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Abstract

A fragment of English featuring temporal prepositions and the order-denoting ad-
jectives first and last is defined by means of a context-free grammar. The phrase-
structures which this grammar assigns to the sentences it recognizes are viewed as
formulas of an interval temporal logic, whose satisfaction-conditions faithfully rep-
resent the meanings of the corresponding English sentences. It is shown that the
satisfiability problem for this logic is NEXPTIME-complete. The computational
complexity of determining logical relationships between English sentences featuring
the temporal constructions in question is thus established.
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1 Introduction

Consider the following sentences:

(1) An interrupt was received during every cycle

(2) The main process ran after the last cycle

(3) While the main process ran, an interrupt was received before loop 1 was
executed for the first time.
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These sentences speak of events and their temporal locations: of what hap-
pened and when. The principal devices they employ to encode this informa-
tion are temporal prepositions and the adjectives first and last. The aim of
this paper is to answer the question: What is the computational complex-
ity of determining logical relationships between sentences encoding temporal
information using such devices?

This question is of theoretical interest, because the events mentioned in (1)
(3)—cycles, executions of processes, receipts of interrupts—are extended in
time; and temporal logics which deal with extended events—so-called inter-
val temporal logics—typically exhibit high computational complexity. Given
that the syntax of these logics has little affinity with that of temporal expres-
sions in English, it is natural to ask whether the meanings of sentences such
as (1)—(3) can be captured in a computationally manageable logic. The formal
semantics of temporal constructions in English have been investigated by a
succession of researchers (Dowty, 1979; Stump, 1985; Crouch and Pullman,
1993; Kamp and Reyle, 1993; Hwang and Schubert, 1994; Ogihara, 1996; ter
Meulen, 1996). Yet in none of these accounts are the issues of expressive power
and computational complexity to the fore. Indeed, many treatments of the se-
mantics of temporal constructions in English represent sentence-meanings in
a first-order language having variables which range over time-intervals and
predicates which correspond to event-types and temporal order-relations—a
logic which is easily shown to be undecidable. Given the recent surge of in-
terest in logical fragments of limited computational complexity, this situation
is unsatisfactory. There are evident practical and theoretical reasons for pre-
senting the semantics of natural language constructions, where possible, using
formal systems of limited expressive power.

The plan of this paper is as follows. Section 2 outlines the semantics of the
English temporal constructions considered in this paper. Section 3 then uses
a simple context-free grammar to define a fragment of English featuring these
constructions; we call this fragment 7TPE, an acronym for temporal preposi-
tion English. We show how the phrase-structures assigned to 7 PE-sentences
by this grammar can in fact be viewed as expressions in an interval tempo-
ral logic, which we call 7PL. Section 4 presents formal semantics for TPL.
Sections 5 and 6 provide matching upper and lower complexity-bounds for
TP L-satisfiability, showing that this problem is NEXPTIME-complete.

The following terminology and notation will be used throughout. We take a
(time) interval to be a closed, bounded, convex (non-empty) subset of the real
line. We denote the set of intervals by Z, and we use the (possibly decorated)
letters I, J, ..., as variables ranging over Z. Observe that intervals may be
punctual. If I and J denote the intervals [a,b] and [c, d], respectively, with
a,b,c,d € Rand a < ¢ <d < b, we let the terms init(J, I) and fin(J, I) denote
the intervals [a, c| and [d, b], respectively. In other words, whenever J C [ is



true, we take init(J, I) to denote the initial segment of I up to the beginning
of J, and fin(J, I) to denote the final segment of I from the end of J. More
standardly, the symbol C always denotes the strict subset relation, and C the
corresponding non-strict relation. Finally, we occasionally employ the definite
quantifier x(¢, 1) with the standard (Russellian) semantics.

2 Semantics

In this section, we consider the semantics of the temporal constructions fea-
tured in the fragment of English defined below—principally, the temporal
prepositions. Here, we follow modern usage and count temporal subordinat-
ing conjunctions as temporal prepositions taking clausal (rather than nominal)
complements. We defer a formal specification of the fragment in question to
Section 3, and the algorithmic derivation of sentence-meanings to Section 4.

2.1 Temporal preposition-phrases: basic semantics

Consider the following sentences:

4) An interrupt was received

5) An interrupt was received during every cycle
)
)

(6) An interrupt was received during every cycle until the main process ran

7) After the initialization phase, an interrupt was received during every
cycle until the main process ran.

Sentence (4) asserts that, within some contextually specified interval of inter-
est, there is an interval over which an interrupt was received. Interpreting the
unary predicate int-rec so that it is satisfied by all and only those time inter-

vals over which an interrupt was received, we may thus represent the meaning
of (4) by the formula

(8) JJy(int-rec(Jy) A Jy C I).

Notice that the temporal context to which the quantification in (4) is limited
is represented by the free variable I in (8). That is: the meaning of (4) is a
temporal abstract, receiving a truth-value (in an interpretation) only relative
to a time interval. Viewing sentence meanings in this way greatly simplifies
the semantics of temporal preposition-phrases.

Sentence (5) asserts that, within the given temporal context, every interval
over which a cycle occurs includes some interval over which an interrupt was



received. Interpreting the unary predicate cyc so that it is satisfied by all and
only those time intervals over which a cycle occurs, we may thus represent the
meaning of (5) by the formula

(9) VJl(Cy(Z(Jl) A J1 cl— J1 )

The normal type in (9) indicates the material contributed by the temporal
preposition-phrase during every cycle, and the light type the material con-
tributed by the sentence An interrupt was received, which it modifies. Observe
that this material in light type is identical to the formula (8), except that
the free temporal context variable has been bound by a quantifier introduced
by the temporal preposition-phrase. On this view, the temporal preposition-
phrase functions semantically as a modal operator, mapping one temporal
abstract to another.

Sentences (6)—(7) can now be treated analogously. Making use of the notation
introduced at the end of Section 1, and helping ourselves to a suitable signature
of unary predicates of intervals, we may plausibly represent these sentences’
truth-conditions as, respectively,

LJQ(main(Jg) A Jy C I,

(10) init(Jy, T) )
tJ3(init-phase(J3) A J3 C I,
ﬁn(Jg, I)
(11) fin(J5, )

).

We pass over the usual issues as to the faithfulness of the Russellian interpreta-
tion of definite quantification (either expressed or implied) in these sentences.
Again, the normal type in (10) and (11) indicates the material contributed by
the newly-added temporal preposition-phrases in (6) and (7) respectively, and
the light type the material contributed by the sentences they modify. Again,
this colouring scheme highlights the fact that the successive temporal prepo-
sition phrases function semantically as modal operators, binding the temporal
context variables associated with the sentences they modify. This cascading
quantification, typical of iterated temporal preposition phrases, was pointed
out in Pratt and Francez (2001), and is discussed further in von Stechow
(2002).

The fragment of temporal English considered here deals only with events,
as opposed to states—that is, only with telic as opposed to atelic eventuali-
ties (Vendler 1967; see Steedman 1996 for an extended discussion). The thesis
that all simple, event-reporting sentences are implicitly existentially quanti-
fied was proposed by Davidson (1967), and is defended in Parsons (1990).
These authors take the quantification in question to be over events rather
than time intervals; but this issue may be ignored for present purposes. A



recent collection of papers on this topic can be found in Higginbotham et al.
(2000). One could doubtless quibble about whether the C in (8)—(11) should
be C; however, the operative concepts seem too vague for this issue to admit
of resolution.

We drew attention above to the fact that the formulas (8)—(11) feature a
free variable representing a temporal context. This naturally suggests an al-
ternative representation using a propositional modal logic in which formulas
are evaluated relative to time-intervals, and event-types are represented by
propositional variables. Suppose, for example, such a logic features the modal
operator (D), where (D)¢ is taken to be true at an interval of evaluation I if
and only if, for some proper subinterval J of I, ¢ is true at J; and let [D] be
the modal dual of (D). Then the 1-place first-order formulas (8) and (9) can
be equivalently—and more compactly—re-written as the propositional modal
formulas

(12) (D)int-rec
(13) [D](cyc — (D)int-rec).

It is obvious that, with the aid of appropriate modal operators, formulas (10)
and (11) could be treated analogously.

Several such logics have in fact been proposed in the literature, of which the
best-known are the systems usually referred to as CDT (Venema, 1991) and
‘HS (Halpern and Shoham 1991; see also Venema 1990). The logic CDT is
strictly less expressive than the first-order language employed in (8)—(11); and
the logic HS is in turn strictly less expressive than CDT. Despite its asthetic
appeal, however, a reformulation along the lines of (12)—(13) yields no use-
ful information on the computational complexity of the logic generated by
temporal constructions in natural language. For Halpern and Shoham showed
that ‘HS is undecidable over all interesting temporal flows; and still very lit-
tle is known about its decidable fragments. (For a discussion, see Goranko
et al. 2004.) In fact, the most commonly encountered way to ensure decid-
ability for modal interval temporal logics is to impose the restriction that the
proposition-letters represent point-events. This move leads naturally to various
well-known systems, for example, those of Paech (1988), Moszkowski (1985)
and Bowman and Thompson (2003). While these logics are of considerable
theoretical interest in their own right, they are of little use for representing
the meanings of temporal constructions in natural language.

One striking characteristic of formulas (8)—(11) is the ‘quasi-guarded’ nature of
the quantification they feature. Thus, for example, (8) existentially quantifies
over intervals satisfying the predicate int-rec; likewise, (9) universally quan-
tifies over intervals satisfying the predicate cyc; and so on. By contrast, the
modal operator (D) suggested above (and its dual) quantify over all proper



subintervals of the current interval of evaluation without restriction; corre-
sponding remarks apply to all the modal operators of CDT and H.S: they lack
the ‘quasi-guarded’ character of formulas (8)—(11). It is precisely this feature
which we shall exploit in our search for a computationally manageable logic
to capture the meanings of temporal expressions in English.

2.2 Complications

It is impossible, within the space of a few pages, to do full justice to the
complexities of the English constructions featured in this paper. Nevertheless,
some elaboration of the foregoing account is required; we confine ourselves to
those features of greatest relevance to the ensuing computational analysis. For
a comprehensive guide to the grammar of English prepositions, see Huddleston
and Pullum (2002, Ch. 7); for an account of the English temporal prepositions
in particular, see e.g. Bennett (1975).

We begin with some remarks on the temporal preposition before. We take the
sentence

(14) An interrupt was received before the main process ran

to be true in a temporal context I when there is a unique running of the
main process during /, and an interrupt is received over some subinterval of
I prior thereto. Ordinary usage is vague as to whether it is the beginning- or
end-times of the events in question that are being compared. To resolve any
uncertainly, we simply take (14) to require that some interrupt-event finished
before the run of the main process began. We therefore propose to render the
meaning of (14) by

(15) ¢Ji(main(Jy) A Jy C I, FJg(int-rec(Jo) A Jy C init(Jy, I))).

Notice that these truth-conditions impose no limit on how long before the
running of the main process the interrupt was received (except that imposed
by the temporal context I). That is: before is here used in the sense of some
time before. Sometimes, however, before is taken to mean just before or shortly
before (The tablets are to be taken before dinner). This latter sense reflects
the possibility of adding a time-measure as a specifier, as in the phrase five
minutes before. In this paper, we ignore this latter sense of before entirely:
incorporating it into our account would involve us in a discussion of either
vagueness or the semantics of temporal measure-phrases, both of which we
choose to avoid.

Actually, the previous paragraph is misleading in glossing the sense of before
assumed here as some time before. For the existential quantification in the



meaning (15) of (14) is not provided by the before-phrase at all, but rather by
the sentence An interrupt was received occurring in its scope; the before-phrase
serves merely to specify a temporal context to which that quantification is
restricted. In fact, there is no reason this quantification need be existential at
all, thus:

(16) An interrupt was received during every cycle before the main process
ran.

We take (16) to have the meaning (10); that is, we take it to be (truth-
conditionally) synonymous with (6). Here again, the before-phrase in (16)
serves merely to identify a temporal context to which the quantification in its
scope is restricted; in particular, it provides no universal quantification of its
own.

As for before, so for until: until-phrases serve only to create temporal contexts
restricting the quantification provided by the sentences in their scope; but they
do not provide that quantification. This is most apparent by considering the
pair of sentences (5) and (6), where the universal quantification evidently arises
from the determiner every. This treatment of until may surprise readers familiar
with so-called until-operators in temporal logic, whose semantics do typically
contribute universal quantification. Apparently, there is an association of until
with universal quantification, at least in the minds of temporal logicians; and
it is natural to ask how this apparent association can be reconciled with the
view adopted here.

The answer is as follows. Sentence (5), which the until-phrase in sentence (6)
modifies, is downward monotonic: if it is true over some interval I, then it is
also true over all subintervals of I. (Downward monotonicity is, of course, char-
acteristic of sentences which universally quantify over subintervals.) It tran-
spires that until-phrases require a downward-monotonic scope, as witnessed by
the anomalous

(17) 7 An interrupt was received until the main process ran
(18) 7 An interrupt was received during some cycle until the main process
ran.

Thus, on our account, the universal quantification—or more accurately, down-
ward monotonicity—is not provided by until; but the presence of until requires
it to be provided by something else. Before imposes no such requirement, as
we have seen. Thus, the difference between before (in the sense adopted here)
and until lies not in their contribution to truth-conditions, but merely in the
situations in which they can be used. Actually, downward monotonicity is not
always sufficient for applicability of until-phrases (see e.g. Zucchi and White
2001). The exploration of this issue—and indeed of the myriad other differ-
ences between before and until—lies outside the scope of the present enquiry.



We note in passing that until, like before, also allows nominal complements.
However, in the case of until, these complements must clearly denote an event
or a time:

(19) An interrupt was received during every cycle until 5 o' clock/the first
execution of the main process
(20) ? An interrupt was received during every cycle until the main process.

The preposition when creates another sort of difficulty. When serves primarily
to indicate proximity between the events identified in its scope and comple-
ment, thus:

(21) An interrupt was received when the main process ran.

Sentences such as (21) in fact impose remarkably loose constraints on the tem-
poral relation between the events in question, as various writers have noted.
But whatever the final verdict on the nature of those constraints, we cannot
usefully treat the associated vagueness in the present paper, and some further
regimentation is necessary. To simplify matters, we treat (21) as synonymous
with

(22) An interrupt was received while the main process ran,

and give it the semantics

(23) ¢Ji(main(Jy) A Jy C I, Fdg(int-rec(Jy) A Jo C Jp)).

Our excuse for doing so is simply that inclusion is an easier relation to work
with than approximate collocation. Readers who find this expedient too brutal
can simply omit when from our fragment.

We have so far discussed quantification in the scope of temporal prepositions;
we now move to the issue of quantification in their complements. Nominal
complements of temporal prepositions typically include determiners; and these
determiners contribute quantification to the meanings of sentences containing
them. This is evident, for example, with the occurrences of during every cycle
in (5)—(7), which contribute the universal quantifiers in (9)—(11).

Clausal complements of temporal prepositions, by contrast, typically lack an
overt quantifier; and the question therefore arises as to how the variables in
these complements get quantified. The answer is that they are (almost always)
definitely quantified—i.e. bound by an t-operator. Thus, until the main process
ran in (6) is interpreted as until the unique time over which the main process
ran, as reflected by the t-operator in (10). It may seem harsh to count (6) as
false if there are two runs of the main process within the temporal context;
it would perhaps be fairer to interpret the relevant until-phrase as picking out



the period before the first time over which the main process ran. But since
this facility is available in our fragment anyway, as discussed in Section 2.3,
the issue need not detain us.

The obvious exception to the rule that temporal prepositions interpret their
clausal complements as definitely quantified is whenever. Thus, we take

(24) Whenever the main process ran, an interrupt was received

to have the truth-conditions

(25) VJl(main(Jl) A Jl cl— Hjo(int—reC(Jo) A J() C Jl))

That is: the variable contributed by the complement of the whenever-phrase
is universally quantified. In the sequel, we shall assume that all quantification
in clausal complements of temporal prepositions is definite, except in the case
of whenever, where is it universal. Note that we are mimicking our earlier
discussion of when in again taking the operative temporal relation here to
be inclusion rather than approximate collocation. As before, this represents
a certain deviation from ordinary usage; again, however, we cannot sensibly
deal with vague truth-conditions here, and so we pass over the issue.

Some temporal prepositions have been conspicuous by their absence from the
foregoing discussion. The temporal prepositions on and in, in phrases such as
on Mondays or in January, are specific to certain categories of complements,
but are otherwise equivalent to during. Since this detail clearly has no logical
significance, we ignore these uses of in and on, and confine our attention to
during. The preposition at, which in English is used in conjunction with clock-
times (and some religious festivals) may also fall into this category, though
there are further complications here concerning its inherent approximateness.
The propositions for and in, in phrases such as for/in five minutes, take as
complements temporal measure-phrases. These lie outside the scope of the
logic considered here.

The preposition by, in its temporal sense, functions analogously to until, except
that it prefers upward-monotonic sentences in its scope; moreover, like until,
it dislikes complements which are not explicitly temporal, thus:

(26) An interrupt was received by 5 o'clock
(27) 7 An interrupt was received by the first cycle.

(Note that (27) has a perfectly natural reading in which by is interpreted
non-temporally.) In addition, by exhibits interesting interactions with aspect:

(28) The main process ran/had run/was running by 5 o’clock.



Finally, we observe that by occurs frequently in the construction by the time

. with a clausal complement, again with the same preference for qualifying
upward-monotonic sentences. Dealing with the rather difficult behaviour of by
in our fragment would complicate the grammar without adding anything of
logical interest, and so we ignore it.

In some respects, the mirror-image of both until and by is since:

(29) An interrupt has been received since the main process ran
(30) An interrupt has been received during every cycle since the main process ran.

(When used in its temporal sense, since requires the sentence in its scope to
have perfect aspect.) Unlike until and by, however, since resists embedding in
contexts established by quantification, as we see by comparing

(31) During every cycle, an interrupt did not occur until the main process
ran

(32) ? During every cycle, an interrupt has/had not occurred since the main
process ran.

Because of these complications, we do not include since in our fragment. How-
ever, we do include after, which we take (again, ignoring some linguistic sub-
tleties) to function as a mirror image of before. Given the inclusion of after, our
omission of since does not affect the fragment’s (truth-conditional) expressive
power.

2.8 First and Last

Our fragment will also contain sentences such as

(33) An interrupt was received during the first cycle
(34) An interrupt was received before the main process ran for the /ast time.

Suppose that, in the relevant temporal context I, there is an unambigu-
ously first cycle: that is, a cycle which begins and ends before all the others.
Then (33) asserts that, if J is the interval over which this cycle occurs, then an
interrupt was received over some subinterval of .J. A corresponding account
can of course be given for (34). Problems arise, however, when there is no
unambiguously first cycle within I. Suppose, for example, cycles occur during
intervals Ji, Jo, and nowhere else, in either of the following arrangements.
(In such diagrams, left-to-right arrangement depicts temporal order; vertical
arrangement has no significance.)
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7, cycle J
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It is unclear what the truth-value of (33) should be in such cases. Apparently,
we need to legislate.

We take the mathematically simplest way out. Since we may assume that
only finitely many events of any given type e occur within a given interval
I, we proceed as follows. Let J be the collection of all proper subintervals
of I over which an event of type e occurs, and assume J is nonempty. Since
J is by hypothesis finite, we can select the (non-empty) subset J' whose
elements have the (unique) earliest end-point. Now select the unique element
J € J' whose start-point is latest. Thus, J is the smallest of the earliest-
ending proper subintervals of I over which an e-event occurs. In the sequel,
then, we interpret the phrase the first e, within a temporal context I, to pick
out this interval. (In the situations depicted above, these are the intervals
marked J;.) Similarly, we interpret the phrase the last e, within a temporal
context [ including at least one occurrence of e, to pick out the smallest of
the latest-beginning proper subintervals of I over which an e-event occurs. To
re-iterate, we are simply legislating here in the most convenient way in cases
where native-speaker intuition returns no clear verdict; if readers prefer to say
that the relevant sentences lack truth-values in such cases, then the results
obtained below apply unproblematically. The only point at which we appeal
to this legislation is in Lemma 3 of Section 5.

3 A Fragment of Temporal English

The task of this section is to define a fragment of temporal English. We do this
by writing a context-free grammar to recognize its sentences. The grammar
assigns phrase-structures to these sentences in the familiar way, and we shall
see that, following some cosmetic re-arrangement, the phrase-structures in
question can be regarded as formulas of the temporal logic 7PL defined in
Section 4.

3.1 Delineating the fragment

We begin with the simplest sentences in our fragment:

(35) An interrupt was received

11



S S

‘ /\

0 0
R
An interrupt was received/ not/— an interrupt was received /
int-rec int-rec

Fig. 1. The structure of sentences (35)—(36)

(36) An interrupt was not received.

For present purposes, sentence (35) is taken as atomic: that is, we ignore its
internal structure. Accordingly we treat such sentences as vocabulary items,
of class S°, and write the grammar rules:

S —S° SY — an interrupt was received/int-rec.

Moreover, the only property of sentence (36) which concerns us is its relation
to (35): that is, we wish to ignore other aspects of its structure. Accordingly,
we pretend that (36) is obtained by simply prefizing the word not to (35), and
write the grammar rules

S — Neg, S° Neg — not/—.

This expedient removes needless clutter from our grammar, while affecting
nothing of logical substance. (It is a simple exercise to restore the clutter.)
Thus, our grammar assigns to (35) and (36) the phrase-structures shown in
Fig. 1. These diagrams feature the symbols int-rec and —, as specified in the
grammar rules. These symbols are simply mnemonics for the corresponding
vocabulary items, which will be used later.

Temporal prepositions with nominal complements belong in our grammar to
the category Py, and occur in phrases such as

(37) during every cycle
(38) after the initialization phase
(39) before the first interrupt.

Nominal expressions such as cycle, initialization phase and interrupt are taken
to be of (lexical) category N® and to denote event-types in the same way as
items of category S°. Again, we regard them as structureless:

N® — cycle/cyc N° — initialization phase/init N° — interrupt/int-rec.

We allow these expressions to be optionally modified (once) by the order-
specifying adjectives first and last, resulting in a phrase which in turn com-
bines with a determiner to produce the complement of a temporal preposition.

12



/PP\ T

Pxy NPy ‘,. /\
/\
during/= Dety N\11 after/> DTt! 1\?1
every/[ ] - the/{ } l\r
CyC|e‘/Cyc initializaitril?: phase/
PP
/\
Py, NP,
/\
before‘/< Det, N}
/\
the/{ } OAdj NO
fi rs‘t/f inter‘ru pt/

int-rec

Fig. 2. Structures of preposition-phrases with nominal complements

Accordingly, we write the grammar rules

PP — PN,D, NPD NPD — DetD, N%) N}) — NO

N/ — OAdj, N OAdj — first/f OAdj — last/l
Dety — every/| | Dets — some/( ) Det; — the/{ }
Px,p — during/= P, — after/> Px, — before/<,

where the variable subscript D in the above rules ranges over the set of
tags {V,3,!}. Thus, our grammar assigns to (37)—(39) the respective phrase-
structures shown in Fig. 2. As before, we have augmented terminal nodes with
the corresponding mnemonics to the right of the obliques in the lexicon.

The tags {V,3,!} simply indicate a subcategorization of NP, Det, N! and Py.
This subcategorization restricts the use of determiners in two ways. First, it
requires that phrases involving first and last only ever combine with the defi-
nite article. This requirement reflects the observation that (outside university
mathematics departments) locutions such as during a first interrupt and during
every first interrupt are anomalous.

13



Our second restriction on the use of determiners requires that complements of
the temporal prepositions until, before and after also incorporate the definite
article. For until, this requirement serves to rule out some clearly anomalous
sentences (it is the italicized every which causes the problem):

(40) ? An interrupt occurred during every cycle until every reset point.

For before and after, the requirement reflects our earlier decision to interpret
before in the sense of some time before, rather than shortly before. To see why,
note that common usage (again: professional mathematicians excepted) does
not take the sentences

(41) An interrupt was received before every reset point
(42) An interrupt was received before the first reset point

to be equivalent in contexts where there is a unique first reset point, as our
assumed sense of before would require. We conclude that the term before can
only have the shortly-before sense in (41), and so we banish that sentence from
our fragment. Admittedly, existentially quantified complements with these
prepositions sound better, even with our chosen sense of before:

(43) An interrupt occurred before some reset point
(44) An interrupt occurred during every cycle until some reset point.

Indeed, such sentences could be admitted into our fragment without com-
promising the complexity-theoretic results derived below. However, banning
sentences such as (41) while admitting those such as (43) would generate a
logical fragment not fully closed under negation; and, while such fragments are
unproblematic in principle, they tend to make for notational and conceptual
clutter. For simplicity, therefore, we duck the issue, and simply decree that
these temporal prepositions require complements with the definite article.

Temporal prepositions with clausal complements belong in our grammar to
the category Pg, and occur in phrases such as

(45) before the main process ran
(46) whenever the main process ran
(47) while the main process ran for the last time.

Unmodified clausal complements are taken to be atomic, again of category Sy.
Our grammar permits modification (once) of these clausal complements by
the adverbials for the first/last time, analogous to the modification of nominal
complements by the adjectives first/last. Accordingly, we write the grammar
rules

14



PP PP

TN T

PS,! S.l Ps’v Sé
before/(<,{ }) S‘0 whenever/‘(z, B) S‘0
the main p‘rpcess ran/ the main p‘r9cess ran/
main main
PP
/\
Pg, St
/\
while/(=,{}) S° OAdv

the main process ran/  for the last time/I.
main

Fig. 3. Structures of preposition-phrases with sentential complements

PP — Psp, Sp Psy — while/(=,{ }) OAdv — for the first time/ f

St — 8% OAdv  Pg, — before/(<,{ }) OAdv — for the last time/I

S — S0 Psy — whenever/(=,[ ]),
thus assigning to (45)—(47) the respective phrase-structures shown in Fig. 3.
Recall that whenever is associated with universal, rather than definite, quan-
tification of its complement. That is why the grammar rule for whenever in-

corporates the bracket-pair [ |, rather than { }, to the right of the oblique.
The motivation for these mnemonics will be revealed in Section 4.

We allow that expressions of categories S° and N° may correspond to the same
event-type, as indicated by the mnemonics in the lexicon, thus:

S% — the main process ran/main N% — run of the main process/main.
Since we want to finesse issues of subsentential and subnominal structure, we
leave it to grammar-writers’ common sense to spot such nominalizations where
they occur. The task of providing a more complex grammar to automate this

job is independent of the issues addressed here.

Finally, we have grammar rules to adjoin preposition-phrases to sentences and
to handle sentence coordination using and and or. There are no surprises here:

S—S,PP S—S§, Conj, S Conj— and/A Conj — or/V.
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S

a) S0

An interrupt was received/int-rec

/S\
S PP
S0 Py NPy
b) | | T
An interrupt  during/= Dety Ny
was received / | |
Int-rec every/[ ] NO
cycle/cyc
/S\
S PP
S PP P, St
) © Pyy Ny () 50
An interrupt  during/= Dety NY the main process ran/
was received / ‘ ‘ main
int-rec every/[ ] NO
cycle/cyc

Fig. 4. Structures of sentences (4)-(6)

Fig. 4 shows the phrase-structures of sentences (4)—(6). Our grammar takes
no account of fronted preposition-phrases, as illustrated, for example, by Sen-
tence (7). It is obvious that this defect can easily be rectified. This completes
our explanation of the fragment of English studied in this paper. We dub this
fragment 7PE, an acronym for temporal preposition English; the full list of
grammar rules is given in the Appendix.
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3.2 Re-writing phrase-structures

In Section 4, we show how phrase-structures in 7PE can be treated as formu-
las in a language for which a recursive semantics can be given in the style due
to Tarski. Moreover, the satisfaction-conditions thus associated with T PE-
sentences convincingly systematize the meanings proposed for the various ex-
amples considered in Section 2. To facilitate the presentation, we first subject
TPE phrase-structures to some minor geometrical re-arrangement, which we
now proceed to describe. We have three base cases and three recursive cases
to consider.

First base case: Any structure of the forms depicted in Fig. 1 will be re-
written more compactly as follows:

S S

| T

S‘O = (e)_T N‘eg S‘0 = —(e)_T.
e - e

(Here and in the sequel, we have replaced all terminal nodes with the mnemon-
ics to the right of the obliques: this simply unclutters the diagrams.)

Second base case: Any structure of category N!' will be re-written more
compactly as follows:

NL N} N}
1\‘T° =e Oz?dj 1\‘10 =/ OAdj IT) = ¢
e f e l e

Sy ! !
S‘O = e S‘0 OA‘dV = ef S‘0 OA‘dV = ¢
e e f e l

First recursive case: Consider a structure of category S immediately dom-
inating a structure A of category S and a PP with a nominal complement I'.
Assuming that we already know how to re-write A and I', such a structure
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will be re-written more compactly as follows:

Px.p NP, = ||l if ' = o and A = 1),

T DetD N%F

where || || denotes any of the bracket-pairs ( ), [ ] or { }, and 7 any of the
symbols <, > or =.

Second recursive case: Consider a structure of category S immediately
dominating a structure A of category S and a PP with a clausal complement
I'. Assuming that we already know how to re-write A and I', such a structure
will be re-written more compactly as follows:

S

T

S:A PP
T = lall if '= a and A = 9,
PS‘,D SIDF
(r 1)

where || || denotes either of the bracket-pairs [ | or { }, and 7 any of the
symbols <, > or =.

Third recursive case: Any structure of category S immediately dominating
a node of category Conj will be re-written more compactly as an expression
with major connectives A or V in the obvious way. The details are routine and
are left to the reader to spell out formally.

Consider, for example, the phrase-structures of the 7PE-sentence (4)—(6),
as drawn in Fig. 4. Re-writing these phrase-structures yields the respective
expressions

(int-rec)_T, [cyc]=(int-rec)_T, {main}_[cyc|-(int-rec)_T.
Apart from some unusual brackets and decorations, which will be explained

later, the results of this re-arrangement look remarkably like formulas of propo-
sitional dynamic logic, with the event-classifying mnemonics occupying the
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place of atomic programs. So they look; and so they are. We shall give a stan-
dard account of the semantics of these formulas along the lines of the usual se-
mantics for propositional dynamic logic. We stress (though it is obvious) that
no information has been created or destroyed in the above re-arrangement
process: it is a simple graphical matter of replacing an unfamiliar arboreal
typography with a familiar (and more compact) linear one. We could have
stuck with trees if we had really wanted.

There is one further round of simplification before we proceed. We have demon-
strated how PPs in the fragment 7PE can be regarded (syntactically) as
modal operators of the form ||«||,, where « is an expression of one of the forms
e, e/ orel, || || is one of { ), []or{}, and 7 is one of =, < or >. However,
our grammar imposes restrictions on the quantification in PP-complements
ensuring that, if 7 € {<, >} or if o has one of the forms e/, €/, then || || is { }.
This cuts down the set of modal operators to the forms

(€)= [e]=: {e}=; {e}r, {€7}=, {7},

where e corresponds to a vocabulary item (of category S° or N%), 7 € {<
,>} and o € {f,1}. Finally, to avoid clutter, we may take the =-subscripts
as understood, e.g. writing [e] instead of [e]-. Thus, the final collection of
operators is

(e), lel; {e}; {e}r, {e}, {€7}r,

with e an event-atom, 7 € {<,>} and o € {f,(}.

Let us take stock. In Section 2, we proposed truth-conditions for a range of
sentences involving temporal prepositions and the order-denoting adjectives
first and last. By treating sentence-meanings as temporal abstracts, we showed
how temporal preposition-phrases could be viewed (semantically) as modal
operators. In this section, we have formalized the English fragment we are
working with using a context-free grammar. We observed that the phrase-
structures which this grammar associates with the sentences it recognizes can
be re-arranged as formulas of a language whose syntax resembles propositional
dynamic logic. Of course, the point of this re-arrangement is that the resulting
formulas can be given a formal semantics which reproduce the truth-conditions
proposed in Section 2. It is to that task we now turn.

4 The Temporal Logic

In the sequel, let F be a fixed infinite set. We refer to elements of E as event-
atoms.

Definition 1 Let e range over the set E of event-atoms. We define the cate-
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gories of event-relation o, TPL-formula ¢ and TPLT -formula 1 as follows:

a:=elel|é;
¢:=(e)T | Ae)T [(e)o | [e]o | {a}d | {a}so [ {atch [@AG [PV &
=T | ()| el | {a}¢ [{a}st [{a}t [ AY [PV

It is easy to see that the syntax of 7PL matches that of the English fragment
TPE exactly: TPL-formulas simply are phrase-structures in 7PE and vice-
versa. The language TPL™ is a slight extension of 7PL in which negation
is applied rather more freely. Of course, the real object of study is TPL, not
TPL". The latter is introduced only for the purpose of simplifying the proofs
of Section 5.

When dealing with TPL", we avail ourselves of the Boolean connectives —,
< and 1, understood as abbreviations in the usual way. Our first task is to
give a formal semantics for 7PL*, and show that, for the fragment 7TPL,
these semantics generate the satisfaction-conditions proposed in Section 2.

Recall from Section 1 that Z denotes the set of intervals, where an interval
is a closed, bounded, convex (non-empty) subset of R. Recall also the partial
functions init(J, I) and fin(J, I) defined on Z.

Definition 2 A TPL"-interpretation A (henceforth: interpretation) is a fi-
nite subset of T x E. For any J € I, we write A(J) for {e € E | (J,e) € A},
and for any e € E, we write A(e) for {J €L | (J,e) € A} .

Think of an entry (J, ) in an interpretation A as representing the occurrence
of an event of type e over the interval J. The motivation for insisting that
interpretations are finite sets is simply that we have in mind situations in
which event-atoms denote everyday event-types instantiated in finite contexts.

We now turn to the interpretation of event-relations. Recalling our (rather
artificial) stipulations about the meanings of the words first and last applied
to event-types of which there is no unambiguously first or last instance, we
adopt the following terminology.

Definition 3 Let I be an interval and J C I, where J satisfies some property
P. We say that J = |[a, b] is the minimal-first subinterval of I satisfying P just
in case for every J' = [d', V| C I satisfying P, either (i) b < b or (i1) b =1V
and a > o . Likewise, we say that J = [a,b] is the minimal-last subinterval of
I satisfying P just in case for every J' = [a',b'] C I satisfying P, either (i)
a>d or (ii)a=a and b <V.

Definition 4 Let o be an event-relation, A an interpretation, and I,J € T.
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We define A =15 o by cases as follows:

(1) AE=ryeiff JCI and e € A(J);
(2) AEryel iff AEry e and J is the minimal-first such interval;
(3) Ay e iff Ay e and J is the minimal-last such interval.

It is obvious that, since A is finite, if there exists any J C I such that (J, e) €
A, then the minimal-first and minimal-last such J exist and are unique.

We are now ready to give the satisfaction-conditions for formulas in 7PL*.

Definition 5 Let ¢ be a formula, A an interpretation, and I € Z. We define
A E1 ¢ recursively as follows:

(1) A= () iff for some J, A=ry e and A = o;

(2) A= lely iff for all J, A =1 5 e implies A =5 v;

(3) A= {a}y iff there is a unique J C I such that A =1, o, and for that
J; A ’:J 17/];'

(4) A =1 {a}<t iff there is a unique J C I such that A =1 5 «, and for that
J; A ):init(J,I) 1/);

(5) A =1 {a}sv iff there is a unique J C I such that A =1 5 «, and for that
J; A ’:ﬁD(J,I) 1/1;’

(6) the usual rules for T, A, V and —.

If A =1 ¢, we say that ¢ is true at I in A. For any set of formulas ®, we
write A =1 © if A | ¢ for all ¢ € O. If, for all A and I, A =; ® implies
A E1 ¢, we say that @ entails ¢'; and if ¢ is the sole element in ®, we say that
¢ entails ¢'. If ¢ and ¢' entail each other, we say they are logically equivalent
and write ¢ = ¢'. A set of formulas ® is said to be satisfiable if, for some A
and I, A= ®.

We remark that the condition in Definition 2 that interpretations are finite
subsets of Z x F is significant. For example, the TP L-formula (e) T A [e]{(e) T
is unsatisfiable.

Since any 7 PL-formula ¢ is just the phrase-structure of a 7 PE-sentence,
the immediate question is whether the satisfaction-conditions assigned to ¢ in
Definition 5 correctly reproduce the meanings proposed in Section 2.

A little thought shows that they do. For example, the grammar of Section 3
assigns to the sentences (4)—(6), which we repeat here for convenience as

(48) An interrupt was received
(49) An interrupt was received during every cycle
(50) An interrupt was received during every cycle until the main process ran,
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the respective phrase-structures

(51) (int-rec)T
(52) [cyc](int-rec) T
(53) {main}.|[cyc]|({int-rec)T.

From Definition 5, we see that the satisfaction-conditions of these formulas
correspond exactly to those of the respective first-order formulas

(54) Hjo(int—l"eC(Jo) NJy C I)

(55) VJl(CyC(Jl) N Jl cl— HJo(th-I'eC(Jo) N J() C Jl))

(56) tJo(main(Jy) A Jy C 1,

\V/J1( CYC(Jl) N J1 C init(JQ, I) — E'J()(int—l‘eC(Jo) N J() C Jl)))

But these are precisely the meanings proposed in (8)—(10). More generally, we
took pains in Section 2 to show that temporal preposition phrases could be
regarded, semantically, as modal operators, mapping one temporal abstract
to another, and binding the free-variable in their arguments. The formal se-
mantics of 7PL reflect this observation. In particular, we see how the var-
ious components of such a modal operator are contributed by the temporal
preposition and its complement. The appropriateness of the semantics for the
modifiers -/ and -! and the Boolean connectives should be self-evident.

This concludes the first part of the paper. We have defined an English frag-
ment, 7TPE, incorporating temporal prepositions and order-specifying adjec-
tives. We have shown that sentences in this fragment can be regarded as formu-
las in an interval temporal logic 7PL, with satisfaction-conditions matching
the meanings which speakers of English assign to them, modulo the various
caveats and occasional stipulations mentioned in Section 2. In particular, the
problems of determining the satisfiability of a set of sentences or the validity
of an argument in 7PE are identical to the corresponding problems in 7PL.
In the second part of this paper, we proceed to determine the computational
complexity of these problems.

5 Upper Complexity Bound

The aim of this section is to show that the satisfiability problem for 7PL™

(and hence TPL) is in NEXPTIME. This is achieved by establishing an ex-
ponential bound on the size of satisfying interpretations.
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B I3 : I3
ar, ay,
Fig. 5. Two interpretations making (a)T A —={a}T true at any I D Iy

Lemma 1 Foralle€ E, p € TPLY, 7€ {<,>} and o € {f,1}:

—(e)¢ = [e]-o —leo = (e)—¢
—{etg =—{e}T v {e}¢ ~{e’}o = [e] LV {e"}¢
—{e},p=—{e}T V{e};m¢ —{e"},0=][e]LV{e},—d.

PROOF. Trivial.

Lemma 2 Every TPL"Y-formula is logically equivalent to one in which —
appears only in subformulas of the forms —{e} T and L (= —=T).

PROOF. The logical equivalences of Lemma 1, together with familiar propo-
sitional validities, allow negations to be moved successively inwards until the
desired form is reached.

Definition 6 Let A # () be an interpretation. The depth of A is the greatest
m for which there exist Jy D ... D Jp with A(J;) # 0 for all i (1 < i < m).
If A is empty, we take its depth to be 0.

The next lemma shows that, in determining satisfiability of 7PL"-formulas,
we need never consider very deep interpretations. To illustrate the basic idea,
let Iy O - -- D I be a descending chain of intervals, and let A be the interpreta-
tion {(/;,a)|1 < i < 4}, as shown in the left-hand diagram in Fig. 5. Evidently,
for any I D I, A =1 (@) T A —{a}T. However, it is clear that we can remove
the occurrence of a at I (indeed, also at I5) without compromising this fact.
Thus, if A* is the interpretation {(/;,a)|2 < i < 4} depicted in the right-hand
diagram of Fig. 5, we still have, for any I D I, A* =7 (a) T A —{a}T.

Lemma 3 Let ¢ be a TPLT-formula, A an interpretation and I an interval

such that A =1 ¢. Denote the number of symbols in ¢ by |@|. Then there exists
an interpretation A* C A with depth at most O(|?) such that A* =1 &.
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PROOF. We may assume that ¢ has the form guaranteed by Lemma 2, and
further, that A involves no event-atoms not mentioned in ¢. Let ® be the set

of subformulas of ¢. For every event-atom e mentioned in ¢ and every interval
J, define

LJ)={¢p e[ A}
Le(J) = L)\ LK) K C J K € A(e)}.

Thus, L(J) records which subformulas of ¢ are true at an interval .J, ignoring
those subformulas which are true at some proper subinterval of J satisfying e.
Say that a pair (J,e) € A is redundant if L.(J) = () and there exist K, K' €
A(e) such that K C K' C J. Now set

A=A\ {(J,e) | (J,e) is redundant}.

To illustrate, suppose for the moment that ¢ is {(a) T A —={a}T and A the
interpretation depicted in the left-hand diagram of Fig. 5. It is routine to
check that L(I;) = L(l), whence L,([;) = 0. On the other hand, L,(I5),
L,(I3) and L,(I4) are all non-empty, so that A* is as depicted in the right-
hand diagram of Fig. 5. As we observed, the reduction of A to A* does not
affect the truth-value of ¢ at any interval I D I;.

Returning to the general case, it is obvious that, if J C J' with J, J' € A(e),
then L.(J) and L.(J') are disjoint. It follows that the depth of A* is bounded
by m(m' + 2), where m is the number of event-atoms occurring in ¢ and m’
the number of subformulas of ¢. It thus suffices to show that, for all I and all

1,[7 € (b, A ):[ ’(/J implies A* ):[ ’(/J

We proceed by induction on the complexity of 1. The base cases are of the
forms ¢p = T, 1, —{e}T. The first two of these are trivial. For the case ¢ =
—{e}T, suppose A =; . If there is no J C I with J € A(e), then since
A* C A, we certainly have A* =; 1. Otherwise, there exist J C I and
J' C I with J # J" and J, J' € A(e). If neither of the pairs (J, e) and (J', e)
is redundant, then J, J' € A*(e). On the other hand, if (J,e) is redundant,
there must exist K C K’ C J such that the pairs (K, e) and (K’, e) are non-
redundant elements of A, whence K, K' € A*(e); and similarly if (J' e} is
redundant. Either way, then, A* & 1.

The recursive cases are of the forms ¢ = [e]d, (e)d, {a}f, {a},0, where «
is of the forms e, e/ or €', and 7 € {<,>}. For the case 1 = [e]f, we need
only observe that A* C A. For the case ¢ = (e)#, suppose A =; ¢. Then
there exists J C I such that J € A(e) and A =, 6. By the finiteness of
A, choose such a J which is minimal under the order C, so that J € A*(e).
By inductive hypothesis, A* =7 6; hence A* =; 1. For the case ¢ = {e}#,
suppose A =y 1. Then there exists a unique J C I such that J € A(e); and for
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this J, A =, 6. In particular, there is no K C J such that K € A(e), whence
J € A*(e). By inductive hypothesis and the fact that A* C A, we then easily
have A* =1 1. The remaining cases are dealt with exactly as for ¢ = {e}0,
noting, in particular, that A (= ; e/ implies A* =7 7 e/ and A =1 7 €l implies
A* k=15 €' (This is the point at which we rely on the rather artificial choice of
semantics for e/ and e in Definition 4 in cases where there is no unambiguous
first or last e-interval.)

Theorem 1 Let ¢ be a formula of TPLY. If ¢ is satisfiable, then ¢ is satisfied
in an interpretation of size bounded by 2°U%D . for some fized polynomial p.

PROOF. Suppose that A =7, ¢. We may assume that ¢ has the form guar-
anteed by Lemma 2; and by Lemma 3, we may assume that the depth of A is
at most of order |@|%. As before, let ® be the set of subformulas of ¢. Say that
a formula xy € ® is basic if the major connective of y is neither A nor V. For
any interval I and any ¢ € ®, denote by S(1,I) the set of all maximal basic
subformulas x of ¥ such that A =; x. It is easy to see that, for any ¢ € &
and I € T with A =74, S(¢, 1) entails 1.

We now construct a sub-interpretation A* of A, starting with the interval I
and choosing witnesses, tableau-style, for formulas in ®. More specifically, the
procedure tree(¢, Iy) in Fig. 6 grows a labelled tree with nodes V, edges E,
and the two labellings A : V' — 7 and L : V — P(®); the interpretation A*
will then be extracted from A using this labelled tree. For v € V, think of
A(v) as the interval represented by v, and think of L(v) as some collection
of formulas which must all be true at this interval. The variable @) is simply
a queue of nodes in V awaiting processing. Steps 1-5 ensure, roughly, that
‘existential’ formulas in ® have witnesses as required; the embedded calls
to univ(u) ensure that ‘universal’ formulas in ® are not falsified by these
witnesses. A straightforward check shows that the invariant A =y L(v)
for all v € V' is maintained by tree(¢,I). Note that the function A is not
required to be 1-1. Note also that the individual steps in tree(¢, Iy) need not
be effective: all we require for the proof of the theorem is the existence of the
interpretation A* with the advertised properties.

We claim that tree(¢, [y) terminates after finitely many iterations, and that,
upon termination, the tree (V| E) satisfies the size bound of the Theorem.
By inspection of Steps 1-5, whenever an edge (v, w) is added to E, we have
Aw) C A(v). Therefore, at any point in the execution of tree(¢, Iy), if the tree
(V, E) contains a path vg — - -+ — v, then A(vg) D -+ D A(vp,). Consider
those values of ¢ (0 < ¢ < m) for which the call to univ(v;;1) adds material
to L(viy1). By inspection of univ, this can certainly happen only if, for at
least one event-atom €', ¢’ € A(A(v;11)). Therefore, it can happen for at most
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begin tree(¢, Iy)
Choose some object vy, and set
Q =V ={vo}; AMwo) = Ip; L(vo) = S(¢, 1o); E = 0.
until Q = 0 do
Select v € Q, set I := A(v), and set @ := Q \ {v}.
for every ¢y € L(v), do
(1) If v = ()8, let J be such that A =; ;e and A [=; 6. Select w ¢ V
and set A(w) := J; L(w) := S(0,J); Q :=QU{w}; V=V U{w}
E := FU{(v,w)}. Execute univ(w).
(2) If v = {a}f, let J be such that A =;; . Select w ¢ V and
set AM(w) := J; L(w) := S(0,J); Q = QU {w}; V := VU {w}
E := FU{(v,w)}. Execute univ(w).
(3) If ¥ = {a}.0, let J be such that A =;; « and let J' = init(J, I).
Select w,w’ ¢ V and set A(w) = J; Mw ) = J; L(w) = 0
L(w'") == S0,J); Q = QU {w,v'}; V =V U {w w'l B o=
EU{(v,w), (v,w")}. Execute univ(w) and unlv(w ).
(4) If ¢ is {a}~ 0, proceed symmetrically.
(5) If ¢ is ={e}T, and there exist J C I, J' C [ with J # J' and J, J' €
A(e), choose any such J,J'. Select w,w’ ¢ V and set \(w) := J;
AMw') = J L(w) := 0; L(w') :=0; Q := QU {w,w'}; V=V U
{w,w'}; E:= EU{(v,w), (v,w)}. Execute univ(w) and univ(w').
end for every
end until
end tree

begin univ(u)
for every formula [¢']§ € ® such that (A(u),€') € A and there
exists L D A(u) with A =1 [¢]6 do
Set L(u) := L(u) U S (0, A(u)).
end for every
end univ

Fig. 6. Construction of small interpretations in 7PL"

D different values of i, where D is the depth of A. Moreover, any call to
univ(v;y1) adds at most |¢|*> symbols to L(v;y1); and if the call to univ (v, 1)
adds no material to L(v;41), then L(v;41) contains strictly fewer symbols than
L(v;). Since D is at most of oder |¢|?, the length of the path vy — - -+ — vy,
is therefore at most of order |¢|*. The bound on the eventual size of V' then
follows from the fact that the out-degree of any node in V' is bounded by 2||.

Now let A* = {(J, e) € Alfor some v € V, J = A(v)}. Evidently, |A*| satisfies
the size bound of the Theorem; it thus suffices to show that A* =, ¢. In fact,
we show by structural induction that, for any node v € V and any formula

Y, ¥ € L(v) implies A* [=)y) . Denote A(v) by I. (Hence A =; L(v).) The
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base cases are of the forms ¢» = T, 1, —{e} T. The case ¢ = T is trivial. For
the case ¥ = L, the fact that A =; L(v) ensures that ¢ ¢ L(v). For the
case ¢ = —{e} T, if ¢ € L(v), A |=; L(v) ensures that either (i) there is no
J C I such that J € A(e) or (ii) there exist J C I, J' C I with J # J' such
that J,J' € A(e). In the former case, since A* C A, then A* =; v. In the
latter case, Step 5 of tree(¢, [y) ensures that, for some such J, J', we have
w,w' € V with A(w) = J and A(w') = J'; hence J, J' € A*(e) and A* =; 9.
The inductive cases are almost as straightforward:

(1) Suppose ¢ is (e)f. If ¢ € L(v), then, by Step 1 of tree(o, Iy), there exists
w €V and J C I such that AN(w) = J, S(0,J) C L(w), (J,e) € A, and
A E; 6. By inductive hypothesis, A* =, S(6,J), and since A =, 6,
S(6, J) entails 0, whence A* |=; 6. By construction, {J,e) € A*. Hence,
Y € L(v) implies A* =y 9.

(2) Suppose ¢ is [e]d. If 1 € L(v), then A =; ¢. Consider any J C I with
J € A*(e). Certainly, then, J € A(e); hence A =, 6, so that S(6,J)
entails #. Moreover, by the construction of A* there exists w € V with
Aw) = J, in which case the call to univ(w) ensures that S(#,.J) C L(w).
By inductive hypothesis, A* =; S(0,J), whence A* =; 6. Hence, ¢ €
L(v) implies A* = 1.

(3) The remaining cases are handled similarly to Case 1, or are trivial.

Corollary 1 The satisfiability problem for TPL™ is in NEXPTIME.

PROOF. Let ¢ be a formula of TPL", and let d be the maximum depth
of nesting of modal operators in ¢. By Lemma 3, if ¢ is satisfiable, then it is
satisfiable in an interpretation whose size is bounded by some fixed exponential
function of |@|. Guess such an interpretation A and an interval I. Let J, be
the set of intervals mentioned in A together with I, and for any ¢ > 0, let
Ji+1 be J; together with all intervals expressible as init(Jy, J) or fin(Jy, J),
where Jy € Jp and J € J;. Now, for all 4 (0 < ¢ < d) and all J € J;_;, guess
which subformulas of ¢ having modal depth i are true at J in A. It is then
straightforward to check, in time bounded by some fixed exponential function
of |@], that these guesses are correct, and thence to determine whether 4 =; ¢.

The proofs of Lemma 3 and Theorem 1 thus make essential use of the ‘quasi-
guarded’ nature of 7PL", which we observed in Section 2.1, together with the
assumption that only finitely many events occur in a bounded time-interval.
Note that the construction employed in the proof of Theorem 1 does not, as
formulated there, constitute a tableau decision procedure for TPL™, because
the steps are not necessarily effective. We remark that a (non-terminating)
tableau procedure has been devised for the interval temporal logic CDT, inter-
preted over branching-time structures (Goranko et al., 2003). It is not immedi-
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ately clear whether such an approach could be adapted to yield a terminating
procedure for 7PL™, interpreted over a linear time flow, and incorporating
the assumption that only finitely many events can occur over a bounded time-
interval. However, the results of the next section indicate that any such tableau
method is likely to require extensive backtracking.

6 Lower Complexity Bound

In this section, we show that the satisfiability problem for 7TPL (and hence
TPL"Y) is NEXPTIME-hard. Denote by N, the natural numbers less than
n. Define an ezponential tiling problem to be a triple (C, H,V'), where C =
{coy--.,cm—1} is a set and H and V are binary relations over C. We call the
elements of C colours, and we call H and V' the horizontal constraints and the
vertical constraints, respectively. An instance of (C, H,V) is a list ¢}, ...,c,,_;
of elements of C' (repetitions allowed). Such an instance is positive if there
exists a function 7 : Npn X Non — C such that: (i) 7(4,0) = ¢} for all 7 (0 < i <
n—1); (i) (r(4,7),7(i+1,5)) € H foralli,j (0<i<2"—1,0< j < 27 —1);
(iii) (7(3,),7(i,j+ 1)) € Vforall4,j (0<i<2"—1,0<j < 2" —1); and
(iv) 7(0,2" — 1) = ¢g. We refer to 7 as a tiling. Intuitively, the elements of C
represent colours of unit square tiles which must be arranged so as to fill a grid
of 2™ x 2™ squares, with the top left-hand square required to have the colour ¢j.
The constraints H (respectively, V') list which colours are allowed to go to the
right of (respectively, above) which others. The problem instance cj,...,c,_;
lists the colours of the first n tiles in the bottom row. For a discussion of
exponential tiling problems, see Borger et al. (1997, Sec. 6.1.1).

To show that a problem P is NEXPTIME-hard, it suffices to show that, for
any exponential tiling problem (C, H, V), any instance of (C, H,V) may be
encoded, in polynomial time, as an instance of P. We now proceed to do this
where P is TP L-satisfiability. The main technical challenge is to encode, using
a succinct formula of 7PL, the information that there are ezactly 22" pairwise
disjoint intervals satisfying some event-atom ¢ within a given interval I*. We
begin by tackling this problem; the remainder of the reduction is routine.

6.1 Fizing a large number of tiles

Let m > 2 and let ag, af, ..., a0, G,--.,a;,,; and z be pairwise distinct
event-atoms. To simplify the notation, we write ay alternatively as a or aj.
The event-atom z will always function as a harmless ‘dummy’; it occurs in
subformulas (z) T whose only purpose is to ensure that we remain inside the

temporal logic 7PL, rather than the more general 7PL™. The following ter-
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Fig. 7. Arrangement of i-witnesses (0 < i < m)

minology will be used to aid readability. Where an interpretation A is clear
from context, we say that an interval I satisfies an event-atom e if (I, e) € A;
alternatively, we say that I is an e-interval.

Define v; to be the conjunction of the following formulas, where 0 <7 < m
and 0 < h < 1:

(57) {aoHa)T, lafl{ady}>(aii) T, [afl{ai H2)T.

Let A be an interpretation and I* an interval such that A =« ;. For all 4
(0 <i < m), define an i-witness inductively as follows:

(1) I is a O-witness if and only if I is the unique proper subinterval of I*
satisfying ay.

(2) Jisan (i+1)-witness if and only if there exists an s-witness I such that J
is either the unique proper subinterval of I satisfying a) 1 or the unique
proper subinterval of I satisfying a;, ;.

Given that A =1 91, each i-witness I properly includes exactly one interval
J satisfying af,, and exactly one interval J' satisfying a;,,, with J preceding
J'. Thus, there are exactly 2! i-witnesses for all i (1 < ¢ < m); moreover, these
are pairwise disjoint and alternate between intervals satisfying a) and a}, as
depicted in Fig. 7. Note however that, in general, the i-witnesses will be a
subset of the subintervals of I* satisfying a{ or a; in A.

The formula 1); thus provides a succinct way of guaranteeing that at least 2™ 1
proper subintervals of I* satisfy a? in A—viz, every other m-witness. A much
greater challenge is to write a succinct collection of formulas ensuring that no
other proper subintervals of I* satisfy a9 . This task occupies the remainder
of Section 6.1.

Let by,...,bm, 0Y,-..,0% 1 and pj,...,pL_; be new event-atoms (i.e. pair-
wise distinct and distinct from 2, ag and the al). Intuitively, the event-atoms
b; will be used to prevent ‘additional’ af-events and a;-events slipping in be-
tween successive i-witnesses; the event-atoms p} and p; will function as ‘nails’,
holding the whole rickety structure together. Let 1), be the conjunction of the
following formulas, where 0 <i<m,0< h<land 0 <h' <1:
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Fig. 8. Representative arrangement of intervals: (a) under each a/ -interval, and (b)
under each b;-interval

(58) [af b1 }2)T, [0l [{pr )T,  [al (o] T,
[biv1] (P2 T, [P aiis) T

Suppose A [=p« ¥ A e, Formula vy guarantees that, for all i (0 < i <
m), any subinterval I C I* satisfying either af or a} properly includes a
unique J satisfying a7,, and a unique J' satisfying a; ,, with J preceding
J'. Moreover, there exists a unique K C J satisfying a;,,, and a unique
K' C J' satisfying aj, ,. In addition, 1, guarantees that I also properly includes
a unique L satisfying b;,1; moreover, the event-atoms p) and p;, which are
satisfied uniquely within 7, effectively ‘nail’ the L, J, J', K and K’ together
sothat LNJ D K and LNJ' D K'. A representative situation conforming to
these constraints is depicted in Fig. 8(a).

Let ¢%,...,¢%_, and q{,...,q},_; be new event-atoms, and let ¢35 be the con-
junction of the following formulas, where 1 <47 <m and 0 < h < 1:

(59) [bil{aiy}>(adi) T, bil{ad 12T, [bi{bisa}2) T,
[b:l{a! H2)T, i@ T, lafaXa ™) T, [af{aii) T

Suppose A =« 1 A 13. Looking at the first row of (59), 13 guarantees that,
for all 4 (1 < i < m), any subinterval I C I* satisfying b; properly includes a
unique J satisfying a;,, and a unique J' satisfying a?,, (with J preceding J'),
as well as a unique L satisfying b;,1. Further, ¢; guarantees that there is a
unique K C J satisfying a;,,, and a unique K’ C J' satisfying af,,. Looking
now at the second row of (59), the event-atoms ¢° and ¢}, which are satisfied
uniquely within I, effectively ‘nail’ the L, J, J', K and K’ together so that
LNJ>Kand LNJ D K'. A representative situation conforming to these
constraints is depicted in Fig. 8(b).

These observations help us establish:

Claim 1 Let A =1 1 Aha A3, and let K, K' be consecutive (i+1)-witnesses,
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with 0 < ¢ < m. Then there exists an interval L C I* properly including both
K and K', such that L satisfies one of af, a; or b;.

PROOF. We proceed by induction on ¢. If 7 = 0, the result is trivial, because
the only 1-witnesses are by definition properly included in the 0-witness.

For the inductive case, suppose the statement of the Lemma holds with 0 <
1 < m — 1; we show the same statement holds with ¢ replaced by 7 + 1. Let
K, K’ be consecutive (i+ 2)-witnesses, then; without loss of generality, we can
suppose that K precedes K'. Each (i + 2)-witness is by definition properly
included in a unique (¢ + 1)-witness; so let J be the (i + 1)-witness such that
K C J and J' be the (i 4+ 1)-witness such that K’ C J'. Since K and K’ are
consecutive, J and J’ are identical or consecutive. In the former case, we may
put L =J = J', and L satisfies either a,, or a;,, as required by the Lemma.
So assume the latter. By inductive hypothesis, then, J and J’ are properly
included within an interval I C I* such that I satisfies a?, a}, or b;. Moreover,
since K and K' are consecutive but not included in a common (i + 1)-witness,
K satisfies a},, and K' satisfies af,,.

If I satisfies a? (0 < A’ < 1), then 1, guarantees that I properly includes
exactly one interval satisfying agﬂ and exactly one interval satisfying a} 1
with the former preceding the latter; these must be, respectively, J and J',
therefore. Again by 11, J properly includes exactly one interval satisfying a; .,
and J' exactly one interval satisfying ) ,; these must be, respectively, K and
K', therefore. Thus, we have the arrangement of Fig. 8(a). In particular, we
have seen that 1, guarantees the existence of an interval L satisfying b;,; and
properly including both K and K’, as required by the Lemma.

If I satisfies b;, then 13 guarantees that I properly includes exactly one in-
terval satisfying a;,, and exactly one interval satisfying a? ,, with the former
preceding the latter; these must be, respectively, J and J’', therefore. By v, J
properly includes exactly one interval satisfying a},, and J' exactly one inter-
val satisfying ay, ,; these must be, respectively, K and K’, therefore. Thus, we
have the arrangement of Fig. 8(b). In particular, we have seen that )3 guaran-
tees the existence of an interval L satisfying b;;; and properly including both
K and K, as required by the Lemma.

Claim 2 Let A = Y1 Ao Aps. If K and K' are consecutive i-witnesses (in
that order), with 1 < i < m, then no subinterval H C I* satisfying either a?
or a} can begin after K begins and end before K' ends.
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PROOF. Suppose for contradiction that such an H exists. By Claim 1, we
have some L C I* satisfying one of a) , a} ; or b;_;, with L D K and
L D K'. Thus, L D H. But 9; and %3 contain conjuncts requiring L to
properly include exactly one interval satisfying a? and exactly one interval
satisfying a;. Contradiction.

Let l,...,lm, I}, ..., ll,., be new event-atoms, and let ¢} be the conjunction

of the following collection of formulas, where ¢ (1 < i < m):

(60)  {aoX(i)T, {EHa MG DT,
{iHa 0T, {l}Aa} DT, {li}n(a)T.

Suppose A =+ Y1 Al and 1 < i < m. Foralli (1 < i < m), let J; be the first-
occurring i-witness, and let L] be the unique proper subinterval of I* satisfying
I}. Then the conjuncts in the first row of (60) enforce the arrangement

LiD>hDLyDJy DD LD Jpy.

Further, for all ¢ (1 < i < m), let L; be the unique proper subinterval of
I* satisfying [;. Then the conjuncts in the second row of (60) ensure that .J;
ends before L; begins, and, moreover, J; is the only subinterval of I* satisfying
either @) or a; which ends before L; begins. In particular, no subinterval of I*
satisfying either af or a; ends before J; ends.

Symmetrically, let r1,..., 7, r{,...,7,, . be new event-atoms, and let v, be

the conjunction of the following collection of formulas, where ¢ (1 < i < m):
{aoH(r)) T, {riai Hriy )T,
{riai}<(raT, {rips{ai} ()T,  {ris—(a)T.
Let vy be i A 5. We thus have:
Claim 3 If A =p 1Ay and 1 < i < m, then no subinterval of I* satisfying
either a) or a} can end before the first i-witness ends or begin after the last
1-witness begins.
We are now ready to achieve the main ask of Section 6.1. Fix n > 0. Set
m =2n+1, let ¥y, ..., ¥4 be as above, and let ¥5 be the conjunction of the

following formulas, where 1 <i<m,0<h<land 0<h <1:

(61) [aP]—~(a')T.
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Claim 4 Let A =« 1 A --- AN s. Then, for all i (0 < i < m), there exist
ezactly 2° proper subintervals of I* satisfying either al or a,. These intervals
are arranged as in Fig. 7. Hence, there are exactly 2*® proper subintervals of
I* satisfying al,.

PROOF. Suppose 0 < i < m. Certainly, there are exactly 2’ i-witnesses.
It suffices to show that no other proper subinterval of I* satisfies af or a].
Suppose, for contradiction, J C I* and J satisfies a?, but J is not an i-witness.
By 5, J neither properly includes nor is properly included in any i-witness.
Hence, the following possibilities are exhaustive: (i) J ends before the first i-
witness ends; (ii) J begins after one i-witness begins and ends before the next
one ends; and (iii) J begins after the last i-witness begins. But Claims 2 and 3
rule out all these possibilities. Hence, all proper subintervals of I* satisfying

a) or a; are i-witnesses.

As a final trick, we show how the 22" 2 -intervals identified in Claim 4 can be
consecutively numbered. Let d9,...,d2 _, , di,...,d. _, be new event-atoms.
Think of d? (1 <i < m—1,0 < h < 1) as stating that the ith digit in a
certain (m — 1)-digit binary numeral is h, where the first digit is the most
significant and the (m — 1)th the least significant. Let 15 be the conjunction
of the following formulas, where 1 <7 <mand 0 < h < 1:

(62) [af][ap ()T, [am](~(d]) T Vv ={d}) T).

Claim 5 Suppose A =1 ¥ A g, and consider the 2°™ m-witnesses which
satisfy a2 . Let these intervals be numbered in order of temporal precedence as
Joy -y Jorn_q. For all k (0 < k < 2*), and all i (1 <1 < 2n) denote the ith
digit in the 2n-digit binary numeral for k (counting the most significant as the
first) by k[i]. Then we have:

k[] _ 1iff A ’:Jk <dzl>T
TV 0t Ay, (@)

PROOF. By formula g and inspection of Fig. 7.

Let us refer to the 2" a? -intervals identified in Claim 4 as tiles, and let us
write al, more suggestively as t. We continue to denote the tiles in order of
temporal precedence as Jy,...,Jon 1, and we say that Jp (0 < k < 227)
has index k. If J is any tile, denote its index by k;. In that case, Claim 5
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Fig. 9. Arrangement of g’- and g}-intervals within an i-witness (1 < i < m)

lets us read A =7 (d?)T as ‘saying’ that the ith digit in the 2n-digit binary
representation of k; is h.

6.2 Organizing the tiles into a grid

Group the 2?7 tiles into 2" blocks, each containing 2" consecutive tiles. Re-
garding each block as a row gives us a 2" x 2" grid. If J and J' are tiles, then
J' lies immediately above J in this grid in case k; = kj+ 2"; similarly, J’ lies
immediately to the right of J in the grid in case k;» = k; + 1 and the last n
bits of k; are not all 1s. We now write formulas ensuring that, for all tiles J,
J' such that ky = k; + 2", we can identify an interval L such that J is the
first tile included in L and J' is the last.

Continuing to write m for 2n + 1, let ¢?%,...,4%, gi,..., 9., be new event-
atoms, and let 1; be the conjunction of the following formulas, where 0 < <
mand 0 < h <1:

(63) [af1{glr1}>(ad )T, [0fl{gin}(adi) T, [alHgiyi}> (i) T

Fig. 9 illustrates how the ¢, ,- and g;,,- intervals are arranged under an -
witness if A =7 91 A)r. Tt helps to think of the gi-intervals as ‘short’ intervals
separating consecutive i-witnesses.

Now let fo, f2, ..., fo., fis- -, [2, be new event-atoms, write f© alternatively
as fy or fy, and let 1 be the conjunction of the following formulas, where
0<i<2n,0<h<land0<h <1:

(64) (fo)T, [f3)(ab,) T, [ ){(ab,) } < (ad ) T,
[fh]{( )f}< <z+1>T [fh]{ 1}< <gz+1>

To motivate this construction, it helps to imagine the f/'-intervals guaranteed
by s as distributed similarly to the corresponding af-intervals in Fig. 7,
except that the end-point of every fl-interval is shifted right by a ‘large’ fixed
amount—specifically, an amount equal to the time occupied by 2" consecutive
tiles. Fig. 10 illustrates how f!- and 1 -intervals are arranged in such an
interpretation.

Suppose A =p« 1 A --- A ig. Ignoring for the moment all intervals which
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Fig. 10. Arrangement of f/- and f{il—intervals

are not proper subintervals of I*, any fl-interval (1 < i < 2n,0 < h < 1)
properly includes an al-interval; and any f/-interval (1 <i < 2n, 0 < h <1)
properly includes a unique inH—interval and a unique filel-interval. Now let k
be an integer with 0 < k£ < 2n, and denote the 2n digits of k£ by k[i] (1 <
i < 2n) as in Claim 5. Then we can form a chain of intervals Ly D -+ D Loy,
such that, for all 4 (1 < ¢ < 2n), L; is an fik[i]—interval. Moreover, for all 4
(1 <4 < 2n), L; properly includes some af[i]—interval; so let K; be the first
such interval. We claim that K; D --- D Kjy,. To see this, suppose 1 <1 < 2n,
and write h for k[i] and A’ for k[i + 1]. Let K be the unique al-interval
properly included in K;. From [f"){(a})/}<—(al.,)T, L; cannot include any
a, -interval which finishes before the start of K;. By Claim 4 and inspection
of Fig. 7, we see that K is therefore the first aﬁl—interval properly included in
L. From [fM{fl 1} <—(g%1) T, Li11 starts before the start of K, and, since it is
an fiﬁl—interval, properly includes at least one aﬁ'rl—interval. It follows that K
is the first a?jrl—interval properly included in L;q: in other words, K = K.
Thus, K; D K;1 as required. Hence we have:

Claim 6 Suppose A =1 Y1 A -+ Ag and 0 < k < 22", Then there ezists
L C I such that L is either an f3 -interval or an fj, -interval, and the first
tile properly included in L is Jy.

PROOF. Consider the chain K; D --- D K5, constructed above. The first
tile properly included in L is properly included in Kj,. The result follows from
Claim 5.

In the sequel, we use v to denote either f9 or f; indifferently. Thus, if A =/
Wy A --- A 1)g, then there are at least 22" wv-intervals properly included in
I"*—one ‘starting with’ each of the 22" tiles. We now proceed to ensure that,
if L is a v-interval starting with tile J;, where 0 < k < 22" — 27, then L
includes exactly 2" 4+ 1 consecutive tiles. (See Fig. 11.) To aid readability,
we occasionally employ 7PL"-formulas in the sequel; their conversion into
logically equivalent 7P L-formulas is completely routine.

As a preliminary, let let d~, dj,...,d5, be new event-atoms, and g9 be the
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Fig. 11. Arrangement of event-atoms indicating vertical neighbourhood in the grid

conjunction of the following formulas, where 1 <1 < n:

(65) 14 (<d—>m \/ <d2>T), ] (<d:f>m (<d9>TA A <d}>T>).

1<j<n i<j<n

The purpose of 1/ is to enable us to simulate addition of 2" to binary numerals
representing integers less than 22" — 2", Suppose A =1« ¥1 A - -+ A tbg. Then
it is routine to check that: (i) for any tile J, A =, (d™)T if and only if £, is
in the range 0 < k; < 22" — 2%; (ii) for any tile J with 0 < k; < 22" — 2",
A =5 (df)T if and only if ¢ is the least integer such that the jth digit in
the 2n-digit binary representation of k; is 1 for all j in the range ¢ < j < n.
With this interpretation in mind, let 119 be the conjunction of the following
formulas, where 1 < i < n:

A WIETHEDT = O @)T Ad)T)),

1<i<n 1<j<n

66) A A LI HET = (T HI)T & {1 T)),

1<i<n 1<j<i

A I HADT = (T H) T < {t'Hd)T)).

n<j<2n

If A =p ¢ A--- Ao, then we can read 1 as stating that, for every
subinterval L C I* satisfying v, if the first tile included in L has index less
than 22* — 27, then the indices of the first and last tiles included in L differ
by precisely 2". Pictorially, we have the arrangement of v-satisfying intervals
shown in Fig. 11. The corresponding formulas 11, . . ., ¥4 required to establish
a suitable arrangement of event-types h encoding horizontal neighbourhood
are analogous and need not be spelled out here.

6.3 FEncoding Tiling Problems

We are now ready to prove the main result of this section.
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Theorem 2 The satisfiability problem for TPL is NEXPTIME-hard.

PROOF. Let (C,H,V) be any exponential tiling problem and c,...,c,_;
an instance of size n. Construct the formulas 1,...,1%4 as above. If C =
{co,-..,cm—1}, take the ¢; (0 < j < M) to be event-atoms, and let ¢r be the
conjunction of the following two formulas:

BV )T, 1 A ()T Vle)T).

0<j<M 0<j<j' <M

Given a tile J, we regard the satisfaction of an event-atom ¢; by a proper
subinterval of J as indicating that the tile J is coloured by c;. The formula
1r simply states that each tile has exactly one colour chosen from C.

Let 15 be the conjunction of the following formulas, where (¢;, ¢;) & H:

({7} TV At} (e T).

Let ¢y be the conjunction of the following formulas, where (¢;,¢;) ¢ V:

I({t (e TV (e T).

The motivation for ¥y and 1y should be obvious. Finally, we encode the fact
that the initial tile Jy is required to have colour ¢ using the formula

(OUdg) T A= A{dan) T Aet) T),

and similarly for the other tiles which are required to have a particular colour.
Denote the conjunction of all these formulas by ;. From the above con-
structions, it is routine to verify that the instance c,...,c,_; of (C,H,V) is
positive if and only if

is satisfiable. This completes the reduction.

Corollary 2 The satisfiability problems for TPL and TPL" are NEXPTIME-
complete.

Actually, a glance at the proof of Theorem 2 reveals that it shows a little more.
The satisfiability problem for the fragment of 7PL in which the modal depth
of formulas is limited to 3 is still NEXPTIME-hard, since only formulas from
this fragment were used to encode instances of tiling problems. The fact that
only very simple 7P L-formulas figure in this proof is crucial for the argument
of Section 6.4.
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6.4 Linguistic considerations

We have now established that satisfiability in 7PL is NEXPTIME-complete.
Since TPL closely matches our English fragment 7PE, we are close to answer-
ing the question with which we began: What is the computational complexity
of determining logical relationships between sentences employing the temporal
constructions featured in sentences such as (1)-(3)? However, one small mat-
ter remains. It should be obvious that the grammar of 7PE, restricted as it
is, accepts strings whose status as English sentences—on syntactic, semantic
or pragmatic grounds—is doubtful. What we require, then, is an assurance
that no linguistically motivated tightening of our fragment 7PE could affect
the above complexity result.

At first sight, this seems an impossible demand, since we cannot know in
advance what refinements might be made to our English grammar. However,
it turns out that the proof strategy employed above yields an easy solution.
Obviously, eliminating marginal or awkward sentences from 7PE can only
cause the fragment to contract, and so cannot increase the computational
complexity of its satisfiability problem. The only possibility we must guard
against is that such a contraction might invalidate the NEXPTIME-hardness
result. And this is where the details of the proof of that result come to our
rescue. For that proof depends on the encoding of tiling problems by the
formulas ¥1—Y14, Y1, Yy, Yy and ;. All we need do then is to examine
these formulas one by one and check that they can be generated, using the
grammar presented above, by good, idiomatic English sentences. If so, we
know that any linguistically motivated restrictions on 7PL will still include
these sentences, and will assign them the advertised satisfaction-conditions.
Thus, the NEXPTIME-completeness result will still apply to any linguistically
motivated tightening of the grammar.

The formulas ¥ —1)3, given in (57)—(59), consist of conjuncts of the forms
{ao} ()T, 1l o) T, [efHadi }s(ai ) T, [0fH{a 1) T
But these formulas express the meanings of the unobjectionable 7PE-sentences
(67) During the occurrence of ag, z occurred
(68) During every occurrence of al', |, p! occurred
(69) During every occurrence of al', a},, occurred after the occurrence
of a7,

(70) During every occurrence of a?, z occurred during the occurrence of

1
Qjy1-

For added naturalness, we have fronted one preposition-phrase in each of
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these sentences; this facility could easily be incorporated into our grammar,
of course.

Formula v}, given in (60), additionally involves conjuncts of the forms

{iHa YD) T, {EHa BT, {d(e)T,  {l}A{ad}a)T;
these formulas express the meanings of the unobjectionable 7PE-sentences

(71) During the occurrence of Il, I!,, occurred while a? occurred

(72) During the occurrence of I}, I; occurred after a? occurred

(73) a} did not occur before I; occurred

(74) Before I; occurred, z occurred during the occurrence of a?.

Formulas 15 and g, given in (61)—(62), additionally involve conjuncts of the
forms

[a]=(ai) T, [afllanJ(d) T, [ap)(~4d]) T v ~(d}) T);

(3

these are generated by the unobjectionable 7PE-sentences

. 7 .
(75) During every occurrence of a’, a? did not occur
(76) During every occurrence of a?, d? occurred during every occurrence of
0
a/m
(77) During every occurrence of al,, either d? did not occur or d} did not
occur.

For added naturalness, we have helped ourselves to the word either, which
could be easily incorporated into our grammar.

Formula v, given in (63), presents no new difficulties. Formula g, given
n (64), additionally involves conjuncts of the forms

()T, U@ Y lad ) Ts I <) T
these are generated by the unobjectionable 7PE-sentences

(78) fo occurred

(79) During every occurrence of f, aiﬂ’rl did not occur before the first oc-
currence of af

(80) During every occurrence of f, 91111 did not occur before the occurrence

7
Of fi’}kl‘

In the presence of the preceding formulas, formula 9, given in (65), can be
equivalently expressed as a conjunction of formulas of the forms

[t] (=(eo) T V(er) TV...V{e)T), [t]({e) T V{e)TV...V{e)T),
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for various collections of event-atoms eq, . .., ¢;; these correspond to the TPE-
sentences

(81) During every occurrence of ¢ either ey did not occur or e; occurred or
...or e; occurred
(82) During every occurrence of ¢ either ey occurred or ... or e; occurred.

These sentences are certainly grammatical. Admittedly, huge disjunctions might
be said not to belong to English as she is spoken; however, it is a simple matter

to convert the relevant formulas equisatisfiably into formulas where disjunc-

tions involve no more than three disjuncts, thus avoiding even this degree of

unnaturalness. Formulas ¥10—14, Y7, ¥, ¥y and ¢ present no new difficul-

ties. We conclude that no linguistically motivated tightening of our fragment

TPE could change the above complexity result. Determining the satisfiability

of sets of sentences featuring the temporal constructions studied in this paper

is indeed NEXPTIME-complete.

7 Conclusion

In this paper, we defined the fragment of temporal English 7TPE, together
with a matching interval temporal logic 7PL. The satisfiability problem for
TPL was shown to be complete for the complexity class NEXPTIME. In
view of the intimate connection between 7PE and TPL, we take this result
to indicate the complexity of performing logical deductions in the fragment
of temporal English in question, and thus to give a rough measure of the ex-
pressive resources which the grammatical constructions it features—primarily,
temporal prepositions—put at speakers’ disposal. By the standards of most
interval temporal logics, 7PL has low complexity. In the search for logics
of limited expressive power, fragments owing their salience to the syntax of
natural language are a good place to look.

We endeavoured throughout to be faithful to the facts of English usage while
retaining a reasonably perspicuous formal system, amenable to mathematical
analysis. These two aims are to some extent antagonistic, of course. Natural
languages are products of human biology and human civilization, and as such
do not always admit of a comfortable mathematical description. Thus, even
the simple fragment of English considered here skirts many delicate issues
of syntax, and includes sentences about whose exact semantics even native
speakers are uncertain. In this situation, we have occasionally had to legislate,
sometimes in whatever way is mathematically most convenient. Nevertheless,
while faithfulness to the linguistic data is a virtue, it is all too easy, in pursuit
of this virtue, to lose sight of the remarkable logical regularity of the con-
structions studied here; and it is this regularity that has been the focus of
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our attention. To what extent this analysis can be usefully extended to cover
other temporal constructions in English (and other natural languages), and
what effects such extensions will have on the complexity of satisfiability in the
accompanying logic, remain open.

Appendix: The grammar rules for 7PE

Syntax Open-class lexicon

S — S, PP NPp — Detp, N S% — an interrupt was received/int-rec
S — S, Conj, S NL — N SY% — the main process ran/main

S — SY Ni — OAdj, N° .

S — Neg, S° PP — Pxp, NPp  N% — cycle/cyc

Sp — S° PP — Psp, Sh N% — run of the main process/main
St — S% OAdv

Closed-class lexicon

Dety — every/| ] OAdj — first/f OAdv — for the first time/ f
Dets — some/( ) OAdj — last/! OAdv — for the last time/I
Det) — the/{ } Px,p — during/= Pg, — while/(=,{ })

Neg — not/—| PS,! — when/(=,{ })

Conj — and/A P, — until/< Psy — whenever/(=,]])
Conj — or/V Pn,; — before/<  Pg, — until/(<,{ })

P, — after/> Pg1 — before/(<,{ })
Pgy — after/(>,{ }).
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