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Abstract

This paper presents a calculus for mereotopological reasoning in which two-dimensional spatial re-
gions are treated as primitive entities. A first order predicate language £ with a distinguished unary
predicate c¢(z), function-symbols +, . and — and constants 0 and 1 is defined. An interpretation
R for L is provided in which polygonal open subsets of the real plane serve as elements of the
domain. Under this interpretation the predicate c(z) is read as “region z is connected” and the
function-symbols and constants are given their meaning in terms of a Boolean algebra of polygons.
We give an alternative interpretation & based on the real closed plane which turns out to be iso-
morphic to R. A set of axioms and a rule of inference are introduced. We prove the soundness and
completeness of the calculus with respect to the given interpretation.

1 The problem

As anyone who has read a book on point-set topology knows, Euclidean spaces contain regions which
could not possibly be useful for representing the shapes of everyday objects. Fractal dust, infinitely
convoluted boundaries and other pathological constructions simply do not arise in the world of desks
and chairs arranged in a room, or of plots of land drawn on a map, or of electronic components etched
on a silicon chip. They are mere artifacts of a model of space according to which all spatial entities are
sets of points, and all spatial properties are analysable in terms of the metric relations between points.

Perhaps, then, we can develop more efficient and parsimonious ways of representing and reasoning
about space by taking regions, rather than points, as primitive. The best known theory of this kind is
Tarski’s [12] axiomatization of Euclidean geometry based on spheres. But the policy of taking regions
as primitive is perhaps most attractive when considering problems involving mereological (part-whole)
and other topological notions—that is, where no metric information is to hand. Recent interest in
“mereotopology”, much of it from within the AI community, dates from the work of Clarke [5],[6],
following earlier work of Whitehead [13]. See, for example, Randall, Cui and Cohn [11], Gotts, Gooday
and Cohn [7], and Borgo, Guarino and Masolo [4].

A mereotopological calculus is an axiomatic system in a formal language whose variables are to
be thought of as ranging over spatial regions, and whose non-logical constants are to be thought of as
expressing primitive topological properties and relations involving these regions. Mereotopological calculi
vary as to which primitives they employ, and the axioms they propose. Clarke’s calculus has a single
binary relation of “connection” with the gloss that two regions are connected if they share a common
point. Randall, Cui and Cohn also use a binary connection relation, but take two regions be connected if
their closures share a common point. Borgo, Guarino and Masolo, by contrast, use a primitive “part-of”
relation (the mereological component) together with a primitive property of “self-connectedness” (the
topological component). However, all three approaches are motivated by the prospect of an adequate
account of space in which regions are not identified with sets of points.

With any such calculus, the question arises as to whether the proposed axioms constitute a good
theory of space—one that will lead to correct inferences about the everyday situations whose spatial
features the calculus purports to model. More technically, we must ask whether physical space—at
least approximately, and on everyday scales—is a model of the proposed axioms under the intended
interpretation, and if so, how completely those axioms capture its features. This question has been
answered for Clarke’s system by Biacino and Gerla [2], who prove a completeness result guaranteeing
that the regular sets of a Euclidean space are a model of Clarke’s axioms (regular sets are explained
below). This result is of interest because, whatever their faults, IR? and R® are at least known to
be workable models of physical space. Unfortunately, as Biacino and Gerla note, under the proposed
interpretation, the language really allows only mereological relations to be expressed. In particular,
Clarke’s suggestions for capturing topological notions such as, for example, the relation of two objects’
touching tangentially, do not have the desired effect. So although Biacino and Gerla’s theorem is the
kind of result needed to validate a mereotopological calculus, the particular interpretation to which it
applies is too weak to be topologically interesting.

Another approach to mereotopology in which semantics plays an important part is taken by Asher
and Vieu [1]. They present a calculus—also based on a binary relation of connection—together with



a formal semantics in which the individuals are identified with certain subsets of a particular type of
topological space. Soundness and completeness proofs are duly provided. Unfortunately, Asher and
Vieu’s topological spaces are strange objects, far removed from the standard Euclidean model of space.
(In particular, as Asher and Vieu point out, these spaces are not dense.) While Asher and Vieu would
reply that their aim is to present a mereotopological theory responsive to the demands of modelling
cognition and natural language, rather than to reconstruct the mereotopology of Euclidean space, the
radical nature of their models makes the axioms hard to assess.

In this paper, we present a mereotopological calculus for 2-dimensional spatial reasoning. Our axiom
system, though considerably more complex than others that have been proposed, has the advantage of
being sound and complete with respect to a familiar and topologically non-trivial spatial interpretation.
By familiar, we mean a spatial interpretation based on an ontology known to provide a workable model
of physical space. By topologically non-trivial, we mean one under which the formulae of the calculus
express a wide range of topological (not just mereological) properties and relations. Thus, although
regions are still regarded as primitive within the calculus, the axiom system is shown to characterize a
familiar spatial ontology of proven utility.

2 A mereotopological calculus

2.1 The syntax of L

Formally, £ is a first-order language with equality, having the non-logical constants ¢(z), 0, 1, —, + and
., where ¢(z) is a 1-place predicate, 0 and 1 are constant symbols, — is a 1-place function symbol and
+ and . are 2-place function symbols. In other words, £, is the language of Boolean algebra with a
distinguished predicate ¢(z).

Having defined our mereotopological language, we give a formal semantics in terms of familiar spatial
constructions. We stress that the calculus itself cannot talk about these constructions: as far as it is
concerned, spatial regions are primitive, and the interpretations of its non-logical constants are simply
functions and relations defined over these primitives. But the familiar interpretation will guarantee that
our mereotopological calculus really is an appropriate calculus for spatial reasoning.

In fact, we present two formal models for our mereotopological language £, which we denote R and
& and which turn out to be isomorphic. We begin with the more intuitive of the two.

2.2 The model ‘R

Our first task is to establish our domain of interpretation, R. It is now fairly standard in treatments of
mereotopology to confine attention to regular sets.

Definition 2.1 Let X be a topological space and x C X. Then the set |J{y C Xy open, yNz =0} is
an open set in X called the pseudocomplement of x, written x'. We say that x C X is regular if x = z".

The following well-known theorem underlies the importance of the regular sets to mereotopology. We
state it here without proof. (See, e.g. Johnstone [8], chapter I, section 1.13.)

Theorem 2.1 Let X be a topological space. Then the set of reqular sets in X forms a Boolean algebra
M (X) with top and bottom defined by 1 = X and 0 = 0, and Boolean operations defined by x.y = z Ny,
z+y=(xUy)" and —x =2z'.

Let IR? denote the real plane with the usual Euclidean topology. Our domain R will form a Boolean
subalgebra of M (IR?).

Before turning to its construction, let us pause to fix our intuitions about M (IR?). Basically, we can
think of regular sets in IR? as open sets with no internal cracks or point-holes (compare fig. 1a with
fig. 1b). The product, .y, of two regular sets z and y is simply their intersection, which is guaranteed to
be a regular set. The sum, x +y, of two regular sets z and y is a little more complicated; very roughly, it
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Figure 1: Some regular sets of the plane and their Boolean combinations

is the union of z and y with any internal boundaries removed (fig. 1c). Finally, the pseudocomplement,
—x, of a regular set x is simply that part of the plane not occupied by x or its boundary.

Any line in the plane cuts the plane into two connected, open sets, called half-planes. It is easy to see
that these sets are regular, with each being the pseudocomplement of the other. Hence, we can speak
about their sums, products and complements in M (IR?).

Definition 2.2 A basic polygon in IR? is the intersection of finitely many half-planes in IR?.
A polygon in IR? is the sum, in the Boolean algebra M(IR?), of any finite set of basic polygons in R?.

We denote the set of polygons in IR? by R. Fig. 1d shows some polygons. Note that polygons, in this
sense, need not be connected; nor need their complements be. Furthermore a polygon is not necessarily
bounded. Note that ) and IR? also count as polygons. We have the following result:

Lemma 2.1 R is a Boolean subalgebra of M(IR?).

Proof: We need only show that R is closed under the Boolean operations. But this is obvious given
the distribution laws for M (IR?). |

Idealizing slightly, R is the set of regions recognized by most computer systems specialized for handling
plane spatial data, such as geographic information systems (GISs). That is, such systems are limited to
regions whose boundaries are made up of finitely many lines and line segments. Experience has shown
that, for many practical purposes, no loss of useful expressive power results from limiting attention to
polygons.

At last, then, we can define our familiar model fR.

Definition 2.3 The model R has the domain R and the following interpretations of the predicate, con-
stant and function symbols in L:

1. [e(z)]® = {r € R|r connected }
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3. Forallr € R: —%(r) = —r

4. For all r,ry € R: +%(r1,m2) =r1 + 72 and B(ry,r3) = r1.m0

Thus, the function symbols +, . and — have the obvious interpretation in terms of the Boolean
algebra M(IR?), and a region satisfies the predicate c(x) just in case it is connected in the usual sense
of point-set topology. (Recall that an open set is connected if and only if it is not the union of any
two disjoint, open, non-empty sets.) It turns out that, for disjoint, connected polygons r and s, r + s is
connected just in case r and s have a (non-trivial) edge in common; hence, the formula c¢(z) Ac(y) Az.y =
0Ac(z +1y) says (assuming z and y to be non-zero) that z and y are disjoint, connected regions touching
externally along one or more edges. As a shorthand, if two regions satisfy the formula ¢(z + y), we say
that they are connected to each other.

To show that the pains we took to define our domain of interpretation were not in vain, consider the
following formula of L:

Vx1VaaVrs /\ c(z;)) Ne(zy +x2+x3) | = (e(xr +22) V(o +¢3)) | - (1)
1<i<3

This formula asserts that, if the sum of three connected regions is connected, then the first must be
connected to at least one of the other two. Question: should this formula be a theorem of our mereotopo-
logical calculus?

The answer is that it depends on what, exactly, we count as regions. Formula (1) is true for the
domain R (in fact, for any domain of reasonably well-behaved regions), but false for regular sets of the
plane in general. For consider the regions a;, as and a3 defined by

a = {(@y)|-1<z<0; -1-z<y<l+az}

az = {(z,y)0<z<1l; -1-2z<y<sin(l/z)}
{(z,y)0<z<1;sin(l/z) <y<l+z},

as

and depicted in fig. 2. It is not difficult to show that a;, as and ag are regular and connected, that
a1 + a2 + as is the interior of the large triangle in fig. 2 and so is connected, but that neither a; + as nor
a; + as is connected.

In fact, for the purposes of practical mereotopological reasoning, (1) is quite a sensible formula to have
as a theorem of our calculus, since—as it turns out—the only counterexamples are rather pathological
and seem to be artifacts of the Euclidean model of space rather than anything that one could come across



in real life. (Adopting such a stance is very much within the spirit of mereotopological research in AI,
where the ability to reason efficiently in everyday situations is in focus.) But this case does demonstrate
the importance of having a precise characterization of the regions our mereotopological calculus talks
about: we ought to be clear, if (1) is a theorem of our calculus, what interpretations it is true in.

2.3 The model &

Before axiomatizing our mereotopological calculus, we present an alternative interpretation, based on
the closed plane R* U {00}, under the usual topology, hereinafter denoted Z2. For technical reasons, we
shall be working mostly in the closed plane.

Every line in the closed plane is taken to pass through the point co. It is easy to show (e.g. by
considering the stereographic projection of the sphere onto the plane) that every line divides Z? into
two regular connected sets, which we shall again refer to as half-planes. Since lines contain the point oo,
half-planes in the closed plane are literally the same sets of points as half-planes in the open plane.

Definition 2.4 A basic polygon in Z?2 is the intersection of finitely many half-planes in Z>.
A polygon in Z?2 is the sum, in the Boolean algebra M (Z?), of any finite set of basic polygons in Z2.
We denote the set of polygons in Z2 by S.

Again, it is easy to show that S is a Boolean subalgebra of M (Z?2), so we define the closed-plane model
& as follows.

Definition 2.5 The model & has the domain S and the following interpretations of the predicate, con-
stant and function symbols in L:

1. [e(z)]® = {r € S|r connected }
2.09=0;1°=22
3. Forallr € S: —S(r) = —r

4. Forall ry,ry € S: +8(ry,72) =711 + 19 and .S(ry,re) = r1.79.

2.4 The models YR and G are isomorphic.

Denote the set of open sets in Z* (under the usual topology) by Q. Let & =« \ {oo} for all z € Q and
let O = {#|z € Q}. Then (R? ) is the usual topology on the open, real plane. Moreover,  C Q. If
u € Q, then the pseudocomplement u* of u in Qisin general different to the pseudocomplement u’ of u
in ; and the property of being regular in ) is different to the property of being regular in 2. However,
we have the following results:

Lemma 2.2 If z € ), then £* = .

Proof: Straightforward. o

Lemma 2.3 If z € Q is regular in ), then & is reqular in Q.

Proof: By two applications of lemma 2.2, ** = 7" = & O

Lemma 2.4 Ifu € O is reqular in Q, then there exists an x € Q regular in Q such that T = u.



Proof: Recall that Q) C Q. Tt is easy to show that u €  implies that «” is regular in . But again, by

5 kK

lemma 2.2, v = 4™ = u™* = u. O

Thus, although R and & are based on non-homeomorphic topological spaces, we have:
Lemma 2.5 The models R and & are isomorphic.

Proof: Lemmas 2.3 and 2.4 show that f : z — £ maps the set of regular sets in {2 onto the set of regular
sets in 0. And since no two regular sets in 2 differ by a single point, this mapping is 1-1. Moreover,
given the fact that, for all z,y € Q, zNg = z Ny, lemma 2.2 further guarantees that f induces a Boolean
algebra isomorphism taking M(Z2?) to M(IR?). And since f maps half-planes in Z? to half-planes in
R?, f: S — R is also a Boolean algebra isomorphism. Finally, we observe that z € Q is connected in Q
iff  is connected in Q, so that f: & — R is a model isomorphism. O

It follows of course that Th(R) = Th(&).

3 Axiomatization

Our mereotopological calculus, $, consists of a set of axioms and rules of inference stated in £. The
following abbreviations simplify the axioms.

1. Let x < y stand for z.y = z. Intuitively, z < y states that x is a subset of y.

2. Let j(z) stand for ¢c(z) Az #0Ac(—z) A —z # 0. In & (but not in ) we can think of j(z) as
stating that z is a Jordan region. (See lemma 4.10.)

. Ifn>1let 1 ®...0 x, =y stand for

Ti+...+Tp=yA /\ zi.x; =0 A /\ (c(zi) Nz #£0)
1<i<j<n 1<i<n

Intuitively, 1 & ... ® x, = y states that z1,...,z, form a partition of y each element of which is
connected.

4. If n > 1, let B,(x) stand for

dz1...3z2, /\ c(zi) A (x = Z Zz)

1<i<n 1<i<n

Intuitively, 8, (z) states that x can be formed by summing n connected regions.

The axiom system $ consists of the axioms and rules of inference of a complete system of first-order logic
with equality, together with the following special axioms, axiom schemata and rules of inference.

1. The usual axioms of non-trivial Boolean algebra with Boolean operations +, . and —, and (distinct)
top and bottom elements 1 and 0.

2. VmVsz((c(a: +y)Acly+2)Ay£0) 2 clz+y+ z))
3. Where n > 1, the axioms

Va:l...\fa:n((c Z z; | A /\ c(z;)) — \/ c(x1 +x,))

1<i<n 1<i<n 2<i<n
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a) Axiom 8 b) Axiom 9

Figure 3: Instantiations of axioms 8 and 9

Where n > 1, the axioms

—|E|CL'1

x5 /\ (c(zi) Nzi Z0) A /\ (e(zi + zj) Nxjx; =0)

1<i<5 1<i<j<5

Jzg /\ (c(z;) Az £ 0) A /\ zixj =0A /\ c(z; + x5)

1<i<6 1<i<j<6 1<i<3
- - - 4<j<6

Va:Vy‘v’z((c(a:) ANe(y) Ae(z) Ae(z +y) Ae(z + 2)A
a:.y:O/\m.z:O/\m#O) —
FuFv(udv =xAc(u+y)/\c(u+z)/\c(v+y)/\c(v+z)))

vavy ((§(@) A §() Aj@ +y) Aoy =0) =
FuTv(udv =z Aclu+y) A-clu+ (—z).(—y))A
(v + (=2)-(=)) A (v +3)))

. The infinitary rule of inference

{Va(Bn(z) = d(x))|n > 1}
Vrd(x)

Axiom 2 ensures that two connected regions with a nonempty intersection have a connected sum. Axioms
3 and 4 impose restrictions on n-tuples (n > 1) of connected regions whose sum is connected. Specifically,
axiom 3 states that every region in the n-tuple must be connected to some other region in the n-tuple;



axiom 4 states that we can always find a region in the n-tuple which, when removed, leaves an (n — 1)-
tuple whose sum is connected. Axioms 5 and 6 reflect the non-planarity of the graphs K5 and Ks 3,
respectively. Axiom 7 says that the entire space is connected. Axioms 8 and 9 guarantee the existence
of enough regions in the model. Simple instantiations of axioms 8 and 9 are shown in figure 3 where
region z is indicated by light grey areas. The precise content of the axioms is explained in the proof of
theorem 5.2. Finally, the infinitary rule of inference serves to guarantee the existence of models in which
every region is the sum of finitely many connected regions.

The formula ¢(0) is a theorem of the system $. (This fact will be useful in the sequel.) We give a proof
here of this as an illustration of the infinitary rule of inference.

Lemma 3.1 kg ¢(0).

Proof: By the axioms for a non-trivial Boolean algebra, we have, for all n > 1:

Fg VaVa, .. ‘v’xn(( /\ c(z) A (z = Z z;) A /\ (z; =0)) — c(x))

1<i<n 1<i<n 1<i<n

|—$Va:V:c1...V.7:n(( /\ c(z) A (z = Z ;) A /\ (a:i:0))—)(x;£0)).

1<i<n 1<i<n 1<i<n

Hence,

g \7’:1:(3:1:1 -3z ( /\ c(zi) A (z = Z z;)) = (c(z) V (z # 0)))
1<i<n

1<i<n
Using the abbreviation 3, gives us
ks Vo (Ba(@) = (c(@) V (@ #0)))
for all n > 1. By the infinitary rule of inference 10 we get
s Va(c(z) V (z # 0))
and hence Fg ¢(0). m|
Let us denote the set of sentences (closed formulae) of £ which are theorems of the system $ by Tg.

The main technical result of this paper is to show that the axiom system $§ is sound and complete with
respect to both of the familiar interpretations given above. In other words:

Ty = Th(R) = Th(S) .

Further model theoretic aspects of the axiom system are investigated in [10].

4 The domain S and its properties

In this section, we establish some basic facts about S needed for the soundness and completeness proofs
below. Many of these facts are obvious and some readers may therefore wish to skip to the next section.
However, the notation introduced in definitions 4.1, 4.2, 4.3, 4.4 and 4.5 will be used in subsequent
sections.



4.1 Results concerning regular sets

Definition 4.1 If z is any set in a topological space, let [x] denote the closure of x and (z)° the interior
of x. We write F(x) to denote the frontier of x, namely [z] \ ([z])°.

We will use lemmas 4.1, 4.2 and 4.3 repeatedly in the sequel (sometimes without mention).
Lemma 4.1 Let x be a subset of a topological space X. Then z' = X \ [z] and 3" = ([z])°.

Proof: Straightforward. a

Hence, z is regular iff z = ([z])°; and if z is any set, then 2" C [z].

Lemma 4.2 Let X, Y be topological spaces and v a homeomorphism from X onto Y. Let a,b be regular
sets in X. Then v(a) and v(b) are regular sets in 'Y with: (i) v(a.b) = v(a).v(b); (i) v(—a) = —v(a);
and (iii) v(a +b) = v(a) + v(b).

Proof: Straightforward. O

Lemma 4.3 Let ay,a2,a3 be regular sets of a topological space X with ai + as,a2 + as connected and
a2 # 0. Then a1 + a2 + a3 is connected.

Proof: Note that a; + az + ag = ((a1 + a2) U (a2 + a3))"”. The lemma then follows from the fact that
(a1 + a2) U (a2 + a3) is connected and the standard result that, if z is connected and = C y C [z], then
y is connected. O

We now introduce some concepts which will be used repeatedly in the proofs to come.

Definition 4.2 Let X be a topological space. Let M be any Boolean subalgebra of M (X). If A is a finite
subset of M and the elements of A are pairwise disjoint and sum to a € M, A is said to be a partition
of a in M. If, in addition, every element of A is connected, we call A a connected partition of a in M.
In the case a = 1, we refer to A, simply, as a (connected) partition in M.

It is easy to see that, if z is regular, then [z] is the disjoint union of z and F(z). The following (rather
technical) lemma will be useful later.

Lemma 4.4 Let X be a topological space and ai,...,a, a partition in M(X). Let m be such that
1<m<n. Then

a1+ ...+ ap =a1U...Uay U{p| p € F(a;) for somei (1 <i<m),
p & F(a;) for any j (m < j <n)}.

Proof: Denote the right hand side of the above equation by z. Suppose p € [a;] for some j (m < j < n).
Then p € F(a;) or p € ([a;])° = a; since a; is regular. If p € a;, then p & [a;] for any i (1 <4 < m) by
the disjointness of aq,...,a,. Either way, then, p € x.

Suppose p ¢ [a;] for any j (m < j < n). Then certainly p € F(a;) for any j (m < j < n). Moreover,

ai,...,0n sum to 1, so [a;] U ... U[a,] = 1. Hence p € [a;] for some ¢ (1 < i < m), so, again, p € F(a;)
or p € ([a;])° = a; since a; is regular. Either way, p € z.
Hence z = (1\ [am+1]) N ... N(1\[an]). That is, z = (—am41). --. (—an) =a1 + ...+ anm. O



4.2 Basic properties of S

We begin with a lemma on which much of the subsequent analysis depends.
Lemma 4.5 Any element of S is the sum of finitely many connected elements of S.

Proof: Since half-planes in the open plane are convex sets, so are basic polygons. So every element of
R is the sum of finitely many connected elements of R. The result then follows by lemma 2.5. O

It is easy to see that this property does not hold for all Boolean sub-algebras of M(Z?2), even where
the elements are relatively well-behaved. For example, if  and y are Jordan regions (i.e. topologically
equivalent to the unit disk), the intersection z.y can have infinitely many disconnected parts. It is
precisely to prevent this possibility that we restrict ourselves to polygons.

As usual, we take a component of a set to be a maximal, nonempty, connected subset of that set.

Lemma 4.6 Let r € S and let ¢ be a component of r. Then ¢ € S. Moreover, r equals the sum of its
components.

Proof: By lemma 4.5, let ¢4,...,c¢, be connected elements of S such that r = ¢ + ... + ¢,. For all
i (1 <14 < n),if ce; # 0 then, by lemma 4.3, ¢; + ¢ is connected. If, in addition, (—c¢).c; # 0, then
¢ < ¢+ ¢;, contradicting the maximality of ¢. Thus, if c.c; # 0, then (—¢).c; = 0. Hence ¢ can be
expressed as the sum of various ¢; (1 <i < n), and ¢ € S. The rest of the lemma is trivial. m|

Connected partitions play an important role in understanding S. In particular, we have:

Lemma 4.7 Letry,...,r, € S. Then there ezists a connected partition C in S such that r; is expressible
as a sum of various ¢ € C for eachi (1 <i<mn).

Proof: Let C be the set of all components of all non-zero products of the form +r;. ... . £7,. By
lemma, 4.6, these components are elements of S, and form a connected partition such that every r; can
be expressed as a sum of various C. O

4.3 Connected partitions and graphs

It will come as no surprise that we can picture connected partitions in S as the faces of piecewise linear
graphs drawn in the closed plane.

Definition 4.3 A graph* G is a plane graph in the closed real plane having no nodes of degree 0, together
with a (possibly empty) set of nodeless edges. These nodeless edges are all Jordan curves intersecting no
other edge of G (nodeless or otherwise).

An edge of a graph* is piecewise linear if it lies on finitely many lines. A graph* is piecewise linear if
each of its edges is.

Hence, all plane graphs in the closed plane are graphs*. Fig. 4 shows a graph* (where the page represents
the whole closed plane). This particular graph* has two nodeless edges and no nodes of degree 2. Finally,
we observe that Euler’s formula for a k-component graph, namely n — e + f = k + 1, applies also to a
k-component graph*, where nodeless edges do not count as components.

If G is a graph*, we denote by |G| the set of points in the edges and vertices of G. We say that two
graphs* G and G’ are topologically equivalent if there exists a homeomorphism v of the closed plane onto
itself mapping |G| to |G’|. A graph* is said to have an isthmus if it contains an edge whose removal
would increase the number of its connected components.

The following theorem establishes the importance of piecewise linear graphs*.
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SEjr=7

Figure 4: A graph* with two nodeless edges

Theorem 4.1 Let r1,...,r, be a connected partition in S; then there exists a finite piecewise linear
graph* with no isthmuses whose faces are precisely ri,...,r,. Conversely, let G be a finite piecewise
linear graph* with no isthmuses; then the faces of G form a finite connected partition in S.

Proof: Consider all the half-planes involved in the construction of elements ry,...,7,. The lines
bounding these half-planes form a finite graph* Gy in the obvious way, and the faces of G* must form
a connected partition of basic polygons, say, by, ...,bx. Moreover, each r; (1 <4 < n) can certainly be
expressed as a sum of various b; (1 < j < N). By renumbering if necessary, let 71 = by + ...+ by, for
some m (1 <m < N).

Now remove from Gg all nodes p such that p ¢ J{F(bx)m < k < N} and all edges e such that
e £ J{F(br)|m < k < N}. The result will be a graph* G; in which the faces b, ..., by, are merged into
a number of faces fi,..., f; for some [ (1 <1 < m). The union of these faces will then be the set

biU...Uby U{p€|G|:pe F(b) for some i (1 <i<m),
p & F(b;) for any j (m < j < N)}.

By lemma 4.4 this set is just by + ...+ by, = r1. Since r1 is connected, I = 1 and Gy contains the face
f1 = r1. Proceeding in the same way for ro,...,r, yields a graph* G = G,, with faces r1,...,7,. That
G has no isthmuses follows from the fact that each face of G is regular.

Conversely, suppose that G is a finite piecewise linear graph*; then the edges of G lie on finitely many
lines ly,...,l,. Consider the graph G* made up of all of these lines (extended in both directions).
Each face of G* is a basic polygon; hence each face f; of G will be divided into a finite number of
basic polygons, say, b;,1,...,bim; by a finite number of lines. Since G has no isthmuses, f; is a regular
set, and it is easy to check that no smaller regular open set contains b;1,...,b;m;. In other words,
fi=biai+...4+bim €8S. O

Lemma 4.8 Let 1,72 € S be nonempty, disjoint and connected. Then r1 + ro is connected iff some
line-segment lies on the frontiers of both r1 and ra.

Proof: By theorem 4.1 (p. 11) 7y and ry are faces of some finite graph* G.

If o is a line segment s.t. |a| C F(r1) N F(rz), by the finiteness of G, we can find some line segment
with |3| C || such that 3 lies on the boundary of no other face of G. It follows that |3| C r1 + ra, so
r1 Ury U |B] is path-connected, hence connected. Since 1y Ura U |B] Cr1 4+ 12 Cre Ura U |B|], 1 + 72 is
connected.

Conversely, if F(r1) N F(r2) contains no line segment, it is either a finite set of isolated points or is
empty. It is easy to show that, in either case, r; + 79 = r1 U ry and so is not connected. O
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Definition 4.4 Let x be any open set in Z2. An end-cut in  is a Jordan arc lying in x except for one
of its endpoints. A cross-cut in x is a Jordan arc lying in x except for both of its (distinct) endpoints.
We say that F(x) is accessible from x if, for any p € F(x) and any q € x, there is an end-cut in x from
p toq.

Lemma 4.9 Let v € S be connected. Let p € F(r) and q € r. Then there exists a piecewise linear
end-cut in r from p to q.

Proof: By theorem 4.1, r is a face of some piecewise linear graph*. The lemma is then obvious. O

Hence, if r € S is connected, then F(r) is accessible from 7.

Lemma 4.10 Letr € S. Then r is a Jordan region iff r is connected and nonzero with a connected and
nonzero complement.

Proof: Suppose r is connected and nonzero with a connected and nonzero complement. The converse
of Jordan’s theorem states that if a closed set has two complementary domains in the closed plane,
from each of which it is accessible, then it is a Jordan curve. But F(r) = F(—r) has r and —r as its
complementary domains, so must be a Jordan curve. The other direction is trivial. We remark that this
lemma relies on the fact that our underlying topological space is the closed plane. O

Lemma 4.11 Letr,s € S be disjoint Jordan regions. Then if —(r + 8) is connected, so is F(r) NF(s).

Proof: If F(r) N F(s) has more than one component, lemma 4.9 guarantees that we can construct a
Jordan curve in [r + s] with points in —(r + s) lying on either side of it, thus contradicting the connect-
edness of —(r + s). O

Lemma 4.12 If ry,r9 and r3 are disjoint connected elements of S, then there exist at most two points
lying on the frontiers of more than two of these regions.

Proof: We suppose that p;, p. and ps are distinct points all lying on the frontiers of 1,72 and r3 and
derive a contradiction. Choose points ¢1, g2, qs such that ¢; € r; (i = 1,2,3). Since ry, ro and r3 are
polygons, it is clear that for ¢ = 1,2,3, we can draw three end-cuts in r;, say oy,1, o;2 and oy 3 from
the point ¢; to the points p;, p» and ps, respectively. Since we can choose «;,1, ;2 and a;3 so that
they intersect only at g;, this gives us a planar embedding of the graph K3 3, which is well-known to be
non-planar (see, e.g. Bollobds [3], p.19). O

Lemma 4.13 Letr,s,t € S be Jordan regions such that r ®s®t =1 and r+s and r 4+t are connected.
Then F(r) N F(s) and F(r) N F(t) are Jordan arcs.

Proof: By lemma 4.11, F(r) N F(s) and F(r) N F(t) are connected. We show that F(r) N F(s) N F(t)
contains exactly two points, say p and ¢q. These points divide the Jordan curve F(r) into two Jordan
arcs. It is then easy to show using the connectedness of F(r) N F(s) and F(r) N F(t) that these Jordan
arcs are exactly F(r) N F(s) and F(r) N F(t).

That F(r)NF(s)NF(t) consists of at most two points follows by lemma 4.12. That F(r)NF(s) NF(¢)
is not the empty set follows from the connectedness of F(r) = (F(r) N F(s)) U (F(r) N F(t)). That
F(r) N F(s) N F(t) is not a single point follows from the fact that the connectedness of F(r) is not
destroyed by the removal of one point. O

The following general result on (abstract) graphs will be used in several places below.
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Lemma 4.14 Let G be a finite, connected graph. Then we can find a node of G which, when removed,
still leaves a connected graph.

Proof: Straightforward. O
Now let us apply this lemma to the analysis of S. Given connected, nonzero elements ry,...,7, € S,
we can form the abstract graph whose nodes are {rq,...,7,} and whose edges are {(r;,r;)|1 < i <

Jj <nand r; +r; is connected } (i.e. there are no multiple edges). This graph has the following useful
property.

Lemma 4.15 Let n > 1 and let r1,...,r, be nonzero, connected regions of S. Let G be the graph with
nodes {r1,...,rn} and edges {(ri,7;)|1 <i < j <n andr; +r; is connected }. Thenri + ...+ 1, isa
connected element of S iff G is a connected graph.

Proof: For the if-direction, we proceed by induction on n. If n = 1, the result is trivial. Otherwise, by
lemma 4.14, we can suppose WLOG that the graph G — {r;} formed by removing r; and all its edges
from G is connected. By inductive hypothesis, r» + ... + r, is connected. Since G is connected, there
must be some ¢ (2 < i < n) such that ry + r; is connected. Since r; # 0, r1 + r2 + ... + r,, is connected
by lemma 4.3.

For the only-if-direction, it suffices to show that, for all 7,5 (1 < i < j < n), there is a sequence
i =1i1,...,ix = j such that r;, +r;,,, is connected for all h (1 < h < k). Let p € r; and g € r;. By the
connectedness of 7y + ... + r,, draw a Jordan arc « from p to ¢ lying within r; + ...+ r,. Since F(r;)
is accessible from r;, a can be chosen so as to visit each region only once. And since the frontier of each
r; lies on finitely many lines, we may assume that a can be chosen so that all points on « lie on the

frontiers of at most two of the regions. Let the sequence of regions visited by a be r; =r4,,...,7r5, =r;.
Then for all b (1 < h < k), either 75, Nr;,,, # 0 or a visits a point p on a line segment shared by F(r;, )
and F(rq,,). Either way, r;, +r;,,, is connected. O

The following lemmas are immediate consequences of lemma 4.15.

Lemma 4.16 Letr,s € S be disjoint with r and —s connected. Let t be a component of —(r + s). Then
r 4+t is connected.

Proof: If r = 0, the lemma is trivial. Otherwise, let the components of —(r + s) be t1,...,t,. Obvi-
ously, t; + t; is not connected for all i,j (1 <i < j <n). But —s =11 +...+¢t, +r is connected. The
lemma follows from lemma 4.15. O
Lemma 4.17 Let ry,...,7, € S be connected with r1 + ...+ r, connected. Then, by renumbering if

necessary, r1 + ...+ rnp—1 is connected.

Proof: From lemma 4.14 and lemma 4.15. O

A result related to lemma 4.17 applies to Jordan regions in S. The proof involves a slightly stronger
version of lemma 4.14 but is otherwise similar. The details are routine and will be omitted.

Lemma 4.18 Letry,...,r, € S be Jordan regions with 1 + ...+ 1, a Jordan region. Then, by renum-
bering if necessary, r1 + ...+ rp—1 is a Jordan region.

4.4 Finiteness properties concerning S

The following lemmas are crucial to the completeness proof.
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Lemma 4.19

There exists a function e : IN — IN such that, for alln >0, if r1,...,r, are disjoint, connected elements
of S, then there exist at most e(n) points lying on the frontiers of more than two of these regions.

Proof: Since, by lemma 4.12 no more than two points can lie on the frontiers of any triple of regions,
the lemma follows by putting e(n) = n(n — 1)(n — 2)/3. O

Lemma 4.20 There exists a function f : IN — IN such that, for alln > 0, if A is any connected partition
in S with n members and G is o piecewise linear graph* with no nodes of degree 2 whose faces in the
closed plane are A, then the size of G is bounded by f(n).

Proof: It is easy to show that any node of degree greater than 2 of a plane graph with no isthmuses
must lie on the frontier of at least 3 faces. Then, by lemma 4.19, the number of nodes in G is bounded
by a function of n. The lemma then follows from Fuler’s formula. O

We then have:

Theorem 4.2 There exists a function g : IN — IN such that, for all n > 0, there exist at most g(n)
n-element connected partitions in S up to topological equivalence.

Proof: By theorem 4.1, page 11, any such partition is the set of faces of some piecewise linear graph*
with no isthmuses, hence of some piecewise linear graph* with no isthmuses and no nodes of degree 2.
By lemma 4.20, all such graphs* are of size bounded by f(n). Since it can be shown that every abstract
graph can be embedded in the closed plane in only finitely many ways up to topological equivalence, the
result follows immediately. O

We note in passing that theorem 4.2 is false for Euclidean spaces of higher dimension than 2. It is also
false for arbitrary partitions of M (Z?).

4.5 The homogeneity of S

The following lemmas are concerned with showing that S is, in a sense that will become clear below,
topologically homogeneous.

It is well-known that every finite plane graph G in the closed plane can be continuously deformed
into piecewise linear plane graph G'. (See, e.g. Bollobas [3], p.16.) Indeed, this can be done in such a
way that piecewise linear edges in G are unaffected. In effect, finite plane graphs can have their edges
‘straightened out’ by a homeomorphism, without affecting any points in those faces whose frontiers
involve only straight edges. These results can easily be extended to finite graphs*.

If v is a homeomorphism of the closed plane onto itself and = a subset of the closed plane, we write
V| to denote the restriction of v to z. Then we have:

Lemma 4.21 Let r,s be connected elements of S such that there is a homeomorphism u of the closed
plane onto itself taking r to s. Let rq,...,r, be a connected partition of r in S. Then there exists a
connected partition s1,...,5, of s in S and a homeomorphism v of the closed plane onto itself such that
V|—p = p|—r and v(r;) = s; for alli (1 <i<n).

Proof: Let the components of —r be ty,...,t,,. Since t1,...,tm,71,---,7, iS a connected partition,
theorem 4.1 guarantees that we can find a piecewise linear graph* G with no isthmuses having these
elements as faces. Now p maps r to s, hence the components of —r to the components to —s, hence G to
a graph* G' with faces u1,...,um, f1,-- ., fn, say, where fi1 +...+ f,, = s. But then we can continuously
deform G’ to a piecewise linear graph* G"" without affecting any points in —s or its frontier. Hence, the
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faces of G" will be u1,...,Um, 51,.-.,8n, say. Thus, there is a homeomorphism ' of the closed plane
onto itself which is the identity mapping outside s and which maps f; to s;, for all ¢ (1 <4 < n). Since
G" clearly contains no isthmuses, theorem 4.1 guarantees that the faces of G"” will be in S, so that
v = ' o u is the required homeomorphism. O

Lemma 4.22 Let r,s be connected elements of S such that there is a homeomorphism u of the closed
plane onto itself taking r to s. Letv' € S satisfy r' < r. Then there exists s' € S satisfying s' < s and a
homeomorphism v of the closed plane onto itself such that v|_, = p|—, and v(r') = §'.

Proof: By lemma 4.7, we can find a finite connected partition of r in S some of whose elements sum

to r'. The result then follows from lemma, 4.21. O
Definition 4.5 If ry,...,r, and s1,...,S, are regions of S such that there is a homeomorphism of the
closed plane onto itself mapping r; to s; for all i (1 <i < n), then we say that r1,...,r, and s1,...,5,
are topologically equivalent and write r1,...,7, ~ S1,...,5n.

Now we can state the lemma guaranteeing homogeneity of S:

Lemma 4.23 Letri,...,7n,81,-.-,8n,7 €S such that ri,...,7n ~ $1,...,5n. Then there exists s € S
such that r1,...,Tp, T ~ S1,..-,8n,S.

Proof: Let u be a homeomorphism of the closed plane onto itself mapping r,...,7r, to s1,...,8,. Let
c1,...,cn be all the components of all products of the form +7;. ... .+ 7, and let dy,...,dN be all the
components of all products of the form +s;. ... .+ s,. Then, by lemma 4.6, ¢1,...,cny and dy,...,dN
are connected partitions in S, and by renumbering if necessary, 4 maps ci,...,cy to di,...,dy. It
suffices to find s € S such that ¢;1,...,¢en, 7 ~d1,...,dnN,s.

For all j (1 <j < N), let ¢; = r.c;. By lemma 4.22, there exists a dj; € S and a homeomorphism v; of
the closed plane onto itself mapping c;- to d;- and equal to u outside c;. Then the function

v=|J{ule; 11 <5 <N} plr(eyu.or(en)

is a homeomorphism of the closed plane onto itself mapping ¢; to d; for all j (1 < j < N) and mapping
r=ci+...+cytos=d +...+dy €S as required. O

Lemma 4.23 has the immediate consequence that the model & is “topological” in the following sense:

Lemma 4.24 Let ry,...,7p,81,---,8, € S such that r1,...,7n ~ S1,-..,8,.- Then r1,...,1, and
81,---,8y Satisfy the same formulae in &.

Proof: We prove by induction on the complexity of ¢(z1,...,z,) that, if & | ¢[r1,...,rs], then
(G} '= ¢[Sl,...,$n].

If ¢(z1,...,2y,) is c(t), where ¢t is some Boolean combination of the variables z1, ..., z,, then the result
is guaranteed by lemma 4.2 and the fact that connectedness is a topological property.

The sole non-trivial recursive case is where @¢(x1,...,zy) is Iy (z1,...,2n,y). If & = P[r1,...,ra],
there exists r € S such that & | ¢[r1,...,rs,r]. By lemma 4.23, there exists s € S such that
Tl,..-yTn,T ~ §1,...,5n,5. By inductive hypothesis, & |= ¢[s1,..., Sn,s], hence & |= ¢[s1,...,sn)].

O
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b) Axiom 9

a) Axiom 8
Figure 5: Illustration of two axioms

5 Correctness

5.1 Soundness

Theorem 5.1 (Soundness) Let & be a set of sentences. If & |= ® then ® is §-consistent.

Proof: We show that all special axioms are true in & and that the special rule of inference is truth-
preserving in &.

Axioms 1: By lemma 2.1.
Axiom 2: By lemma 4.3.

Axiom schema 3: If some z; is zero, then the conditional is trivial. If every x; is nonzero, it follows
by lemma 4.15.

Axiom schema 4: By lemma 4.17.

Axiom 5:  Suppose ri,...,r5 satisfied the condition inside the existential quantifiers. Then by
lemma 4.9, we could construct a planar representation of the graph K5, which is known to be non-
planar (Bollobés [3], p.19).

Axiom 6: As for axiom 5, but with K3 3 instead of K.
Axiom 7: The closed plane is connected.

Axiom 8: Refer to fig. 5a). Let r,,ry,r. satisfy the antecedent of this axiom in &. We may assume
that r, and 7. are non-zero, since similar or easier arguments apply in the cases the cases where ry, =0
or 7, = 0. By lemma 4.8, there exist line-segments a, and a, such that |a,| C F(r;) N F(ry,) and
laz| C F(ry) NF(ry). Let p1,p2 € |ayl, 1,92 € || be distinct from each other and from the endpoints
of ay and a,. By lemma 4.9, let y; be a piecewise linear cross-cut in r, from p; to ¢;. Either ; partitions
ry into two connected regions r,, and r,, or r, \ |y1] is still connected. In the former case, ry,ry € S
by theorem 4.1, and it is easy to see that r, = r, @ r,. In the latter case, construct a piecewise linear
cross-cut vz in 7, \ |v1| joining pa and ga. Now ps and g lie in the same component of Z2\ (r; \ |11),
since pa € [y], g2 € [2] and 1 connects [y] and [z]. It is a standard result (Newman [9], chapter V.,
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theorem 11.7) that, if «y is a cross-cut in a nonempty open connected set U with endpoints in the same
component of Z?\ U then U \ |y| has two components. Hence 7 partitions r; \ |y1] into two connected
regions. Together, then, v, and 7, partition r, into two connected regions, r,, and r,. Again, by theorem
4.1 (p. 11) we have r,,r, € S, and it is easy to see that r, = r, ® r,. Since p1, p2, ¢1 and g2 are not
endpoints of ay or ., the pairs of regions {ry,ry}, {rv,ry}, {ru,r:} and {r,,r.} all have shared line
segments on their frontiers. It follows from lemma 4.8 that r,r,,r, satisfy the consequent of this axiom
in G.

Axiom 9: Refer to fig. 5b). Let r,,r, satisfy the antecedent of this axiom in &. Let s = —(r; + ry).
By lemma 4.10, r, and r, are Jordan regions such that r, + 7, and therefore s are also Jordan regions.
Thus by lemma 4.13, F(r;) N F(ry) is the locus of some Jordan arc a, and F(r;) N F(s) is the locus of
some Jordan arc 3, with the same end-points, say, p and ¢. By lemma 4.9, let « be a piecewise linear
cross-cut in r, from p to ¢. Since r, is a Jordan region, v partitions r, into two connected regions 7, .
By theorem 4.1, 1,7, € S, and it is easy to see that r, = r, ® r,. Moreover, since 1, + —T, = —Ty
and r, + —r, = —r, are connected and nonzero, r, and r, are Jordan regions. It is then easy to
verify (exchanging r, and r, if necessary) that F(r,) N F(ry) = |a| and F(r,) N F(s) = |B|, and that
F(ry) NF(ry) = F(ry) NF(s) = {p, q}. It follows from lemma 4.8 that r, and r, satisfy the consequent
of this axiom in &.

Inference rule 10: Suppose that & |= Vz(8,(x) — ¢(z)) for all n € IN. Let r € S. Then by lemma
4.5, there exist finitely many connected elements r1,...,rny € S s.t. r =711 + ... +rx. Hence, there is
an N such that & = Bn|[r], so that & |= ¢[r]. Hence & = Vzo(z). |

5.2 Completeness
Theorem 5.2 (Completeness) Let ® be a set of $-consistent sentences. Then & = P.

Proof: The strategy is to construct a model 2 of ® respecting the axioms and rules of inference of $,
and then to embed its domain A into the closed plane in such a way that 2l C &. By proving a result on
the way in which A is embedded in S, we then strengthen this relation to 2 < &, from which it follows
that & = @. For clarity, we break the proof up into four stages.

Stage 1: Let T be the set of $-consequences of ®. Since ® is $-consistent, T' is consistent. Consider
the set of formulae

Y(z) = {-Bn(2)|N > 1} .

Suppose that 6(z) is any formula consistent with 7. Since T' ¥ Vz—6(z) and since T is $-closed, the
rule of inference 10 guarantees T ¥ Vz(8n(x) — —0(x)) for some N > 1. Hence 6(z) consistent with T
implies T ¥ Vz(8(x) — —0n(z)) for some N—that is, T locally omits ¥. By the omitting types theorem,
there exists a countable model 2 of 7' omitting 3.

When discussing the model 2, we use the following conventions. If a,b € A, we write a + b, a.b, and —a
to denote elements of A in the obvious way. If a € A and A = c[a] then we say that a is connected. In
this context, then, the Boolean functions and the term “connected” do not have their normal senses, for
the elements of A are not (necessarily) spatial regions. However, since we will be considering only the
model 2 in this stage of the proof, no confusion need arise. If ay,...,a, € A are nonzero, connected and
pairwise disjoint, we denote their sum by a1 ®... @ a,. lf a1 ®... B a, = 1, we say that aq,...,a, form
a connected partition.

Having defined 2(, we now establish some of its basic properties. Since our objective is to embed 2 as a
submodel in &, we might as well assume that |A| > 2; otherwise this embedding is trivial.
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Since 2 is countable, let A = {a1, az,...}. And since |A| > 2, we may assume WLOG that a; ¢ {0,1}.
We first show that, for any initial segment, ay, .. .,a,, we can find ¢;,...,cny € A satisfying the formula
c1®...0cy = 1in A such that each a; (1 < i< n) can be expressed as a sum of some of the ¢i,...,cn.
For consider the M,, non-zero elements of the form:

e; = *ai. ... .+a, .
where +aq; is either a; or —a;. We call these e; the atoms generated by a1, ...,a,. Since 2 omits X, we
must be able to find, for each j (1 < j < M,,), a collection of connected elements d; 1, ..., d; N, summing

to e;. We now take any pair of these elements d; , and d;; such that d; ; + d;; is connected and replace
these elements by their sum d; x +d;,;. By repeating this process sufficiently often, we obtain connected
elements e; 1, ...,e; n; summing to e; such that no two of them have a connected sum. It follows from
axiom 2 that these e; ; are pairwise disjoint. If we denote by ci,...,cn all the e;;, for the various atoms
e; (ignoring any zero elements), it is easy to see that:

1. ¢1,...,cn form a connected partition.

2. the atoms generated by as,...,a,, and hence ay,...,a, themselves, are expressible as sums of the
Cly...5CN};

3. if ¢; and ¢; (1 <49 < j < N) are contained within the same atom e; generated by a1, ..., ay, then

¢; + c; is not connected.

We call a collection ¢y, ..., cn satisfying these three properties a mazimal connected partition generated
by ai,...,an.

So, given any initial segment aq,...,a, of A, let c§"’, .. .,cs\?n) be some maximal connected partition
generated by ai,...,an. (The (n)-superscripts are for clarity when we consider maximal connected

partitions corresponding to different initial segments of A.) We observe in passing that, since a; ¢ {0,1},
M, > 1, so that N, > 1 for alln > 1.

Claim 1 If m < n, then for each k (1 <k < N,,), there ezists j (1 < j < N,,) such that cin) < cg-m).

Proof: Write di,...,d; for those cg.m) such that cgm) .ci") # 0; it suffices to show that | = 1. Since

cY"), e, cs\Tm) form a partition, we have:

Z (cfcn)—}-dh): Z dp, .

1<h<l 1<h<I

By axiom 2, cin) + dy, is connected for all A (1 < h <), since cgc") is connected and dj, is connected with

™ dy # 0. Then, by repeated applications of axiom 2, 3, ., ;(c\™ + d},) is connected, since c{™ # 0.
That is, Y <,<; dn is connected. -

Suppose, then that [ > 1. Then by axiom 3, there exists d, (2 < h < [) such that ¢(dy + dp) is
connected. But since d; and dj have non-zero intersection with ck"), and since ck") is contained in

some atom generated by ay,...,a, with m < n, it follows that d; and d; are contained in the same
atom generated by ay,...,a,. But then it is impossible that dy + dp be connected by the fact that
cgm), cen, c%’i} is a maximal connected partition. Hence we cannot have [ > 1. O

It follows from claim 1 that, if m < n each ™ can be expressed as a sum of various ci") and that, for

J
each n, the c§"), cen, c%”n) are unique. Hence we may speak of the maximal connected partition generated
by the aq,...,a,.

Stage 2: We now map each initial segment ai,...,a, of A into our standard domain S. Let n be a
positive integer. We denote by w(™ the set of functions g(™ : {cgn), ceey cg\?j} — S satisfying
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G1: The regions g(™ (c§")), ) (cg\?n)) form a connected partition in S
G2: For all i,j (1 <i<j < Np), g™ (™) + g(")(cg-”)) is connected iff ¢\ + cg-") is connected.

We remark that, in G2, we have g(")(cgn)), g(")(cg-”)) € S and cz("),cg-") € A. Hence, different senses of
“+” and “connected” apply in the two cases. For n = 0 we define w(® = {0}.

Definition 5.1 Let by,...,b, € A. Form the graph G with nodes {by,...,b,} and edges {(b;,b;)|1 <
i < j < nandb; + b; is connected} (i.e. G has no multiple edges). We call G the binary connection
graph on by, ..., b,.

Claim 2 Let by,...,b, € A be nonzero and connected. Then by + ... + by, is connected iff the binary
connection graph on by, ... b, is a connected graph.

Proof: We proceed by induction on n for both directions. Let G be the binary connection graph on
bi,...,bn. If n =1, the claim is trivial.

Suppose that n > 1 and G is a connected graph. By lemma 4.14, we can suppose WLOG that the
graph G — {b;} formed by removing b; and all its edges from G is connected. By inductive hypothesis,
by + ...+ by is connected. Since G is connected, there must be some ¢ (2 < i < n) such that by + a; is
connected. Since b; is nonzero, axiom 2 ensures that b; + ...+ b, is connected.

Suppose that n > 1 and by + ... + b, is connected. Axiom schema 4 ensures that, by renumbering if
necessary, ba +. ..+ by, is connected. By inductive hypothesis, the graph G —{b; } is connected. Moreover,
axiom schema 3 ensures that, for some 7 (2 < i < n), by + b; is connected. Hence G is connected. |

Claim 3 The binary connection graph on a connected partition is planar.

Proof: Let ¢,...,c, be a connected partition, and let G be its binary connection graph. By a well-
known theorem of Kuratowski, it suffices to show that G contains no subgraph identical to either K3 or
K3 3 to within nodes of degree 2 (Bollobds [3], p.19). For definiteness, we concentrate on the case K.
Let H be a subgraph of G identical to K5 to within nodes of degree 2. If H contains nodes of degree 2,
then re-number the nodes of G if necessary so that that ¢y, ...,c5 are the nodes of H of degree greater
than 2, and cg,...,cs54, are the nodes of H of degree 2 lying between nodes ¢4 and c5, with A > 0.
Then, by claim 2, d =c¢5 + ¢ + .. . + c54+1 is connected, so that c¢i,...,c4,d, Co4n,---,Cn iS a connected
partition. Moreover, this new connected partition also contains a subgraph H' identical to K5 to within
nodes of degree 2, but having strictly fewer nodes of degree 2 than H. Proceeding in this way, we can
find a connected partition with a binary connection graph G containing a subgraph isomorphic to K,
which is impossible by axiom 5.

The case K3 3 proceeds identically, except that we rely on axiom 6. O

Definition 5.2 Let G be a plane graph. Its geometric dual G* is obtained in the following way (cf. [14],
p.72). A pointv} is chosen inside each face of G. These chosen points are the nodes of G*. Corresponding
to each edge e of G an edge e* is drawn which crosses e but no other edge of G and joins the nodes v}
which lie in the faces adjoining e. These edges e* are the edges of G*.

Claim 4 For all n € N, w(™ # §.
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Proof: If n = 0 the claim is trivial. Suppose n > 1. We show that, given a maximal connected
partition cgn), .. .,cg\?") (n > 1), there exists some g(™ satisfying G1 and G2. We observed above that
N,, > 1. For the time being we shall drop the n-sub- and superscripts and write N for N, and ¢;
for an). Let G be the binary connection graph on ¢i,...,¢cy. By claim 3, G is planar. By axiom 7
and claim 2, G is connected. Let H be an embedding of G in the closed plane all of whose edges
are piecewise linear. Since H is plane and connected, by a standard result ([14], p.73) it has a plane,
connected geometric dual H* which in turn has a geometric dual H** isomorphic to H. Thus there
exists a 1-1 function A** : nodes(G) — nodes(H**) such that, for all 4, j (1 <1i < j < Np), (ci,¢j) is
a G-edge iff (h**(¢;), h**(c;)) is an H**-edge. By the construction of H**, there exists a 1-1 function
h* : nodes(H**) — faces(H*) such that, for all ny,n. € nodes(H**), there is an H**-edge (n1,n2) iff
h*(n1) and h*(n2) share an H*-edge on their frontiers. Also by the construction of H**, if H* contains
an isthmus, H** and hence G contains a loop, which is impossible by definition, so H* contains no
isthmus. Moreover, H* can obviously be constructed so that all its edges are piecewise linear. It follows
from theorem 4.1 that the faces of H* form a connected partition in S.

Now put g{™ = h* o h**. Thus, ¢(" is a function from {ci,...,cn, } into S satisfying G1. To see that
g™ also satisfies G2, we note that, for all i, j (1 < i < j < N), (ci,¢;) is a G-edge iff g(™(c;) and
g™ (c;) share an H*-edge on their frontiers. By lemma 4.8, for all 4, j (1 < i < j < N,), ¢; +¢; is
connected iff g (c;) + g{™ (c;) is connected. Hence g™ satisfies G2 and w(™ # () as required. O

We remark that, while the proof of claim 4 constructs an element of w(™, not all elements of w(™ can
be constructed in this way.
We now proceed to establish some additional properties of the sets w(™ and their members. As

usual, if C C {c{™,.. .,cs\?j}, we write g™ (C) to mean {g™ (™)™ € C}.

Claim 5 Let C C {c§"), .. .,cg\?)}. Then 3" C is connected iff 3 g™ (C) is connected.

n

(Note the two different uses of ‘>’ and ‘connected’.)

Proof: Suppose first that C = §. Then > C =0¢€ A and 3 ¢ (C) =0 € S. (Note the two different
uses of ‘0’.) By lemma 3.1, 0 € A is connected. Since 0 € S is connected, the result holds.

Suppose next that C # §. By lemma 4.15, 3 g{")(C) is connected iff the set of edges
{(cir¢j)lei,e5 € Cyi # §,9™ (e;) + 9™ (¢;) connected}
forms a connected graph on C. By property G2, applied to g(™), this is true iff the set of edges
{(ci,cj)|ci,¢5 € C,i # j,¢; + ¢j connected }

forms a connected graph on C. By claim 2, applied to C, this is true iff Y C is connected. O

Let 0 < m < n. We now show how any mapping ¢ € w(™ can be used to construct a mapping in
w™) . Since, for any i (1 <i < N,,), cgm) can be expressed uniquely as a sum of various cg-"), let us write

cgm) = cgln) +...+ cz(;[), .

for all i (1 <i < Ny,). In addition, let (™ € w(™. We define the restriction of g(™ to c§m), e ,c%';),
written g(™|,,, as follows:

9P lm(e™) = g () + .+ g™ () for m > 0 and g™]o =0 .
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Claim 6 Let g € w(™ with 0 < m < n. Then g™, € w™.

Proof: If m = 0 the claim is trivial. Suppose m > 1. We must prove that G1 and G2 hold of g(™|,,
G1 is trivial. For G2, we note that, by construction,

9l (™) + g |m(ef™) = g () + .+ g D)) + g () + o+ g )

By claim 5, this element of S is connected iff the element of A

O e U g SR

Jn;

is connected. Hence G2 holds as required. m|

Stage 3: In stage 2, we showed how any initial segment of 2 can be embedded in &. In this section,
we show how these partial embeddings can be strung together into a single embedding of 2 into &.

(n) n) . (n) (n) (n)

Suppose that gf ,95" € w™. We say that g( is topologically equivalent to g ', written g, ’ ~ g5

if there exists a homeomorphism of the closed plane onto itself taking the elements of gY”)(c(")) to the
elements of g\™ (c(™).

Clearly, g( ™ o gé " is an equivalence relation on w(™. By theorem 4.2, there are only finitely many

equivalence classes under ~ contained in each w(™ . Let us denote these by w( ), ey w,(!:). If m <n and

(m)

there exists ¢(™) € wgn) such that g(™|,, € w;™ then we write wgm) < wg-"). If, in addition, m < n, we

write w( ) ;n) .

(n)

Now form the graph €2 whose nodes are all the w; ', and whose edges are

{(w”, w™ ) wf™ < wi™}
(i-e. 2 has no multiple edges). By claim 6, Q is connected.
Claim 7 Q is a tree. That is, if wgn) < w,(cnﬂ) and wg. n w("Jr ) then i = j.

Proof: Obvious. o

By claim 4,  is infinite. By theorem 4.2,  is locally finite. Then, by Ko6nig’s infinity lemma, for

any node of (2, there exists an infinite path in {2 starting at that node. Let 7w be an infinite path in Q

starting at the node {0} = w%o). Since {2 is a tree, this path gives us a sequence of equivalence classes
w® <wl <w? <.

Claim 8 Let (") ¢ wgn) and (wgn),wg-"ﬂ)) be an edge of Q. Then there exists a g™tV € w(”+1) such
that g1, = g™,

(n+1)

(”) ("H)) is an edge of Q, there exists an h("t1) ¢ w; and a homeomorphism g

Wy
of the closed plane onto itself such that po (h("‘H) ln) = g™ . Denote those members of c§"+”, . cg\?jl)

which sum to c( ™ by dy,...,dm, and denote A("+1) |n(c§")) by r. Then h("t1)(dy), ..., K"V (d,,) form a
connected partition of r in S, so by lemma 4.21, there exists a connected partition s1, ..., sy, of u(r) and
a homeomorphism v; of the closed plane onto itself, mapping h{"t1)(d;) to s;, for all i (1 < i < m) such

that v1|—» = p|—». By repeating this step for cg”), ey cg\?n), we can construct a homeomorphism v of the

Proof: Since (w

closed plane onto itself mapping every h("+1)(c("t1) to an element of S such that V(h("+1)|n(c§"))) =
u(h("+1)|n(c§"))) =g (cgn)) for all i (1 < i < Ny). Hence (voh(")|, = po (R"+1],) = g(™. Clearly
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voh(ntl) g w§"+1), since h("t1) € wj(-"H). Hence ¢("1) = v o K™D is our required element. O

By claim 8, we can extract a sequence of embeddings:

(2)

(0) (1)
w)) < wy, < wg <

D=0, O, @)
with the property that, for all m,n (0 < m < n), f(|, = f™.

Now let a € A be such that a = cg?) +...+ cl(:). Then we define

fa) = )+ SO

(If a = 0, we take the right-hand side of this definition to denote 0 € S.)

The fact that f (")|m = f(m) whenever 0 < m < n means that this mapping is well defined. It is
easy to see that f : A — S is a Boolean algebra isomorphism; moreover, by claim 5, f(a) is connected
iff a is connected. Thus we might as well take A to be a subset of S; then the previously distinct uses of
the Boolean functions and constants and the term “connected” become unambiguous. That is, we have
proved:

Claim 9 2 C 6.

Stage 4: Having established claim 9, the next step is to prove that 2 has enough elements to serve as
a substitute for the whole of &. In the sequel, we shall forget our previous enumeration of A and just
take aq,...,a, to be arbitrary elements of A.

Definition 5.3 Ifry,...,r, € S form a partition and r; is a Jordan region for alli (1 <i < n), we say
that r1,...,ry 45 a Jordan partition. If r; +r; is connected, i # j we say that r; and r; are neighbours.
Ifry, ...,y is a Jordan partition such that, for any neighbour r; of r1, —(r1 + ;) is connected, then we

say that the partition is radial about r;.

By lemma 4.13, if r1,...,r, is a Jordan partition radial about r; such that r; has at least 2 neighbours,
then, for any neighbour r; of 71, F(r1) N F(r;) is a Jordan arc. Recall that, if r1,...,7, and s1,...,8,
are regions of S such that there is a homeomorphism of the closed plane onto itself mapping r; to s;
for all 4 (1 < i < n), then we say that r1,...,7r, and s1,...,s, are topologically equivalent and write
T1y.-ue3Tp ~ 81y.--,8n.

Claim 10 Letas,...,a, € A be a Jordan partition radial about a; such that a; has at least 3 neighbours.
Let by, by € S be Jordan regions with a; = by @by. Then there exist ¢1,co € A such thatay,...,a,,c1,C2 ~
Aty ... ,an,bl,bz.

Proof: Since aq, b, by are Jordan regions with a3 = by @ be, b1 and bs must be separated by a cross-cut
v in a;. For any neighbour a; of a1, F(a1) N F(a;) is a Jordan arc. By inspection (fig. 6a), any point on
F(aq) lies on either one or two Jordan arcs of the form F(a1) N F(a;) where a; is a neighbour of a;.
Let p € F(a1). We define the character of p, written x(p) to be the set of those 7 (2 < ¢ < n) such that
a; is a neighbour of a; and p € F(a;). (See fig. 6a for examples.) Then, x(p) has either 1 or 2 elements.
If x(p) has one element, then p lies on the Jordan arc F(a1) NF(a;), but not at its endpoints. If x(p) has
two elements, then since a; has at least three neighbours, x(p) determines p. Now let v be a cross-cut
in a;. We define the character of v, written x(7) to be the set of characters of its endpoints. (See fig. 6b
and c for examples.) It is routine to show that, if v; and 7, are two such cross-cuts and x(v1) = x(72),
there is a homeomorphism of the closed plane onto itself taking a; to itself for all 4 (1 < ¢ < n) and
taking v; to 2. So, to prove the lemma, it suffices to establish that, if v, is any cross-cut in a;, there
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Figure 7: The construction of a cross-cut with a given character

exist Jordan regions ¢1,c2 € A with a3 = ¢1 @ ¢2 such that the cross-cut v, separating ¢; and ¢y in ay
satisfies x(711) = x(72)-

Let the endpoints of 1 be p and g. We prove the result for the special case where x(7v), x(p) and x(q)
all contain two elements; the other cases are dealt with similarly. Fig. 7a shows the sub-case where x(p)
and x(gq) are non-disjoint; fig. 7b shows the sub-case where x(p) and x(q) are disjoint.

The sub-case of fig. 7a is trivial: the axiom 9 with a;, substituted for x and a; for y immediately
guarantees the existence of u,v € A partitioning a1, and hence separated by a cross-cut 7,; moreover the
connectivity conditions on 4 and v mean that «; and 2 have the same endpoints, so that x(71) = x(72)-

The sub-case of fig. 7b requires a little more work. However, two applications of axiom 9 guarantee the
existence in A of the regions a}, aj, shown in fig. 7c. Axiom 8 then guarantees that the region labelled a}
in fig. 7c can be split into two regions as shown in fig. 7d. Summing together appropriate subdivisions
of a; produces ¢1,ca € A separated by an arc v, satisfying x(v1) = x(72)- O

The rest of this section is devoted to showing that we can relax the conditions of claim 10. First, we
establish some results enabling us to decompose elements of A in various ways.

Claim 11 Let a € A. Then there exists n > 0 and Jordan regions by,...,b, € A such that a =
bi®...0b,.

(When n = 0, the right-hand side of this equation is taken to denote 0 € S).

Proof: We may as well assume that a has one component and a # 1, since extending the result to the
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other cases is trivial. We proceed by induction on the number k of components of —a. If £ = 1, a is itself
a Jordan region by lemma 4.10 and the result is certainly true. If £ > 1, let ¢, d be distinct components
of —a. By lemma 4.16 (setting r = a and s = 0), a+ ¢ and a+d are connected. By axiom 8, substituting
a for z, ¢ for y and d for z, we are guaranteed the existence of connected regions u,v € A, partitioning
a such that u + ¢, u + d, v + ¢ and v + d are all connected. Hence, both —u and —v have fewer than &
components. By inductive hypothesis, u and v can be partitioned into finitely many Jordan regions in
A. The result follows immediately. m|

Claim 12 Letn > 1 and let ai,...,a, € A. There exists a Jordan partition cq,...,cny € A such that,
foralli (1 <i<n), a; can be expressed as the sum of various c;.

Proof: Immediate given claim 11. O
Claim 13 Let n > 1 and let ay,...,a, € A be a partition with a; o Jordan region. There exists a
Jordan partition ai,cs,...,cn € A radial about aq, such that, for all i (2 <i<n), a; can be expressed

as the sum of various c;.

Proof: By claim 12, we can find a Jordan partition a,bs,...,bar such that, for all i (2 < i < n) a;
can be expressed as the sum of various b;. We now show that the b; can be decomposed if necessary to
form the required elements cs,...,cN.

Suppose that b; is a neighbour of a; such that —(a; + b;) is not connected. Then let d # e be two
components of —(a; + b;). By lemma 4.16, letting 7 be b;, s be a; and, t be successively d and e, we
know that both b; + d and b; + e are connected. In axiom 8, substitute b; for x, d for y and e for z.
Then there exist connected regions u,v € A partitioning b; such that u +d, u+e, v+ d and v + e are all
connected. It follows that v and v are Jordan regions such that d and e belong to the same component
of —(a1 + u) and also to the same component of —(a; + v). Hence both —(a; + v) and —(a; + v) have
fewer components than —(a; + b;). By replacing b; with u and v and proceeding as before, we eventually

reach a Jordan partition radial about a;. O
Claim 14 In claim 13, the co,...,cy can be chosen so that a; has at least three neighbours.
Proof: Immediate given claim 13 and axiom 8. O

Now let us return to the task of relaxing the conditions of claim 10.

Claim 15 Letn > 1 and let a1,...,a, € A be a partition such that ay is a Jordan region. Let by,bs €

S be Jordan regions with a; = by ® by. Then there exist c;,co € A such that aq,...,a,,c1,c0 ~
al,...,an,bl,b2.
Proof: Immediate given claims 10 and 14. O

Claim 16 Letn > 1 and let ay,...,a, € A be a partition such that a; is a Jordan region. Let b € S be
such that b < ay. Then there exists ¢ € A such that a1,...,a,,¢c~ay,...,an,b.
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Proof: By claim 11, we can find a Jordan partition by, ..., b, of a; such that b can be expressed as
the sum of various b;. It suffices to show that there are ci,..., ¢, € A such that

AlyeeeyQpyb1y e by ~ Q1,00 ,00,C1y ..., Cm

We proceed by induction on m. If m = 1, then by = a; and we are done. If m > 1, by lemma 4.18,
we can renumber the b; if necessary so that by and by, = by + ... + by, are Jordan regions satisfying
a1 = by @ by. By claim 15, there exist ¢1,c) € A such that ay,...,a,,b1,b5 ~ai,...,an,c1,¢h. Let v be
a homeomorphism of the closed plane onto itself mapping a; to itself, by to ¢; and b} to c. It is easy
to show that v can be chosen so that v(b;) € S for all i (2 <7 < m). But then the v(b;) form a Jordan

partition of ¢} in the partition ¢}, c1, a2, ..., a,. By inductive hypothesis, there exist ¢s,. .., ¢, € A such
that
! !
ChyC1,02, -y A, V(02), ..., U(bm) ~ C5,C1,02, .+, Ay €2,y . vy Cry -
The result then follows immediately. O

Claim 17 Letn > 1 and let a1,...,a, € A be a Jordan partition. Let b € S. Then there exists c € A
such that a1,...,an, ¢~ Q1,...,0n,b.

Proof: Welet b = b.a; + ...+ b.a, By considering these terms separately, we use claim 16 and an
induction similar to that used in the proof of claim 16. The details are routine. O

Claim 18 Letn > 0 and let ay,...,a, € A. Letb € S. Then there exists c € A such thatay,...,a,,b~
a1,...,0n,C.

Proof: Immediate given claims 12 and 17. O

Thus, we have established that A forms a topologically homogeneous subset of S in the sense made
precise by claim 18.

Stage 5: We now have all the important elements for our proof.
Claim 19 A <& .

Proof: Byclaim9,2 C &. Let n > 0 and let ¢(x1,...,z,) be any formula of the form Jyp(z1,. .., Tn,y)-
According to the Tarski-Vaught lemma, if we can show that for any ai,...,a, € A such that & |=
¢lai, ..., ay), there exists ¢ € A such that & |=[ai,...,an,¢], then A <& .

Let a1,...,a, and ¢ be as described. Then there exists b € S such that & |= ¥[as,...,an,b]. By
claim 18, there exists ¢ € A such that a1,...,an,b ~ ai,...,an,c. By lemma 4.24, & = ¢[aq, ..., an, .
O

By the construction of A, 2 |= ®. By claim 19, & = ®. This completes the proof of theorem 5.2. O

Finally, we have the result we want.
Corollary 1 Let Ty denote the set of sentences which are $-theorems. Then Ty = Th(G) = Th(%R).

Proof: Immediate by theorems 5.1, 5.2 and lemma 2.5. O
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6 Conclusions

This paper has presented a calculus for mereotopological reasoning in which spatial regions are treated
as primitive entities. We defined a language £ with a one-place predicate c(z), the function-symbols
+, . and — and the constants 0 and 1. We provided an interpretation R for £ in which regions are
identified with polygonal regular sets of the real plane. Under this interpretation, the predicate c(x) is
read as “x is connected” (in the usual sense) and the Boolean function-symbols and constants are given
their obvious meanings in terms of the appropriate regular Boolean algebra. We proved the soundness
and completeness of our calculus with respect to an isomorphic model & and therefore with respect to
R as well.

Thus, although our calculus takes regions to be primary, it is guaranteed an interpretation in terms
of a model of the plane in which regions are identified with polygonal, regular subsets of IR?. That
is: the theorems of the calculus are precisely those formulae made true by this model. Hence, our
mereotopological calculus really can claim to be a calculus of spatial regions. For there is good reason to
suppose that the polygonal ontology assumed here constitutes an adequate model of 2-dimensional space
for most practical purposes. (In particular, this ontology is the one employed by nearly all computer
systems specialized for plane spatial representation such as geographic information systems.) In this
respect, we claim, our calculus is superior to other mereotopological calculi that have been proposed in
the literature.

The problem of axiomatizing less restricted Boolean subalgebras of M (IR?) than R—in particular, the
whole of M (IR?*)—is open, as are the corresponding problems for Boolean subalgebras of M (IR®). While
the three-dimensional case is certainly of interest, it is fair to say that, since a significant part of the
motivation of mereotopology is to avoid bizarre, physically unrealizable regions, the axiomatization of
M (IR?) is less pressing. However, there is no doubt that the domain R could be liberalized considerably
without change to the resulting theory, although we at present lack a characterization of how this might
be done.
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