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Abstract. By a fragment of a natural language we mean a subset of that language
equipped with semantics which translate its sentences into some formal system
such as first-order logic. The familiar concepts of satisfiability and entailment can
be defined for any such fragment in a natural way. The question therefore arises,
for any given fragment of a natural language, as to the computational complexity
of determining satisfiability and entailment within that fragment. We present a
series of fragments of English for which the satisfiability problem is polynomial,
NP-complete, EXPTIME-complete, NEXPTIME-complete and undecidable. Thus,
this paper represents a case study in how to approach the problem of determining
the logical complexity of various natural language constructions. In addition, we
draw some general conclusions about the relationship between natural language and
formal logic.
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1. Introduction

Let us begin, as logic itself began, with the syllogism. Consider the set
of all English sentences subsumed by the following six schemata, where
A and B are any common (count) nouns and S is any proper noun:

Every Aisa B No Aisa B
Some Aisa B Some A is not a B
SisaB S is not a B.

For any sentence in this set, we call the constituents A, B and S the
content of that sentence, and we call the schema it falls under its form.
Given such a distinction between content and form, a set F of sentences
is said to be satisfiable if there is some way of varying the semantic
contributions made by the content of the sentences in E so as to render
every sentence in F simultaneously true. Similarly, a set of sentences
E is said to entail a sentence e if every way of varying the semantic
contributions made by the content of the sentences in £ U {e} renders
either e true or some sentence in E false. For a given fragment of
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2 Tan Pratt-Hartmann

English, the problem of determining whether a finite set of sentences
in that fragment is satisfiable is referred to as the satisfiability problem
for that fragment; the problem of determining whether a finite set of
sentences in that fragment entails another such sentence is referred to
as the entailment problem. For fragments closed under negation, the
two problems are visibly equivalent.

These are, of course, old problems. Aristotle’s Prior Analytics pro-
poses, in effect, a solution to the entailment problem for the fragment of
English defined above. The solution takes the form of a list of syllogisms
such as, e.g.

Every Aisa B Some Aisa B
Every Bisa C No Bisa C
Every Aisa C Some Aisnot a C

which may be used to construct chains of argument via intermediate
conclusions in the familiar way. It is tempting, though probably histor-
ically inaccurate, to interpret Chapter A 25 of the Prior Analytics as
a (not desperately convincing) argument for the completeness of this
procedure: if F really does entail e, then it should be possible to derive
e from E by a sequence of two-premise inference steps.

Despite the antiquity of the issue, modern developments in mathe-
matical logic, natural language semantics and computational complex-
ity theory afford us a perspective unavailable to the ancients. Three
features characterize this new perspective. The first is generality: we
view the language of the syllogism as just one of many fragments for
which the satisfiability and entailment problems can be posed. The
second is the requirement of validation: we demand that any method
of determining satisfiability in some fragment of a natural language be
accompanied by a formal assurance of its correctness. The third is an
interest in computation: one of the key issues regarding any fragment
of natural language is the complexity class of the satisfiability and
entailment problems for that fragment. The purpose of this paper is
to describe some of the technical results that these modern develop-
ments have made available, setting them in the broader context of the
relationship between natural and formal languages.

2. The syllogistic fragment

Before proceeding, we provide an alternative specification of the lan-
guage of the syllogism, on lines more amenable to the generalizations
we envisage. Consider the following grammar rules.
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Syntax Formal lexicon Content lexicon
IP - NP, I Det — some N — man

I' »isa N Det — every N — mortal

I' > isnota N Det — no

NP — PropN PropN — Socrates
NP — Det, N’

N’ — N.

The node labels IP, NP, etc. gesture in the direction of familiar phrasal
categories, though of course linguistic orthodoxy has to some extent
been sacrificed for simplicity of exposition, particularly in the handling
of negation. These rules generate a set of English sentences (phrases of
category IP), complete with phrase-structures, via successive expansion
of nodes in the usual way. The sentences thus generated are simply those
having the forms described by the schemata of Section 1, together with
the two additional schemata

Every Aisnota B No A is not a B.

Since these are equivalent to No A is a B and Every A is a B, respec-
tively, they do not affect the expressive power of the fragment.

The above grammar rules have been divided into three groups: a
syntaz, consisting of the rules for non-terminal categories, a formal
lexicon, consisting of the rules for the syncategoremata all, some, no, and
a content lexicon, consisting of an indefinite number of rules for com-
mon and proper nouns. Thus, the syntax and formal lexicon contribute
exclusively to form, while the content lexicon contributes exclusively to
content, as defined for this fragment in Section 1. It helps to think of
the syntax and formal lexicon as together defining a family of fragments
of English, each member of which is determined by its content lexicon.
We denote this family of English fragments by &£y. To avoid cumber-
some formulations and notation, however, we occasionally speak of “the
fragment &)” to refer to the union of all these fragments. In practice,
no confusion need arise from this abuse of terminology.

The meanings of sentences of £y can be provided using the techniques
of Montague semantics. The idea is to augment the grammar rules with
information specifying the semantic value of each node in the phrase-
structure of a sentence. The semantic values of terminal nodes are given
directly by the formal lexicon and the content lexicon; the semantic
values of nonterminal nodes are computed from the semantic values of
their daughters as specified by the syntax. The augmented grammar
rules for the syntax and formal lexicon are as follows.
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Syntax Formal lexicon

IP/¢(1) — NP/¢, I'/4) Det/ApAq[3z(p(x) A q(z))] — some
I'/¢p - isa N'/¢ Det/ApAg[Vz(p(z) — q(x))] — every
I'/=¢ —isnota N'/¢ Det/ApAg[Vz(p(z) — —¢(z))] — no

NP/¢ — PropN/¢

NP/¢(y) — Det/¢, N'/+p
N'/¢ — N/é.

Here, ¢(1) denotes the result of applying the function ¢ to the ar-
gument 1. Thus, the augmented grammar rule for IP states that the
meaning of an IP consisting of an NP and an I’ is computed by applying
the meaning of the NP (as a function) to the meaning of the I'. The
augmented grammar rules for the content lexicon assign meanings to
common and proper nouns according to the following pattern.

Content lexicon

N/Az[man(z)] — man PropN/Ap[p(socrates)] — Socrates
N/Az[mortal(z)] — mortal

Every such content lexicon defines a first-order signature, where each
common noun corresponds to a unary predicate and each proper noun
to an individual constant.

It is straightforward to verify that the semantically augmented gram-
mar rules for £ map the six schemata of the previous section into
formula schemata of first-order logic as follows.

Every Aisa B Vz(a(z) — b(z)) No Aisa B Vz(a(z) — —b(x))
Some Aisa B  Jz(a(x) Ab(z)) Some Aisnota B  Jz(a(zx) A —b(z))
Sisa B b(s) Sisnota B —b(s)

where a, b and s are the elements of the signature corresponding to the
content lexicon entries A, B and S. In contrast to the methods of tra-
ditional logic, we have adopted the now standard non-presuppositional
account of universal quantifiers, according to which a sentence Every
Ais a B is true if no A exist. (Traditional accounts of the syllogism
assign the reverse truth-value in this case.) Modulo the issue of presup-
positionality, we take it that the above translations faithfully capture
the meanings of sentences in &) as understood by English speakers. It
is not possible formally to validate this assumption, since it relies on a
pre-theoretic notion of meaning for £y-sentences. In practice, however,
it does not appear open to serious doubt.
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The above semantics reduce the satisfiability and entailment prob-
lems for &, as defined in Section 1, to their counterparts in first-order
logic. In particular, if £ C &y, and @ is the corresponding set of first-
order formulas, then F is satisfiable in the sense of Section 1 if and only
if @ is satisfiable in the usual sense of first-order logic. This reduction
rests on the correspondence between content lexicon and first-order
signature. More generally, the notions of satisfiability and entailment
in fragments of English defined in Section 1 rely crucially on a given—
and indeed perhaps arbitrary—separation of content and form. For &,
this separation was provided by the notion of a distinguished content
lexicon. We will maintain this separation in all the fragments of English
considered below.

In the sequel, if X is any expression or set of expressions (either in a
natural or a formal language), we take the size of X, denoted | X|, to be
the number of atomic symbol (tokens) occurring in X. For natural lan-
guages, the atomic symbols are the lexemes (and perhaps morphemes);
for formal languages, the atomic symbols are the logical connectives,
the variables and the members of the signature. Using this notion of
size, we can formulate questions about computational complexity in the
usual way. Thus, the complexity of the satisfiability problem for some
English fragment £ is the number of steps of computation required to
determine algorithmically whether a given finite set of sentences £ C £
is satisfiable, expressed as a function of |E|.

Our first result states that satisfiability in the fragment & is com-
putationally tractable.

Theorem 1. The problem of determining the satisfiability of a set of
sentences in & is in PTIME.

Proof. Let E be a finite set of sentences of &, and let ® be their
translations into first-order logic. It is obvious that ® can be computed
in linear time. Since we have argued that @ is satisfiable if and only
if F is satisfiable, it suffices to show that the satisfiability of ® can be
determined in polynomial time.

Replace all formulas of the form Jz¢(z) in ® by the corresponding
formulas ¢(s), where the s are new individual constants. The resulting
set of formulas @ is then satisfiable if and only if @ is satisfiable, and
will involve a signature whose size is bounded by |E|. Now re-write ®’ as
a set of clauses (disjunctions of literals). After factoring and eliminating
tautologies, all these clauses will be of the forms —a(z) V b(z), —a(z) V
=-b(x), —a(z), a(s) or —a(s). It is easy to see that resolution applied to
such clauses will produce only more clauses of this form. The number
of such clauses is quadratic in the size of the signature of ®'. Hence the
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resolution procedure will either produce a contradiction or will reach
saturation after O(|E|?) steps. O

This simple result suggests a programme of work: take a fragment of
English delineated in terms which respect the syntax of the language;
then determine the computational complexity of deciding satisfiability
in that fragment, if, indeed, the fragment is decidable. From this stand-
point, the syllogistic can be regarded as just one such fragment, with
very restricted syntax, and a correspondingly efficient decision proce-
dure. In the sequel, we shall investigate what happens as we expand
our syntactic horizons.

3. Relative clauses

One way to generalize the fragment & is to add relative clauses, thus
accommodating arguments such as:

Every philosopher who is not a stoic is a cynic
Every stoic is a man

Every cynic is a man

Every philosopher is a man.

In this section we investigate the computational consequences of this
generalization.

Our approach to the semantics of relative clauses loosely follows
that of Heim and Kratzer (1998). Let £ be the fragment defined by
the grammar rules for £y together with the following additional syntax
rules and formal lexicon rules.

Syntax Formal lexicon

N'/¢() — N/y, CP/¢ C—

CP/$(v) — CSpect/d, Ci/1p  RelPro/AgApAz[p(z) A q(x)] — who,
Ci/t[¢] — C,1IP/¢ which
NP/¢ — RelPro/¢

CSpec; —

In addition, we assume that, following generation of an IP by these
rules, relative pronouns are subject to wh-movement to produce the
observed word-order. For our purposes, we may take the wh-movement
rule to require: (i) the empty position CSpec; must be filled by move-
ment of a RelPro from within the IP which forms its right-sister (i.e.
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1P
z(philosopher(z) A —stoic(xz) — cynic(x
Aq[Va( phllosopher —|st01c )\a:[cymc(:c)]
/\ is a cynic

Det
ApAgVz(p(z) — q(z))] )\:c[phllosopher A —stoic(z

|
Every

/\m[philosopher( )] ApAz[p(z ) —|st01c (2)]

| /\
philosopher

CSpec;
AgApAz[p(z) A q(z)] /\t[—|st01c(t)]
| s
RelPro C 1P

| —stoic(t)
who

NP r
Ap[p(t)]  Az[-stoic(z)]

N

18 not a stoic

Figure 1. Typical phrase-structure in the fragment &;

which it C-commands); (ii) every RelPro must move to some such
CSpec; position; (iii) every RelPro moving to CSpec; leaves behind
a trace ¢, which contributes the semantic value Ap[p(t)]. The semantic
information with which these rules are augmented can then be under-
stood as for &), with meanings computed after wh-movement. Figure 1
illustrates the structure of the first sentence in the above argument,
with the arrow representing wh-movement in the obvious way.

For the sake of clarity, we have ignored the issue of agreement of
relative pronouns with their antecedents—animate or inanimate. This
detail aside, we claim that the above rules result in intuitively correct
meanings for £1-sentences. This claim may be verified by hand-checking
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or (better) by direct implementation as a Prolog program. Thus, for
example, the above argument translates to:

Vz(philosopher(z) A —stoic(z) — cynic(z))
Vz(stoic(z) — man(z))

Vz(cynic(z) — man(z))

Vz(philosopher(z) — man(z)).

As with &y, so too with &, it is not possible formally to validate
the proposed semantics; again, however, the fragment in question is
so simple that they are not open to reasonable doubt. It follows that a
set of £;-sentences is satisfiable in the sense of Section 1 if and only if
its translation is satisfiable in the usual sense of first-order logic.

We have the following result:

Theorem 2. The problem of determining the satisfiability of a set of
sentences in &1 is NP-complete.

Proof. To show membership in NP, let E be a finite set of sentences of
&1, let @ be their translations into first-order logic, and let ®' be the
result of replacing all existential quantifiers in ® with new constants.
Clearly, ®' can be computed in linear time, and is satisfiable if and
only if F is satisfiable. Thus, it suffices to show that, if ®’ is satisfiable,
then it has a model of size bounded by |®'|. But this is obvious since
® is only universally quantified, and hence its models are closed under
taking substructures.

To show NP-hardness, we reduce 3SAT to the problem of determining
satisfiability in £1. Let C' be a set of propositional clauses, each of which
has at most three literals. Without loss of generality, we may assume
all the clauses in C to be of the forms p Vg, =-pV g or =pV —q V r.
We then map each clause in C' to a sentence of £ as follows:

pVg Every element which isnotaqisap
—pV g No pisaq
-pV-qVr Every p whichisaqgisanr,

and finally add the &;-sentence Some element is an element. Let the
resulting set of £;-sentences be E. These sentences translate to first-
order logic according to the following table:

Every element which isnotaqisap Vz(element(z) A —g(z) — p(z))

Nopisagq Vz(p(z) = —~q(z))
Every p whichis a gisanr Vz(p(z) A q(z) — r(x))
Some element is an element Jz(element(z) A element(z)).
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Let @ be the set of formulas thus obtained. Thus ¥ is satisfiable if and
only if @ is satisfiable. But it is routine to transform any satisfying
assignment for C' into a model of ® and vice versa. This completes the
reduction of 3-SAT to &£;-satisfiability. O

One question that sometimes arises in discussions of traditional
logic, and indeed, in exegesis of logical works from earlier epochs, is
whether certain arguments can, by careful massaging, be accommo-
dated within the syllogistic framework. For example, one might wonder
whether arguments expressed in & have this property. Theorems 1
and 2 provide strong evidence that they do not. Unless P = NP, satis-
fiability in the fragment £; cannot tractably be reduced to satisfiability
in the fragment &y.

4. Non-copula verbs

Despite its greater computational complexity, £; is still representation-
ally impoverished: it is in no better position than & to satisfy Augustus
de Morgan’s famous demand to account for the evident validity of the
argument

Every horse is an animal
Every horse’s head is an animal’s head.

Let us see what happens when we add relations to our fragment.
Let & be the fragment defined by the grammar rules for £; together
with the following additional grammar rules.

Syntax Content Lexicon

I'/¢p — VP/¢ V/AsAz[s(Ay[admire(z,y)])] — admires
VP/$() = V/¢, NPy

The wh-movement rule is carried over from &£;. Note that this rule al-
lows any NP in a relative clause—in either subject or object position—
to fill the appropriate CSpec.

The fragment & includes the sentences in the following (lightly
transcribed) version of the de Morgan argument.

Every horse is an animal
Every head which some horse has is a head which some animal has.

The reader may verify that the above rules translate this argument as
follows.
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Vz(horse(z) — animal(z))
Vz(head(z) A Jy(horse(y)Ahas(y, z)) —
head(z) A Jy(animal(y) A has(y, z))).

We claim that our semantics correctly capture the meanings of Es-
sentences. Again, therefore, a set of s-sentences is satisfiable in the
sense of Section 1 if and only if its translation into first-order logic is
satisfiable in the usual sense of first-order logic.

The reader may be wondering why our fragment £ does not allow
VPs to be directly negated (though their NP complements may contain
the negative determiner no). The reason for this restriction is simply to
avoid complications of a purely linguistic nature concerning quantifier
scoping and negative polarity determiners, for example in sentences
such as

Every/no farmer does not own some/any/a/every horse.

In fact, adding full negation for non-copula verbs would not affect the
computational complexity of the satisfiability problem for £, which is
established in the following theorem. To shorten the proof, we have also
ignored proper nouns altogether; the reader may easily verify that this
feature of £ does not affect its computational complexity either.

Theorem 3. The problem of determining the satisfiability of a set of
sentences in £ is EXPTIME-complete.

Proof. To show membership in EXPTIME, let E be a finite set of
sentences of &5 and let @ be the set of their translations into first-order
logic. Define an &-formula recursively as follows.

1. If a is a unary predicate and z a variable, then a(z) is an £s-formula.

2. If a is a unary predicate, R a binary predicate, x, y variables and
7(z) an Eo-formula, then

a(z) A m(x) -7 (x)
Jy(m(y) A R(z,y))  Fy(n(y) A R(y,z))
Vy(r(y) = R(z,y)) Vy(r(y) = R(y,z))

are Es-formulas.

A simple induction on the phrase-structures of £-sentences shows that
every N contributes a meaning of the form Az[(z)], where v is (mod-
ulo trivial logical manipulations) an &-formula. It follows that, by
moving negations inwards and introducing new unary predicate letters
for subformulas, we can transform ® into an equisatisfiable set ® of
formulas of the forms
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Jz(p(z) A q(z)) Jz(p(z) A —q(z))

Vz(p(z) — q(z)) Vz(p(z) — —q(z))

Vz(=p(z) — q(z)) Va(p(z) — (q(z) Vr(z)))

Vz(p(z) — Jy(q(y) A R(z,y)))  Vz(p(z) — Jy(q(y) A R(y,z)))
Vz(p(z) — Jy(q(y) A ~R(z,y))) Vz(p(z) = Jy(e(y) A ~R(y, z)))
Vz(p(z) = Vy(e(y) = R(z,y)))  Vz(p(z) = Vy(q(y) = R(y,z)))
Vz(p(z) = Vy(e(y) = ~R(z,y))) Vz(p(z) = Vy(e(y) = —R(y,z))),

where p, ¢ and r are unary predicates and R is a binary predicate.
Since @' can be computed in polynomial time, it suffices to show that
the satisfiability of ® can be decided in EXPTIME.

Suppose ®’ is converted into a set of clauses I' in the usual way. The key
observation is that every clause in I'" contains at most one occurrence
of a binary predicate. Consider the partial order on the set of atomic
formulas defined by declaring every atom involving a binary predicate
to be greater than every atom involving a unary predicate. Since this
ordering is liftable, resolution under the restriction that only maximal
literals in clauses may be resolved upon is complete.

Suppose we now saturate I" under resolution on atoms involving binary
predicates. Since each clause in I' contains at most one binary predi-
cate, this step can be computed in quadratic time. Clauses containing
any binary predicates cannot now take any further part in ordered
resolution, and so may be discarded. The result will be a set of clauses
I, such that: (i) ' has a model if and only if I has; (ii) I features
only unary (not binary) predicates and only unary function-symbols;
and (iii) |T’| is bounded by a polynomial function of |T'|.

By (i), @' is satisfiable if and only if I has a model. By (ii) we can
apply the splitting rule to every clause in IV to obtain clauses involving
only one variable. (The splitting rule allows us to replace a clause 7V
nondeterministically by 7 or 1 provided that 7 and 1 have no variables
in common.) By (iii) the number of backtracking choices generated by
the splitting rule is at most exponential in |®|. For each choice of
how to split clauses, the subsequent resolution procedure is confined to
clauses in one variable with bounded functional depth, and can easily
be seen to reach saturation after at most exponentially many steps.

To show EXPTIME-hardness, recall that the logic KV is the modal
logic K together with an additional universal modality, whose seman-
tics are given by
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Ew Ug if and only if =, ¢ for all worlds w'.

The satisfiability problem for KUV is EXPTIME-hard. (The proof is an
easy adaptation of the corresponding result for propositional dynamic
logic; see, e.g. Harel et al. 2000: 216 ff.) It suffices, therefore, to reduce
this problem to satisfiability in &. Let ¢ be a formula of KY. For
convenience, we take V' to be the dual modality to U. For every proper
or improper subformula v of ¢, let Ay, be a noun. Let Es and Rs be
verbs. Now define, for each such v a set of formulas Ty, C &2 inductively
as follows:
T, = 0 if p is atomic
Tyrr = Ty U Ty U {Every Ay which is an Ay is an Ayar,
Every Ayar is an Ay, Every Ayn is an Ay}
T-y = Ty U {Every element which is not an Ay is an Ay,
No Ay is an Aﬁw}
Toy = Ty U {Every element which Rs some Ay is an Agyy,
Every Ay Rs some Ay}
Tyg = Ty U {Every element which Es some Ay is an Ay,
Every Ay Es some Ay}.

Now let Sy be the collection of &;-sentences

{Every Ay is an element | 4 a subformula of ¢}U
{Some A, is an A;, Every element Es every element}.

It is routine to show that ¢ is satisfiable if and only if Ty U Sy is
satisfiable. O

5. Anaphora

There are still many simple arguments that cannot be captured by the
fragment &,. Here is one:

Every artist despises some bureaucrat
Every bureaucrat admires every artist who despises him
Every artist despises some bureaucrat who admires him.

(We assume that the pronouns above are resolved intrasententially.)
So the next question is what happens to the computational complexity
of the satisfiability problem when pronouns (he, him) and reflexives
(himself) are admitted.

Let the fragment &3 be defined by adding the following grammar
rules to those defining &
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Syntax Formal lexicon

NP — Reflexive Reflexive — itself (him/herself)
NP — Pronoun Pronoun — it (he/she/him/her)
I' — NegP, VP NegP — does not.

For technical reasons, we have added negation for non-copula verbs as
well. (The issue of verb-inflections in such sentences has been ignored,
however.) To avoid problems of a purely linguistic nature concerning
quantifier scoping and negative polarity determiners, we insist that
the VP in the rule I' — NegP, VP contain no determiner at all after
wh-movement. (Hence it contains a proper noun, pronoun, reflexive or
wh-trace.) This limited form of negation is all that is required to obtain
the complexity results below.

The content lexicon (for nouns and verbs) and the wh-movement rule
are carried over from &5. Furthermore, we take pronouns and reflexives,
which are assumed always to have antecedents in the sentences in which
they occur, to be subject to the usual rules of binding theory, and in
addition to obey a further restriction explained below. We shall not
rehearse binding theory here, referring the reader instead to a standard
text, such as Cowper (1992: 171). For present purposes, we can use
our linguistic intuitions to determine which NPs a given reflexive or
pronoun can take as antecedent. We also forego a formal account of
the semantics for £3, in order not to be detained by the technicalities
of handling bound-variable anaphora within the framework of Mon-
tague semantics. A full semantic analysis of £ (with some inessential
variations) is given in Pratt-Hartmann (2003); for an approachable
general account of bound-variable anaphora and Montague semantics,
see Heim and Kratzer (1998: Chh. 9, 11). Accordingly, we shall simply
assume in the present paper some mechanism for producing faithful
first-order translations of sentences of £ along the lines outlined for the
other fragments considered above. For example, we expect the above
argument to be translated as follows:

Vz(artist(z) — Jy(bureaucrat(y) A despise(z,y)))
Vz(bureaucrat(z) — Vy(artist(y) A despise(y, z) — admire(z,y)))
Vz (artist(z) — Jy(bureaucrat(y) A admire(y, z) A despise(z,y))).

We now come to the additional restriction on pronoun resolution
mentioned above. By way of introduction, consider the sentence

Every artist who employs a caretaker despises every bureaucrat who
admires himself.
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The phrase-structure of this sentence is shown in Figure 2; its transla-
tion into first-order logic is

Vi, (artist(z1) A Jze(caretaker(z2) A employ(z1,z2)) —
Vzs(bureaucrat(zs) A admire(zs, z3) — despise(z1,z3)))-

That the arguments of the predicate admire in this formula are identical
is due to the use of the reflexive himself, which, according to binding
theory, must coindex with the NP headed by bureaucrat. As we see
from Figure 2, this NP is the closest NP to the reflexive himself in the
phrase-structure of the sentence.

By contrast, the sentence

Every artist who employs a caretaker despises every bureaucrat who
admires him

exhibits an anaphoric ambiguity, according to whether the antecedent
of the pronoun him is the NP headed by artist or the NP headed by
caretaker. (The NP headed by bureaucrat is not available as a pronoun
antecedent here.) The translations of these two readings into first-order
logic, are, respectively,

Vi (artist(z1) A Jzo(caretaker(z2) A employ(z1,z2)) —
Vzg(bureaucrat(zs) A admire(zs,z1) — despise(z1,x3)))

and

Vz1Vro(artist(z1) A caretaker(zy) A employ(zy, z2) —
Vzz(bureaucrat(zs) A admire(zs, zo) — despise(z1, z3))).

We see from Figure 2 that the NP headed by artist is closer to the
pronoun, as measured along the edges of the phrase-structure, than is
the NP headed by caretaker. Given that the NP headed by bureaucrat
is disallowed as an antecedent to the pronoun in this sentence, the first
reading is thus the one in which the pronoun takes its closest allowed
antecedent.

We notice something else about this first reading. Consider again
its translation into first-order logic. Although there are three variables
in the formula, corresponding to the three nouns in the sentence, the
variables zo and 3 never occur free in the same subformula. Hence, we
can replace 3 by z2, to get the equivalent formula:

V1 (artist(z1) A Jze(caretaker(z2) A employ(z1,z2)) —
Vza(bureaucrat(zz2) A admire(zo, 1) — despise(z1,z2)))-

The reader is invited to verify that no such move is available for the
second reading. This observation generalizes: it is shown in Pratt-
Hartmann (2003), Theorem 1, that every sentence in & translates to a
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Figure 2. Typical phrase-structure in the fragment €3

formula which may be written with exactly two variables. (The details
of the proof are somewhat tedious.)

Despite this limitation, it should come as no surprise that &5 is
more expressive than &. Table I lists some E3-sentences and the for-
mulas they translate to. In giving these translations, we have supressed
reference to the unary predicate corresponding to the noun thing, since
all quantification is restricted to its extension anyway. Notice the use of
‘donkey-anaphora’ in the last row of this table. This type of anaphora
is permitted in &3, subject of course to the restriction that pronouns
always take their closest allowed antecedent. In fact, these examples
suffice to establish the following theorem:

Theorem 4. The problem of determining the satisfiability of a set of
sentences in &3 is NEXPTIME-complete.

Proof. 1t is well-known that satisfiability in the two-variable fragment
of first-order logic is NEXPTIME-complete (see, e.g. Borger, Gurevich
and Gréidel 1997: Ch. 8.1). Given the result that every E£s-sentence
translates into this fragment, membership in NEXPTIME is immedi-
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16 Tan Pratt-Hartmann

Table I. Expressiveness of 3

Every thing bees every thing which ays it VaVy(a(z,y) — by, x))
Every thing which ays some thing bees itself Vz(Jya(z,y) — bz, z))
Every thing which some thing ays bees itself Vy(Fza(z,y) — b(y,y))
Every thing which bees itself ays every thing Vz(b(z, ) — Yya(z,y))
Every thing ays every thing which bees itself Vz(b(z, ) — Yya(y, z))
Nothing bees some thing which it ays VaVy(a(z,y) = —b(z,y))
Every thing bees every thing which it ays VaVy(a(z,y) — b(z,y))
Every thing ays every thing VaVya(z,y)
Every thing ays some thing VzIya(x,y)
Every thing ays every thing which it does not bee  VzVy(-b(z,y) — a(z,y))
Every thing which bees some thing VaVy((b(z,y) A c(z,y)) = a(z,y)).

which it cees ays it

ate. For the hardness result, we may use the standard normal form
re-writing techniques to replace any formula ¢ in the two-variable frag-
ment of first-order logic by an equisatisfiable conjunction of formulas
of the forms appearing in the right-hand column of Table I. (We may
assume without loss of generality that ¢ involves only binary predi-
cates.) The corresponding set of £3-sentences will then be satisfiable if
and only if ¢ is satisfiable. O

Finally, we consider what happens when we relax the artificial re-
striction on pronoun interpretation in &3, allowing a pronoun to take
any allowed antecedent in the sentence in which it occurs. As we have
seen, this relaxation results in ambiguous sentences, for example

Every artist who employs a caretaker despises every bureaucrat who
admires him.

In order to eliminate this ambiguity, we suppose such sentences to
come complete with (allowable) indexation patterns indicating the an-
tecedents of any pronouns. For instance, the above sentence would be
replaced by the two sentences:

Every artist; who employs a caretaker; despises every bureaucrat; who
admires him;

Every artist; who employs a caretaker; despises every bureaucrat; who
admires him;.

Let &4 be the fragment of ‘English’ thus obtained.
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We can now formulate the satisfiability question for £, as before,
and ask what its complexity is. Given that the three-variable fragment
of first-order logic is undecidable, it is no surprise that the same fate
befalls &,.

Theorem 5. The problem of determining the satisfiability of a set of
sentences in &4 is undecidable.

Actually, a slightly stronger result is shown in Pratt-Hartmann (2000),
Corollary 1: the entailment problem for the positive fragment of &4
(no negation or negative determiners) is also undecidable. Again, the
details are tedious, and we omit them here.

6. Conclusions

The technical content of this paper is easily summarized. The follow-
ing table lists the five English fragments we have introduced, briefly
describes their distinguishing features, and gives the complexity class
of the corresponding satisfiability problem.

Fragment Distinguishing features = Computational complexity

&o Syllogism PTIME

& Relative clauses NP-complete

&y Non-copula verbs EXPTIME-complete
Es Restricted anaphora NEXPTIME-complete
o Unrestricted anaphora  undecidable.

So one could go on. There are many more fragments of English we
could have analysed, of all levels of complexity. The utility of such an
analysis from the point of view of natural language engineering, at least
in principle, should be obvious. Moreover, the techniques required to
carry out analyses of other fragments will be, in essence, those used
above: a specification of the fragment in terms of syntax rules, a formal
semantics mapping the fragment into first-order logic (or some other
formal logic), and the deployment of standard methods of computa-
tional complexity theory on the resulting fragment of formal logic. It
should perhaps be pointed out that we cannot expect the determination
of all linguistically salient fragments to be quite as straightforward as
those considered here.

More generally, our analysis allows us to view the relationship be-
tween traditional logic and mathematical logic in a more conciliatory
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light than has sometimes been the case (Englebretsen 1981, Sommers
1982). It would be wrong to think of the logic of the Principia Math-
ematica as being so pitilessly superior to that of the Prior Analytics
that we can simply forget about the latter. Yes, first-order logic is
more expressive than the language of the syllogism; but expressiveness
is a double-edged sword, because it correlates, loosely at least, with
computational complexity. Indeed, the very recent history of logic,
especially within Computer Science, is dominated by the search for
logical fragments of limited expressive power whose satisfiability prob-
lems are decidable. The kinds of fragments which have drawn most
attention, for example various prefix classes (see Borger, Gradel and
Gurevich 1997 for a survey), the guarded fragment (Andréka, van Ben-
them and Németi 1998, Griadel 1999) and the two-variable fragment
(Mortimer 1975, Griadel and Otto 1999), owe their salience to purely
logic-internal considerations. But there is every reason to consider also
those logics arising from fragments of natural languages. The syllogistic
is one such logic. And if that logic is too inexpressive to be of much
practical use, perhaps its natural generalizations are not. We have
presented a selection of such generalizations in this paper.

Finally, the foregoing analysis should help to lay to rest some ap-
pealing but ultimately confused ideas concerning the value of natural-
language-friendly logic. According to its proponents, we obtain a bet-
ter (i.e. more efficient) method of assessing the validity of arguments
couched in natural language if we reason within a logical calculus whose
syntax is closer to that of natural language than is—say—first-order
logic. This idea is attractive because it suggests an ecological dictum:
treat the syntax of natural language with the respect it is due, and
your inference processes will run faster. Writers apparently expressing
support for such views include Fitch (1973), Hintikka (1974), Sup-
pes (1979), Purdy (1991) and (perhaps) McAllister and Givan (1992).
The observations of this paper lend no support to such views, and
indeed cast doubt on them. There is no reason, having identified a
fragment of a natural language, why satisfiability within that fragment
should not be decided by first translating into first-order logic and then
using procedures appropriate to the fragment of first-order logic so ob-
tained. Indeed, from a complexity-theoretic point of view, there is every
reason to believe that, for all but the most impoverished fragments,
reasoning using schemata based on the syntax of natural language will
confer no advantage whatever.
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