Lemma 5.17. Let ∆, ϕ and E as above. An algorithm exists to determine
whether E has a solution over N in time bounded by a polynomial function of
‖E‖, and hence by an exponential function of ‖∆, ϕ‖.

Proof. Omitted; similar to Lemma 15 in [PH07].

We have now arrived to our main results.

Theorem 5.18. FinSat(GC2D) is in EXPTIME.

Proof. Let ∆ and ψ be given. Convert ψ into a formula ϕ in normal form (as
discussed in Lemma 4.12) and search for a completion ∆∗ of ∆ (this can be
done in exponential time). Guess, for each constant c ∈ D, vectors γcπ,s, for
s ∈ ⋃{flip(s′) : s′ ∈ Λc}, and δcπ,t, for t ∈ ⋃{flip(t′) : t′ ∈ Mc} satisfying
Equations (5.24) – (5.28). These vectors are polynomially many (with respect
to the size of ∆) and each is ≤ C, therefore all possible guesses can be tried in
exponential time. If such vectors do not exist, fail. Otherwise, write the system E
as in Section 5.3. If E has a solution over N succeed, otherwise fail. The existence
(or not) of a model based on whether E has a solution (or not, respectively) is
due to Lemmas 5.13 and 5.16. The time bound follows from Lemma 5.17.

The hardness for FinSat(GC2D) follows from the fact that GC2 is EXPTIME-
hard. Thus, FinSat(GC2D) is EXPTIME-complete.

We now turn to ‘general’ satisfiability, and show that Sat(GC2D) is EXPTIME-
complete. The approach is the same as in [PH07], so we just give a quick sketch
for completeness.
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The main goal here is to reduce E into a satisfiability problem for a system
(conjunction) of (exponentially many) Horn clauses, as such systems are known
to be solvable in time polynomial in the size of the input—thus leaving us in
EXPTIME. To reduce E into this ‘binary’ system, we first view it as a system in
the set N∪{ℵ0}—where addition and multiplication are extended in the obvious
way, i.e. ℵ0 + ℵ0 = ℵ0 · ℵ0 = ℵ0, n + ℵ0 = ℵ0 + n = ℵ0, for all n ∈ N, etc.
We then observe that any solution to E remains a solution if all of the non-zero
values that it assigns (to variables of E) are replaced with ℵ0. But, in that case,
E becomes a system over the set {0,ℵ0}. Such a system is essentially boolean, so
its constraints can be viewed as formulas of propositional logic; and, with a little
care, they can be written as Horn clauses. For instance, identifying 0 with ‘false’
and ℵ0 with ‘true’, the constraints corresponding to the database (E4), which are
of the form x ≥ c (where c is a non-zero constant), become > → x—i.e. x must be
non-zero. It is easily seen that all the relevant lemmas remain valid in the ‘infinite’
case. This establishes membership of Sat(GC2D)—and, thus, Sat(GC2DP2)—in
EXPTIME, and the hardness follows as before.



6 | Satisfiability for GC2DP2

In this chapter we establish that (finite) satisfiability for the two-variable guarded
fragment with counting quantifiers in the presence of binary path-functional de-
pendencies and a database, denoted GC2DP2, is EXPTIME-complete. (We also
provide a quick proof of the same result but for the two-variable guarded fragment
with counting quantifiers in the presence of unary path-functional dependencies
and a database, denoted GC2DP1. This result is almost trivial compared to the
one for GC2DP2.) The proof is by (a rather complex) reduction to (finite) sat-
isfiability for GC2D, which was shown to be EXPTIME-complete in the previous
chapter.

Central to our approach is the notion of a path and the closely related notion
of a tour. The notion of a path is analogous to the widely used notion of a walk
in graph theory; a walk on a graph G is simply a sequence of vertices such that
each consecutive pair of these vertices is connected by an edge in G. (Walks are
also referred to as chains or paths in the graph-theoretic literature, although the
term ‘path’ is usually reserved for walks that contain no repeated vertices.) The
notion of a tour is analogous to that of a closed walk in graph theory. (Closed
walks are also referred to as cycles in the graph-theoretic literature, although the
term ‘cycle’ is usually reserved for closed walks containing no repeated vertices
except their first vertex.)

Our approach is based on the identification of path-functional dependency
violations with certain kinds of tours. That is, if a dependency is violated in a
given structure A, then we are sure to find in A a tour whose shape is among
ten possible shapes that only depend on the dependency. Each of those ten
shapes corresponds to a different way to decompose a given tour into tree-shaped
subtours called fans or larger configurations called isthmuses (plus its part inside
the database, if the tour includes database elements). Although the term ‘fan’
is new, the use of trees is extensive in the literature of the guarded fragment

85
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and/or query answering; trees are used among other things to obtain decidability
results (see, e.g., [Lad77, Kaz04]), decision procedures (see, e.g., [SSS91, BBH96,
DGHP13]), and for query rewriting (see, e.g., [PH09]). The notion of an isthmus,
on the other hand, is completely new. An isthmus is a versatile technical device
enabling us to express that a certain property holds at an element arbitrarily far
from a given element.

It is useful, at this point, to discuss a possible alternative for the above ap-
proach using conjunctive queries. Since, as mentioned above, checking path-
functional dependency violations amounts to the detection (exclusion) of certain
tours in any given structure, one may naturally consider expressing such tours
as conjunctive queries and express the requirement that those tours do not occur
in any model of a database ∆ and a GC2-sentence ϕ as a conjunctive query non-
entailment. In mode detail, for any given tour, say r̄, comprising the predicates
r1, . . . , rk one can write a conjunctive query

κr̄ := ∃x1 · · · ∃xk r1(x1, x2) ∧ r2(x2, x3) ∧ · · · ∧ rk−1(xk−1, xk),

such that any structure A that satisfies κr̄ contains at least one such tour—and
vice versa. Then, to decide whether ∆, ϕ has a model that contains no ‘r̄-tours’
one need only decide whether ∆, ϕ 6|= κr̄. (It is easily checked that ∆, ϕ,¬κr̄ is
unsatisfiable if and only if ∆, ϕ |= κr̄.)

This approach fails for the following reason: we will see later on that the
violation of a given path-functional dependency requires not only the existence of
certain tours, but also that the first three elements of any such tour be distinct.
To express this requirement as a conjunctive query one needs to use inequalities;
however, it is known that conjunctive query answering with even one inequality
is undecidable [GBIGKK13].

6.1 Preliminaries

Before focusing on path-functional dependencies, let us give a simple—and maybe
surprising—lemma about replacing three-variable guarded formulas of a certain
form (arising often in the sequel) with equivalent two-variable guarded formulas
with counting quantifiers. For the rest of this section, let dst(x, y, z) (for distinct)
be an abbreviation for the formula x 6= y ∧ y 6= z ∧ x 6= z.
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Lemma 6.1. Consider the formulas

ϕ1(x) := ∃y∃z(dst(x, y, z) ∧ α(x, y) ∧ β(y, z)),

ϕ2(y) := ∃x∃z(dst(x, y, z) ∧ α(x, y) ∧ β(y, z)),

where α(x, y) and β(y, z) are conjunctions of literals, containing at least one
atom, with free variables x, y and y, z respectively. Then, we can compute in
polynomial time GC2-formulas ϕ∗1(x) and ϕ∗2(x) that are logically equivalent to
ϕ1(x) and ϕ2(x) respectively.

Proof. Let

ϕ∗1(x) := ∀x¬α(x, x) ∧ ∀x¬β(x, x)∧

(∃y(α(x, y) ∧ ¬β(y, x) ∧ ∃xβ(y, x))

∨∃y(α(x, y) ∧ β(y, x) ∧ ∃≥2xβ(y, x))),

ϕ∗2(y) := ∀x¬α(x, x) ∧ ∀x¬β(x, x)∧

[(∃x(α(x, y) ∧ ¬β(y, x)) ∧ ∃xβ(y, x))

∨∃x(α(x, y) ∧ β(y, x)) ∧ ∃≥2xβ(y, x)].

It is evident that, for any structure A interpreting the signature of ϕ1, and any
a ∈ A, A |= ϕ1(a) if and only if A |= ϕ∗1(a); and, likewise, for ϕ2(x) and ϕ∗2(x).

In the sequel, we consider signatures featuring a (possibly empty) distin-
guished subset of binary predicates, which we refer to as functional predicates.
Functional predicates are to be interpreted as graphs of irreflexive functions. That
is, if f is a functional predicate, then, in any structure A interpreting it, we require
A |= ∀x∃≤1y f(x, y) and A |= ∀x¬f(x, x). Notice that the previous definition al-
lows functional predicates to be interpreted as partial functions. To simplify the
ensuing discussion, we take functional predicates to denote only total functions.
This restriction comes at no cost: partial functions can be ‘simulated’ with to-
tal functions over domains featuring new ‘dummy’ objects. The requirement for
functional predicates to be irreflexive, however, is not so easily eliminated, but it
is (in most cases) natural. For example, suppose that we use the binary predicate
age(·, ·) to assign ages to individuals in a database. That is, we write age(e, n)
to denote that the entity (constant) e has age n. In that case, it is sensible to
require age to be a non-reflexive functional predicate, because nobody has more
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than one age, and nobody is identical to their age.
In addition, for each functional predicate f in a signature τ , we assume that

τ contains new binary predicate f−1, referred to as the inverse of f , subject
to the requirement that A |= ∀x∀y(f(x, y) ↔ f−1(y, x)), for any structure τ -
A. (Observe that this formula is in GC2.) Observe, incidentally, that, if f is a
functional predicate, f−1 need not be a functional predicate; however, it must be
irreflexive.

Notation 6.2. Let f̄ = f0, . . . , fk−1 and f̄ ′ = f ′0, . . . , f
′
`−1 be two sequences of

functional predicates. The concatenation f0, . . . , fk−1, f
′
0, . . . , f

′
`−1 of f̄ and f̄ ′ is

denoted by f̄f̄ ′. The empty sequence is denoted by ε. If f̄ = f0, . . . , fk−1 is a
sequence of functional predicates, then its inverse, denoted f̄−1, is the sequence
f−1
k−1, . . . , f

−1
0 .

In the following parts, we use some standard graph-theoretic terminology. A
directed graphG is a set {V,E}, where V is a set of vertices and E = {R1, . . . , Rn}
is a family of sets of edges connecting elements of V , i.e. Ri ⊆ V × V , for
1 ≤ i ≤ n. A directed graph, then, is a structure over the relational signature
〈R1, . . . , Rn〉. For this reason, we often use graph theoretic terminology when it
makes our presentation more intuitive. (For instance, we may refer to elements
of a structure as vertices and predicates as edges.)

Referring to Definition 4.19, the elements that constitute a cycle are distinct.
(Recall from Definition 4.19 that a cycle consists of at least three elements.) We
now define the more general notion of a tour—as we will see later, violations of
path-functional dependencies can be identified with certain kinds of tours. A tour
(like a cycle) is a sequence of elements in a structure that ‘revisits’ its origin. The
elements of a tour, however, need not be distinct. Thus, we can have tours on
acyclic structures (but no cycles, of course); and, when the underlying structure
is acyclic, we can succinctly ‘capture’ violations of path-functional dependencies
by utilizing certain GC2-formulas (to be introduced later).

Definition 6.3. Let A be a structure and let r̄ = r0, . . . , r`−1, ` ≥ 0, be a
sequence of binary predicates. An r̄-path in A is a sequence ā = a0, . . . , a` of
elements in A such that A |= ri(ai, ai+1), for 0 ≤ i < `. The length of the above
path is `, which is the number of edges that it contains. A simple path is a path
with no repeated vertices. An r̄-tour in A is an r̄-path whose endpoints are the
same. That is, an r̄-path ā = a0, . . . , a` is a tour if and only if a0 = a`. A path (or
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tour) a0, . . . , a` is tree-shaped if the graph ({a0, . . . , a`}, {{ai, ai+1} | 0 ≤ i < `})
is acyclic.

From the above definition, any single vertex a is the start (and end) of a tour,
the ε-tour, where ε denotes the empty sequence.

Convention 6.4. Given a tour ā = a0, . . . , a`−1, a`, with a0 = a`, we omit the
last vertex, a`, writing ā as a0, . . . , a`−1 instead. Thus, the length of the tour
a0, . . . , a`−1 is ` and its last element is a` (= a0).

Convention 6.5. When talking about sequences of predicates, paths or tours,
we typically omit the commas for readability. Thus, we might talk about the
sequence t1t2t3 of predicates when we actually mean the sequence t1, t2, t3 or the
path a1a2a3a4 when we actually mean the path a1, a2, a3, a4.

Let us now turn our attention to the study of path-functional dependencies.
We first need the notion of path convergence. Let h̄ = h0, . . . , hk−1 be a sequence
of functional predicates. We say that two h̄-paths a0, . . . , ak and b0, . . . , bk con-
verge if there is an i ≤ k such that ai = bi. When two paths ā and b̄ converge,
we write ā ./ b̄.

As a warm-up, we discuss unary path-functional dependencies first. The
guarded two-variable fragment with counting quantifiers, a database, and unary
path-functional dependencies—denoted GC2DP1—is basically GC2D, extended
with syntactic annotations for specifying unary path-functional dependencies. In
more detail, if ∆ is a database and ψ is a GC2-formula, GC2DP1 allows the for-
mation of the expression

∆, ψ : PFD[f̄ ]

where f̄ is a non-empty sequence of functional predicates, possibly appearing in
∆ and/or ψ, over a relational signature τ .1

1A few remarks on our notation (which also apply to the binary case below): The use of a
colon separating the database and background theory from the dependency resembles the way
dependencies are specified in [TW08]. A different approach would be to allow path-functional
dependencies to be regular formulas, interpreted in a particular way. The second approach
would make them more familiar, but would allow them to appear anywhere in arbitrarily nested
formulas, when real-world applications only require them to be used at the top level, next to
∆ and ψ. One can provide a lemma showing that dependencies can be ‘extracted’ to the top
level, but this is a level of indirection that we felt was aesthetically unsuitable. For this reason
we chose the above notation, which enforces the dependencies to be specified at the top level,
together with ∆ and ψ, at the cost of a slightly unfamiliar syntax.
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To define the semantics of such an expression, we introduce the following
notation: for a given τ -structure A, if h̄ is a sequence of functional predicates,
we denote by h̄A(a) the h̄-path starting at a ∈ A. (Recall that, for simplicity,
we assume that functional predicates are interpreted as graphs of total functions,
hence there is a unique h̄-path starting at a.) We say that ∆, ψ is satisfiable
under the unary path-functional dependency PFD[f̄ ] if there exists a τ -structure
A, such that A |= ∆, A |= ψ, and, for all a, b ∈ A, f̄A(a) ./ f̄A(b) implies a = b; in
that case, we write A |= ∆, ψ : PFD[f̄ ]. We speak of finite satisfiability when in
the above definition we impose the extra condition that A be finite. If, for a given
τ -structure A, there are two distinct elements a, b ∈ A such that f̄A(a) ./ f̄A(b),
we say that the path-functional dependency PFD[f̄ ] is violated in A. Each such
pair of elements a, b is called a violating pair for PFD[f̄ ].
GC2DP1 also allows the specification of multiple dependencies. If, for a pos-

itive integer m, f̄1, . . . , f̄m are pairs of sequences of functional predicates, the
expression

∆, ψ : PFD[f̄1], . . . ,PFD[f̄m]

is in GC2DP1, and it dictates that ∆, ψ be satisfiable under each path-functional
dependency PFD[f̄i] (1 ≤ i ≤ m) simultaneously. We will not concern ourselves
with this case—it is trivial to generalize the following approach to handle multiple
dependencies.

Let τ be a relational signature and let f̄ be a non-empty sequence of functional
predicates from τ . Suppose that we want to decide whether ∆, ψ : PFD[f̄ ] is
(finitely) satisfiable. Let τ ′ consist of τ together with the predicates path1〈ḡ〉(·)
and path2〈ḡ〉(·), one for each contiguous subsequence of f̄ . Abbreviating PFD[f̄ ]
as ℘, and letting h̄ / h̄′ denote that h̄ is a contiguous subsequence of h̄′, we define
the sets

P 1
℘ = {∀x path1〈ε〉(x)}∪

{∀x(path1〈gḡ〉(x)↔ ∃y(x 6= y ∧ g(x, y) ∧ path1〈ḡ〉(y))) | gḡ / f̄}

and

P 2
℘ = {∀x path2〈ε〉(x)}∪

{∀x(path2〈ḡg〉(x)↔ ∃y(x 6= y ∧ path2〈ḡ〉(y) ∧ g(y, x))) | ḡg / f̄}.
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Note that the size of the sets P 1
℘ and P 2

℘ is polynomial in the length of f̄ . Intu-
itively, in the presence of P 1

℘ and P 2
℘ , path1〈ḡ〉(x) is to be read as stating that x is

the start of a ḡ-path and path2〈ḡ〉(x) as stating that x is at the end of a ḡ-path.
Now, notice that PFD[f̄ ] (= ℘) is violated in a given structure A (satisfying P 1

℘

and P 2
℘) if and only if A |= ∃y χ(y), where

χ(y) :=
∨

f̄=f̄ ′ff̄ ′′
∃x∃z(dst(x, y, z) ∧ path2〈f̄ ′〉(x) ∧ f(x, y)

∧ path2〈f̄ ′〉(z) ∧ f(z, y) ∧ path1〈f̄ ′′〉(y)).

Indeed, if for some element b in a structure A (satisfying the P 1
℘ and P 2

℘) we have
A |= χ(b) then there exist two distint elements a, c ∈ A (and also both different
from b) such that there is an ingoing f̄ ′-path to a, an outgoing f -edge from a to b,
an ingoing f̄ ′-path to c, an outgoing f -edge from c to b, and an outgoing f̄ ′′-path
from b. This configuration constitutes, according to our definition, a violation of
PFD[f̄ ]. The converse is evident.

Note that the size of χ(y) is polynomial in the length of f̄ . Of course, χ(y) does
not belong in GC2, but, by Lemma 6.1, it can be replaced by an equivalent GC2-
formula χ∗(y). Thus, (finite) satisfiability for ∆, ψ : PFD[f̄ ] reduces to (finite)
satisfiability for the tuple

∆, ψ,¬∃y χ∗(y),
∧

(P 1
℘ ∪ P 2

℘).

We now focus our attention to our main object of study, the guarded two-
variable fragment with counting quantifiers, a database, and binary path-functional
dependencies—denoted GC2DP2. Like GC2DP1, GC2DP2 is basically GC2D, ex-
tended with syntactic annotations for specifying binary path-functional depen-
dencies. In more detail, if ∆ is a database and ψ is a GC2-formula, GC2DP2 allows
the formation of the expression

∆, ψ : PFD[f̄ , ḡ]

where f̄ and ḡ are non-empty sequences of functional predicates, possibly appear-
ing in ∆ and/or ψ, over a relational signature τ .

Recall from above that, for a given τ -structure A, if h̄ is a sequence of func-
tional predicates, we denote by h̄A(a) the h̄-path starting at a ∈ A. (Assuming,
again, that functional predicates are interpreted as graphs of total functions,
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there is a unique h̄-path starting at a.) We say that ∆, ψ is satisfiable under the
path-functional dependency PFD[f̄ , ḡ] if there exists a τ -structure A, such that
A |= ∆, A |= ψ and, for all a, b ∈ A, f̄A(a) ./ f̄A(b) and ḡA(a) ./ ḡA(b) implies
a = b; in that case, we write A |= ∆, ψ : PFD[f̄ , ḡ]. We speak of finite satisfiabil-
ity when in the above definition we impose the extra condition that A be finite.
If, for a given τ -structure A, there are two distinct elements a, b ∈ A such that
f̄A(a) ./ f̄A(b) and ḡA(a) ./ ḡA(b), we say that the path-functional dependency
PFD[f̄ , ḡ] is violated in A. Each such pair of elements a, b is called a violating
pair for PFD[f̄ , ḡ].
GC2DP2 also allows the specification of multiple dependencies. If, for a pos-

itive integer m, f̄1, ḡ1, . . . , f̄m, ḡm are pairs of sequences of functional predicates,
the expression

ψ : PFD[f̄1, ḡ1], . . . ,PFD[f̄m, ḡm]

is in GC2DP2, and it dictates that ψ be satisfiable under each path-functional
dependency PFD[f̄i, ḡi] (1 ≤ i ≤ m) simultaneously. That is,

A |= ψ : PFD[f̄1, ḡ1], . . . ,PFD[f̄m, ḡm]

if there are no two distinct elements a, b ∈ A such that, for some i (1 ≤ i ≤ m),
f̄A
i (a) ./ f̄A

i (b) and ḡAi (a) ./ ḡAi (b). We do not concern ourselves with violations of
multiple dependencies: it is straightforward to adapt the apparatus we develop
in the sequel for (single) dependencies PFD[f̄ , ḡ] so that multiple dependencies
are taken into account.

Suppose that a path-functional dependency PFD[f̄ , ḡ] is violated in a structure
A, and let a, b ∈ A be a violating pair for PFD[f̄ , ḡ]. Thus, f̄A(a) ./ f̄A(b) and
ḡA(a) ./ ḡA(b), i.e. the f̄ -paths a0 (= a), . . . , ak and b0 (= b), . . . , bk converge; and,
similarly, for ḡ(a) and ḡ(b). Then, there exists (according to our definition) a
smallest i ≤ k such that ai = bi. (Clearly i > 0, since a and b are distinct.)
We say that the violating pair a, b is critical if i = k, i.e. when f̄(a) and f̄(b)
converge only at their last element. We say that a path-functional dependency
PFD[f̄ , ḡ] is critically violated in a structure A if it is violated in A and at least
one of its violating pairs is critical. Note that after the two paths converge, their
‘behaviour’ is identical. See Figure 6.1 for an illustration.

Remark 6.6. There is no requirement that all the elements of the paths men-
tioned above be distinct, so the graph that those sequences specify might not
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a

b

f̄ ′

ḡ′

ḡ′ f̄ ′

f̄ ′′

ḡ′′

Figure 6.1: A violating pair a, b for a path-functional dependency PFD[f̄ , ḡ].
Note that the arrows denote sequences of functional predicates and not single
(directed) edges. In that context, f̄ = f̄ ′f̄ ′′ and ḡ = ḡ′ḡ′′. Note, also, that f̄ ′′ and
ḡ′′ can be empty. The pair a, b is critical just in case f̄ ′′ = ε.

necessarily have cycles. Thus, the illustration in Figure 6.1 is an abstraction and
should not be conflated with the actual structure to which the elements of these
sequences belong.

We claim that a method for deciding whether a path-functional dependency is
critically violated in a structure A, is sufficient for deciding if a given dependency
PFD[f̄ , ḡ] is violated in A. Indeed, suppose f̄ = f1, . . . , fk and denote by f̄1 .. i

(i ≤ k) the prefix f1, . . . , fi of f̄ . It is easily seen that if PFD[f̄ , ḡ] is violated, then
PFD[f̄1 .. i, ḡ] is critically violated, for at least one i (0 < i ≤ k). Then, to check
if PFD[f̄ , ḡ] is violated in a structure A, one checks if PFD[f̄1 .. i, ḡ] is critically
violated in A, for each i (0 < i ≤ k). If none of the dependencies PFD[f̄1 .. i, ḡ]
is critically violated, it is clear that PFD[f̄ , ḡ] is not violated. Conversely, if any
of the dependencies PFD[f̄1 .. i, ḡ] is critically violated, then PFD[f̄ , ḡ] is violated
(recall from the beginning of this section that functional predicates are always
interpreted as graphs total functions). For this reason, we will be concerned only
with the detection of critical violations.

Suppose that the path-functional dependency PFD[f̄f, ḡ]2 is critically violated
in a structure A, and let a, b ∈ A be any violating pair for PFD[f̄f, ḡ]. Then,
a, b are distinct, there exist two converging f̄f -paths starting at a, b respectively,
and two converging ḡ-paths starting, again, at a, b respectively. Let d be the

2Since, by definition, the sequences involved in a path-functional dependency are non-empty,
we may assume that each dependency is of this form, where f̄ is allowed to be the empty
sequence ε.
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a

b

c d

e

f̄

ḡ

ḡ

f̄

f

f

Figure 6.2: A critical violating tour of PFD[f̄f, ḡ]. Note that the arrows labeled
with f̄ or ḡ denote sequences of functional predicates and not single (directed)
edges. The elements c, d and e are distinct.

element on which the two f̄f -paths converge; let c be the penultimate element
of the f̄f -path a, . . . , d and e be the penultimate element of the f̄f -path b, . . . , d.
Observe that the elements c, d, and e must be distinct, otherwise the violation
would not be critical. See Figure 6.2 for an illustration.

Thus, referring again to Figure 6.2, each critical violation of PFD[f̄f, ḡ] in A

can be identified with an f̄ff−1f̄−1ḡḡ−1-tour a · · · cde · · · b · · · a, where a · · · c is an
f̄ -path in A, A |= f(c, d), A |= f−1(d, e), e · · · b is an f̄−1-path in A, and b · · · a
is a ḡḡ−1-path in A—where the elements c, d, and e are distinct. This observa-
tion turns out not to be very useful. However, identifying critical violations of
PFD[f̄f, ḡ] with tours is not a bad idea. The following insight lays the foundation
for our approach: any rotation of the above tour still identifies a critical violation
of PFD[f̄f, ḡ]. Moreover, all rotations of the above tour share a common char-
acteristic: they all contain the ff−1-path cde (where c, d, and e are distinct).
It looks promising, then, to take the rotation of the above tour beginning at c
as our starting point. That is, we identify any violation of PFD[f̄f, ḡ] with an
ff−1f̄−1ḡḡ−1f̄ -tour whose first three elements, say c, d, and e, are distinct. It is
clear (keeping in mind Figure 6.2) that if no such tour exists in a given structure
A, then PFD[f̄f, ḡ] is not violated in A. (Notice that the violating pair a, b is
irrelevant at this point: the existence of the ff−1f̄−1ḡḡ−1f̄ -tour starting with c, d,
and e is a necessary condition for a, b to be a violating pair.)

Next, we concern ourselves with the classification of ff−1f̄−1ḡḡ−1f̄ -tours ac-
cording to their decompositions into smaller, tree-shaped subtours.
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6.2 Decompositions of paths and tours

Let G be a directed graph and let ā = a0, . . . , a` (` > 0) be a tree-shaped path in
G. Then, ā can be decomposed as b0b̄0 · · · bkb̄k (k > 0), with bib̄i = aι(i), . . . , aι′(i)

(0 ≤ i ≤ k), where aι(0) = a0, aι(i) = aι′(i−1)+1 when i > 0, and ι′(i) is the
largest index such that aι′(i) = aι(i); each bib̄i is a tree-shaped subtour of ā.
Intuitively, suppose that a0 = v ∈ G; then the path ‘visits’ other vertices of G
before (possibly) returning again to v. In that case, ι′(0) ‘records’ the last time
that the path ‘visits’ v. Then the path ‘moves’ to aι(1) = aι′(0)+1 = u ∈ G (which
is different to v); similarly, ι′(1) ‘records’ the last time that the path visits u.
Then the path moves to a different vertex w ∈ G, and so on.

For the above decomposition of ā, we call the sequence b0 · · · bk (i.e. bi = aι(i)

for 0 ≤ i ≤ k) the backbone of ā. It is clear that all the vertices in a backbone are
distinct, thus the backbone of any path is a simple path. It is also clear that the
backbone of ā is the shortest subpath of ā connecting a0 to a` and it is unique.
See Figure 6.3 for an illustration.

b0 = a0 b1 bk = a`

b̄0 b̄1 b̄k

Figure 6.3: A decomposition of a path a0, . . . , a` into its backbone b0, . . . , bk,
(possibly) with a tree-shaped subtour at each bi, 0 ≤ i ≤ k.

Lemma 6.7. Let G be a directed graph and ā = a0, . . . , a`−1 (` > 1) be a tree-
shaped tour in G. Let ā′ = a0, . . . , at and ā′′ = at, . . . , a` (=a0), where a = at is
any vertex in ā not equal to a0. Let p̄′ = b′0, . . . , b

′
m be the backbone of ā′ and let

p̄′′ = b′′0, . . . , b
′′
n be the backbone of ā′′. Then b′′i = b′m−i, for all 0 ≤ i ≤ m (whence

m = n).

Proof. Suppose that the conclusion of the lemma does not hold. We claim that
the longer of the two backbones must introduce a cycle. Without loss of generality,
we assume that m < n. Let i ≥ 0 be the smallest index such that b′′i = b′m−i and
b′′i+1 6= b′m−(i+1). Let j ≥ i + 1 be the smallest index such that b′′j belongs to p̄′

and, for all k with j > k > i, b′′k is not in p̄′; the set of such b′′k elements is empty
when j = i+ 1. (Such a j exists since b′′n = b′0.) Let s be such that b′′j = b′s; i.e. s
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is the corresponding index of b′′j in p̄′. First, note that s cannot be greater than or
equal to m− i because p̄′′, being a backbone, is a simple path—hence, it cannot
‘revisit’ any vertices. Furthermore, if j = i+ 1 we have s 6= m− (i+ 1), because
we assumed that b′′i+1 6= b′m−(i+1). But, then, in any case, the tour contains the
cycle b′′i , . . . , b

′
s (= b′′j ), . . . , b′m−i (= b′′i ); hence it is not tree-shaped, which is a

contradiction. See Figure 6.4 for an illustration.

b′0

b′′n

b′s

b′′j

b′m−i

b′′i

b′m

b′′0

b′0

b′′n

b′s

b′′j

b′m−i

b′′i

b′m

b′′0

b′′i+1b′′j−1

Figure 6.4: Two possible ways that cycles are introduced if the conclusion of
Lemma 6.7 does not hold. In both cases b′′i , . . . , b′s (= b′′j ), . . . , b′m−i (= b′′i ) is a
cycle, which conflicts with the assumption that the tour is tree-shaped.

If ā is a tree-shaped tour going through a fixed vertex a, we can write ā = ā′b̄ā′′,
where b̄ is a tree-shaped tour starting (and ending) at a, and a does not appear
in ā′ or ā′′. Now, ā′a is the path from a0 to a, and b̄ ā′′ is the path from a back
to a0. As discussed earlier, we can write

ā′a = b′0b̄
′
0 · · · b′mb̄′m, (6.1)

for some m > 0, such that: b′ib̄′i = aι(i), . . . , aι′(i) (0 ≤ i ≤ m), where aι(0) = a0,
aι(i) = aι′(i−1)+1 when i > 0, and ι′(i) is the largest index such that aι′(i) = aι(i).
Notice that b̄′m in this decomposition is empty, since a does not appear in ā′ and
a is the last element of the path ā′a (i.e. b′m = a). Similarly, we can write

b̄ ā′′ = b′′0 b̄
′′
0 · · · b′′nb̄′′n, (6.2)

for some n > 0, such that: b′′j b̄
′′
j = aη(j), . . . , aη′(j) (0 ≤ i ≤ n), where aη(0) =

b′m = a, aη(j) = aη′(j−1)+1 when j > 0, and η′(j) is the largest index such that
aη′(j) = aη(j). By Lemma 6.7, m = n and b′′i = b′m−i (0 ≤ i ≤ m), which leads us
to the configuration illustrated in Figure 6.5.

The above decompositions have the following simple but very useful conse-
quence. (Keep in mind Figure 6.5.)

Lemma 6.8. Let G be a directed graph and ā = a0, . . . , a`−1 be a tree-shaped
tour in G. Let a be any vertex in ā not equal to a0 and let i, j (0 < i ≤ `,
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a0 a

b̄′0

b̄′′m

b̄′1

b̄′′m−1

b̄′2

b̄′′m−2

b̄′m−1

b̄′′1

b̄′′0

Figure 6.5: The shape of a tree-shaped tour (starting at a0) that goes through a.
The triangles at each node represent a tree-shaped subtour starting (and ending)
at this particular node.

i ≤ j < `) be the smallest and the largest index respectively such that ai = aj = a.
Then ai−1 = aj+1.

Proof. Decompose ā into ā′ b̄ ā′′, where b̄ = ai, . . . , aj is a tree-shaped subtour of ā,
starting and ending at a. Notice that, by assumption, a does not appear outside b̄.
Now, decompose the path ā′a into b′0b̄′0 · · · b′mb̄′m as in Equation (6.1). Recall that,
in this decomposition, b′m = a and b̄′m is empty. Thus, because a does not appear
in ā′, it must be b′m = ai. It follows that b′m−1 = aι(m−1) = aι′(m−1) = ai−1—for
the last equality, recall that by definition ai = aι′(m−1)+1, hence aι′(m−1) = ai−1.
On the other hand, by decomposing b̄ā′′ into b′′0 b̄

′′
0 · · · b′′nb̄′′n as in Equation (6.2),

b̄ = ai, . . . , aj = b′′0 b̄
′′
0. By definition, then, b′′1 = aj+1. But, by Lemma 6.7, m = n

and b′′k = b′m−k (for all 0 ≤ k ≤ m); in particular b′m−1 = b′′1, thus ai−1 = aj+1.

We now wish to consider paths or tours in structures involving constants from
a given database. We first introduce some terminology to distinguish the elements
that interpret a database constant from those that do not. For the rest of this
section, we fix a database ∆, and let D be its active domain. We assume that
all the structures we will be working with interpret ∆. Since ∆ is fixed, it is in
some sense ‘locked’ or ‘hidden’ from us; on the other hand, elements that do not
interpret constants in D are ‘visible’, hence the following definition:

Definition 6.9. Let A be a structure. An element a ∈ A \ D is called an
observable. A cycle is observable if at least one of its elements is an observable.
Otherwise (when all its elements are in D) the cycle is non-observable.

We refer to tours that contain database elements (i.e. elements of D) as tours
that go inside the database. For such tours we have decompositions similar to
the ones above, but before discussing these decompositions we need the following
two lemmas. Intuitively, the first lemma states that when a tour that contains



CHAPTER 6. SATISFIABILITY FOR GC2DP2 98

no observable cycles goes inside the database, the point of ‘entry’ must also be
the point of ‘exit’. The second lemma states that whenever a tour that contains
no observable cycles goes out of the database and then in again, the point of
‘exit’ and the point of ‘re-entry’ are the same. It easy to see that a violation
of any of these two lemmas would introduce observable cycles while the tour by
assumption cannot contain any.

Lemma 6.10. Let A be a structure and ā = a0, . . . , a`−1, with a0 6∈ D but
ā ∩ D 6= ∅, be a tour in A. Suppose that A has no observable cycles of length
≤ `. Let i > 0 be the smallest index such that ai ∈ D. Let j be the largest index
such that aj ∈ D (but aj+1 6∈ D). Then ai = aj.

Proof. Since all elements of the database are connected (see Remark 5.3), this is
an easy consequence of the fact that A contains no observable cycles of length
≤ `.

Lemma 6.11. Let A be a structure and let ā = a0, . . . , a`−1 be a tour in A with
ā∩D 6= ∅. Suppose that A has no observable cycles of length ≤ `. Let i be such
that ai ∈ D (but ai+1 6∈ D). Suppose that there exists j > i+ 1 such that aj ∈ D
and consider the smallest such index. Then ai = aj.

Proof. Same as Lemma 6.10.

Let ā be a tour that goes inside the database, starting at a0. If a0 6∈ D, then
there exists an element a ∈ D through which ā enters and leaves the database.
If a0 ∈ D, then by definition the tour returns to a0. Thus, in any case, ā can be
decomposed into ā′ b̄ ā′′ (where ā′, ā′′ are empty if a0 ∈ D), where b̄ is the part
of the tour inside the database, starting (and ending) at a. That is, no database
element appears in ā′ or ā′′. We decompose b̄ into b0b̄0 · · · bkb̄k (k > 0) as with
paths/tours outside the database, but with a small twist: we insist that each
bi ∈ D (0 ≤ i ≤ k), but no database element appears in any b̄i (0 ≤ i ≤ k).

Lemma 6.12. Let A be a structure and ā = a0, . . . , a`−1, with a0 ∈ D, be a tour
in A (i.e. a` ∈ D). Suppose that A has no observable cycles of length ≤ `. Then ā
can be decomposed into b0b̄0 · · · bkb̄k (where b0 = a0 and bk = a`), for some k ≤ `,
where each bib̄i (0 ≤ i ≤ k), is a tree-shaped subtour of ā and bi ∈ D.

Proof. Refer to Figure 6.6 for an illustration. Let p̄ = b0, . . . , bk (k ≥ 1) be
the sequence of elements in ā that belong to D, ordered by their index in ā
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b̄1

b1

b̄2b2

b̄3

b3

b̄4

b4

b̄k−2 bk−2

b̄k−1

bk−1

b̄0b̄k

bk = b0

Figure 6.6: The shape of a tour in the database, starting (and ending) at b0.
Each bi (0 ≤ i ≤ k) belongs to D; each bib̄i (0 ≤ i ≤ k) is a tree-shaped tour,
with b̄i possibly being empty.

(ascending)—i.e. b0 = a0, b1 = ai, where i > 0 is the smallest index such that
ai ∈ D, etc. The elements of p̄ need not be distinct. To each bj (0 ≤ j ≤ k)
we associate the subtour bj b̄j = aι(j), . . . , aι′(j), where ι(j) is the corresponding
index to bj in ā; and, if aι(j)+1 6∈ D, ι′(j) > ι(j) is the smallest index such that
aι′(j) ∈ D—otherwise b̄j is empty. Note that if aι(j)+1 6∈ D, since a` ∈ D, an
index ι′(j) > ι(j) such that aι′(j) ∈ D must exist, and aι′(j) = bj (= aι(j)) by
Lemma 6.11. Informally, bj b̄j (0 ≤ j ≤ k) is a tree-shaped ‘detour’ that starts
(and ends) at bj; it is easily seen that each bj b̄j is tree-shaped, as A has no
observable cycles of length ≤ `.

Note that exactly the same decomposition can be achieved for paths in the
database; hence, Lemma 6.12 holds even if a0 6= a`.

If a0 6∈ D, we obtain a decomposition similar to the one in Figure 6.5:

Lemma 6.13. Let A be a structure and ā = a0, . . . , a`−1, with a0 6∈ D be a tour
in A. Suppose that A has no observable cycles of length ≤ `. Then ā can be
decomposed into

b0b̄0 · · · bkb̄k b̄ bkb̄′0 · · · b0b̄
′
k,

for some k (0 < k ≤ `), where each bib̄i, bib̄
′
k−i (0 ≤ i ≤ k), is a tree-shaped
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subtour of ā and b̄ is the part of the tour in the database, starting (and ending)
at a ∈ D—i.e. no database elements appear outside b̄.

Proof. Refer to Figure 6.7 for an illustration. To begin with, write ā as ā′ b̄ ā′′,
where b̄ is a tour starting (and ending) at a ∈ D, and no database element
appears in ā′ or ā′′. Now, ā′a and aā′′ are regular paths, from a0 to a and from
a to a0 respectively. Further, because A has no observable cycles of length ≤ `,
these paths must be tree-shaped. Thus, we can decompose them as described
earlier into b0b̄0 · · · bkb̄k and b′0b̄

′
0 · · · b′k′ b̄′k′ respectively, for some k, k′ > 0 (since

a0 6∈ D). Then, by Lemma 6.7, k = k′ and b′i = bk−i, which yields the required
decomposition.

a0 a

b̄0

b̄′k

b̄1

b̄′k−1

b̄2

b̄′k−2

b̄k

b̄′0

b̄

Figure 6.7: A tour starting at a0 and going inside the database through a, as
described in Lemma 6.13. b̄ is further decomposed as in Figure 6.6.

Notice that we left b̄ untouched, since we showed how to decompose it in
Lemma 6.12.

We now know how to perform all the necessary decompositions of tours and
paths. Now, notice that the decomposition of paths that we described above in
terms of their vertices, also induce decompositions in terms of their edges. Indeed,
suppose that we have a h̄-path (or tour) ā = a0, . . . , a`, where h̄ = h0, . . . , h`−1 is
a sequence of functional predicates, in a structure A; that is, A |= hi(ai, ai+1), for
all i (0 ≤ i < `). If ā is decomposed as b0b̄0 · · · bkb̄k, for some k ≥ 0, as discussed
previously, then each bj b̄j (0 ≤ j ≤ k) is a subtour aι(j), . . . , aι′(j) of ā starting
(and ending) at bj. To each such subtour corresponds the sequence of predicates
t̄j = hι(j), . . . , hι′(j)−1 (0 ≤ j ≤ k), i.e. the sequence of predicates that, starting
at bj, lead back to bj. Note that t̄j = ε when b̄j is empty. Then, tj = hι′(j)

(0 ≤ j < k) is the predicate leading from bj to bj+1, i.e. A |= tj(bj, bj+1). Thus,
in terms of predicates, ā (or h̄) is decomposed as t̄0t0 · · · t̄k−1tk−1t̄k.

This alternative way of referring to a decomposition of a path or tour is more
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useful for our purposes, because we are interested in the structure of decom-
positions (of paths or tours) rather than the individual elements that comprise
them.

Notation 6.14. We often abbreviate predicate sequences of the form t̄0t0 · · · t̄ktk
(k ≥ 0) as {t̄iti}ki=0.

Similarly, a tour starting at an element of D, can be decomposed (in terms
of predicates) as {t̄iti}k−1

i=0 t̄k, for some k ≥ 0, where each t̄i (0 ≤ i ≤ k) specifies
a tree-shaped tour. Further, a tour staring at element not in D but which goes
into the database, can be decomposed as t̄t s̄ t′t̄′, where s̄ is a tour starting at a
database element (the ‘point of entry’) and t̄t, t′t̄′ are regular paths outside the
database (and, thus, can be decomposed normally, leading to a configuration like
the one in Figure 6.7). Then, every tour that goes inside the database (regardless
of whether its first element is in D or not) can be decomposed as t̄t s̄ t′t̄′—where
t̄t, t′t̄′ are empty if the tour starts (and ends) at an element of D.

6.3 Predicates related to tours

We now show how to encode in GC2 two important types of tours: regular tree-
shaped tours in a structure A (called ‘fans’), and tours in A that go through a fixed
element a ∈ A for which A |= ω(a), where ω(x) is a GC2-formula (such configu-
rations are called ‘isthmuses’). Using the GC2-formulas for fans and isthmuses as
‘building blocks’, we can detect all possible ways in which a given path-functional
dependency may be violated.

Let ℘ = PFD[f̄f, ḡ] be a path-functional dependency and σ be a relational
signature featuring (possibly among other) the predicates appearing in ℘. Let σ1

℘

consist of σ together with the unary predicates fan〈h̄〉(·), one for each contiguous
subsequence h̄ of ff−1f̄−1ḡḡ−1f̄ . Let

F℘ =
{
∀x fan〈ε〉(x)} ∪ {∀x

(
fan〈h̄〉(x)↔∨

h̄=rr̄ss̄
∃y (x 6= y ∧ r(x, y) ∧ fan〈r̄〉(y) ∧ s(y, x) ∧ fan〈s̄〉(x))

)
| h̄ is a contiguous subsequence of ff−1f̄−1ḡḡ−1f̄

}
.

Note that the size of F is polynomial in the size of ff−1f̄−1ḡḡ−1f̄ : there are O(n2)
contiguous subsequences h̄, and, for each of those, O(n) ways to decompose h̄
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into rr̄ss̄, where n is the length of ff−1f̄−1ḡḡ−1f̄ .

Lemma 6.15. Let A be a structure, let a ∈ A, and suppose that A |= ∧
F . Let

h̄ = h0, . . . , h`−1 be a sequence of binary predicates. If A |= fan〈h̄〉(a) then a is
the start of an h̄-tour in A. Conversely, if A has no observable cycles of length
≤ ` and a is the start of an h̄-tour then A |= fan〈h̄〉(a).

Proof. We prove by induction on the length of h̄ that if A |= fan〈h̄〉(a), then a is
the start of an h̄-tour in A. If h̄ = ε, then the result is evident (recall that every
single element is the start and of the ε-tour). Now, if h̄ 6= ε, by the conditions in
F , we can write h̄ = rr̄ss̄, for some r̄ and s̄, such that there exists an a′ ∈ A with
a 6= a′, A |= r(a, a′), A |= s(a′, a), A |= fan〈r̄〉(a′) and A |= fan〈s̄〉(a). Thus, by
inductive hypothesis, a′ is the start (and end) of an r̄-tour and a is the start (and
end) of an s̄-tour. Clearly, then, a is the start (and end) of the tour specified by
the above decomposition of h̄.

For the converse, suppose that A has no observable cycles of length ≤ `. We
prove again by induction on the length of h̄ that if ā = a0, . . . , a`−1 is an h̄-tour
in A, then A |= fan〈h̄〉(a0). (Recall that we omit a`, which is equal to a0, by
convention.) If h̄ = ε (i.e. ` = 0) the required result holds because A |= fan〈ε〉(a),
for all a ∈ A, by the conditions in F . Now, suppose that h̄ 6= ε (i.e. ` > 0) and
let ā = a0, . . . , a`−1 be an h̄-tour in A. Then, A |= h0(a0, a1). Let j be the largest
index such that aj = a1. By Lemma 6.8, aj+1 = a0; thus, A |= hj(a1, a0). Let
r̄ = h1, . . . , hj−1 be the sequence of predicates that a1, . . . , aj−1 induces. Then,
by inductive hypothesis, A |= fan〈r̄〉(a1). Similarly, let s̄ = hj+1, . . . , h`−1 be the
predicates constitute the subtour aj+1, . . . , a`−1. By inductive hypothesis again,
we have A |= fan〈s̄〉(a0). Evidently, then, by the conditions in F , A |= fan〈h̄〉(a0),
where h̄ is decomposed as h0 r̄ hj s̄.

An (h̄, ω)-isthmus is a tree-shaped h̄-tour ā in a structure A, starting at an
element a0 ∈ A and passing through a fixed a ∈ A at which a given GC2-formula
ω(x) holds, i.e. A |= ω(a). Then, similarly with previous decompositions, ā can
be decomposed into

b0b̄0 · · · bk−1b̄k−1 b̄ b
′
1b̄
′
1 · · · b′kb̄′k,

where b̄ is a tree-shaped tour starting (and ending) at a, where a does not appear
outside b̄, and b′i+1 = bk−(i+1) (0 ≤ i < k). This decomposition induces on h̄ the
decomposition

{r̄iri}k−1
i=0 r̄k {s̄isi}k−1

i=0 s̄k,
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where each r̄i, s̄i (0 ≤ i ≤ k) specifies a tree-shaped subtour, r0 · · · rk−1 are the
predicates constituting the backbone of the path from a0 to a, and s0 · · · sk−1 are
the predicates constituting the backbone of the path from a back to a0. Note that
we split the sequence of predicates that comprise the tree-shaped subtour b̄ into
two smaller parts r̄k and s̄0 for symmetry; if such a split is impossible one can
take r̄k or s̄0 to be ε. Thus, we have the decomposition illustrated in Figure 6.8,
where r̄i and s̄i+1 (0 ≤ i < k) correspond to bib̄i and b′i+1b̄

′
i+1 respectively, and

r̄ks̄0 corresponds to b̄.

a0 a

r̄0

s̄k

r̄1

s̄k−1

r̄2

s̄k−2

r̄k

s̄0

r0
sk−1

r1
sk−2

r2
sk−3

rk−1

s0
ω

Figure 6.8: An isthmus starting at a0 and going through a. The box with ω inside
it denotes that ω(x) holds at a.

For a given any GC2-formula ω(x), let σ2
℘, ω consist of σ1

℘ together with the
predicates isth〈r̄, ω, s̄〉(·), one for each pair of distinct contiguous subsequences r̄
and s̄ of ff−1f̄−1ḡḡ−1f̄ . In the following definition (for brevity) we write r̄, s̄ C
ff−1f̄−1ḡḡ−1f̄ to denote that r̄ and s̄ are distinct contiguous subsequences of
ff−1f̄−1ḡḡ−1f̄ . Let

I℘, ω =
{
∀x
[
isth〈r̄, ω, s̄〉(x)↔

(
(fan〈r̄〉(x) ∧ ω(x) ∧ fan〈s̄〉(x))∨∨

r̄=r̄′rr̄′′,
s̄=s̄′′ss̄′

(
fan〈r̄′〉(x) ∧ fan〈s̄′〉(x) ∧ ∃y(x 6= y ∧ r(x, y) ∧ s(y, x)

∧ isth〈r̄′′, ω, s̄′′〉(y))
))]

: r̄, s̄ C ff−1f̄−1ḡḡ−1f̄
}
.

Note that, for any given ω, the size of I℘, ω is polynomial in the size of ff−1f̄−1ḡḡ−1f̄ :
there are O(n2) contiguous subsequences r̄ and O(n2) contiguous subsequences
r̄; for each pair of those, O(n) ways to decompose r̄ into r̄′rr̄′′ and O(n) ways to
decompose s̄ into s̄′ss̄′′—where n is the length of ff−1f̄−1ḡḡ−1f̄ . Thus, the total
size of I℘, ω is O(n6), n being the length of ff−1f̄−1ḡḡ−1f̄ .

For the following lemma, it helps to keep in mind Figure 6.8.

Lemma 6.16. Let A be a structure, let a0 ∈ A, ω(x) be a GC2-formula, and
suppose that A |= ∧(F ∪ Iω). Let r̄, s̄ C ff−1f̄−1ḡḡ−1f̄ , as in the definition of I℘, ω.
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If A |= isth〈r̄, ω, s̄〉(a0), then a0 is the start of an r̄s̄-tour ā in A that goes through
an element a ∈ A such that A |= ω(a) and ā = ā′aā′′, where ā′a is an r̄-path from
a0 to a and aā′′ is an s̄-path from a to a0.

Conversely, suppose that A has no observable cycles of length ≤ `. Let ā =
a0 · · · a · · · a` be an r̄s̄-tour, such that ā′ = a0 · · · a is an r̄-path and ā′′ = a · · · a`
is an s̄-path. Suppose, further, that r̄ can be decomposed as {r̄iri}k−1

i=0 r̄k, where r̄i
(0 ≤ i ≤ k) is a tree-shaped subtour of ā′ and r0 · · · rk−1 is the backbone of ā′; and
s̄ can be decomposed as {s̄isi}k−1

i=0 s̄k, where s̄i (0 ≤ i ≤ k) is a tree-shaped subtour
of ā′′ and s0 · · · sk−1 is the backbone of ā′′. Finally, suppose that A |= ω(a). Then,
A |= isth〈r̄, ω, s̄〉(a0).

Proof. For the first part, we use induction on the structure of r̄s̄, based on the
conditions in I℘, ω. Suppose that A |= isth〈r̄, ω, s̄〉(a0). If A |= fan〈r̄〉(a0)∧ω(a0)∧
fan〈s̄〉(a0) (base case), we have (by Lemma 6.15) an r̄-tour ā′a0 and an s̄-tour a0ā

′′

starting and ending at a0. Then, the required result holds trivially, for a = a0.
Now, if we are not in the previous case, we can write (by the conditions in Iω)
r̄ = r̄′rr̄′′ and s̄ = s̄′′ss̄′, such that A |= fan〈r̄′〉(a0) ∧ fan〈s̄′〉(a0) and there exists
an a1 ∈ A with A |= r(a0, a1)∧ s(a1, a0) and A |= isth〈r̄′′, ω, s̄′′〉(a1). By inductive
hypothesis, a1 is the start (and end) of a tour b̄ = b̄′ab̄′′, where A |= ω(a), b̄′a is
an r̄′′-path, and ab̄′′ is an s̄′′-path. Using b̄, it is easy to construct the required
r̄s̄-tour starting (and ending) at a0, where r̄s̄ is decomposed as r̄′rr̄′′s̄′′ss̄′.

For the converse, we proceed by induction on k. If k = 0 then {r̄iri}k−1
i=0 and

{s̄isi}k−1
i=0 are empty, i.e. r̄s̄ = r̄0s̄0. Thus, a0 · · · a is an r̄0-tour and a · · · a0 is an s̄0

tour, both starting (and ending) at a0 (i.e. a = a0). Then, by Lemma 6.15, A |=
fan〈r̄0〉(a0) and A |= fan〈s̄0〉(a0); whence, because A |= ω(a), A |= isth〈r̄, ω, s̄〉(a0).

Now, suppose that k > 0. It is useful to refer to the predicates of r̄s̄ in-
dividually, so let r̄s̄ = t0, . . . , t`−1. Let m be such that r̄0 = t0, . . . , tm−1 and
n be such that s̄k = tn, . . . , t`−1. Thus, a0, . . . , am (with am = a0) is the sub-
tour of ā specified by r̄0, and am+1—such that A |= r0(am, am+1)—is the sec-
ond element of the backbone of the path from a0 to a. Similarly, an, . . . , a`
(with an = a` = a0) is the subtour of ā specified by s̄k, and an−1—such that
A |= sk−1(an−1, an)—is the penultimate element of the backbone of the path
from a to a0. Then, by Lemma 6.7, am+1 = an−1. Thus, ā is decomposed as
a0 · · · amam+1 · · · a · · · an−1an · · · a`−1 (, a`), where a0 · · · am is an r̄0-tour (whence,
from Lemma 6.15, A |= fan〈r̄0〉(a0)), A |= r0(a0, am+1), am+1 · · · an−1 is an r̄′′s̄′′-
tour (for r̄′′s̄′′ = {r̄iri}k−1

i=1 r̄k{s̄isi}k−2
i=0 s̄k−1), A |= sk−1(an−1, an), and an · · · a` is an
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s̄k-tour (whence, from Lemma 6.15, A |= fan〈s̄k〉(an)). By inductive hypothesis,
we have A |= isth〈r̄′′, ω, s̄′′〉(am+1)—it is easily checked that am+1 · · · an−1 satisfies
all the necessary requirements. Then, it follows from the conditions in Iω that
A |= isth〈r̄, ω, s̄〉(a0), where r̄ = r̄0r0r̄

′′ and s̄ = s̄′′sk−1s̄k.

6.4 Detection of violations

We now show how to detect violations of path-functional dependencies, using the
apparatus developed so far. Let ℘ = PFD[f̄f, ḡ] be a dependency, ∆ be a database
whose active domain is D, and let σ be a relational signature featuring (possibly
among other) the predicates appearing in ℘ and the constants in D. Recall from
Section 6.1 that any critical violation of ℘ in a structure A is identified with an
ff−1f̄−1ḡḡ−1f̄ -tour with three distinct initial elements c, d, e ∈ A. Depending on
which (if any) of c, d, e belong to the active domainD, the tour can be decomposed
in different ways (see Figure 6.9). Thus, by ensuring that none of these possible
decompositions occurs in a structure A, one can be certain that PFD[f̄ , ḡ] is not
critically violated in A.

In particular we distinguish ten cases: one when the violating tour never
intersects the database (Figure 6.9 (i)), one when the violating tour intersects the
database and all of its three initial elements are in D (Figure 6.9 (x)), two when
the violating tour instersects the database and two of its three initial elements
are in D (Figure 6.9 (iv) and (v)), three when the violating tour intersects the
database and one of its three initial elements is in D (Figure 6.9 (ii), (iii), and
(vi)), and finally three when the violating tour intersects the database and none
of its three initial elements is in D (Figure 6.9 (vii), (viii), and (iv)).

It should be noted here that the last three cases are generalizations of the
three cases before them. In more detail, Figure 6.9 (vii) is a generalization of
Figure 6.9 (ii), Figure 6.9 (viii) is a generalization of Figure 6.9 (iii), and Fig-
ure 6.9 (ix) is a generalization of Figure 6.9 (vi). Indeed, each of these figures
illustrates a connected component of three elements—the three initial elements
of the tour with two tree-shaped subtours on two of these three elements—either
attached to the database directly or connected to it through a (tree-shaped) path
(illustrated by a dotted line in the relevant figures). This is where the concept of
an isthmus is applied: we use it to say that the connected component mentioned
above exists at an arbitrary distance from the element b (the element where the
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tour enters and exits the database).

a0 a1
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f f
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(i) a0, a1, a2 6∈ D and
ā ∩D = ∅
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(ii) a0 ∈ D, a1, a2 6∈ D
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(iii) a0, a1 6∈ D, a2 ∈
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(vii) a0, a1, a2 6∈
D and ā∩D 6= ∅
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a1
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(viii) a0, a1, a2 6∈
D and ā∩D 6= ∅
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(ix)
a0, a1, a2 6∈ D
and ā ∩D 6= ∅

f f

h̄
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(x) a0, a1, a2 ∈
D

Figure 6.9: Possible configurations of a violating tour whose three initial (and
distinct) elements are a0, a1 and a2. Each dotted line represents an isthmus; where
we use a dotted line, a predicate isth〈r̄, ω, s̄〉(·) holds at the endpoint labeled b
with the sentence ω capturing the configuration at the other endpoint.

Lemma 6.17. Let A be a structure and consider the ff−1f̄−1ḡḡ−1f̄ -tour ā =
a0, . . . , a`−1 in A. Suppose that A has no observable cycles of length ≤ `. Further,
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suppose that ai 6∈ D (0 ≤ i ≤ `) and that the first three elements a0, a1 and a2

of ā are distinct. Then there is a decomposition ff−1h̄1h1h̄2h2h̄3 of ff−1f̄−1ḡḡ−1f̄

such that h̄1, h̄2 and h̄3 specify tree-shaped subtours of ā.

Proof. Refer to Figure 6.9 (i). Let r̄ = r0, . . . , r`−1 be the sequence of predicates
that constitute ā. Thus, we have r0 = f and r1 = f−1. Now, consider the
subtour starting at a2. Let i ≥ 2 be the largest index such that ai = a2. Write
h̄1 = r2, . . . , ri−1; clearly h̄1 specifies a tree—recall that the tour does not enter the
database. By Lemma 6.8 we now have that ai+1 = a1; write h1 = ri. Similarly,
let j be the largest index such that aj = a1. Write h̄2 = ri+1, . . . , rj−1; evidently,
again, h̄2 is a tree. By Lemma 6.8, again, we have that aj+1 = a0; write h2 = rj.
Finally, write h̄3 = rj+1, . . . , r`−1. This completes the tour (going back to a0); it
is clear h̄3 is also a tree.

Remark 6.18. In subsequent lemmas, the expression ‘tour inside the database’
refers to tours that include database elements but, of course, can have tree-shaped
subtours outside of the database as discussed in Section 6.2 (recall, in particular,
Figure 6.6); and likewise for the expression ‘path inside the database’.

Lemma 6.19. Let A be a structure and consider the ff−1f̄−1ḡḡ−1f̄ -tour ā =
a0, . . . , a`−1 in A. Suppose that A has no observable cycles of length ≤ `. Further,
suppose that a0, a1 and a2 are distinct with a0 ∈ D but a1, a2 6∈ D. Then there
is a decomposition ff−1h̄1h1h̄2h2h̄3 of ff−1f̄−1ḡḡ−1f̄ such that h̄1 and h̄2 specify
tree-shaped subtours, and h̄3 = t̄0t0 · · · t̄k−1tk−1t̄k (k ≤ `) is a tour inside the
database, where each t̄i (0 ≤ i ≤ k) specifies a tree-shaped subtour.

Proof. Refer to Figure 6.9 (ii). Let r̄ = r0, . . . , r`−1 be the sequence of predi-
cates that constitute ā. Thus, we have r0 = f and r1 = f−1. Let i ≥ 2 be
the largest index such that ai = a2 and aj 6∈ D, for all 2 < j < i. Write
h̄1 = r2, . . . , ri−1; clearly, since no observable cycles of length ≤ ` exist, h̄1 de-
fines a tree. Let ν > i be the smallest index such that aν = a0. (Such an index
must exist, since, by Lemma 6.11, ā must ‘re-enter’ the database through a0.)
Notice that the tour a0, . . . , aν−1 is tree-shaped, since it contains no element in
D other than a0, and A, by assumption, contains no observable cycles of length
≤ `. By Lemma 6.8, applied to a0, . . . , aν−1, we must have ai+1 = a1; write
h1 = ri. Similarly, let i′ be the largest index such that ai′ = a1 and aj′ 6∈ D, for
all i + 1 < j′ < i′. Write h̄2 = ri+1, . . . , ri′−1; evidently h̄2 defines a tree. Let
ν ′ > i′ be the smallest index such that aν′ = a0. (Again, such an index must exist
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due to Lemma 6.11.) By Lemma 6.8, applied to the tour a0, . . . , aν′−1 (which is
tree-shaped by the same reasoning as a0, . . . , aν−1 above), we have ai′+1 = a0;
write h2 = ri′ . The remaining part of ā, i.e. ai′+1, . . . , a`−1 (, a`), is decomposed
as in Lemma 6.12 into b0b̄0 · · · bkb̄k. Correspondingly, h̄3 = ri′+1, . . . , r`−1 is de-
composed into t̄0t0 · · · t̄k−1tk−1t̄k, as described in Section 6.2.

Lemma 6.20. Let A be a structure and consider the ff−1f̄−1ḡḡ−1f̄ -tour ā =
a0, . . . , a`−1 in A. Suppose that A has no observable cycles of length ≤ `. Further,
suppose that a0, a1 and a2 are distinct with a0, a1 6∈ D and a2 ∈ D. Then there
is a decomposition ff−1h̄1h1h̄2h2h̄3 of ff−1f̄−1ḡḡ−1f̄ such that h̄2 and h̄3 specify
tree-shaped subtours, and h̄1 = t̄0t0 · · · t̄k−1tk−1t̄k (k ≤ `) is a tour inside the
database, where each t̄i (0 ≤ i ≤ k) specifies a tree-shaped subtour.

Proof. Analogous to the proof of Lemma 6.19. Refer to Figure 6.9 (iii).

Lemma 6.21. Let A be a structure and consider the ff−1f̄−1ḡḡ−1f̄ -tour ā =
a0, . . . , a`−1 in A. Suppose that A has no observable cycles of length ≤ `. Further,
suppose that a0, a1 and a2 are distinct with a0, a1 ∈ D but a2 6∈ D. Then there is
a decomposition ff−1h̄1h1h̄2 of ff−1f̄−1ḡḡ−1f̄ such that h̄1 specifies a tree-shaped
subtour, and h̄2 = t̄0t0 · · · t̄k−1tk−1t̄k (k ≤ `) is a path inside the database whose
final element is a0, where each t̄i (0 ≤ i ≤ k) specifies a tree-shaped subtour.

Proof. Refer to Figure 6.9 (iv). Let r̄ = r0, . . . , r`−1 be the sequence of predicates
that constitute ā. Thus, we have r0 = f and r1 = f−1. Let i ≥ 2 be the largest
index such that ai = a2 and aj 6∈ D, for all 2 < j < i. Write h̄1 = r2, . . . , ri−1

and clearly, since no observable cycles of length ≤ ` exist, h̄1 defines a tree. Let
ν > i be the smallest index such that aν = a1. (Such an index must exist, since,
by Lemma 6.11, ā must ‘re-enter’ the database through a1.) Notice that the tour
a1, . . . , aν−1 is tree-shaped, since it contains no element in D other than a1, and
A, by assumption, contains no observable cycles of length ≤ `. By Lemma 6.8,
applied to a1, . . . , aν−1, we must have ai+1 = a1; write h1 = ri. We now have the
h̄2-path ai+1, . . . , a` inside the database, where h̄2 = ri+1, . . . , r`−1. This path is
decomposed as in Lemma 6.12, to obtain h̄2 = t̄0t0 · · · t̄k−1tk−1t̄k as required in
the statement of this lemma.

Lemma 6.22. Let A be a structure that has no observable cycles of length ≤ `.
Let ā = a0, . . . , a`−1 be an ff−1f̄−1ḡḡ−1f̄ -tour in A. Further, suppose that a0, a1

and a2 are distinct with a1, a2 ∈ D and a0 6∈ D. Then there is a decomposition
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ff−1h̄1h1h̄2 of ff−1f̄−1ḡḡ−1f̄ such that h̄2 specifies a tree-shaped subtour, and
h̄1 = t̄0t0 · · · t̄k−1tk−1t̄k (k ≤ `) is a path inside the database whose final element
is a0, where each t̄i (0 ≤ i ≤ k) specifies a tree-shaped subtour.

Proof. Analogous to the proof of Lemma 6.21. Refer to Figure 6.9 (v).

Lemma 6.23. Let A be a structure and consider the ff−1f̄−1ḡḡ−1f̄ -tour ā =
a0, . . . , a`−1 in A. Suppose that A has no observable cycles of length ≤ `. Further,
suppose that a0, a1 and a2 are distinct with a1 ∈ D but a0, a2 6∈ D. Then there
is a decomposition ff−1h̄1h1h̄2h2h̄3 of ff−1f̄−1ḡḡ−1f̄ such that h̄1 and h̄3 specify
tree-shaped subtours, and h̄2 = t̄0t0 · · · t̄k−1tk−1t̄k (k ≤ `) is a tour inside the
database, where each t̄i (0 ≤ i ≤ k) specifies a tree-shaped subtour.

Proof. Refer to Figure 6.9 (vi). Let r̄ = r0, . . . , r`−1 be the sequence of predicates
that constitute ā. Thus, we have r0 = f and r1 = f−1. Similarly with previous
proofs, write h̄1 = r2, . . . , ri−1, where ai = a2 and i is the largest index such that
ai = a2 and aj 6∈ D, for all 2 < j < i. Evidently, h̄1 is tree-shaped, as A contains
no cycles of length ≤ `. Let ν > i be the smallest index such that aν = a1. (Such
an index must exist, since, by Lemma 6.11, ā must ‘re-enter’ the database through
a1.) Notice that the tour a1, . . . , aν−1 is tree-shaped, since it contains no element
in D other than a1, and A, by assumption, contains no observable cycles of length
≤ `. By Lemma 6.8, applied to a1, . . . , aν−1, ai+1 = a1; write h1 = ri. (It follows
that ν = i+1.) The tour is now inside the database and, by Lemma 6.10, it has to
exit at a1. Let ai+1, . . . , aj be the subtour of ā inside the database, i.e. with aj =
ai+1 (= a1) and aj′ 6∈ D for all j′ ≥ j; let h̄2 = ri+1, . . . , rj−1 for the corresponding
sequence of predicates. The subtour ai+1, . . . , aj−1 is decomposed into b0b̄0 · · · bkb̄k
as in Lemma 6.12, and, correspondingly, h̄2 is decomposed into t̄0t0 · · · t̄k−1tk−1t̄k

(having the required properties) as described in Section 6.2. Thus, we have
decomposed ā as a0 · · · aν · · · aj · · · a`−1, where the subtour aν , . . . , aj−1 is the part
of ā inside the database—that is, aν = aj = a1 and no element of D appears
outside this subtour. We saw that the subtour a0, . . . , aν−1 is tree-shaped, and,
by the same reasoning, the subtour aj, . . . , a`−1 is also tree-shaped. Towards
applying Lemma 6.8 to show that aj+1 = a0, we can disregard the subtour inside
the database, obtaining a new tour ā′ = a0 · · · aνaj+1 · · · a`−1 that is tree-shaped.
Then, by Lemma 6.8, applied to ā′, it must be aj+1 = a0; write h2 = rj. Set
h̄3 = rj+1, . . . , r`−1; as already said, h̄3 is tree-shaped, by the assumption that A

has no observable cycles of length ≤ `.
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Lemma 6.24. Let A be a structure and consider the ff−1f̄−1ḡḡ−1f̄ -tour ā =
a0, . . . , a`−1 in A. Suppose that A has no observable cycles of length ≤ `. Further,
suppose that a0, a1 and a2 are distinct with a0, a1, a2 6∈ D but ā ∩D 6= ∅. Then
there is a decomposition ff−1h̄1h1h̄2h2h̄3 of ff−1f̄−1ḡḡ−1f̄ such that one of h̄1, h̄2, h̄3

specifies a subtour that goes inside the database and the other two specify tree-
shaped subtours.

Proof. Let r̄ = r0, . . . , r`−1 be the sequence of predicates that constitute ā. Thus,
we have r0 = f and r1 = f−1. Since the tour goes into the database at some point,
let b ∈ D be the point of entry—by Lemma 6.10, ā′ will also have to ‘exit’ the
database through b. Thus, ā is decomposed as a0a1a2 · · · aν · · · aν′ · · · a`−1, where
ā′ = aν · · · aν′−1 is the subtour of ā inside the database, i.e. aν = aν′ = b and no
element of D appears outside ā′. Notice that ā′′ = a0a1a2 · · · aνaν′+1 · · · a`−1 is
also a tour, and it is tree-shaped since it only contains one element of D (i.e. b).
For the rest of the proof, when we use Lemma 6.8 (which technically requires a
tree-shaped tour) it will be applied (without mention, for the sake of brevity) to
ā′′. Let p̄ be the backbone of the path from a0 to b, and let p̄′ be the backbone of
the path from b back to a0. Recall, also, that p̄ is the shortest subpath of ā from
a0 to b and, similarly, p̄′ is the shortest subpath of ā from b to a0; also, both p̄

and p̄′ are unique. We distinguish three possibilities:

• p̄ goes through a2 (see Figure 6.9 (viii)): This implies that p̄ also goes
through a1, since the shortest path connecting a0 and a2 goes through a1.
Let i > 2 be the largest index such that ai = a2 and for all i′ > i, ai′ 6∈ D.
We know that such an index exists for, otherwise, there would be a path
p̄′′ 6= p̄′ from b to a0, and the uniqueness of p̄′ would be violated. (In
other words, after going out of the database for the last time, the tour
has to ‘revisit’ its origin through p̄′, which includes a2 due to Lemma 6.7.)
Thus, the sequence h̄1 = r2, . . . , ri−1 constitutes a tour that goes into the
database, starting (and ending) at a2. Now, by Lemma 6.8, ai+1 = a1;
set h1 = ri. Similarly with previous proofs, let h̄2 = ri+1, . . . , rj−1, where
j is the largest index such that ai+1 = aj (= a1); let h2 = rj. Again, by
Lemma 6.8, aj+1 = a0; set h̄3 = rj+1, . . . , r`−1. Clearly, h̄2 and h̄3 specify
tree-shaped tours, by the assumption that A contains no observable cycles
of length ≤ `.

• p̄ goes through a1 but not a2 (see Figure 6.9 (ix)): Let i ≥ 2 be the largest
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index such that ai = a2 and for all i′ < i, ai′ 6∈ D. Such an i exists otherwise
we would be in the previous case. Set h̄1 = r2, . . . , ri−1; clearly, h̄1 is tree-
shaped. By Lemma 6.8, ai+1 = a1; set h1 = ri. Let j be the largest index
such that aj = a1 and for all j′ > j, aj′ 6∈ D. Again, such an index exists
for, if it did not, the uniqueness of p̄′ would be violated. Thus, the sequence
h̄2 = ri+1, . . . , rj−1 constitutes a tour that goes into the database, starting
(and ending) at a1. By Lemma 6.8, aj+1 = a0; set h2 = rj. Finally, set
h̄3 = rj+1, . . . , r`−1 and observe that it specifies a tree-shaped tour.

• p̄ does not go through a1 or a2 (see Figure 6.9 (vii)): Similarly with the
above, let i ≥ 2 be the largest index such that ai = a2 and for all i′ < i,
ai′ 6∈ D. Set h̄1 = r2, . . . , ri−1; clearly, h̄1 is tree-shaped. By Lemma 6.8,
ai+1 = a1; set h1 = ri. Let j ≥ i+ 1 be the largest index such that aj = a1

and for all j′ < j, aj′ 6∈ D. Set h̄2 = ri+1, . . . , rj−1; clearly, h̄2 is tree-shaped.
By Lemma 6.8, aj+1 = a0; set h2 = rj. In that case, h̄3 = rj+1, . . . , r`−1 is
a tour that goes into the database, starting (and ending) at a0.

In the previous lemma, among h̄1, h̄2, h̄3, the subtour that goes inside the
database can further be decomposed (using Lemmas 6.12 and 6.13) as illustrated
in Figure 6.7.

Lemma 6.25. Let A be a structure and consider the ff−1f̄−1ḡḡ−1f̄ -tour ā =
a0, . . . , a`−1 in A. Suppose that A has no observable cycles of length ≤ `. Further,
suppose that a0, a1 and a2 are distinct with a0, a1, a2 ∈ D. Then there is a
decomposition ff−1h̄ of ff−1f̄−1ḡḡ−1f̄ , such that h̄ = t̄0t0 · · · t̄k−1tk−1t̄k (k ≤ `) is
a path inside the database from a2 to a0, where each t̄i (0 ≤ i ≤ k) specifies a
tree-shaped subtour.

Proof. Refer to Figure 6.9 (x). Clearly the first predicates of the tour are f and
f−1, i.e. A |= f(a0, a1) and A |= f(a1, a2). Now, a2, . . . , a0 can be decomposed
into b0b̄0 · · · bkb̄k as in Lemma 6.12, and, correspondingly, h̄ = r2, . . . , r`−1 into
t̄0t0 · · · t̄k−1tk−1t̄k, as described in Section 6.2.

Before stating our final results for this section, we write two formulas related
to the configuration illustrated in Figure 6.9 (i). Let

ω1〈h̄1h1, h̄2h2, h̄3〉(x) := ∃y∃z
(
dst(x, y, z) ∧ f(x, y) ∧ f−1(y, z)

∧ fan〈h̄1〉(z) ∧ h1(z, y) ∧ fan〈h̄2〉(y) ∧ h2(y, x) ∧ fan〈h̄3〉(x)
)
,



CHAPTER 6. SATISFIABILITY FOR GC2DP2 112

ω2〈h̄1h1, h̄2h2, h̄3〉(y) := ∃x∃z
(
dst(x, y, z) ∧ f(x, y) ∧ f−1(y, z)

∧ fan〈h̄1〉(z) ∧ h1(z, y) ∧ fan〈h̄2〉(y) ∧ h2(y, x) ∧ fan〈h̄3〉(x)
)
,

where h̄1h1, h̄2h2, and h̄3 are sequences of functional predicates. It is clear
that if ā is a tree-shaped ff−1h̄1h1h̄2h2h̄3-tour in a structure A, h̄1, h̄2 and h̄3

specify tree-shaped subtours of ā (as in Figure 6.9 (i)), and the first three el-
ements a0, a1 and a2 of ā are distinct, then A |= ω1〈h̄1h1, h̄2h2, h̄3〉(a0) and
A |= ω2〈h̄1h1, h̄2h2, h̄3〉(a1). Of course, ω1 and ω2 are not in GC2, but this is easily
fixed using Lemma 6.1.

Recall from Section 6.3, that σ1
℘ consists of the predicates in σ together with

one new predicate fan〈h̄〉(·) for each contiguous subsequence of ff−1f̄−1ḡḡ−1f̄ . Fur-
ther, for any given GC2-formula ω(x), σ2

℘, ω consists of σ1
℘ together with the pred-

icates isth〈r̄, ω, s̄〉(·), one for each pair of distinct contiguous subsequences r̄ and
s̄ of ff−1f̄−1ḡḡ−1f̄ . Let σ3

℘ be the union of σ2
℘, ω∗1

and σ2
℘, ω∗2

; the ensuing discussion
is over σ3

℘. Note that the size of σ3
℘ is polynomial in the length of f̄ and ḡ.

Let us sum up what we have discussed so far. The violation of PFD[f̄f, ḡ]
in any structure A interpreting ∆ that contains no cycles of length ≤ `, where
` is the length of the sequence ff−1f̄−1ḡḡ−1f̄ , is identified with the existence of
ff−1f̄−1ḡḡ−1f̄ -tours whose first three elements are distinct. (By Lemma 4.24, we
may assume that all models that we are concerned with have no cycles of length
≤ `.) Depending on which (if any) of the three initial elements of an ff−1f̄−1ḡḡ−1f̄ -
tour ā belong to D, ā can be decomposed in different ways, as seen in Figure 6.9.
Our goal, then, is to ensure that no such tours occur in any structure of inter-
est. Now, notice that all these decompositions, except the one in Figure 6.9 (i),
corresponding to Lemma 6.17, involve elements of D.

Note that if the database is complete with respect to σ3
℘, it contains all the

information required to check the existence of violating tours like the ones illus-
trated in Figure 6.9 (ii) – (x). (This follows from the semantics of the fan and
isth predicates—Lemmas 6.15 and 6.16.) In that sense, the violating tours that
are decomposed as in Lemmas 6.19 – 6.25, and illustrated in Figure 6.9 (ii) – (x),
are independent of the model to which they belong (and only dependent upon
the complete database). Thus, we introduce a notion of ‘appropriateness’ of the
database for the dependency PFD[f̄f, ḡ], which is irrespective of any model ex-
tending ∆ and checkable in exponential time (in the size of ∆ and the sequences
f̄ , ḡ). Before defining this formally, we introduce a few procedures that check the
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existence of violating tours like the ones in Figure 6.9 (ii) – (x); the checks are
performed starting at the point of ‘entry’ b.

For the following paragraphs, we assume that ∆ is complete with respect to
the signature σ3

℘. For convenience, we let h̄ = ff−1f̄−1ḡḡ−1f̄ . To begin with,
we need a procedure that checks whether, for two distinct elements a, b ∈ D,
there is an s̄-path ā inside the database starting at a and ending at b, where s̄
is decomposed into {s̄isi}n−1

i=0 s̄n and each s̄i (0 ≤ i ≤ n) specifies a tree-shaped
subtour. That is, according to the discussion in Section 6.2, we need to check if
ā can be decomposed as b0b̄0 . . . bnb̄n, where each bib̄i (0 ≤ i ≤ n) is a tree-shaped
s̄i-tour, bi ∈ D, and sj(bj, bj+1) ∈ ∆ (0 ≤ j < n). This straightforward task is
performed by the following procedure.

1: define db-path({s̄isi}n−1
i=ms̄n, a, b)

2: if m = n− 1 and fan〈s̄m〉(a) ∧ sm(a, b) ∧ fan〈s̄n〉(b) ∈ ∆ then
3: return true
4: else if fan〈s̄m〉(a) ∈ ∆ and ∃ a′ ∈ D \ {a, b} s.t. sm(a, a′) ∈ ∆ then
5: return db-path({s̄isi}n−1

i=m+1s̄n, a′, b)
6: else
7: return false

To get the required result, one ‘calls’ the above procedure with m = 0. It is clear
that db-path terminates in polynomial time (with respect to its input size), and
it produces the required result (this is an easy induction on n).

The following procedure is based on db-path, and checks whether there is
an s̄-tour inside the database starting (and ending) at a given b ∈ D, and s̄ is
decomposed into {s̄isi}n−1

i=0 s̄n, where each s̄i (0 ≤ i ≤ n) specifies a tree-shaped
subtour.

1: define db-tour({s̄isi}n−1
i=0 s̄n, b)

2: if n = 0 and fan〈s̄n〉(b) ∈ ∆ then
3: return true
4: else if fan〈s̄0〉(b) ∈ ∆ and ∃ b′ ∈ D \ {b} s.t. s0(b, b′) ∈ ∆ then
5: return db-path({s̄isi}n−1

i=1 s̄n, b′, b)
6: else
7: return false

Again, it is clear that db-tour terminates in polynomial time and produces the
required result.
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Consider the following three procedures:

1: define violations-ii-vii(b)
2: for each decomposition ff−1h̄1h1h̄2h2h̄3 of h̄ do
3: for each decomposition {r̄iri}k−1

i=0 r̄kr s̄ t{t̄iti}
k−1
i=0 t̄k of h̄3 do

4: for each decomposition {s̄isi}n−1
i=0 s̄n of s̄ do

5: let r̄ = {r̄iri}k−1
i=0 r̄k, ω = ω∗1〈h̄1h1, h̄2h2, ε〉, t̄ = {t̄iti}k−1

i=0 t̄k

6: if isth〈tt̄, ω, r̄r〉(b) ∈ ∆ and db-tour({s̄isi}n−1
i=0 s̄n, b) then

7: return true
8: return false

1: define violations-iii-viii(b)
2: for each decomposition ff−1h̄1h1h̄2h2h̄3 of h̄ do
3: for each decomposition {r̄iri}k−1

i=0 r̄kr s̄ t{t̄iti}
k−1
i=0 t̄k of h̄1 do

4: for each decomposition {s̄isi}n−1
i=0 s̄n of s̄ do

5: let r̄ = {r̄iri}k−1
i=0 r̄k, ω = ω∗1〈h̄3h

−1
2 ), h̄2h

−1
1 , ε〉, t̄ = {t̄iti}k−1

i=0 t̄k

6: if isth〈tt̄, ω, r̄r〉(b) ∈ ∆ and db-tour({s̄isi}n−1
i=0 s̄n, b) then

7: return true
8: return false

1: define violations-vi-ix(b)
2: for each decomposition ff−1h̄1h1h̄2h2h̄3 of h̄ do
3: for each decomposition {r̄iri}k−1

i=0 r̄kr s̄ t{t̄iti}
k−1
i=0 t̄k of h̄2 do

4: for each decomposition {s̄isi}n−1
i=0 s̄n of s̄ do

5: let r̄ = {r̄iri}k−1
i=0 r̄k, ω = ω∗2〈h̄1h1, h̄2, h̄3〉, t̄ = {t̄iti}k−1

i=0 t̄k

6: if isth〈tt̄, ω, r̄r〉(b) ∈ ∆ and db-tour({s̄isi}n−1
i=0 s̄n, b) then

7: return true
8: return false

We claim that in any structure A interpreting ∆, there is a violating h̄-tour
ā = a0, . . . , a`−1 with ā∩D 6= ∅ and a1, a2 6∈ D if and only if violation-ii-vii(b),
violation-iii-viii(b), or violation-vi-ix(b) returns true for some b ∈ D.
These procedures correspond to the violating tours illustrated in Figure 6.9 (ii)
and (vii), (iii) and (viii), and (vi) and (ix) respectively. Note that (ii), (iii), and
(vi) illustrate ā with a0 ∈ D, and (vii), (viii), and (ix) illustrate ā with a0 6∈ D
respectively. Now, if any of the above procedures returns true for some b ∈ D,
the existence of a violating tour like ā is evident.

We only prove the converse for the procedure violation-ii-vii; the proof for
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the other two is completely analogous. Suppose that ā = a0, . . . , a`−1 is a h̄-tour
in A with ā ∩ D 6= ∅ and a1, a2 6∈ D. Let b ∈ D be the point at which ā enters
(and leaves, by Lemma 6.10) the database. By Lemma 4.24, we may assume that
A has no cycles of length ≤ `. If a0 ∈ D (i.e. b = a0) then, by Lemma 6.19, h̄
can be decomposed into ff−1h̄1h1h̄2h2h̄3, such that h̄1 and h̄2 specify tree-shaped
subtours, and h̄3 = t̄0t0 · · · t̄k−1tk−1t̄k (k ≤ `) is a tour inside the database, where
each t̄i (0 ≤ i ≤ k) specifies a tree-shaped subtour. In particular, referring to
Figure 6.9 (ii), ā is decomposed as a0a1a2 · · · a0 · · · a0, where the last part a0 · · · a0

is an h̄3-tour inside the database, thus db-tour({t̄iti}k−1
i=0 t̄k, a0) will return true.

Further, it is clear that A |= ω1〈h̄1h1, h̄2h2, ε〉(a0), and, by Lemma 6.1, A |=
ω∗1〈h̄1h1, h̄2h2, ε〉(a0). Thus, by the semantics of isth in Lemma 6.16, we have
A |= isth〈r̄, ω, s̄〉(a0), for r̄ = s̄ = ε and ω = ω∗1〈h̄1h1, h̄2h2, ε〉. It is then evident
that violation-ii-vii(b) will return true for b = a0.

Now, suppose that a0 6∈ D (i.e. b 6= a0), and that the shortest path from
a0 to b does not go through a1 or a2, as in Figure 6.9 (vii). Then h̄ (and,
correspondingly, ā) can be decomposed (as in Lemma 6.24) into ff−1h̄1h1h̄2h2h̄3,
where h̄3 is a subtour, say ā′, of ā that goes into the database and h̄1, h̄2 are
tree-shaped subtours of ā. Before discussing decompositions of ā′, notice that
A |= ω1〈h̄1h1, h̄2h2, ε〉(a0), and, thus, by Lemma 6.1, A |= ω∗1〈h̄1h1, h̄2h2, ε〉(a0).

According to Lemma 6.13, ā′ can be decomposed as

b0b̄0 · · · bkb̄k b̄ bkb̄′0 · · · b0b̄
′
k,

where b̄ is a database tour starting (and ending) at b, and no database element
appears outside b̄. Let s̄ be the sequence of predicates that b̄ induces. Thus, we
write h̄3 as r̄r s̄ tt̄, where b0b̄0 · · · bkb̄k is an r̄-path (from b0 to bk), A |= r(bk, b),
s̄ is the part of the tour inside the database, A |= t(b, bk), and bkb̄

′
0 · · · b0b̄

′
k is a

t̄-path. In particular, r̄ = {r̄iri}k−1
i=0 r̄k, where each r̄i (0 ≤ i ≤ k) corresponds to

bib̄i and specifies a tree-shaped subtour, and A |= rj(bj, bj+1), for all j (0 ≤
j < k); similarly, we write t̄ = {t̄iti}k−1

i=0 t̄k. (It helps here to keep in mind
Figure 6.7.) Finally, s̄ can be decomposed into {s̄isi}n−1

i=0 s̄n—this follows from the
decomposition that Lemma 6.12 guarantees, expressed in terms of the predicates
that it induces.

It is now easily seen that db-tour({s̄isi}n−1
i=0 s̄n, b) will return true, for the

above decomposition of s̄. Further, by Lemma 6.16, we have A |= isth〈tt̄, ω, r̄r〉(b),
for ω = ω1〈h̄1h1, h̄2h2, ε〉(a0). (Notice the reverse order of tt̄ and r̄r compared
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to r̄r s̄ tt̄: the isthmus starts at b, whereas ā′ starts at a0.) It then follows that
violation-ii-vii(b) will return true.

Consider the following procedure:

1: define violation-iv(b)
2: for each decomposition ff−1h̄1h1h̄2 of h̄ do
3: let ω = ω∗1〈h̄1h1, ε, ε〉
4: if isth〈ε, ω, ε〉(b) ∈ ∆ and ∃ b′ ∈ D \ {b} s.t. f(b, b′) ∈ ∆ then
5: for each decomposition {s̄isi}n−1

i=0 s̄n of h̄2 do
6: if db-path({s̄isi}n−1

i=0 s̄n, b, b
′) then

7: return true
8: return false

We claim that in any structure A interpreting ∆, there is a violating h̄-tour
ā = a0, . . . , a`−1 with a0, a1 ∈ D and a2 6∈ D if and only if violation-iv(b)
returns true for some b ∈ D. Indeed, if violation-iv(b) returns true for some
b ∈ D, the existence of such a violating tour is evident.

Conversely, suppose that ā = a0, . . . , a`−1 is a h̄-tour in A with a0, a1 ∈ D and
a2 6∈ D. By Lemma 4.24, we may assume that A has no cycles of length ≤ `.
Then, by Lemma 6.21, ā can be decomposed as ff−1h̄1h1h̄2, where h̄1 specifies
a tree-shaped subtour of ā and h̄2 is a path inside the database decomposed as
{t̄iti}k−1

i=0 t̄k, for some n ≤ `. In particular, referring to Figure 6.9 (iv), ā is decom-
posed as a0a1a2 · · · a1 · · · a0, where the last part a1 · · · a0 is an h̄2-path inside the
database, thus db-path({t̄iti}k−1

i=0 t̄k, a1, a0) will return true. Further, it is clear
that A |= ω1〈h̄1h1, ε, ε〉(a0), and, by Lemma 6.1, A |= ω∗1〈h̄1h1, ε, ε〉(a0). In that
case, by the semantics of isth in Lemma 6.16, we have that A |= isth〈r̄, ω, s̄〉(a0),
for r̄ = s̄ = ε and ω = ω∗1〈h̄1h1, ε, ε〉. It is then evident that violation-iv(b) will
return true for b = a0 (and b′ = a1).

Note that the violating tours (iv) and (v) in Figure 6.9 are symmetric, so our
approach can be adapted to handle the case where a1, a2 ∈ D and a0 6∈ D. Thus,
we assume the existence of a similar procedure violation-v(b), which returns
true if and only if in any structure A interpreting ∆ there exists a violating tour
ā = a0, . . . , a`−1 with a1, a2 ∈ D and a0 6∈ D, as illustrated in Figure 6.9 (v).

Consider the following procedure:

1: define violation-x(b)
2: let h̄′ be such that h̄ = ff−1h̄′
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3: if ∃ distinct b′, b′′ ∈ D \ {b} s.t. f(b, b′), f(b′′, b′) ∈ ∆ then
4: for each decomposition {s̄isi}n−1

i=0 s̄n of h̄′ do
5: if db-path({s̄isi}n−1

i=0 s̄n, b
′′, b) then

6: return true
7: return false

We claim that in any structure A interpreting ∆, there is a violating h̄-tour
ā = a0, . . . , a`−1 whose first three elements are distinct and belong to D if and
only if violation-x(b) returns true for some b ∈ D. Indeed, if violation-x(b)
returns true for some b ∈ D, the existence of such a violating tour is evident.
Conversely, suppose that ā = a0, . . . , a`−1 is a h̄-tour in A whose first three
elements are distinct and belong toD. By Lemma 4.24, we may assume that A has
no cycles of length≤ `. Then, by Lemma 6.25, h̄ can be written as ff−1h̄′, where h̄′

is a path inside the database (i.e. a2, . . . , a`−1), decomposed as t̄0t0 · · · t̄k−1tk−1t̄k,
for some k ≤ `. In that case, it is clear that db-path({t̄iti}k−1

i=0 t̄k, a2, a0) will
return true; consequently, violation-x(a0) will also return true.

We are now ready to define a notion of ‘appropriateness’ of ∆ for the depen-
dency PFD[f̄f, ḡ], as promised.

Definition 6.26. A complete database ∆ is PFD[f̄f, ḡ]-appropriate, for a given
path-functional dependency PFD[f̄f, ḡ], if there exists no element b in its active
domainD such that violation-ii-vii(b), violation-iii-viii(b), violation-iv(b),
violation-v(b), violation-vi-ix(b), or violation-x(b) returns true.

Intuitively, a complete database ∆ is PFD[f̄f, ḡ]-appropriate if any model A
extending it cannot contain any tours violating the path-functional dependency
PFD[f̄f, ḡ] like the ones in Figure 6.9 (ii) – (x). As already discussed, whether
∆ is PFD[f̄f, ḡ]-appropriate depends only upon ∆ (since it is complete), and is
checked using the above procedures.

Lemma 6.27. If ∆ is a complete database and PFD[f̄f, ḡ] is a path-functional
dependency, it can be checked in exponential time (in the size of f̄ , ḡ and ∆)
whether ∆ is PFD[f̄f, ḡ]-appropriate.

Proof. Notice that db-path and db-tour terminate in polynomial time in re-
spect of their input size. Moreover, it is easily seen that in every procedure
mentioned in Definition 6.26, each loop is executed at most an exponential num-
ber of times in the size of the sequences f̄ and ḡ. Since each procedure is executed
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for all elements b ∈ D in the worst case, the whole task requires exponential time
in the size of f̄ , ḡ and ∆.

The only remaining case is the one corresponding to Lemma 6.17 and Fig-
ure 6.9 (i). Such a violating tour, however, cannot be detected starting inside ∆,
since it does not ever enter ∆ and its start can be anywhere in an arbitrarily large
model. We will see in Theorem 6.29 that it is related to the (finite) satisfiability
of a particular set of formulas, so we postpone dealing with it until then.

6.5 Main result

For the rest of this section, we fix a path-functional dependency ℘ = PFD[f̄f, ḡ],
the related formulas ω∗1〈h̄1h1, h̄2h2, h̄3〉(x) and ω∗2〈h̄1h1, h̄2h2, h̄3〉(y) as in Sec-
tion 6.4, and the related sets F℘, I℘, ω∗1 and I℘, ω∗2 as discussed in Section 6.3.
Finally, to reduce clutter we let F = ∧

F and I = ∧(I℘, ω∗1 ∪ I℘, ω∗2 ).
Before stating and proving our main theorem, we need a simple lemma, related

to violating tours as in Lemma 6.17 and Figure 6.9 (i). Let h̄ = ff−1f̄−1ḡḡ−1f̄ , fix
` to be the length of h̄, and let

χ(x) =
∨{

ω∗1〈h̄1h1, h̄2h2, h̄3〉(x) | h̄ = ff−1h̄1h1h̄2h2h̄3
}
.

Lemma 6.28. Let ∆∗ be a completion for ∆. Then, ℘ is violated in any model
of ∆∗,∃xχ(x),F . Conversely, suppose A is a structure such that A |= ∆∗,F
and A has no observable cycles of length ≤ `. If, in addition, A contains an
ff−1f̄−1ḡḡ−1f̄ -tour ā whose three initial elements are distinct and ā ∩ D = ∅ (as
in Figure 6.9 (i)), then A |= ∃xχ(x).

Proof. Let A be a model of ∆∗,∃xχ(x),F . Since A |= ∃xχ(x) ∧ F , it follows
that A |= ∃xω∗1〈h̄1h1, h̄2h2, h̄3〉(x), for some decomposition ff−1h̄1h1h̄2h2h̄3 of h̄.
By Lemma 6.1, A |= ∃xω1〈h̄1h1, h̄2h2, h̄3〉(x); thus, there exists an a ∈ A such
that A |= ω1〈h̄1h1, h̄2h2, h̄3〉(a). But then it is evident (recall the semantics of
the fan predicates in Lemma 6.15), that a is the start of an ff−1f̄−1ḡḡ−1f̄ -tour
in A, whose first elements are distinct (and it is also tree-shaped). This is (by
definition) a violation of ℘—recall the discussion at the end of Section 6.1.

The converse is an easy consequence of Lemma 6.17.

Theorem 6.29. FinSat(GC2DP2) is in EXPTIME.
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Proof. Let ∆, ψ : ℘ (where ℘ = PFD[f̄f, ḡ]) be given. Convert ψ into a new
formula ϕ in normal form (as in Lemma 4.12) and search for a completion ∆∗ of
∆ (this can be done in exponential time). Recall from Section 6.1 that we only
check for critical violations of ℘. Thus, to check for all violations, the following
should be repeated for each dependency ℘1 .. i = PFD[f̄f1 .. i, ḡ] (0 < i ≤ `), where
f̄f1 .. i is a prefix of length i of f̄f .

First, check whether ∆∗ is ℘-appropriate. By Lemma 6.27, this can be done
in exponential time in the size of f̄ , ḡ and ∆. If ∆∗ is not ℘-appropriate, fail.
Otherwise, check whether ∆∗, ϕ,¬∃xχ(x),F , I is satisfiable. If the latter is satis-
fiable succeed, otherwise fail. Indeed, by Lemma 6.28, ℘ is violated in all models
A such that A |= ∃xχ(x). Thus, if we are ever going to satisfy ∆∗, ϕ under ℘,
it has to be in a structure A such that A |= ¬∃xχ(x). Now, suppose that A is
a model of ∆∗, ϕ,¬∃xχ(x),F , I. By Lemma 4.24 we may assume that no cycles
of length ≤ ` exist in A. By Lemma 6.28, A cannot contain any ff−1f̄−1ḡḡ−1f̄ -
tours of the form illustrated in Figure 6.9 (i) (corresponding to Lemma 6.17).
Further, given that ∆∗ is ℘-appropriate, and by the semantics of the fan and isth
predicates in Lemmas 6.15 and 6.16, A cannot contain any ff−1f̄−1ḡḡ−1f̄ -tours
of the form illustrated in Figure 6.9 (ii) – (x) (corresponding to Lemmas 6.19 –
6.25). But, then, we have covered all possible cases for violations of ℘. (The only
remaining case would be an ff−1f̄−1ḡḡ−1f̄ -tour ā = a0, . . . , a`−1 with a0, a2 ∈ D
and a1 6∈ D. This, however, can never occur in A since it is assumed to have no
cycles of length ≤ `, while a0, a1, a2, a0 would constitute a cycle of length 3—recall
Remark 5.3.) Conversely, it is easily seen that if ∆∗ is not ℘-appropriate, or if
it is ℘-appropriate but ∆∗, ϕ,¬∃xχ(x),F , I is unsatisfiable, then there exists no
model of ∆∗, ϕ under ℘ (or at all). The EXPTIME upper bound, then, follows
from Theorem 5.18.

The hardness for FinSat(GC2DP2) follows from the fact that GC2 is EXPTIME-
hard. Thus, FinSat(GC2DP2) is EXPTIME-complete. The approach for ‘general’
satisfiability is the same as Sat(GC2D), thus we also have that Sat(GC2DP2) is
EXPTIME-complete.



7 | Query Answering for GC2DP2

In this chapter we concern ourselves with (finite) query answering for GC2DP2.
We first establish the combined complexity of (finite) query answering for the
above fragment. We then turn our attention to the data complexity of this
problem.

7.1 Combined complexity

The main idea is to reduce our problem to (finite) satisfiability for GC2DP2—
∆, ϕ |= ψ if and only if ∆, ϕ,¬ψ is unsatisfiable (this remains true when path-
functional dependencies are present). The obvious difficulty with this approach is
that ψ will in general contain more than two variables. It is shown in [PH09] that,
by employing Lemma 4.24, one can replace ¬ψ with an equivalent GC2-sentence.
We now provide more details about this process, basically repeating [PH09], and
then utilize the techniques introduced to obtain a 2-EXPTIME algorithm for (fi-
nite) query answering for GC2DP2.

Recall from Section 2.1 that a (boolean) conjunctive query is a sentence of
the form

∃x1 . . . ∃xk θ(x1, . . . , xk), (7.1)

where θ is a conjunction of binary predicates over a relational signature τ . Thus,
the negation of a conjunctive query like the above, which is what we will be
working with, is a sentence of the form

∀x1 . . . ∀xk η(x1, . . . , xk), (7.2)

where η is a negative clause, i.e. of the form ¬p1(y1, z1)∨ . . .∨¬pn(yn, zn), where
each pi (1 ≤ i ≤ n) is some predicate in τ and yi, zi ∈ {x1, . . . , xk}.

Our next goal is to identify the ways in which a sentence like (7.2) can enforce

120
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the existence of cycles (in a structure that satisfies it).

Definition 7.1. Let η be a clause, let T be the set of terms (variables or con-
stants) occuring in η, and let

E = {{t1, t2} ∈ T | t1 6= t2 and either t1, t2 both

occur in some literal of η or are both constants}.

Denote by Gη the (undirected) graph (T,E). (G is the empty graph when η = ⊥.)
We say that η is cyclic if Gη contains a cycle, at least one of whose vertices is a
variable; otherwise we say that η is acyclic.

Definition 7.2. Let K be a set of constants. A c-formula (with respect to K)
is a sentence of the form

∀x̄
(( ∧

x∈x̄
c∈K

x 6= c ∧
∧

x,x∈x̄
x,x′ distinct

x 6= x′
)
→ η

)
, (7.3)

where η is a cyclic negative clause.

It is clear that if K is a set of constants, v is a c-formula, and A is a structure
interpreting the constants in K, then A 6|= v implies that A contains a cycle of
length at most ‖v‖. This is used in the proof of Lemma 7.3 below.

Fix some set of constants K and a tuple of variables x̄ = x1, . . . xk. Let Ξ be
the set of all functions ξ : x̄ → x̄ ∪K. For each ξ ∈ Ξ, denote by x̄ξ the (possi-
bly empty) tuple of variables ξ(x1), . . . , ξ(xk), with all constants and duplicates
removed. Further, for any formula θ, denote by θξ the result of simultaneously
substituting the terms ξ(x1), . . . , ξ(xk) for all free occurrences of the respective
variables x1, . . . , xk in θ. Then, ∀x̄θ is logically equivalent to the sentence

∧
ξ∈Ξ
∀x̄ξ

(( ∧
x∈x̄
c∈K

x 6= c ∧
∧

x,x′∈x̄
x,x′ distinct

x 6= x′
)
→ θξ

)
(7.4)

and, in addition, if Ξ1,Ξ2 are disjoint sets such that Ξ1 ∪Ξ2 = Ξ, ∀x̄θ is logically
equivalent to the sentence

∧
ξ∈Ξ1

∀x̄ξ
(( ∧

x∈x̄
c∈K

x 6= c ∧
∧

x,x′∈x̄
x,x′ distinct

x 6= x′
)
→ θξ

)
∧
∧
ξ∈Ξ2

∀x̄ξθξ. (7.5)
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Indeed, denoting by ϕ1 the formula (7.4) and by ϕ2 the formula (7.5), it is evident
that |= ∀xθ → ϕ2, |= ϕ2 → ϕ1, and |= ϕ1 → ∀xθ.

Thus, we can rewrite a sentence of the form ∀x̄η, where η is a negative
clause, (possibly) containing constants from a (fixed) set K, as a conjunction
of c-formulas and other ‘regular’ formulas

∧
ξ∈Ξ1

∀x̄ξ
(( ∧

x∈x̄
c∈K

x 6= c ∧
∧

x,x′∈x̄
x,x′ distinct

x 6= x′
)
→ ηξ

)
∧
∧
ξ∈Ξ2

∀x̄ξηξ, (7.6)

where Ξ is the set of functions from x̄ to x̄ ∪K, and

Ξ1 = {ξ ∈ Ξ | ηξ is cyclic},

Ξ2 = {ξ ∈ Ξ | ηξ is acyclic}.

Now, when considering the satisfiability of a sentence like (7.6), the following
lemma allows one to discard the c-formulas.

Lemma 7.3. Let ϕ be a GC2-formula, ∆ a database, and Υ a finite set of c-
formulas. Then, ∆ ∪ {ϕ} ∪ Υ is (finitely) satisfiable if and only if ∆ ∪ {ϕ} is
(finitely) satisfiable. Further, the equisatisfiability of ∆ ∪ {ϕ} ∪ Υ and ∆ ∪ {ϕ}
holds in the presence of path-functional dependencies.

Proof. By Lemma 4.12, we may assume that ϕ is in normal form. The only-if
direction is trivial. For the other direction, suppose that A is a (finite) model of
∆ ∪ {ϕ} and let K ⊆ A be the set of elements interpreting individual constants
from ∆ or Υ. Pick Ω > max{‖v‖ : v ∈ Υ}. By Lemma 4.24, let B be a model
of ∆ ∪ {ϕ}, such that (i) K ⊆ B, (ii) A|K = B|K , and (iii) B contains no
(observable) cycles of length less than Ω. (B is finite if A is.) It follows that
B |= Υ, otherwise B would contain a cycle of length ≤ Ω.

We claim that the above result holds even in the presence of path-functional
dependencies. Indeed, let ℘ = PFD[f̄f, ḡ] be a path-functional dependency. The
only-if direction is, again, trivial. For the other direction, suppose that ∆ ∪ {ϕ}
is satisfiable under ℘; thus, let A be a (finite) model of ∆∪ {ϕ} that contains no
ff−1f̄−1ḡḡ−1f̄ -tours. Now, pick Ω > max{k, `}, where k = max{‖v‖ : v ∈ Υ} and
` is the length of the sequence ff−1f̄−1ḡḡ−1f̄ ; obtain, by Lemma 4.24 a model B
of ∆∪{ϕ} as above. Clearly, B does not contain any ff−1f̄−1ḡḡ−1f̄ -tours because
A does not, and, since Ω > max{k, `}, B |= Υ.
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Finally, sentences of the form ∀x̄ξηξ, where ηξ is an acyclic negative clause,
can by replaced by logically equivalent GC2-sentences (Lemma 7.6).

Definition 7.4. Let η be a clause. We call η splittable if, by re-ordering its
literals, it can be written as η1 ∨ η2, with η1 and η2 non-empty, and Vars(η1) ∩
Vars(η2) = ∅; otherwise η is unsplittable.

Lemma 7.5. Let η be a non-ground clause. If η is unsplittable and acyclic, then
it contains at most one individual constant.

Proof. Suppose, for contradiction, that η contains two distinct constants c and d;
thus, {c, d} is an edge of the graph Gη. Because η is non-ground, c and d cannot
appear in the same literal of η. Hence, there are two distinct variables, say x and
y, such that x appears in the same literal with c and y appears in the same literal
with d. Because η is unsplittable, there has to be a path p̄ in Gη connecting x

and y. Then, Gη contains the cycle c, p̄, d, c, of length ≥ 3, which is absurd.

Lemma 7.6. Let η(x, x̄) be a negative clause with no individual constants, in-
volving exactly the variables x, x̄. Suppose further that η(x, x̄) is non-empty, un-
splittable, and acyclic. Then, there exists a GC2-formula ω(x) such that ∀x̄η(x, x̄)
and ω(x) are logically equivalent.

Proof. Simple induction on the number of variables in η, taking advantage of the
fact that Gη is acyclic (i.e. a tree). See [PH09] for more details.

Before we state our main result for this section, we need the following simple
lemma, which allows us to remove the constants appearing in a formula at the
expense of adding some ground literals.

Lemma 7.7. Let ϕ(x) be a formula containing at most one free variable x, Θ a
set of sentences, and K a set of individual constants. Let p be a predicate not
occurring in ϕ or Θ. Then, the sets

Θ ∪ {ϕ(c) | c ∈ K} and Θ ∪ {p(c) | c ∈ K} ∪ {∀x(ϕ(x) ∨ ¬p(x))}

are satisfiable over the same domains.

Proof. Let ψ be the sentence ∀x(ϕ(x)∨¬p(x)). It is clear that {p(c), ψ} |= ϕ(c),
for all c ∈ K. Now, suppose A |= ∧Θ ∪ {ϕ(c) | c ∈ K}; then we can expand A

to a structure A′ that interprets p, by setting pA′ = {cA | c ∈ K}.
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The next theorem closely follows [PH09, Theorem 4] (our inputs, and, as a
result, the time bounds are different).

Theorem 7.8. DFinQAns(GC2DP2) and DQAns(GC2DP2) are in 2-EXPTIME.

Proof. We give a proof for DFinQAns(GC2DP2); the proof for DQAns(GC2DP2)
is analogous. Let ∆, a database, ϕ, a GC2-sentence, ψ, a boolean conjunctive
query, and PFD[f̄ , ḡ], a path-functional dependency, be given. We wish to de-
termine whether ∆, ϕ |=fin ψ under PFD[f̄ , ḡ], which amounts to determining
whether ∧

∆ ∧ ϕ ∧ ¬ψ, (7.7)

is finitely unsatisfiable under PFD[f̄ , ḡ]. Thus, we provide a way to decide finite
satisfiability for (7.7) under PFD[f̄ , ḡ]. For the rest of the proof we assume that
∆ is complete, for, if not, we can search for a completion of ∆ in exponential
time with respect to the size of ∆.

Since ψ is a (positive) conjunctive query, ¬ψ is of the form ∀x̄η, where η

is a negative clause. Let K be the set of constants appearing in ∆ and ψ; let
n = |∆| be the cardinality of ∆, let m be the arity of x̄, and let Ξ be the set of
all functions ξ : x̄→ x̄∪K. Thus, |Ξ| ≤ (n+m)m; that is, |Ξ| is bounded above
by an exponential function in the size of our input.

As discussed earlier, we can rewrite ∀x̄η as in (7.6), thus (7.7) is logically
equivalent to

∧
∆ ∧ ϕ ∧

∧
ξ∈Ξ1

∀x̄ξ
(( ∧

x∈x̄
c∈K

x 6= c ∧
∧

x,x′∈x̄
x,x′ distinct

x 6= x′
)
→ ηξ

)
∧
∧
ξ∈Ξ2

∀x̄ξηξ, (7.8)

where

Ξ1 = {ξ ∈ Ξ | ηξ is cyclic},

Ξ2 = {ξ ∈ Ξ | ηξ is acyclic}.

For simplicity, write the latter formula as

∧
∆ ∧ ϕ ∧

∧
Υ ∧

∧
ξ∈Ξ2

∀x̄ξηξ, (7.9)

where Υ is finite set of c-formulas with respect to D.
Notice the previous two formulas (7.8) and (7.9) are of size O(|Ξ|), and, thus,
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exponential in the size of our input. In addition, they can be computed in time
bounded by a polynomial function of |Ξ|.

Formula (7.9) can further be simplified as

∧
∆ ∧ ϕ ∧

∧
Υ ∧

∧
ξ∈Ξ2

∀x̄ξη∗ξ , (7.10)

where each η∗ξ (ξ ∈ Ξ2) is > if any ground literal of ηξ appears in ∆; otherwise
η∗ξ is the result of deleting from ηξ all ground literals whose negation appears in
∆. If no literals remain, η∗ξ is taken to be ⊥. Now, because ∆ is assumed to
be complete, it contains every ground literal or its negation, over the relevant
signature. Thus, each resulting formula η∗ξ will be non-ground. In addition, we
write each ∀x̄η∗ξ in (7.10) as

∀x̄ξ(η0
ξ ∨ . . . ∨ ηmξ ),

for some m ≥ 0 (depending on ξ), where each ηiξ (0 ≤ i ≤ m) is unsplittable,
and (non-deterministically) choose one such ηiξ. Note that m is at most linear in
‖∀x̄η∗ξ‖, thus all possible choices (for each ∀x̄η∗ξ ) can be tried in double exponential
time with respect to our input size. We are, then, left we with a formula

∧
∆ ∧ ϕ ∧

∧
Υ ∧

∧
ξ∈Ξ2

∀x̄ξηi(ξ)ξ , (7.11)

where each η
i(ξ)
ξ is acyclic, unsplittable, and non-ground; hence, by Lemma 7.5,

each η
i(ξ)
ξ contains at most one constant—without loss of generality we may as-

sume it contains exactly one constant ci(ξ).
It is clear that (7.10), and thus (7.9), is finitely satisfiable only if one of the

formulas (7.11) is finitely satisfiable. To determine whether a formula of the form
(7.11) is finitely satisfiable, we will employ Theorem 6.29; to use it, however, we
need to remove all constants that do not appear in ∆. To this end, let θi(ξ)ξ be
the result of replacing all occurrences of ci(ξ) in each ηi(ξ)ξ (ξ ∈ Ξ2) with x (where
x does not occur in η

i(ξ)
ξ ), and pξ be a new predicate for each ξ ∈ Ξ2, subject to

the restriction that if ηi(ξ)ξ = η
i(ξ′)
ξ′ (ξ, ξ′ ∈ Ξ2) then pξ = pξ′ . Thus, because the

constants replaced are over the signature of ψ, the number of all the predicates
pξ is bounded above by a polynomial function in the size of our input. Then, by
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Lemma 7.7, (7.11) is satisfiable over the same domains as

∧
∆ ∧ ϕ ∧

∧
Υ ∧

∧
ξ∈Ξ2

∀xx̄ξ(θi(ξ)ξ ∨ ¬pξ(x)). (7.12)

Note that (7.12) can be computed in linear time with respect to the size
of (7.11), thus in exponential time with respect to the size of our input. By
Lemma 7.6, for each ∀xx̄ξ(θi(ξ)ξ ∨ ¬pξ(x)), there is a logically equivalent GC2-
formula ∀xωξ(x). Let ω be the conjunction of all these ∀xωξ(x) (ξ ∈ Ξ2). Then,
(7.12) is logically equivalent to

∧
∆ ∧ (ϕ ∧ ω) ∧

∧
Υ. (7.13)

Now, by Lemma 7.3, (7.13) is finitely satisfiable if and only if

∧
∆ ∧ (ϕ ∧ ω) (7.14)

is finitely satisfiable. To determine whether (7.14) is finitely satisfiable under
PFD[f̄ , ḡ], we employ Theorem 6.29. Thus, the result is determined in expo-
nential time with respect to the size of (7.14); and, because the size of (7.14)
is exponential with respect to the size of our input, the result is determined in
double exponential time with respect to our input. Recall from the above that
this procedure is in fact performed for each possible formula (7.11), from which
(7.14) is derived, but this still leaves us in 2-EXPTIME.

Since GC2 properly contains the description logic ALCQI, the result due to
Lutz [Lut08] establishes in combination with Theorem 7.8 that DQAns(GC2DP2)
is 2-EXPTIME-complete. (Recall Section 4.3.) We remark that Lutz’s result is
with respect to infinite models. However, we believe that a careful analysis of his
proof (which we were unable to do due to lack of time) will reveal that it also
holds for finite models. If this turns out to be true, we immediately obtain that
DFinQAns(GC2DP2) is also 2-EXPTIME-complete.

7.2 Data complexity

We now turn our attention to the data complexity of DFinQAns(GC2DP2) and
DQAns(GC2DP2). That is, we study the computational complexity of those
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problems when the background theory and the path-functional dependency (or
dependencies) are fixed; only the database is allowed to vary. As in the previous
section, we will reduce (finite) query answering to (finite) satisfiability. Thus, we
first need to establish the data complexity of (finite) satisfiability for GC2DP2.

Theorem 7.9. Let ϕ be a fixed GC2-sentence and PFD[f̄f, ḡ], abbreviated ℘, a
fixed path-functional dependency. Then, the problems DFinSatϕ,℘(GC2DP2) and
DSatϕ,℘(GC2DP2) are both in NP.

Proof. Let ∆, a database, be given; let D be the active domain of ∆. By
Lemma 4.12, we may assume that ϕ is in normal form. We provide a proce-
dure for deciding the finite satisfiability of ∆, ϕ : PFD[f̄f, ḡ] that can be executed
in time bounded by a linear function of |∆|. Recall from Section 6.1 that we only
check for critical violations of PFD[f̄f, ḡ]; thus, to check for all violations, the fol-
lowing should be repeated for each dependency PFD[f̄f1 .. i, ḡ] (0 < i ≤ `), where
f̄f1 .. i is a prefix of length i of f̄f . Let ϕ′ be the sentence ϕ ∧ ¬∃xχ(x) ∧ F ∧ I,
where F , I, and χ(x) are as in Section 6.5. The procedure is as follows:

1. Guess a completion ∆∗ of ∆.

2. Check if ∆∗ is PFD[f̄f, ḡ]-appropriate. If not, fail.

3. Recalling Section 5.3, guess, for each constant c ∈ D, the values of the
vectors γcπ,s, for each s ∈ ⋃{flip(s′) : s′ ∈ Λc}, and δcπ,t, for each t ∈⋃{flip(t′) : t′ ∈Mc}, for each c ∈ D.

4. Write down the system E with respect to ϕ′ and ∆∗ as in Section 5.3—
the vectors from Step 3 are used in E4—and guess a small enough (≤ C)
solution of E in the positive integers. If a solution does not exist fail.

5. Succeed.

The procedure for the problem DSatϕ,℘(GC2DP2) is exactly the same as the
above, except in Step 4, where we seek solutions in the set N∪{ℵ0}, as described
at the end of Chapter 5.

We now consider the running time of the above procedure. Step 1 can be
executed in non-deterministic polynomial time with respect to |∆|. Step 2 can
be executed in linear time with respect to |∆|. Step 3 can be executed in linear
time with respect to |∆|—for each c ∈ D, the required vectors γcπ,s and δcπ,t can
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be guessed in constant time. For Step 4, observe that the size of E is linear with
respect to |∆|. In particular (referring to Section 5.3) the size of the systems
E1, E2, and E3 is bounded above by a constant; the size of E4 is linear with
respect to |∆|. Thus, Step 4 can be performed in non-deterministic polynomial
time with respect to |∆|. Consequently, the above procedure can be executed in
non-deterministic polynomial time with respect to ∆. Notice that executing the
procedure for each dependency PFD[f̄f1 .. i, ḡ], as described above, still leaves it in
NP, since the size of PFD[f̄f, ḡ] is bounded above by a constant. The procedure
corresponding to DSatϕ,℘(GC2DP2) is also in NP, by a similar argument.

Finally, we show that the above procedure succeeds if and only if ∆ ∪ {ϕ} is
finitely satisfiable under PFD[f̄f, ḡ]. Indeed, if Step 2 succeeds, it is clear that
no violating tour of the forms illustrated in Figure 6.9 (ii) – (x), corresponding
to Lemmas 6.19 – 6.25 can occur in any model of ∆∗, ϕ. Further, if Step 4
succeeds, there exists by Lemma 5.16 a finite model A of ∆∗, ϕ. In addition, A |=
¬∃xχ(x)∧F∧I, thus, by Lemma 6.28, A cannot contain any violating tours of the
form illustrated in Figure 6.9 (i), corresponding to Lemma 6.17. (By Lemma 4.24
we may assume that A contains no cycles of length ≤ ‖ff−1f̄−1ḡḡ−1f̄‖.) Then,
A is a model of ∆, ϕ in which no violations of PFD[f̄f, ḡ] occur. The converse
implication is immediate.

The argument for ‘general’ satisfiability is analogous.

The following lemma shows that we cannot do better than the bound in
Theorem 7.9 (unless P = NP). In fact, this is true even without path-functional
dependencies (i.e. for GC2D).

Theorem 7.10. There exists a GC2-sentence ϕ for which DFinSatϕ(GC2D) and
DSatϕ(GC2D) are NP-hard.

Proof. Reduction from 3COLOURING. Let ϕ be the conjunction of the following
sentences, over the signature 〈c1(·), c2(·), c3(·), e(·, ·)〉 (⊕ is exclusive or):

(i) ∀x(c1(x)⊕ c2(x)⊕ c3(x));

(ii) ∀x∀y(e(x, y)↔ e(y, x));

(iii) ¬∃x∃y(e(x, y) ∧
∨

1≤i≤3
(ci(x) ∧ ci(y))).

The unary predicate c1(x) is to be read as ‘x has color 1’; likewise for c2(x) and
c3(x). The binary predicate e(x, y) is to be read as ‘there is a directed edge from
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x to y’. Thus, in any structure satisfying ϕ, (i) ensures that every element has
colour 1, 2, or 3; (ii) ensures that e is symmetric; and (iii) ensures that no two
adjacent elements are coloured with the same colour.

Now, given any undirected graph G = (V,E), we construct the database

∆G = {e(v1, v2) | (v1, v2) ∈ E}.

It is easily checked that ∆G ∪ {ϕ} is (finitely) satisfiable if and only if G is
3-colourable.

For the data complexity of (finite) query answering for GC2DP2 we proceed
as in the proof of Theorem 7.8, utilizing Theorem 7.9. The next theorem is
essentially the same as [PH09, Theorem 4].

Theorem 7.11. Let ϕ be a fixed GC2-sentence, ψ be a fixed boolean conjunctive
query, and PFD[f̄f, ḡ], abbreviated ℘, be a fixed path-functional dependency.
Then, the problems DQAnsϕ,ψ,℘(GC2DP2) and DFinQAnsϕ,ψ,℘(GC2DP2) are both
in coNP.

Proof. The proof is completely analogous with the proof of Theorem 7.8, but
the sizes of the formulas that we write are different. Again, we give a proof for
DFinQAnsϕ,ψ,℘(GC2DP2); the proof for DQAnsϕ,ψ,℘(GC2DP2) is similar.

Let ∆, a database, be given; let n = |∆|, and let D be the active domain of
∆. We wish to determine whether ∆, ϕ |=fin ψ under PFD[f̄ , ḡ], which amounts
to checking the unsatisfiability of

∧
∆ ∧ ϕ ∧ ¬ψ (7.15)

under PFD[f̄f, ḡ]. For the rest of the proof we assume that ∆ is complete, for, if
not, a completion of ∆ can be guessed in non-deterministic polynomial time with
respect to |∆|. As in the proof of Theorem 7.8, we rewrite (7.15) into

∧
∆ ∧ ϕ ∧

∧
ξ∈Ξ1

∀x̄ξ
(( ∧

x∈x̄
c∈K

x 6= c ∧
∧

x,x′∈x̄
x 6=x′ distinct

x 6= x′
)
→ ηξ

)
∧
∧
ξ∈Ξ2

∀x̄ξηξ, (7.16)

where K is the set of constants in ∆ and ψ, Ξ is the set of all functions from x̄

to x̄ ∪K, and

Ξ1 = {ξ ∈ Ξ | ηξ is cyclic},
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Ξ2 = {ξ ∈ Ξ | ηξ is acyclic}.

Let m be the arity of x̄; m is constant. Notice that |Ξ| ≤ (n + m)m. Thus, |Ξ|
is bounded above by a function polynomial in n and, hence, |∆|. In addition,
formula (7.16) can be computed in polynomial time with respect to |Ξ|. For
simplicity, we write the latter formula as

∧
∆ ∧ ϕ ∧

∧
Υ ∧

∧
ξ∈Ξ2

∀x̄ξηξ, (7.17)

where Υ is finite set of c-formulas with respect to D.
Formula (7.17) is further be simplified as

∧
∆ ∧ ϕ ∧

∧
Υ ∧

∧
ξ∈Ξ2

∀x̄ξη∗ξ , (7.18)

where each η∗ξ (ξ ∈ Ξ2) is > if any ground literal of ηξ appears in ∆; otherwise
η∗ξ is the result of deleting from ηξ all ground literals whose negation appears in
∆. If no literals remain, η∗ξ is taken to be ⊥. Now, because ∆ is assumed to
be complete, it contains every ground literal or its negation, over the relevant
signature. Thus, each resulting formula η∗ξ will be non-ground. In addition, we
write each ∀x̄η∗ξ in (7.10) as

∀x̄ξ(η0
ξ ∨ . . . ∨ ηmξ ),

for some m ≥ 0 (depending on ξ), where each ηiξ (0 ≤ i ≤ m) is unsplittable,
and (non-deterministically) choose one such ηiξ. Because each such m is constant,
this non-deterministic step can be complete in constant time with respect to |Ξ2|,
and, hence, in polynomial time with respect to |∆|. We are left we with

∧
∆ ∧ ϕ ∧

∧
Υ ∧

∧
ξ∈Ξ2

∀x̄ξηi(ξ)ξ , (7.19)

where each η
i(ξ)
ξ is acyclic, unsplittable, and non-ground; hence, by Lemma 7.5,

each η
i(ξ)
ξ contains at most one constant—without loss of generality we may as-

sume it contains exactly one constant ci(ξ).
It is clear that (7.18), and thus (7.17), is finitely satisfiable only if one of the

formulas (7.11) is finitely satisfiable. To remove all constants that appear outside
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∆, let θi(ξ)ξ be the result of replacing all occurrences of ci(ξ) in each η
i(ξ)
ξ (ξ ∈ Ξ2)

with x (where x does not occur in η
i(ξ)
ξ ), and pξ be a new predicate for each

ξ ∈ Ξ2, subject to the restriction that if ηi(ξ)ξ = η
i(ξ′)
ξ′ (ξ, ξ′ ∈ Ξ2) then pξ = pξ′ .

Thus, because the constants replaced are over the signature of ψ, which is fixed,
the number of all the predicates pξ is bounded above by a constant. Then, by
Lemma 7.7, (7.11) is satisfiable over the same domains as

∧
∪ ∧ ϕ ∧

∧
Υ ∧

∧
ξ∈Ξ2

∀xx̄ξ(θi(ξ)ξ ∨ ¬pξ(x)). (7.20)

Note that (7.20) can be computed in linear time with respect to the size
of (7.19), thus in polynomial time with respect to the size of our input. By
Lemma 7.6, for each ∀xx̄ξ(θi(ξ)ξ ∨ ¬pξ(x)), there is a logically equivalent GC2-
formula ∀xωξ(x). Let ω be the conjunction of all these ∀xωξ(x) (ξ ∈ Ξ2)—note
that ω is independent of ∆. Then, (7.20) is logically equivalent to

∧
∆ ∧ (ϕ ∧ ω) ∧

∧
Υ. (7.21)

Now, by Lemma 7.3, (7.21) is finitely satisfiable if and only if

∧
∆ ∧ (ϕ ∧ ω) (7.22)

is finitely satisfiable. To determine whether (7.22) is finitely satisfiable under
PFD[f̄ , ḡ], we employ Theorem 7.9. Thus, we obtain the promised bound—recall
that we are interested in checking unsatisfiability.

The lower bound for DQAnsϕ,ψ,℘(GC2DP2) and DFinQAnsϕ,ψ,℘(GC2DP2) is
established using Theorem 7.10. Indeed, notice that, even without path-functional
dependencies, query answering is at least as hard as unsatisfiability: if p is
a predicate not occurring in ∆ or ϕ, then ∆ ∪ ϕ |= ∃xp(x) if and only if
∆ ∪ {ϕ} is unsatisfiable. (This is independent of models being finite or infinite.)
But, it follows from Theorem 7.10 that (finite) unsatisfiability for GC2D—hence
for GC2DP2 too—is coNP-hard. Thus, the problems DQAnsϕ,ψ,℘(GC2DP2) and
DFinQAnsϕ,ψ,℘(GC2DP2) are coNP-complete.



8 | Conclusion

In this thesis we studied the interplay of (binary) path-functional dependencies
with the two-variable guarded fragment with counting and a database. Our work
elucidates the interaction among the above domains and is, thus, pertinent to both
database and computational logic research. Our contributions are the following:

• In Chapter 5 we modified the proof in [PH07] so as to accommodate the
presence of a database. [PH07] establishes the complexity of (finite) satis-
fiability for the two-variable guarded fragment with counting. The proof is
by reduction to integer linear programming. We were unable to find a way
to use this result directly, so we adapted the proof by adding inequalities
that take a given database into account and showed that these inequali-
ties have the desired effect. The challenging part in this approach was to
write the minimum number of inequalities required to obtain our result: all
the obvious ways to incorporate the database lead to a higher complexity
bound. As a result, one needs to be careful about what information from
the database is ‘recorded’ by means of the inequalities. This, of course,
makes the proof of correctness rather technical.

• In Chapter 6 we showed how (finite) satisfiability under (binary) path-
functional dependencies for the two-variable guarded fragment with count-
ing and a database can be reduced to ‘plain’ (finite) satisfiability for this
fragment. This was done by identifying violations of a given path-functional
dependency with certain kinds of tours in graphs, and then showing how
to enumerate and detect all possible shapes of such tours. These shapes
are rather complex, but it turns out they can be decomposed into simple
tree-shaped components. All these tree-shaped components and various
more complex configurations containing them can be succinctly described
by guarded two-variable formulas with counting quantifiers. We remark

132
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that Lemma 4.24 is crucial for this whole approach.

• In Chapter 7 we established the complexity of (finite) query answering for
the two-variable guarded fragment with counting and a database under (bi-
nary) path-functional dependencies. We adopted the approach in [PH09]
where, again using Lemma 4.24, conjunctive queries are rewritten and re-
placed by equivalent guarded two-variable formulas with counting quanti-
fiers, and (finite) query answering is reduced to (finite) satisfiability. (This
is for the upper bound; the lower bound was obtained using a result due
to Lutz [Lut08].) The proofs of Theorems 7.8 and 7.11 closely followed the
corresponding proofs in [PH09], but, of course, taking into account the dif-
ferent time bounds (mostly for the first result) and the possible issues arising
from the presence of path-functional dependencies. In Theorem 7.9 we es-
tablished the upper bound for the data complexity of (finite) satisfiability
under path-functional dependencies, and in Theorem 7.10 we established
the lower bound for the same problem. (These results are used in 7.11,
since, as mentioned above, query answering is reduced to satisfiability.)

In summary, we established the complexity of (finite) satisfiability for the
guarded two-variable fragment with counting and a database, we introduced new
techniques to systematically eliminate (binary) path-functional dependencies so
that (finite) satisfiability in their presence can be handled with existing methods,
and established the complexity of (finite) query answering—both combined and
data complexity—for the above fragment (with path-functional dependencies).

Future work

Multiple dependencies

The obvious generalization of this research is to consider the fragment GC2DPn

(for any positive integer n > 2) allowing n-ary path-functional dependencies,
i.e. expressions of the form

∆, ψ : PFD[f̄1, . . . , f̄n],

where ∆ is a database, ψ is a GC2-sentence and f̄1, . . . , f̄n are sequences of func-
tional predicates. The semantics is similar to the binary case: we say that ∆, ψ
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is satisfiable under the dependency PFD[f̄1, . . . , f̄n] if there exists a structure A

such that A |= ∆, ψ and, for all a, b ∈ A,

∧
1≤i≤n

f̄A
i (a) ./ f̄A

i (b) =⇒ a = b.

(Recall that h̄A(a) denotes the h̄-path in A starting at a; ./ denotes path con-
vergence. All such paths are assumed to be total.) In that case, we write
A |= ∆, ψ : PFD[f̄1, . . . , f̄n]. We speak of finite satisfiability when in the above
definition we impose the extra restriction that A be finite. If, for a given structure
A, there are two distinct elements a, b ∈ A such that f̄A

i (a) ./ f̄A
i (b), for each i

(1 ≤ i ≤ n), we say that the path-functional dependency PFD[f̄ , ḡ] is violated in
A. Each such pair of elements a, b is called a violating pair for PFD[f̄ , ḡ].

As in the binary case, we are interested in deciding (finite) satisfiability under
a given path-functional dependency like the above. With argumentation similar
to the one for the binary case, we may restrict our attention to critical violations
of any given n-ary (n > 2) path-functional dependency. It follows, then, from
the above definition that a dependency ℘ = PFD[f̄1f1, . . . , f̄n] is violated in
a structure A if there exists (in A) a configuration of the form illustrated in
Figure 8.1, involving a violating pair a, b.

Here, too, we wish to define such violations in terms of the (distinct) elements
c, d, and e. Thus, we might be tempted to give the following false definition of
a violation for ℘, in terms of the elements c, d, and e: ℘ is violated in A if there
are three distinct elements c, d, and e (in A) such that, for each j (2 ≤ j ≤ n),
there exists an f1f

−1
1 f̄

−1
1 f̄j f̄

−1
j f̄1-tour (in A) whose first three elements are c, d,

and e. Of course, this definition does not guarantee that all these putative tours
‘pass through’ the same element b, after concluding the initial f1f

−1
1 f̄

−1
1 -part of

the tour, and then through the same element a, after concluding the f̄j f̄−1
j -part

of the tour. Thus, it cannot be used to check dependency violations. For the
correct version of the definition we require the following notions.

Definition 8.1. An h̄-tour ā = a0, . . . , a`−1 is r̄-initially-congruent with an h̄′-
tour ā′ = a′0, . . . , a

′
`−1 if h̄ = r̄ t̄, h̄′ = r̄ t̄′, and ā, ā′ can be decomposed respectively

as a0 · · · aη · · · a`−1 and a′0 · · · a′η · · · a′`−1, where a0 · · · aη and a′0 · · · a′η are the same
r̄-path (i.e. ak = a′k, for all 0 ≤ k ≤ η), aη · · · a` is a t̄-path, and a′η · · · a′` is a
t̄′-path. We refer to the element aη (= a′η) as the initial fork.

Definition 8.2. An h̄-tour ā = a0, . . . , a`−1 is s̄-finally-congruent with an h̄′-tour
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a b

c

d

e

f̄1 f̄1

f1 f1

f̄2

f̄n
f̄n

f̄2

Figure 8.1: A violating pair a, b for PFD[f̄1f1, . . . , f̄n]. The elements c, d, and e
are distinct.

ā′ = a′0, . . . , a
′
`−1 if h̄ = t̄ s̄, h̄′ = t̄′ s̄, and ā, ā′ can be decomposed respectively

as a0 · · · aξ · · · a`−1 and a′0 · · · a′ξ · · · a′`−1, where a0 · · · aξ is a t̄-path, a′0 · · · a′ξ is a
t̄′-path, and aξ · · · a` and a′ξ · · · a′` are the same s̄-path respectively (i.e. ak = a′k,
for all ξ ≤ k ≤ `). We refer to the element aξ (= a′ξ) as the final join.

Definition 8.3. Two tours, an h̄-tour ā = a0, . . . , a`−1 and an h̄′-tour ā′ =
a′0, . . . , a

′
`−1, are (r̄, s̄)-congruent if h̄ = r̄ t̄ s̄, h̄′ = r̄ t̄′ s̄, and ā is r̄-initially-

congruent and s̄-finally-congruent with ā′ (or vice versa). This definition gen-
eralizes in the obvious way for more than two tours: three or more tours are
(r̄, s̄)-congruent if they are pairwise (r̄, s̄)-congruent.

An illustration of m (r̄, s̄)-congruent tours {r̄ t̄i s̄}1≤i≤m can be found in Fig-
ure 8.2. We are now able to give the correct definition of a violation for the
path-functional dependency ℘, in terms of the elements c, d, and e: ℘ is violated
in A if there are three distinct elements c, d, and e (in A) such that, there ex-
ist (f1f

−1
1 f̄

−1
1 , f̄1)-congruent f1f

−1
1 f̄

−1
1 f̄j f̄

−1
j f̄1-tours (2 ≤ j ≤ n) whose first three

elements are c, d, and e. (It helps in general to keep in mind Figure 8.1.)
This line of research should identify how to detect such violations. Query

answering for n-ary path-functional dependencies is essentially the same as in
Chapter 7.
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a0

aη aξ

r̄ s̄

t̄1

t̄2

t̄m−1

t̄m

Figure 8.2: Some (r̄, s̄)-congruent tours starting (and ending) at a0; aη is their
initial fork and aξ their final join.

Another type of path-functional dependencies

Another possible direction of research is to allow expressions of the form

∆, ψ : PFD[f̄1, . . . , f̄n; ḡ1, . . . , ḡm].

We say that ∆, ψ is satisfiable under the dependency PFD[f̄1, . . . , f̄n; ḡ1, . . . , ḡm]
if there exists a structure A such that A |= ∆, ψ and, for all a, b ∈ A,

∧
1≤i≤n

f̄A
i (a) ./ f̄A

i (b) =⇒
∧

1≤i≤m
ḡAi (a) ./ ḡAi (b);

then, we write A |= ∆, ψ : PFD[f̄1, . . . , f̄n]. We speak of finite satisfiability when
in the above definition we impose the extra restriction that A be finite. In this
case, we are dealing with configurations like the one illustrated in Figure 8.3. (We
may assume that n,m > 1, otherwise the problem becomes trivial.)

In contrast to the previous subsection, here we want to ensure that if for each
i (1 ≤ i ≤ n) there exist two converging f̄i-paths starting at a and b respectively
then for each j (1 ≤ j ≤ m) there exist two converging ḡj-paths starting at a and
b respectively. In terms of the (distinct) elements c, d, and e, we want to ensure
that if there exist (f1f

−1
1 f̄

−1
1 , f̄1)-congruent f1f

−1
1 f̄

−1
1 f̄if̄

−1
i f̄1-tours (2 ≤ i ≤ n)

whose first three elements are c, d, and e, then there exist (f1f
−1
1 f̄

−1
1 , f̄1)-congruent

f1f
−1
1 f̄

−1
1 ḡj ḡ

−1
j f̄1-tours (1 ≤ j ≤ m) whose first three elements are c, d, and e. If

one has a solution to the problem described in the previous subsection, it should
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be straigtforward do generalize it for the present problem. For, any such solution
will provide a method to detect multiple congruent tours of a given family; then,
this method can be used to detect whether the existence of a given family of
(congruent) tours implies the existence of another family of (congruent) tours.
Query answering, again, is essentially the same as in Chapter 7.

a b

c

d

e

f̄1 f̄n f̄1

f1 f1

f̄n

ḡ1

ḡm
ḡm

ḡ1

Figure 8.3: Enforcing PFD[f̄1f1, . . . , f̄n; ḡ1, . . . , ḡm].

Implementation and possible challenges

Almost all the procedures that we have provided in previous chapters use brute
force. In particular, brute force is used when completing a given database and to
search through all possible decompositions of the ff−1f̄−1ḡḡ−1f̄ -sequence for each
given path-functional dependency PFD[f̄f, ḡ]. Since the search space for these
operations is exponential, this approach will certainly face many difficulties in
practice. Thus, a possible direction of research would be to identify the parts
(if any) of the search space for the above operations that can be avoided and, in
general, various other optimizations that can improve performance in practice.

For example, suppose that we want to decide if ∆, ψ : PFD[f̄f, ḡ] is (finitely)
satisfiable. If ψ does not involve any predicates from the sequences f̄f, ḡ then no
violations of the dependency need to involve elements outside ∆ (since the depen-
dency is a universal statement and cannot enforce the existence of new elements).
Then, to check if the dependency is violated one only has to check for the exis-
tence of ff−1f̄−1ḡḡ−1f̄ -tours (with three initial distinct elements) in the database.
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But, such a check does not require a search through all possible decompositions
of the sequence ff−1f̄−1ḡḡ−1f̄ , and can thus be completed in polynomial time with
respect to the size of ∆ and the length of this sequence.

Path-functional dependencies and GF

The techniques in this thesis make essential use of counting—which leads to
undecidability in conjunction with the guarded fragment—but, with care, they
can be made to work in the two-variable setting—and thus regain decidability.
A natural question arises then: how important is counting for the detection of
path-functional dependecy violations? That is, do our results still hold if we do
not use counting quantifiers and allow instead an arbitrary number of variables,
i.e. work in the guarded fragment?

Other types of queries

Another possible research direction is to consider the complexity of query answer-
ing with respect to other types of queries. A popular extension of conjunctive
queries are regular path queries. These allow the specification of queries using
regular expressions and are thus more expressive than plain conjunctive queries.
For example, one can express queries like ‘return all the cities accessible from
Manchester through any combination of bus or train services’. Regular path
queries have been very popular in the graph database community. They have
recently been studied in the context of some description logics [BOS15], so their
study in the context of the guarded fragment—with or without path-functional
dependencies—will be valuable.
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[Für84] Martin Fürer. The computational complexity of the uncon-
strained limited domino problem (with implications for logical
decision problems). In Logic and Machines: Decision problems
and complexity, pages 312–319. Springer, 1984.

[G+09] W3C OWL Working Group et al. OWL 2 web ontology language
document overview. 2009.

[GBIGKK13] Vı́ctor Gutiérrez-Basulto, Yazmı́n Ibañez-Garćıa, Roman
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