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Abstract

First-order logic is a widely used relational language of reasoning. Due to the

fact that it is algorithmically impossible to determine whether a given sentence

of first-order logic is valid or not, various restrictions of first-order logic have been

devised to obtain languages that are less expressive but can be reasoned about

by computers more easily.

One of such prominent fragments of first-order logic is the two-variable frag-

ment. Not only is it possible to check the validity of the sentences of this logic in

a bounded amount of time, it is also the case that adding various useful reason-

ing capabilities to two-variable first-order logic often preserves the time-bounded

validity check.

This thesis addresses the problem of the complexity of decidability of var-

ious extensions of two-variable first-order logic on a broad scale by offering a

systematic overview and comparison of the available results in the field.

In addition to that the thesis gives the proof of decidability of the extension

of two-variable first-order logic with counting quantifiers and the relation that

models parent/child relations in a tree graph. The NEXPTIME upper complexity

bound is established for the problem of finite satisfiability of this logic.
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Notation

Fragments of first-order logic

FO – First-order logic.

FO2() – Two-variable first-order logic. The set of sentences of FO in which

only the variables x and y appear.

FO2[] – Monadic two-variable first-order logic. The set of sentences of

FO2() in which only unary predicates appear.

FO2
S[] – Singular monadic two-variable first-order logic. The set of sen-

tences of FO2[] that can only be interpreted in such a way that for every

element of a model of a sentence exactly one unary predicate from the sig-

nature of the sentence holds true (unary predicates form a partition of the

universe of every model of the sentences of the language).

GF – Guarded fragment of first-order logic.

GF2() – Two-variable guarded fragment of first-order logic. The set of

sentences of GF in which only the variables x and y appear.

GF2[] – Monadic two-variable guarded fragment of first-order logic. The

set of sentences of GF2() in which only unary predicates appear.

GF2
S[] – Singular monadic two-variable guarded fragment of first-order logic.

The set of sentences of GF2[] that can only be interpreted in such a way that

for every element of a model of a sentence exactly one unary predicate from

the signature of the sentence holds true (unary predicates form a partition

of the universe of every model of the sentences of the language).
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C2() – Two-variable first-order logic with counting quantifiers ∃≥n, ∃≤n,

∃=n.

C2[] – Monadic two-variable first-order logic with counting quantifiers. The

set of sentences of C() in which only unary predicates appear.

Special predicates

↓+ – Binary predicate that is interpreted as a tree graph.

↓+
R – Binary predicate that is interpreted as a ranked tree graph. A ranked

tree graph is a tree graph in which every node has n or fewer children, for

some given number n.

↓∗ – Binary predicate that is interpreted as the transitive closure of a tree

graph.

→+ – Binary predicate that is interpreted as the ”next sibling” relation of

an ordered tree graph.

→∗ – Binary predicate that is interpreted as the transitive closure of the

”next sibling” relation of an ordered tree graph.

< – Binary predicate that is interpreted as a transitive relation.

.∗ – Binary predicate that is interpreted as a total preorder relation. Total

preorder is a relation that is reflexive, transitive and total.

.+ – Binary predicate that is interpreted as the successor of a total preorder

relation.

∼ – Binary predicate that is interpreted as an equivalence relation.

∼̂ – Binary predicate that is interpreted as an equivalence closure of a given

binary relation.

- – Binary predicate that is interpreted as a strict partial order relation.

Strict partial order is an irreflexive transitive binary relation. It is also

antisymmetric, which is implied by the first two properties.

≤∗ – Binary predicate that is interpreted as a linear order.

≤+ – Binary predicate that is interpreted as the successor of a linear order.
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Terminology

φ ∈ X – A sentence from the set of sentences of some logic fragment X .

A |= φ – A model of some given sentence φ in which the sentence is true.

e ∈ A – An element e of the universe of a given model A.

Σ(φ) – The signature of a given sentence φ.

A|Σ(φ) – The model generated by taking the substructure over a given

model A and restricting it to the signature of a given sentence φ. Alterna-

tively written as A|φ.

τ(φ) – The set of all 1-types over the signature Σ(φ) of a given sentence φ.

tpA[e] – The 1-type of a given element e in a given model A.

τi ∈ τ(φ) – A 1-type τi from the set of 1-types over the signature Σ(φ) of a

given sentence φ.

τi(x) – The conjunctive formula of FO2() over the free variable x that

expresses a given 1-type τi.

π(φ) – The set of all 2-types over the signature Σ(φ) for a given sentence φ.

tpA[e, e′] – The 2-type of some given elements e and e′ in a given model A.

πi ∈ π(φ) – A 2-type πi from the set of 2-types over the signature Σ(φ) of

a given sentence φ.

πi(x, y) – The conjunctive formula of FO2() over the free variables x and

y that expresses a given 2-type πi.

s(φ) – The set of all silent 2-types over the signature Σ(φ) of a given sentence

φ.

µ(φ) – The set of all message-types over the signature Σ(φ) of a given

sentence φ.

µ→(φ) – The set of all forward message-types over the signature Σ(φ) of a

given sentence φ.

µ←(φ) – The set of all reverse message-types over the signature Σ(φ) of a

given sentence φ.
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µ↔(φ) – The set of all invertible message-types over the signature Σ(φ) of

a given sentence φ.

ε(φ) – The set of all edge-types over the signature Σ(φ) of a given sentence

φ.

‖A‖ – The size of a given model A.

ω = Ω(φ) – The sentence ω generated by a nondeterministic run of a given

translator Ω on a given sentence φ.

Ω(φ) := ω1 ∧ ω2 ∧ ... ∧ ωi – The definition of the translator Ω that takes as

input φ and produces as output the sentence ω1 ∧ ω2 ∧ ... ∧ ωi for some set

of sentences ω1, ω2, ..., ωi.

stA[e] – The star-type of some given element e in a given model A.

Abbreviations

RE – The complexity class of recursively-enumerable problems

Co-RE – The complexity class of co-recursively-enumerable problems

VAS – The complexity class of problems that are equivalent in complexity

to the problem of reachability in vector addition systems.



Chapter 1

Introduction

First-order logic, denoted FO, is a relational language of reasoning that was first

formulated by Hilbert in 1917 [Moore, 1988] and has since been very well studied

and found a wide range of applications in theoretical and practical fields of science

and technology.

One of the key questions concerning first-order logic is the problem of estab-

lishing whether there exists a reliable way of finding which sentences of first-order

logic are theorems and which are not. This problem is called the problem of va-

lidity of sentences of first-order logic and in [Turing, 1936] it was shown to be

algorithmically undecidable.

Related to the problem of validity of sentences of FO is the problem of the

satisfiability of the sentences of the language. A sentence of first-order logic is

called satisfiable whenever there exists an interpretation of that sentence symbols

in which the sentence is true. A sentence that is satisfiable in all interpretations

is a theorem and is called valid. If the logical negation of a given sentence is

unsatisfiable, then the sentence holds true in all interpretations and is a theorem

as well. Therefore, the problem of satisfiability of sentences of FO is as hard as

the problem of validity of sentences of FO and is also undecidable.

Since it is practically desirable to operate with sentences of logic the satis-

fiability status of which can be resolved in a finite amount of time, restrictions

on the language of FO have been devised to overcome the problem of undecid-

ability of satisfiability. Such restrictions of FO are called fragments of first-order

logic, since they posses only part of the expressive capabilities of FO. The idea

behind artificially limiting the expressive power of first-order logic lies in the fact

that in many cases a new language can be obtained in such a way that, while

17
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retaining useful capabilities for reasoning, it has a decidable satisfiability problem

associated with it.

One way to obtain a decidable fragment of FO is to limit the number of

variable names that can appear in the sentences of first-order logic. For instance,

the logic that is formed from the set of all sentences of FO that contain no

function symbols and no constants and in which only two variable names x and

y appear, is called two-variable first-order logic and it is denoted FO2(). It was

shown half a century ago that the satisfiability problem of FO2() is decidable1.

By the time the decidability of the satisfiability problem of two-variable first-

order was established, it was already known that the three-variable logic is not

algorithmically solvable, since it contains the undecidable ∀∃∀ prefix class of first-

order logic [Kahr et al., 1962]. This lead researchers to enquire how two-variable

first-order logic can be extended with additional capabilities of reasoning, while

preserving the decidability of the resulting language.

One way of increasing the expressive power of two-variable first-order logic is

by adding to the language one or more special binary predicates that are known

to have certain properties, which are inexpressible in the language of two-variable

first-order logic itself. In other words, the special binary predicates added to the

language of two-variable first-order logic are allowed to receive their interpretation

only from a certain class of structures, such as equivalence relations, linear orders

and others. The new languages obtained in such a way can describe more specific

and more complicated structures that cannot be distinguished from each other

by the sentences of two-variable first-order logic alone.

The inspiration for extending FO2() with binary predicates that have a fixed

interpretation can be traced to research in modal logics. According to [Szwast

and Tendera, 2013], placing special restrictions on the reachability relation in the

frame-structures of the sentences of modal logics makes it possible to model such

concepts as equivalence and transitivity in these propositional languages. Addi-

tionally, it is of historical interest to mention that in an early paper in the field

of decidability of two-variable fragments of first order logic Erich Grädel, Martin

Otto and Eric Rosen claim [Grädel et al., 1998]: “We would like to acknowledge

that the programme to investigate the borderline of decidability in the neighbour-

hood of FO2() has been strongly advocated by Moshe Vardi, whose questions and

1The history of establishing the satisfiability of two-variable first-order logic and the refer-
ences to the relevant literature can be found in Section 2.1.
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conjectures have been an important incentive for our study.”

Two-variable first-order logic was found to be useful in its own right, as it

turned out that this language is expressive enough for various practical applica-

tions. The importance of the two-variable fragment of first-order logic and its

extensions is well highlighted by the quote from [Kieronski and Tendera, 2009]:

“One of the main motivations to study FO2() comes from the fact that it em-

beds propositional modal logic which in the last decades has been used in many

areas of computer science like e.g. artificial intelligence, program verification,

database theory and distributed computing. . .FO2() is also used as a repre-

sentative language for a number of knowledge representation logics (description

logics). . . Many powerful variants of description logics can be embedded in the

extension of FO2() with counting quantifiers.”

Because of the fact that other less expressive logics are in some sense con-

tained within two-variable first-order logic, studying the satisfiability problem

of two-variable first-order logic has theoretical benefits as well. If a new formal

language is devised, its expressive power can often be compared to a relevant

extension of two-variable first-order logic in a straightforward way. Depending

on whether such a formal language is more expressive or less expressive than a

particular extension of two-variable logic, a lower or upper complexity bound can

be immediately derived for the formal language from the complexity bound of

the two-variable fragment (if such a complexity bound is already known for that

particular two-variable fragment).

Overview of following chapters

This thesis deals with the problem of decidability of satisfiability of two-variable

first-order logic and its extensions both in broad scale and in specific terms.

Chapter 2 presents the currently known complexity results in the field of

satisfiability of two-variable first-order logics. Because the results in this area are

numerous and interrelated, they are given a systematic treatment, using diagrams

that show the relative complexity and expressivity of various two-variable logics

extended with a particular type of relations.

The information about the decidability of satisfiability of extensions of two-

variable logic is grouped in this chapter by the kind of special binary predicates

that two-variable first-order logic is extended with. The chapter starts with

the review of the presently available results concerning the most general type
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of predicate first, which is transitivity. Then, sections about more specific types

of predicates with more restricted properties, such as total preorders, follow.

Figure 1.1 demonstrates how different types of binary relations are nested in

terms of their generality within each other. The transitive relation is the most

general relation among the relations that have been studied in conjunction with

two-variable first-order logic. The rest of the classes of relations are derived from

transitivity by applying more and more specific restrictions, such as reflexivity

and antisymmetry, to them.

transitivity
(transitive)

preorder
(transitive, reflexive)

equivalence
(transitive, reflexive, symmetric)

partial order
(transitive, reflexive, antisymmetric)

total preorder
(transitive, reflexive, total)

tree
(transitive, reflexive, antisymmetric, other2)

linear order
(transitive, reflexive, antisymmetric, total)

Figure 1.1: Relationship between predicates

The chapter is concluded by a section that presents an overview of the com-

plexity results about the extensions of two-variable first-order logic with special

binary predicates and counting quantifiers.

Chapter 3 lays out the terminological apparatus that is going to be necessary

in the next part of the thesis for the rigorous demonstration of a new technical

finding in this area of research – the proof that the finite satisfiability of two-

variable logic with a local tree navigation predicate and counting quantifiers is
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decidable in NEXPTIME.2

Chapter 4 presents the main novel contribution of this thesis: the proof that

the problem of finite satisfiability of a specific extension of two-variable first-

order logic, namely the two-variable first-order logic with counting quantifiers and

the successor of a vertical tree navigation relation, is decidable in NEXPTIME.

Thus, the state of knowledge in the subject of decidability of satisfiability of

extensions of two-variable first-order logic is advanced forward. The chapter starts

with a preliminaries Section 4.1 that provides a layout of the proof structure

and describes informally the key techniques employed in obtaining the upper

complexity bound. Precise definition of the syntax and semantics of two-variable

first-order logic with the successor of a vertical tree navigation relation is given

at the beginning of Chapter 3.

Chapter 5 summarises what was achieved in Chapter 2 and Chapter 4 and

explains what future desirable results can be obtained both in the broad field of

satisfiability of the extensions of two-variable logics and in the narrow field of

satisfiability of two-variable first-order logic with counting and tree navigation

predicates.

2A tree is a partial order that has one minimum element and for any node of the tree, the
set of the nodes that the given node relates to is well-ordered
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Background

2.1 Two-variable fragment

In 1966 Dana Scott showed how the sentences of first-order logic with two vari-

ables, denoted FO2(), can be translated into the sentences of the Gödel prefix

fragment ∃∃∀∗ without equality, which was already known to be decidable at the

time [Scott, 1962], and thus established decidability of the satisfiability of FO2().

Later in [Mortimer, 1975] the finite model property was established for the

two-variable first-order logic with equality. The finite model property was proved

by showing that no sentence in the logic is satisfied only by infinite models

through the application of Ehrenfeucht–Fräıssé games (Mortimer citing [Ehren-

feucht, 1961]). The author said that “this answers a question raised by W.

Hodges” and that the finite model property confirms the result of Scott that

the two-variable first-order logic is decidable. In fact, the author showed that

if a sentence has a model, then the sentence has a model of at most doubly-

exponential size with respect to the length of the sentence.

The result about the doubly-exponential small model property of FO2() was

improved to the exponential small model property in [Grädel et al., 1997a]. At

the time of the publication of [Grädel et al., 1997a] it was known from the results

of [Lewis, 1980] and [Fürer, 1984] that the satisfiability of FO2() was at least

NEXPTIME-hard. As a consequence of this, the tight NEXPTIME complexity

bound was established for the satisfiability of FO2().

The same NEXPTIME complexity upper bound and lower bound apply to

the finite satisfiability problem of FO2(), because of the finite model property of

the logic: for every infinite model of a given sentence, there exists a finite model

22
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of the sentence.

Later in [Etessami et al., 2002] NEXPTIME-hardness (lower complexity bound)

result was obtained for the restriction of the language of FO2() to the set of

two-variable sentences containing only unary predicates, denoted FO2[]. This

restriction of FO2() is going to be called monadic two-variable first-order logic.

The word ‘monadic’ is employed here only to designate the fact that the language

of FO2[] does not have any binary relations, and only unary relations are allowed

to appear in the language sentences.

From now on, the special symbols are going to appear in the round and

square brackets of the symbol FO2() and FO2[] to designate extensions of two-

variable first-order logic and monadic two-variable first-order logic with special

binary predicates. In the case of the former logic, this means that certain binary

predicates are assigned a specific interpretation, but there are no changes to the

syntax of FO2(). In the case of the latter logic, this means that the sentences

of the language can contain not only the unary predicates, but also the specific

binary predicates that are mentioned in the square brackets (the interpretations

of these binary predicates are fixed as well).

Denoting two-variable first-order logic as FO2() and monadic two-variable

first-order logic as FO2[] is introduced in this thesis for the purpose of differen-

tiating between the extensions of these logics that will be discussed in the next

sections.

2.2 Two-variable fragment with transitive rela-

tions

One of the limitations of FO2() is that certain types of structures cannot be

expressed with just two variables. For example, it is possible to encode the

transitivity property for an arbitrary binary predicate R using three variables in

the following way.

∀x∀y∀z((R(x, y) ∧R(y, z))→ R(x, z))

However, the language of FO2() cannot force all interpretations of a given

binary relation to have the transitivity property. It is noted in [Grädel et al.,

1998] that the fact that transitivity is not expressible in two-variable infinitary
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logic FO2() follows from standard pebble game arguments.

Another way to arrive at the same conclusion is to observe that if the transi-

tivity property was expressible in FO2() for a given binary relation R, then the

following sentence would be satisfiable only in infinite models.

∃x∀y¬R(y, x) ∧ ∀x¬R(x, x) ∧ ∀x∃y R(x, y) (2.1)

This first conjunct of the sentence says that there exists an element in the model

that no other element is related to by R. The second conjunct of the sentence

says that no element of the model is related to itself by R. The third conjunct

of the sentence says that for every element there exists an element such that the

former element is related to the latter element by R. Since the relation R is

assumed to be transitive, the model of this sentence must necessarily contain the

infinite chain of elements in itself (as depicted in Figure 2.1). This contradicts

the fact that FO2() has the finite model property and every sentence of FO2()

that has a model, has a finite model.

e1 e2 e3 e4 . . .

Figure 2.1: An infinite model

The ability to reason about binary relations with the transitivity property is

useful in many scenarios. This is because it is possible to use the transitivity

relation for expressing in FO2() other properties of binary relations such as a

partial order, a preorder, a linear order, an equivalence relation and others that

are not expressible in FO2() otherwise.

This opens the question of the decidability of satisfiability of the extension of

FO2() with a specific binary predicate < that is only allowed to be interpreted as

a transitive relation. More precisely, the set of sentences of this language, denoted

FO2(<), coincides with the set of sentences of FO2() and a given sentence φ ∈
FO2(<) is satisfied by a given model A in the logic FO2(<) if and only if A |= φ

and the interpretation of < in A has the transitivity property.

As it was demonstrated above by the sentence 2.1, given a transitive binary

relation, it is possible to express an infinity axiom in FO2(). Therefore, there

exist sentences of FO2(<) that are satisfied only in infinite models and not in
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finite models. Hence, unlike for FO2(), the satisfiability problem of FO2(<) does

not coincide with the finite satisfiability problem of this logic.

In [Szwast and Tendera, 2013] it was shown that the satisfiability of FO2(<) is

decidable in 2-NEXPTIME. The finite satisfiability of FO2(<) was proved to be

decidable in triply-exponential nondeterministic time in [Pratt-Hartmann, 2017].

At the same time in [Kieroński, 2003] the satisfiability of monadic two-variable

first-order logic FO2[] with one extra transitive binary relation<, denoted FO2[<

], was determined to be 2-EXPTIME-hard. The logic FO2[<] is strictly less

expressive than FO2(<), as the latter is equivalent to the former, except that it

also allows for the appearance of any number of other binary predicates (apart

from <) in its sentences. Because of that, the lower complexity bound for the

satisfiability of FO2[<] also applies to FO2(<).

Similarly, the upper complexity bound of FO2(<) applies to FO2[<], since

an algorithm that decides the satisfiability status of the sentences of FO2(<)

also does so for all the sentences of FO2[<]. As mentioned above, the complexity

upper bound of FO2(<) was established to be 2-NEXPTIME in [Szwast and

Tendera, 2013]. Consequently, the satisfiability of both FO2[<] and FO2(<) is

2-EXPTIME-hard and in 2-NEXPTIME. The exact complexity classes for these

two decision problems are unknown.

In [Kieronski, 2005] it was demonstrated that both the satisfiability and the

finite satisfiability of monadic two-variable first-order logic with two independent

transitive relations <1 and <2, denoted FO2[<1, <2], are undecidable. These

relations can be mentioned in the same sentence and their simultaneous use can

define more complex statements than what the use of only one transitive rela-

tion can allow. The logic FO2[<1, <2] is strictly more expressive than the logic

FO2[<], as every sentence of FO2[<] can be expressed in FO2[<1, <2] by simply

substituting the appearance of the relation symbol < with the relation symbol

<1. The converse is not true, since by definition the interpretations of the two

transitive relations <1 and <2 are not connected to each other in any way and one

relation < cannot alone simulate all simultaneous uses of the pair of transitive

relations.

Complexity of logics in a form of a diagram

The relationships between the complexity classes of the satisfiability problem of

the two-variable logics with transitivity are shown in Figure 2.2.
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The figure consists of four horizontal segments, each dedicated to one of the

four complexity classes: NEXPTIME, 2-EXPTIME, 2-NEXPTIME and RE.

The segment on the bottom of the picture corresponds to the NEXPTIME

complexity class, and is labelled as such. It contains the fragments FO2[] and

FO2(), indicating that the complexity of the satisfiability of these two logics is

NEXPTIME-complete.

The fact that FO2[] is situated below FO2() in the diagram and is connected

with a solid line to it shows that the logic FO2() is strictly more expressive

than FO2[].

The horizontal segment dedicated to the 2-EXPTIME complexity class is

situated on top of the segment dedicated to the NEXPTIME complexity class,

suggesting that the former class of decision problems contains the latter.

Similarly, the horizontal segment dedicated to the 2-NEXPTIME complexity

class is situated on top of the 2-EXPTIME horizontal segment.

The symbol FO2[<] is situated in the 2-EXPTIME box and the symbol

FO2[<] is situated in the 2-NEXPTIME box. A dotted line is connecting

these two symbols across the two horizontal segments. This shows that the logic

FO2[<] is both 2-EXPTIME-hard and in 2-NEXPTIME. The same applies to

the symbols FO2(<) and FO2(<) and the logic FO2(<).

When a tight complexity bound has been established for a given logic, the

logic is mentioned in the diagrams only once, without employing the underline

and overline notation to designate its upper and lower complexity bounds.

The symbol FO2[<] is located underneath the symbol FO2(<) and the solid

line connects the two symbols, because the 2-EXPTIME-hardness of FO2(<)

follows from the same complexity result about the logic FO2[<]. Accordingly,

2-NEXPTIME upper bound complexity result of FO2[<] follows from the same

complexity result concerning FO2(<) and the symbol of the upper bound of the

latter logic is situated above the symbol of the upper bound of the former logic

on the diagram.

Finally, the horizontal segment of the diagram dedicated to the RE complexity

class (the class of decision problems that are recursively enumerable) contains

the logic FO2[<1, <2], indicating that the satisfiability problem of this logic is

undecidable.

The diagram with the complexities of the finite satisfiability of two-variable
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logics with transitive relations is omitted, because there are not enough complex-

ity results available in this area for a meaningful graphical comparison.

NEXPTIME

2-EXPTIME

2-NEXPTIME

RE

FO2[]

FO2()

FO2[<]

FO2(<)

FO2[<]

FO2(<)

FO2[<1, <2]

FO2(<1, <2)

FO3()

Figure 2.2: Satisfiability of two-variable and monadic two-variable first-order logic with
transitive relations

2.3 Two-variable fragment with total preorder

relations

Since the satisfiability of monadic two-variable first-order logic with two transitive

relations FO2[<1, <2] is undecidable [Kieronski, 2005], there is an incentive to

study the complexity of satisfiability of more restricted languages.

For example, consider the extension of monadic two-variable first-order logic
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FO2[] with one total preorder .∗.1 The resulting logic, denoted FO2[.∗], has

finite satisfiability problem that is in EXPSPACE [Schwentick and Zeume, 2012].

This is contrasted with the 2-EXPSPACE hardness result for the finite satisfi-

ability of the strictly more expressive logic FO2[<]. The reason that FO2[<]

contains FO2[.∗] comes from the fact that it is possible to convert the transi-

tive relation < into the total preorder relation .∗ in FO2[<] using the following

axiom.

∀x<(x, x) ∧ ∀x∀y(<(x, y) ∨<(y, x))

The first conjunct of this sentence expresses the reflexivity property of relation

< and the second conjunct of this sentence expresses the totality property of

relation <. Therefore, the relation < can only be interpreted as a total preorder

with this axiom, according to the definition in the footnote 1.

As noted in Section 2.1, the lower bound complexity result for finite satisfia-

bility of FO2[] was established to be NEXPTIME in [Etessami et al., 2002]. Since

the logic FO2[.∗] is strictly more expressive than FO2[] (extending monadic two-

variable logic FO2[] with one binary predicate .∗), the lower bound complexity

result for FO2[] applies to FO2[.∗] as well.

The addition of two independent total preorder relations .∗1 and .∗2 to the

monadic two-variable first-order logic results in a language, denoted FO2[.∗1,.∗2],

that has undecidable finite satisfiability problem, as in the case with FO2[<1, <2].

Total preorder relations organise the elements of models into sets of linearly

ordered equivalence classes. A total preorder relation relates each element within

one such equivalence class to every other element of that class. At the same time

all elements from a given equivalence class are related to all the elements of the

next equivalence classes according to the linear ordering of the equivalence classes

that a total preorder relation gives rise to.

Figure 2.3 provides a sketch of how a total preorder relation relates the ele-

ments of a model to each other. The ellipses in the diagram represent individual

equivalence classes, within which all elements are related to each other by the to-

tal preorder relation. At the same time all elements are linearly ordered between

the equivalence classes according to the equivalence classes ordering.

This observation allows us to take a given total preorder relation .∗ and define

the successor relation of that total preorder, denoted .+, using first-order logic

1 A total preorder is a transitive, reflexive and total binary relation.
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•

•

•

•

•

•

•

•

•

. . .

Figure 2.3: A sketch of a model of a total preorder

and three variables x, y and z, in the following way.

∀x∀y(.+(x, y)↔ (.∗(x, y) ∧ ¬∃z(.∗(x, z) ∧.∗(z, y) ∧ z 6= x ∧ z 6= y)))

This sentence states that the successor of a total preorder holds between the

elements of a model only if there exist no intermediary elements between the

given pair of elements with respect to the total preorder relation. As a result,

the successor of a total preorder .+ does not have the reflexivity and transitivity

properties.

The idea of differentiating between a given relation and the successor of that

relation with the superscripts ∗ and + comes from [Benaim et al., 2013] and

[Figueira et al., 2014], although in these papers the superscripts are used in a

slightly different way than here. Whenever there are results about extending

two-variable first-order logic with a certain kind of relation and its successor,

the two types of relations are annotated with the superscripts ∗ and + symbols,

respectively. This helps to distinguish between a certain relation that has “global

reach” in the model due to the inherent transitivity property (hence, the symbol

∗) and the successor version of that relation that only has “local reach” and for

which the transitivity property does not hold (hence, the symbol +).

The successor relation of a total preorder .+ allows one to check whether

an element of a model is immediately preceded with respect to the global linear

ordering by another element of the model. That is, element a is the successor of

element b, whenever the equivalence class of a is the next equivalence class after

the equivalence class of b. It follows that every element of a model has all the

elements from the next equivalence class as its successors.
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It is not possible to check whether one element is a successor of another

element with respect to the total preorder in the language of FO2[.∗]. Otherwise,

there would exist a sentence θ in the language of FO2[.∗] such that it was possible

to define the successor of a total preorder .+ in the following way.

∀x∀y(.+(x, y)↔ (.∗(x, y) ∧ θ(x, y)))

At the same time, the following sentence in FO2[.∗] can be used to restrict the

interpretation of a total preorder relation .∗ to a linear order, by reducing the

size of every equivalence class in the model to one element.

∀x∀y(.∗(x, y) ∧.∗(y, x)→ x = y)

Therefore, taking the above assumption into account, it would be possible to use

the sentence θ to define the successor of a linear order relation from the given

linear order relation in two-variable first-order logic. This, however, is impossible

(for details see the footnote 3 in the Subsection 2.5 dedicated to two-variable

logics with linear orders).

Hence, the two-variable fragments of first-order logic with total preorder re-

lations are neither contained in nor contain the corresponding two-variable frag-

ments with the total preorder successor relations.

Extending monadic two-variable first-order logic FO2[] with the successor

relation of a total preorder .+ gives rise to a new language, denoted FO2[.+].

The finite satisfiability of FO2[.+] is EXPSPACE-complete [Manuel and Zeume,

2013]. It is possible to extend FO2[] with both the total preorder relation and the

successor of that total preorder relation. The complexity of the finite satisfiability

of this logic, denoted FO2[.+,.∗], is also EXPSPACE-complete [Schwentick and

Zeume, 2012]. On the other hand, when a total preorder and the successor of

another total preorder are both added to FO2[], the finite satisfiability of the

logic, denoted FO2[.+
1 ,.∗2], becomes undecidable [Manuel and Zeume, 2013].

Undecidability of the finite satisfiability problem also holds in the case, when

FO2[] is extended with two successors of two different total preorders, denoted

FO2[.+
1 ,.+

2 ] [Manuel and Zeume, 2013].

Unfortunately, the satisfiability problems of the extensions of monadic two-

variable first-order logic with total preorders and the successors of total preorders
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have not been studied. The same applies for the satisfiability and finite satisfiabil-

ity problem of the extensions of two-variable first-order logic with total preorders

and the successors of total preorders.

The relationship between the complexity classes of the finite satisfiability

problem of two-variable logics with total preorder relations and the successors

of total preorder relations is shown in Figure 2.4.

The diagram with the complexities of satisfiability of two-variable and monadic

two-variable logics with total preorder relations is omitted, because there are not

enough complexity results available in this area for a meaningful graphical com-

parison.

NEXPTIME

EXPSPACE

2-EXPTIME

2-NEXPTIME

RE

FO2[]

FO2[.∗]

FO2[.∗] FO2[.+]

FO2[.+,.∗]

FO2[.∗1,.∗2] FO2[.+
1 ,.∗2] FO2[.+

1 ,.+
2 ]

Figure 2.4: Finite satisfiability of monadic two-variable first-order logic with total pre-
order relations
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2.4 Two-variable fragment with equivalence re-

lations

In the previous section it was shown how the restriction of a transitive relation

with reflexivity and totality gives rise to a total preorder. Another way to restrict

a transitive relation is by adding reflexivity and symmetry properties to form an

equivalence relation.

Just like a total preorder, an equivalence relation partitions the model universe

into a set of equivalence classes. Figure 2.5 provides a sketch of how an equivalence

relation relates the elements of a model to each other. The elipses in the diagram

represent individual equivalence classes, within which all elements are related to

each other by an equivalence relation.

•

•

•

•

•

•

•

•

•

. . .

Figure 2.5: A sketch of a model of an equivalence relation

For the purposes of extending two-variable first-order logic, an equivalence

relation is strictly less expressive than a total preorder relation. It is possible to

use both an equivalence relation ∼ and a total preorder relation .∗ in FO2() to

test whether any two elements of a model belong to the same equivalence class

or not, as the following sentence demonstrates.

∀x∀y(∼(x, y)↔ (.∗(x, y) ∧.∗(y, x))

At the same time, unlike a total preorder relation, an equivalence relation does

not order elements of the model across the equivalence classes. Hence, it is not

possible to determine the relative order of elements from different equivalence

classes.

Therefore, it is expected that the substitution of a total preorder relation with
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an equivalence relation leads to logics with lower computational complexity of the

satisfiability and finite satisfiability problems.

This supposition is confirmed by the fact that the complexity of the finite

satisfiability of monadic two-variable logic with two total preorders FO2[.∗1,.∗2
] is undecidable, whereas the complexity of the finite satisfiability of monadic

two-variable logic with two equivalence relations FO2[∼1,∼2] is 2-NEXPTIME-

complete. The same complexity bound holds for the satisfiability of FO2[∼1

,∼2]. The satisfiability and finite satisfiability of two-variable first-order logic

with two equivalence relations, denoted FO2(∼1,∼2), is 2-NEXPTIME-complete

too [Kieronski et al., 2012].

Unlike FO2[.∗], monadic two-variable first-order logic with one equivalence

relation, denoted FO2[∼], has the finite model property. The finite model prop-

erty also holds for FO2(∼). In fact, due to the exponential small model property

of FO2[∼] and FO2(∼) the satisfiability and finite satisfiability problems of both

logics are in NEXPTIME [Kieronski and Otto, 2012].

The addition of three equivalence relations to monadic two-variable first-order

logic results in the language, denoted FO2[∼1,∼2,∼3], with undecidable satisfi-

ability and finite satisfiability [Kieronski and Otto, 2012].

The problem of determining the complexity of satisfiability and finite satisfia-

bility of the extensions of two-variable first-order logic and monadic two-variable

first-order logic with equivalence relations has been fully resolved. Tight complex-

ity bounds for all possible numbers of equivalence relations have been obtained.

Additionally, it was established that satisfiability and finite satisfiability of

monadic two-variable first-order logic with one transitive relation and one equiv-

alence relation, denoted FO2[<,∼], are undecidable [Kieronski and Tendera,

2009]. This result is an improvement on the undecidability of satisfiability and fi-

nite satisfiability of FO2[<1, <2], since the equivalence relation∼ from FO2[<,∼]

can always be expressed using the second transitive relation <2 from FO2[<1, <2]

by adding reflexivity and symmetry properties to the transitive relation <2 with

the following sentence.

∀x<2(x, x) ∧ ∀x∀y(<2(x, y)→ <2(y, x))

Figure 2.6 demonstrates the relationships between the complexity classes of
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the finite satisfiability problem of two-variable first-order logic and monadic two-

variable first-order logic with equivalence relations. The diagram with the com-

plexities of satisfiability of two-variable and monadic two-variable logics with

equivalence relations is omitted, because such complexity results duplicate the

finite satisfiability results of these logics.

NEXPTIME

2-NEXPTIME

RE

FO2[]

FO2()FO2[∼]

FO2(∼)

FO2[∼1,∼2]

FO2(∼1,∼2)

FO2[∼1,∼2,∼3]

FO2(∼1,∼2,∼3)

FO2[<,∼]

Figure 2.6: Finite satisfiability of two-variable and monadic two-variable first-order
logic with equivalence relations

2.5 Two-variable fragment with linear order re-

lations

It is often desirable to restrict a total preorder in such a way that the relative

ordering of the elements is preserved. By imposing the antisymmetry restriction

on a total preorder relation, a linear order relation is obtained. A linear order 2

is equivalent to a total preorder in which every equivalence class contains exactly

one element.
2A linear order is a total reflexive antisymmetric transitive binary relation.
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Just like in the case with the equivalence relation, the two-variable fragment

of first-order logic with a linear order relation is strictly less expressive than the

corresponding fragment with the total preorder relation. This is because a total

preorder relation .∗ can always be converted to a linear order relation ≤∗ by

adding the following axiom.

∀x∀y((.∗(x, y) ∧.∗(y, x))→ x = y)

Two-variable fragments of first-order logic extended with a linear order do

not have the finite model property. This is because the following sentence can be

written in two-variable first-order logic with the help of the linear order predicate

≤∗ that is satisfied only by infinite models.

∀x∃y(≤∗(x, y) ∧ x 6= y)

The finite model property states that if a given sentence is satisfied in an infinite

model, there exists a finite model that also satisfies the sentence. Therefore,

satisfiability and finite satisfiability problems for the two-variable fragments of

first-order logic with linear orders do not coincide, as determining the existence

of an infinite model that satisfies a given sentence does not imply the existence

of a finite model that also satisfies the sentence.

Similarly to how the successor of a total preorder was defined in Section 2.3,

the successor relation ≤+ of a linear order ≤∗ can be defined in first order logic

with the following sentence.

∀x∀y(≤+(x, y)↔ (≤∗(x, y) ∧ ¬∃z(≤∗(x, z) ∧ ≤∗(z, y))))

However, it is not possible to define the successor relation in first-order logic

with just two variables3 and it is necessary to consider the satisfiability and finite

satisfiability of logics with linear order relations and logics with the successors of

3 If it was possible to define the successor relation of a given linear order ≤+ in two-
variable first-order logic, then the complexity of FO2[≤+

1 ,≤+
2 ,≤∗

1,≤∗
2] would be the same as

the complexity of FO2[≤+
1 ,≤∗

1,≤∗
2]. This is because, according to the hypothesis, it would

be possible to define the missing relation ≤+
2 from the relation ≤∗

2 in the latter logic, making
the two logic expressively equivalent. However, the logic FO2[≤+

1 ,≤+
2 ,≤∗

1,≤∗
2] was shown

to be undecidable [Manuel, 2010], whereas FO2[≤+
1 ,≤∗

1,≤∗
2] was shown to be in EXPSPACE

[Schwentick and Zeume, 2012]. Therefore, the two logics do not have the same expressive power
and the addition of the extra relation ≤+

2 to the logic FO2[≤+
1 ,≤∗

1,≤∗
2] makes the resulting logic

strictly more expressive.
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linear order relations separately.

The decidability of satisfiability and finite satisfiability has been resolved for

a number of fragments of two-variable first-order logic with linear order relations.

In cases, such as FO2(≤+) [Charatonik and Witkowski, 2013], FO2(≤+
1 ,≤+

2 )

[Charatonik and Witkowski, 2013], FO2(≤∗) [Otto, 2001] and FO2(≤∗1,≤∗2,≤∗3)

[Kieronski, 2011], the complexity classes of FO2() with linear order relations

match the complexities of the corresponding fragments of FO2[].

Figure 2.7 demonstrates the relationships between the complexity classes of

the finite satisfiability problem of monadic two-variable first-order logic with lin-

ear order relations and successors of linear order relations.

As can be seen from the diagram, four logics FO2[≤+
1 ,≤∗2], FO2[≤∗1,≤∗2],

FO2[≤+
1 ,≤+

2 ,≤∗1] and FO2[≤+
1 ,≤∗1,≤∗2] do not have a precise complexity class

established for them, as their lower complexity bound does not belong to the

same complexity class as their upper complexity bound.

Among these logics of particular interest is the logic FO2[≤+
1 ,≤+

2 ,≤∗1] that has

EXPSPACE lower complexity bound and has its upper complexity bound marked

as VAS. This means that the finite satisfiability problem of logic was shown to

be equivalent to the problem of reachability in vector addition systems (VAS)

in [Manuel and Zeume, 2013]. The satisfiability problem of many other logics

and other decision problems in Computer Science were shown to be equivalent in

terms of their complexity to VAS. For example, reachability in vector addition

systems is equivalent in terms of complexity to the problem of reachability in Petri

nets and emptiness of multi-counter automata. The latter problem was shown

to be decidable in [Kosaraju, 1982]. Despite knowing that VAS is recursive,

establishing the exact upper complexity bound for this famous decision problem

has been unsuccessful for many years. Recently in [Leroux and Schmitz, 2015] the

first concrete upper bound for VAS was shown to be cubic Ackermann. The best

known lower complexity bound for VAS is EXPSPACE [Lipton, 1976], hence the

same complexity class is assigned to the finite satisfiability of FO2[≤+
1 ,≤+

2 ,≤∗1].

The diagram with the complexities of satisfiability of two-variable and monadic

two-variable logics with linear order relations is omitted, because there are not

enough complexity results available in this area for a meaningful graphical com-

parison.

An extensive study concerning the complexities of the satisfiability problems of

FO2[] with the combinations of linear orders and total preorders can be found in
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NEXPTIME

EXPSPACE

VAS

RE

FO2[]

FO2[≤+] FO2[≤∗]

FO2[≤+,≤∗]FO2[≤+
1 ,≤+

2 ] FO2[≤∗1,≤∗2]

FO2[≤+
1 ,≤∗2]

FO2[≤+
1 ,≤∗1,≤∗2]

FO2[≤+
1 ,≤∗2] FO2[≤∗1,≤∗2]

FO2[≤+
1 ,≤+

2 ,≤∗1]

FO2[≤+
1 ,≤∗1,≤∗2]

FO2[≤+
1 ,≤+

2 ,≤∗1]

FO2[≤+
1 ,≤+

2 ,≤∗1,≤∗2] FO2[≤∗1,≤∗2,≤∗3]

Figure 2.7: Finite satisfiability of monadic two-variable first-order logic with linear
order relations
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[Schwentick and Zeume, 2012], [Bojańczyk et al., 2006] and [Manuel et al., 2013].

Figure 2.8 summarises the complexity results obtained in these publications.

2.6 Two-variable fragment with tree navigation

relations

In Section 2.5 it was discussed how total preorder relations generalise linear or-

ders. Another useful type of restriction that can be placed on a binary relation

is the requirement that the relation describes a tree. Formally speaking, a tree

relation, denoted ↓∗, is a partial order such that there is a minimum element with

respect to the ordering and for any given element of the model, the set of the

elements that the given element relates to by ↓∗ is well-ordered.

Two-variable first-order logic FO2() extended with one tree relation ↓∗ is

called two-variable first-order logic over unordered trees and is denoted FO2(↓∗)
(similarly for FO2[]). If, in addition to being extended with the ↓∗ relation, two-

variable first-order logic is also extended with a relation→∗ that for every node in

the tree linearly orders the children of that node, then such a logic is called two-

variable first-order logic over ordered trees and is denoted FO2(↓∗,→∗) (similarly

for FO2[]).

Figure 2.9 provides an example an interpretation of relation ↓∗ in a model

consisting of elements from a to i: the solid arrows connect pairs of elements for

which the relation ↓∗ holds. Figure 2.10 provides an example of an interpreta-

tion of relation ↓∗ and an interpretation of relation →∗ in a model consisting of

elements from a to i: the dashed arrows connect pairs of elements for which the

relation →∗ holds.

The two relations for navigating in tree graphs ↓∗ and →∗ are called the

vertical tree navigation relation and the horizontal tree navigation relation, re-

spectively.

It is not possible to define a tree relation in first-order logic. This follows from

the fact that connectivity of arbitrary graphs is not FO-definable (Proposition

3.1 in [Libkin, 2004]) and it is possible to express the connectivity property using

the vertical tree navigation relation.

This is achieved by stating that a given relation R describes a connected graph

if and only if there exists a spanning tree as a subrelation of the symmetric closure
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NEXPTIME

EXPSPACE

VAS

RE

FO2[]

FO2[≤+] FO2[≤∗]

FO2[≤+,≤∗]FO2[≤+
1 ,≤+

2 ] FO2[≤∗1,≤∗2]

FO2[≤+
1 ,≤∗2] FO2[.∗]

FO2[≤+
1 ,≤∗1,≤∗2] FO2[.∗,≤+]

FO2[≤+
1 ,≤∗2] FO2[≤∗1,≤∗2] FO2[.∗] FO2[.+]

FO2[≤+
1 ,≤+

2 ,≤∗1]

FO2[≤+
1 ,≤∗1,≤∗2] FO2[.∗,≤∗] FO2[.+,.∗] FO2[.+,≤∗]

FO2[.+,.∗,≤∗]

FO2[≤+
1 ,≤+

2 ,≤∗1]

FO2[.∗1,.∗2] FO2[.∗,≤+]

FO2[≤+
1 ,≤+

2 ,≤∗1,≤∗2] FO2[.∗,≤+,≤∗] FO2[.+,≤+] FO2[≤∗1,≤∗2,≤∗3]

FO2[.+,≤+,≤∗]FO2[.∗,≤∗1,≤∗2]

FO2[.+,.∗,≤+,≤∗]

Figure 2.8: Finite satisfiability of monadic two-variable first-order logic with total pre-
order and linear order relations
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a

b

c d

e

f g

h i

Figure 2.9: An example of relation
↓∗ interpreted as an unordered tree

a

b

c d

e

f g

h i

Figure 2.10: An example of relations ↓∗
and →∗ interpreted as an ordered tree

of R. Such a statement can be encoded with the following sentence.

∀x∀y(R(x, y)→ R#(x, y))

∀x∀y(R#(x, y)→ (R(x, y) ∨ (R(y, x)))

∀x∀y(↓∗(x, y)→ R#(x, y))

Since by definition the tree relation reaches all the elements of the model, the

interpretation of the relation R is describing a connected graph if and only if the

interpretation of its symmetric closure R# has a spanning tree as a substructure.

The combination of ↓∗ and →∗ relations allows to express a linear order rela-

tion ≤∗ in two-variable first-order logic. To define a linear order relation ≤∗ in

terms of the vertical tree navigation relation ↓∗ and the horizontal tree navigation

relation →∗ in FO2(), it is sufficient to make ↓∗ describe a tree in which every

node has at most one child, as follows.

∀x¬∃y→∗(x, y) (2.2)

Hence, the two-variable first-order fragments with vertical and horizontal tree

navigation relations are strictly more expressive than the corresponding fragments

with linear orders.

The vertical tree navigation successor relation ↓+ and the horizontal tree navi-

gation successor relation→+ are defined similarly to how the successor of a linear

order relation ≤+ is defined in terms of the linear order relation ≤∗. Evidently,

the relations ↓+ and →+ can express the relation ≤+ in FO2() as well, since the
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sentence 2.2 can be reformulated as follows.

∀x¬∃y→+(x, y)

Usually, vertical tree navigation successor relations and horizontal tree nav-

igation successor relations are denoted simply ↓ and → in other publications of

the research area concerning the satisfiability problem of two-variable first-order

logic and its extensions. However, here the superscript + is applied to these two

relation symbols for the sake of consistency with the notation used in denoting

other types of relations discussed previously in this chapter.

2.6.1 Complexity results

Even though the exact complexity classes for the two-variable fragment with

tree navigation and equivalence relations remain unknown, the tight complexity

bounds for FO2[] with the all combinations of vertical and horizontal navigation

predicates were established in [Benaim et al., 2013]. The publication also exam-

ines the complexity of all these fragments under the guarded restriction of FO2[],

denoted GF2[]. Additionally, this work studies the effect of the unary alphabet

restriction on the complexity classes of the logics under consideration.

In the models of the sentences of FO2[] with unary alphabet restriction every

element of the model must be assigned exactly one unary predicate from the

set of unary predicates that are featured in the signature of the given sentence

that the model interprets. This restriction allows to treat the models of the

sentences as data structures labelled by a finite alphabet, where each letter from

the alphabet corresponds to a unary predicate from the signature of the sentence.

More specifically, a sentence φ is satisfied by a model A in FO2[] with unary

alphabet restriction if and only if A |= φ and for every element e ∈ A there is

exactly one unary predicate Pj from the signature of φ such that A |= Pj(ei).

Alternatively, it can be said that the unary predicates from the signature of a

given sentence must form a partition on the set of elements of the model that

interprets that sentence.

For the sake of brevity, FO2[] with unary alphabet restriction is called here

singular monadic two-variable first-order logic and is denoted FO2
S[].

Unary alphabet restriction lessens the expressive power of the logic it applies

to, because it disallows multiple unary predicates from the signature of a given
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sentence to hold for any element of the models of the sentence. At the same time,

for any sentence φ of FO2[] with unary predicates P1, ..., Pk, unary alphabet

restriction can be enforced on the models of φ using the following sentence of

FO2[]: ∧{
∀xPi(x)→

∧
{¬Pj(x)|0 ≤ j ≤ k, j 6= i}|0 ≤ i ≤ k

}
∀x
∨
{Pi(x)|0 ≤ i ≤ k}

Hence, FO2[] or any of its extensions with unary alphabet restriction are strictly

less expressive than the corresponding logics without unary alphabet restriction.

Similarly for GF2[] with unary alphabet restriction.

There are two cases in which the presence of unary alphabet restriction affects

the complexity class of the finite satisfiability of the fragment. Firstly, GF2
S[↓∗] is

PSPACE-complete, whereas the corresponding logic without the unary alphabet

restriction GF2[↓∗] is EXPSPACE-complete. Secondly, FO2
S[↓∗] is NEXPTIME-

complete, whereas FO2[↓∗] is EXPSPACE-complete.

In all the other cases the complexity class of the finite satisfiability problem of

an extension of FO2[] with tree navigation relations is the same as the complexity

class of the corresponding extension of FO2
S[]. When the complexity classes of

a logic with and without unary alphabet restrictions match, the two logics are

represented in the diagram by a single symbol FO2
(S)[]. Otherwise the logic with

unary alphabet restriction is situated below the corresponding logic without unary

alphabet restriction, because the former is strictly less expressive than the latter.

The fact that the complexities of both guarded and non-guarded monadic

two-variable first-order logics has been determined makes it possible to evaluate

the role of the guarded restriction in the presence of tree navigation relations.

For instance, FO2[↓+] is NEXPTIME-complete, whereas GF2[↓+] is EXPTIME-

complete. Extending FO2[↓+] and GF2[↓+] with the horizontal tree naviga-

tion successor relation →+ does not change the complexities of the two logics,

as the logic FO2[↓+,→+] and GF2[↓+,→+] remain NEXPTIME-complete and

EXPTIME-complete, respectively. However, when the horizontal tree navigation

relation→∗ is added to GF2[↓+], the complexity of the resulting logic GF2[↓+,→∗]
jumps up a complexity class and becomes NEXPTIME-complete. At the same

time extending FO2[↓+] with →∗ results in the logic FO2[↓+,→∗] that is in the

same complexity class as both FO2[↓+] and FO2[↓+,→+].

As noted above, the complexity of GF2
S[↓∗] differs from the complexity FO2

S[↓∗
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]. In all the rest of the cases the presence of the guarded restriction does not

affect the complexity bounds of the monadic two-variable first-order logic with

tree navigation relations.

Finally, it is worth observing that GF2[↓∗] is EXPSPACE-hard and bounds

all non-singular fragments that contain ↓∗ relation from below, whereas the most

general logic FO2[↓+, ↓∗,→+,→∗] is in EXPSPACE and bounds of all the other

fragments considered in this paper from above.

Figure 2.11 summarises the complexity results discussed above. The diagram

with the complexities of satisfiability of two-variable and monadic two-variable

logics with tree navigation relations is omitted, because there are not enough

complexity results available in this area for a meaningful graphical comparison.

2.6.2 FO2[] with navigation in trees and XPath

XPath is a query language for XML documents and Core-XPath is its naviga-

tional fragment [Gottlob et al., 2005]. The study of the properties of Core-XPath

is relevant in the context of FO2[] with vertical and horizontal tree navigation

relations and their successors because, according to [Bojańczyk et al., 2009], in

the research on XML and the associated query languages, XML documents are

viewed as ordered trees that have a label from a finite set of labels attached to

each of its nodes. This makes it possible to interpret XML documents as mod-

els of the sentences of FO2[] with tree navigation relations, and vice versa. The

connection between Core-XPath and FO2[] with vertical and horizontal tree nav-

igation relations and their successors was first established in [Marx and de Rijke,

2005]. According to this publication, Core-XPath is equivalent to the monadic

two-variable first-order logic FO2[] with ↓∗, ↓+, →∗ and →+ relations, denoted

FO2[↓∗, ↓+,→∗,→+].

The complexity results on Core-XPath have been related to the complexity re-

sults on FO2[] with navigation in trees. In [Marx, 2004] EXPTIME-completeness

has been shown for the satisfiability of Core-XPath. Because the translation of

a Core-XPath query into the language of FO2[↓+, ↓∗,→+,→∗] produces a for-

mula of at most exponential size, the 2-EXPTIME complexity upper bound can

be immediately derived for the finite satisfiability of the FO2[↓+, ↓∗,→+,→∗]
fragment.

The extension to Core-XPath with the ability to test the attribute values of

the selected XML nodes for equality is called Core-Data-XPath. The question
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Figure 2.11: Finite satisfiability of two-variable first-order logic with tree navigation
relations
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of the decidability of Core-Data-XPath was answered negatively in [Geerts and

Fan, 2005]. The logical characterisation of Core-Data-XPath in terms of FO2
S[]

with the four tree navigation predicates ↓+, ↓∗,→+,→∗ and one equivalence rela-

tion ∼ was described in [Bojańczyk et al., 2009]. This extension of the monadic

two-variable first-order logic is strictly less expressive than the XPath fragment

it models. At the same time the authors of [Geerts and Fan, 2005] managed

to show that the finite satisfiability of FO2
S[∼, ↓+, ↓∗,→+,→∗] is as hard as the

nonemptiness problem of vector addition tree automata. Because the status of

the decidability of nonemptiness of vector addition tree automata remains un-

resolved for several years, finding the upper bound for FO2
S[∼, ↓+, ↓∗,→+,→∗]

is considered to be a difficult research task. The attempt to establish the exact

complexity class for the less expressive logic FO2
S[↓+,→+,∼] was unsuccessful

and as of today the finite satisfiability of this fragment is only known to be in

3-NEXPTIME and NEXPTIME-hard [Bojańczyk et al., 2009].

2.7 Two-variable fragment with counting

In the previous sections it was shown how it is possible to increase the expressive-

ness of the two-variable first-order logic by adding special binary relations that

are not definable in FO2(). Another way to extend the reasoning capabilities of

FO2() is by allowing the counting quantifiers to appear in the sentences of the

logic. The two-variable first-order logic with counting quantifiers, denoted C2(),

consists of the sentences of FO2() in which three additional existential quantifiers

∃≤n, ∃=n, ∃≥n can be used. The three counting quantifiers read, correspondingly,

as “there exists less than or equal to n elements”, “there exists exactly n element”

and “there exists equal to or more than n element”.

The decidability of satisfiability and finite satisfiability of C2() was first demon-

strated in [Grädel et al., 1997b]. NEXPTIME upper bound of satisfiability for

unary encoding of numbers in counting quantifiers was proved in [Pacholski et al.,

1997]. It was also shown in this publication that models of doubly-exponential

size can be enforced by the sentences of C2(), yet the complexity of its finite

satisfiability problem is in NEXPTIME. The same complexity upper bound for

satisfiability and finite satisfiability of C2() with binary encoding of numbers in

counting quantifiers was shown in [Pratt-Hartmann, 2005]. Later, a simplified

proof of the NEXPTIME upper bound of satisfiability and finite satisfiability
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of C2() was presented in [Pratt-Hartmann, 2010]. The NEXPTIME complexity

upper bound is tight, since C2() is strictly more expressive than FO2() and the

latter is known to be NEXPTIME-hard.

2.7.1 Expressiveness of C2()

It is only possible to simulate certain uses of counting quantifiers in FO2().

For instance, the following sentence shows how to enforce the existence of n

realisations of a certain formula φ in FO2() using a set L of n labels4, rather

than the existential quantifier ∃≥n.

∃≥nxφ(x) ≡
∧
{∃xli(x)|li ∈ L} ∧

∧
{∀x(li(x)→ φ(x)|li ∈ L}

The first conjunct of the sentence makes sure that each label from the set L holds

for at least one element. The second conjunct of the above sentence makes sure

that for every element with a label from the set L, the given formula φ(x) holds as

well. Since the labels from the set L are mutually exclusive, every model satisfying

the above sentence must contain at least n elements for which the formula φ(x)

holds.

The addition of counting quantifiers to the two-variable first-order logic, how-

ever, allows to express a number of useful properties that cannot be enforced in

FO2(). An example of this is the statement that a given binary relation R can

only be interpreted as a partial function. The following sentence encodes this

requirement using counting quantifiers in a straightforward manner.

∀x∃≤1y R(x, y)

In Section 2.5 it was demonstrated how a linear order relation ≤∗ can be

simulated by one vertical tree navigation predicate ↓∗ and one horizontal tree

navigation predicate →∗ (or, alternatively, its successor →+). Using counting

4A set of labels is, basically, a set of formulas over one free variable such that each formula is
mutually incompatible (from the satisfiability point of view) with every other formula from the
set. Thus, no two formulas from the set of labels can hold for the same element in any model
at the same time. For a more precise definition of a set of labels and how it is constructed refer
to Chapter 3
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quantifiers, ↓∗ can be turned into a linear order even in the absence of the hori-

zontal tree navigation relations.

∀x∃≤1y ↓∗(x, y) (2.3)

2.7.2 Complexity results

Combining the two-variable first-order fragment with counting quantifiers results

in a more expressive logic and may lead to the increase in the complexity of the

finite satisfiability problem.

For instance, FO2(∼1,∼2) is 2-NEXPTIME-complete, whereas C2(∼1,∼2) is

undecidable. The fragment FO2(≤∗) is NEXPTIME-complete, whereas C2(≤∗) is

equivalent in terms of computational complexity to the problem of reachability in

vector addition systems (VAS-complete), which means it is at least EXPSPACE-

hard. The logic FO2[≤∗1,≤∗2] is EXPSPACE-complete, whereas C2(≤∗1,≤∗2) is

undecidable, although in this case the increase in the complexity may not only

be due to the addition of the counting quantifiers, but also due to the fact that

FO2[≤∗1,≤∗2] is monadic and C2(≤∗1,≤∗2) is not (no separate hardness result is

known for C2[≤∗1,≤∗2]).

At the same time, FO2(↓+), FO2[≤+,≤∗] and FO2(∼) are all NEXPTIME-

complete, and so are their extensions with the counting quantifiers. Interestingly,

alleviating the monadic restriction from the NEXPTIME-complete logic C2[≤+

,≤∗] results in the logic C2(≤+,≤∗) that is VAS-complete.

It is not possible to compare the complexity of the finite satisfiability of C2(<)

and FO2(<), because the decidability of finite satisfiability of the latter fragment

remains open. However, it is known that the satisfiability problem of FO2(<)

is in 2-NEXPTIME, and this contrasts with the undecidability of satisfiability of

C2(<).

Figure 2.12 summarises the finite satisfiability complexity results discussed

above. Only the logics with counting, for which a complexity result is known,

are mentioned in the diagram along with their non-counting variants. Other two-

variable fragments without counting are not displayed for the sake of readability.

The diagram with the complexities of satisfiability of two-variable logics with

counting is omitted, because there are not enough complexity results available in

this area for a meaningful graphical comparison.
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NEXPTIME

EXPSPACE

2-NEXPTIME

VAS

RE

FO2[]

FO2() C2[] FO2[↓+]

FO2[≤+,≤∗] FO2(≤∗) FO2(∼) C2()

C2(≤+)

C2[≤+,≤∗]
C2(∼) C2(≤+

1 ,≤+
2 ) C2(↓+R)

C2(↓+R1
, ↓+R2

) C2(↓+)

FO2[≤∗1,≤∗2] C2(≤∗)

C2(≤+,≤∗)

FO2(∼1,∼2)

C2(≤∗)

C2(≤+,≤∗)

C2(≤∗1,≤∗2) C2(∼1,∼2) C2(<)

Figure 2.12: Finite satisfiability of two-variable first-order logic with counting
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2.7.3 Two-variable first-order logic with counting and tree

navigation predicates

In [Charatonik and Witkowski, 2013] the finite satisfiability of C2() with the

successors of two vertical ranked tree navigation relations ↓+
R1

and ↓+
R2

, denoted

C2(↓+
R1
, ↓+

R2
), was shown to be decidable in NEXPTIME. Given a sentence φ and

two natural number r1 and r2, it is said that φ is (finitely) satisfied in C2(↓+
R1
, ↓+

R2
)

if and only if there exists a (finite) model A such that A |= φ, the predicates ↓+
R1

and ↓+
R2

are interpreted in A as the successors of two independent vertical tree

navigation relations and the maximum number of children of every node in the

trees described by ↓+
R1

and ↓+
R2

are r1 and r2 respectively.

The result of [Charatonik and Witkowski, 2013] not only demonstrated the

NEXPTIME upper complexity bound for the finite satisfiability of C2(↓+
R1
, ↓+

R2
),

but also the NEXPTIME upper bound for the finite satisfiability of FO2[≤+
1 ,≤+

2 ],

which at the time of the publication of [Charatonik and Witkowski, 2013] was

unknown. The fact that C2(↓+
R1
, ↓+

R2
) is strictly more expressive than FO2[≤+

1

,≤+
2 ] follows from the same argument that was described in Subsection 2.7.1 and

demonstrated by Equation 2.3.

The requirement to know the width or the rank of the tree in advance is

limiting the expressive power of relation ↓+
R as compared to the normal successor

of a vertical tree navigation relation ↓+. This is because any sentence of the

two-variable first-order logic with counting and vertical tree navigation relations,

denoted C2(↓+), can easily be converted to a sentence of the two-variable first-

order logic with counting and vertical ranked tree navigation relations that has

the same satisfiability status by adding the following axiom to the given sentence.

∀x∃≤k ↓+ (x, y)

For a given rank of the tree r the above sentence restricts all interpretations of the

successor of the vertical tree navigation relation to the successor of the vertical

navigation in r-ranked trees. Because of this, the proof of the NEXPTIME upper

bound for the finite satisfiability of C2(↓+) that is found in Chapter 4 subsumes the

NEXPTIME complexity result for the finite satisfiability of C2(↓+
R) that follows

from the work of [Charatonik and Witkowski, 2013].

Besides the complexity of the finite satisfiability of C2(↓+
R1
, ↓+

R2
) established

in [Charatonik and Witkowski, 2013] or C2(↓+) established in this thesis, no
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other satisfiability or finite satisfiability results about the extensions of C2() or

C2[] with vertical or horizontal tree navigation relations or their successors are

known.



Chapter 3

Terminology

This chapter contains the definition of the logic C2(↓+), for which the decidability

of finite satisfiability is proved to be in NEXPTIME in the next chapter. Ter-

minological apparatus that is necessary for the presentation of that proof is laid

out here as well.

For a set of elements S, for a binary relation R on S, the graph of R consists of

the set of vertices S and the set of edges {(e1, e2)|e1 ∈ S, e2 ∈ S,R(e1, e2)}. For a

given model A, the graph of A is the graph of the binary predicate ↓+ interpreted

in A (when ↓+ is not in the signature of A, the graph of A contains no edges).

A tree graph is a directed acyclic connected graph such that there exists exactly

one node in that graph that has no incoming edges and every other node in that

graph has exactly one incoming edge. A forest is a directed graph in which every

weakly connected component is a tree graph. A given model A is called a forest

model when the graph of A is a forest.

The set of sentences of two-variable first-order logic with counting quantifiers

and local navigation in forests, denoted C2(↓+), coincides with the set of sentences

of two-variable first-order logic with counting quantifiers C2(). A given sentence

φ ∈ C2() is satisfied by a finite model A in C2(↓+) if and only if φ is satisfied by

A in C2() and A is a forest model.

This definition of C2(↓+) is equivalent to the way the combination of two-

variable first-order logic with counting quantifiers and one successor of a vertical

tree navigation relation is presented in Section 2.7.3 of the Background chapter.

For the remainder of this section we assume that φ is a sentence of C2() and A is

a finite model that satisfies φ in C2(↓+).

The sentence φ is said to be in normal form, if it matches the following pattern.

51
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∀x∀y(α(x, y) ∨ x = y) ∧
∧

1≤i≤M
∀x∃/ciy(βi(x, y) ∧ x 6= y) ∧

∧
1≤j≤K

∃/djxγj(x)

In this context α(x, y), βi(x, y) and γj(x) are formulas of C2() that do not contain

any quantifiers or equality symbols, / stands for either ≤, ≥, or =, ci and dj are

positive natural numbers expressed using binary coding, M is the total number

of conjuncts in φ with the ∀x∃y/ci quantifier prefix and K is the total number of

conjuncts in φ with the ∃x/dj quantifier prefix. For each given sentence φ the value

of number Z is defined to be equal to C ·M , where C = max({ci|1 ≤ i ≤M}).
For any sentence of C2() it is always possible to find another sentence in normal

form in polynomial time such one sentence is satisfiable in C2() if and only if the

other sentence is satisfiable in C2() [Grädel and Otto, 1999]. For the remainder

of this section we assume that φ is in normal form.

The signature of a given model A is the set of all predicates featured in A and

is denoted Σ(A). The signature of φ, written as Σ (φ), is the set of unary and

binary relation symbols that appear in φ. The size of φ is denoted |φ|.
The rough size of φ is equal to |Σ(φ)| plus the size of the binary encoding of

the sum of all ci and di (the sum of the values of the numbers ci and di, not the

sum of the sizes of the binary coding of these values) in φ. The following lemma

follows from the proof of Theorem 1 in [Pratt-Hartmann, 2010].

Lemma 1. Given a sentence φ ∈ C2(), the finite satisfiability of φ can be deter-

mined in nondeterministic exponential time with respect to its rough size.

For a given number n a normal form sentence φ ∈ C2 can be of exponential

length with respect to n and at the same time have a polynomial rough size

with respect to n. This can be possible when the size of the signature of φ

is polynomial with respect to n and every value ci and di that appears in the

counting quantifiers of φ is at most exponential with respect to n. This fact about

the notion of rough size is going to be crucial in proving the upper complexity

bound of the finite satisfiability algorithm of C2(↓+) in the next chapter. In

particular, for a given sentence of C2(↓+) of length n an auxiliary sentence is

going to be constructed as part of the finite satisfiability algorithm run such that

the length of the auxiliary sentence is exponential with respect to n and the rough

size of the auxiliary sentence is polynomial with respect to n. Then, Lemma 1 is
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going to be envoked to determine the satisfiability status of this auxiliary sentence

in at most nondeterministic exponential amount of time with respect to n, which

is essential for getting a tight upper complexity bound on the running time of the

finite satisfiability algorithm.

For a given n-ary predicate R and some given n-tuple of variables x, a literal

is the formula R(x) or the formula ¬R(x).

A 1-type of φ is any maximally consistent set of literals over the tuples of

variables (x) and (x, x) and the set of unary and binary predicates from the

signature Σ(φ). For example, if the signature of a given sentence φ is {R1, P 1, Q2},
then the set {R(x),¬P (x),¬Q(x, x)} is an example of a 1-type of φ. Another

example of a 1-type of φ is {¬R(x),¬P (x), Q(x, x)}. The set of all 1-types over

the signature Σ(φ) is denoted τ(φ).

Given a model A and an element of the model e, the 1-type of the element

e consists of the set of all the unary literals Ru from the signature of A such

that A |= Ru(e) and all the binary literals Rb from the signature of A such that

A |= Rb(e, e). The 1-type of e ∈ A is denoted tpA[e]. A 1-type τi is said to be

realised in A if there exists an element e ∈ A such that tpA[e] = τi.

For technical reasons that become apparent in Chapter 4, certain kinds of

1-types have to be distinguished in a given model. For any τi ∈ τ(φ), if there

exists only one realisation of τi in A, then τi is called a royal 1-type. If there exist

more than 5 · Z realisations of τi in A, then τi is called a populous 1-type. The

1-types that are neither royal nor populous are called noble.

A 2-type of φ is a maximally consistent set of literals over the tuples of

variables (x), (y), (x, x), (y, y), (x, y) and (y, x) and the set of unary and bi-

nary predicates from the signature Σ(φ), excluding the literal x = y. For

example, if the signature of a given sentence φ is {R1, P 1, Q2}, then the set

{R(x),¬P (x),¬R(y),¬P (y) ,¬Q(x, x), Q(x, y), Q(y, x), Q(y, y)} is an example of

a 2-type of φ. Another example of a 2-type of φ is {¬R(x),¬P (x),¬R(y), P (y),

Q(x, x), Q(x, y),¬Q(y, x), ¬Q(y, y)}. The set of all 2-types over the signature

Σ(φ) is denoted as π(φ).

Given a model A and a pair of elements of the model (e1, e2), the 2-type of the

elements (e1, e2) consists of the set of all the unary literals Rx
u from the signature

of A in variable x such that A |= Rx
u(e1) and all the unary literals Ry

u from the

signature of A in variable y such that A |= Ry
u(e2), as well all the binary literals

Rb from the signature of A such that A |= Rb(e1, e2). The 2-type of (e1, e2) in A
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is denoted tpA[e1, e2]. A 2-type πi is said to be realised in A if there exists a pair

of distinct elements e1 ∈ A, e2 ∈ A such that tpA[e, e′] = πi.

The 1-types and 2-types can be represented as formulas in the language of

C2() as the conjunctions of all their literals.

Recalling that for a given sentence φ in normal form M signifies the num-

ber of conjuncts with the ∀x∃y/ci quantifier prefix and βj designates one of the

quantifier-free subformulas of φ that are preceeded by this quantifier prefix, the

following applies.

For any 2-type πi ∈ π(φ), if |= πi(x, y)→ ¬(βj(x, y)∨βj(y, x)) for all 1 ≤ j ≤
M , then πi is called a silent 2-type. The silent 2-type πi between the elements e

and e′ is depicted as follows.

e e′
πi

For any pair of elements e ∈ A, e′ ∈ A, the element e sends a message to the

element e′ when A |= βi(e, e
′) for at least one βi.

For any 2-type πi ∈ π(φ), if |= πi(x, y) → βj(x, y) for some 1 ≤ j ≤ M ,

then πi is called forward message-type. The forward message-type πi between the

elements e and e′ is depicted as follows.

e e′
πi

For any 2-type πi ∈ π(φ), if |= πi(x, y) → βj(y, x) for some 1 ≤ j ≤ M ,

then πi is called reverse message-type. The reverse message-type πi between the

elements e and e′ is depicted as follows.

e e′
πi

An invertible message-type is both a forward message-type and a reverse

message-type. The invertible message-type π between the elements e and e′ is

depicted as follows.

e e′
π

For any 2-type πi ∈ π(φ), if |= πi(x, y)→↓+ (x, y), then πi is called edge-type.

The edge-type πi between the elements e and e′ is depicted as follows.

e e′
πi

The set of all the silent 2-types over the signature Σ(φ) is denoted s(φ). The

set of all message-types (forward, reverse and invertible) over the signature Σ(φ)

is denoted µ(φ). The set of all forward message-types over the signature Σ(φ) is

denoted µ→(φ). The set of all reverse message-types over the signature Σ(φ) is
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denoted µ←(φ). The set of all invertible message-types over the signature Σ(φ)

is denoted µ↔(φ). The set of all edge-types over the signature Σ(φ) is denoted

ε(φ).

Denote by N the sum of the number of forward message-types and invertible

message-types in Σ(φ). The star-type of an element e ∈ A is the 1-type of e

and an N-tuple σ = (v1, ..., vN) of natural numbers, where for every forward or

invertible message-type µj ∈ µ→(φ) ∪ µ↔(φ), the corresponding number vj is

calculated as follows:

vj = |{e′ ∈ A \ {e} : tpA[e, e′] = µj}|

The definition of a star-type is adopted from [Benedikt et al., 2012]. In essence,

a star-type of an element records the 1-type of that element and the number of

times the element sends each of the forward and invertible message-types to the

other elements of the model. A star-type of an element e ∈ A is denoted stA[e].

The set of all star-types in the signature Σ(φ) is denoted st(φ). A star-type

stj consisting of the 1-type τj and the N-tuple (v1, ..., vN) can be expressed as a

formula of C2() over one free variable x as follows

stj(x) = τj(x) ∧
∧
{∃=viyµi(x, y) | µi ∈ µ→(φ) ∪ µ↔(φ), 1 ≤ i ≤ N}

Given a sentence φ and a model A, writing A|Σ(φ) (or, alternatively A|φ)

designates the restriction of the model A to the signature Σ(φ).

For a pair of models A and A′, we write A ≈ A′, when |A| = |A′| (the universes

of the models coincide) and for every e ∈ A, stA[e] = stA
′
[e].

A tree-like cycle is a directed graph that consists of a single cycle subgraph

and a number of tree subgraphs rooted at the nodes of the cycle. Figure 3.1

demonstrates an example of a tree-like cycle. The elements a, b, f form the cycle

of that tree-like cycle graph. The nodes b and f are the roots of trees of that

tree-like cycle graph.

The model A is called arboreal when the graph of A consists of a positive

number of connected components that are trees and a number of connected com-

ponents that are tree-like cycles.

The forest of A is the set of the the connected components of the graph of A

that are trees. An edge between two elements of A that belong to the forest of A

is called a forest edge. Since every tree-like cycle connected component contains
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a

b

c d

e

f

g

h j

Figure 3.1: An example of a tree-like cycle

a cycle as its subgraph, the number of tree-like cycle connected components and

the number of cycle subgraphs is always the same in the graph of an arboreal

model A. An edge between two elements of A that belong to a cycle of A is called

a cycle edge. Every element of an arboreal model A either belongs to the forest

of A or to the tree-like cycles of A.

The model A is called alternating when for every path in the graph of length

3 the nodes that belong to the path are assigned a distinct 1-type. The model

A is called φ-differentiated when every 1-type τi ∈ τ(φ) realised in A is either a

king 1-type or a populous 1-type. The model A is called φ-populated when every

populous 1-type τi ∈ τ(φ) is realised more than 5 · Z in the forest of A. The

model A is called φ-rewirable when for every star-type si ∈ s(φ), if si is realised

in A, then si is realised in the forest of A.

The model A is called φ-chromatic when for every element e ∈ A the following

two conditions hold: 1) there does not exist an element e′ ∈ A such that tpA[e] =

tpA[e′] and tpA[e, e′] ∈ µ↔(φ); 2) there does not exist a pair of elements e′ ∈ A

and e′′ ∈ A such that tpA[e′] = tpA[e′′], tpA[e, e′] ∈ µ↔(φ) and tpA[e, e′′] ∈ µ↔(φ).

For a given set of unary predicates P, a label is the conjunction of a maximally

consistent set of literals over the variable x and the set of predicates P. In essence,

a label in the signature P is nothing else but a 1-type over P.

For a given natural number n we can asociate a sentence ω that defines the

set of labels L of size n. This is achieved by introducing the set of fresh unary

predicates P of size blogn2 c + 1 and generating the sentence ω that prevents the

realisation of 2|P| − n labels in that signature. Since the total number of labels

that are possible in the signature P is 2|P|, the sentence ω allows for at most n

labels to be realised in every model A |= ω.

Every element of every model A |= ω is always assigned exactly one label
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from L. This is because the unary predicates that are used to generate labels are

part of the signature of ω. Therefore the 1-type of every element of A is going

to contain some combination of these unary predicates, and satisfy a particular

label, as a result. Essentially labels are used for colouring the elements of the

model with unique and mutually exclusive combinations of unary predicates.



Chapter 4

Finite satisfiability of C2(↓+)

4.1 Preliminaries

This chapter presents the proof that the finite satisfiability of the sentences of

C2(↓+) can be established in nondeterministic exponential time. In broad terms

this chapter demonstrates a reduction of the problem of establishing the finite

satisfiability of a given sentence φ in C2(↓+) to the problem of establishing the

finite satisfiability of the sentence ωφ in C2(), which is derived from φ in a prede-

termined way.

In order to describe how the sentence ωφ is derived from φ we need to introduce

the notion of a translator. A translator is a nondeterministic exponential time

algorithm that accepts as input a sentence of C2() in normal form and for each

possible run returns a sentence of C2() in normal form such that the rough size of

the output sentence is polynomial in the rough size of the input sentence. For a

given translator Ω, for a given sentence φ, a nondeterministic run of Ω on φ that

produces the output sentence ω is denoted ω = Ω(φ). The definition Ω(φ) :=

ω1∧ω2∧...∧ωi expresses the fact that the translator Ω takes φ as input and returns

the sentence ω1 ∧ ω2 ∧ ... ∧ ωi as output, for some set of sentences ω1, ω2, ..., ωi.

Defining functions as translators helps keep a bound on the rough size of the

output sentences that these functions generate. Informally speaking, the sentence

generated by a translator can be used safely in the proof without running the risk

of increasing the complexity class of the finite satisfiability algorithm of C2(↓+).

The sentence ωφ is generated from φ nondeterministically by the translator Ω

(defined in Section 4.2.8), which takes the sentence φ as input. It is demonstrated

in this chapter that a given sentence φ is finitely satisfiable in C2(↓+) if and only

58



CHAPTER 4. FINITE SATISFIABILITY OF C2(↓+) 59

if the algorithm Ω, given φ as input, nondeterministically produces a sentence ωφ

as output, such that ωφ is finitely satisfiable in C2(). This is stated formally as

the following theorem.

Theorem 1. There exists a sentence ωφ = Ω(φ) that is finitely satisfiable in C2()

if and only if φ is finitely satisfiable in C2(↓+).

Because the algorithm Ω is a translator, the rough size of the generated sen-

tence ωφ is always polynomial with respect to the size of φ. Due to Lemma 1,

given that the finite satisfiability of C2() is in NEXPTIME, the same upper bound

for the finite satisfiability of C2(↓+) follows.

Forward implication of Theorem 1

The fact that the left part of the biconditional in Theorem 1 is sufficient for the

right part follows from the way Ω is defined: the generated sentence ωφ consists

of a set of conjuncts, the sentence φ is one of the conjuncts of ωφ and the rest of

the conjuncts of φ can always be satisfied by extending any tree model of φ in a

straightforward manner. This is described in more detail in Section 4.2.8 as the

proof of Lemma 7.

Reverse implication of Theorem 1

The fact that the left part of the biconditional in Theorem 1 is necessary for the

right part follows from demonstrating how an arbitrary model of ωφ can always

be converted into a model of φ that is also a forest. The technique of transforming

an arbitrary model of ωφ into a forest model of φ is adapted from [Charatonik

and Witkowski, 2013].

The process of the transformation of a model of ωφ begins with recognising

that, due to the way ωφ is generated by Ω, such a model must possess a number

of specific properties. These properties and the way they are imposed on the

models of sentences generated by Ω are described in the subsections of Section

4.2. Each of these subsections defines how a part of the sentence ωφ is created

that is responsible for one of the model properties, and in the end of this section

all these parts are put together and the definition of the translator Ω is provided.

One of these model properties is the arboreal property, which maintains that

the graph of the model possessing such a property consists of a set of trees and a

set of tree-like cycles. The model can be modified then by swapping the 2-types
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between certain pairs of elements, while preserving the finite satisfiability of the

resulting model with respect to the sentence ωφ. As the result of this model

surgery, a tree-like cycle gets embedded in an existing tree, becoming one of its

branches. Repeating this process for each tree-like cycle converts the given model

into a model that has a graph consisting only of trees and no tree-like cycles.

b

a

b′

a′

...

...

...

Figure 4.1: Before changing 2-types

b

a

b′

a′

...

...

...

Figure 4.2: After changing 2-types

Section 4.3 is dedicated to the proof of a fairly elaborate lemma that is nec-

essary for handling a certain type of rewiring cases in Section 4.4. The lemma

in question guarantees that for any given element of a model it is possible to

find another element of the right kind, such that the two elements are assigned a

silent 2-type. Later on this lemma is referred to in the part of the proof that is

handling different model surgery cases, where the fact about the existence of the

required element is invoked.

Section 4.4 is where, using the preparations from the previous sections, it is

shown that if there exists a model of a sentence generated by Ω, there exists a

forest model of that sentence, as well.

Firstly, it is demonstrated in the section that the process of rewiring a model

with a given set of properties preserves these properties after a tree-like cycle gets

embedded into the tree. This is necessary so that any number of rewirings can

take place using the same procedure, until all tree-like cycles that exist in the

model are embedded into the tree components of the model.

Secondly, a suitable edge of the forest component of the model and a suitable

edge of the tree-like cycle of the model are located for carrying out the rewiring,
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as demonstrated on page 78 in Figure 4.13 and Figure 4.14 of Section 4.4. The

existence of such edges is due to the rewirable property of the model under consid-

eration, imposed on that model by the sentence ωrew that is described in Section

4.2.7.

Thirdly, each individual case of possible 2-types that can appear between the

selected edges of the graph is considered. It is shown that in any possible scenario

the rewiring process leads to the model that preserves the relevant properties that

it had before the rewiring, including the finite satisfiability with respect to the

sentence φ.

Section 4.5 summarises the result of the model rewiring process as the proof

of Lemma 12. This leads to the statement of Theorem 2, that is the main result

of this chapter.

4.2 Auxiliary sentences and translators

Every model that satisfies the sentences generated by the translator Ω has to

have the arboreal, alternating, chromatic, differentiated, populated and rewirable

properties (with some qualification for the signature that these properties apply

to, as detail in Subsection 4.2.8). The definition of the translator Ω depends on

a set of auxiliary sentences and translators, each of which generates a sentence

that forces one the above mentioned properties on its models.

4.2.1 The sentence ωarb and the arboreal property

The sentence ωarb makes sure that every model of that sentence has the arboreal

property.

ωarb = ω1
arb ∧ ω2

arb ∧ ω3
arb

The sentence ω1
arb prevents the existence of cycles consisting of one and two

nodes in the graphs of ↓+ for technical reasons.

ω1
arb = ∀x¬↓+(x, x) ∧ ∀x∀y(↓+(x, y)→ ¬↓+(y, x))

The sentence ω2
arb makes sure that there always exists at least one root node

in the graph of ↓+.

ω2
arb = ∃x∀y¬↓+(y, x)
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The sentence ω3
arb prevents the existence of more than one parent for every

node in the graph of ↓+.

ω3
arb = ∀x∀y(↓+(x, y)↔ ↑+(y, x)) ∧ ∀x∃≤1y ↑+(x, y)

The rough size of the sentence ωarb can be considered polynomial with respect

to the rough size of φ as the length of ωarb is constant.

4.2.2 The sentence ωalt and the alternating property

The sentence ωalt makes sure that every model satisfying it has the alternating

property.

The sentence ωalt assigns one of the three colours to each element of the model

of ωalt so that the colour of each element is different from the colour of its parent

and its children and the colours of its children and its parent are different from

each other.

ωalt = ω1
alt ∧ ω2

alt ∧ ω3
alt ∧ ω4

alt ∧ ω5
alt ∧ ω6

alt ∧ ω7
alt

ω1
alt = ∀x (red (x) ∨ green (x) ∨ blue (x))

ω2
alt = ∀x (red (x)→ (¬green (x) ∧ ¬blue (x)))

ω3
alt = ∀x (green (x)→ (¬red (x) ∧ ¬blue (x)))

ω4
alt = ∀x (blue (x)→ (¬red (x) ∧ ¬green (x)))

ω5
alt = ∀x∀y

((
red (x) ∧ ↓+(x, y)

)
→ green (y)

)
ω6
alt = ∀x∀y

((
green (x) ∧ ↓+(x, y)

)
→ blue (y)

)
ω7
alt = ∀x∀y

((
blue (x) ∧ ↓+(x, y)

)
→ red (y)

)
The rough size of the sentence ωalt can be considered polynomial with respect

to the rough size of φ as the length of ωalt is constant.

4.2.3 The translator Ωchr and the chromatic property

The translator Ωchr accepts as input a sentence φ ∈ C2() and makes sure that every

model satisfying the sentence ωchr = Ωpar(φ) has the ωchr-chromatic property.

Ωchr(φ) := φ ∧ ω1
chr ∧ ω2

chr ∧ ω3
chr
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Firstly, the sentences ω1 and ω2 ensure that the sentences ωchr can only be

satisfied by the models that are ωchr-chromatic. This is achieved by ω1 and ω2

encoding the two requirements of the chromaticity.

The sentence ω1
chr makes sure that for any pair of elements of the same 1-type,

the 2-type of that pair of elements is not an invertible message-type.

ω1
chr =

∧
{∀x∀y((τi(x) ∧ τi(y))→ ¬πj(x, y)) | τi ∈ τ(ωchr), πj ∈ µ↔(ωchr)}

The sentence ω2
chr makes sure that every element can send at most one invert-

ible message type to the elements of the same 1-type.

ω2
chr =

∧
{∀x∃≤1y(τi(y) ∧

∨
{πj(x, y) | πj ∈ µ↔(ωchr)}) | τi ∈ τ(ωchr)}

Secondly, the sentence ω3 ensures that for any model satisfying φ there exists

a model in the signature Σ(φ) ∪ Σ(ωchr) that meets the constraints of ω1
chr and

ω2
chr. This is achieved by ω3 defining the set of Z2 + 1 labels Lchr.

The predicates used for encoding Lchr are the only new predicates added by

the translator Ωchr to the signature of the sentence φ. This allows us to define

the signature of the sentence ωchr as Σ(φ) ∪ Σ(ω3
chr).

The rough size of the sentences generated by Ωchr can be considered polyno-

mial with respect to the rough size of φ, because their length is at most expo-

nential with respect to the rough size of φ and the size of their signature is at

most polynomial with respect to the rough size of φ. The set Lchr contains an

exponential number of labels, but it is necessary to introduce only a logarithmic

number of new unary predicates to encode the labels.

4.2.4 The translator Ωdiff and the differentiated property

The translator Ωdiff accepts as input a sentence φ ∈ C2() and makes sure that

every model satisfying any sentence ωdiff = Ωdiff (φ) has the ωdiff -differentiated

property.

Ωdiff (φ) := φ ∧ ω1
diff ∧ ω2

diff ∧ ω3
diff

Firstly, the number N is nondeterministically chosen between 0 and |P(τ(φ))|.
Then the sentence ω1

diff defines the set of 5 · Z ·N labels Ldiff .

Two sets K and P are nondeterministically chosen as the elements of the set

P(τ(Σ(φ)∪Σ(ωdiff ))) such that K ∪ P = τ(φ) and K ∩ P = ∅ . They are called
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respectively the set of king 1-types and the set of populous 1-types.

The sentence ω2
diff makes sure that the elements of king 1-types are realised

at most once.

ω2
diff =

∧
{∀x∀y((τi(x) ∧ τi(y))→ x = y) | τi ∈ K}

The sentence ω3
diff makes sure that the elements of populous 1-types are

realised at least 5 · Z times.

ω3
diff =

∧
{∃>5·Zxτi(x)|τi ∈ P}

If there exists a model A |= φ, then the number N can be nondeterministically

selected to be equal to the number of noble 1-types realised in A. The model

A′|Σ(φ) = A can be produced from A by assigning a unique label from Ldiff to

every element of a noble 1-type in A. As the result, A′ |= φ ∧ ωdiff and every

1-type of A′ is either realised fewer than two times or more than 5 · Z times.

At the same time, for any sentence ωdiff = Ωdiff (φ), for any model A |=
ωdiff ∧φ, the elements of A are either realised one time or more than 5 ·Z times.

The rough size of the sentences generated by Ωdiff can be considered polyno-

mial with respect to the rough size of φ, because their length is at most exponen-

tial with respect to the rough size of φ and the size of their signature is at most

polynomial with respect to the rough size of φ. The values that appear in the

counting quantifiers of the these sentences is also at most exponential with re-

spect to φ, and the binary encoding of their sum is, thus, polynomial with respect

to φ. The set Ldiff contains an exponential number of labels, but it is necessary

to introduce only a logarithmic number of new unary predicates to encode the

labels.

4.2.5 The translator Ωfrst and labelling forest elements

The translator Ωfrst accepts as input a sentence φ that is a disjunction of a set

of labels LI and makes sure that every model satisfying any sentence ωfrst =

Ωfrst(LI) does not have any labels from LI realised outside its forest.

Ωfrst(φ) := ω1
frst ∧ ω2

frst ∧ ω3
frst ∧ ω4

frst ∧ ω5
frst ∧ ω6

frst ∧ ω7
frst ∧ ω8

frst ∧ ω9
frst ∧ ω10

frst

The sentence ω1
frst defines the set of 2 · |LI | labels LC . The sentence ω2

frst
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defines the set of 3 · |LI | labels LO.

The binary relation ⇓ is nondeterministically generated on the set LI ∪ LC
such that the graph of ⇓ is a forest. The labels from the set LI ∪LC are put into

an arbitrary (but deterministically generated) one-to-one correspondence with

the labels from the set LO. This is achieved by defining the bijective relation ⇔
on the set (LI ∪ LC)× LO.

The sentences ω3
frst, ω

4
frst, ω

5
frst make sure that each of the L labels can only

be realised in the forest of the model of the output sentence.

ω3
frst =

∧
{∀x∀y((↓+(x, y) ∧ li(y))→ (om(x) ∨ ck(x) ∨ lj(x)) |

li ∈ LI , lj ∈ LI , ck ∈ LC , om ∈ LO,⇓(li, lj),⇓(li, ck),⇔(li, om)}

ω4
frst =

∧
{∀x∀y((↓+(x, y) ∧ ci(y))→ (om(x) ∨ ck(x) ∨ lj(x)) |

ci ∈ LC , om ∈ LO,⇔(ci, om), ck ∈ LC ,⇓(ci, ck), lj ∈ LI ,⇓(ci, lj)}

ω5
frst =

∧
{∀x∀y((↓+(x, y) ∧ oi(y))→ (oi(x) ∨ cj(x)) |

oi ∈ LO, cj ∈ LC ,⇔(oi, cj)}

The sentences ω6
frst, ω

7
frst and ω8

frst assign an additional unary predicate to

each of the labelled elements of the model.

ω6
frst =

∧
{∀x(ci(x)→ c(x)) | ci ∈ LC}

ω7
frst =

∧
{∀x(li(x)→ l(x)) | li ∈ LI}

ω8
frst =

∧
{∀x(oi(x)→ o(x)) | oi ∈ LO}

The sentence ω9 prevents the paths of O-labelled elements from branching.

ω9
frst = ∀x∃≤1y(↓+(x, y) ∧ o(y))

The sentence ω10
frst prevents more than one L, C or O label from being assigned

to the same element.

ω10
frst = ∀x((o(x)→ ¬(l(x)∨c(x)))∧(l(x)→ ¬(c(x)∨o(x)))∧(c(x)→ ¬(l(x)∨o(x))))
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The rough size of the sentences generated by Ωfrst can be considered polyno-

mial with respect to the rough size of φ, because their length is at most expo-

nential with respect to the rough size of φ and the size of their signature is at

most polynomial with respect to the rough size of φ. The sets LC and LO each

contain an exponential number of labels, but it is necessary to introduce only a

logarithmic number of new unary predicates to encode the labels.

4.2.6 The translator Ωpop and the populated property

The translator Ωpop accepts as input a sentence φ ∈ C2() and makes sure that

every model satisfying any sentence ωpop = Ωpop(φ) has the φ-populated property.

Ωpop(φ) := φ ∧ ω1
pop ∧ ω2

pop ∧ ω3
pop ∧ ω4

pop ∧ ω5
pop

The set T is nondeterministically chosen as an element of the set P(τ(φ)). It

represents the set of populous 1-types realised in some model of φ.

The sentence ω1
pop defines the set of 5 · Z · |T | labels Lpop.

The relation ⇔ is defined on the set T × Lpop in such a way that for each

τi ∈ T there exists exactly 5 · Z labels lj ∈ Lpop such that ⇔(τi, lj).

The sentences ω2
pop, ω

3
pop and ω4

pop make sure that the elements of the populous

1-types are realised more than 5 · Z times among the forest elements.

The sentence ω2
pop makes sure that the labels Lpop can only be realised in the

forest.

ω2
pop = Ωfrst(

∨
Lpop)

The sentence ω3
pop makes sure that each of the Lpop labels is realised exactly

one time.

ω3
pop =

∧
{∀x∃=1y li(y) | li ∈ Lpop}

The sentence ω4
pop makes sure that the elements of the populous 1-types are

realised at least 5 · Z times.

ω4
pop =

∧
{∀x(li(x)→ τj(x))|li ∈ Lpop, τj ∈ T, li ⇔ τj}

The sentence ω5
pop prevents any 1-type that is not in T from being populous.

ω5
pop =

∧
∃≤5·Zxτi(x)|τi ∈ τ(φ), τi 6∈ T )



CHAPTER 4. FINITE SATISFIABILITY OF C2(↓+) 67

The rough size of the sentences generated by Ωpop can be considered polyno-

mial with respect to the rough size of φ, because their length is at most expo-

nential with respect to the rough size of φ and the size of their signature is at

most polynomial with respect to the rough size of φ. The values that appear in

the counting quantifiers of the these sentences is also at most exponential with

respect to the rough size of φ, and the binary encoding of their sum is, thus, poly-

nomial with respect to the rough size of φ. The set Lpop contains an exponential

number of labels, but it is necessary to introduce only a logarithmic number of

new unary predicates to encode the labels. The rough size of the sentence ω2
pop is

polynomial with respect to the rough size of φ, because Ωfrst is a translator and

the rough size of
∨
Lpop is polynomial with respect to the rough size of φ.

4.2.7 The translator Ωrew and the rewirable property

The translator Ωrew accepts as input a sentence φ ∈ C2() and makes sure that

every model satisfying any sentence ωrew = Ωrew(φ) has the φ-rewirable property.

Ωrew(φ) := φ ∧ ω1
rew ∧ ω2

rew ∧ ω3
rew ∧ ω4

rew

A set of star-types S is nondeterministically chosen as an element of the set

P(st(φ)) such that the cardinality of S is at most exponential with respect to φ.

The sentence ω1
rew defines the set of |S| labels Lrew.

In order to put the elements of the set Lrew into a one-to-one correspondence

with the elements of S the bijective relation ⇔ is generated on the set Lrew × S
in an arbitrary way.

The sentence ω2
rew makes sure that each of the Lrew \ {l0} labels is realised

only in the forest of A. The empty label has to be allowed to realise anywhere in

the model, otherwise some models of φ that are forests may not satisfy some of

the sentences ωrew = Ωrew(φ).

ω2
rew = Ωfrst(

∨
Lrew \ {l0})

The sentence ω3
rew prevents any Lrew labels from being assigned to the root

nodes of the forest.

ω3
rew = ∀x∀y(¬↓+(y, x)→

∧
{¬li(x) | li ∈ Lrew})
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The sentence ω4
rew makes sure that each element realising a label from Lrew is

assigned a star-type that corresponds to the label according to the relation ⇔.

ω4
rew =

∧
{∀x(li(x)→ stj(x) | li ∈ Lrew, stj ∈ S, li ⇔ stj}

The sentence ω5
rew makes sure that each of the Lrew labels is realised exactly

once.

ω5
rew =

∧
{∀x∃=1y li(y) | li ∈ Lrew}

The sentence ω6
rew makes sure that only the star-types from the set S are

allowed to be realised in A. Otherwise, some star-types that do not belong to S

may be realised outside the forest of the model of ωrew.

ω6
rew =

∧
{∀x¬sti(x) | sti ∈ st(φ) \ S}

The rough size of the sentences generated by Ωrew can be considered polyno-

mial with respect to the rough size of φ, because their length is at most expo-

nential with respect to the rough size of φ and the size of their signature is at

most polynomial with respect to the rough size of φ. The set Lrew contains an

exponential number of labels, but it is necessary to introduce only a logarithmic

number of new unary predicates to encode the labels. The rough size of the sen-

tence ω2
rew is polynomial with respect to the rough size of φ, because Ωfrst is a

translator and the rough size of
∨
Lrew \ {l0} is polynomial with respect to the

rough size of φ.

4.2.8 The translator Ω

Consider the following definition of the translator Ω from the other sentences and

translators described in this section.

Ω1(φ) := φ ∧ ωarb ∧ ωalt
Ω2(φ) := ωchrom, where ωchrom = Ωchrom(ω2) and ω2 = Ω1(φ).

Ω3(φ) := ωdiff , where ωdiff = Ωdiff (ω3) and ω3 = Ω2(φ).

Ω4(φ) := ωpop, where ωpop = Ωpop(ω4) and ω4 = Ω3(φ).

Ω(φ) := ωrew, where ωrew = Ωrew(ω5) and ω5 = Ω4(φ).

The translator Ω forces certain properties on the models of the sentences that

it generates. The following lemmas describe the signature that each of these

properties applies to.
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Lemma 2. For any sentence φ ∈ C2(), for any ω = Ω1(φ), for any model A |= ω,

the model A is arboreal and alternating.

Proof. Self-evident from the definitions of arboreal and alternating model prop-

erties and the definitions of ωarb and ωalt sentences.

Lemma 3. For any sentence φ ∈ C2(), for any ω = Ω2(φ), for any model A |= ω,

the model A is arboreal, alternating and ω-chromatic.

Proof. The output sentence of the translator Ωchrom guarantees the chromatic

property for any model satisfying it. The arboreal and alternating properties of

the model are preserved, as they are signature independent.

Lemma 4. For any sentence φ ∈ C2(), for any ω = Ω3(φ), for any model A |= ω,

the model A is arboreal, alternating, ω-chromatic and ω-differentiated.

Proof. Since Ωdiff translator does not contain any ∀x∃/ciyβi(x, y) clauses, no

new invertible message-types can arise in A as compared to A|ω2, where ω2 is the

sentence that is generated by the Ω2 translator as part of the application of Ω3

to φ. Therefore, the chromatic property defined by the output of Ω2(φ) in this

case extends to the signature of ω as well.

Lemma 5. For any sentence φ ∈ C2(), for any ω = Ω4(φ), for any model A |=
ω, the model A is arboreal, alternating, ω3-chromatic, ω3-differentiated and ω3-

populated, where ω3 is the sentence that is generated by the Ω3 translator as part

of the application of Ω4 to φ.

Proof. For any given sentence φ ∈ C2(), the translator Ωpop generates a sentence

ω = Ωpop(φ) that guarantees the populated property only up to the signature of

φ, not ω as a whole. This is contrasted with the translator Ωdiff , that guarantees

the differentiated property for the signature of its output sentence, not only its

input sentence. Therefore, the combination of all the above mentioned properties

is justified for the signature of the sentence that is the result of the execution of

Ω3 in this case.

Lemma 6. For any sentence φ ∈ C2(), any ω = Ω(φ) and any model A |= ω,

model A is arboreal, alternating, ω3-chromatic, ω3-differentiated, ω3-populated

and ω3-rewirable, where ω3 is the sentence that is generated by the Ω3 translator

as part of the application of Ω to φ.
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Proof. The execution of Ωpop translator results in a sentence that has a signature

containing new predicates as compared to the signature of the sentence that it

accepts as input. Therefore, the result of the execution of Ω produces a sentence

that guarantees the rewirable property up to the signature of ω4, where ω4 is

the result of the execution of Ω4, not ω3, where ω3 is the result of the execution

of Ω3 in this case. However, the rewirable property is preserved under taking

substructures of models for a reduced signature. Therefore, the ω4-differentiated

property of models satisfying ω also guarantees the ω3-differentiated property for

such models.

It is also necessary to note that for a given sentence φ for every forest model

that satisfies φ the translator Ω can generate an sentence that can accommodate

such a model. This is a necessary condition for both directions of the biconditional

of the Theorem 1 to hold.

Lemma 7. If φ is finitely satisfiable in C2(↓+), then some sentence ω = Ω(φ) is

finitely satisfiable in C2().

Each of the properties described in this chapter is compatible with models

that are forests. That is, any model of φ that is a forest can always be extended

by appropriate new predicates in order to be satisfied by at least one of the

sentences ω that the translator Ω can possibly generate on input φ.

4.3 Existence of silent pairs

In the previous section it was shown how to define a translator that generates

sentences that place specific restrictions on their models.

However, before the rewiring of the edges of the model can take place, there

has be an additional requirement with regards to the edges that can participate

in the rewiring. More specifically, there has to be a restriction on the star-types

of the child elements of these edges. Namely, for each of the elements b and b′,

as depicted in Figure 4.1, there has to be an element of a correct 1-type that

connects to b (respectively b′) with a silent 2-type. This requirement is formally

expressed in this section as Lemma 10, which depends on Lemma 9, which in

turn depends on Lemma 8.

The formulation and proof of Lemma 8 starts with the following definition.

For any sentence φ ∈ C2(), any 1-type τi ∈ τ(φ), any model M |= φ and any
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element m ∈M of 1-type τi, the expression freeMτi (m) denotes the set of elements

m′ ∈M of 1-type τi for which there exists an element m′′ ∈ A such that:

1. tpM[m′′] = tpM[m]

2. m 6= m′′

3. m′′ is in the forest of M

4. tpA[m,m′] is not a forward message-type

5. tpA[m′,m′′] is a silent 2-type

Lemma 8. For any sentence φ ∈ C2(), any sentence ω3 = Ω3(φ), any ω3-

populated, ω3-rewirable model A |= ω3, any non-royal element e ∈ A and any

non-royal 1-type τ1 ∈ τ(ω3), there exist at least 2 · Z elements in freeAτi(e).

Proof. For any element e, let R be the set {e′, |tpA[e′] = τ1, tp
A[e, e′] /∈ µ→(ω3)}.

The size of R is always at least 4 · Z. This is because there are at least 5 · Z
elements e′ of 1-type τ1, since A is ω3-differentiated, and because e sends at most

Z messages to them.

Let T be the set {e′′|tpA[e′′] = tpA[e], e′′ belongs to the forest of A}. The size

of T is at least 5 · Z. This is because A is ω3-populated.

Let K be the set {(e′, e′′) ∈ R × T |tpA[e′, e′′] /∈ s(ω3)}. The size of K is at

most |R| · Z + |T | · Z. This is because each element from T sends at most M ·C
messages to the elements of R, and vice versa.

Let L be the set R× T . The size of L is |R| · |T |.
Let S be the set {(e′, e′′) ∈ R× T |tpA[e′, e′′] ∈ s(ω3)}. The minimum number

of elements of the set S is |L| − |K|.
Let F be the set {e′ ∈ R|∃e′′ ∈ T tpA[e′, e′′] ∈ s(ω3)}. Each of the elements

of R can participate in at most |T | of the pairs from S. Therefore, the minimum

number of elements of the set F is at least |S|/|T |.
As per the definitions above, the value of the expression |S|/|T | is greater

than or equal to (|R| · |T | − |T | · Z − |R| · Z)/|T |, which according to the lower

bounds on |R| and |T | is always greater than 2 · Z. Therefore, the size of the set

F and, correspondingly, freeAτ1(e) is at least 2 · Z.

Lemma 8 and the following terminology are used to formulate and prove

Lemma 9. For a given model M, an element m ∈ M and a 1-type τi, the



CHAPTER 4. FINITE SATISFIABILITY OF C2(↓+) 72

expression silentMτi (m) denotes the set of elements m′ ∈ A such that tpM[m,m′] ∈
s(φ) and tpM[m′] = τi.

Lemma 9. For any sentence φ ∈ C2(), any sentence ω3 = Ω3(φ), any ω3-

populated, ω3-rewirable model A |= ω3, and any pair of edges (a, b) and (a′, b′)

of A that have the same 2-type there exists an ω3-populated, ω3-rewirable model

A′ |= ω3, such that:

1. A ≈ A′

2. the number of cycles in A′ is not more than the number of cycles in A

3. if (a, b) is an edge in a tree component of A, then (a, b) is an edge in a tree

component of A′;

if (a′, b′) is an edge in a tree component of A, then (a′, b′) is an edge in a

tree component of A′;

4. if (a, b) is an edge in a tree-like cycle component of A, then (a, b) is an edge

in a tree-like cycle component of A′;

if (a′, b′) is an edge in a tree-like cycle component of A, then (a′, b′) is an

edge in a tree-like cycle component of A′;

5. there is an element c ∈ silentA′τ1 (b), where τ1 = tpA[a]

6. if there is an element c′ ∈ silentAτ1(b′), then c′ ∈ silentA′τ1 (b′)

Proof. According to Lemma 8, the size of the set freeAτ1(b) is at least 2·Z. If there

is an element c′ ∈ silentAτ2(b
′), define Υ = freeAτ1(b) \ {c′}, else Υ = freeAτ1(b).

Since the model A is finite, it is always possible to determine if for a give element

b′ ∈ A there exists an element c′ ∈ silentAτ1(b′) or not by inspecting the 2-types

between the element b′ and all the other elements of the model. The remainder

of the proof is independent of whether Υ = freeAτ1(b) \ {c′} (if the element c′ ∈
silentAτ2(b

′) exists) or Υ = freeAτ1(b).

The following list of statements about A represents various conditions that

can either be true or false for the model. By considering every combination of

the truth values of these statements, we show that either a given combination is

impossible or that in a given combination the required model A′ can always be

produced from A.
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A There is an element c ∈ Υ such that tpA[b, c] ∈ s(ω3) (Figure 4.3).

B There is an element c ∈ Υ that is not a child of element b.

C There is an element c ∈ Υ such that there is an element e1 ∈ silentAτ2(c)

that is not a descendant of c.

D There exist distinct elements c ∈ Υ, e1 ∈ silentAτ2(c), e2 ∈ Υ and e3 ∈
silentAτ2(e2) such that tpA[c, e3] ∈ s(ω3).

E There exist distinct elements c ∈ Υ, e1 ∈ silentAτ2(c), e2 ∈ Υ and e3 ∈
silentAτ2(e2) such that tpA[c, e3] ∈ µ→(ω3).

F There exist distinct elements c ∈ Υ, e1 ∈ silentAτ2(c), e2 ∈ Υ and e′3 ∈
silentAτ2(e2) such that tpA[c, e3] ∈ µ←(ω3).

The following list of cases shows how A′ can be constructed from A.

Case: A is true. Since tpA[b, c] is a silent 2-type, c is the required element of

1-type τ2. The model A′ is the same as the model A.

b

τ1
c

τ2π1

Figure 4.3: Case 1

Case: A is false, B is true. The assumption “not A” implies that for all ele-

ments c ∈ Υ either tp[b, c] ∈ µ→(ω4), or tp[b, c] ∈ µ←(ω4), or both. How-

ever, according to the part 3 of the definition of freeAτ1(b) in Lemma 8, for

all c ∈ freeAτ1(b) it is the case that tp[b, c] /∈ µ→(ω4) Therefore, it can be

assumed in the remaining cases that for all tp[b, c] ∈ µ←(ω4) holds for all

c ∈ Υ.

Because c ∈ Υ, there is a forest element e1 of 1-type τ1 such that tpA[c, e1]

is a silent 2-type (Figure 4.4).

b

τ1
c

τ2
e1

τ1π2π1

Figure 4.4: Before rewiring (Case 2)

b

τ1
c

τ2
e1

τ1π2 π1

Figure 4.5: After rewiring (Case 2)

A new model A′ can be created from the existing model A by assigning the

message-type tpA[b, c] to the pair of elements (e1, c) and assigning the silent
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2-type tpA[e1, c] to the pair of elements (b, c) (Figure 4.5). In the new model

the element b is connected with a silent 2-type to the element c.

Case: A is false, B is false, C is true. Every element c ∈ Υ is a child of b in

this case (Figure 4.6). A new model A′ can be created from the existing

model A by assigning the message-type tpA[b, c] to the pair of elements

(e1, c) and assigning the silent 2-type tpA[e1, c] to the pair of elements (b, c)

(Figure 4.7). Since e1 is not a descendant of c, no new cycles are created in

the graph as a result of the reassignment of the edge from (b, c) to (e1, c).

At the same time in the new model element b is connected with a silent

2-type to the element c. The ω3-rewirable property of A is preserved by A′

in this case, because e1 ∈ frst(A).

b

τ1
c

τ2
e1

τ1π2π1

Figure 4.6: Before rewiring (Case 3)

b

τ1
c

τ2
e1

τ1π2 π1

Figure 4.7: After rewiring (Case 3)

Case: A is false, B is false, C is false, D is true. This case is not possible,

as the pair of elements (e3, c) can not be assigned a silent 2-type (Figure

4.8). This is because e3 is not a descendant of c, since by assumption not

C element e3 is a descendant of e2 and e2 is not a descendant of c (e2 and

c are both children of b). At the same time, by the assumption not C all

elements in silentAτ2(c) are descendants of c.

b

τ1

c

τ2

e2

τ2

e1

τ1

e3

τ1

π3

π4

π1

π2

π5

Figure 4.8: Case 4

Case: A is false, B is false, C is false, D is false, E is true. There is no tree

edge from element c to element e3, because element e3 is a descendant of

element e2 and element c is not a descendant of element e2 (Figure 4.9).

The 2-type tpA[e3, c] can be assigned to the pair of elements (e3, e2) and
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tpA[b, c] can be assigned to the pair of elements (e3, c). As the result of this

transformation of A the pair of elements (b, c) can be assigned the silent

2-type π4 (Figure 4.10). As in the previous case, because element e5 is not

a descendant of element e2 in A, no cycles are created as a result of the

assignment of π1 to the pair of elements (e3, c).

The ω3-rewirable property of A is preserved by A′ in this case, because e1

is a forest element.

b

τ1

c

τ2

e2

τ2

e1

τ1

e3

τ1

π3

π4

π1

π2

π5

Figure 4.9: Before rewiring (Case 6)

b

τ1

c

τ2

e2

τ2

e1

τ1

e3

τ1

π3

π5

π1

π2

π4

Figure 4.10: After rewiring (Case 6)

Case: A is false, B is false, C is false, D is false, E is false, F is true. In

this case tpA[e3, c] can be assigned to the pair of elements (e1, c) and tpA[b, c]

can be assigned to the pair of elements (e3, c). As the result of this trans-

formation of A the pair of elements (b, c) can be assigned the silent 2-type

π3 (Figure 4.12). Because element e3 is not a descendant of element c, no

cycles are created as a result of the assignment of π1 to the pair of elements

(e3, c).

The ω4-rewirable property of A is preserved in A′ in this case, because e3 is

a forest element and the 2-type π1 stays in the forest of A′.

b

τ1

c

τ2

e1

τ2

e2

τ1

e3

τ1

π3

π4

π1

π2

π5

Figure 4.11: Before rewiring (Case 5)

b

τ1

c

τ2

e1

τ2

e2

τ1

e3

τ1

π3

π4

π2

π1

π5

Figure 4.12: After rewiring (Case 5)
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Case: A is false, B is false, C is false, D is false, E is false, F is false. To

complete the proof we show that it is impossible that none of A, B, C, D,

E and F are true at the same time.

This case states that for every element c ∈ Υ, for every element e1 ∈ Υ

and for every element e2 ∈ silentAτ2(e1) the 2-type tpA[c, e2] is an invertible

message-type.

According to Lemma 8, there are at least 2 · Z elements in Υ. This means

that for any element c ∈ Υ there are at least 2 · Z − 1 elements e1 ∈ Υ for

which there exists at least one element e2 ∈ silentAτ1(e1).

From the above two statements it follows that element c participates in at

least 2 · Z invertible message types. However, this is impossible, since no

element can send more than Z messages.

Lemma 10 is explicitly invoked in the beginning of Section 4.4 that deals with

the model rewiring and the elimination of cycles in a given model.

Lemma 10. For any sentence φ ∈ C2(), for any sentence ω3 = Ω3(φ), if there

exists an ω3-populated, ω3-rewirable model A |= ω3 with a positive number of

cycles, then there exists an ω3-populated, ω3-rewirable model A′ |= ω3 such that

either:

1. the number of cycles in A′ is less than the number of cycles in A

or

2. the number of cycles in A′ is equal to the number of cycles in A and there

exists a forest edge (a, b) and a cycle edge (a′, b′), such that stA
′
[b] = stA

′
[b′] and

there are two elements c and c′ such that tpA′ [b, c] ∈ s(ω3), tpA′ [b′, c′] ∈ s(ω3) and

tpA′ [c] = tpA′ [c′] = tpA′ [a] = tpA′ [a′].

Proof. According to Lemma 4, A is arboreal and there exists a positive number

of trees in its graph. Since A is ω3-rewirable, it is also the case that for every

element in every cycle of A there exists an element in the forest of A such that

the two elements have the same star-type.

Firstly, Lemma 9 is applied to the pair of edges (a, b) and (a′, b′). After

the invocation of Lemma 9, the ω3-populated, ω3-rewirable model A∗ |= ω3 is

produced from model A such that A∗ ≈ A.
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Secondly, if the number of cycles of A∗ is less than the number of cycles of A,

then the first condition of the Lemma 10 is met and A∗ is the desired model A
′
.

Otherwise, the application of Lemma 9 results in a model A∗ that has the same

number of tree-like cycles as A. It is known in this case that (a, b) remains to be

a tree edge in A∗ and (a′, b′) remains to be a cycle edge in A∗.

Moreover, Lemma 9 guarantees that there exists and element c, such that

tpA∗ [c] = tpA∗ [a] = tpA∗ [a′] and tpA∗ [b, c] ∈ s(ω3). If there is no element c′,

such that tpA∗ [c′] = tpA∗ [a] = tpA∗ [a′] and tpA∗ [b′, c′] ∈ s(ω3), then Lemma 9

is applied again, but this time to the pair of edges (a′, b′) and (a, b) of A∗. In

the end, the model A∗ is obtained such that for some tree edge (a, b) and some

cycle edge (a′, b′) in A∗ that share the same 2-type, there exist two elements c

and c′ such that tpA∗ [c] = tpA∗ [c′] = tpA∗ [a] = tpA∗ [a′], tpA∗ [b, c] ∈ s(ω3) and

tpA∗ [b′, c′] ∈ s(ω3). This is the required model A′.

4.4 Model rewiring

Given the results established in the previous sections about the properties of the

models of the sentences that the translator Ω generates, it is possible to describe

how every cycle in these models can be eliminated by splicing the cycles into the

forest components of the model graphs.

Lemma 11. For any sentence φ ∈ C2(), for any sentence ω3 = Ω3(φ), if there

exists an ω3-populated ω3-rewirable model A |= ω3 with a positive number of cycles,

then there exists an ω3-populated ω3-rewirable model A′ |= ω3 such that the number

of cycles in A′ is less than the number of cycles in A.

Proof. Suppose there exists a ω3-rewirable ω3-populated model A |= ω3 with a

positive number of cycles.

Lemma 10 is applied to the model A to obtain the model A′.If A′ has fewer

cycles than A, then the conditions of the proof are met and A′ is the desired

model.

Otherwise, A has the same number of cycles as A and there is a forest edge

(a, b) and a cycle edge (a′, b′), such that stA
′
[b] = stA

′
[b′] and there are two elements

c and c′ such that tpA′ [b, c] ∈ s(ω3), tpA′ [b′, c′] ∈ s(ω3) and tpA′ [c] = tpA′ [c′] =

tpA′ [a] = tpA′ [a′]. Then the required model A′ is produced from A by selecting a

cycle and splicing it into a tree in the following way.
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bτ2

aτ1

b′ τ2

a′ τ1

π1 π1

...

...

...

Figure 4.13: Before changing 2-types

bτ2

aτ1

b′ τ2

a′ τ1

π1 π1

...

...

...

Figure 4.14: After changing 2-types

Given the above configuration, it is possible to make a local modification to

the model and embed the cycle containing the edge (a′, b′) into the tree containing

the edge (a, b). This is achieved by discarding the 2-type π1 between the pair of

elements (a′, b′) and assigning π1 to the pair of elements (a′, b) instead. At the

same time the 2-type π1 is discarded for the pair of elements (a, b) and assigned

to the pair of elements (a, b′).

The result of this alteration is pictured in Figure 4.14. The edges of the cycle

that contained (a′, b′) are now embedded in the tree (element a is the parent of

element b′, element b is a child of element a′, element a′ is a descendant of element

b′ and element b is a descendant of element a).

However, after the above alteration of A the resulting model A′ is incomplete

for two reasons. Firstly, the pairs of elements (a, b) and (a′, b′) require the as-

signment of new 2-types, since the original 2-types for these pairs of elements

have been discarded during the rewiring. Secondly, the assignment of 2-type π1

to (a, b′) and (a′, b) overwrites the information about the original 2-types between

these pairs of elements. This may result in A′ violating the existential constraints

of ω3. The following list of cases demonstrates how to complete the construction

of A′ so that it preserves satisfiability of ω4.

1. In Case 1 before the rewiring of the edges (Figure A.1) the 2-types tp[a, b′]

and tp[b, a′] are both silent.

Figure A.2 shows the assignment of 2-types to the elements after the rewiring
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of the edges. In this configuration the 2-type π1 is assigned to pair of el-

ements (a, b) before the rewiring and is assigned to the pair of elements

(a, b′) after the rewiring. Similarly for (a′, b′) and (a′, b).

Assigning π2 to the pair of elements (a, b) and π3 to the pair of elements

(a′, b′) completes the construction of the new model A′. It is possible to

change the assignment of π2 from (a′, b) to (a, b), because tp[a] = tp[a′]

(similarly for π3).

As the result, all four elements have the same number of existential wit-

nesses as before the rewiring. At the same time the assignment of all 2-types

to the elements of the model is specified and is consistent with the 1-types

of these elements.

bτ2

aτ1

b′ τ2

a′ τ1

π1 π1π2π3 ...

Figure 4.15: Case 1 before rewiring

bτ2

aτ1

b′ τ2

a′ τ1

π2 π3π1 π1 ...

Figure 4.16: Case 1 after rewiring

2. Case 2 before the rewiring (Figure A.3) is similar to Case 1, except that

the 2-type π2 is a forward message-type and not a silent 2-type.

After the rewiring (Figure A.4) the 2-type π1 is assigned to the pair of

elements (a, b′) in place of π2. This means that element b′ is no longer the

existential witness of element a. To provide element a with the missing

existential witness, π2 gets assigned to the pair of elements (a, b). The

assignment of the silent 2-type π3 to the pair of elements (a′, b′) completes

the construction of the model A′.

3. Case 3 (Figure A.5 and Figure A.6) is analogous to Case 2, except that it

is π3 that is the forward message-type and π2 is the silent 2-type.

Because the rewiring in Case 3 is carried out in a similar manner to Case

2, such cases are called symmetric.
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bτ2

aτ1

b′ τ2

a′ τ1

π1 π1π2π3 ...

Figure 4.17: Case 2 before rewiring

bτ2

aτ1

b′ τ2

a′ τ1

π2 π3π1 π1 ...

Figure 4.18: Case 2 after rewiring

bτ2

aτ1

b′ τ2

a′ τ1

π1 π1π2π3 ...

Figure 4.19: Case 3 before rewiring

bτ2

aτ1

b′ τ2

a′ τ1

π2 π3π1 π1 ...

Figure 4.20: Case 3 after rewiring

4. Case 4 (Figure A.7 and Figure A.8) combines Case 2 and Case 3, since both

π2 and π3 are forward message-types.

5. Case 5 (Figure A.9 and Figure A.10) is similar to Case 2 except that π3 is

not a forward message-type, but a reverse message-type.

In order to provide element b with an existential witness after the rewiring,

π3 is assigned to the pair of elements (a, b). Is is possible to change the

source element of π2 from element a′ to element a, because tp[a] = tp[a′].

6. Case 6 is symmetric to Case 5. Because of this, the diagram for Case 6 is

omitted.

7. Case 7 (Figure A.13 and Figure A.14) is the combination of Case 5 and

Case 6 with respect to the non-invertible message-types π2 and π3.

8. Case 8 (Figure A.15 and Figure A.16) describes a situation in which π2 is a

forward message-type and π3 is a reverse message-type. In this configuration

the rewiring cannot be carried out as a combination of the previous cases,
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bτ2

aτ1

b′ τ2

a′ τ1

π1 π1π2π3 ...

Figure 4.21: Case 4 before rewiring

bτ2

aτ1

b′ τ2

a′ τ1

π2 π3π1 π1 ...

Figure 4.22: Case 4 after rewiring

bτ2

aτ1

b′ τ2

a′ τ1

π1 π1π2π3 ...

Figure 4.23: Case 5 before rewiring

bτ2

aτ1

b′ τ2

a′ τ1

π3 π2π1 π1 ...

Figure 4.24: Case 5 after rewiring

since the pair of elements (a, b) cannot be assigned π2 and π3 at the same

time.

However, for element b there exists an element d of 1-type τ1 such that

tp[b, d] is silent. This fact allows us to assign π2 to the pair of elements

(a, b) and π3 to the pair of elements (b, d). As the result of this rewiring the

requirements for existential witnesses of elements a and b are satisfied.

9. Case 9 is symmetric to Case 8. Because of this, the diagram for Case 9 is

omitted.

10. In Case 10 the 2-type π2 is an invertible message-type and the 2-type π3

is silent. This means that elements a and b′ use each other as existential

witnesses in π2. It is not possible to assign π2 either to the pair of elements

(a, b) after the rewiring, since this would alter the number of existential

witnesses of elements b and b′.

Since tp[b′] = tp[b], there is an element c such that tp[c, b]|ω1 = tp[a, b′]|ω1 .
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bτ2

aτ1

b′ τ2

a′ τ1

π1 π1π2π3 ...

Figure 4.25: Case 7 before rewiring

bτ2

aτ1

b′ τ2

a′ τ1

π3 π2π1 π1 ...

Figure 4.26: Case 7 after rewiring

bτ2

aτ1

b′ τ2

a′ τ1

d

τ1

π1 π1π2π3

π5

...

Figure 4.27: Case 8 before rewiring

bτ2

aτ1

b′ τ2

a′ τ1

d

τ1

π2 π5π1 π1

π3

...

Figure 4.28: Case 8 after rewiring

The existence of the element c makes it possible to perform the rewiring

in this configuration. There are three possibilities with regards to tp[c, b′],

as it can be a silent 2-type, a forward message-type or a reverse message-

type. This 2-type cannot be an invertible message-type due to the fact

that A is ω3-chromatic, tp[a] = τ [b′] and tp[a, b′] is already an invertible

message-type. Each of these three cases has to be addressed individually.

(a) In Case 10(a) (Figure A.19 and Figure A.20) the 2-type tp[c, b′] is

silent. Hence, the 2-type π2 can be assigned to (a, b) and the 2-type π′2
can be assigned to (a, b), providing the missing existential witnesses

to the elements a and b without changing the number of existential

witnesses of element c.

Even though the 2-types π2 and π′2 are the same only up to the ω3

signature, the element b does not lose any existential witnesses after

π′2 is reassigned to (c, b′). At the same time, no additional messages

are sent by the element b as the result of the assignment of π2 to (a, b).
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The silent types π4 and π3 are assigned to the pairs of elements (c, b)

and (a′, b′), completing the construction of the model.

bτ2

aτ1

b′ τ2

a′ τ1

c

τ1

π1 π1π2π3

π′2 π4

...

Figure 4.29: Case 10(a) before rewiring

bτ2

aτ1

b′ τ2

a′ τ1

c

τ1

π2 π3π1 π1

π4 π′2

...

Figure 4.30: Case 10(a) after rewiring

(b) In Case 10(b) (Figure A.21 and Figure A.22) the 2-type tp[c, b′] is a

reverse message-type. There cannot be a tree edge from the element c

to the element b′ before the rewiring, because b′ already has an incom-

ing tree edge from the element a′. After the rewiring, π4 is assigned

to (a′, b′) and element a′ becomes the existential witness of element b′.

bτ2

aτ1

b′ τ2

a′ τ1

c

τ1

π1 π1π2π3

π′2 π4

...

Figure 4.31: Case 10(b) before rewiring

bτ2

aτ1

b′ τ2

a′ τ1

c

τ1

π2 π4π1 π1

π3 π′2

...

Figure 4.32: Case 10(b) after rewiring

(c) In Case 10(c) (Figure A.23 and Figure A.24) the 2-type tp[c, b′] is a

forward message-type. There cannot be a tree edge from the element

b′ to the element c, because if this was the case, then tp[a′] 6= tp[c], due

to the alternating property of A, and this contradicts the assumption

that tp[a, b] = tp[a′, b′]. After the rewiring, π4 is assigned to (c, b) and

the element b becomes the existential witness of element c.
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bτ2

aτ1

b′ τ2

a′ τ1

c

τ1

π1 π1π2π3

π′2 π4

...

Figure 4.33: Case 10(c) before rewiring

bτ2

aτ1

b′ τ2

a′ τ1

c

τ1

π2 π3π1 π1

π4 π′2

...

Figure 4.34: Case 10(c) after rewiring

11. Case 11 is analogous to Case 10. The only difference is that the 2-type

tp[a′, b] is a forward message-type and not a silent 2-type. The rewiring of

this configuration consists of three distinct cases as well.

(a) In Case 11(a) (Figure A.25 and Figure A.26) the assignment of the

2-types is similar to Case 10(a), except that after the rewiring the

element a′ uses the element b′ as the existential witness in the context

of the π3.

bτ2

aτ1

b′ τ2

a′ τ1

c

τ1

π1 π1π3 π2

π′2 π4

...

Figure 4.35: Case 11(a) before rewiring

bτ2

aτ1

b′ τ2

a′ τ1

c

τ1

π2 π3π1 π1

π4 π′2

...

Figure 4.36: Case 11(a) after rewiring

(b) Case 11(b) (Figure A.27 and Figure A.28) does not allow for the

rewiring to be carried out in the same way as in case Case 10(b),

because (a′, b′) is assigned π3. This prevents the assignment of the

2-type π4 to that pair of elements. However, for the element b′ there

exists an element d of the 1-type τ1 such that tp[b, d] is silent. This
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makes it possible to assign π4 to the pair of elements (b′, d) and provide

the element b′ with the missing existential witness.

bτ2

aτ1

b′ τ2

a′ τ1

c

τ1

d

τ1

π1 π1π3 π2

π′2 π4

π5

...

Figure 4.37: Case 11(b) before rewiring

bτ2

aτ1

b′ τ2

a′ τ1

c

τ1

d

τ1

π2 π3π1 π1

π5 π′2

π4

...

Figure 4.38: Case 11(b) after rewiring

(c) In Case 11(c) (Figure A.29 and Figure A.30) the assignment of the 2-

types is analogous to Case 10(c). As in Case 11(a), after the rewiring

the element c uses the element b as the existential witness in the context

of π4.

bτ2

aτ1

b′ τ2

a′ τ1

c

τ1

π1 π1π3 π2

π′2 π4

...

Figure 4.39: Case 11(c) before rewiring

bτ2

aτ1

b′ τ2

a′ τ1

c

τ1

π2 π3π1 π1

π4 π′2

...

Figure 4.40: Case 11(c) after rewiring

12. Case 12 is similar to Case 11, except that π3 is not a forward message-type,

but a reverse message-type.

(a) In Case 12(a) (Figure A.35 and Figure A.32) after the rewiring the

element b uses the element c as the existential witness in the context

of π3.
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bτ2

aτ1

b′ τ2

a′ τ1

c

τ1

π1 π1π3 π2

π′2 π4

...

Figure 4.41: Case 12(a) before rewiring

bτ2

aτ1

b′ τ2

a′ τ1

c

τ1

π2 π4π1 π1

π3 π′2

...

Figure 4.42: Case 12(a) after rewiring

(b) Case 12(b) (Figure A.33 and Figure A.34) is similar to Case 11(c).

In this configuration the non-invertible message π3 is relocated during

the rewiring from the pair of elements (a′, b) to the pair of elements

(c, b). In addition to that, the element b′ uses the element a′ after the

rewiring as the existential witness for the 2-type π4.

bτ2

aτ1

b′ τ2

a′ τ1

c

τ1

π1 π1π3 π2

π′2 π4

...

Figure 4.43: Case 12(b) before rewiring

bτ2

aτ1

b′ τ2

a′ τ1

c

τ1

π2 π4π1 π1

π3 π′2

...

Figure 4.44: Case 12(b) after rewiring

(c) Case 12(c) is similar to case Case 11(b) in that two the auxiliary

elements c and d are required to satisfy the existential witness require-

ments of all the elements in the configuration.

After the rewiring the forward message-type π4 can only be assigned

to the pair of elements (c, b). As the result, the element d becomes the

existential witness of the element b in the context of π3.

13. Case 13 is symmetrical in each of the three instances to Case 10.
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bτ2
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b′ τ2

a′ τ1

c

τ1

d

τ1
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π′2 π4
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...

Figure 4.45: Case 12(c) before rewiring
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...

Figure 4.46: Case 12(c) after rewiring

14. Case 14 is symmetrical in each of the three instances to Case 11.

15. Case 15 is symmetrical in each of the three instances to Case 12.

16. Case 16 contains invertible message-types between both (a, b′) and (a′, b).

If tp[a, b′] 6= tp[a′, b], then there is an element c such that tp[a′, b] =

tp[b, c]. However, this contradicts the ω3-chromatic property of A. There-

fore, tp[a, b′] = tp[a′, b].

The above fact allows us to assign the 2-types of (a, b′) and (a′, b) to the pairs

of elements (a, b) and (a′, b′) and satisfy the requirements for existential

witnesses of each of the four elements.

17. Case 17 is the same as Case 1, except that the 2-type π1 is an invertible

message-type. The final assignment of the 2-types is identical between the

two cases. In a similar manner Case 18 to Case 25 repeat the rewiring

bτ2

aτ1

b′ τ2

a′ τ1

π1 π1π2π3 ...

Figure 4.47: Case 17 before rewiring

bτ2

aτ1

b′ τ2

a′ τ1

π2 π3π1 π1 ...

Figure 4.48: Case 17 after rewiring

of Case 2 to Case 9. These cases are added to the appendix only for the
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purpose of completeness and do not introduce any new ways of allocating

2-types after the rewiring of the model. This allows us to cover the rewiring

of the edges that are not only the reverse message-types, but also the edges

that are the invertible message-types.

Only nine such cases are considered in total. It is not possible for π1 to be

an invertible message-type and an invertible message-type to occur between

the pairs of elements (a′, b) or (a, b′) at the same time. This is due to the

fact that A is ω3-chromatic and any element of the model A cannot send

invertible message-types to two or more elements of the same 1-type.

4.5 Summary

Finally, the desired complexity result can be formulated, following the discussion

of the relevant lemmas in the previous sections of this chapter.

Lemma 12. If there exists a sentence ω = Ω(φ) that is finitely satisfiable in C2(),

then φ is finitely satisfiable in C2(↓+).

Proof. If ω is finitely satisfiable in some tree model, the implication of the lemma

holds trivially, because φ is one of the conjuncts of ω. Otherwise, ω is finitely

satisfiable in some model A that contains a positive number of cycles. Consider

the model A∗ = A|Σ(ω3), where ω3 is generated by Ω3 as part of the application

of Ω to φ. Evidently A∗ is ω3-rewirable ω3-populated and A∗ |= ω3. According to

Lemma 11, A∗ can be modified repetitively until a model A′∗ |= ω3 is produced

that contains no cycles. The required tree model A′ |= φ is then defined as

A′ = A′∗|Σ(φ).

Theorem 2. Finite satisfiability of C2(↓+) is in NEXPTIME.

Proof. The decidability of finite satisfiability of C2 is a consequence of Lemma 7

and Lemma 12. From the definition of a translator and Lemma 1 the NEXPTIME

complexity bound for the finite satisfiability of C2(↓+) follows.

The core of the proof of the decidability of finite satisfiability of C2(↓+) resides

in the observation that this problem can be transformed into the problem of

finite satisfiability of C2(). Given a sentence φ it is sufficient to generate an
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auxiliary sentence based on φ such that their conjunction is going to be finitely

satisfiable in C2() whenever φ itself is finitely satisfiable in some forest model.

This tells us of the power of the language of C2() to speak of the models of its

own sentences. Through defining numerous restrictions on the models of a given

sentence it is possible to arrive to a situation when any of the models that passes

all these restrictions can be turned into the model of a desired kind by a series of

predetermined local transformations.

The key novelty of this proof is found in how the translator Ωfrst is defined

in Subsection 4.2.5. In general it is not feasible to describe the structures of an

unbounded finite size with a bounded number of sentences. However, by nonde-

terministically guessing as the relation ⇓ the graph minor of the forest component

of a model that satisfies the given sentence, it is possible to describe the relative

position of the elements with the desired 1-types in the forest component.



Chapter 5

Conclusions

Analysis of existing complexity results

The systematic analysis of the existing results in the area of satisfiability of two-

variable first-order logic and its extensions that was carried out in Chapter 2

leads to two main conclusions.

On one hand side, this field of research is well structured. There is a clear

theme of taking the basic properties of binary relations and graphs that appear

most often in mathematics and that cannot be expressed in the languages FO2()

or FO2[] themselves and adding them to the two-variable logic as special predi-

cates. Because transitivity is a component of most of these properties of relations

and because transitivity is not expressible in FO2(), the available results in the

field can be readily compared to each other in terms of the expressiveness of the

logics under study and their corresponding complexities.

From this point of view the structure of the field can be expanded in the

future to include new properties of binary relations that have not been considered

before or that have very few results available. Examples of such properties can

be deterministic transitive closure [Charatonik et al., 2014], strict partial order

[Kieronski et al., 2014] or the connectedness property that requires the graph of a

given binary predicate to be connected (which has never been considered before).

One important type of binary relations for which no decidability results have

been obtained is partial orders. Resolving the decidability of satisfiability and

finite satisfiability for two-variable first-order logic and monadic two-variable first-

order logic with one or more partial order relations and their successor relations

would bridge the gap between strictly more expressive two-variable logics with

90
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transitive relations and strictly less expressive two-variable logics with linear or-

ders.

On the other hand, many subareas of research in the field of decidability of

satisfiability of two-variable logics lack a significant number of results concern-

ing important general fragments. For example, extending guarded two-variable

fragment with special binary predicates has been partially investigated for tran-

sitive relations, linear order relations, equivalence relations and horizontal and

vertical tree navigation relations. But no results have been obtained for guarded

two-variable logics with total preorders.

Conditions for completing the research in two-variable logics

After the publication of [Börger et al., 2001] the quest for establishing the com-

plexity of satisfiability of all prefix fragments of first-order logic has been finalised.

A prospect of achieving a comparable state of affairs in the area of decidability

of satisfiability of two-variable first-order logic with special binary predicates is

possible.

One subfield of this area that has been fully completed concerns extending

two-variable logics with equivalence relations. The precise complexity classes for

both satisfiability and finite satisfiability has been established for two-variable

first-order logic, monadic two-variable first-order logic, guarded two-variable first-

order logic and two-variable first-order logic with counting with equivalence rela-

tions, including the languages: FO2[∼], FO2[∼1,∼2], FO2[∼1,∼2,∼3], FO2(∼),

FO2(∼1,∼2), FO2(∼1,∼2,∼3), FO2(∼̂), FO2(∼̂1, ∼̂2), FO2[<,∼], GF2(∼1,∼2

), GF2[∼1,∼2,∼3], C2(∼), C2(∼1,∼2). The minimum number of equivalence

predicates that leads to undecidability has been established for every type of logic

(monadic, guarded, counting), making it unnecessary to consider logics with a

higher number of equivalence relations.

If what has been achieved for the two-variable logics with equivalence relations

is carried out for the rest of the types of special binary predicates, the broad goal

of the whole field of research into the decidability of satisfiability of two-variable

logics can largely be called completed.

Complexity of two-variable logic with tree-navigation relations

The first most immediate outstanding problem coming from the work undertaken

in this thesis is establishing finite satisfiability of two-variable first-order logic with
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counting and two independent successors of two vertical tree navigation relations,

denoted C2(↓+
1 , ↓+

2 ). The proof of this result follows naturally from the work

by [Charatonik and Witkowski, 2013] and the proof in Chapter 4. Employing

the techniques from both of the works is expected to yield the same NEXPTIME

upper complexity bound, as for the finite satisfiability of C2(↓+).

The second problem that the work in this thesis leads to is determining the

status of satisfiability problem for C2(↓+) and C2(↓+
1 , ↓+

2 ). It is estimated that an

NEXPTIME upper complexity bound applies to the two problems, as nothing

leads to suggest that these problems reside in a higher complexity class.

Finally, it is not known at the moment what number of independent verti-

cal tree navigation relations or their successors is required to be added to FO2[]

for the logic to become undecidable. As it was demonstrated in [Benaim et al.,

2013], adding two independent vertical tree navigation relations and the corre-

sponding successor relations to the monadic two-variable first-order logic results

in a language with EXPSPACE-complete finite satisfiability problem. Therefore,

it makes sense to consider the question if the presence of three or more indepen-

dent vertical tree navigation relations would make the finite satisfiability problem

of two-variable first-order logic with counting non-recursive.

It should also be noted that closing the complexity gap of the finite satisfi-

ability problem of FO2[∼, ↓+,→+] remains highly desirable and, perhaps, can

be achieved in the future by showing NEXPTIME upper bound for the finite

satisfiability of C2(∼, ↓+,→+).
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[Grädel et al., 1997b] Grädel, E., Otto, M., and Rosen, E. (1997b). Two-variable

logic with counting is decidable. In 12th Annual Symposium on Logic in Com-

puter Science, pages 306–317. IEEE Computer Society.
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Appendix A

Rewiring cases
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Figure A.1: Case 1 before rewiring
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Figure A.2: Case 1 after rewiring
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Figure A.3: Case 2 before rewiring
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Figure A.4: Case 2 after rewiring
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Figure A.5: Case 3 before rewiring
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Figure A.6: Case 3 after rewiring
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Figure A.7: Case 4 before rewiring
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Figure A.8: Case 4 after rewiring
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Figure A.9: Case 5 before rewiring
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Figure A.10: Case 5 after rewiring
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Figure A.11: Case 6 before rewiring
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Figure A.12: Case 6 after rewiring
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Figure A.13: Case 7 before rewiring
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Figure A.14: Case 7 after rewiring



APPENDIX A. REWIRING CASES 102

bτ2

aτ1

b′ τ2

a′ τ1

d

τ1

π1 π1π2π3

π5

...

...

...

Figure A.15: Case 8 before rewiring
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Figure A.16: Case 8 after rewiring
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Figure A.17: Case 9 before rewiring
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Figure A.18: Case 9 after rewiring
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Figure A.19: Case 10 (a) before rewiring
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Figure A.20: Case 10 (a) after rewiring
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Figure A.21: Case 10 (b) before rewiring
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Figure A.22: Case 10 (b) after rewiring
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Figure A.23: Case 10 (c) before rewiring
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Figure A.24: Case 10 (c) after rewiring
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Figure A.25: Case 11 (a) before rewiring
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Figure A.26: Case 11 (a) after rewiring
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Figure A.27: Case 11 (b) before rewiring
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Figure A.28: Case 11 (b) after rewiring
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Figure A.29: Case 11 (c) before rewiring
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Figure A.30: Case 11 (c) after rewiring
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Figure A.31: Case 12 (a) before rewiring
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Figure A.32: Case 12 (a) after rewiring
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Figure A.33: Case 12 (b) before rewiring
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Figure A.34: Case 12 (b) after rewiring
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Figure A.35: Case 12 (c) before rewiring
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Figure A.36: Case 12 (c) after rewiring
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Figure A.37: Case 13 (a) before rewiring
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Figure A.38: Case 13 (a) after rewiring
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Figure A.39: Case 13 (b) before rewiring
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Figure A.40: Case 13 (b) after rewiring
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Figure A.41: Case 13 (c) before rewiring
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Figure A.42: Case 13 (c) after rewiring
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Figure A.43: Case 14 (a) before rewiring
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Figure A.44: Case 14 (a) after rewiring
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Figure A.45: Case 14 (b) before rewiring
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Figure A.46: Case 14 (b) after rewiring
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Figure A.47: Case 14 (c) before rewiring
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Figure A.48: Case 14 (c) after rewiring
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Figure A.49: Case 15 (a) before rewiring
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Figure A.50: Case 15 (a) after rewiring
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Figure A.51: Case 15 (b) rewiring
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Figure A.52: Case 15 (b) after rewiring
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Figure A.53: Case 15 (c) before rewiring
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Figure A.54: Case 15 (c) after rewiring
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Figure A.55: Case 16 before rewiring
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Figure A.56: Case 16 after rewiring
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Figure A.57: Case 17 before rewiring
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Figure A.58: Case 17 after rewiring
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Figure A.59: Case 18 before rewiring
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Figure A.60: Case 18 after rewiring
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Figure A.61: Case 19 before rewiring
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Figure A.62: Case 19 after rewiring
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Figure A.63: Case 20 before rewiring
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Figure A.64: Case 20 after rewiring
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Figure A.65: Case 21 before rewiring
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Figure A.66: Case 21 after rewiring
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Figure A.67: Case 22 before rewiring
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Figure A.68: Case 22 after rewiring
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Figure A.69: Case 23 before rewiring
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Figure A.70: Case 23 after rewiring
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Figure A.71: Case 24 before rewiring
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Figure A.72: Case 24 after rewiring
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Figure A.73: Case 25 before rewiring
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Figure A.74: Case 25 after rewiring
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