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We have become so used to viewing natural language in computational terms
that we need occasionally to remind ourselves of the methodological commit-
ment this view entails. That commitment is this: we assume that to under-
stand linguistic tasks—tasks such as recognizing sentences, determining their
structure, extracting their meaning, and manipulating the information they
contain—is to discover the algorithms required to perform those tasks, and
to investigate their computational properties. To be sure, the physical real-
ization of the corresponding processes in humans is a legitimate study too,
but one from which the computational investigation of language may be pur-
sued in Splendid Isolation. Complexity Theory is the mathematical study of
the resources—both in time and space—required to perform computational
tasks. What bounds can we place—from above or below—on the number of
steps taken to compute such-and-such a function, or a function belonging to
such-and-such a class? What bounds can we place on the amount of memory
required? It is not surprising, therefore, that in the study of natural language,
complexity-theoretic issues abound.

Since any computational task can be the object of complexity-theoretic
investigation, it would be hopeless even to attempt a complete survey of
Complexity Theory in the study of natural language. We focus therefore on
a selection of topics in natural language where there has been a particular
accumulation of complexity-theoretic results. Section 2 discusses parsing and
recognition; Section 3 discusses the computation of logical form; and Section 4
discusses the problem of determining logical relationships between sentences
in natural language. But we begin with a brief review of the Complexity The-
ory itself.

A draft chapter for the Blackwell Computational Linguistics and Natural Lan-

guage Processing Handbook, edited by Alex Clark, Chris Fox and Shalom Lappin.
This draft formatted on 2nd August 2009.
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2 Computational complexity

1 A brief review of Complexity Theory

Any account of Complexity Theory rests on some model of computation. The
most widely-used such model is the multi-tape Turing machine; and that is the
model we use here. Throughout this chapter, we employ standard notation for
strings: if Σ is an alphabet (a finite, non-empty set of symbols), Σ∗ denotes
the set of strings (finite sequences of elements) over Σ. The length of any
string σ is denoted |σ|; the empty (zero-length) string is denoted ε; and the
concatenation of strings σ and τ is denoted στ . We follow standard practice
in ignoring the difference between elements of Σ and the corresponding 1-
element strings.

1.1 Turing machines and models of computation

Informally, a multi-tape Turing machine comprises a finite number of tapes, a
finite set of states, and an instruction table. The tapes may be thought of as
the machine’s memory, the states as the line numbers of its program, and the
instruction table as the instructions of that program. The tapes are numbered
consecutively from 1 to (say) K ≥ 2; Tape 1 is referred to as the input tape

and Tape K as the output tape; all other tapes are work-tapes (Fig. 1). Each
tape consists of a one-way infinite sequence of squares (i.e. there is a left-
most square, but no right-most square), and is scanned by its own tape-head,
which is always located over one of these squares. Every square contains a
unique symbol, which is either a member of a non-empty, finite set Σ, called
the alphabet of the Turing machine, or one of the special symbols xy (read:
‘blank’) or . (read: ‘start’).

The set of states, Q, is assumed to contain a pair of distinguished states:
the initial state q0 and the halting state q1; otherwise, states have no internal
structure. The instruction table of the Turing machine is a finite set T of
quintuples

(1) 〈p, s̄, q, t̄, d̄〉,

where p and q are states (i.e. elements of Q), s̄ = (s1, . . . , sK) and t̄ =
(t1, . . . , tK) are K-tuples of symbols (i.e. elements of Σ ∪ {xy, .}), and d̄ =
(d1, . . . , dK) is a K-tuple whose elements are the special tags left, right
and stay. Informally, the Turing machine interprets the instruction (1) as
follows:

(2)

If the current state is p, and, for each k (1 ≤ k ≤ K), the square
currently being scanned on Tape k contains the symbol sk, then
set the new state to be q, and, for each k (1 ≤ k ≤ K) do the
following: write tk on the square currently being scanned on Tape
k, and place Tape k’s head either one square left, or one square
right, or in its current location, as directed by dk.

We can make Tape 1 a read-only tape by insisting that it is never over-
written; likewise, we can make Tape K a write-only tape by insisting that its
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Computational Complexity in Natural Language 3

head never moves to the left. The symbol . is used to indicate the extreme
left of a tape: we insist that, if any tape-head is over this symbol, it never
receives an instruction to move left; moreover, . is never written or over-
written. The halting state q1 indicates that the computation is over, and we
insist that no instruction can be executed in this state. (It is easy to specify
these conditions formally.) Technically speaking, a Turing machine is simply
a tuple M = 〈K, Σ, Q, q0, q1, T 〉 conforming to the above specifications.

Turing machines perform computations, which proceed in discrete time-
steps. At each time-step, the machine is in a specific configuration, consisting
of its current state q, the position of the tape head for each of the tapes, and the
contents of each of the tapes. The initial configuration is as follows: the current
state is q0 (the initial state), with each tape-head positioned over the left-most
square of the tape; Tape 0 has the symbol . in the leftmost square, followed
by a string σ ∈ Σ∗, called the input of the computation, and is otherwise
filled with xy; all other tapes have the symbol . in the leftmost square, and
are otherwise filled with xy. At each time step, an instruction from T of the
form (1) is executed as specified in (2), resulting in the next configuration. The
computation halts when (and only when) no instruction in T can be executed.
Note that, if the halting state q1 is reached, the computation necessarily halts
at that point. A run is a (finite or infinite) sequence of configurations obtained
in this way; if the run is finite, so that the Turing machine halts, we call it
a terminating run. Given a terminating run, the output of the computation
is the string of Σ∗ which, in the final configuration, is written on the output
tape (strictly) between the . and the first xy. Notice that, in general, a Turing

s1 sm xy
Tape 1

Tape 2.

...

. t1 tl
xy

Tape K

T

Figure 1. Architecture of a multi-tape Turing machine.

machine may be able to execute more than one instruction at any given time.
In that case, we should think of the choice being made freely by the machine.
We call a Turing machine deterministic just in case, for any state p and any
K-tuple of symbols s̄, T contains at most one instruction of the form (1)
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4 Computational complexity

starting with the pair 〈p, s̄〉 (i.e. the machine never has a choice as to which
instruction to perform). A non-deterministic Turing machine is just another
term for a Turing machine.

Definition 1 (Computable). Let M be a deterministic Turing machine over

alphabet Σ. For any string σ ∈ Σ∗, either M halts on input σ, or it does not.

In the former case, M will output a definite string τ ∈ Σ∗, and we can define

the partial function fM : Σ∗ → Σ∗ as follows.

fM (σ) =

{

τ if M halts on input σ

undefined otherwise

We say that M computes the function fM . A partial function f : Σ∗ →
Σ∗ is Turing computable (or just: computable) if it is computed by some

deterministic Turing machine.

The instruction table of a Turing machine is fixed. Thus, a Turing machine
is not a model of a computing machine in the sense we normally imagine, but
rather of a computer program: there is only one thing it computes. On the
other hand, since Turing machines are, formally, just tuples of finite objects,
any Turing machine M can easily be coded as a string σ′

M over a suitable
alphabet Σ′, and that string can be input to another Turing machine, say M ′.
It can be shown that there exists a universal Turing machine U , which is able
to simulate any Turing machine M over an alphabet Σ in the following sense:
for any string, σ ∈ Σ∗, M has a non-terminating run on input σ if and only
if U has a terminating run on input σ′

Mσ; moreover, in case of termination,
the output of M ′ is the same as the output of M . Any such Turing machine
U is a model of a computing machine in the sense we normally imagine: it is
able to execute an arbitrary ‘program’ σ′

M on arbitrary ‘data’ σ. Given such
a coding scheme, consider the halting function, H : (Σ′)∗ → {>,⊥} defined
as

H(σ′) =

{

> if σ′ encodes a Turing machine M that halts on input ε

⊥ otherwise.

This function is clearly well-defined, and indeed total. Perhaps the most fun-
damental fact in Computability Theory is due to Turing (1936–7):

Theorem 1 (Turing). The halting function is not computable.

Definition 1 applies to functions f : Σ∗ → Σ∗ for any alphabet Σ. How-
ever, this definition can be extended to functions with other countable do-
mains and ranges, relative to some coding of the relevant inputs and outputs
as strings over an alphabet. Consider for instance the familiar coding of nat-
ural numbers as bit strings (elements of {0, 1}∗). For n ∈ N, denote by n̄ the
standard binary representation of n (without leading zeros). For n ∈ N, denote
by n̄ the standard binary representation of n (without leading zeros); and for
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s ∈ {0, 1}∗, denote by #s the natural number represented by s. If f : N → N

is a function, we consider f computable if the function g : {0, 1}∗ → {0, 1}∗

defined by
g(s) = (f(#s))

is computable in the sense of Definition 1. Computability of functions with
other domains and ranges—e.g. rational numbers, lists, graphs etc.—is under-
stood similarly. Technically, this extended notion of computability is relative
to the coding scheme employed. In practice, however, all reasonable coding
schemes usually yield the same computability (and complexity) results; if
so, it is legitimate to speak of such functions as being computable or non-
computable, leaving the operative coding scheme implicit.

The architecture of Turing machines given above is, in all essential details,
that set out in Turing (1936–7). We have followed more recent practice in dis-
tinguishing input-, output- and work-tapes (Turing’s machined had a single
tape) to make it a little easier to talk about space-bounded computations.
But this makes no difference to any of the results reported here. The thesis
that Turing computability captures our pre-theoretic notion of computability
is generally referred to as the Church-Turing thesis. It is important to ap-
preciate that this thesis does not rest on the existence of universal Turing
machines, or indeed on any purely mathematical fact. Methodologically, the
apparatus introduced above is an exercise in conceptual analysis: the proposed
replacement of an informally understood notion with a rigorous definition. His-
torically, several competing analyses of computability were proposed at more
or less the same time, most notably Gödel’s notion of recursive function and
Church’s λ-calculus. All three notions in effect coincide, however; so there is
general consensus about the formal model presented here. For an accessible
modern treatment, see Papadimitriou (1994, Chapter 2).

The fundamental goal of Complexity Theory is to analyse the computa-
tional resources, in either time or space, required to perform computational
tasks. The first step is to measure the computational resources required by
particular algorithms.

Definition 2. Let M be a Turing machine with alphabet Σ, and let g : N → N.

We say M runs in time g if, for all but finitely many strings σ ∈ Σ∗, any run

of M on input σ halts within at most g(|σ|) steps. Similarly, M runs in space
g if, for all but finitely many strings σ ∈ Σ∗, any run of M on input σ uses

at most g(|σ|) squares on any of its work-tapes.

Allowing M to break the bound g in finitely many cases avoids problems
caused by zero-length inputs and other trivial anomalies. Notice also the asym-
metry in the definitions of time- and space-complexity: because measures of
space complexity include only the work-tapes (and so exclude the input- and
output-tapes), they can be sub-linear. For time-complexity, sub-linear bounds
make little sense, because they do not give the machine the opportunity to
read its input.
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6 Computational complexity

Unfortunately, Definition 2 is too fragile to provide a meaningful measure
of algorithmic complexity. Suppose M is a deterministic Turing machine com-
puting some function in time g, and let c be a positive number. Provided g is
moderately fast-growing (say, faster than linear growth), it is routine to con-
struct another deterministic Turing machine M ′—perhaps with more tapes
or more states or a larger alphabet—that computes the same function in time
cg(n). That is: we can always speed up M by a linear factor! Since M and
M ′ do not represent interestingly different algorithms, the statement that a
Turing machine runs in time—say—3n2 +n+4 as opposed to 14n2 +87n+11
is, from an algorithmic point of view, not significant. Similar remarks also
apply to space bounds.

Definition 3. Let M be a Turing machine, and G a set of functions from N

to N. We say that M runs in time G if, for some g ∈ G, M runs in time g.
Similarly, we say that M runs in space G if, for some g ∈ G, M runs in space

g.

In particular, the following classes of functions suggest themselves.

Definition 4 (O-notation). Let g : N
k → N be a function. Denote by O(g)

the set of functions

O(g) = {g′ : N
k → N | there exist c ∈ N, n′

1, . . . , n
′

k ∈ N s.t.

for all n1 > n′

1 . . . for all nk > n′

k, g′(n1, . . . , nk) ≤ cg(n1, . . . , nk)}.

Informally, O(g) is the class of functions which are eventually dominated by
some positive multiple of g. Combining Definitions 3 and 4, it makes sense to
say, for example, that a given Turing machine runs in time (or space) O(n2),
or O(n3), or O(2n). And this sort of complexity-measure, it turns out, is ro-

bust under the expansions of computational resources considered above. For
example, it can be shown that, for any k > 0, there is a function that can be
computed by a deterministic Turing machine running in time O(nk+1) which
cannot be computed by any deterministic Turing machine running in time
O(nk); and similarly for space-bounds. (The precise statement of these theo-
rems, known as separation theorems, is somewhat intricate; see Kozen (2006,
Lecture 3) or Papadimitriou (1994, pp.143 ff.). O-notation has the further ad-
vantage of permitting a useful degree of informality when analysing the com-
plexity of an algorithm, since a pseudo-code description of that algorithm, of
the sort standardly found in computing texts, often suffices to show that that
it will run in time or space O(g) (for some function g) without our having first
to compile that description into a Turing machine. Finally, a word of caution.
Knowing that a Turing machine (or algorithm) has time-complexity O(g) at
best imposes a bound on how rapidly the cost of computation grows with the
size of the input. That is, the complexity-measures in question are asymptotic.
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Computational Complexity in Natural Language 7

In many cases, algorithms with sub-optimal asymptotic complexity-measures
perform best in practice.

1.2 Decision problems

So far, we have discussed complexity-measures for particular algorithms, un-
derstood as deterministic Turing machines. We now develop this idea in two
crucial—though logically quite separate—ways.

The first development extends Definition 1 to non-deterministic computa-
tion. To do this, we first restrict attention to functions whose range contains
just two elements—we conventionally employ > and ⊥—representing ‘YES’
and ‘NO’, respectively. A function f : A → {>,⊥}, where A is a countable
set, is called a decision problem, or simply a problem. While decision prob-
lems may initially seem of limited practical interest, they play a central role
in Complexity Theory. Moreover, the restriction to decision problems is less
severe than might at first appear: the complexity of many functions can often
be usefully characterized in terms of the complexity of closely related decision
problems.

Now, any decision problem f : A → {>,⊥} can alternatively be regarded
as a subset of A—namely, the subset {a ∈ A | f(a) = >}. In particular, if
A = Σ∗ for some alphabet Σ (or if the encoding of A in Σ∗ is obvious), a
decision problem defined on A is, in effect, a set of strings over Σ, or, in the
parlance of Formal Language Theory, a language over Σ. Conversely, of course,
any language L ⊆ Σ∗ may be regarded as a decision problem f : Σ∗ → {>,⊥}
given by:

f(σ) =

{

> if σ ∈ L

⊥ otherwise.

The observation that decision problems and languages are essentially the same
thing prompts the following definition.

Definition 5. Let M be a Turing machine over the alphabet Σ, and suppose

without loss of generality that Σ contains the symbol >. We say that M accepts
a string σ ∈ Σ∗ if there exists a terminating run of M with input σ and output

>. The language L ⊆ Σ∗ recognized by M , denoted L(M), is the set of strings

accepted by M .

It is important to bear in mind that, in Definition 5, M can be non-

deterministic. That is: L(M) is the set of inputs for which M may yield the
output >. (It is sometimes convenient to imagine a benign helper guiding M
to make the ‘right’ choice of instructions required to accept a string σ ∈ L.)
Equally important is that, if σ 6∈ L, there is no requirement for M to produce
any particular output (as long as it is not >, of course), or indeed to halt at
all.

The case where M halts on every input is of particular interest, however:

Page: 7 job: pratt-hartmann macro: handbook.cls date/time:2-Aug-2009/20:22



8 Computational complexity

Definition 6 (Decidable). Let L be a language. We call L decidable if it is

recognized by a Turing machine that halts on every input.

It is routine to show that any decidable language is in fact recognized by
a deterministic Turing machine that halts on every input. Furthermore, that
machine can easily be modified so as always to produce one of the two outputs
>, ⊥. Thus, a decision problem f : Σ∗ → {>,⊥} is a computable function,
in the sense of Definition 1, just in case the corresponding language L =
{σ|f(σ) = >} is decidable, in the sense of Definition 6. Henceforth, then, we
shall identify decision problems and languages, employing whichever term is
most appropriate in context.

We may think of Definition 5 as a generalization of Definition 1 to the
case of non-deterministic computation. The significance of this generalization
is that, while deterministic and non-deterministic Turing machines recognize
the same class of languages, they may not in general do so within the same
computational bounds, a possibility which plays a central role in Complexity
Theory.

We can generalize the above observations on linear speedup to the case of
non-deterministic computation for decision problems. We give a reasonably
precise version here:

Theorem 2. Let L be a language over some alphabet, let g : N → N and

h : N → N be functions, let c ≥ 1, and suppose g(n) ≥ n+1, and h(n) ≥ log n.

If L is recognized by some Turing machine running in time cg(n), then it is

recognized by some Turing machine running in time g(n). If L is recognized

by some Turing machine running in space ch(n), then it is recognized by some

Turing machine running in space h(n). The previous statements continue to

hold when “Turing machine” is replaced throughout by “deterministic Turing

machine”.

Now for the second development in our analysis of complexity. So far,
we have provided measures of the time- and space-requirements of particular
Turing machines (or, by extension, and using O-notation, of particular algo-

rithms). But what primarily interests us in Complexity Theory are the time-
and space-requirements of a maximally efficient Turing machine for comput-
ing a particular function or, more specifically, solving a particular decision

problem. Recalling the equivalence between decision problems and languages
discussed above, we define:

Definition 7. Let L be a language over some alphabet, and let G be a set of

functions from N to N. We say that L is in TIME(G) (or SPACE(G)) if there

exists a deterministic Turing machine M recognizing L, such that M runs in

time (respectively, space) G.

Classes of languages of the form TIME(G) or SPACE(G) are referred to as
(deterministic) complexity classes. To avoid notational clutter, if g is a func-
tion from N to N, we write TIME(g) instead of TIME({g}); and similarly for
other complexity classes.
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Computational Complexity in Natural Language 9

So far, we have encountered classes of functions of the form O(g) for var-
ious g. When analysing the complexity of languages (rather than of specific
algorithms), however, larger classes of functions are typically more useful.

Definition 8. Let P , E, and Ek (for k > 1) be the sets of functions from N

to N defined as follows:

P = {nc | c > 0}

E = {2nc

| c > 0}

E2 = {22n
c

| c > 0}

Ek = {2
2···

2
}

n
c

k times
| c > 0}

A function g : N → N which is in Ek for some k is said to be elementary.

Non-elementary functions grow rapidly. However, it is easy to define a com-
putable function which is non-elementary:

f(n) = 2
2···

2
}

n times
.

Combining Definitions 7 and 8, we obtain complexity classes which are often
known under the following, more pronounceable names:

LOGSPACE = SPACE(log n)
PTIME = TIME(P ) PSPACE = SPACE(P )

EXPTIME = TIME(E) EXPSPACE = SPACE(E)
k-EXPTIME = TIME(Ek) k-EXPSPACE = SPACE(Ek).

Thus, PTIME is the class of languages recognizable by a deterministic Turing
machine in polynomial time, EXPSPACE, the class of languages recognizable
by a deterministic Turing machine in exponential space, and so on. In some
texts, LOGSPACE is referred to as L, PTIME as P, and EXPTIME as EXP.
Notice, incidentally, that there is no point in defining, say, G = {log(nc) |
c > 0} and then setting LOGSPACE = SPACE(G), since, by Theorem 2,
linear factors may be ignored. Finally, if L is not recognizable by any Turing
machine running in time bounded by an elementary function, then L is said
to have non-elementary complexity. We shall encounter examples of decidable,
but non-elementary, problems below.

Definition 7 may be adapted directly to deal with non-deterministic com-
putation.

Definition 9. Let L be a language over some alphabet, and let G be a set of

functions from N to N. We say that L is in NTIME(G) (or NSPACE(G)) if

there exists a Turing machine M recognizing L, such that M runs in time

(respectively, space) G.

Classes of languages of the form NTIME(G) or NSPACE(G) are referred to
as (non-deterministic) complexity classes.
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10 Computational complexity

Combining Definitions 8 and 9, we obtain complexity classes which are
often known under the following, more pronounceable names:

(3)

NLOGSPACE = NSPACE(log n)
NPTIME = NTIME(P ) NPSPACE = NSPACE(P )

NEXPTIME = NTIME(E) NEXPSPACE = NSPACE(E)
Nk-EXPTIME = NTIME(Ek) Nk-EXPSPACE = NSPACE(Ek).

In some texts, NLOGSPACE is referred to as NL, NPTIME as NP, and NEX-
PTIME as NEXP.

Notice the asymmetry involved in the notion of non-deterministic compu-
tation: M recognizes L ⊆ Σ∗ just in case, for each string σ ∈ Σ∗, σ ∈ L if
and only if there exists a successfully terminating run of M (i.e. a terminating
run with output >) on input σ—that is to say, σ ∈ Σ∗ \ L if and only if all

runs of M on input σ fail to halt successfully. This asymmetry prompts us to
define the complement classes as follows.

Definition 10. If C is a class of languages, then Co-C is the class of languages

L such that Σ∗ \ L is in C, where Σ is the alphabet of L.

It is easy to see that, for any interesting class of functions G, TIME(G)= Co-
TIME(G) and SPACE(G)= Co-SPACE(G). For this reason, we never speak
of Co-PTIME, Co-PSPACE, etc. The situation with non-deterministic com-
plexity classes is different, however. It is not known whether NPTIME= Co-
NPTIME; and similarly for many other classes of the form Co-NTIME(G).
Indeed, such complexity classes are regularly encountered. In particular,
putting together Definition 10, and the NTIME-classes listed in (3), we obtain
the complexity classes Co-NPTIME, Co-NEXPTIME and Co-Nk-EXPTIME.
(And similarly for the corresponding space-complexity classes; but see Theo-
rem 4.)

1.3 Relations between complexity classes

It is obvious from the above definitions that any language in TIME(G) (or
SPACE(G)) is non-deterministically recognizable within the same bounds.
Formally,

TIME(G) ⊆ NTIME(G) SPACE(G) ⊆ NSPACE(G).

A little less obviously, we see that

NPTIME ⊆ EXPTIME NEXPTIME ⊆ 2-EXPTIME · · ·

Consider the first of these inclusions. If M non-deterministically recognizes
L, and p is a polynomial such that M is guaranteed to halt within time p(n)
on input of size n, the number of possible runs of M on inputs of this size
is easily seen to be bounded by 2q(n) for some polynomial q. But then a
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deterministic Turing machine M ′, simulating M , can check all of these runs
in exponential time, outputting > if any one of them halts successfully. Hence,
NPTIME ⊆ EXPTIME. The inclusion NEXPTIME ⊆ 2-EXPTIME follows
analogously; and so on up the complexity hierarchy. In fact, similar arguments
establish the following more elaborate system of inclusions.

(4)
PTIME ⊆ NPTIME ⊆ PSPACE ⊆

EXPTIME ⊆ NEXPTIME ⊆ EXPSPACE ⊆
2-EXPTIME ⊆ 2-EXPTIME · · ·

The following result establishes that, for classes of sufficiently ‘large’ func-
tions, non-determinism makes no difference to space-complexity (Savitch,
1970).

Theorem 3 (Savitch). If g(n) ≥ log n, then

NSPACE(g(n)) ⊆ SPACE((g(n))2).

In some statements of this theorem, certain technical conditions are imposed
on g; but see, e.g. Kozen (2006, pp. 15–16). Since the classes of functions
P , E, E2, etc. are closed under squaring, we have NPSPACE=PSPACE,
NEXPSPACE=EXPSPACE, and so on. As an instant corollary, since these
deterministic classes are equal to their complements, we have NPSPACE =
Co-NPSPACE, NEXPSPACE=Co-NEXPSPACE, and so on.

Care is required when applying the reasoning of the previous para-
graph. Setting g(n) = log n, Theorem 3 tells us that NLOGSPACE ⊆
SPACE((log n)2); however, this is not sufficient to imply that NLOGSPACE
⊆ LOGPSPACE. Nevertheless, the following result establishes that equiva-
lence under complementation continues to hold even in this case (Immerman,
1988).

Theorem 4 (Immerman-Szelepcsényi). If g(n) ≥ log n, then

NSPACE(g(n)) = Co-NSPACE(g(n)).

In some statements of this theorem, certain technical conditions are imposed
on g; but again, see Kozen (2006, pp. 22–24). As a special case, we have
NSPACE(n) = Co-NSPACE(n), which settled a long-standing conjecture in
Formal Language Theory (see Section 2.3 below). As an instant corollary of
Theorem 4, NLOGSPACE=Co-NLOGSPACE.

Adding these ‘small’ complexity classes to the inclusions (4), we obtain

(5)
LOGSPACE ⊆ NLOGSPACE ⊆ PTIME ⊆ NPTIME ⊆

PSPACE ⊆ EXPTIME ⊆ NEXPTIME ⊆
EXPSPACE ⊆ 2-EXPTIME ⊆ 2-NEXPTIME · · ·
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12 Computational complexity

1.4 Lower bounds

Notwithstanding the above caveats on the interpretation of asymptotic
complexity-measures, saying that that a language is in a complexity class
C places some kind of upper bound on the resources required to recognize it.
But what of lower bounds? What if we want to say that a language cannot be
recognized within certain time- or space-bounds? For the complexity classes
introduced above, useful lower-bound characterizations are indeed possible.

The basic idea is that of a reduction of one language (or decision problem)
to another. Let L1 and L2 be languages, perhaps over different alphabets Σ1

and Σ2. Suppose that there exists a function g : Σ∗

1 → Σ∗

2 such that, for any
string σ ∈ Σ∗

1 , σ ∈ L1 if and only if g(σ) ∈ L2. We may think of g as a means
of ‘translating’ L1 into L2: in particular, any Turing machine recognizing L2

can be modified to recognize L1 by simply prepending the translation g. If
the cost of this translation is small, then we may regard L2 as being ‘at least
as hard to recognize as’ L1.

Definition 11 (Reduction). Let Σ1 and Σ2 be alphabets, and let Li be a

language over Σi (i = 1, 2). A reduction of L1 to L2 is a function g : Σ∗

1 →
Σ∗

2 , such that g can be computed by a Turing machine in space O(log n), and

for all σ ∈ Σ∗

1 , σ ∈ L1 if and only if g(σ) ∈ L2; in that case, we say that L1

is reducible to L2. If, instead, g can merely be computed in time O(nk) for

some k, we call it a polynomial reduction, and we say that L1 is polynomially
reducible to L2.

Let C be any of the complexity classes mentioned in (5), or the complement
of any of these classes. It is easy to see that, if L2 is in C, and L1 is reducible
to L2, then L1 in C. We say that C is ‘closed under reductions’. If C is any
of the complexity classes mentioned in (4), then C is, similarly, ‘closed under
polynomial reductions’.

Theorem 5. The relation of reducibility is transitive: if L1 is reducible to L2,

and L2 to L3, then L1 is reducible to L3.

We remark that Theorem 5 is not obvious (though its analogue in the case of
polynomial reducibility is): see, e.g. Papadimitriou (1994, p. 164).

Now we can give our characterization of lower complexity bounds.

Definition 12 (Hardness and completeness). Let C be a complexity class.

A language L is said to be hard for C, or C-hard, if any language in C is

reducible to L; L is said to be complete for C, or C-complete, if L is C-hard

and also in C. Additionally, L is said to be C-hard under polynomial reduction
if any decision problem in C is polynomially reducible to L; similarly for C-

completeness under polynomial reduction

It follows from Theorem 5 that, if L1 is C-hard for some complexity class C,
and L1 is reducible to L2, then L2 is C-hard. Similarly, mutatis mutandis, for
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hardness under polynomial reductions. Notice that the notion of LOGSPACE-
completeness is uninteresting: any problem in LOGSPACE is by definition
LOGSPACE-complete. Under polynomial reductions, the notion of PTIME-
completeness is similarly uninteresting. Definition 12 reflects the fact that
reducibility in logarithmic space is taken to be the default in Complexity
Theory. However, for most higher complexity classes, it is generally easier
and just as informative to work with reducibility in polynomial time; and this
is what is often done in practice. Hardness results, in the sense of Definition 12,
are sometimes referred to, for obvious reasons, as ‘lower complexity bounds’.
However, it is important not to be misled by this terminology: for example,
it is easy to show that there are PTIME-hard problems in TIME(n); but
TIME(n) is properly contained in PTIME!

Many natural problems (it is easier here to speak of problems rather than
languages) can be shown to to be complete for the complexity classes in-
troduced above. Here are three very well-known examples. In the context of
propositional logic, a literal is a proposition letter or a negated proposition
letter; proposition letters are said to be positive literals, their negations neg-

ative literals. A clause is a disjunction of literals; a clause is said to be Horn

if it contains at most one positive literal. Theorems 6–9 are among the most
fundamental in Complexity Theory. For an accessible treatment, see, e.g. Pa-
padimitriou (1994, p. 171, p. 176, p. 398, respectively). Theorem 6 is due
to Cook (1971).

Theorem 6 (Cook). The problem of determining whether a given set of

clauses is satisfiable is NPTIME-complete.

Theorem 7. The problem of determining whether a given set of Horn clauses

is satisfiable is PTIME-complete.

Theorem 8. The problem of determining the satisfiability of a given set of

clauses, all of which contain most two literals, is NLOGSPACE-complete.

Theorem 8 is very closely related to following graph-theoretical problem.
Given a finite directed graph, one node in that graph is said to be reach-

able from another if there is a finite sequence of directed edges in that graph
leading from the first node to the second.

Theorem 9. The problem of determining whether, in a given directed graph,

one node is reachable from another, is NLOGSPACE-complete.

Note that, in each case, we assume that inputs (clauses, graphs, . . . ) are coded
in some standard way as strings over some alphabet. All reasonable coding
schemes yield the same complexity results.

Such completeness results are often less surprising than they at first ap-
pear. For example, Theorem 6 is established by showing that, given a non-
deterministic Turing machine M that runs in polynomial time, the conditions
for a sequence of configurations of M to be a run of M with input σ can
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14 Computational complexity

be encoded, in a natural way, as a set of clauses whose size is bounded by a
polynomial function of the length of σ. And once one language L is shown to
be hard for a complexity class, other languages can be shown to be hard for
that class by showing that L is reducible to them.
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2 Parsing and recognition

As already mentioned, in the context of Formal Language Theory, a language

is a set of strings over some alphabet Σ. Some languages are specified by
grammars, which are themselves finite objects whose semantics is defined by
a grammar framework. Familiar grammar frameworks are: context-sensitive
grammars, definite clause grammars, tree-adjoining grammars, context-free
grammars and non-deterministic finite-state automata. Within a given gram-
mar framework F , any grammar G recognizes a unique language L(G), namely,
the set of strings accepted by G. Thus, the apparatus of the multi-tape Turing
machine also constitutes a grammar framework in this sense. Each grammar in
that framework—that is, each specific Turing machine M over signature Σ—
recognizes the language L(M) comprising the set of strings over Σ accepted
by M , in the sense of Definition 5.

If F is a grammar framework, we understand the universal recognition

problem for F to be the following problem: given a grammar G in F and a
string σ over the alphabet of G, determine whether σ ∈ L(G). This problem
is to be distinguished from the fixed-language recognition problem for any G
in F : given a string σ over the alphabet of G, determine whether σ ∈ L(G).
The complexity of the universal recognition problem for a framework F is in
general higher than that of the fixed-language recognition problem for any
grammar in F .

In this section, we survey the complexity of the universal recognition prob-
lem and the fixed language recognition problem for various grammar frame-
works. For the framework of Turing machines, we already know the answer:
it is (essentially) a restatement of Theorem 1 that the universal recognition
problem for Turing Machines is undecidable; and it is an immediate conse-
quence of the existence of a universal Turing Machine that there exist Turing
machines whose fixed language recognition problem is undecidable. For less
expressive grammar frameworks, however, there is much more to be said, as
we shall see.

2.1 Regular languages

Let us begin with one of the least expressive of the commonly encountered
grammar frameworks. A non-deterministic finite-state automaton (NFSA) is
a tuple A = 〈Σ, Q, q0, q1, T 〉, where Σ is an alphabet, Q a set (the set of states

of A), q0 and q1 distinct elements of Q (the initial state and the accepting state

respectively), and T a finite set of triples 〈p, s, q〉, (the transitions of A), where
p, q ∈ Q and s ∈ Σ. Informally, the transition 〈p, s, q〉 has the interpretation

If the current state is p, and the next symbol to be read is s, then
set the new state to be q.

An NFSA A is said to accept the string σ = s1, . . . , sn if, starting in the
state q0, and reading the symbols s1, . . . , sn successively, there is a sequence
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of transitions in T leading to the state q1. NFSAs may be pictured as labelled
graphs in the obvious way: the nodes are labelled by elements of Q, and the
edges by elements of Σ. A string is accepted if it is possible to step through
the graph from the initial state to the final state in such a way that the string
is exactly consumed.

It is a standard result of Formal Language Theory that the class of lan-
guages accepted by NFSAs coincides with the class of regular languages. A
regular expression over an alphabet Σ is defined recursively to be any expres-
sion of the forms ∅, ε, s, e1 ∪ e2, e1e2 or e∗, where s ∈ Σ and e, e1 and e2 are
regular expressions. Any regular expression e recognizes a language L(e) over
Σ, defined (with harmless abuse of notation) as follows:

L(∅) = ∅ L(ε) = {ε} L(s) = {s} for s ∈ Σ
L(e1 ∪ e2) = L(e1) ∪ L(e2)
L(e1e2) = {στ | σ ∈ L(e1) and τ ∈ L(e2)}
L(e∗) = {σ1 . . . σk | k ≥ 0 and σi ∈ L(e) for all i (1 ≤ i ≤ k)}.

A regular language is any language L(e), where e is a regular expression.
Deciding whether a given NFSA accepts a given string is easily reducible to

the problem of reachability in directed graphs, and vice versa. By Theorem 9,
therefore, we have

Theorem 10. The universal recognition problem for NFSAs is NLOGSPACE-

complete.

What about the fixed-language recognition problem? An NFSA can be
thought of as a Turing machine with a finite memory—that is, a Turing ma-
chine which never uses more than a constant amount of space on any of its
work-tapes. With a little care, this equivalence can be shown to be exact: a
language is regular if and only if it can be recognized by a Turing machine
with fixed space bound. Hence:

Theorem 11. For any NFSA A, L(A) is in SPACE(c) for come constant c.

Thus, the universal recognition problem for NFSAs has higher complex-
ity than the recognition problem for any specific regular language. A subtly
different illustration of this phenomenon is provided by the grammar frame-
work of extended regular expressions. An extended regular expression over an
alphabet Σ is defined exactly as for regular expressions, except that we have
a complementation operator ē, with semantics given by

L(ē) = Σ∗ \ L(e).

A well-known theorem of Formal Language Theory states that the class of
regular languages is closed under complementation, and hence is equal to
the class of languages recognized by extended regular expressions. Thus, the
grammar frameworks of NFSAs and extended regular expressions are equal in
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expressive power. However, the corresponding universal recognition problems
may have different complexity. Stockmeyer & Meyer (1973, p. 3) show:

Theorem 12. The universal recognition problem for extended regular expres-

sions is in PTIME.

Theorem 12 does not easily follow from Theorem 10: extended regular ex-
pressions constitute a more compact way of specifying regular languages than
do NFSAs. Of course, when it comes to the fixed-language recognition prob-
lem for languages defined by extended regular expressions, this must be the
same as for NFSAs, because they are the same languages. For a useful list of
complexity-theoretic results regarding regular languages, see Yu (1997, pp. 96
ff.).

2.2 Context-free languages

Probably the most familiar and useful grammar framework in linguistics is
that of context-free grammars. Formally, A context-free grammar (CFG) is
a quadruple G = 〈N, Σ, S, P 〉, where N is a set of non-terminals (typically,
category labels such as S, NP, VP etc.), Σ an alphabet, S a distinguished
start-symbol in N (for example, the category S), and P a list of productions for
re-writing non-terminals (such as, S → NP VP, NP → Det N, etc.). Elements
of Σ are usually referred to as terminals in this context. A CFG accepts the
string of terminals σ if some sequence of productions can be found which
rewrites the start–symbol S to σ. A language recognized by a CFG is called
a context-free language. For example, the language {anbn | n ≥ 0} is context-
free, but not regular. (For a detailed discussion, see Chapter 1, Section 6.) HARD REF

A number of well-known algorithms exist to determine whether, given a
CFG G and a string σ, G accepts σ. Perhaps the best-known is the CYK al-
gorithm, named after its simultaneous inventors, Cocke, Younger and Kasami
(see, e.g. Younger (1967)). Under reasonable assumptions about what quali-
fies as a constant-time operation, this algorithm runs in time O(mn3), where
m is the number of productions in G, and n is the length of σ; however it
requires that the given grammar G be in Chomsky normal form. The slightly
more sophisticated algorithm of Earley (1970) dispenses with this assump-
tion. Thus, the universal recognition problem for context-free languages is in
PTIME. Furthermore, it is easy to reduce this problem to the satisfiability
problem for Horn-clauses in propositional logic, whence, by Theorem 7, it is
also PTIME-hard (Jones & Laaser, 1977). Hence:

Theorem 13. The universal recognition problem for CFGs is PTIME-complete.

On the other hand, for the fixed-language recognition problem, we can again
do a little better (Ritchie & Springsteel, 1972; Nepomnyashchii, 1975):

Theorem 14. For any CFG G, L(G) is in SPACE((log n)2). Moreover, there

exists a context-free language which is NLOGSPACE-hard.
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The proof in both cases is rather technical.
CFGs are not the only way of describing context-free languages: the frame-

work of Lambek grammars (Lambek, 1958) provides an alternative. We content
ourselves with an informal explanation here, referring the reader to, e.g. Car-
penter (1997). The Lambek calculus (with product) is a logical system allowing
the derivation of sequents involving category expressions. A category expres-
sion is either a basic category or a derived category of the forms X/Y , Y \X
or X · Y . Examples of basic categories are S and NP. Examples of derived
categories are NP\S, NP · NP and (NP\S)/NP . Intuitively, a category ex-
pression X/Y describes a string which, when a string of category Y is placed
to its right, will result in a string of category X ; similarly, Y \X describes a
string which, when a string of category Y is placed to its left, will result in a
string of category X ; and finally, X · Y describes a string which is the result
of concatenating a string of category X and a string of category Y . Thus,
an intransitive verb, and indeed any verb phrase, might be assigned category
NP\S, while a transitive verb might be assigned category (NP\S)/NP.

A sequent in the Lambek calculus is an expression of the form

X1 · · ·Xn → X,

where X1, . . . , Xn and X are category expressions. Intuitively, such a se-
quent has the meaning: “The result of concatenating any strings of categories
X1, . . . , Xn, in that order, is a string of category X . An example of a sequent
is

(6) NP (NP\S)/NP NP → S,

which thus has the informal interpretation

(7)
if σ1, σ2 and σ3 are strings of categories NP , (NP\S)/NP and
NP, respectively, then σ1σ2σ3 is of category S.

We remark that, under the advertised interpretations of the relevant derived
categories, (7) is a true statement. Formally, however, it is the rules of the
Lambek calculus (rather than judgments such as (7)) that determine whether
any given sequent is derivable. We do not give these rules here. As an example,
however, Fig. 2 shows the derivation of Sequent (6). It can be shown that the

S → S NP → NP
NP (NP\S) → S

(\I)
NP → NP

NP (NP\S)/NP NP → S
(/I)

Figure 2. A derivation in the Lambek calculus.

rules of the Lambek calculus are correct and complete for the interpretation
given above (Pentus, 1994).
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A Lambek grammar (with product) over a signature Σ is a finite list G
of pairs of the form (s, C) where s ∈ Σ and C is a category expression. We
say that the grammar G accepts the string σ = s1, . . . , sn just in case there
exist category expressions C1, . . . , Cn such that: (i) (si, Ci) ∈ G for each i
(1 ≤ i ≤ n), and (ii) the sequent C1 · · ·Cn → S can be derived in the Lambek
calculus. (Again, S is a distinguished start-symbol.) For example, if G contains
the pairs

(John, NP), (Mary, NP), (loves, (NP\S)/NP),

then, since (6) is a valid sequent, G accepts the sentence John loves Mary. It is
known (Pentus, 1993, 1997) that the class of languages recognized by Lambek
grammars is exactly the class of context-free languages.

A crucial result concerning the Lambek calculus is the so-called cut-

elimination theorem (Lambek, 1958), which allows us to show that the prob-
lem of determining the validity of a given sequent in the Lambek calculus
is in NPTIME. More recently, Pentus (2006) has shown that the problem of
determining the validity of a sequent in the Lambek calculus (with product)
is NPTIME-complete. This immediately translates, in the present context, to
the following result.

Theorem 15 (Pentus). The universal recognition problem for Lambek gram-

mars (with product) is NPTIME-complete.

We remark in passing that the corresponding problem for the Lambek calculus
without the operation · (i.e. just the operations / and \) is, at the time of
writing, open. This restriction does not decrease the class of languages which
can be recognized by such grammars: these are still exactly the context-free
languages.

2.3 More expressive grammar frameworks

As the preceding discussion illustrates, the complexity of the universal recog-
nition problem for a grammar framework cannot be read off in any simple
way from its expressive power. Nevertheless, commonly encountered gram-
mar frameworks with higher expressive power do tend, by and large, to exhibit
higher recognition complexity. A well-known example is provided by the class
of tree-adjoining grammars (TAGs). A more detailed explanation of TAGs can
be found in Chapter 4, Section 7. But very roughly, a TAG is a finite set of HARD REF
‘local’ trees which can be combined into larger trees to license sentences, much
as CFGs combine productions (which can equally be thought of as local trees)
into phrase-structures. The essentially new element in TAGs is the operation
of adjunction, in which a local tree may be ‘spliced’ into an existing tree. A
language recognized by a TAG is called a tree-adjoining language.

The more elaborate apparatus of TAGs leads to an increase in recogni-
tion capacity: the languages {anbncn | n ≥ 0} and {anbncndn | n ≥ 0} are
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tree-adjoining languages, but not context-free languages. It also leads to an
increase in recognition complexity. Various parsing algorithms have been de-
veloped which show that the recognition problem for a TAG can be solved
in time O(n6), where n is the length of the input string (Schabes, 1994). In-
terestingly, TAGs turn out to be expressively equivalent to several other nat-
ural grammar frameworks, including head grammars, linear index grammars

and combinatory categorial grammars (Vijay-Shanker & Weir, 1994). These
equivalences can be used to establish that all these grammar frameworks have
universal recognition problems with comparable complexity.

More expressive still is the framework of definite clause grammars (DCGs).
Again, we give only an informal explanation here. Like a CFG, a DCG consists
of a set of productions over fixed sets of terminal and non-terminal symbols,
together with a distinguished non-terminal S. The only difference is that the
non-terminals now take arguments drawn from a term-language T . The ex-
pressions of T are built up from a fixed vocabulary of individual constants,
variables, and function-symbols. We assume that there is at least one in-
dividual constant in T . Each non-terminal in a DCG is associated with a
non-negative integer, called its arity, and, in any production, is supplied with
a list of arguments according to that arity. A typical DCG production has the
form

(8) A(s1, . . . , sn) → B1(t1,1, . . . , t1,`1) · · · Bm(tm,1, . . . , tm,`m
),

where A is a non-terminal with arity n, and the Bi are non-terminals with
arity `i for all i (1 ≤ i ≤ m). (In general, the right-hand side is also allowed to
contain terminals.) The distinguished non-terminal S is assumed to have arity
0. A ground instance of a production is the result of consistently substituting,
for the variables in that production, terms which contain no variables. The
notion of acceptance is then defined in the same way as for a CFG, by regarding
each production as the set of its ground instances. (Of course, this set of
productions may be infinite, and thus will not in general constitute an actual
CFG.)

Fig. 3 shows a set of productions for a DCG G with non-terminals
{S, A, B, C, D, E} and terminals {a, b, c, d, e}. Each of the non-terminals has
arity 1, except for S, the distinguished non-terminal. Fig. 4 shows a derivation

S→ A(x) B(x) C(x) D(x) E(x)

A(1) → a A(f(x)) → a A(x)
B(1) → b B(f(x)) → b B(x)
C(1) → c C(f(x)) → c C(x)
D(1) → d D(f(x)) → d D(x)
E(1) → e E(f(x)) → e E(x)

Figure 3. Productions of a DCG recognizing the language {anbncndnen | n ≥ 0}.

Page: 20 job: pratt-hartmann macro:handbook.cls date/time:2-Aug-2009/20:22



Computational Complexity in Natural Language 21

of the string aabbccddee in G, where the variable x in the first production
takes the value f(1). This variable in effect counts the number of times the
rules for the non-terminals A, . . . , E are invoked (with a value fn−1(1) en-
coding n invocations), and ensures that this number is the same in each case.
Thus, L(G) = {anbncndnen | n ≥ 0}; this language is not a tree-adjoining
language.

S

A(f(1))

a A(1)

a

B(f(1))

b B(1)

b

C(f(1))

c C(1)

c

D(f(1))

d D(1)

d

E(f(1))

e E(1)

e

Figure 4. Derivation of the string aabbccddee in the DCG of Fig. 3.

The DCG framework is of interest in part because it so attractive to im-
plement: indeed, DCGs are a built-in feature of the Prolog programming lan-
guage (Pereira & Warren, 1980). The basis for such implementations is the
concept of unification. We say that any terms t1 and t2 of T unify if there
is a simultaneous substitution of terms for variables in t1 and t2 which make
these expressions identical. If two terms unify, then there is a ‘most general’
unifier, which is unique up to renaming of variables. In a DCG-parser, when a
non-terminal a(u1, . . . , un) is expanded by the production (8), the most gen-
eral unifier of the terms a(u1, . . . , un) and a(s1, . . . , sn) is first computed; if
this unifier exists, all variable bindings thus created are carried through to all
the non-terminals b1(t̄1), . . . , bm(t̄m), which are then subject to expansion as
before. Computing an explicit representation of the most general unifier of two
terms is computationally expensive, because that representation is in general
exponentially large in the size of the terms. However, determining whether

two terms unify is much easier (Paterson & Wegman, 1978; de Champeaux,
1986):

Theorem 16. The problem of determining whether two terms unify is in

TIME(n + 1).

DCGs thus present an interesting object of study from a complexity-
theoretic point of view. We have

Theorem 17. The universal recognition problem for DCGs is undecidable.

Indeed, there is a DCG G such that L(G) is undecidable.
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Theorem 17 follows almost directly from Theorem 1, because the operation
of any Turing machine M can easily be simulated using a DCG in which the
values of variables are used to store configurations of M .

However, by imposing various reasonable constraints on DCGs, decidabil-
ity can be restored. Let us say that a production is consuming if the right-hand
side either consists of a single terminal or has length at least 2; and let us
say that a DCG is consuming if all its productions are. For example, the pro-
duction a(f(x))→a(x) is not consuming, because its right-hand side consists
of a single non-terminal; on the other hand, the DCG of Fig. 3 is consuming.
It is easy to show that, if a consuming DCG accepts a string σ of length n,
the resulting parse-tree has at most 3n− 1 nodes, so decidability in this case
should not be a surprise. In fact, we have:

Theorem 18. The universal recognition problem for consuming DCGs is

NPTIME-complete. Indeed, there exists a consuming DCG G such that L(G)
is NPTIME-complete.

The upper bound in Theorem 18 follows from the following observations.
Given a consuming DCG G and a string σ of length n, we first guess a parse-
tree featuring at most 3n − 1 nodes. Each non-leaf node is labelled with the
(uninstantiated) production of G responsible for generating it, and each leaf-
node is labelled with a terminal, so as to form the string σ. (If the same
production is used at more than one non-leaf node, new copies are made
containing fresh variables.) We need only check that the terms in the copies
of the productions at each node can be simultaneously unified in the obvious
way. This check amounts to determining the unifiability of two (polynomially
large) terms, and can be carried out in polynomial time by Theorem 16. The
NPTIME-hardness of L(G) for certain consuming DCGs G is easily shown by
a simple reduction of the satisfiability problem for propositional logic clauses;
the result then follows by Theorem 6.

Alternatively, we might say that a DCG is function-free if there are no
function-symbols in its productions. (Thus, the DCG featured in Fig. 4 is not
function-free, because several of its productions feature the function-symbol
f.) We have:

Theorem 19. The universal recognition problem for function-free DCGs is

EXPTIME-complete. However, for any fixed function-free DCG G, L(G) is

in PTIME.

Theorem 19 follows straightforwardly from the close connection between
function-free DCGs and the logic programming language DATALOG. (See,
e.g. Libkin (2004, Chapter 10), or Dantsin et al. (2001).) More generally, there
is a close connection between DCGs on the one-hand and so-called fixed-point
logics on the other, which allows standard results from complexity theory to
be carried over to the study of DCGs. For example, Rounds (1988) describes
two DCG-like grammar frameworks, one able to recognize all and only the lan-
guages in TIME(2n), the other able to recognize all and only the languages
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in PTIME. Rounds shows that the second of his two grammar frameworks is
at least expressive as that of TAG (and its equivalents), mentioned above.

A more traditional grammar framework generalizing CFGs is that of
the context-sensitive grammars. A context-sensitive grammar (CSG) is like
a CFG, except that the productions are now of the form α → β, where α and
β are strings of symbols such that |α| ≤ |β|. These productions are interpreted
as re-write rules, in much the same way as productions of a CFG. For com-
parison, note that, in a CFG, all productions have the form A → β, where A
is a non-terminal. Indeed, if we assume (which we may without essential loss
of generality) that productions in CFGs have non-empty right-hand sides, the
condition |α| ≤ |β| is then trivially satisfied, whence CFGs are a special case
of CSGs. Recalling the equivalence of languages and decision problems, it is
routine to show that the class of context-sensitive languages is exactly the
complexity class NSPACE(n). In fact, we have the following result concerning
recognition complexity for context-sensitive languages.

Theorem 20. The universal recognition problem for CSGs is PSPACE-

complete. Indeed, there exists a CSG G such that L(G) is PSPACE-complete.

For a formal definition of context-sensitive grammars and a proof of Theo-
rem 20, see Hopcroft & Ullman (1979, p. 223 and pp. 347 ff.). It was long
conjectured that the complement of a context-sensitive language is itself a
context-sensitive language. This conjecture was settled, positively, by The-
orem 4, using the fact that the context-sensitive languages coincide with
NSPACE(n).

All the grammar frameworks examined so far have precise formal defini-
tions, which makes for a clear-cut complexity analysis. However, many main-
stream grammar frameworks which aspire to describe natural languages are
much less rigidly defined (and indeed much more liable to periodic revision);
consequently, it is harder to provide definitive results about computational
complexity. Transformational grammar is a case in point. Let us take a trans-
formational grammar to consist of two components: a CFG generating a col-
lection of phrase-structure trees—so-called deep structures—and a collection
of transformations which map these deep structures to other phrase-structure
trees—so-called surface structures. A string σ is accepted by G just in case σ
can be read off the leaves of some surface-structure obtained in this way. Ab-
sent a formal specification of the sorts of transformations allowed in transfor-
mational grammar, it is impossible to determine the complexity of its recogni-
tion problem. However, analysing a version of Chomsky’s Aspects-theory, Pe-
ters & Ritchie (1973) show the existence of transformational grammars which
can recognize undecidable languages. Certainly, then, the universal recogni-
tion problem for transformational grammars (thus understood), is undecid-
able. Other analyses of grammar frameworks in the transformational tradi-
tion paint a picture of lower complexity, however. Thus, Berwick & Weinberg
(1984), pp. 125 ff., analyse the complexity of Government-Binding Gram-

Page: 23 job: pratt-hartmann macro:handbook.cls date/time:2-Aug-2009/20:22



24 Computational complexity

mars, a formalization of the approach taken in Chomsky (1981), and show
that recognition complexity for such grammars is in the class PSPACE.

2.4 Model-theoretic semantics

Recent trends in linguistics—particularly within the transformational
tradition—have shown a preference for specifying grammars not in terms of
generative mechanisms, but rather, in terms of constraints to which sentence-
structures are required to conform. On this view of grammar, a string σ is
grammatical just in case it has a structure which satisfies those constraints.
How can we determine the complexity of the recognition problem when gram-
mars are presented in this way? The answer is to employ a formal language:
this formal language must be powerful enough to express the constraints con-
stituting the grammar in question, and yet not so powerful that working with
it leads to undecidable problems.

Monadic second-order logic (MSO) is a formal language containing two
sorts of variables: those ranging over objects (as in ordinary first-order logic),
and those ranging over sets of objects. For the moment, let us suppose that
the “objects” in question are positions in a string σ over an alphabet Σ.
We confine ourselves to a language containing a unary atomic predicate s,
for every s ∈ Σ, and binary predicates ∈ and ≤. We now interpret these
predicates over the set of positions in σ as follows (we adopt the convention
of using lower-case letters for object-variables and upper-case letters for set-
variables): x ∈ X means “x is a member of X”; x ≤ y means “x is non-strictly
to the left of y”; and s(x) means “position x is filled with symbol s”, for each
s ∈ Σ. Formulas are built up from atomic formulas using Boolean connectives
and quantifiers (over both sorts of variables) in the normal way. The standard
semantics for these connectives then determine, for a given formula ϕ (with
no free variables) and a given string σ, whether ϕ is true in σ. That is: any
σ ∈ Σ∗ is a structure (in the logicians’ sense) interpreting the above language.

On this view, we can think of an MSO-formula ϕ (with no free variables)
as a grammar: a string σ is accepted by ϕ just in case ϕ is true in σ. The
following result was proved by Büchi (60).

Theorem 21 (Büchi). A language is recognized by an MSO-formula if and

only if it is regular.

Now, this approach to defining languages using formulas of MSO can be
generalized in the following way. Suppose we take our variables to range, not
over positions in strings, but over positions (nodes) in finite trees. (Think
of the trees in question as phrase-structures of sentences.) And suppose we
take our language to feature the binary predicates ∈, /1 and /2, as well as
unary predicates drawn from a finite set of labels. These predicates are then
interpreted as follows: x ∈ X again means “x is a member of X”; x /1 y
means “x is the mother of y”; x /2 y means “x is a left sister of y”; and
s(x) means that x is labelled with s, for each label s. All other formulas are
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then interpreted according to the usual semantics of MSO. In this way, we
can think of an MSO-formula ϕ (with no free variables) as licensing a set of
labelled trees: namely, the trees in which ϕ is true. It was shown by Thatcher
& Wright (1968) that the sets of trees (i.e. tree-languages) recognized in this
way are—to within some additional labelling—the sets of trees generated by
CFGs.

Indeed, one can interpret MSO-formulas over ‘trees’ of higher dimensions,
obtaining grammar-frameworks of still greater expressive power. This ap-
proach to syntax is often referred to as Model-theoretic syntax (Rogers, 2003).
Its appeal is partly due to the fact that MSO can express many relationships
dear to linguists’ hearts. For example, it is straightforward to write down a
formula ϕC(x, y) which is satisfied by nodes x and y in a tree just in case node
x C-commands node y in that tree. Rogers op. cit. notes that some princi-
ples of Rizzi’s theory of Relativized Minimality (Rizzi, 1990) can be expressed
using formulas of the language sketched above. From a complexity-theoretic
point of view, this approach is interesting because the problem of determining
whether a formula of MSO is satisfiable over finite trees is decidable (Börger
et al., 1997, pp. 315 ff.):

Theorem 22. The problem of determining the satisfiability of a formula of

MSO over finite trees is decidable, but has non-elementary complexity.
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3 Complexity and semantics

Most linguistic theories are more than a criterion for defining a set of ac-
ceptable sentences: they also assign one or more levels of structure to those
sentences which they do accept. The question then arises as to the computa-
tional complexity of recovering that structure.

Consider, for example, context-free grammars. Let G be a CFG. If σ ∈
L(G), then G assigns to σ one or more phrase-structures representing the
derivation of σ by the productions of G. It is easy to construct a CFG G for
which there exists a sequence {σn}n∈N of strings accepted by G, such that the
length of σn is bounded above by some polynomial function of n, while the
number of phrase-structures which G assigns to σn is bounded below by an
exponential function of n. That is: the number of parses produced by a CFG
G can grow exponentially. Nevertheless, the set of phrase-structures assigned
to any string σ by G may always be compactly represented in the form of
an acyclic directed graph, which can be expanded into a complete list of the
phrase-structures in question; moreover, using a variant of the CYK or Earley
algorithms, that compact representation may be computed in time O(n3m).
(Trivially, listing all the represented phrase-structures will in general take
exponential time.) For a general discussion on the relationship between the
complexity of recognition and parsing, see Ruzzo (1979).

Arguably, determining the syntactic structure of a sentence is of little
value unless we can use that structure to recover the sentence’s meaning.
The notion of meaning in general is too vague to admit of immediate formal
analysis. However, we might sensibly begin with the more specific problem of
recovering, at least for certain fragments of natural languages, logical form, in
the sense of producing translations such as:

(9)
Every boy loves some girl who admires him

∀x(boy(x) → ∃y(girl(y) ∧ admire(y, x) ∧ love(x, y))).

The framework of CFGs (and indeed the other grammar frameworks men-
tioned above) can be modified to yield such logical forms. Approaches vary,
but one popular technique is to associate with each vocabulary item an expres-
sion of the Simply-Typed λ-Calculus (STLC) representing its meaning, and
to associate with each production a prescription for combining the meanings
of the items in its right-hand side. In the following explanation, we assume
basic familiarity with STLC; for an in-depth account, the reader is referred
to Hindley & Seldin (1986, Chapter 13). A production in such a grammar has
the form

A/ξ → B1/y1 . . . Bm/ym,

where y1, . . . , ym are distinct variables, and ξ is an STLC-expression whose
free variables are confined to y1, . . . , yn. Such a production functions exactly
as in an ordinary CFG, except that the meaning of the phrase A is com-
puted by substituting the (already computed) meanings of the B1, . . . , Bm
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for all occurrences of the corresponding variables y1, . . . , ym in ξ, and then β-
reducing. This approach is, more or less, that championed by Montague (1974)
(see Chapter 17, Section 2.1). For an accessible modern treatment, including HARD REF
a relatively non-technical explanation of the relevant aspects of higher-order
logic, see Blackburn & Bos (2005).

Consider, for example, the productions shown in Fig. 5. The underlying

IP/y1(y2) → NP/y1 I′/y2

I′/y1 → is a N′/y1

I′/λx[¬y1(x)] → is not a N′/y1

NP/y1 → PropN/y1

NP/y1(y2) → Det/y1 N′/y2

N′/y1 → N/y1.

Det/λpλq[∃x(p(x) ∧ q(x))] → some

Det/λpλq[∀x(p(x) → q(x))] → every

Det/λpλq[∀x(p(x) → ¬q(x))] → no

N/cynic → cynic

N/philosopher → philosopher

. . .

PropN/λp[p(socrates)] → Socrates

PropN/λp[p(diogenes)] → Diogenes

. . .

Figure 5. Semantically annotated CFG generating the language of the syllogistic.

CFG evidently recognizes the sentence Every cynic is a philosopher, via the
parse-tree shown in Fig. 6. By computing the semantic values of each node in
that tree, as shown, the (expected) first-order translation

∀x(cynic(x)∧ → philosopher(x))

is eventually generated. In fact, the grammar of Fig. 5 recognizes the set of
English sentences having the forms





















Every
Some
No







L

S















{

is a
is not a

}

M,

where S is a proper noun, and L and M are common nouns, yielding, in each
case, the expected translation into first-order logic. The question now arises:
what is the computational complexity of recovering logical forms in this way?

The answer depends on how, exactly, logical forms are allowed to be rep-
resented. If the underlying grammar G is a CFG, then the CYK or Earley
algorithms can again be modified to produce, in polynomial time, a compact
representation of all meanings which G assigns to a given string σ, just as for
parse-trees. However, these representations will not be β-reduced. That is, in
order to produce ordinary logical translations such as (9), we need to com-
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IP
∀x(cynic(x) → philosopher(x))

NP
λq[∀x(cynic(x) → q(x))]

Det
λpλq[∀x(p(x) → q(x))]

Every

N′

cynic

N
cynic

cynic

I′

philosopher

is a N′

philosopher

N
philosopher

philosopher

Figure 6. Meaning derivation in a semantically annotated CFG.

pute the normal forms for the expressions which our parser yields. That these
normal forms can be computed follows at once from Normalization Theorem
for STLC, though the complexity of the relevant function is high (Statman,
1979):

Theorem 23. The problem of deciding whether one expression in STLC is

the normal form of another has non-elementary complexity.

In practice, however, the normalization of semantic representations produced
by realistic semantically annotated CFGs is never a problem.
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4 Determining logical relationships between sentences

Computing anything is of little use if nothing is then done with the results.
And while the uses to which humans put computed meanings may perhaps
forever remain lost in the mists of psycholinguistics, Complexity Theory does
have something to say about the more definite subject of determining logical

relationships between sentences in natural language. That is the topic of this
final section.

That sentences in natural language exhibit interesting logical relationships
was recognized in antiquity. For example, the argument

(10)

Every logician is a philosopher

Some stoic is a logician

No dentist is a philosopher

Some stoic is not a dentist,

is evidently valid: every possible situation in which the premises are true is
one in which the conclusion is true. Likewise valid, but less evidently so, is
the argument

(11)

Every sceptic recommends every sceptic to every cynic

No sceptic recommends any stoic who hates any cynic

to any philosopher

Diogenes is a cynic who every sceptic hates

Every cynic is a philosopher

No stoic is a sceptic.

Observe that Argument (11) uses a wider variety of grammatical construc-
tions than Argument (10), specifically: transitive and ditransitive verbs, as
well as relative-clauses. The question therefore arises as to how the difficulty
of determining logical relationships between sentences in naturally delineated
fragments of natural languages depends on the grammatical resources in-
cluded in those fragments. Are ditransitive verbs really harder than transitive
verbs? Passives harder than actives? How much extra effort is required to deal
with relative clauses (either subject relatives or object relatives)? Is ‘donkey’-
anaphora more computationally intensive than other forms of bound-variable
anaphora? And so on.

Consider the grammar of Fig. 5, which, as we saw in Section 3, yields the
language of the traditional syllogistic. In particular, this grammar recognizes
all the sentences in Argument (10), and translates that argument to the first-
order sequent

∀x(logician(x) → philosopher(x))
∃x(stoic(x) ∧ logician(x))
∀x(dentist(x) → ¬philosopher(x))

∃x(stoic(x) ∧ ¬dentist(x)).

Since the primary form-determining element in this fragment of English
is the copula, we refer to it as Cop. With translations into first-order logic
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at our disposal, we can now formally characterize a notion of validity in this
fragment. Specifically, we take an argument in the fragment Cop to be valid

just in case the first-order sequent into which it is translated is valid according
to the semantics of first-order logic. Likewise, we take a set of sentences in Cop
to be satisfiable just in case the set of formulas to which they are translated
is satisfiable according to the semantics of first-order logic.

Thus, the fragment Cop is more than a mere set of strings (the grammatical
sentences): it is a set of strings together with associated logical concepts of
validity and satisfiability. In particular, we may pose the satisfiability problem
for Cop: given a set E of sentences in Cop, determine whether E is satisfiable.
Furthermore, since every sentence in Cop is logically equivalent to the negation
of some other, satisfiability and validity are dual notions, in the familiar sense:
an argument is valid just in case its premises together with the negation of its
conclusion are unsatisfiable. Hence, the complexity of the validity problem for
Cop can be determined immediately from the complexity of the satisfiability
problem.

It is routine to show that determining the satisfiability of a collection
of sentences in the fragment Cop is essentially the same as the problem of
determining the satisfiability of a collection of propositional clauses each of
which contains at most two literals. Recalling Theorem 8, we have:

Theorem 24. The problem of determining the satisfiability of a set of sen-

tences in Cop is NLOGSPACE-complete.

It follows of course that the problem of determining the validity of an argu-
ment in Cop is also NLOGSPACE-complete, by Theorem 4. This confirms our
subjective impression that this problem is nearly trivial.

What happens if we expand the fragment Cop? Let us define the fragment
Cop+TV to be the set of sentences recognized by the productions of Fig. 5
together with those of Fig. 7. (We have simplified the treatment by ignoring
verb-inflections and negative-polarity determiners; these simplifications are
not computationally significant.) It is easy to see that this fragment contains

I′/y1 → VP/y1

I′/y1 → NegP/y1

NegP/λx[¬y1(x)] → Neg VP/y1

VP/y1(y2) → TV/y1 NP/y2

Neg → does not

TV/λsλx[s(λy[admire(x, y)])]
→ admires

TV/λsλx[s(λy[despise(x, y)])]
→ despises

. . .

Figure 7. Productions for extending the syllogistic with transitive verbs.

the following sentence, and translates it to the indicated first-order formula.

(12)
Every stoic hates every sceptic

∀x(stoic(x) → ∀y(sceptic(y) → hate(x, y))).
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We need to address the issue of scope ambiguities in the context of Cop+TV.
There are two possibilities here: either we can resolve these ambiguities by
fiat, taking subjects always to outscope objects; or we can augment the lan-
guage with some form of marking to indicate quantifier scope. For simplic-
ity, we choose the former course (though the latter would lead to essentially
the same complexity results). Similarly, let Cop+TV+DTV be the fragment
which extends Cop with both transitive and ditransitive verbs. (Writing the
required productions is completely routine.) Thus, Cop+TV+DTV contains
the following sentence, and translates it to the indicated first-order formula.

(13)
No stoic recommends every sceptic to some cynic

∀x(stoic(x) → ¬∀y(sceptic(y) → ∃z(cynic(z) ∧ recommend(x, y, z)))).

Again, we take subjects to outscope direct objects, and direct objects to
outscope indirect objects.

Is inference in these larger fragments more complex? The following two
results (substantially) answer this question.

Theorem 25. The problem of determining the satisfiability of a set of sen-

tences in Cop+TV is in NLOGSPACE-complete.

Theorem 26. The problem of determining the satisfiability of a set of sen-

tences in Cop+TV+DTV is in PTIME.

The proofs of these theorems are more elaborate than for Cop; we refer
the reader to Pratt-Hartmann & Moss (2009) and Pratt-Hartmann & Third
(2006), respectively.

Returning to the fragment Cop, what happens if we now add relative
clauses? Thus, for example, we have the valid argument

Every philosopher who is not a stoic is an epicurean

No epicurean is a beekeeper

No stoic is a beekeeper

No philosopher is a beekeeper,

It is straightforward to write a semantically annotated context-free grammar
accepting such sentences, and generating the obvious semantics. Let us call
the resulting fragment of English Cop+Rel (see Pratt-Hartmann (2004) for a
formal definition). The first-order formulas into which Cop+Rel-sentences are
translated all have one variable—that is to say, they lie within the 1-variable
fragment of first-order logic. The satisfiability problem for this fragment is
essentially the same as that for clauses of the propositional calculus. Thus,
from Theorem 6:

Theorem 27. The problem of determining the satisfiability of a set of sen-

tences in Cop+Rel is NPTIME-complete.

On the other hand, the fragment Cop+Rel+TV+DTV recognizes all the sen-
tences in Argument (11), and translates them into the first-order sequent

Page: 31 job: pratt-hartmann macro:handbook.cls date/time:2-Aug-2009/20:22



32 Computational complexity

∀x(sceptic(x) → ∀y(sceptic(y) → ∀z(cynic(z) → recommends(x, y, z))))
∀x(sceptic(x) → ¬∃y(stoic(y) ∧ ∃z(cynic(w) ∧ hate(y, w))∧

∃z(philosopher(z) ∧ recommends(x, y, z))))
cynic(diogenes) ∧ ∀x(sceptic(x) → hate(x, diogenes))
∀x(cynic(x) → philosopher(x))

∀x(stoic(x) → ¬sceptic(x)).

Again, we have the question: does adding transitive and ditranstive verbs to
Cop+Rel lead to an increase in complexity? This time, the answer is yes.

Theorem 28. The problem of determining the satisfiability of a set of sen-

tences in Cop+Rel+TV is EXPTIME-complete.

Theorem 29. The problem of determining the satisfiability of a set of sen-

tences in Cop+Rel+TV+DTV is NEXPTIME-complete.

Theorem 29 confirms our subjective impression that determining the va-
lidity of Argument (11) is harder than determining the validity of Argu-
ment (10). For proofs of the above theorems, see Pratt-Hartmann (2004);
Pratt-Hartmann & Third (2006).

A remark is in order at this point to correct a false impression that the
foregoing discussion may have created. As we have observed: the complexity
of determining entailments within a fragment of a natural language evidently
depends on the constructions made available by the syntax of that fragment.
However, it also depends, of course, on the presence in the lexicon of words
with a ‘logical’ character. Consider, for example, the effect of expanding the
fragments Cop and Cop+TV with numerical determiners, yielding sentences
such as

(14) At least 13 artists are beekeepers

in the former case, and

(15) At most 5 carpenters admire at most 4 dentists

in the latter. Calling the resulting fragments Cop+Num and Cop+TV+Num,
we obtain the following results (Pratt-Hartmann, 2008):

Theorem 30. The problem of determining the satisfiability of a set of sen-

tences in Cop+Num is NPTIME-complete; the problem of determining the

satisfiability of a set of sentences in Cop+TV+Num is NEXPTIME-complete.

Thus, the complexity-theoretic impact of such numerical expressions is dram-
matic.

Finally, we consider the complexity-theoretic consequences of adding bound-
variable anaphora to our fragments. Consider the sentences

No artist admires any beekeeper who does not admire himself

No artist admires any beekeeper who does not admire him.
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It is routine to add grammar rules to Cop+Rel+TV producing the conven-
tional translations into first-order logic:

∀x(artist(x) → ∀y(beekeeper(y)∧¬admire(y, y) → admire(x, y)))
∀x(artist(x) → ∀y(beekeeper(y)∧¬admire(y, x) → admire(x, y))).

For such anaphoric fragments, two further issues regarding the first-order
translations arise. First, we assume the (standard) universal interpretation of
‘donkey-sentences’

Every farmer who owns a donkey beats it

∀x∀y(farmer(x) ∧ donkey(y) ∧ own(x, y) → beat(x, y)).

Second, we must decide how to treat anaphoric ambiguities. The sentence

(16) Every sceptic who admires a cynic despises every stoic who hates him,

has two interpretations:

(17)
∀x(sceptic(x) ∧ ∃y(cynic(y)∧admire(x, y)) →

∀z(stoic(z) ∧ hate(z, x) → despise(x, z)))

(18)
∀x∀y(sceptic(x) ∧ cynic(y)∧admire(x, y) →

∀z(stoic(z) ∧ hate(z, y) → despise(x, z))).

according as the pronoun him takes as antecedent the NP headed by sceptic

or the NP headed by cynic. (The NP headed by stoic is not available as a
pronoun antecedent here.)

Note that, in the (standard) phrase-structure tree for this sentence, the NP
headed by sceptic is closer to the pronoun than is the NP headed by cynic. This
observation suggests making the artificial stipulation that pronouns must take

their closest allowed antecedents. Here, closest means ‘closest measured along
edges of the phrase-structure’ and allowed means ‘allowed by the principles
of binding theory’. (We ignore case and gender agreement.) Thus, under this
stipulation, Sentence (16) has only the reading (17). Let the resulting fragment
of English, with the stipulation of closest available pronomial antecedents, be
called Cop+Rel+TV+RA (‘RA’ for restricted anaphora).

Formula (17) can be equivalently written

∀x(sceptic(x) ∧ ∃y(cynic(y) ∧ admire(x, y)) →

∀y(stoic(y) ∧ hate(y, x) → despise(x, y))),

with the variable z replaced by y. The resulting formula has only two variables.
Indeed, it can be shown that every sentence of Cop+Rel+TV+RA translates
into a formula in the 2-variable fragment of first-order logic. The satisfiabil-
ity problem for this fragment is known to be NEXPTIME-complete (Börger
et al., 1997, Chapter 8). Moreover, Cop+Rel+TV+RA can easily be shown
to encode a NEXPTIME-hard problem. Hence, we have:

Theorem 31. The problem of determining the satisfiability of a set of sen-

tences in Cop+Rel+TV+RA is NEXPTIME-complete.
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We mention in passing that the reduction of NEXPTIME-hard problems to
satisfiability for sets of Cop+Rel+TV+RA-sentences does not require the
use of sentences featuring donkey-anaphora. However awkward such sentences
may be for the smooth-running of formal semantics, they do not lead to more
complex inferential problems.

The restriction that pronouns take their closest possible antecedents is es-
sential to the complexity bound of Theorem 31. As an alternative treatment of
anaphoric ambiguitiy, we might augment the sentences of Cop+Rel+TV+RA
with indices indicating antecedents in the normal way. Thus, for example, the
sentence

Every sceptic1 who admires a cynic2 despises every stoic3 who hates him2

would have (18) as its only reading. Let the resulting fragment be denoted by
Cop+Rel+TV+GA (‘GA’ for general anaphora). It is possible to show:

Theorem 32. The problem of determining the satisfiability of a set of sen-

tences in Cop+Rel+ TV+GA is not decidable.

It seems clear that many more results of the kind outlined in this section
await discovery.

See also: Chapter 1, Formal Language Theory;
Chapter 4, Theory of Parsing;
Chapter 17, Computational Semantics.
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