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Abstract

In this paper, we analyse a concept of total knowledge based
on the idea that an agent’s total knowledge is the strongest
proposition the agent knows. We propose semantics for
propositional and first-order languages with a modal opera-
tor TK representing total knowledge, and establish a result
showing that total knowledge is ‘epistemically categorical’,
in the sense that it determines the agent’s knowledge over
a broad range of contents. We show that (subject to some
restrictions) total knowledge is always total knowledge of
an objective content, and that, for such objective contents,
our T K-operator corresponds in a straightforward way to
Levesque’s operatap.

Keywords: mathematical foundations, philosophical foun-
dations, nonmonotonic reasoning.

Introduction

An agent that acquires information by the gradual accre-
tion of propositions has finite knowldge: there is some
propositiong—the conjunction of all the propositions so-far
acquired—which constitutes that agent’s total knowledge.
Since we can imagine situations in which it is useful for
agents to reflect on their current epistemic states, it is natu-
ral to examine epistemic logics in which such states of total
knowledge can be explicitly represented. That is the goal of
the present paper.

To date, most research on representing total knowledge
has focused on its role in reconstructing various forms of
nonmonotonic logic. The origin of these ideas can be
traced back to the original non-monotonic logic of (Mc-
Dermott & Doyle 1980; 1982) and its later modifications
e.g. in (Halpern & Moses 1985). However, the best-
known such reconstruction is (Levesque 1990), extended
and discussed in (Halpern & Lakemeyer 1995), (Lakemeyer
1993; 1996) and (Lakemeyer & Levesque 1998). For an
overview of the relationships between these closely related
approaches, see (Donini, Nardi, & Rosati 1997) and (Rosati
2000). Chen (1997) presents an analysis relating Levesque’s
concept of only knowing to the method of epistemic specifi-
cations of (Gelfond 1991).
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However, references to a proposition’s being all that an
agent knows also occur outside honmonotonic logic, most
notably, in discussions of probabilistic updating. For exam-
ple, debates about the appropriateness of conditionalization
as an updating strategy generally assume that probabilities
are conditionalized on onetstal knowledge: conditional-
izing on justpart of what one knows is (as far as the author
is aware) never seriously proposed. But what does it mean,
in this context, to say that a given proposition is one’s to-
tal knowledge or total evidence? What are the implications
of the assumption that such a proposition exists? Does this
assumption affect the logic of knowledge in any way? Al-
though there is much debate in the philosophical literature
about the reasonableness of the assumption that evidence is
propositional at all (see, e.g. (Jeffrey 1992), ch. 1), the im-
plications for epistemic logic of the assumption that agents
have (finite) total knowledge have been relatively neglected.

The goal of the present paper is to analyse a concept of
total knowledge based on the intuition that an agent’s total
knowledge is the logically strongest proposition the agent
knows, and to relate it to the corresponding concept em-
ployed by Levesque. In the course of our analysis, we will
see that our concept of total knowledge shares many of the
properties of Levesque’s, though not the latter’s central role
in defeasible inference. This is a useful insight, because the
concept presented here is arguably simpler and more intu-
itive than that used by Levesque, and may therefore be more
appropriate in contexts other than the reconstruction of non-
monotonic inference. Certainly, the nontrivial and subtle na-
ture of the relationship we map out illustrates the complexity
and fecundity of the relevant concepts.

Total knowledge

The concept of total knowledge we will be working with is
that of the strongest proposition an agent knows. Roughly,
T K ¢ means that the agent knowsbut does not know any-
thing which knowingp does not entail. This seems to be the
most natural reconstruction of the concept of total knowl-
edge appealed to when one is is enjoined to conditionalize
on one’s total knowledge.

Definition 1. Assume as given a countable sewafiables
a countable set afamesand, for each (0 < n), a countable
set of n-ary predicate letters The symbol= is one of the
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binary predicate letters. We call the 0-ary predicate letters
proposition letters A termis a variable or a name.

Define the formulas off OLT K to be the smallest set of
expressions satisfying the following rules:

if » is ann-ary predicate letter anti, ... ,t, are terms,
thenr(ty,... ,t,)is aformula of FOLTK;

if ¢ andy are formulas ofFOLTK andz is a variable,
thenp A, ¢V i, =¢, Jxp, Vo and K ¢ are formulas of
FOLTK;

If ¢ is a formula of FOLT K and contains no occurrence
of TK, thenT K ¢ is a formula of FOLTK.

Define the formulas ofPCKT to be those formulas of
FOLTK involving no occurrences af or V and non-ary
relations forn > 0.

Formulas involving no occurrences B are calledba-
sic; formulas involving no occurrences df or TK are
called objective Formulas in which every predicate letter
appears within the scope of eith&ror T K are calledsub-
jective The notion of d&ree occurrence of a variable is de-
fined in the usual way. We use the connectivesind« as
abbreviations with their usual meanings. A formula with no
free variables is aentence

We have restricted the syntax SfOLT K so thatT K
may apply only to basic formulas. In fact, this restriction is
inessential: all the theorems reported below hold even when
it is lifted. However, we maintain it throughout most of this
paper for the purpose of simplifying proofs. (We indicate
inessential restrictions of theorems to basic formulas using
parentheses.)

The general semantic framework used here is that
of (Levesque 1990). Models f6fO LT K -formulas are sets
of “interpretations”, where an interpretation is just a model
of the underlying nonmodal language. The most notable fea-

2

Here, ¢[z/a] denotes the result of substituting the name
for every free occurrence afin ¢.

Since onlysentencesgeceive truth-values, we will hence-
forth notate free variables explicitly. Thusg,will denote a
sentence, ang(z) a formula withz as its only free vari-
ables. Note that if) is objective, we can writé=,, ¢ for
W = ¢, and if ¢ is subjective, we can writél E ¢
for W =, ¢. More generally, we writdV = ¢ to mean
W =y ¢ forallw € W, and= ¢ to meanW = ¢ for
all W. We saye is consistenif W =, ¢ for somelW and
somew € W, and we sayp is valid if = ¢. Clearly, the
usual S5-axioms foK are valid.

At this point, we might pause to get a feel for our new
operator by examining some of its salient properties. It is
immediate from definition 2 that T K¢ — K ¢ and, more-
over, that

if =Ko K¢ then ETK¢«— TKyp. (1)
That is: if knowing¢ and knowingy are the same state of
affairs, then only knowingy and only knowingy are also

the same state of affairs. Moreover, sineeK ¢ — K K¢,
condition (1) has, as an immediate consequence

ETK¢«— TKK1. 2
Finally, anticipating a result proved below, it turns out that

if we lift the restriction stating thal’ X' may apply only to
basic formulas, we obtain:
=TK¢$ — TKTKq. (3)

Properties (1)-(3) seem reasonable ones for a concept of
total knowledge to exhibit, though, admittedly, intuition may
be uncertain on the last of these. By contrast, if we consider
Levesque’s operataD (which corresponds roughly to our
operatofl'K), we see that these properties fail. In particular,
if ¢ is objective and is not logically true, then, on Levesque’s
semanticsQ K ¢ andOO¢ are both logically false. (At the

tures are that names denote rigidly and uniquely, and that the same time, for any formula, O(K ¢ A ¢) is logically equiv-

domain of quantification is covered by the names. We have

alent toO¢!) One of the surprising results of this paper is

taken advantage of these features to simplify the statement just how many features of Levesqué&soperator do never-

of the semantics slightly, and we have made one additional,
substantive change (discussed below).

Definition 2. Aninterpretationw is a function mapping any
n-ary predicate letter to a setr* of n-tuples of names,
subject to the constraint that® is the identity relation on

the set of names. (As usual, we assume that there is exactly

one O-tuple of names.)

Let W be a set of interpretations, lete 17, and lety be
a sentence of OLT K. We definelW |=,, ¢ inductively as
follows:

If r is a predicate letter and, ... ,a, are names, then
W ey r(ay, ... ,a,) ifandonlyifay, ... ,a, € r*;

W Ew ¢ Ay ifand only if W =, ¢ andW =, 4, and
similarly for the other Boolean connectives;

W k=, Jz¢ if and only if W |=,, ¢[z/a] for some name
a, and similarly for the universal quantifier;

W =, K¢ ifand only if, forallw’ € W, W =, ¢;

* Wk, TKoif W =, K¢ andW =, -Kx for all

objective sentenceg such that: K¢ — .

theless carry over t6' K.

Let us return to the semantics @K, given in clausex
of definition 2. Observe that the quantification in this clause
is restricted toobjectivesentences. (This restriction has
nothing to do with our earlier syntactic stipulation tHak'
can apply only to basic formulas!) Allowingto range over
arbitrary sentences ir would result in a nonterminating re-
cursive definition of=, since the truth o' K¢ in W would
depend on the truth of more complex sentengesMore-
over, allowingy to range ovebasicsentences i, though
it would result in a well-formed definition, would have other
undesirable consequences. Consider, for example, the sen-
tenceT Kp;. We do not want this sentence to be incon-
sistent, since it seems reasonable that an agent may have
simply learnedy; and nothing else. Yekp, fails to imply
both p, and - Kp-, so that, without the restriction of to
objective sentences, clausevould makel Kp, entail both
- Kp, and—K-Kp,, which is inconsistent on our seman-
tics. Hence the restriction gof to objective sentences #

However, this restriction creates a problem. Consider the
following consequence o6f.
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Lemma 1. For any (basic) sentencé and any objective Thus, K-operators occurring in the scope of oth&r

sentence,, ETK¢ — Kxor ETK¢ — —Kx. operators in basi®CTK sentences can always be elimi-
nated. Of courseFO LT K lacks this feature: the embedded
Proof. If = K¢ — xthenE=TK¢ — Kx. O K in K3z(p(x) A ~Kp(z)) cannot be removed.
As a corollary of this normal form lemma, we have
Lemma 1 states that, as we might sAys ¢ is epistemically Lemma4. Let ¢ be a consistent (basic) sentence of
categoricalfor objective sentenceg. Yet we would pre- PCTK. Then there exists a basic (in fact, objective) sen-
fer that T K ¢ were epistemically categorical farbitrary tencey, such thaip A T K+ is consistent.

x. After all, an agent'’s total knowledge should determine . . )
exactly what the agent does and does not know. One of the Proof. Assume without loss of generality thatis of the
main results about tHEK operator is that, in the currentse-  [Orm given in lemma 3, with the first disjunct consistent.
mantic framework, lemma 1 can be strengthened in just this Theni= K¢y — xa; forall j (1 <j < m4), andj~ ¢y —
way. Again, to simplify the proofs, we restrict the resultin ~ 771- . . . .
this paper to basig. Now considerT’ K,. This sentence is consistent by
It is worth pausing to see why this result is surprising. '€mma 2. Moreoveri= Ky, — x,,; implies|= TKvy, —
Lemma 1 guarantees that any two agents whose total knowl- ~£x1,;- Finally, since the objective sentenge/\, is true
edge is¢ know the same objective sentences. However, it [N SOme interpretatiow, if W = TK, then it is easy to
is easy to construct an example of two agents who know S€€ thatV U{w} =, mi A TKy:. Hencep N TKy is
the same objective sentences but who do not know the same€onsistent. =

basic sentences. Lgtbe a unary predicate letter, and enu- | emma 4 ensures that, in the propositional case, the assump-

merate the names 48, }o<;. Define the interpretationy tion that there is a sentence which is the agent’s total knowl-
by settingl=., p(c;) if and only if j is odd; and define the  edge does not change the finitary logic of knowledge: any
interpretationw;, fori > 1 by settingi=.,, p(c;) if and only (basic) sentence which is consistent without this assumption
if jis odd orj = 2i. Assume that all other predicate letters s consistent in its presence. However, we show below that
are assigned the empty interpretation. Uét= {w;|i > 0} lemma 4 is false foFOLTK.

andW’ = {w;|i > 1}. Then it is easy to see that, for all

a sketch proof, see (Levesque 1990), lemma 3.6.2.) How- . . L .

ever, we haveV’ = K3x(p(z) A ~Kp(z)) but W = The following construction is crucial in understanding the

- K3z(p(x) A—Kp(z)). The analysis below shows that this beh.a\_/l.our off'K inthe flrs.,t-order_ ca.s.e. _ _
sort of situation cannot arise in the presence of total knowl- Definition 3. A permutation of individualdgs a function

edge. from the set of names to the set of names which is 1-1 and
onto. If f is a permutation of individuals, then it is ex-
The propositional case tended to apply to interpretations and formulas as follows.
o ) ) o ~If wis an interpretation, for any-ary predicate letter, let
We begin with a simple observation establishing the consis- , 4, € +f() ifand only if f~1(a1), ..., f(an) €
tency of certain total-knowledge sentences. . If z is a variable, letf(z) = z. If r(ty,...t,) is an
Lemma 2. If a sentence of FOLT K is objective and con-  atomic formula, letf(r(ty,...tn)) = r(f(t1), ... f(tn)),
sistent, the K ¢ is consistent. and letf be defined on nonatomic formulas Ifyo A o) =
F@) N W), f(o V) = f(@)V f(), f(=p) = ~f(9),
Proof. For each objectivg such that~ K¢ — y, we have f(Gze) = 3f(9), f(Vag) = Vaf(e), f(Ko) = K[f(9),
¥~ ¢ — X, so letw, be an interpretation such that,, f(TK¢) = TK f(9).
¢ A —x. LetW be the set consisting of all thesg,. Since Thus, when applyingf to interpretations and formulas,
¢ is consistent}V = (), and it is easy to see that’ we switch round the extensions of predicates and the names
TK¢. O occurring in formulas in corresponding ways.

) . - ) Lemma5. If f is a permutation of individuals, thefi is
The analysis off K in the propositional case is very easy, also 1-1 and onto on the set of interpretations, the set of
and relies on the existence of the following normal-formthe-  formulas, the set of basic formulas and the set of objective

orem. formulas. Furthermore, for all sentenceéssets of interpre-
Lemma 3. Any basic sentence BfCTK is equivalenttoa  tationsWW and interpretationso € W, W' |=,, ¢ if and only
sentence of the form it (W) Frw) £(9)-
Proof. The first part of the lemma is obvious. The second
\/ (Kton N =KX Ao A=K Xhmg, ATh)- part follows by structural induction op. O
1<h<l
. ) o Definition 4. Letz = xy, ...z, be atuple of variables with
in which they, x,; andry, are objective. Xthese{zy,... ,2,}. LetA = {ay,... ,a,} (Withthea,
distinct) be a set of names. L&, ... , P, be a set of (pos-

Proof. Straightforward from standard S5-identities. [ sibly empty) disjoint subsets of and letP,,,+1, ... , Pni
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be a partition ofX \ U,,.,, Pi- (Thus,0 <1 < n.) A
distribution formula(for z and A) is a consistent formula of
the formd(z) :=

Mzj =ai|l <i<m,1<j<n,andz; € P;}
Mz =zilm+1<i<m+1, andz;, 2, € P}
Mz #aill <i<mm+1<i <m+l, andz; € Py}
Mz £ axm+1<i<i <m+l1,
z; € Pandzy, € Py},

For a givenz and A, denote the set of all such formulasby = TK¢ — Vi'(Ky'(z

Ap(Z). fn=0,setAy ={T}.
Intuitively, §(z) assigns every variable ito one ofm+1
‘boxes’.

asserted to be distinct. Variables assigned tob@x< i <
m) are asserted to be identicaldg

Lemmaé6. Letz = z4,...x, be a tuple of variables and
A a set of names. TheA 4(Z) is a partition. That is:
E Vz\/ Aux(z), and = Vz—(6(Z) A §'(x)) for distinct
6(z),6'(z) € Aa(Z).

Proof. Obvious. O

We note that distribution formulas argid: they are sat-

Variables assigned to the same box are asserted
to be identical and variables assigned to different boxes are

Theorem 1. Let¢ be a (basic) sentence andz) a (basic)
formula. Then there is a disjunction(z) of elements of
Ac(z) for someC, such that= TK¢ — VZ(K¢(Z) <

(7).

Proof. We proceed by induction on the numberof oc-
currences ofK in ¢ (z). The casen = 0 is handled by
lemma 8. Ifn > 0, let K¢/(z') be a subformula of)(z),
with ¢’(z") objective. By lemma 8, let’(z’) be such that
') < '(z')). and lety”(z) b
the result of substituting’(z') for K¢’ (z') in ¢(Z). Then
E TK¢ — Vi(Ky(z) « K¢"(z)). Sincey”(z) has
fewer thann occurrences of(, the result follows by induc-
tive hypothesis. O

Note that this straightforward induction depends on the fact
that ¢(z) is basic. This is because, in any set of inter-
pretationsiV, the truth-values of{y(a) and K" (a) de-
pend only on the truth-values of their subformubitsthe
worlds in W. Sincen’(z') and K¢'(z') are satisfied by
the same tuples in any world &¥, it is obvious that)(a)
andy”(a) must have the same truth value in every world of
W as well. However, such a substitution within the scope of
T K-operators would in general not be truth-preserving. (As
stated above, theorem 1 does in fact hold for arbitta();

isfied by the same tuples regardless of the interpretation. however, the proof in this case is more delicate.)

Hence we sometimes write- §(a) without mentioningi?’
orw.

Lemma 7. Let ¢ be a sentence and(z) a formula. LetC

be the set of names occurring in either formula. Then there

exists a disjunctiom (z) of formulas inA () such that, for
all tuplesa, = w(a) if and only if= ¢ — ¥ (a).

Proof. Suppose thati and @’ satisfy the same(z) in
Ac(Z). Then the mapping — a’ is well-defined and ex-
tends to a permutation of individualé such thatf is the
identity onC'. Hencef(¢) = ¢ andf(y(a)) = ¢(a’). By
lemma 5, ¢ — ¢(a) if and only if £ ¢ — (@’). Now
setn(z) :=

\/{6 ) ;= d(a’) for somea’ s.t..= ¢ — (a’)}.

(As usual, we takd/ () to be L.) Suppose= ¢ — ¥(a).
Since A¢(Z) is a partition,}= d(a) for somed(z), so =
m(a). Conversely, suppoge = (a). Thenl= §(a) for some
4(z), such that, for some’, = §(a’) andf= ¢ — w(a’).
But sincea anda’ satisfy the samé(z) in Ax(Z), we have

= — v(a). 0

Lemma 8. Let ¢ be a (basic) sentence angz) an objec-
tive formula. LetC be the set of names occurring in either
formula. Then there exists a disjunctiafiz) of formulas in
Ac(z) such that= TK¢ — VZ(K(Z) < 7(T)).

Proof. By lemma 7, letr(z) be such that, for all tuples,
E mw(a) ifand only if = K¢ — (a). Let W be any set
of interpretations and let be any tuple. IfW = TK¢,
then, by the semantics GfK, W = K1 (a) if and only if
E K¢ — ¢(a). The result is then immediate. O

EAC

Corollary 1. For all (basic) sentencegsandy, = TK¢ —
Kyor ETK¢ — —Kq.

Proof. By theorem 1= TK¢ — VZ(Kvy < ), where
7 is a disjunction of elements ok~ for someC (with a
O-tuple of variables). Henceis L or T. O

Corollary 2. Let ¢ be a (basic) sentence ang(x) a basic
formula with one free variable. Suppose thét = T K ¢.
Then the sefa : W = K (a)} is finite or cofinite.

Proof. By theorem 1= TK¢ — Va(Ky(z) < w(x)),
wherer(z) is a disjunction of elements & (z) for some
C (with a single variabler). Clearly, the set of satisfying
7(x) is finite or cofinite. O

Recall that, in the propositional casegifs consistent, then
we can findy) such thaip A T K is consistent. In the first-
order case, this is no longer true.

Theorem 2. There exists a consistent basic senteficeich
that, for all (basic) sentences, = ¢ — T K.

Proof. If ¢/ (x) is any formula with one free variable let
Jxt’(z) abbreviate some sentence or other implying that
¢'(z) is satisfied by infinitely many values of Let p(x)

be a unary predicate letter, and letbe a consistent basic
sentence of the for..z Kp(z) A Joox—Kp(z). Itis easy

to see that such @ can be found. By corollary 2= ¢ —

—T K1) for all basic sentences. O

Thus, in the first-order case, the assumption that there is total
knowledge changes the finitary logic of knowledge: basic
sentences that are consistent without this assumption may
be inconsistent in its presence.
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Next, we show that total knowledge of any (basic) sen-
tence is logically equivalent to total knowledge of an objec-
tive sentence. We need the following general lemma.

Lemma 9. Let ¢ and ¢» be (basic) sentences such that
TK¢ — Ky, = Ky — K¢ andTK ¢ is consistent. Then
ETK¢ «— TKi.

Proof. SupposéV = TK¢. ThenW = K. Let x be
objective withj= K¢ — x. Thenl: K¢ — yx, because
E Ky — K¢. SOW = =K x. HenceW = TK?1.
Conversely, suppos# = TKvy. ThenW | K¢. Let
x be objective withizr K¢ — x, so that= TK¢ —
-Kx. Thenlt Kv¢ — x also, since otherwise, given
thatE TK¢ — K, we would have= TK¢ — Ky,
contradicting the hypothesised consistency @€ ¢. But if
= Ky — x, thenW = —Kx. HencelW = TK¢. O

Theorem 3. Let ¢ be a (basic) sentence. Then there exists
an objective sentenceg* such that= TK¢ «— TK ¢*.

Proof. If ¢ is already objective or i’ K¢ is inconsistent,
the result is trivial, so we may assume otherwise.
K1)1(z1) be a subformula af, with ¢, (z1) objective. Then
we can findp; such that= ¢ — p1, wherep; is the sentence
Vz1 (K (z1) <« m(Z)) constructed as in lemma 8. Lét

be the result of substituting; () for K« (Z;) in ¢. By
lemma 8= TK¢ — K(é1 A p1), and certainly= K (¢ A

p1) — K¢. SinceT K ¢ is assumed consistent, lemma 9 im-
pliesthat= TK¢ — TK(é1 Ap1). If there is a subformula
Ko (Z2) in ¢1 with o5 (25) objective, we proceed as before,
obtaining= TK¢ < TK(¢2 A p1 A p2), and so on, until
we eventually obtaite TK ¢ <« TK (¢ Ap1 A .. A pm),

with ¢,,, objective andn > 1.

Now consider in more detail the sentenge.. . .Ap,,. 1g-
noring the previous numbering, this may be written out as a
conjunction of the form\, ., , V2 (3;(z;) — K1;(z;))
ANi<jenr Y25(05(25) — —Kvi(z})) where thed;(z;),

&5 (’;) are conjunctions of equality and inequality formulas,
and they,; (z;), ¢;(¥;) are objective. Since thé;(z;) are
in fact rigid, we have

F KVZ;(6;(Z;) — Ki;(75)) < KVZ;(0;(Z5) — ¥;(Z5)).

Hence we can omit th&” from the relevant conjuncts and
seto* to be

dm A\ VE(65(T5) — (),

1<j<M

Let

whence=TK¢ — TK(¢* Aoy A... ANoyr) whereo; is
VIl (65(Z)) — K (T))).

To complete the proof, suppoaés a tuple with= 67(a).
Since TK¢ is consistent,= K¢* — ’(a). Hence,
since;(a) is objective,= TK¢* — —Kv'(a). Thus,
= TK¢* — Vzl(d5(z;) — ~K¢j(z})). Hence, we have
): TK¢* — K(q[)*/\al/\.../\aM/), ': K((b*/\al/\.../\
om) — K¢* and finally, by lemma 27K ¢* consistent.
By lemma 9, TK¢* « TK(¢* Aoy A ... Nopyv), and
we are done. O

Comparison with only knowing

An alternative approach to total knowledge is provided
by (Levesque 1990). Before we give the semantics for
Levesque’s operator, we need to mention a difference be-
tween Levesque’s basic formalism and the one adopted in
this paper. So far, we have assumed that, in an assertion
of the formW =, ¢, w is a member of#/. But in fact,

the definitions work perfectly well without this assumption,
the major effect being thak’¢ A —¢ becomes satisfiable.
(Levesque actually uses the lettBrwhere we have used
K.) Given this change, Levesque can give the semantics of
the modal operatad as:

W =, Ogifandonly if W = K¢ and, for allw such that
Wy ¢, w e W.

The semantics foi' and the nonmodal connectives are un-
affected.

Levesque’s semantics f@» have the desired effect only
when the set of interpretationi®” is maximal in the follow-
ing sense:

Definition 5. Let W andW’ be sets of interpretations. We
say thatiV andW’ areequivalentf, for all basic sentences
o, W E K¢ifand only if W' = K¢.

A set of interpretation$V is maximalif, for all W’ such
thatW = W/ andW C W', we havel’V = W',

The motivation for this definition is that, f/ is a set
of interpretations anadb € W is an interpretation such that
W Ew ¢, then it can turn out thaD¢ is true inW and
false inW \ {w}, even though an® andW \ {w} give the
agent the same basic beliefs! By ignoring nonmaximal sets
W, this anomaly is avoided.

Theorem 4. Let ¢ be objective and letV # () be any set
of interpretations (not necessarily maximal) such that=
O¢. ThenWV = TK¢. Conversely, Lep be objective and
let W # () be a maximal set of interpretations such that
W E TK¢. ThenW = O¢.

Proof. For the first part, we certainly ha¥® = K¢. More-
over, letx be objective withjz K¢ — x. Certainly,
thent:s ¢ — x. So letw be an interpretation such that
E. ¢ A —x. SinceW = O¢, we havew € W, whence
W = -Kx. Thus,W = TK¢.

For the second part, again we certainly h&je|= K ¢.
Moreover, letw be an interpretation such thgt,, ¢. Sup-
posey is any basic sentence such thét = K. Since
W E TK¢, it follows from corollary 1 that= TK¢ —
K. Now ¢ is objective, =, ¢ andW | TK¢, so
W U{w} E TK¢, and soW U {w} E K. Thus, for
any basicy, W = K impliesW U {w} = K. This
easily implies that, for any basi¢, W = K+ if and only
if Wu{w} E K¢. Thatis, W = W U {w}. By the
maximality of W, then,w € W, and hencéV = O¢. O

Note that the second part of the above theorem depends cru-
cially on the strengthening of lemma 1 provided by corol-
lary 1.

It is easy to construct examples showing that theorem 4
fails if ¢ is allowed to be nonobjective. Consider for ex-
ample the sentencg := -Kp — ¢. The sentenc®¢ is
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consistent, and implie&q. (Thus,¢ can be seen as a de-
fault rule licencing inference tg providedp is not known.)
By contrast, 'K ¢ is easily seen to be inconsistent, siice
implies neithep nor ¢, so thatl' K ¢ implies the inconsistent
trio ~Kp, ~Kq, K(—-Kp — q).

This last example shows how the failure of property (1)
above is crucial for default inference. By simple Sb5-
manipulation,

F K(=Kp—q) < K(KpV Kq)
and so by property (1),
ETK(—-Kp—q) < TK(KpV Kq).

But the formula KpV K q) is symmetric inp andg, and thus
could not possibly favour inferring<q over inferring Kp.
Thus, no concept of total knowledge for which property (1)
obtains is likely to be of any use for modelling default infer-
ence along the lines taken by Levesque.

As we have already remarked, the restriction in the final
clause of definition 1 thdl’ X' applies only to formulas not
involving any occurrences @fK is inessential. The seman-
tics presented in definition 2 work unproblematically even
when it is lifted.

The following result is immediate from the semantics for
TK andK.

Lemma 10. If ¢ is any sentence, thea TK¢ — KTK ¢.

We note that the proof of lemma 9 does not depend on any
assumption that andy are basic, so that the result holds for
all ¢ ands). We then have

Corollary 3. For any formulag, = TK¢ <« TKTK ¢.
Proof. If TK ¢ is inconsistent, theK'T' K ¢ is certainly
inconsistent. Hence we may assume fhat¢ is consistent.
We have= TK¢ — KTK¢ by lemma 10, and certainly

E KTK¢ — K¢. Hence, by lemma 9, putting := TK(;S
we have= TK¢ — TKTK ¢.

This is the promised proof of the property (3) above.

Conclusions and further work

The purpose of this paper has been to define and analyse a

concept of total knowledge based on the idea that an agent’s
total knowledge is the strongest proposition that the agent
knows. We proposed semantics for the languagée¥’ K

and FOLTK, according to which a senten@eK ¢ was
guaranteed to be epistemically categorical for objective sen-
tences. We showed that, surprisingly, total knowledge is
epistemically categorical for all basic sentences. We showed

that the assumption that an agent has total knowledge does

not change the finitary logic PCT K; but it does change
the finitary logic of FOLT K. We showed that total knowl-
edge of any basic sentence is logically equivalent to total
knowledge of some objective sentence. Finally, we showed
that, for objective sentences, but not for nonobjective sen-
tences,T'K coincides with Levesque’s operatoy, modulo
certain technical details.
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The above results can be extended in several ways.
Throughout most of this paper, we have assumedTtiat
operators could apply only to basic formulas. In fact, this
assumption is unnecessary, and all of the above theorems
remain true when it is removed. The proofs cannot be pre-
sented within the confines of this paper. Another important
extension is to index the modal operatédfsand7T K to in-
dicate the time at which the knowledge (or total knowledge)
applies. Thus, we might work instead with operathts (“I
know at timen that. .. ...") andT K,, (“My total knowledge
at timen is that... ..."). The extension of the semantics
to these temporally indexed cases is routine. It turns out
that lemma 4 continues to hold for the temporally indexed
version of PCT K. The proof is more involved than in the
nontemporal case, and cannot be given here.
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