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2 Semantic Complexity

1 Introduction

That sentences in natural language exhibit logical entailments was recognized
in antiquity. For example, the argument

(1)

Every artist is a beekeeper
Some artist is a carpenter
No carpenter is a dentist
Some beekeeper is not a dentist,

is evidently valid: every possible situation in which the premises are true is
one in which the conclusion is true. Likewise valid, but less evidently so, is
the argument

(2)
Some artist admires no beekeeper
Every beekeeper admires some artist
Some artist is not a beekeeper

Indeed, consider any artist, a, who admires no beekeeper. If he is not a bee-
keeper himself, the conclusion is certainly true. On the other hand, if a is a
beekeeper, the second premise guarantees the existence of an artist, b, whom
a admires. But then b cannot be a beekeeper, since otherwise, a—who by
assumption admires no beekeeper—would not admire him, whence the con-
clusion is again true. Note that we assume no quantifier re-scoping in (2).

Argument (1) features only the language of the Classical syllogistic—i.e.
the determiners every, some and no together with the (possibly negated) cop-
ula construction. Argument (2), by contrast, relies crucially on the relational
information expressed by transitive verbs. This leads us to the natural ques-
tion: how does the complexity of determining logical relationships between
sentences vary with the syntactic constructions they feature? Is the language
of Argument (2) really harder to reason in than the the language of Argu-
ment (1)? Would arguments involving ditransitive verbs be harder still? Would
the availability of relative clauses, for example in the evidently valid

(3)

Every artist who is not a beekeeper is a carpenter
No beekeeper is a dentist
No carpenter is a dentist
No artist is a dentist

affect the complexity of inference? What of anaphora, passives, quantifier
rescoping, numerical determiners, . . . ? The purpose of this Chapter is to out-
line what is known in this area.

Our approach is inspired by recent developments in computational logic,
and in particular, by the enormous strides that have been made in character-
izing the computational complexity of various fragments of first-order logic. It
has been known since the work of Turing that first-order logic is undecidable:
no computer program can determine whether an arbitrary argument formu-
lated in that language is valid. On the other hand, the existence of fragments
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Semantic Complexity 3

of first-order logic for which such algorithms do exist antedate even Turing’s
negative result; and in the years since, a great many such decidable fragments
have been found. Moreover, since the emergence of computational complex-
ity theory in the 1970s, it has been possible to characterize, in mathematical
terms, the relative difficulty of determining entailments in these fragments.
This development has fuelled a surge of interest in Computer Science, partic-
ularly in the area of so-called terminological logics.

The idea of tailoring logical systems to (fragments of) natural languages is
certainly not new. Early investigations in this direction include Fitch (1973)
and Suppes (1979). Of particular note is the use of polarity marking to detect
entailments based on set-inclusions (Fyodorov et al., 2003; Zamansky et al.,
2006; Moss, 2012; Icard, 2012), a strategy which has recently been employed
in the development of robust systems for textual entailment (MacCartney &
Manning, 2008). However, these treatments do not aim at proof-theoretical
completeness, and certainly do not provide a complexity-theoretic analysis of
the underlying inferential problems. The work reported in this Chapter aims
to establish a systematic programme for investigating the logic of natural
language. That programme is to characterize the complexity of determining
entailments in fragments of natural languages, along the lines familiar from
contemporary research in computational logic.

The work described here has no connection with an influential tradition
of research in psycholinguistics, according to which the study of semantics is
centrally concerned with the data-structures used in human cognition, and
the study of inference with the algorithms used to manipulate those data-
structures. Within that tradition, it is mental representations and mental
processes that are to the fore: issues connected with the objective meanings of
those representations, or with the validity of the inferential processes applied
to them, are viewed as secondary, or even spurious (Jackendoff, 1987). While
we do not reject cognitive processes as a legitimate object of investigation, we
do reject the claim that such an investigation would be the end of the story,
or even that it would help answer the questions we are interested in here.
The subject of our investigation is the logical content that natural language
constructions put at our disposal, not its mode of (re)presentation. That is,
fragments of natural language are to be understood purely extensionally, and
independently of any representation scheme used to describe them. How to
articulate this view, and what results it makes possible, will emerge in the
course of the Chapter.

The Chapter is structured as follows. Sec. 2 presents the technical frame-
work which we use to define fragments of natural languages and formulate
questions as to their semantic complexity. Sec. 3 reviews the necessary tech-
nical background in logic and complexity theory. Sec. 4 makes an excursion
into the study of the Classical syllogistic and its extensions. Secs. 5–9 analyse
the semantic complexity of various salient fragments of English. We shall show,
inter alia, that the language of Argument (2), featuring transitive verbs, is in
an objective sense inferentially no more complex than the language of Clas-
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4 Semantic Complexity

sical syllogisms exemplified by Argument (1); indeed, the analogous extension
featuring ditransitive verbs involves only a modest increase in complexity. On
the other hand, the language of Argument (3), which adds relative clauses to
the Classical syllogistic, entails a greater complexity-theoretic cost, a pattern
which is repeated in the presence of transitive or ditransitive verbs. Finally,
we investigate the effect of noun-level negation (non-artist, non-beekeeper), as
well as numerical determiner-phrases (at most 1, more than 5). Our results
demonstrate that techniques previously employed in the complexity-theoretic
investigation of formal logic can be effectively applied to the domain of natural
language.
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Semantic Complexity 5

2 Fragments of Language

By a fragment of a natural language, we understand a collection of sentences
forming a naturally delineated subset of that language, and equipped with
a truth-conditional semantics commanding the general assent of its native
speakers. To explain what this means in practice, we begin by defining some
simple fragments of English.

Our first fragment is the language of Classical syllogisms, namely, the
collection of English sentences having the following forms, with semantics
given by the associated first-order formulas.

Every p is a q ∀x(p(x)→ q(x))
Some p is a q ∃x(p(x) ∧ q(x))
No p is a q ∀x(p(x)→ ¬q(x))
Some p is not a q ∃x(p(x) ∧ ¬q(x)).

Here, p and q are to be substituted by common (count) nouns in the English
sentence-forms, and by corresponding unary predicates in the logical transla-
tions. This fragment, which we shall call Syl, can be used to formulate Ar-
gument (1), above. The lexicon p, q, . . . of common nouns is assumed to be
countably infinite: that is, although the number of sentence-forms in Syl is
finite, the number of its sentences is infinite. This assumption of course re-
flects the linguistic difference between the open category of common nouns
on the one hand, and the closed category of determiners and the copula is
on the other. According to the logical translations proposed here, universally
quantified sentences do not have existential import: if no artists exist, then All
artists are beekeepers is true. This lack of existential import does not restrict
the fragment’s expressive power; and of course it would be a simple matter to
re-instate it if we wished.

The linguistic salience of Syl becomes more perspicuous if, instead of
simply enumerating its sentence-forms, we define it using a context-free gram-
mar whose productions are annotated with expressions in the simply-typed
λ-calculus. Our grammar for Syl features the following productions.

S/ϕ(ψ) → NP/ϕ, VP/ψ
VP/ϕ → is a N′/ϕ
VP/λx[¬ϕ(x)] → is not a N′/ϕ
NP/ϕ(ψ) → Det/ϕ, N′/ψ
N′/ϕ → N/ϕ.

Det/λpλq[∃x(p(x) ∧ q(x))] → some
Det/λpλq[∀x(p(x)→ q(x))] → every
Det/λpλq[∀x(p(x)→ ¬q(x))] → no

N/artst → artist
N/bkpr → beekeeper
. . .

Sentence-semantics are computed by combining the semantic annotations as
specified by the productions, and applying the usual simplification rules of
the simply-typed λ-calculus. The process is illustrated in Fig. 1. To reduce
notational clutter, we have indicated the types of variables informally by the
choice of variable names. Thus, x, y range over objects (i.e. have type e),
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6 Semantic Complexity

while p, q range over unary predicates (i.e. have type e → t). All non-logical
constants involved arise from common nouns, and are unary predicates.

S
∀x(artst(x) → bkpr(x))

NP
λq[∀x(artst(x) → q(x))]

Det
λpλq[∀x(p(x) → q(x))]

Every

N′
artst

N
artst

artist

VP
bkpr

is a N′
bkpr

N
bkpr

beekeeper

Figure 1. Meaning derivation in Syl

Note that the alternation between a and an is ignored for simplicity; sen-
tences in examples will be silently corrected as required. Our grammar addi-
tionally generates the two rather awkward sentence-forms

Every p is a not a q ∀x(p(x)→ ¬q(x))
No p is not a q ∀x(p(x)→ ¬¬q(x)),

associating them with the indicated first-order formulas. However, these ad-
ditional forms evidently do not increase the fragment’s expressive power; and
of course it would be a simple matter to eliminate them if we wished.

It has long been remarked that the Classical syllogistic cannot formulate
inferences that essentially depend on relational information, such as Argu-
ment (2), above. We therefore define an extension of Syl featuring transitive
verbs, for example:

Every p rs some q ∀x(p(x)→ ∃y(q(y) ∧ r(x, y))
Every p rs every q ∀x(p(x)→ ∀y(q(y)→ r(x, y))
Some p does not r every q ∃x(p(x) ∧ ∃y(q(y)→ ¬r(x, y))
Some p rs no q ∃x(p(x) ∧ ∀y(q(y)→ ¬r(x, y)).

Such a fragment may again conveniently be presented using a semantically
annotated context-free grammar. Accordingly, we take the fragment TV to be
defined by the productions of Syl together with:
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Semantic Complexity 7

VP/ϕ(ψ) → TV/ϕ, NP/ψ
VP/λx[¬ϕ(ψ)(x)] → does not, TV/ϕ, NP/ψ

TV/λuλx[u(λy[admr(x, y)])] → admire
· · ·

Again, it is assumed that there are countably many lexical entries for transitive
verbs, all similar to the above entry for admire. Typing of variables follows the
same conventions as above, with u ranging over functions from predicates to
truth-values (i.e. having type (e→ t)→ t). Third-person singular inflections,
as well as the occasional need for the negative polarity determiner any in place
of some, have been ignored for simplicity; we will silently correct these defects
in examples as required. Fig. 2 shows a sample derivation in this grammar.

S
∀x(artst(x)→ ∀y(bkpr(y)→ admr(x, y)))

NP
λq[∀x(artst(x)→ q(x))]

Det
λpλq[∀x(p(x)→ q(x))]

Every

N′
artst

N
artst

artist

VP
λx[∀y(bkpr(x)→ admr(x, y))]

TV
λuλx[u(λy[admr(x, y)])]

admires

NP
λq[∀x(bkpr(x)→ q(x))]

Det
λpλq[∀x(p(x)→ q(x))]

Every

N′
bkpr

N
bkpr

beekeeper

Figure 2. Meaning derivation in TV.

The first-order translations produced by the above grammar are, up to
logical equivalence, exactly those of the forms

∀x(p(x)→ ±q(x)) ∃x(p(x) ∧ ±q(x))
∀x(p(x)→ ∀y(q(x)→ ±r(x, y))) ∀x(p(x)→ ∃y(q(x) ∧ ±r(x, y)))
∃x(p(x) ∧ ∀y(q(x)→ ±r(x, y))) ∃x(p(x) ∧ ∃y(q(x) ∧ ±r(x, y))),

where ±ψ stands for either ψ or ¬ψ. As with Syl, so too with TV, while the
number of sentence-forms is finite, the number of sentences is infinite. Again,
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8 Semantic Complexity

the reader may have observed that TV contains some rather strained and
unnatural sentences, and assigns them truth-conditions equivalent to those
from the above list, for example:

No p does not r no q ∀x(p(x)→ ¬¬∀y(q(y)→ ¬r(x, y))) ≡
∀x(p(x)→ ∀y(q(y)→ ¬r(x, y))).

However, such sentences do not increase the fragment’s expressive power, and
their elimination would anyway be routine. More significantly, the above gram-
mar makes specific scoping decisions: subjects outscope direct objects; and
negation outscopes object quantifiers, but not subject quantifiers.

Ditransitive verbs may be treated in an analogous way. Let the fragment
DTV be the result of extending TV with the productions

VP/ϕ(ψ)(π) → DTV/ϕ, NP/ψ, to, NP/π
VP/¬ϕ(ψ)(π) → does, not, TV/ϕ, NP/ψ, to, NP/π

DTV/λuλvλx[u(λy[v(λz[rcmnd(x, y, z)])])] → recommend,
· · ·

where v has the same type as u, namely (e→ t)→ t. Again, the open class of
ditransitive verbs is assumed here to be countably infinite, even though such
verbs are actually quite infrequent in English. Straightforward calculation
analogous to that illustrated above shows that DTV contains, for example,
the following sentence, and associates it to the indicated first-order formula.

No artist recommends every beekeeper to some carpenter
∀x(artst(x)→ ¬∀y(bkpr(y)→ ∃z(crpntr(z) ∧ rcmnd(x, y, z)))). (1)

Again, DTV contains only finitely many sentence-forms, but infinitely many
sentences. Similar remarks regarding the elimination of unnatural sentences
and quantifier scoping apply as for TV. Subjects outscope direct objects, which
in turn outscope indirect objects; and negation outscopes quantifiers in objects
(direct or indirect), but not subject quantifiers.

Let us now extend Syl in a different direction. The Classical syllogistic
makes no provision for sentences with relative clauses, and thus cannot for-
mulate Argument (3), above. It is natural, then, to consider a fragment which
can. Let Syl + Rel, extend Syl with the productions

N′/ϕ(ψ) → N/ψ, CP/ϕ
CP/ϕ(ψ) → CSpect/ϕ, C′t/ψ
C′t/λt[ϕ] → C, S/ϕ
NP/ϕ → RelPro/ϕ.

CSpect/λqλpλx[p(x) ∧ q(x)] →
C →
RelPro → who

In addition, we assume that, following generation of an S by these productions,
relative pronouns are subject to wh-movement to produce the observed word-
order. For our purposes, we may take the wh-movement rule to require: (i) the
empty position CSpect must be filled by movement of a RelPro from within

Page: 8 job: prattHartmann macro: handbook.cls date/time: 19-Oct-2015/14:49



Semantic Complexity 9

the S which forms its right-sister (i.e. which it c-commands); (ii) every RelPro
must move to some such CSpect position; (iii) every RelPro moving to CSpect
leaves behind a (new) trace t, which contributes the semantic value λp[p(t)].
We denote by Syl+Rel the language defined by the above productions and rule
of wh-movement. Again, for the sake of clarity, we have ignored the issue of
agreement of relative pronouns with their antecedents (animate or inanimate).

The semantic information with which the above rules are augmented can
then be understood as for our previous fragments, with meanings computed
before wh-movement. Fig. 3 illustrates a typical derivation in Syl + Rel, with
the arrow indicating wh-movement in the obvious way.

S
∀x(artst(x) ∧ ¬bkpr(x) → crpntr(x))

NP
λq[∀x(artst(x) ∧ ¬bkpr(x) → q(x))]

Det
λpλq[∀x(p(x) → q(x))]

Every

N′
λx[artst(x) ∧ ¬bkpr(x)]

N
artst

artist

CP
λpλx[p(x) ∧ ¬bkpr(x)]

CSpect

λqλpλx[p(x) ∧ q(x)]

RelPro

who

Ct
′

λt[¬bkpr(t)]

C S
¬bkpr(t)

NP
λp[p(t)]

t

VP
λx[¬bkpr(x)]

is not a beekeeper

VP
crpntr

is a carpenter

Figure 3. Meaning derivation in Syl + Rel.

The above rules for relative clauses can be unproblematically added to the
collections of productions defining TV and DTV. Let the resulting fragments
be denoted TV+Rel and DTV+Rel, respectively. The reader may easily verify
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10 Semantic Complexity

that these productions yield the expected translations, as shown, for example,
in Fig. 4. Note that, in this example, the source of wh-movement is the verb-

S
∀x(artst(x) ∧ ∃y(bkpr(y) ∧ admr(y, x)) → crpntr(x))

NP
λq[∀x(artst(x)∧∃y(bkpr(y)∧admr(y, x)) → q(x))]

Det
λpλq[∀x(p(x) → q(x))]

Every

N′
λx[artst(x)∧∃y(bkpr(y)∧admr(y, x))]

N
artst

artist

CP
λpλx[p(x) ∧ ∃y(bkpr(y) ∧ admr(y, x))]

CSpect

λqλpλx[p(x) ∧ q(x)]

RelPro

who

Ct
′

λt[∃y(bkpr(y) ∧ admr(y, t))]

C S
∃y(bkpr(y) ∧ admr(y, t))

NP
λp[∃y(bkpr(y) ∧ p(y))]

some beekeeper

VP
λx[admr(x, t)]

V
λuλx[u(λy[admr(x, y)])]

admires

NP
λp[p(t)]

t

VP
λx[crpntr(x)]

is a carpenter

Figure 4. Meaning derivation in TV+Rel.

object; movement from the subject position works similarly. In DTV + Rel,
movement is allowed from any of subject, direct-object or indirect-object pos-
itions. These grammars make no attempt to ban centre-embedded sentences.
Thus, TV+Rel accepts
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Every [N′ artist who some
[N′ beekeeper who some carpenter admires] despises]

hates some dentist,

and assigns it the meaning

∀x(artst(x) ∧ ∃y(bkpr(y) ∧ ∃z(crpntr(z) ∧ admr(z, y)) ∧ dspse(y, x))→
∃y(dntst(y) ∧ hate(x, y))),

with similar remarks applying to DTV+Rel. We return to this matter in the
sequel.

With these examples at our disposal, it is time to generalize. We take the
syntax of a fragment E of some natural language to consist of a set of sentence
forms of that language, but with certain open class categories replaced by
countably infinite lexica, whose elements we regard as non-logical constants
of some appropriate type. We take the semantics of the fragment to be a
function that associates, to each sentence s in the fragment, a set of structures
interpreting the non-logical primitives corresponding to the open-class lexical
items occurring in s. If A is one of the structures thus associated to s, we say
that A satisfies s, or that s is true in A, and write A |= s.

We must remove a potential source of misunderstanding at this point.
In the foregoing examples, the class of structures associated with any sen-
tence of the fragments we defined was specified by a formula of first-order
logic. But this was purely a convenience: in associating to some sentence s
a formula ϕ, our real intention was to associate to s a class of structures
interpreting the relevant non-logical primitives—viz, the class of structures
A such that ϕ is true in A according to the standard semantics of first-order
logic. Thus, fragments of natural language are, for us, to be understood purely
extensionally—they are simply sets of sentences together with a mapping tak-
ing each of these sentences to a class of models. In particular, the use of
first-order logic does not embody any particular methodological assumption.
Furthermore, the complexity-theoretic results reported below on fragments of
English depend only on the extensions of those fragments, and not on any rep-
resentation scheme used to describe them. Our approach thus contrasts with
the psycholinguistic tradition referred to in Sec. 1, where the emphasis is on
inferring the kinds of the kinds of mental representations from experimental
data on performance in reasoning tasks.

With this in mind, let us define some of the key semantic concepts to be
used in the sequel. A structure A satisfies a set of E-sentences S if it satisfies
every element of S. An E-sentence or set of E-sentences is satisfiable if there
exists a structure satisfying it. A set S of E-sentences is taken to entail an E-
sentence s if every structure satisfying S also satisfies s. If S entails s, we write
S |= s. It is uncontentious that, when applied to the fragments discussed in
this Chapter, this notion of entailment adequately reconstructs the intuitive
notion of validity of arguments. Finally, the fragment Syl contains sentences
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12 Semantic Complexity

of the form Some p is not a p, which are unsatisfiable—i.e., false in every
structure. We refer to any sentence having this form as an absurdity. (Since
all the fragments we are concerned with include Syl, this notion of absurdity
is as general as we require.)

If E is a fragment of some natural language, the main question we address
is the complexity of the satisfiability problem for E , denoted Sat(E):

Given: A finite set, S, of E-sentences
Output: Yes, if S is satisfiable; No otherwise.

Closely related to Sat(E) is the corresponding entailment problem:

Given: A finite set, S, of E-sentences and an E-sentence s
Output: Yes, if S |= s; No otherwise.

The fragments defined in this Chapter all have an obvious notion of nega-
tion: if s is a sentence of any of these fragments, there is a sentence s̄ such
that A |= s if and only if A 6|= s̄. For such fragments, the satisfiability and
entailment problems are dual in the usual sense: S |= s if and only if S ∪ {s̄}
is unsatisfiable. Hence, knowing the complexity of either one gives us the
complexity of the other. We concentrate in the sequel on Sat(E).
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3 Technical background

This section reviews the principal technical concepts we shall encounter in the
sequel, and establishes notation.

We employ basic ideas from computational complexity theory. In this con-
text, a problem is simply a set P of strings over some fixed alphabet Σ.
Intuitively, we think of P as the task of deciding whether a given string over
Σ is an element of the subset P. A Turing machine (possibly nondetermin-
istic) recognizes P if, for every string x over the relevant alphabet, it has a
terminating run with input x and output ‘Yes’ just in case x ∈ P. A problem
P is decidable if it is recognized by a Turing machine which always terminates.

Decidable problems may be classified according to the computational re-
sources required to decide them. Important complexity classes are: NLog-
Space, the set of problems recognized by Turing machines using at most
logarithmic working memory; NPTime, the set of problems recognized by
Turing machines using at most polynomial time; and NExpTime, the set
of problems recognized by Turing machines using at most exponential time.
The complexity classes PTime and ExpTime are defined as for NPTime and
NExpTime, but with the restriction that the Turing machine in question be
deterministic. There are of course many other well-known complexity classes,
but we shall not need them in this Chapter. We have

NLogSpace ⊆ PTime ⊆ NPTime ⊆ ExpTime ⊆ NExpTime.

Moreover, PTime is known to be a strict subset of ExpTime, and similarly
for their non-deterministic counterparts.

One problem P over alphabet Σ can be reduced to a problem P ′ over
alphabet Σ′ if there is a function g, computable using logarithmically bounded
working memory, mapping strings over Σ to strings over Σ′, such that x ∈ P
if and only if g(x) ∈ P ′. (Intuitively: any quick method for solving P ′ gives
us a quick method for solving P.) If C is a complexity class, we say that a
problem is C-hard if any problem in C can be reduced to it. A problem is
C-complete if it is in C and C-hard. We may regard C-complete problems as
the hardest problems in C. In practice, to show that a problem P is C-hard,
one usually takes a known C-hard problem P ′, and reduces P ′ to P. We note
that all of the complexity classes considered in this Chapter are closed under
reductions in the following sense: if a problem P is known to be in a class C,
and P ′ reduces to P, then P ′ is in C. This fact is often useful for establishing
membership of problems in complexity classes.

In a similar way, we can establish that a problem P is undecidable by
reducing a known undecidable problem P ′ to it. (This time, the reduction just
needs to be computable—not necessarily computable using logarithmically
bounded working memory.) One useful such undecidable problem P ′ is the
infinite tiling problem. We are given a set of colours C and two binary relations
H and V on C. The given instance 〈C,H, V 〉 is positive just in case there
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exists a function f : N × N → C, called a tiling, such that for all i, j ∈ N:
(i) 〈f(i, j), f(i + 1, j)〉 ∈ H, and (ii) 〈f(i, j), f(i, j + 1)〉 ∈ V . Intuitively, we
think of f as a colouring of the points of the infinite grid N×N with the colours
C: the binary relation H tells us which colours may be placed immediately to
the right of which others; the binary relation V tells us which colours may be
placed immediately above which others.

We assume general familiarity with the syntax and semantics of propos-
itional and first-order logic. A fragment of first-order logic is simply a set
L of first-order formulas (usually infinite). For example, if k ­ 1, the k-
variable fragment, denoted Lk, is the set of first-order formulas featuring only
the variables x1, . . . , xk. The satisfiability problem for L, denoted Sat(L), is
defined analogously to the satisfiability problem for fragments of English. The
fragment L1 is not interestingly different from propositional logic, and its sat-
isfiability problem is easily seen to be NPTime-complete. The satisfiability
problem for L2 (with equality) was shown to be decidable by Mortimer (1975),
and in fact to be NExpTime-complete by Grädel et al. (1997). For all larger
k, Sat(Lk) is undecidable.

It will be convenient to extend the formalism of first-order logic with the
so-called counting quantifiers ∃>C (“there exist more than C . . . ”) and ∃¬C
(“there exists at most C . . . ”), where C is a bit string representing a natural
number in the standard way. (In the sequel, we take the liberty of silently
translating from binary into decimal notation for readability.) Within the
context of first-order logic, counting quantifiers are always eliminable in favour
of the standard quantifiers ∃ and ∀. Thus, for instance ∃¬2x.ϕ(x) is equivalent
to ∀x1∀x2∀x3(ϕ(x1) ∧ ϕ(x2) ∧ ϕ(x3) → (x1 = x2 ∨ x1 = x3 ∨ x2 = x3)); and
so on. Notice that these translations increase the number of variables used in
the respective formulas. We denote the extensions of the fragments L1 and L2

to include counting quantifiers by C1 and C2, respectively. It is easy to show
that the satisfiability problem for C1 is decidable; it was shown by Kuncak &
Rinard (2007) that it is in fact NPTime-complete. (Membership in NPTime
is by no means trivial, and relies on an interesting combinatorial argument
due to Eisenbrand & Shmonin 2006.) The satisfiability problem for C2 was
shown to be decidable by Pacholski et al. (1997) and Grädel et al. (1997), and
in fact to be NExpTime-complete by Pratt-Hartmann (2005). Many other
decidable fragments of first-order logic are known. However, the only other
fragment that concerns us here is the so-called fluted fragment, introduced
by Quine (1960). The definition of this fragment is too involved to reproduce
here. Its satisfiability problem was shown to be decidable by Purdy (1996). (In
fact, Purdy 2002 claims to present a proof that the problem is in NExpTime.)

A literal is an atomic formula (i.e. a predicate applied to the requisite
number of arguments) or the negation of an atomic formula. A clause is a
disjunction of literals. (The falsum ⊥ counts as a clause, because we may re-
gard it as the disjunction of the empty set of literals.) The universal closure
of a clause γ is the formula ∀x1 · · · ∀xn.γ, where x1, . . . , xn are the free vari-
ables of γ in some order. Given a finite set of first-order formulas Φ, we can
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compute (using at most logarithmically bounded working memory) a set of
clauses Γ , such that Φ is satisfiable if and only if the universal closure of Γ is
satisfiable. We call Γ the clause-form of Φ. Sets of clauses may be tested for
unsatisfiability by the technique of resolution theorem-proving, which allows
clauses to be derived from other clauses: Γ is unsatisfiable if and only if there
is a resolution proof of ⊥ from Γ . As we say: resolution theorem-proving is
(sound and) refutation-complete. The reader is referred to Leitsch (1997) for
a readable introduction to the resolution calculus and its refinements.

Resolution-theorem proving always terminates if the clauses to which it
is applied are propositional, but not, in general, if they contain variables.
Ordered resolution is a variant of this technique in which only certain clauses
are allowed to combine to create new clauses. In certain cases it can be
shown that ordering does not compromise refutation-completeness. At the
same time, for sets of clauses with certain special properties—in particular
those obtained from certain fragments of first-order logic—ordered resolution
theorem-proving can be shown to terminate, and indeed to do so within a
time-bound that can be computed in advance. Thus, for example, de Nivelle
& Pratt-Hartmann (2001) presents an alternative proof that Sat(L2) is in
NExpTime, using this method. Such resolution-based arguments turn out to
be particularly useful in obtaining upper complexity bounds for fragments of
English, viz, Theorems 5, 7, 8, 10 and 11 below.
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4 Syllogistic proof systems

In times past, the connection between logic and natural language must have
seemed too transparent to merit discussion. The forms of the Classical Syl-
logistic (the language that we are calling Syl) are evidently linguistically in-
spired: the Classical syllogisms are the set of valid, two-premise argument-
forms in this language. They include, for example,

Every p is a q
Every o is a p
Every o is a q,

Every p is a q
Some o is a p
Some o is a q,

No p is a q
Some o is a p
Some o is not a q,

which are sometimes known by their Mediæval mnemonics Barbara, Darii and
Ferio respectively. Likewise, the following 1-premise arguments are tradition-
ally known as conversion rules:

Some p is a q
Some q is a p,

No p is a q
No q is a p.

But of course, a simple list of rules on its own is of little interest: their power
comes from the possibility of chaining them together to demonstrate the valid-
ity of infinitely many valid arguments in the fragment Syl. Thus, for example,
Argument (1) can be shown to be valid by means of the following derivation
employing Darii, Ferio and conversion:

(4)

Some artist is a carpenter
Some carpenter is a artist Every artist is a beekeeper

Some carpenter is a beekeeper
Some beekeeper is a carpenter No carpenter is a dentist

Some beekeeper is not a dentist
.

When logicians of later epochs attempted to overcome the obvious ex-
pressive poverty of this system, they naturally tried to mimic the Classical
syllogisms for richer fragments of natural languages. This was to some extent
evident in Mediæval logic, but particularly noticeable among various pre-
Fregean logicians of the Nineteenth Century, such as Boole, De Morgan and
Jevons. The technical apparatus at our disposal allows us to to complete the
tasks that these writers set themselves—or, in some cases, to show that they
cannot be completed. Our analysis will prove useful for deriving some of the
complexity-theoretic results encountered below.

Let E be any fragment of a natural language. By a syllogistic rule in E , we
understand a pair S/s, where S is a finite set (possibly empty) of E-sentences,
and s an E-sentence. We call S the antecedents of the rule, and s its consequent.
All the Classical syllogisms are syllogistic rules in this sense, as we can see
from the above presentations of Barbara, Darii and Ferio, where a horizontal
line divides the antecedents from the consequent. A syllogistic rule is valid if
its antecedents entail its consequent.
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Let E be any fragment of a natural language, and X a set of syllogistic
rules in E ; and denote by P(E) the set of subsets of E . By a substitution for
E we understand a function g which, for any category C of open class words
in E , (for example, nouns or transitive verbs), maps C to C. Substitutions
are extended to E-sentences in the obvious way: if g is a substitution and s
an E-sentence, g(s) is the result of replacing any open-class word d in s by
g(d). We assume that categories are chosen such that g(s) is guaranteed to
be an E-sentence. Substitutions are extended to sets of E-sentences similarly.
An instance of a syllogistic rule S/s is the syllogistic rule g(S)/g(s), where g
is a substitution. Formally, we define the direct syllogistic derivation relation
`X to be the smallest relation on P(E)× E satisfying:
(1) if s ∈ S, then S `X s;
(2) if {s1, . . . , sn}/s is a syllogistic rule in X, g a substitution, S = S1∪· · ·∪Sn,

and Si `X g(si) for all i (1 ¬ i ¬ n), then S `X g(s).
Thus, S `X s formalizes the existence of a derivation from premises S to
conclusion s. We typically contract ‘syllogistic rule’ to ‘rule’. The syllogistic
derivation relation `X is said to be sound if Θ `X θ implies Θ |= θ. It is
obvious that, for any set of rules X, `X is sound if and only if every rule in X
is valid. Since the rules Darii and Ferio are clearly valid, Derivation (4) thus
guarantees that the premises of Argument (1) entail the conclusion.

The syllogistic derivation relation `X is said to be complete if Θ |= θ
implies Θ `X θ. Intuitively, this means that the rules defining it suffice for the
entire fragment in question: any additional rules must be either derivable in
terms of them, or invalid. Showing completeness is almost always more difficult
than showing soundness, but is certainly possible, as we shall see below. For
the purposes of this Chapter, it is helpful to use the following weakening
of completeness. A set S of sentences is inconsistent (with respect to `X) if
S `X ⊥ for some absurdity ⊥; otherwise, consistent. A derivation relation `X
is refutation-complete if any unsatisfiable set S is inconsistent with respect to
`X. (In fact, we encountered this notion in the context of resolution theorem-
proving in Section 3.) Completeness trivially implies refutation-completeness,
but not conversely.

The semantic framework outlined in the previous section dates from the
first half of the Twentieth Century; and the question of whether the Classical
syllogisms are complete for the fragment Syl (in the sense of the previous
paragraph) could not therefore have been formulated by logicians of earlier
epochs. A moment’s thought shows that at least some additional rules are
needed—for example, a rule enabling us to infer Some p is a p from Some p
is a q. But these can easily be provided. It was shown by Corcoran (1972)
and Smiley (1973) that there exist finite sets of rules for Syl that are sound and
refutation-complete; this was later slightly strengthened to full completeness
by Pratt-Hartmann & Moss (2009):
Theorem 1. There is a finite set of syllogism-like rules X in Syl such that
`X is sound and complete.
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18 Semantic Complexity

We omit the proof, which is technical (but not difficult). It is important to
understand that Theorem 1 makes a statement about the infinity of valid
arguments in Syl. As such, it constitutes an essential step forward from earlier
accounts of the Classical syllogism, which could do little more than list the
apparently valid two-premise argument forms (of which there is of course only
a finite number).

The situation with TV is more complicated. Pratt-Hartmann & Moss
(2009) go on to show:

Theorem 2. There is a finite set of syllogism-like rules X in TV such that `X
is sound and refutation-complete. However, there is no finite set of syllogism-
like rules X in TV such that `X is sound and complete.

We omit the proofs, which are technical. Again, it is important to understand
that Theorem 2 makes a statement about the infinity of valid arguments in
TV. As such, it is an essential advance on simply listing the (for example)
valid two-premise argument forms in TV (Keane, 1969).

We mention in passing a variant of the Classical syllogistic—less obvi-
ously a counterpart of natural language, but nevertheless of historical interest.
Łukasiewicz (1939) and Słupecki (1949) showed the completeness of a logic
in which the sentence-forms of the the Classical syllogistic are embedded in
the propositional calculus. (See also Łukasiewicz 1957.) Łukasiewicz claimed
that this larger system represented Aristotle’s actual conception of the syllo-
gistic. Whatever the merits of this claim, this work probably represents the
first serious completeness proof for anything resembling the syllogistic. The
approach taken by Łukasiewicz and Słupecki is rather idiosyncratic—a more
modern style of completeness proof for the same system is given by Shep-
herdson (1956). A version of the relational syllogistic similarly embedded in
propositional logic is investigated by Nishihara et al. (1990); see also Ivanov &
Vakarelov (2012). Curiously, Leibniz attempted to give a numerical semantics
for the Classical syllogistic—a project which does turn out to be realizable
(see Sotirov 2012); no interesting computational consequences result, how-
ever. To the author’s knowledge, no one has attempted to provide a sound
and (refutation-) complete system of rules for DTV.
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5 Basic syllogistic fragments: complexity

In this section we analyse the complexity of satisfiability for the fragments
Syl, TV and DTV, defined in Sec. 2.

Let us begin with some very simple upper complexity bounds. Recall from
Sec. 3 the one- and two-variable fragments of first-order logic, L1 and L2:
the satisfiability problems for these logics are NPTime- and NExpTime-
complete, respectively. Since Syl evidently translates into L1, Sat(Syl) is in
NPTime; and since TV evidently translates into L2, Sat(TV) is in NExp-
Time. Finally, although DTV-sentences require three variables, this fragment
can nevertheless be shown to translate into the fluted fragment of first-order
logic, whose satisfiability problem, as we remarked, is decidable. On the other
hand, Syl, TV and DTV by no means exhaust the expressive power of the
first-order fragments mentioned above, and it seems likely that these upper
bounds can be improved on.

It will come as no surprise that the satisfiability problem for Syl has very
low complexity.
Theorem 3. The problem Sat(Syl) is NLogSpace-complete.
Proof: To establish the lower bound, we reduce the problem of un-reachability
in directed graphs to Sat(Syl). Let G be a directed graph with vertices V
listed as v1, . . . , vn, and edges E. The unreachability problem asks whether,
given such a G, it is impossible to find a path from v1 to vn. This problem is
known to be NLogSpace-complete. Taking the vertices in V to be common
nouns, define SG to be the set of (Syl)-sentences:

{Every u is a v | (u, v) ∈ E} ∪ {Some v1 is a v1,No vn is a vn}.

Let A be the model over the 1-element domain A = {a}, and, for any v ∈ V ,
set vA = {a} if there is a path in G from v1 to v, and pA = ∅ otherwise. It
is easy to verify that, if there is no path in G from v1 to vn, then A |= SG.
Conversely, it is obvious that, if there is a path in G from v1 to vn, then SG
cannot have a model, since, if vi is reachable from v1, then SG entails that
some vis are vis. Thus,G is a positive instance of directed graph unreachability
if and only if SG is satisfiable. This completes the reduction.

We consider next the upper bound. In the context of propositional logic,
define a clause to be Krom if it contains at most two literals. The problem
KromSat is defined as follows: given a set Γ of Krom clauses, determine
whether Γ is satisfiable. It is known that KromSat is in NLogSpace. We
reduce Sat(Syl) to it. Let S be a given set of Syl-sentences. For every sentence
of the form Some p is (not) a q, write the corresponding pair of 1-literal
clauses p(a) and ±q(a), where a is a fresh constant; and for every sentence of
the form Every (No) p is a q, write the corresponding set of 2-literal clauses
¬p(a) ∨ ±q(a), for all constants a. Clearly, this transformation requires only
logarithmic space, and the resulting set of Krom-clauses is satisfiable if and
only if S is. ut
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Comparison of Arguments (1) and (2) above suggests that determining
entailments in TV may be harder than in Syl. Our next result shows that,
at least from the point of view of standard complexity classes, this is not the
case: we retain the NLogSpace upper bound.

Theorem 4. The problem Sat(TV) is NLogSpace-complete.

Sketch proof: The lower bound is secured by Theorem 3. The matching upper
bound can be established as follows. Recall that, by the first statement of
Theorem 2, there exists a finite set of syllogistic rules X in TV such that `X
is sound and refutation-complete. The proof of this fact in Pratt-Hartmann
& Moss (2009) proceeds by constructing, from any unsatisfiable set S of TV-
sentences, a derivation of an absurdity, using the rules of X. However, the
derivation in question can be seen to have a special form. Let us say that a
B-chain is a left-branching derivation involving only the rule Barbara, i.e. a
derivation having the form

every p1 is a p2 every p2 is a p3
every p1 is a p3 every p3 is a p4

every p1 is a p4

. . .
every p1 is a pn−1 every pn−1 is a pn

every p1 is a pn
.

It is shown that, if S is unsatisfiable, then there is a derivation of an absurdity
from S featuring at most two B-chains, together with a fixed number of ad-
ditional inference steps. Now let G be a directed graph whose vertices are
the common nouns occurring in S and whose edges are those ordered pairs
(p, q) for which Every p is a q is a sentence of S. It is easy to see that a
B-chain connecting a pair of common nouns in S is simply a path connecting
the corresponding pair of vertices in G. The required complexity bound then
follows from the fact that the (un)reachability problem for directed graphs is
in NLogSpace. ut

The above argument thus shows that, while relational principles are cer-
tainly required to deal with arguments such as (2), they do not, from a
complexity-theoretic point of view, make inference more difficult. The appar-
ently greater difficulty of arguments such as (2) as compared to (1) is purely
psychological.

Extending TV with ditransitive verbs, however, yields a modest increase
in complexity:

Theorem 5. The problem Sat(DTV) is PTime-complete.

Proof sketch: The lower bound is relatively straightforward. In the context of
propositional logic, define a clause to be Horn if it contains at most one negat-
ive literal. The problem HornSat, which is defined analogously to KromSat,
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is well-known to be PTime-complete. We reduce this problem to Sat(DTV).
Let Γ be a set of propositional Horn-clauses. We may without loss of gener-
ality assume that all clauses in Γ are of the forms in the left-hand column of
Table 1. Further, we take all proposition letters in Γ to be common nouns,
and we take d to be a ditransitive verb. Now replace each clause having any

¬o ∨ ¬p ∨ q Every o ds every p to some q
¬p No p is a p
p Some p is a p

Table 1. Encoding Horn-clause satisfiability in DTV

of these forms with the corresponding DTV-sentence given in the right-hand
column of Table 1. Let the resulting set of DTV-sentences be SΓ . It is routine
to show that Γ has a satisfying truth-value assignment if and only if SΓ is
satisfiable.

The upper bound is more complicated, and we can only indicate the broad
strategy here. Let S be a given set of sentences in DTV. We compute, in poly-
nomial time, the set Φ of first-order translations of S as defined by the se-
mantics for DTV, convert to a set Γ of clauses, and apply resolution theorem-
proving to try to derive a contradiction. The body of the proof involves show-
ing that, by using a particular form of ordered resolution, we can ensure that
the process terminates in polynomial time, and that, moreover, the clause ⊥
(i.e. a contradiction) is obtained if and only if Φ—and hence S—is unsatis-
fiable. We remark that a simpler application of this strategy is used to prove
Theorem 7 below, where it is possible to outline the details more fully. ut

The above results on the Classical syllogistic make no reference to the long
history of psychological research in this area, from the earliest investigations
of Störing (1908); Woodworth & Sells (1935); Chapman & Chapman (1959),
through to the influential Johnson-Laird (1983), and the long, many-sided
debate it has generated. Psychological research in this area is dominated by
the issue of which of a finite set of valid (or invalid) syllogistic forms human
subjects to are likely to accept as valid. Of course, such facts can be of no
relevance for us: all problems with finite domains are, from a complexity-
theoretic viewpoint, decidable in constant time and space.
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6 Relative clauses

Adding relative clauses to fragments of English which lack them frequently
increases the complexity of determining satisfiability.

Theorem 6. The problem Sat(Syl + Rel) is NPTime-complete.

Proof: Membership in NPTime is instant from that fact that Syl+Rel trans-
lates into the 1-variable fragment of first-order logic, L1. We have therefore
only to show NPTime-hardness. In the context of propositional logic, the
problem 3-Sat is defined as follows: given a set Γ of (propositional) clauses
each of which has at most three literals, determine whether Γ is satisfiable.
This problem is known to be NPTime-complete; we reduce it to Sat(Syl+Rel).
Let Γ be a set of formulas of propositional logic each of which has at most
three literals. It is easily seen not to compromise NPTime-hardness if we as-
sume every γ ∈ Γ to have one of the forms p ∨ q, ¬p ∨ ¬q or ¬o ∨ ¬p ∨ q. We
take the proposition letters of Γ to be common nouns, and take element to
be a common noun. We then map each clause in Γ to a sentence of Syl + Rel
as follows:

p ∨ q Every element which is not a q is a p
¬p ∨ ¬q No p is a q

¬o ∨ ¬p ∨ q Every o which is a p is a q,

and finally add the Syl + Rel-sentence Some element is an element. Let the
resulting set of Syl + Rel-sentences be SΓ . It is routine to transform any
satisfying truth-value assignment for Γ into a structure satisfying SΓ , and
vice versa. This completes the reduction. ut

Theorem 7. The problem Sat(TV+Rel) is ExpTime-complete.

Proof sketch: To show membership in ExpTime, we describe a procedure to
solve Sat(TV+Rel), and show that it runs in exponential time. That procedure
makes use of the apparatus of ordered resolution theorem-proving for first-
order logic, discussed briefly in Sec. 3. Let S be a finite set of TV+Rel-
sentences, and let Φ be the set of their translations into first-order logic.
Define a special formula recursively as follows: (i) if p is a unary predicate and
x a variable, then p(x) is a special formula; (ii) if p is a unary predicate, r a
binary predicate, x, y variables and π(x) a special formula, then

p(x) ∧ π(x) ¬π(x)
∃y(π(y) ∧ r(x, y)) ∃y(π(y) ∧ r(y, x))
∀y(π(y)→ r(x, y)) ∀y(π(y)→ r(y, x))

are special formulas.
A simple induction on the phrase-structures of TV+Rel-sentences shows

that every N′ contributes a meaning of the form λx[ψ(x)], where ψ is (modulo
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trivial logical manipulations) a special formula. It follows that, by moving neg-
ations inwards and introducing new unary predicate letters for subformulas,
we can transform Φ into an equisatisfiable set Φ′ of formulas of the forms

∃x(p(x) ∧ q(x)) ∃x(p(x) ∧ ¬q(x))
∀x(p(x)→ q(x)) ∀x(p(x)→ ¬q(x))
∀x(¬p(x)→ q(x)) ∀x(o(x)→ (p(x) ∨ q(x)))
∀x(p(x)→ ∃y(q(y) ∧ r(x, y))) ∀x(p(x)→ ∃y(q(y) ∧ r(y, x)))
∀x(p(x)→ ∃y(q(y) ∧ ¬r(x, y))) ∀x(p(x)→ ∃y(q(y) ∧ ¬r(y, x)))
∀x(p(x)→ ∀y(q(y)→ r(x, y))) ∀x(p(x)→ ∀y(q(y)→ r(y, x)))
∀x(p(x)→ ∀y(q(y)→ ¬r(x, y))) ∀x(p(x)→ ∀y(q(y)→ ¬r(y, x))),

where o, p and q are unary predicates and r is a binary predicate. Since Φ′
can be computed in polynomial time, it suffices to show that the satisfiability
of Φ′ can be decided in exponential time.

Suppose Φ′ is converted into a set of clauses Γ in the usual way. The key
observation is that every clause in Γ contains at most one occurrence of a
binary predicate. This enables us to use ordered resolution on Γ , not to try
to derive the absurdity ⊥, but rather, to eliminate all these binary predicates
in polynomial time. Specifically, we use ordered resolution on Γ to derive a
set of clauses Γ ′, such that: (i) the universal closure of Γ has a model if
and only if the universal closure of Γ ′ has; (ii) Γ ′ features only unary (not
binary) predicates and only unary function-symbols; and (iii) Γ ′ is computed
in polynomial time.

Since Γ ′ contains only unary predicates and only unary function-symbols,
any clause in γ(x, y) ∈ Γ ′ featuring two variables can be written as a disjunc-
tion γ(x, y) = γ1(x) ∨ γ2(y), where γ1 and γ2 each feature a single variable.
According to the splitting rule, we may replace each such γ nondeterministic-
ally by either γ1 or γ2: the universal closure of Γ ′ is satisfiable if and only if,
for some way of performing this splitting, a set of clauses results whose uni-
versal closure is satisfiable. By (i), Φ′ is satisfiable if and only if the universal
closure of Γ ′ is. By (ii), we can apply the splitting rule to every clause in Γ ′
to obtain clauses involving only one variable; to test the satisfiability of Φ′, it
therefore suffices to consider all possible choices for applying the splitting rule
to clauses in Γ ′, and to determine whether the universal closure of at least one
of the resulting clause sets is satisfiable. By (iii), |Γ ′| is at most polynomial in
|Γ |, whence the number of choices generated by the splitting rule is at most
exponential in |Φ′|. The satisfiability of the universal closure of clause sets
in which clauses feature just one variable can be decided using the technique
of ordered resolution. Specifically, there exists a process of ordered resolution
that, when applied to such a set of clauses, is guaranteed to reach saturation
(no more clauses can be derived) after at most exponentially many steps. The
universal closure of that clause set is then satisfiable if and only if the clause
⊥ has not been derived by this point. To test the satisfiability of Φ, then, we
first generate Φ, and then Γ and Γ ′, and simply check, for each clause set ∆
obtained by applying the splitting rule to Γ ′, whether the universal closure of
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∆ is satisfiable, reporting that Φ is satisfiable if we get at least one positive
result. This concludes the description of our procedure to solve Sat(TV+Rel).

We now turn to ExpTime-hardness, taking as our point of departure the
satisfiability problem for propositional modal logic with a universal modality,
KU , which is known to be ExpTime-complete. Essentially,KU can be thought
of as the set of first-order formulas of the following forms:

∀x(±p(x)→ ±q(x)) ∀x(±p(x)→ ∀y(±q(y)→ ¬r(x, y))) (2)
∀x(p(x) ∧ q(x)→ o(x)) ∀x(±p(x)→ ∃y(±q(y) ∧ r(x, y))), (3)

where p and q range over all unary predicates, and r is a binary predicate. (We
may assume that r is fixed: i.e. KU features at most one binary predicate.)

We transform any such set of formulas, Φ, into a set of TV+Rel-sentences,
SΦ. The common nouns occurring in SΦ will be all the unary predicates occur-
ring in Φ together with the additional noun element; and the single transitive
verb occurring in SΦ will be r. We illustrate the transformation in a few cases
only, as the generalization should be obvious:

∀x(p(x)→ q(x)) Every p is a q
∀x(¬p(x)→ q(x)) Every element which is not a p is a q
∀x(p(x)→ ∀y(¬q(y)→ ¬r(x, y))) No p rs any element which is not a q
∀x(p(x) ∧ q(x)→ o(x)) Every p which is a q is an o. . . .

In addition, we add to SΦ the sentences

{Every p is an element | p occurring in Φ} ∪ {Some element is an element}.

Suppose A |= Φ. Expand A to a structure A′ by taking the denotation of a new
unary predicate elmnt (translating the noun element) to be the entire domain.
Then we obtain a structure satisfying SΦ. Conversely, suppose A |= SΦ. Let
A′ be the restriction of A to the extension of the unary predicate elmnt. Then
A |= Φ. This completes the reduction of Sat(KU ) to Sat(TV+Rel). ut

Let us now return to the issue raised briefly in Sec. 2, that our definition of
TV+Rel allows centre-embedded sentences. Can we be sure that banning such
sentences does not change the complexity of the fragment in question? Yes
we can. Trivially, restricting the fragment cannot affect the upper complexity
bound of its satisfiability problem, so we need only worry about establish-
ing ExpTime-hardness. But all sentences in the set Tϕ ∪ Sϕ in the proof of
Theorem 4 are grammatically unobjectionable, and in particular exhibit no
centre-embedding. (In fact, they do not involve multiple relative clauses at all.)
It follows that no linguistically motivated tightening of the fragment TV+Rel
could possibly invalidate Theorem 7. As an aside, we remark that none of the
sentences in Tϕ∪Sϕ involves object-relative clauses. Thus, determining logical
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relationships between TV+Rel-sentences with just subject-relative clauses is
no easier than the general case.

For the fragment DTV, we have still higher complexity.

Theorem 8. The problem Sat(DTV + Rel) is NExpTime-complete.

The proof strategy is essentially the same as for Theorem 7: the upper com-
plexity bound is established using a modified form of resolution theorem-
proving; the lower bound is established by means of a reduction from tiling
problems for exponential grids. Both proofs are quite involved, and the reader
is referred to Pratt-Hartmann & Third (2006), Lemmas 4.5 and 4.7 for details.
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7 Noun-level-negation

The Classical syllogistic, as commonly understood, does not include the sen-
tence forms

Every non-p is a q ∀x(¬p(x)→ q(x))
Some non-p is not a q ∃x(¬p(x) ∧ ¬q(x)).

We take the fragment Syl + Non to be defined by the productions of Syl
together with

N′/λx[¬ϕ(x)] → non-, N/ϕ, (4)

thus admitting the above sentences, with the given semantics. (Again, certain
awkward sentence-forms such as No p is a non-q are also admitted; but these
do not affect expressive power, and we do not trouble to filter them out.)

It is easy to see that this extension of Syl has no effect on the complexity
of satisfiability, since Sat(Syl+Non) is evidently reducible to the satisfiability
problem for Krom clauses in exactly the same way as Sat(Syl). Thus:

Theorem 9. The problem Sat(Syl + Non) is NLogSpace-complete.

Now let TV+Non be the fragment of English defined by the productions
of TV together with (4), thus admitting sentences such as

Every non-artist admires some non-beekeeper
∀x(¬artst(x)→ ∃y(¬bkpr(y) ∧ admr(x, y))).

This time, allowing noun-level negation results in a significant complexity
jump. In fact, the non-construction is, in complexity theoretic terms, as harm-
ful as relative clauses.

Theorem 10. The problem Sat(TV+Non) is ExpTime-complete.

Proof: Membership in ExpTime follows by exactly the same argument as
for Theorem 7. For ExpTime-hardness, we again proceed by reduction from
Sat(KU ); however, we no longer have relative clauses at our disposal to express
KU -formulas, and so must adopt a slightly different transformation scheme.
Again, we illustrate with examples only: the generalization should be obvious:

∀x(p(x)→ q(x)) Every p is a q
∀x(¬p(x)→ q(x)) Every non-p is a q
∀x(p(x)→ ∀y(¬q(y)→ ¬r(x, y))) No p rs any non-q
. . .

The only problematic case is formulas of the form

∀x(p(x) ∧ q(x)→ o(x)), (5)

which are essential for the ExpTime-completeness of KU , and yet seem to
require relative clauses for their expression. Let o∗ be a new unary predicate.
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For θ ∈ Φ of the form (5), let rθ be a new binary predicate, and define Θθ to
be the set of formulas

∀x(¬o(x)→ ∃z(o∗(z) ∧ rθ(x, z))) (6)
∀x(p(x)→ ∀z(¬p(z)→ ¬rθ(x, z))) (7)
∀x(q(x)→ ∀z(p(z)→ ¬rθ(x, z))), (8)

which can all be translated by TV+Non-sentences. It is easy to check that
Θθ |= θ. For suppose (for contradiction) that A |= Θθ and a satisfies p and
q but not o in A. By (6), there exists b such that A |= rθ[a, b]. If A 6|= p[b],
then (7) is false in A; on the other hand, if A |= p[b], then (8) is false in
A. Thus, Θθ |= θ as claimed. Conversely, if A |= θ, we can expand A to a
structure A′ by interpreting o∗ and rθ as follows:

(o∗)A = A

rAθ = {〈a, a〉 | A 6|= o[a]}.

We check that A′ |= Θθ. Formula (6) is true, because A′ 6|= o[a] implies
A′ |= rθ[a, a]. Formula (7) is true, because A′ |= rθ[a, b] implies a = b. To see
that Formula (8) is true, suppose A′ |= q[a] and A′ |= p[b]. If a = b, then
A |= o[a] (since A′ |= θ); that is, either a 6= b or A |= o[a]. By construction,
then, A′ 6|= rθ[a, b].

Now let Φ∗ be the result of replacing all formulas θ in Φ of form (5) with the
corresponding trio Θθ. (The binary predicates rθ for the various θ are assumed
to be distinct; however, the same unary predicate o∗ can be used for all θ.)
By the previous paragraph, Φ∗ is satisfiable if and only if Φ is satisfiable. But
Φ∗ can evidently be translated into a set of TV+Non-sentences satisfied in
exactly the same structures. This completes the reduction of KU to TV+Non.

ut
Now let DTV+Non be the fragment of English defined by the productions

of DTV together with (4), thus admitting sentences such as

Every non-artist recommends some non-beekeeper to some non-carpenter
∀x(¬artst(x)→ ∃y(¬bkpr(y) ∧ ∃z(¬crpntr(z) ∧ rcmnds(x, y))).

The effect is just as dramatic as with TV+Non:

Theorem 11. The problem Sat(DTV + Non) is NExpTime-complete.

Proof sketch: The lower bound is obtained using the same strategy as with
Theorem 10: the non-construction is used to duplicate the effect of relative
clauses. The upper bound follows using a similar strategy to that employed
for DTV + Rel (Theorem 8). ut
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8 Numerical determiners

Replacing the determiners some and no in the fragments Syl and TV with the
phrases more than C and at most C, allows us to express arguments with a
combinatorial flavour. Consider, for example:

More than 12 artists are beekeepers
At most 3 beekeepers are carpenters
At most 4 dentists are not carpenters
More than 5 artists are not dentists.

(9)

Argument (9) is evidently valid. Indeed, suppose the premises are true: take
any collection of thirteen artists who are beekeepers; since at most three of
these may be carpenters, at least ten must be non-carpenters; and since, of
these ten, at most four may be dentists, at least six must be non-dentists.

Considerably more thought shows the argument

At most 1 artist admires at most 7 beekeepers
At most 2 carpenters admire at most 8 dentists
At most 3 artists admire more than 6 electricians
At most 4 beekeepers are not electricians
At most 5 dentists are not electricians
At most 1 beekeeper is a dentist
At most 6 artists are carpenters

(10)

to be likewise valid (assuming, that is, that the quantified subjects in these
sentences scope over their respective objects). Indeed, suppose to the contrary
that its premises are true, but its conclusion false. By the negation of the con-
clusion, take any collection of seven artists who are carpenters; by the first two
premises, at least four of these seven must admire eight or more beekeepers
and nine or more dentists; and by the third premise, at least one of these four
satisfies the additional property of admiring at most six electricians. Let a be
such an artist, then, and consider any set of eight beekeepers and any set of
nine dentists admired by a: by the fourth and fifth premises, respectively, at
least four of these beekeepers and four of these dentists must be electricians.
But since a admires only six electricians altogether, these sets of four bee-
keepers and four dentists must overlap by at least two, which contradicts the
final premise.

These observations suggest adding productions to our fragments to handle
numerical determiners. Using the notation of counting quantifiers from Sec. 3,
we define the fragments Syl+Num, TV+Num and DTV+Num by adding to
the respective grammars for Syl, TV and DTV the infinite set of productions

Det/λpλq[∃>Cx(p(x) ∧ q(x))] → more than C
Det/λpλq[∃¬Cx(p(x) ∧ q(x))] → at most C,
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where C ranges over all (finite) bit strings. (We continue to translate from
binary into decimal notation for readability.) These productions yield the
expected translations, for example:

More than 12 artists are beekeepers
∃>12(artst(x) ∧ bkpr(x))

At most 1 artist admires at most 7 beekeepers
∃¬1(artst(x) ∧ ∃¬7y(bkpr(y) ∧ admr(x, y))).

For k positive, we define Syl + Numk to be the fragment of Sylk in which all
numbers in determiners are bounded by k; and similarly for TV+Numk and
DTV + Numk. Thus, More than 12 artists are beekeepers is in Syl + Num12
but not in Syl + Num11.

Some readers may wonder whether the incorporation of determiners fea-
turing bit strings is really a fragment of English, but we could easily replace
them with familiar number words. (The fact that this language is not context-
free is not a problem: there is no methodological commitment to specifying
fragments of languages by means of context-free grammars.) Moreover, most
of the results we report below for Syl + Num, TV+Num and DTV + Num
hold for their finite-form variants Syl +Numk, TV+Numk and DTV+Numk

for all positive k. And surely Syl + Num1, TV+Num1 and DTV + Num1
are fragments of English. Finally, in view of the obvious logical equivalences
∃>0x.ϕ ≡ ∃x.ϕ and ∃¬0x.ϕ ≡ ∀x.¬ϕ we may henceforth ignore the standard
determiners some, all and no in our subsequent discussion of fragments with
numerical determiners.

It is easy to see that Syl+Num translates into C1, the 1-variable fragment
of first-order logic with counting quantifiers. Since, as we observed in Sec. 3,
Sat(C1) is in NPTime, so too is Sat(Syl+Num). Likewise, TV+Num translates
into C2, whence Sat(TV) is in NExpTime. On the other hand, since Syl+Num,
and TV+Num by no means exhaust the expressive power of C1 or C2, the
question arises as to whether these upper bounds can be improved on. The
next theorems show that they cannot.

Theorem 12. The problems Sat(Syl + Num) and Sat(Syl + Numk), for all
positive k, are NPTime-complete.

Proof: The upper bound is immediate from the fact that Syl+Num translates
into C1. We establish a matching lower bound. If G is an undirected graph, a
3-colouring of G is a function t mapping the vertices of G to the set {0, 1, 2}
such that no edge of G joins two vertices mapped to the same value. We say
that G is 3-colourable if a 3-colouring of G exists. The problem of deciding
whether a given graph G is 3-colourable is well-known to be NP-hard. We
first reduce it to Sat(Syl + Num3).

Let the vertices of G be {1, . . . , n}. Let p be a common noun, and, for all i
(1 ¬ i ¬ n) and k (0 ¬ k < 3), let pki be a fresh common noun. Think of p as
denoting a ‘selected’ colouring of G, and think of pki as denoting a ‘selected’
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colouring of G in which vertex i has colour k. (The trick will be to consider
a universe containing three ‘selected’ colourings.) Now let SG be the set of
Syl + Num-sentences consisting of

At most 3 p are p (11)
{At most 0 pji are pki s | 1 ¬ i ¬ n, 0 ¬ j < k < 3} (12)
{At least 1 pki is a p | 1 ¬ i ¬ n, 0 ¬ k < 3} (13)
{At most 0 pki are pkj s | (i, j) is an edge of G, 0 ¬ k < 3} (14)

We prove that SG is satisfiable if and only if G is 3-colourable.
Suppose A |= SG. By (11), |pA| ¬ 3. Fix any i (1 ¬ i ¬ n). No a ∈ pA

satisfies any two of the predicates p0
i , p1

i , p2
i , by (12); on the other hand, each

of these predicates is satisfied by at least one element of pA, by (13); therefore,
|pA| = 3, and each element a of pA satisfies exactly one of the predicates p0

i ,
p1
i , p2

i . Now fix any a ∈ pA, and, for all i (1 ¬ i ¬ n), define ta(i) to be
the unique k (1 ¬ k < 3) such that A |= pki [a], by the above argument. The
formulas (14) then ensure that ta defines a colouring of G. Conversely, suppose
that t : {1, . . . , n} → {0, 1, 2} defines a colouring of G. Let A be a structure
with domain A = {0, 1, 2}; let all three elements satisfy p; and, for all k ∈ A,
let pki be satisfied by the single element k+ t(i) (where the addition is modulo
3). It is routine to verify that A |= SG. This completes the reduction of graph
3-colourability to Sat(Syl + Num3).

The next step is to reduce Sat(Syl + Num3) to Sat(Syl + Num1). More
precisely, inspection of (11)–(14) shows that we we may restrict attention to
the subset of Syl+Num3 in which the only sentences lying outside Syl+Num1
are those of the form At most 3 p are p. Let S be any such set of Syl+Num3-
sentences, then. For any sentence s = At most 3 p are p, let o, o′ be new
common nouns, and replace s by the Syl + Num1-sentences

At most 1 p is not o
At most 1 o is o′
At most 1 o is not o′.

Let the resulting set of Syl+Num1-sentences be T . Evidently, T entails every
sentence of S; conversely, any structure A such that A |= S can easily be
expanded to a structure B such that B |= T . This completes the reduction,
and the proof that Sat(Syl + Num1) is NPTime-hard. It follows, of course
that every Sat(Syl+Numk) for k positive, and indeed Sat(Syl+Num) are all
NPTime-hard. ut

Theorem 13. The problem Sat(TV+Num) is NExpTime-complete.

Proof: The upper bound is immediate from the fact that TV+Num translates
into C2. The matching lower bound is obtained by a relatively straightforward
reduction of exponential tiling problems to Sat(TV+Num). Details may be
found in Pratt-Hartmann (2008), Theorem 3. ut
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We remark that TV+Num is certainly not the whole of C2. In particular,
it is also shown in Pratt-Hartmann (2008), Lemma 5, that TV+Num has the
finite model property: if a finite set of TV+Num-sentences is satisfiable, then
it is satisfiable in a finite structure. This is easily seen not to be the case for
C2.

Tight complexity bounds for the problems TV+Numk, DTV + Num and
DTV+Numk, for k positive, are currently not known. Indeed, it is not known
whether DTV + Numk, for k positive, is even decidable.

We round this section off by stating a further negative result on the exist-
ence of syllogism-like proof-systems for fragments of English with numerical
determiners (Pratt-Hartmann, 2013).

Theorem 14. There is no finite set of syllogism-like rules X in Syl + Num
such that the indirect proof-system `X is sound and refutation-complete. If
k > 0, then there is no finite set of syllogism-like rules X in Syl + Numk such
that the direct proof-system `X is sound and refutation-complete.

Again, the proof is technical, and we omit it.
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9 Bound-variable anaphora

There are still many simple arguments that cannot be captured by the frag-
ments considered above. Here is one:

Every artist despises some bureaucrat
Every bureaucrat admires every artist who despises him
Every artist despises some bureaucrat who admires him.

(Of course, we are assuming here that the pronouns above are resolved in-
trasententially.) The next question is what happens to the computational
complexity of the satisfiability problem when pronouns and reflexives are ad-
mitted.

The syntax of such a fragment may be defined by adding to the following
productions to those of of TV+Rel:

Syntax

NP → Reflexive
NP → Pronoun

Formal lexicon

Reflexive → himself
Pronoun → him

(15)

For simplicity, we have suppressed the semantic annotations required to pro-
duce the standard translations into first-order logic, since these would require
tedious and inessential modifications to the productions already given for
TV+Rel. As the correct translations are anyway not in dispute, we leave the
issue of their formal specification to the interested reader. For one possibility,
see (Pratt-Hartmann, 2003).

Two semantic issues, however, do require clarification before we proceed.
First of all, we always take pronouns and reflexives to have antecedents in the
sentences in which they occur. That is to say: all anaphora is intra-sentential.
We further assume the selection of such antecedents to be subject to the usual
rules of binding theory, which we need not rehearse here. Of course there is
nothing wrong with sentences in which he refers to an object identified in
some earlier sentence; however, referential pronouns are, from a logical point
of view, equivalent to proper nouns.

Secondly, the above productions generate sentences featuring anaphoric
ambiguities. Thus, for example, in

Every artist who admires a beekeeper hates
every carpenter who despises him, (16)

the pronoun may take as antecedent either the NP headed by artist or the
NP headed by beekeeper. (The NP headed by carpenter is not available as a
pronoun antecedent here according to binding theory.) These two indexation
patterns correspond, respectively, to the first-order translations
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∀x(artst(x) ∧ ∃y(bkpr(y) ∧ admr(x, y))→
∀z(crpntr(z) ∧ dsps(z, x)→ hte(x, z))) (17)

∀x∀y(artst(x) ∧ bkpr(y) ∧ admr(x, y)→
∀z(crpntr(z) ∧ dsps(z, y)→ hte(x, z))). (18)

In defining fragments of English equipped with anaphora, therefore, we must
decide how to treat ambiguities.

Two options present themselves. The first is to adopt a general method of
resolving ambiguities by artificial stipulation; the second is to decorate nouns
and pronouns in these sentences with indices specifying which pronouns take
which antecedents. Considering the former option, let the semantics assigned
to each sentence of our fragment incorporate the artificial stipulation that pro-
nouns must take their closest allowed antecedents. Here, closest means “closest
measured along edges of the phrase-structure” and allowed means “allowed
by the principles of binding theory”. (We ignore case and gender agreement.)
Fig. 5 illustrates this restriction for sentence (16). Evidently, the NP headed
by artist is closer, in the relevant sense, to the pronoun him than is the NP
headed by beekeeper. Since co-indexing the pronoun with the NP headed by
artist corresponds to the sentence-meaning captured by formula (17), we take
this to be the meaning of (16). Let us denote the resulting fragment of English
by TV+Rel+RA (transitive verbs, relative clauses and restricted anaphora).

Turning our attention now to the latter option for dealing with anaphoric
ambiguity, denote by TV+Rel+GA the same fragment as TV+Rel+RA, ex-
cept that anaphoric antecedents are indicated by co-indexing, subject only
to the rules of binding theory (transitive verbs, relative clauses and general
anaphora). Again, we omit a specification of the semantics which yield the
generally accepted translations of indexed sentences; but this can be provided
as a matter of routine. Strictly speaking, TV+Rel+GA-sentences are not Eng-
lish sentences, but rather, English sentences with pronomial antecedents ex-
plicitly indicated. In particular, sentence (16) corresponds to two essentially
distinct indexed sentences of TV+Rel+GA, depending on which NP the pro-
noun takes as its antecedent. One of these indexed sentences translates to
the formula (17), the other, to the formula (18). We remark that the com-
putational complexity of recovering the possible antecedents of anaphors in
TV+Rel+RA and TV+Rel+GA (and of producing the corresponding first-
order translations) is so low that we may ignore it in the sequel.

Having defined the fragments TV+Rel+RA and TV+Rel+GA, we turn to
the complexity of their respective satisfiability problems. Recall from Sec. 1
that the satisfiability problem for L2, the two-variable fragment of first-order
logic, is NExpTime-complete. It transpires that TV+Rel+RA corresponds
closely to L2. More precisely, the following result is shown in Pratt-Hartmann
(2003).
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Figure 5. Parsing in TV+Rel+RA.

Theorem 15. The problem Sat(TV+Rel+RA) is NExpTime-complete.
Proof sketch: Using the semantics of TV+Rel+RA, it is possible to show that
any first-order formula obtained as the translation of a TV+Rel+RA-sentence
has the property that none of its subformulas contains more than two free-
variables. Any such formula is easily seen to be equivalent to a formula of L2.
This guarantees that Sat(TV+Rel+RA) is in NExpTime.

To show that Sat(TV+Rel+RA) is NExpTime-hard, we show that, for any
L2-formula ϕ, we can compute, in logarithmic space, a set Sϕ of TV+Rel+RA-
sentences, over a suitable lexicon of common nouns and transitive verbs, with
the properties that: (i) any structure in which the sentences of Sϕ are all true
is one in which ϕ is true; (ii) any structure in which ϕ is true can be expanded
to a structure in which the sentences of Sϕ are all true. Thus, we have reduced
the satisfiability problem for L2 to Sat(TV+Rel+RA). ut

The next theorem shows that abandoning the restriction on anaphora in
TV+Rel+RA leads to undecidability (Pratt-Hartmann, 2003).
Theorem 16. The problem Sat(TV+Rel+GA) is undecidable.
Proof: Consider the following TV+Rel+GA-sentences, together with their
first-order translations. We have gathered them into groups for ease of under-
standing. The first group asserts that a vertex exists, and that every vertex is
related to vertices by a horizontal relation, h, and by a vertical relation, v:
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Some vertex is a vertex
∃x(vertex(x) ∧ vertex(x))

Every vertex aiches some vertex
∀x(vertex(x)→ ∃y(vertex(y) ∧ h(x, y)))

Every vertex vees some vertex
∀x(vertex(x)→ ∃y(vertex(y) ∧ v(x, y))).

We will also employ a diagonal relation d. The second group sets up the
converses of the relations h, v and d:

Every vertex1 anti-aiches every vertex which aiches it1
∀x(vertex(x)→ ∀y(vertex(y) ∧ h(y, x))→ h−1(x, y))

Every vertex1 anti-vees every vertex which vees it1
∀x(vertex(x)→ ∀y(vertex(y) ∧ v(y, x))→ v−1(x, y))

Every vertex1 anti-dees every vertex which dees it1
∀x(vertex(x)→ ∀y(vertex(y) ∧ d(y, x))→ d−1(x, y)).

Finally, using the diagonal relation, we write sentences ensuring that that the
vertical successor of a horizontal successor of any vertex is also a horizontal
successor of a vertical successor of that vertex:

Every vertex1 dees every vertex which anti-vees some vertex which it1 aiches
∀x(vertex(x) → ∀z(vertex(z) ∧ ∃y(vertex(y) ∧ h(x, y) ∧ v−1(z, y)) → d(x, z)))

Every vertex1 aiches every vertex which anti-dees some vertex which vees it1
∀x(vertex(x) → ∀z(vertex(z) ∧ ∃y(vertex(y) ∧ v(y, x) ∧ d−1(z, y)) → h(x, z))).

These sentences are evidently true in the infinite structure A with domain A =
N×N, vertexA = A, hA = {〈(i, j), (i+1, j)〉 | i, j,∈ N}, vA = {〈(i, j), (i, j+1)〉 |
i, j,∈ N} and dA = {〈(i, j), (i+1, j+1)〉 | i, j,∈ N}, and with h−1, v−1 and d−1

the converses of h, v and d, respectively. On the other hand, if B is a structure
making these sentences true, then it is straightforward to show that A can be
homomorphically embedded in B. It is then a routine matter to encode the
infinite tiling problem (see Sec. 3) as a collection of TV+Rel+GA-sentences.
This establishes the undecidability of Sat(TV+Rel+GA). ut

Finally, we consider the addition of bound-variable anaphora to DTV+Rel,
which proceeds exactly as for TV+Rel. Denote the resulting fragments by
DTV+Rel+RA (anaphora restricted to the closest available antecedent) and
DTV + Rel + GA (anaphoric references explicitly indicated). We know from
Theorem 16 that the latter must have an undecidable satisfiability problem.
It is shown in Pratt-Hartmann & Third (2006) that the former has too.
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Theorem 17. The problem Sat(DTV + Rel + RA) is undecidable.

Proof: Similar to Theorem 16. ut
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