
Chapter 1FIRST-ORDER MEREOTOPOLOGYIan Pratt-HartmannManchester University Second ReaderIvo D�untschBrock University1. IntroductionOne of the many achievements of coordinate geometry has been toprovide a conceptually elegant and unifying account of the nature of ge-ometrical entities. According to this account, the one primitive spatialentity is the point, and the one primitive geometrical property of pointsis coordinate position. All other geometrical entities|lines, curves, sur-faces and bodies|are nothing but collections of points; and all prop-erties and relations involving these entities may be de�ned in terms ofthe relative positions of the points which make them up. The successand power of this reduction is so great that the identi�cation of spatialregions with the sets of points they contain has come to seem virtuallyaxiomatic.Over the years, however, various authors have expressed disquiet withthis conceptual r�egime. The primary source of the disquiet is the convic-tion that our theory of space should use only those resources absolutelynecessary to systematize the data of spatial experience. For points aresuch remote abstractions from the objects with which we daily interact,and co-ordinate position such a distant relative of the spatial propertiesand relations which we directly perceive, that the question arises as towhether alternative mathematical models of space are not possible|inparticular, models in which the primitive spatial entities are not points,but regions, and in which the primitive spatial properties and relationsare qualitative rather than quantitative.



2 An example will help to make these worries more concrete. Considerany stable, medium-sized physical object, for example, a co�ee cup. Weall agree that this cup has a particular shape, which we may take tocorrespond to the region of space which it occupies at some instant. Onthe familiar point-based model of space, this region is a set of points. Butsuppose we now ask: is this set topologically open, semi-open or closed?That is: does it include none, some, or all of its boundary points? Itis hard to see how we could answer this question. Not by microscopicanalysis, since physical objects lose their de�nition on very small scales.And not by mathematical argument, since a world in which|say|cupsare closed and saucers open is surely as logically possible as one wherethese topological characteristics are reversed. But if space really is madeup of points as (modern) textbooks tell us, any assignment of a regionof space to the co�ee cup must answer the question. Perhaps then thismodel postulates too much.This chapter addresses the question: what region-based accounts ofthe topological structure of space are possible? What can we say aboutthem? How do they relate to each other and to the point-based modelswith which we are so familiar?2. MereotopologiesThe purpose of section is to outline the conceptual framework forregion-based theories of space adopted in this chapter. Speci�cally, weintroduce the concept of a mereotopology over a topological space, wediscuss the role of mereotopologies as interpretations of signatures oftopological primitives, and we list some key mathematical questions con-cerning them.We assume familiarity with fundamental concepts and standard factsof point-set topology and Boolean algebra: for details, see, e.g. Kelley,1955 and Koppelberg, 1989, Ch. 1, respectively. In the context of point-set topology, if u is any subset of a topological space X, we denote theinterior of u by u0 and the closure of u by u�. (The more usual notationsof �u and [u] for the closure of u are reserved for other purposes.) Wewrite F(u) to denote the frontier of u, namely u� n u0.2.1 Regular open setsHow might we go about building a region-based model of the spacewe inhabit? The example of the co�ee cup suggests that any such modelshould resolve the issue of frontier points. The following technical detailsare well-suited to this purpose.



First-Order Mereotopology 3Definition 1.1 Let u be a subset of some topological space X. We saythat u is regular open (in X) if u is equal to the interior of its closure.We denote the set of regular open subsets of X by RO(X).To �x our intuitions, consider the space X = R2 . The elements ofRO(R2) are the open subsets of R2 having no `cracks' or `pin-holes'(Fig. 1.1). Corresponding remarks apply to the case X = R3 . Taking
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��Non-regularFigure 1.1. Some regular and non-regular open sets of the Euclidean plane.regions of space to be regular open subsets of R3 �nesses the issues en-countered above concerning frontier points: regions are open by �at.At the same time, however, it provides us with satisfying formal recon-structions of the intuitive notions of intersecting, merging and comple-menting regions, by means of the following standard theorem (see, forexample, Koppelberg, 1989, pp. 25{27).Proposition 1.2 Let X be a topological space. Then RO(X) is a Bool-ean algebra under the order �. In this Boolean algebra, top and bottomare de�ned by 1 = X and 0 = ;, and Boolean operations are de�ned byx � y = x \ y, x+ y = (x [ y)�0 and �x = X n x�.Again, we can �x our intuitions regarding Proposition 1.2 by consideringthe case X = R2 . The product, x:y, of two regular open sets x and yis simply their intersection, which is guaranteed to be a regular openset. The sum, x + y, of two regular open sets x and y is a little morecomplicated; very roughly, it is the union of x and y with any internalboundaries removed (Fig. 1.2). Finally, the complement, �x, of a regularopen set x in RO(R2) is simply that part of the plane not occupied byx or its frontier. Corresponding remarks apply to the case X = R3 .It sometimes helps to reformulate the de�nition of regular open sets asfollows. If u � X, then Sfo � Xjo open, o \ u = ;g is the largest opensubset of X disjoint from u. We call this set the pseudo-complement ofu, denoted u�. From the above de�nitions, u� = X nu� and u�� = (u�)0.Hence, u is regular if and only if u = u��; and, if u is regular open, u� issimply �u. The following lemma shows that every subset of X is `close'to a regular open subset.



4Lemma 1.3 Let X be a topological space. For every u � X, the setr = (u�)0 is an element of RO(X) such that u0 � r � u�. If u is open,then r is unique.Proof Obviously u0 � r � u�. To show that (u�)0 2 RO(X), itsuÆces to show that u���� = u��. If v is any set at all, then v��\v� = ;,whence v� � v���. Moreover, if o is any open set, then o��� is an open setdisjoint from o�� and hence disjoint from every open set disjoint from o�and hence disjoint from o itself, whence o��� � o�. Thus, for any openset o, o��� = o�. Since u� is open, we have u���� = u��. For the �nalstatement, if s 2 RO(X) also satis�es u � s � u�, then the (regular)open sets s � �r and r � �s are both in u� n u and so are empty. QEDr s
r + s

rs
r + s r + s

rs

Figure 1.2. Three pairs of regions and their sums in RO(R2).For the above reasons, it has become common practice in discussionsof mereotopology to model regions of space as regular open subsets ofR3 ; and that is the approach we shall take here. In the sequel, we shallalways use the letters r; s; t to range over regular open sets; when weare concerned only with regular open sets, we write r � s in preferenceto r � s, 0 in preference to ; and r � s in preference to r \ s. Resort-ing to regular open sets is of course not the only way of dealing withboundary disputes. One obvious alternative is to use regular closed sets(sets equal to the closures of their interiors), since the regular closedsets of any topological space also form a Boolean algebra, which is infact isomorphic to the Boolean algebra of regular open sets. Thus, in



First-Order Mereotopology 5modelling regions as regular open sets of R3 , it is understood that it isthe resulting structure that is important, not the precise constitutionof its elements. Understanding what this idea means in detail forms acentral theme of this chapter.We conclude our discussion of regular open sets by proving some tech-nical results which will be useful below. Recall in this context that, ifu, v are connected subsets of a topological space, with u \ v 6= ;, thenu [ v is connected. Moreover, if u is connected and u � v � u�, then vis connected.Lemma 1.4 Let X be a topological space, let u; v � X and let r; s 2RO(X). We have:(i) (u [ v)�0 = u�0 + v�0;(ii) r [ s � r + s � r [ s [ (r� \ s�) � (r [ s)�;(iii) (r + s)� = r� [ s� = (r [ s)�;(iv) if r and s are connected with r � s > 0, then r + s is connected.Proof (i) By Lemma 1.3, (u [ v)�0 is a regular open set which ev-idently contains the regular open sets u�0 and v�0. Certainly, thenu�0 + v�0 � (u [ v)�0. For the reverse inclusion, (X n u)0 \ (X nv)0 \ (u [ v)�0 = ;, whence (X n u)0�0 \ (X n v)0 \ (u [ v)�0 = ;,whence (X n u)0�0 \ (X n v)0�0 \ (u [ v)�0 = ;, whence ((X n u)0� \(X n v)0�)0 \ (u [ v)�0 = ;, whence ((X n u)0� \ (X n v)0�)0�\(u [ v)�0 = ;. That is: (u [ v)�0 � (u�0 [ v�0)�0. But by Proposi-tion 1.2, (u�0 [ v�0)�0 = u�0 + v�0.(ii) The only non-trivial inclusion is r+s � r[s[ (r�\s�). So supposep 62 s and p 62 r�. That is, p 2 (�s)� and p 2 �r. But then, forall open o with p 2 o, o \ �r is also open with p 2 o \ �r, whence(o \ �r) \ �s 6= ;{that is, o \ (�r � �s) 6= ;. Hence p 2 (�r � �s)� sop 62 �(�r � �s) = r+ s. A similar argument applies if p 62 r and p 62 s�.(iii) (r+s)� = Xn�(r+s) = Xn(�r��s) = (Xn�r)[(Xn�s) = r�[s�.(iv) Certainly, r [ s is connected, and by (ii), r [ s � r + s � (r [ s)�,whence r + s is connected. QEDWe note in passing that determining the validity of statements such asthose of Lemma 1.4 is actually a decidable problem. See, e.g. Cantoneand Cutello, 1994, Nutt, 1999, Pratt-Hartmann, 2002 and, for a fullerdiscussion, Ch. ??.



6
Figure 1.3. Alexander's horned sphere2.2 MereotopologiesWe have argued, provisionally, that, for a subset of R3 to count asa region, it should be regular open. However, it would be hasty toassume that all regular open subsets of R3 should count as regions, atleast if spatial regions are supposed to be parts of space occupied (orleft unoccupied) by physical objects. Consider, for example, the bizarreregion commonly known as Alexander's horned sphere and depicted inFig. 1.3. (The reader is referred to Alexander, 1924a for details of theconstruction.) The interior of Alexander's horned sphere is certainlyregular open, yet it is a poor candidate to represent the space occupiedby a physical object. In fact, this region is a \ball" is so twisted in spacethat its complement in RO(R3 ) is not simply connected! Nor are suchpathological objects to be found only in three-dimensional space, as weshall see below. And such examples suggest that we should at least beopen to the possibility of region-based models of space in which onlysome regular open subsets of R3 qualify as regions. This immediatelypresents us with the question: if not all subsets of R3 qualify as bona�de regions, which do? As we shall see, the answers available and theissues which hinge on them require detailed analysis.In view of these uncertainties, we adopt a very general notion of aregion-based model of space|just suÆciently constrained that we cansensibly con�ne attention to the structure of regions in question withoutworrying about the points of which they are composed. In the contextof point-set topology, a topological space is commonly said to be semi-regular if it has a basis of regular open sets, and locally connected if ithas a basis of connected sets. It easy to see that, in a locally connectedspace, every component of an open set is open. Recall also, in the contextof Boolean algebras, that, if B is a Boolean algebra and B0 a Booleansubalgebra of B, then B0 is said to be dense (in B) if, for every b 2 Bwith 0 < b, there exists b0 2 B0 with 0 < b0 � b.



First-Order Mereotopology 7Definition 1.5 Let X be a topological space. A mereotopology over Xis a Boolean sub-algebra M of RO(X) such that, if o is an open subsetof X and p 2 o, there exists r 2 M such that p 2 r � o. We refer tothe elements of M as regions. If M is a mereotopology such that anycomponent of a region in M is also a region in M , then we say that Mrespects components.Note that a mereotopology over X is always a dense subalgebra ofRO(X). Our �rst task is to check that RO(X) is a mereotopology,for a suitable class of topological spaces.Lemma 1.6 Let X be a semi-regular space. Then RO(X) is a mereo-topology over Rn ; if X is also locally connected, then RO(X) respectscomponents.Proof The �rst part of the lemma is instant from the relevant de�ni-tions. For the second part, let r 2 RO(X), and let s be a component ofr. Since X is locally connected, s is open, whence, by Lemma 1.3, (s�)0is regular open with s � (s�)0 � s�. Then, s�0 is a connected subset ofr including s, whence s�0 = s by the maximality of s. QEDSome etymological explanation is in order here. The term mereologywas �rst introduced by Le�sniewski,, and denotes the logic of the part-whole relationship. (For a survey, see, e.g. Simons, 1987.) The termmereotopology is a much more recent coinage, and standardly denotes thestudy of topological relationships in which regions, rather than points,are the primitive objects. (It is unclear where the word �rst appeared inprint.) The employment of the word as a count-noun in De�nition 1.5,to denote a certain class of mathematical structures, is new here, andprompted by analogy with the parallel usage of the word topology.The foregoing discussion suggests that our search for a region-basedmodel of space should begin with an examination of mereotopologies overR3 . This approach may at �rst seem dissatisfying, because it dependsfor its formulation on the very point-based model of space we are tryingto escape. As we shall see, however, it is the structure of the resultingcollection of regions that will interest us|and the characterization ofthat structure in purely intrinsic terms form one of the main themes ofthis chapter. But before we can seek such intrinsic characterizations, wemust �rst clarify what it is we want to characterize.2.3 Geometric mereotopologiesThe question before us is to identify the regular open subsets of R3which we are prepared to count as `sensible' regions of space. Here is a



8standard answer from the mathematical literature. Let L0 be the �rst-order language with the arithmetic signature (<;+; �; 0; 1), interpretedover R in the usual way. (This interpretation is of course completelyseparate from our use of the same symbols to denote Boolean operationson regular open sets!) For the purposes of this chapter, we may say thata set u � Rn is semi-algebraic if there exists an L0-formula �(�x; �y) inn+m variables �x; �y and an m-tuple of real numbers �b such thatu = f�a 2 Rn j the (n+m)-tuple �a;�b satis�es the formula �(�x; �y)g:For a detailed discussion of semi-algebraic sets, see, e.g. van den Dries,1998, Bochnak et al., 1998 and also Ch. ??. (The more standard de�ni-tion of semi-algebraic sets is equivalent to ours, and makes the name lesspuzzling.) For mereotopological purposes, we are exclusively interestedin those semi-algebraic subsets of Rn which are regular open.Definition 1.7 For n > 0, we denote the set of regular open, semi-algebraic sets in Rn by ROS(Rn).Lemma 1.8 For n > 0, ROS(Rn) is a mereotopology over Rn .Proof We �rst show that ROS(Rn) is a Boolean subalgebra of RO(Rn).Evidently, 0; 1 2 ROS(Rn). Moreover, if a set u is de�nable by a �rst-order formula in the language of arithmetic, then so are its closure u�and its interior u0. Hence, if r; s 2 ROS(Rn), then so are r � s = r \ s,r + s = (r [ s)�0 and �r = Rn n r�. We must establish that, for p 2 owith o � Rn open, there exists r 2 ROS(Rn) such that p 2 r � o. Butthis is obvious since any open ball is an element of ROS(Rn). QEDThe structure of regular open semi-algebraic subsets of R3 might have abetter claim to count as a region-based model of space than the wholeof RO(R3 ), because it does a good job of ruling out pathological regu-lar open sets. For example, the horned sphere of Fig. 1.3 is not semi-algebraic.More generally, semi-algebraic sets count as well-behaved. One oftheir fundamental properties is that they admit of `cell decompositions'.If d > 0, d-cell in Rn is any semi-algebraic subset of Rn homeomorphicto the open d-dimensional ball; a 0-cell in Rn is a singleton; and a cellis a d-cell for some d (0 � d � n). The following result is standard (van den Dries, 1998, Ch. 3, Theorem 2.11).Proposition 1.9 (Cell Decomposition Theorem) If u is a semi-algebraic subset of Rn , then u is the union of a �nite collection of pair-wise disjoint, semi-algebraic cells.



First-Order Mereotopology 9For regular open semi-algebraic sets, this yields:Lemma 1.10 Every r 2 ROS(Rn) is the sum of �nitely many pairwisedisjoint n-cells in ROS(Rn).Proof By Proposition 1.9, let r = u1 [ : : : [ um where the ui arepairwise disjoint, semi-algebraic cells. Since r is regular, r = r�0 =(u1 [ : : : [ um)�0 = u�1 0 + : : : + u�m0, by Lemma 1.4 (i). If ui is a d-cellfor d < n, then u�i 0 = 0; if ui is an n-cell, u�i 0 = ui. QEDThe following notion will play an important part in the ensuing discus-sion.Definition 1.11 A mereotopology M is �nitely decomposable if everyregion in M is the sum of �nitely many connected regions in M .Lemma 1.12 ROS(Rn) is �nitely decomposable.Proof By Lemma 1.10, since cells are connected. QEDLemma 1.13 Every �nitely decomposable mereotopology M over a lo-cally connected space X respects components; moreover, every region inM is the sum of its components.Proof Suppose r 2 M , and s is a component of r. By Lemma 1.6,s 2 RO(X). Let r1; : : : ; rn be connected elements of M such that r =r1 + : : :+ rn. By the maximality of s and Lemma 1.4 (iv), either ri � sor ri � s = 0 for all i (1 � i � n). Thus, s is the sum of those ri suchthat ri � s. QEDOf course, the converse of Lemma 1.13 is false: although RO(X) respectscomponents for any locally connected space X, it is easy to see that, forexample, RO(Rn) is not �nitely decomposable for any n > 0.The mereotopology ROS(Rn) is thus at least a plausible region-basedmodel of the space we inhabit. But it is not the only candidate for thisjob. Observe that any (n � 1)-dimensional hyperplane of Rn cuts Rninto two residual domains, which we shall call half-spaces. It is easy tosee that these half-spaces are regular open, with each being the pseudo-complement of the other. Hence, we can speak about the sums, productsand complements of half-spaces in RO(Rn).Definition 1.14 A basic polytope in Rn is the product, in RO(Rn), of�nitely many half-spaces. A polytope in Rn is the sum, in RO(Rn), ofany �nite set of basic polytopes. We denote the set of polytopes in Rn



10
Figure 1.4. Three (di�erently shaded) regions in the mereotopology ROP(R2).by ROP(Rn); we call the polytopes in ROP(R2) polygons and those inROP(R3) polyhedra.Thus, polytopes (in our sense) may be unbounded, disconnected, andmay have disconnected complements. Fig. 1.4 shows a selection of poly-gons. (In alternative parlance, the elements of ROP(Rn) are the regularopen semi-linear sets.) Evidently, the polyhedra constitute a more par-simonious region-based model of space than does ROS(R3).Indeed, the following construction gives us a more parsimonious spa-tial ontology still. If an (n� 1)-dimensional hyperplane in Rn is de�nedby an equation a0 + a1x1 + � � � anxn = 0, where the ai (0 � i � n), arerational numbers, we call it a rational hyperplane; and if a half-space isbounded by a rational hyperplane, we call it a rational half-space. Nowwe de�ne:Definition 1.15 A basic rational polytope in Rn is the product, inRO(Rn), of �nitely many rational half-spaces. A rational polytope inRn is the sum, in RO(Rn), of any �nite set of basic rational polytopes.We denote the set of rational polytopes in Rn by ROQ(Rn); we call theelements of ROQ(R2) rational polygons and those of ROQ(R3 ) rationalpolyhedra.Evidently, ROQ(Rn) ( ROP(Rn) ( ROS(Rn) ( RO(Rn). Note thatROQ(Rn) is countable.Lemma 1.16 The collections ROP(Rn) and ROQ(Rn) are �nitely de-composable mereotopologies over Rn .Proof Basic polytopes are convex, and hence connected. QEDAs models of the space we inhabit, ROP(R3) and ROQ(R3 ) may seemoverly austere|for they contain no regions with curved boundaries.However, their study turns out to be instructive, as we shall see below.2.4 InterpretationsSo far, we have discussed various ways of selecting a collection of`regions' from among the subsets of Rn . But this selection process only



First-Order Mereotopology 11really becomes interesting when we consider formal languages whosevariables range over these collections, and whose non-logical constantsbelong to a limited repertoire of spatial primitives.We assume familiarity with basic �rst-order logic: for details, seeHodges, 1993, Ch 1. In this context, we employ the following stan-dard notation and terminology. Let � be a signature consisting of(zero or more) predicates, function-symbols and individual constants;we denote the �rst-order language with signature � by L�. An L�-formula with no free variables is called an L�-sentence. Let A be astructure interpreting the symbols in � over some domain A (assumednon-empty). For any L�-formula �(�x), with n > 0 free-variables �x andany n-tuple �a from A, we write A j= �[�a] if �a satis�es �(�x) in A; sim-ilarly, for any L�-sentence �, we write A j= � if � is true in A. Wecall f j  an L�-sentence and A j=  g the L�-theory of A, denotedTh�(A). Two structures A and B are elementarily equivalent (for �),written A �� B, if Th�(A) = Th�(B). We write f : A '� B if f isa �-structure isomorphism from A onto B (and A '� B if such an fexists). It is a simple result that if f : A '� B and �(�x) is an L�-sentence, then A j= �[�a] implies B j= �[f(�a)] for every tuple �a from A;in particular, A '� B implies A �� B. We write A �� B, if A is asubmodel of B (i.e. A � B and A is the restriction of B to A), andA �� B if A is an elementary submodel of B (i.e. A � B and and everytuple �a of A satis�es the same L�-formulas in both A and B). We saythat A is elementarily embeddable in B if A is isomorphic to an elemen-tary submodel of B. Trivially, A �� B implies A �� B. Reference tothe signature �, and the associated subscripts, is suppressed when clearfrom context.Let M be a mereotopology over some topological space X. If � is asignature whose symbols conventionally denote familiar mereological ortopological concepts, then M can always be regarded as a �-structureby interpreting the symbols of � in the familiar way. In particular, wetake the symbols 0, 1, +, �, � and � to have the obvious (Booleanalgebra) interpretations over M ; similarly, we take the unary predicatec to denote the property of being connected, and the binary predicateC to denote the relation which holds between two regions if and only iftheir topological closures intersect. Table 1.1 gives a formal summary.Under these interpretations, we may regard any mereotopology M as aninterpretation for the signature � = (0; 1;+; �;�;�; c; C), or any subsetthereof. That is: any L�-sentence has a truth-value in M , and any L�-formula �(�x) with n > 0 free-variables de�nes an n-ary relation overM , namely, the set of n-tuples from M satisfying �(�x). We remarkthat our interpretation of C is intended as a rational reconstruction of



12 Symbol Type Interpretation0 individual constant 0M = ;1 individual constant 1M = X+ binary function +M (r; s) = ((r [ s)�)0� binary function �M (r; s) = r \ s� unary function �M (r) = X n r�� binary predicate �M= fhr; si 2M2 j r � sgc unary predicate cM = fr 2M j r connectedgC binary predicate CM = fhr; si 2M2 j r� \ s� 6= ;gTable 1.1. Interpretations of common mereotopological primitives, where M is amereotopology over a topological space X.the relation which Whitehead, 1929 called \extensive connection", andwhich has historically played a prominent role in region-based theoriesof space. Since Whitehead's term risks confusion with the standardtopological notion of connectedness, we follow more recent usage andread C(x; y) as \x contacts y".Some examples will help to clarify the issues that arise concerning�rst-order languages interpreted over mereotopologies.Example 1.17 Let � = (C; c;�), and let  inf be the L�-sentence8x8y(C(x; y)! 9z(c(z) ^ z � y ^ C(x; z))):This sentence `says' that, if a region contacts another region, then itcontacts some connected part of it. Let M be any �nitely decompos-able mereotopology; then M j=  inf . For suppose M j= C[r; s], and lets1; : : : ; sm, be connected regions of M summing to s. By Lemma 1.4(iii),s� = s�1 [ � � � [ s�m, whence M j= C[r; si] for some i. On the other hand,it is not diÆcult to see that RO(R2) 6j=  inf . Fig. 1.5 shows two regularopen regions r; s in the plane, where r has in�nitely many components,and s touches the closure of r but is separated from each of its compo-nents.Example 1.5 shows, in particular, that the di�erences between theregion-based models of space RO(R3) and ROS(R3 ) are `visible' to cer-tain �rst-order languages with signatures of topological primitives. Infact, the existence of regions with in�nitely many components is notthe only di�erence between these mereotopologies, as the next exampleshows.Example 1.18 Let � = (c;+), and let  sum be the L�-sentence8x18x28x3(c(x1)^c(x2)^c(x3)^c(x1+x2+x3)! (c(x1+x2)_c(x1+x3))):
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Figure 1.5. Two elements in RO(R2), one with in�nitely many components.r1

r2
r3

Figure 1.6. Three elements in RO(R2).This sentence `says' that if three connected regions have a connected sum,then the �rst must form a connected sum with one of the other two. Weshow in Lemma 1.56 below that, if M is any of ROS(R2), ROP(R2) orROQ(R2), then M j=  sum. However, it turns out that RO(R2) 6j=  sum.For let r1 = f(x; y)j � 1 < x < 0 ; �1� x < y < 1 + xgr2 = f(x; y)j0 < x < 1 ; �1� x < y < sin(1=x)gr3 = f(x; y)j0 < x < 1 ; sin(1=x) < y < 1 + xg ;as depicted in Fig. 1.6. It is easy to check that r1 + r2 + r3 is the largetriangle, and so is certainly connected, but that neither r1+r2 nor r1+r3is connected.We shall see in Section 5 that, in some sense, Examples 1.17 and 1.18represent the only di�erences between RO(R2) and ROS(R2 ).



14 �r �sFigure 1.7. The (complements of) two connected elements r and s in the regularopen algebra of a torus: r � s is not connected, and (�r)� \ (�s)� = ;.Our �nal example illustrates a rather di�erent set of issues concerning�rst-order mereotopological theories. We require the following fact aboutthe topology of Euclidean spaces (Newman, 1964,p. 137).Proposition 1.19 If d1 and d2 are non-intersecting closed sets in Rn ,and points p and q are connected in Rn n d1 and also in Rn n d2, then pand q are connected in Rn n (d1 [ d2).Example 1.20 Let � = (C; c; �;�), and let  sep be the L�-sentence8x8y(c(x) ^ c(y)! (c(x � y) _ C(�x;�y))):This sentence `says' that the closures of the complements of any twoconnected regions whose product is not connected intersect. Suppose thatr; s 2 RO(Rn) are connected, with r �s not connected. Putting d1 = Rn nrand d2 = Rnns, we have d1[d2 = Rnn(r�s), whence, by Proposition 1.19,(�r)� \ (�s)� 6= ;. Thus, if M is a mereotopology over any of thespaces Rn , M j=  sep. However,  sep is not true for all mereotopologies.For example, let X be the surface of a torus, let M be RO(X), and letr; s 2 M be such that �r and �s are as illustrated in Fig. 1.7. Byinspection, r and s are connected, r �s is not connected, and �r does notcontact �s. Hence, M j= : sep.Thus the regular open algebra of the torus and the Euclidean planehave di�erent �rst-order mereotopological theories over the signaturefC; c; �;�g.There is nothing privileged about the above collection of primitives:in principle, we could employ any signature whose symbols can be given�xed interpretations over the structures we choose to con�ne our at-tention to. Since this chapter deals with topological notions, we con-sider only signatures with �xed topological interpretations|that is, sig-natures whose interpretations are preserved by homeomorphisms of theunderlying topological space. For brevity, we speak of a `signature of



First-Order Mereotopology 15topological primitives'. For investigations of region-based theories withnon-topological signatures, see, e.g. Davis et al., 1999,Pratt, 1999.Given a mereotopologyM and a signature � of topological primitives,three salient issues present themselves. The �rst concerns the expressivepower of a �rst-order topological language L� over a mereotopology M .Any L�-formula �(�x) with free variables �x = x1; : : : xn de�nes an n-aryrelation over M|namely, the set of n-tuples �r satisfying �(�x) in M .And it is therefore natural to ask which relations can be so de�ned, andin particular, which primitives can be de�ned in terms of which others.Of particular interest in this regard is the property of being topologi-cally indistinguishable from a speci�c object or tuple of objects. That is,given a tuple �r from M , we would particularly like to know whether L�is expressive enough to give a topologically complete characterizationof �r. The answers to these questions depends heavily on the mereo-topology M : Sections 3 and 4 analyse the expressive power of various�rst-order topological languages for well-behaved mereotopologies overthe Euclidean plane. Section 6 analyses the much more diÆcult case ofwell-behaved mereotopologies over R3 .The second salient issue concerns the L�-theory of M . Examples 1.17and 1.18 show that restricting regions to be semi-algebraic (regular open)sets does a�ect the resulting �rst-order theory over some signatures oftopological primitives. And the question therefore arises as to whatother restrictions might be sensible, and what e�ect, if any, these restric-tions have on the resulting �rst-order mereotopological theories. Mostambitiously, perhaps, we might ask whether the set of �rst-order sen-tences in various mereotopologies can be axiomatically characterized.Section 5 provides an example of such an axiomatic characterization.As a by-product of this analysis, we show that a wide range of planemereotopologies share the same L�-theory for (most) topological signa-tures �, and we venture to take that theory as the standard �rst-orderL�-theory of plane mereotopology. In this sense, the choice of what,exactly, counts as a region is much less critical than we might at �rsthave supposed.The third salient issue concerns the ontological commitments entailedby �rst-order mereotopological theories. To understand this issue, recallthat a mereotopology M is a collection of subsets of some topologicalspace, which we have chosen to regard as a �-structure, for some sig-nature � of topological primitives. Any such mereotopology M thusde�nes an L�-theory Th�(M). But of course, any � structure A withTh�(A) = Th�(M) can be thought of as a (region-based) model of spacewhich, from the point of view of L�, makes exactly the same predictionsasM . It is therefore natural to ask which structures these are, and what,



16if anything, we can say about their relationship to M . Notice that theelements of such �-structures need not be regions of topological spacesat all; as such they are genuinely region-based theories of space. Inparticular, we may ask whether mereotopologies in general admit of in-trinsic characterizations making no reference to the topological spaceswhose regions they make up. And we may further ask|particularly inthe light of Example 1.20|what information those intrinsic characteri-zations yield about the topological spaces in question. Section 7 answersthese, and related, questions.The above three issues constitute the primary agenda of mereotopol-ogy, as conceived here.3. De�ning topological relationsOur task in this section is to compare the relative expressiveness of�rst-order languages having di�erent signatures of topological primitives.Our main result is that LC is at least as expressive as Lc;� over allsensible mereotopologies. We also show that over some mereotopologiesof interest, Lc;� is also at least as expressive as LC .We assume familiarity with the standard (Ti-) separation propertiesof topological spaces. Terminology varies here: we adopt the conven-tion according to which Ti-separation for i > 2 does not by de�nitionimply T1-separation; and we say that a space X is Hausdor� if it satis-�es T2-separation, regular if it satis�es both T3- and T1-separation, andnormal if it satis�es both T4- and T1-separation.) In addition, we occa-sionally employ the following less familiar separation property (D�untschand Winter, 2005).Definition 1.21 A topological space is weakly regular if it is semi-regular and, for any non-empty open set u, there exists a non-emptyopen set v with v� � u.We haveX is normal) X is regular) X is weakly regular) X is semi-regular.The reverse implications all fail (see D�untsch and Winter, 2005regardingweak regularity, and Steen and Seebach, 1995 for the other cases).3.1 ContactWe begin by de�ning the part-of relation in LC .Lemma 1.22 Let M be a mereotopology over a weakly regular space X,and let r1; r2 2 M . Then r1 � r2 if and only if M j= ��[r1; r2], where��(x1; x2) is the LC-formula 8z(C(x1; z)! C(x2; z)).



First-Order Mereotopology 17Proof If r1 � r2 then r�1 � r�2 , so s� \ r�1 6= ; implies s� \ r�2 6= ; forany s. Conversely, if r1 6� r2, by weak regularity, let u be a non-empty,open set such that u� � r1 � (�r2). Since M is a mereotopology, lets 2M be such that 0 6= s � u. Then s� \ r�1 6= ;, but s� \ r�2 = ;.QEDIn dealing with mereotopologies over weakly regular spaces, we maytherefore write the expression u � v in LC -formulas, as a shorthand for��(u; v). It follows that the Boolean constants and functions 0, 1, + ,� and � are also LC -de�nable for mereotopologies over weakly regularspaces, and we again freely employ these symbols in LC -formulas as ashorthand for their de�nitions.We now turn to de�ning the property of connectedness in LC . Weneed some technical lemmas.Lemma 1.23 Let M be a mereotopology over a regular topological spaceX. If d � X is closed and p 62 d, there exists r 2 M such that p 2 rand d � �r. In fact, there exist r; s 2 M such that p 2 r, d � s andr� \ s� = ;.Proof For the �rst statement, by T3-separation, let u; v be disjoint opensubsets of X such that p 2 u and d � v. Since M is a mereotopology,there exists r 2 M such that p 2 r � u, whence d � v � X n r� = �r.The second statement follows by two applications of the �rst: chooses 2 M such that p 2 �s and d � s; now choose r 2 M such that p 2 rand s� � �r. QEDLemma 1.24 Let r; s 2 RO(X) for some topological space X. If p 2 r�and p 2 s, then p 2 (r � s)�.Proof Let u be any open set containing p. Then u\s is also an open setcontaining p, whence (u\s)\r 6= ;, since p 2 r�. That is, u\(s �r) 6= ;.QEDLemma 1.25 Let M be a mereotopology over a regular topological space.For all r1; r2 2 M , r�1 \ r�2 \ (r1 + r2) 6= ; if and only if there existr01; r02 2 M such that r01 � r1, r02 � r2, r01� \ r02� 6= ; and (r01 + r02)� \(�(r1 + r2))� = ;.Proof The if-direction is immediate. For the only-if-direction, supposep 2 r�1 \r�2 \(r1+r2). By Lemma 1.23, let s 2M be such that p 2 s and(�(r1 + r2))� � �s; and let r01 = r1 � s and r02 = r2 � s. By Lemma 1.24,p 2 r01� \ r02�, whence r01 and r02 have the required properties. QED



18Lemma 1.26 LetM be a mereotopology which respects components. Thenr 2M is connected if and only if r�1 \ r�2 \ r 6= ; for all nonempty, dis-joint r1; r2 2M such that r1 + r2 = r.Proof Suppose r1 and r2 are non-empty, disjoint elements of M suchthat r1 + r2 = r and r�1 \ r�2 \ r = ;. By Lemma 1.4 (ii), r = r1 [ r2, sothat r is not connected. Conversely, suppose r is not connected. Let r1be a component of r and let r2 = r n r1. Since M respects components,r1 2M . Since r1 � r1[(r�1 \r2) � r�1 , r1[(r�1 \r2) is connected, whencer�1 \ r2 = ; by maximality of components. Thus, r2 = r n r�1 = r � (�r1).Moreover, since r1 is open and r1\r2 = ;, we have r1\r�2 = ;. Therefore; = r�1 \ r�2 \ (r1 [ r2) = r�1 \ r�2 \ r as required. QEDLemma 1.27 Let M be a mereotopology over a regular topological spaceX such that M respects components, and let r 2M . Then r is connectedif and only if M j= �c[r], where �c(x) is the LC-formula8x18x2(x1 > 0 ^ x2 > 0 ^ x1 � x2 = 0 ^ x1 + x2 = x!9x019x02(x01 � x1 ^ x02 � x2 ^ C(x01; x02) ^ :C(x01 + x02;�x))):Proof Lemmas 1.25 and 1.26. QEDTogether, Lemmas 1.22 and 1.27 guarantee that, for all mereotopologiesover regular topological spaces which respect components, the languageLC is at least as expressive as Lc;�. We take it that all mereotopologiesof interest ful�l these conditions: that is, the above reconstructions ofthe part-whole relation and the property of connectedness in LC are veryrobust.We present a further|and more surprising|demonstration of the ex-pressive power of LC in mereotopologies de�ned over R2 . We requirethe following fact about the topology of Euclidean spaces (Newman,1964,p. 112, c.f. Proposition 1.19).Proposition 1.28 Let d1 and d2 be closed sets in R2 , at least one ofwhich is bounded. If R2 n d1, R2 n d2 and d1 \ d2 are all connected, thenso is R2 n (d1 [ d2).Lemma 1.29 Let s1; s2; t 2 RO(R2) such that: (i) either s1 is boundedor s2 is bounded; (ii) �(s1 + t), �(s2 + t) and t are all connected; and(iii) s�1 \ s�2 = ;. Then �(s1 + s2 + t) is also connected.Proof Set di = (si + t)� (for i = 1; 2). Thus, the complement of di is�(si + t) (for i = 1; 2), and the complement of d1 [ d2 is �(s1 + s2 + t).



First-Order Mereotopology 19s1s2t
Figure 1.8. Expressing boundedness in LC : s1 and s2 are unbounded to the rightMoreover, since t is connected, so is t�, whence d1 \ d2 = (s1 + t)� \(s2 + t)� = (s�1 [ t�) \ (s�2 [ t�) = (s�1 \ s�2 ) [ t� = t� is connected.The result follows by Proposition 1.28. QEDLet �c be as de�ned in Lemma 1.27, and let �ub(y1; y2) be the LC -formula9z(�c(�(y1 + z)) ^ �c(�(y2 + z)) ^ �c(z) ^ :�c(�(y1 + y2 + z))):Lemma 1.30 Let M be a mereotopology over R2 such that M respectscomponents and every unbounded element in M includes regions s1, s2and t situated as in Fig. 1.8. Then for all r 2 M , r is bounded if andonly if M j= �b2 [r], where �b2(x) is the LC-formula:8y18y2(y1 � x ^ y2 � x ^ �ub(y1; y2)! C(y1; y2)):(The superscript 2 in �b2 refers to the fact that this formula works formereotopologies over R2 , and not, for example R3 .)Proof If r does not satisfy �b2(x) then, by Lemma 1.29, r contains twounbounded regions, so is certainly itself unbounded. Conversely, if r isunbounded, let s1; s2; t 2M be subsets of r situated as in Fig. 1.8. Thus,s1 � r, s2 � r and s�1 \ s�2 = ;, but at the same time, s1; s2 satis�es�ub(y1; y2), with t a witness for the existentially quanti�ed z. Hence rdoes not satisfy �b2(x). QEDIt is simple to verify that the mereotopologies RO(R2 ), ROS(R2 ),ROP(R2) and ROQ(R2) satisfy the conditions of Lemma 1.30. Hence,the property of boundedness is LC -de�nable in all these mereotopolo-gies. Nevertheless, Lemma 1.30, unlike Lemmas 1.22 and 1.27, has afragile character, in that it depends on a very speci�c feature of thetopological space R2 ; in particular, it fails to de�ne boundedness for thecorresponding mereotopologies over R3 . We will see in Section 6 thatboundedness is also LC -de�nable in well-behaved mereotopologies overR3 , but we have to go to much more trouble.



203.2 Reconstruction of pointsIn mereotopologies, the primitive objects|that is, the entities overwhich variables range|are regions, rather than points; but it is of-ten simple to `construct' points from regions, and `simulate' statementsabout points using statements about regions. One way to construct thepoint p is as a pair of regions whose closures intersect in the singletonfpg, as we now proceed to show. (There are also more sophisticatedways, described in Section 7.1.)Lemma 1.31 Let M be a mereotopology over a regular topological space,and let r; s 2M . Then r�\s� is a singleton if and only ifM j= �./[r; s],where �./(x1; x2) is the formulaC(x1;x2)^8y18y2(y1 � x1 ^ y2 � x2 ^C(y1; x2) ^C(y2; x1)! C(y1; y2)):Furthermore, if r� \ s� = fpg and t 2 M , then p 2 t if and only ifM j= �2[r; s; t], where �2(x1; x2; x3) is the formula9y1(y1 � x1 ^ C(y1; x2) ^ :C(y1;�x3));likewise, p 2 t� if and only if M j= ��2[r; s; t], where ��2(x1; x2; x3) is theformula 8y1(y1 � x1 ^C(y1; x2)! C(y1; x3)):Proof Routine by Lemmas 1.23 and 1.24. QEDIf M is a mereotopology over a topological space X, let us say that Mis complete if every point in X is the singleton intersection of some pairregions inM . For example, the mereotopologies ROP(Rn), ROS(Rn) ev-idently possess this property; by contrast, ROQ(Rn) does not. We mightsay that, in a complete mereotopology, points can be `simulated' by pairsof regions satisfying the formula �./. If M is a complete mereotopologyover a regular space, Lemma 1.31 gives us the right to include expressionssuch as, for example, x1\x�2 6= ; or F(x1)\F(x2) � F(x3)\F(x4) etc. inLC -formulas with the obvious interpretation, since such expressions canevidently be replaced by bona �de LC -formulas with the appropriateextension over M .The following lemma illustrates how easily we can express varioustopological relations in LC :Lemma 1.32 Let r; s 2 ROP(Rn). Then r� \ s� is connected if andonly if ROP(Rn) j= �ci[r; s], where �ci(x; y) is the formula8z:(x� \ y� \ z 6= ; ^ x� \ y� \ �z 6= ; ^ x� \ y� � z [ �z):



First-Order Mereotopology 21Proof The only-if direction is immediate. So suppose r�\s� is not con-nected; we must �nd a witness for z to show that ROP(Rn) j= :�ci[r; s].But, by construction of ROP(Rn), both r� and s� are expressible as�nite unions of closed, convex sets; and so, therefore, is r� \ s�. Sincethis latter set is not connected, it can be written as d [ e, such thatd\e = ; and d and e are both �nite unions of non-empty, closed, convexsets|say, d = d1 [ � � � ;[dl, e = e1 [ � � � ;[em. Given that any pairof disjoint, closed, convex sets in Rn can be separated by a hyperplane,we have half-spaces hi;j such that di � hi;j and ej � �hi;j for all i, j(1 � i � l, 1 � j � m). Then the required witness ist = X1�i�l Y1�j�mhi;j : QED3.3 Compacti�cationsBefore discussing the expressive power of Lc;�, we introduce someadditional technical material that will be useful throughout this chapter.Recall that a topological space is said to be locally compact if every pointhas a compact neighbourhood. This property `transfers', for Hausdor�spaces, to mereotopologies de�ned over them:Lemma 1.33 Let M be a mereotopology over a locally compact, Haus-dor� space X, and let p 2 X. Then p is contained within some r 2 Msuch that r� is compact.Proof Let p 2 X. Assuming X is locally compact, let d � X becompact and o � d be open such that p 2 o. Now let r 2 M such thatp 2 r � o � d. But a closed subset of a compact set is always compact,and, in a Hausdor� space, every compact set is closed. Therefore r� �d� = d is compact, as required. QEDLet X be a topological space, and let � denote the collection of opensets of X. Now set _X = X [ f1g, where 1 is some object not in X.For o 2 � , denote by _o the set_o = (o [ f1g if X n o is compact;o otherwise,and denote by _� the set � [ f _o j o 2 �g. Then we can take _X to be atopological space whose collection of open sets is _� . Under this topology



22(which we always assume), we call _X the one-point (or Alexandro�)compacti�cation of X. The object 1 is called the point at in�nity. Thespace _X is always compact. If X is locally compact and Hausdor�, then_X is also Hausdor�, and hence normal.Notation 1.34 In this chapter, we denote spheres, open balls and closedballs in Euclidean spaces as followsSn = f(a1; : : : ; an+1) 2 Rn+1 j a21 + � � �+ a2n+1 = 1gBn = f(a1; : : : ; an) 2 Rn j a21 + � � �+ a2n < 1gDn = f(a1; : : : ; an) 2 Rn j a21 + � � �+ a2n � 1g;and we assume the usual topology on these sets.(Recall that, by a d-cell, we mean any set homeomorphic to the opend-dimensional ball Bd.) In the special cases X = Rn , it is well-knownthat _X is homeomorphic to Sn via the mapping:1 7! (0; : : : ; 0; 1)(a1; : : : an) 7! (a01; : : : a0n+1);where a0i = 4ai=(a21 + � � �+ a2n + 4) for 1 � i � na0n+1 = (a21 + � � �+ a2n � 4)=(a21 + � � � + a2n + 4):This mapping may be regarded as a stereographic projection by embed-ding Rn in the hyperplane of Rn+1 de�ned in Cartesian geometry by theequation xn+1 = �1. This projection is depicted for the case n = 2 inFig. 1.9. By way of allusion to this homeomorphism:Notation 1.35 Let Sn denote the 1-point compacti�cation of Rn .Lemma 1.36 Let X be a non-compact topological space. Then the map-ping r 7! _r is a Boolean algebra isomorphism from RO(X) to RO( _X).Proof The function o 7! _o is monotone, because a closed subset ofa compact set is compact. Let o1 and o2 be open subsets of X, witho = o1 \ o2. Since X n o = (X n o1) [ (X n o2) is compact if and only ifboth (X n o1) and (X n o2) are compact, we have 1 2 _o if and only if1 2 _o1 \ _o2, whence _o = _o1 \ _o2.
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Figure 1.9. Stereographic projection of S2 onto the 1-point compacti�cation of R2 .If u is open in X, let u� denote the pseudo-complement of u in X, andlet ( _u)? denote the pseudo-complement of _u in _X. We claim that, forany open set u of X, with v = u�, ( _u)? = _v. By de�nition, _v is open in_X, and we have just shown that _u \ _v = _; = ;. Moreover, if w is anyopen set in _X disjoint from _u, then for some open subset w0 of X, wehave either w = w0 or w = _w0. Either way u \ w0 = ;, whence w0 � vand _w0 � _v by monotonicity. Hence _v is the largest open subset of _Xdisjoint from _u, i.e. ( _u)? = _v.Note that if r 2 RO(X), we have r = r�� and �r = r�. Hence _r?? = _r,so that _r 2 RO( _X). Conversely, if u0 2 RO( _X), then u0 = _u, for someopen u � X. But then, we have _u = _u?? = _x, where x = u��. Since thefunction o 7! _o is injective, u = u��. That is, u 2 RO(X). QEDLemma 1.37 Let X be a topological space and o � X open. If o isconnected in X, then _o is connected in _X. Conversely, suppose X is non-compact, and for any closed subsets d1 and d2 of X with X = d1[d2 andd1 \d2 compact, either d1 is compact or d2 is compact. If _o is connectedin _X, then o is connected in X.Proof Suppose o is open in X. If _o is not connected in _X , let o1, o2be non-empty open subsets of X such that _o = _o1 [ _o2 and _o1 \ _o2 = ;.Then o = o1[o2 and o1\o2 = ;, so o is not connected in X. Conversely,suppose o is not connected in X, so let o1, o2 be nonempty open subsetsof X such that o = o1[ o2 and o1 \ o2 = ;. If X n o is not compact, thenneither X n o1 nor X n o2 is compact, so that _o = o = o1 [ o2 = _o1 [ _o2and _o1 \ _o2 = ;, whence _o is not connected. If, on the other hand, X n ois compact, by the condition of the lemma, either X n o1 or X n o2 iscompact, whence _o = o [ f1g = o1 [ o2 [ f1g = _o1 [ _o2. Moreover,by repeating the �rst paragraph of the proof of Lemma 1.36, we have_o1 \ _o2 = _; = ;. It follows that _o is not connected. QED



24The well-known Heine-Borel theorem states that, in Rn , a set is compactif and only if it is closed and bounded. It is therefore easy to see thatRn satis�es the condition of Lemma 1.37.Lemma 1.38 Let n > 0 and let M be any mereotopology over Rn . Thenthe mapping r 7! _r de�nes a structure isomorphism from M to _M forthe signature (c;�): that is, M 'c;� _M .Proof Lemmas 1.36 and 1.37. QEDLemma 1.39 Let X be a locally compact, non-compact topological spaceand M a mereotopology over X. De�ne _M = f _r j r 2 Mg. Then _M isa mereotopology over _X. We call _M the 1-point compacti�cation of M .If M is �nitely decomposable, then so is _M .Proof Suppose that 1 2 _o with o open in X; we show that thereexists some r 2 _M such that 1 2 r � _o. Since M is a mereotopologyover X and X is locally compact, Lemma 1.33 gives us a cover of X n oby elements of M whose closures are compact. Since 1 2 _o, X n o iscompact, so that this cover has a �nite sub-cover, say r1; : : : ; rn. Letr = �(r1+ � � �+rn). Thus, X nr = r�1 [� � �[r�n is compact and includeso, whence r has the required properties. The rest of the Lemma followsfrom Lemma 1.37. QEDSuppose now that X = Rn for some n > 0, and let M be a mereotop-ology over Rn respecting components. Then X satis�es the condition ofLemma 1.37, so by Lemma 1.39, _M is a mereotopology over Rn respect-ing components. Since Sn denotes the 1-point-compacti�cation of Rn ,the 1-point compacti�cation of RO(Rn) is thus RO(Sn).Notation 1.40 Let ROS(Sn) denote the 1-point compacti�cation ofROS(Rn), and similarly for ROP(Sn), ROQ(Sn).It is often more convenient to work with S2 and S3 rather than R2 and R3 .When we need to make the distinction explicit, we refer to elements ofROP(Rn) as polytopes (polyhedra, polygons) in open space and those ofROP(Sn) as polytopes (polyhedra, polygons) in closed space. Note that,by Lemma 1.38, the mereotopologies RO(Rn), ROP(Rn), ROQ(Rn) andROS(Rn) certainly all have the same Lc;�-theories as their respective1-point compacti�cations.3.4 Connectedness: the closed planeWe have seen that, over most mereotopologies of interest, the languageLC is as expressive as the language Lc;�. The question therefore arises



First-Order Mereotopology 25as to whether a converse reduction is possible. In this section, we showthat, for well-behaved mereotopologies over S2, the answer is positive.We assume familiarity with basic geometric topology in the plane: fordetails, see Newman, 1964.Recall in this context that a Jordan arc ina topological space X is a homeomorphism from the unit interval [0; 1]into X, and a Jordan curve in X, a homeomorphism from the unit circleS1 into X. The Jordan curve, Theorem states that the locus of a Jordancurve in R2 separates R2 into two residual domains, exactly one of whichis bounded. If we regard S1 as the intersection of the plane x1 = 0 withS2, the Sch�on
ies Theorem states that a Jordan curve 
 : S1 ! S2 maybe extended to a homeomorphism S2 $ S2. Thus, if 
 is a Jordan curvein S2, the residual domains of j
j are 2-cells in S2; and if 
 is a Jordancurve in R2 , the bounded residual domain of 
 is a 2-cell in R2 .The following concepts are important in understanding the good be-haviour of the mereotopologies ROS(R2), ROP(R2 ) and ROQ(R2).Definition 1.41 Let X be a topological space, u � X and p; q 2 F(u).An end-cut to p in u is a Jordan arc in X such that f(1) = p andf([0; 1[) � u. Likewise, a cross-cut from p to q in u is a Jordan arc in Xsuch that f(0) = p, f(1) = q and f(]0; 1[) � u. LetM be a mereotopologyover X. We say that M has curve-selection if, for all r 2 M and allp 2 F(r), there exists an end-cut in r to p.The existence of end-cuts is by no means a universal property of regularopen sets in Rn (for n > 1). However, the regions in ROS(R2), ROP(R2 )and ROQ(R2) are well-behaved in this regard, as the following resultsshow.Lemma 1.42 Let r 2 ROP(Rn) and p 2 r�. Then there exists a linearfunction f : [0; 1] ! Rn such that f(1) = p and f([0; 1[) � r. If p hasrational coordinates, we may choose f so that it has parameters from Q.Proof The proposition holds for basic polytopes because their closuresare convex. It holds for all polytopes because if r = r1 + � � � rn, r� =r�1 [ � � � [ r�n by Lemma 1.4 (iii). QEDThe semi-algebraic case is much more involved. However, we have thefollowing Theorem (van den Dries, 1998, Ch. 6, Corollary 1.5; Bochnaket al., 1998 Theorem 2.5.5).Proposition 1.43 (Curve-selection lemma) Let S be a semi-algebraic subset of Rn and p 2 S�. Then there exists a continuous semi-algebraic function f : [0; 1] ! Rn such that f(1) = p and f([0; 1[) � S.



26Thus, the mereotopologies ROS(R2 ), ROP(R2) and ROQ(R2 ) all cer-tainly have curve-selection. Moreover, by making only minor modi�ca-tions to the relevant arguments, it can be shown that ROS(S2), ROP(S2)and ROQ(S2) all have curve-selection too.With these preliminaries behind us, we can turn to the expressivepower of Lc;�. We note in passing that, since � is a primitive of Lc;�,we may write the Boolean operators and constants +, �, �, 0 and 1 inLc;�-formulas, assuming them to be replaced by their usual de�nitions.In mereotopologies over the closed plane having curve-selection, we canexpress the property of being a 2-cell using an Lc;�-formula. To see this,we recall that the Jordan Curve Theorem has the following converse(see Newman, 1964Chapter VI, Theorem 16.1).Proposition 1.44 (Converse of Jordan's theorem) Let d be aclosed subset of S2 such that S2 n d has two components, and supposethat, for each p 2 d, and each component o of S2 n d, there is an end-cutto p in o. Then d is the locus of a Jordan curve.Then we have:Lemma 1.45 LetM be any mereotopology over S2 having curve-selection.Then, for all r 2 M , r is a 2-cell if and only if r is non-zero andconnected with non-zero connected complement|that is, if and only ifM j=  J[r], where  J(x) is the Lc;�-formulac(x) ^ x > 0 ^ c(�x) ^ �x > 0:Proof If M j=  J[r], then d = F(r) satis�es the conditions of Proposi-tion 1.44, sinceM has curve-selection. The other direction is immediate.QEDFurthermore:Lemma 1.46 Let M be a mereotopology over R2 having curve-selectionand also satisfying the conditions of Lemma 1.30. Then r 2 M is a2-cell if and only if r satis�es the LC-formula�c(x) ^ x > 0 ^ �c(�x) ^ �x > 0 ^ �b2(x);where �c(x) and �b2(x) are as de�ned in Lemmas 1.27 and 1.30, respec-tively.Proof If r satis�es the formula, then the bounded set F(r) is the locusof a Jordan curve in S2 and hence in R2 by the same reasoning as for



First-Order Mereotopology 27Lemma 1.45, and since r is the bounded residual domain of this set, itis a 2-cell. The other direction is again immediate. QEDWe now proceed to a direct comparison between Lc;� and LC . Proposi-tion 1.28 has a closed-plane variant, in which the condition that one ofd1 and d2 is bounded may be dropped.Proposition 1.47 Let d1 and d2 be closed sets in S2. If S2nd1, S2nd2and d1 \ d2 are all connected, then so is S2 n (d1 [ d2).This leads to a closed-plane variant of Lemma 1.29:Lemma 1.48 Let s1; s2; t 2 RO(S2) such that: (i) �(s1 + t), �(s2 + t)and t are all connected; and (ii) s�1 \ s�2 = ;. Then �(s1 + s2 + t) isalso connected.Proof As for Lemma 1.29, using Proposition 1.47 in place of Proposi-tion 1.28. QEDLemma 1.49 Let M be any �nitely decomposable mereotopology over S2having curve-selection, let  ub(y1; y2) be the Lc;�-formula9z(c(�(y1 + z)) ^ c(�(y2 + z)) ^ c(z) ^ :c(�(y1 + y2 + z)));and let  C(x1; x2) be the Lc;�-formula9y19y2(y1 � x1 ^ y2 � x2 ^  ub(y1; y2)):Then, for all r1; r2 2M , r�1 \ r�2 6= ; if and only if M j=  C [r1; r2].Proof The if-direction follows from Lemma 1.48. The only-if directionis left as a (�ddly) exercise. QEDPutting together Lemmas 1.22, 1.27 and 1.49, we see that Lc;� is ex-actly as expressive as LC in well-behaved mereotopologies over the closedplane S2.As a �nal example of the expressiveness of the language LC , we ob-serve that it can distinguish between R2 and its 1-point compacti�cation.Theorem 1.50 Let M be any of ROS(R2 ), ROP(R2) or ROQ(R2 ).Then M 6�C _M .Proof Recall the LC-formula �b2(x) de�ned in Lemma 1.30, and ex-pressing the property of being bounded over M . Evidently,M 6j= 8x�b2(x). But it is an easy consequence of Lemma 1.48 that_M j= 8x�b2(x). QEDTheorem 1.50 stands in sharp contrast to the situation with the signaturefc;�g reported in Lemma 1.38.



284. Expressiveness of �rst-order languages inplane mereotopologiesIn the previous section, we examined the relative expressive powerof the languages LC and Lc;� for various mereotopologies, in particularthose de�ned over R2 and S2. This section characterizes that expressivepower in a more `absolute' way. We employ the following terminology:Definition 1.51 Let X be a topological space and let �u = u1; : : : ; un,�v = v1; : : : ; vn be n-tuples of subsets of X. We say that �u and �v aresimilarly situated (in X), and write �u �X �v, if there is a homeomorphismof X onto itself mapping �u to �v. If X is clear from context, we omitreference to it, and simply write �u � �v. Now let M be a mereotopologyover X and � a signature of topological primitives. For any L�-formula� with free-variables �x, we say that � is topologically complete (in Mover X) if any pair of tuples of the appropriate arity satisfying �(�x) inM are similarly situated in X.Readers familiar with basic geometric topology will recognize that themereotopologies ROS(S2), ROP(S2) and ROQ(S2) are all (�nitely) `tri-angulable' (in the sense of van den Dries, 1998).Moreover, the observa-tions of Section 3.2 strongly suggest that triangulations in these mereotopolo-gies can be combinatorially described using �rst-order formulas withC as their only primitive. And since combinatorially isomorphic tri-angulations are similarly situated, it should be entirely unsurprisingthat every tuple in these mereotopologies satis�es a topologically com-plete LC-formula (and hence also a topologically complete Lc;�-formula).That is: every tuple of regions in any of the mereotopologies ROS(S2),ROP(S2) and ROQ(S2) can be completely topologically described by anLC -formula (or by an Lc;�-formula). Results of this general kind wereproved, independently, by Kuijpers et al., 1995,Papadimitriou et al.,1999and Pratt and Schoop, 2000,by a variety of methods. Our objec-tive here is a systematic and general investigation of this topic, using anapproach which will prove useful in Sections 5 and 7.4.1 Connected partitionsWe have seen that, given a collection � of topological primitives,any mereotopology can be regarded as a �-structure by interpreting thesymbols in � in the standard way. And the question then naturallyarises as to whether we can obtain a converse to this observation. Thatis: under what conditions is a given �-structure isomorphic to somemereotopology|or perhaps, to some mereotopology belonging to a cer-tain class? Since this question will preoccupy us in the sequel, some of



First-Order Mereotopology 29the results below will be presented at a higher level of generality thantheir immediate applications warrant.Accordingly, throughout Sections 4.1 and 4.2, A shall denote an arbi-trary structure interpreting the signature f0; 1;+; �;�; cg, such that thereduct of A to the signature f0; 1;+; �;�g, is a Boolean algebra. To avoidnotational clutter, if a; b 2 A, we write 0;�a; a+ b etc., rather than themore correct 0A, �A(a), +A(a; b) etc. In addition, abusing terminologyslightly, we call an element a 2 A connected if A j= c[a]; and we saythat A is �nitely decomposable if, for every a 2 A, there exist connectedelements a1; : : : ; an of A such that a = a1+ : : :+an. Of course, in case Ais a mereotopology M , this usage is consistent with that adopted above.As usual in the context of Boolean algebras, we take a partition in A tobe a tuple of non-zero, pairwise disjoint elements summing to 1. If �a isany tuple from A (not necessarily a partition), and �b a partition in A,we say that �a can be re�ned to �b if every element of �a can be written asthe sum of (zero or more) elements of �b.Definition 1.52 A partition �a = a1; : : : ; an in A such that ai is con-nected for all i (1 � i � n) is called a connected partition.Let  con denote the Lc;�-sentence8x8y(c(x) ^ c(y) ^ x � y 6= 0! c(x+ y)):Thus,  con `says' that the sum of two overlapping connected regions isconnected.Lemma 1.53 Let M any mereotopology. Then M j=  con.Proof A restatement of Lemma 1.4 (iv). QEDClaim 1.54 Suppose A is �nitely decomposable, and A j=  con. Thenevery tuple in A can be re�ned to a connected partition.Proof Given elements a1; : : : ; an, collect all the non-zero productsb1; : : : ; bN of the form: �a1 � � � � � �an. For each j (1 � j � N),let bj;1; : : : ; bj;Nj be connected elements of A summing to bj. If, for anytwo of these elements, say bj;k and bj;l, we have bj;k � bj;l > 0, then wecan replace them by their sum bj;k + bj;l (which is connected, becauseM j=  con). Proceeding in this way, we obtain the desired re�nement.QEDNote that, in particular, every tuple in any �nitely decomposable mer-eotopology can be re�ned to a connected partition.



30Let us restrict attention now to �nitely decomposable mereotopologiesover S2 having curve-selection.Lemma 1.55 Let M be a mereotopology over R2 or S2 having curve-selection. If r1; r2 and r3 are pairwise disjoint, connected elements ofM , then there exist at most two points lying on the frontiers of all threeregions.Proof We suppose that p1; p2 and p3 are distinct points all lying onthe frontiers of r1; r2 and r3 and derive a contradiction. Choose pointsq1; q2; q3 such that qi 2 ri (i = 1; 2; 3). By curve-selection, draw threeend-cuts in ri, say 
i;1, 
i;2 and 
i;3 from qi to p1, p2 and p3, respectively.It is easy to see that, within each rj (1 � j � 3), the 
i;j can be chosenso that they intersect only at qi. But since the rj are disjoint, each 
i;jintersects any other 
i0;j0 only in pi or qi. And it is well known that thisis impossible (see the right-hand graph in Fig. 1.11). QEDFor n > 2, let  nsum denote the Lc;�-formula8x1 : : : 8xn�c(x1 + � � �+ xn) ^ ^1�i�n c(xi)! _2�i�n c(x1 + xi)�:(The formula  sum of Example 1.18 is just  3sum.) Thus,  nsum `says'that, if n connected regions have a connected sum, the �rst must forma connected sum with at least one of the others.Lemma 1.56 Let M be a �nitely decomposable mereotopology over S2having curve-selection. Then M j=  nsum for all n > 1.Proof Let r1; : : : ; rn be connected with r1 + � � � + rn also connected.Assume �rst that the ri are pairwise disjoint. Let p 2 r1 and q 2r2 + � � � + rn. By the connectedness of r1 + � � � + rn, draw a Jordan arc
 from p to q lying within r1 + � � � + rn. By Lemma 1.55, only �nitelymany points can lie on the frontiers of more than two of the ri, and wemay certainly ensure that 
 avoids all such points. By renumbering ifnecessary, we may assume that 
 visits a point p 2 r�1 \r�2 \(r1+: : :+rn).But by the construction of 
, p 62 r�i for all i > 2, whence p 2 �ri for allsuch i. Therefore, p 2 r�1 \ r�2 \ (r1 + r2), whence r1 + r2 is connected.Finally, we relax the assumption that the ri are pairwise disjoint. SinceM is �nitely decomposable, we have that each element of �r is the sumof zero or more members of a tuple �s of pairwise disjoint connectedelements with the same sum. The result then follows easily by repeatedapplications of Lemma 1.53. QEDIn the sequel, we abbreviate the formulax1 + x2 = x ^ x1 > 0 ^ x2 > 0 ^ x1 � x2 = 0 ^ c(x1) ^ c(x2)
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Figure 1.10. The con�guration of  break:by x1 � x2 = x; thus, x1 � x2 = x `says' that x can be partitioned intonon-empty, disjoint connected regions x1 and x2. Now let  break denotethe Lc;�-formula8x8y18y2��c(x) ^ c(y1) ^ c(y2) ^ c(x+ y1)^c(x+ y2) ^ x � y1 = 0 ^ x � y2 = 0 ^ x 6= 0�!9x19x2�x1�x2 = x^ c(x1+y1)^ c(x1+y2)^ c(x2+y1)^ c(x2+y2)��:Thus,  break `says' that, if r; s1; s2 are connected regions such that r isnon-zero, disjoint from s1 and s2, and forms a connected sum with boths1 and s2, then r can be partitioned into connected, non-zero regions r1,r2 such that each of r1 and r2 forms a connected sum with each of s1and s2. Fig. 1.10a illustrates this con�guration; note that �r need notbe connected.Lemma 1.57 Let M be a �nitely decomposable mereotopology over S2having curve-selection. Then M j=  break.Proof Let r, s1, s2 be as above. We may assume that s1 and s2 arenonzero, since otherwise, similar or easier arguments apply. Refer toFig. 1.10b. For i = 1; 2, since r + si is connected, by Lemma 1.4 (ii),r� \ s�i \ (r+ si) 6= ;. In fact, since the removal of �nitely many points



32from the open set r+si does not disconnect it, we can choose four distinctpoints pi, qi (i = 1; 2) such that pi; qi 2 r� \ s�i \ (r + si). Since M hascurve-selection and r is connected it is easy to see that, by exchangingq1 and q2 if necessary, we can draw cross-cuts 
 from p1 to p2 and Æ fromq1 to q2 such that j
j and jÆj are disjoint. Since S2 is normal and M amereotopology, we can cover jÆj with elements of M whose closures aredisjoint from j
j. By compactness of jÆj, this cover has a �nite subcover,t1; : : : ; tN , say. Let t = r � (t1 + � � �+ tN ); evidently, q1 and q2 lie on thefrontier of the same component t0 of t. Likewise, p1 and p2 lie on thefrontier of the same component of r � �t0: call this component r1 2 M ,and let r2 = r � �r1. It is easy to check that r1 and r2 have the requiredproperties. QED4.2 Neighbourhood graphsAs before, A shall denote an arbitrary structure interpreting the sig-nature f0; 1;+; �;�; cg, such that the reduct of A to f0; 1;+; �;�g, is aBoolean algebra. Recall the notion of connected partition introduced inDe�nition 1.52.Definition 1.58 Let �a = a1; : : : ; an be a connected partition in A. Aconnected partition �a is called a ch-partition if, for every I � f1; : : : ; ngsuch that jIj < h, the element (�Pi2I ai) is connected.If A j= c(1), then a c1-partition in A is the same thing as a connectedpartition. Furthermore, if A is in fact a mereotopology over S2 havingcurve-selection, then, by Lemma 1.45, a c2-partition in A is the samething as a partition consisting entirely of 2-cells. It is c3-partitions,however, that will mainly preoccupy us in the sequel.We assume familiarity with basic graph theory: for details, see Diestel,1991 Chapter 1. Recall in this context that a graph is a pair G = (V;E)where V is a set (called vertices) and E is a set of 2-element subsets ofV (called edges). We denote V by V (G) and E by E(G). Note that,on this de�nition, graphs have no `loops' or `multiple edges'. If G is agraph and U is a proper subset of V (G), we denote by GnU the result ofdeleting all the nodes in U from G; and if e = (v; v0) 2 E(G), we denoteby the G=e the result of contracting G by merging v and v0 into a single(new) node v00, such that (v00; w) is an edge of G=e just in case either(v; w) or (v0; w) is an edge of G. If a graph H can be obtained from G bya sequence of deletions and contractions, then H is said to be a minorof G. Finally we take the terms path, cycle, connected, component to bede�ned in the standard way. In particular, recall that, for h > 0, G issaid to be h-connected if G n U is connected for every U � G such thatjU j < h.



First-Order Mereotopology 33Definition 1.59 Let �a = a1; : : : ; an be a tuple from A. If ai + aj isconnected for 1 � i < j � n, we say that ai and aj are neighbours.The neighbourhood, graph of �a, denoted N�a, is the graph with nodesfa1; : : : ; ang and edges f(ai; aj) j ai and aj are neighboursg.Claim 1.60 Suppose A j=  con and A j=  nsum for all n > 2. Let �a =a1; : : : ; an be a tuple of connected elements of A, such that an�1 + an isconnected. Let �a0 = a1; : : : ; an�2; (an�1+an). Then N�a0 = N�a=(n�1; n).Proof For 1 � j < n� 1, aj + (an�1 + an) is connected if and only ifaj + an�1 is connected or aj + an is connected. QEDClaim 1.61 Suppose A j=  con and A j=  nsum for all n > 2. Let �a =a1; : : : ; an be a tuple of connected elements of A, with a = a1 + : : :+ an.Then a is connected if and only if N�a is a connected graph.Proof The if-direction follows easily from the fact that A j=  con. Forthe only-if direction, note that the claim is trivial if n = 1, so assumen > 1, and that the claim holds for tuples of fewer than n elements.Since A j=  nsum there exists i (1 � i < n) such that ai and an areneighbours. By renumbering if necessary, assume i = n � 1, and let �a0be as in Claim 1.60, so that N�a0 = N�a=(an�1; an). But N�a0 is connectedby inductive hypothesis, whence N�a is connected too. QEDClaim 1.62 Suppose A j=  con and A j=  nsum for all n > 2. Let �a be aconnected partition in A, and let h � 1. Then �a is a ch-partition if andonly if N�a is an h-connected graph.Proof Immediate by Claim 1.61. QEDClaim 1.63 Suppose A j= c(1), A j=  con, A j=  nsum for all n > 2, andA j=  break. Then every connected partition in A can be re�ned to ac3-partition.Proof We make free use of Claim 1.61. Let �a be a connected partition.We show �rst that �a can be re�ned to a c2-partition. Choose an elementa of �a such that the number k of components of the graph N�a n fag ismaximal. And let there be m > 0 elements a for which this maximumvalue is attained. If �a is not already a c2-partition, then k > 1. LetH1, H2 be distinct components of N�a n fag. Since N�a is connected,there exist b1 2 H1, b2 2 H2 such that a+ b1 and a+ b2 are connected.



34Since A j=  break, let a1; a2 be non-empty, connected, disjoint elementssumming to a with a1 + b1, a1 + b2, a2 + b1 and a2 + b2 all connected;and let �b be the connected partition which results from replacing a bya1 and a2. Evidently, for i = 1; 2, N�b n faig has strictly fewer than kcomponents. That is, the number of elements b in �b such that N�b n fbghas k components is strictly less than m. Proceeding in this way, weeventually obtain a c2-partition.Now let �a be a c2-partition. We show that �a can be re�ned to a c3-partition. If �a is not a c3-partition, choose a pair of distinct elements aand a0 such that the number k of components of the graph N�a n fa; a0gis maximal; and let there be m > 0 unordered pairs (a; a0) for whichthis maximum value is attained. Let H1, H2 be distinct components ofN�a n fa; a0g. Since �a is a c2-partition, there exist b1 2 H1, b2 2 H2 suchthat a + b1 and a + b2 are connected. And since A j=  break, let a1; a2be non-empty, connected, disjoint elements summing to a with a1 + b1,a1 + b2, a2 + b1 and a2 + b2 all connected; and let �b be the connectedpartition which results from replacing a by a1 and a2. Evidently, fori = 1; 2, N�b n fai; a0g has strictly fewer than k components. Moreover,suppose a00 is any other element of �a (distinct from a and a0) such thatN�a n fa; a00g also has k components. We claim that N�b n fa1; a00g andN�b n fa2; a00g cannot both have k components. Working for the momenton this assumption, we see that the number of pairs b; b0 in �b such thatN�b n fb; b0g has k components is strictly less than m. Proceeding in thisway, we eventually obtain a c3-partition.It remains only to verify that the graphs N�b n fa1; a00g and N�b n fa2; a00gencountered above do not both have k components. If a 2 A and B � A,let us say that a is a neighbour of B if a is a neighbour of some elementof B. Let the components of N�b n fa; a00g be H1; : : : Hk. Since �b is ac2-partition, we have that, for all i (1 � i � k), a is a neighbour of Hi,and therefore either a1 or a2 is a neighbour of Hi. Hence, we can re-order the Hi if necessary so that, for some p; q with 0 � p < q � k + 1,a1 is a neighbour of Hi if and only if i < q and a2 is a neighbour ofHi if and only if p < i. Thus, the components of N�b n fa1; a00g areH1; : : : ;Hp; (fa2g [Hp+1 � � � [Hk), and the components of N�b n fa2; a00gare (fa1g [H1 � � � [Hq�1);Hq; : : : ;Hk. If these number k in each case,we have p = k � 1 and q = 2. But a0 lies in one of the Hi, and a1 anda2 were chosen so that they are both neighbours of this a0. Hence a1and a2 are both neighbours of Hi, whence p < q � 1. This yields k � 1,contradicting our assumption that �a is not a c3-partition. QEDWe �nish with a technical result which will be required later.



First-Order Mereotopology 35Definition 1.64 If �a = a1; : : : ; aN is a connected partition in A suchthat, for any neighbour aj of ai, �(ai + aj) is connected, we say that �ais radial about ai.Note incidentally that a c3-partition is radial about each of its members.Claim 1.65 Suppose A j= c(1), A j=  con, A j=  nsum for all n > 2,and A j=  break. Let n > 1 and let �a = a1; : : : ; an be a connectedpartition in A with �a1 connected. Then �a can be re�ned to a c2-partitiona1; b2; : : : ; bN , radial about a1, in which a1 has at least three neighbours.Proof Similar to the above. QEDWe conclude with a further corollary of Claim 1.61. We employ thefollowing fact from graph theory, whose proof we leave to the reader.Proposition 1.66 If G is a �nite 2-connected graph of order at least 2,and v 2 V (G), then there exists a w 2 V (G) such that fv; wg 2 E(G),and the removal of both v and w from G leaves a connected graph.Corollary 1.67 Let M be a �nitely decomposable mereotopology overS2 having curve-selection, and let �r = r1; : : : ; rn be a partition in Mconsisting entirely of 2-cells. Then, by re-numbering if necessary, wehave, for all k (1 � k < n), r1 + � � �+ rk is a 2-cell.That is: partitions of the closed plane into 2-balls are always `shellable'.The analogous result for three-dimensional space fails (Rudin, 1958).4.3 Partition graphsWe now prove that, if �r is a c3-partition in a �nitely decomposablemereotopology over S2 having curve-selection, then the neighbourhoodgraph of �r �xes its topological properties completely.We assume familiarity with the basic theory of plane graphs: fordetails, see Diestel, 1991 Chapter 4. In this context, suppose that e � S2is the locus of a Jordan arc. Then e has two endpoints; all other pointsare called interior points, and we denote the set of these interior pointsby (e). (Of course, e is not the topological interior of the set e in S2;but no confusion should arise in this regard.) A plane graph is a pairG = (V;E), where V is a �nite subset of S2 and E is a collection of setse � S2 such that e is the locus of a Jordan arc, satisfying the followingconditions for all v 2 V and all e; e0 2 E:1 if e 2 E and p is an endpoint of e, then p 2 V ;2 v 6= (e), and if e 6= e0 then (e) \ (e0) = ;;



36 p1 p2 p3
q1 q2 q3Figure 1.11. The non-planar graphs K5 and K3;3.3 if e 6= e0, then e and e0 do not join the same pair of endpoints.The elements of V are called vertices of G, and the elements of E, theedges of G; an edge e 2 E is said to join the vertices at its endpoints.We denote V by V (G), E by E(G) and V [SE by jGj. The componentsof S2 n jGj are called the faces of G, and we denote the set of these facesby F (G). A plane graph is semi-algebraic if its edges are the loci ofsemi-algebraic Jordan arcs; similarly for the terms piecewise linear andrational piecewise linear. Notice that, on our de�nition, plane graphshave no `loops' or `multiple edges'. (Some authors prefer the term simplegraph.) A plane graph will be regarded as an abstract graph in theobvious way, and we carry over notation and terminology accordingly.Conversely, if G = (V;E) is an abstract graph, a drawing of G is a planegraph G0 = (V 0; E0) for which there exists a function � mapping V 1{1onto V 0 and E 1{1 onto E0 such that for all (v; v0) 2 E, �((v; v0)) joins�(v) and �(v0). We call � an embedding. If G has a drawing, G is planar.Not all abstract graphs are planar, of course: the graphs K5 and K3;3illustrated in Fig. 1.11 are familiar non-planar graphs. Indeed, this facthas a converse:Proposition 1.68 (Kuratowski, Wagner) A graph is planar if andonly if it has no minor isomorphic to either K5 or K3;3.We further assume familiarity with the notion of duality for planegraphs. Let G and G0 be plane graphs. We say that G0 is a geometricaldual of G if there are bijections fF : F (G) ! V (G0) and fE : E(G) !E(G0) such that, for all f 2 F (G) and e 2 E(G):1 fF (f) 2 f ;2 fE(e)\e is a single point interior to both fE(e) and e, and fE(e)\e0 = ; for all e0 6= e.



First-Order Mereotopology 37In our terminology, not every plane graph has a dual, because we do notallow graphs to contain loops or multiple edges. However, we rely belowon the following suÆcient condition (Wilson, 1979, p. 76).Proposition 1.69 Every 3-connected plane graph has a dual.The following fact is also well-known.Lemma 1.70 Let G and G0 be connected plane graphs such that G0 isa geometrical dual of G. Then there is a bijection fV : V (G) ! F (G0)such that, for all v 2 V (G), v 2 fV (v). Hence, G is a dual of G0.Proof Every face of G0 contains at least one vertex ofG by construction;it contains at most one by Euler's formula jF (G)j� jE(G)j+ jV (G)j = 2applied to G and G0. QEDFinally, duals are unique, in the following sense (Diestel, 1991, p. 88).Proposition 1.71 Let G be a plane graph and let G0 and G00 be planegraphs which are both geometric duals of G. Then there is a homeo-morphism h : S2! S2 mapping G0 to G00. In fact, h can be chosen suchthat, for all v 2 G, if f 0 and f 00 are the faces of G0 and G00, respectively,containing v, then h maps f 0 to f 00.Now let us apply these ideas to the graphs whose faces are c3-partitionsin well-behaved, closed-plane mereotopologies.Lemma 1.72 Let X be a topological space, and let r, s be disjoint ele-ments of RO(X) with p 2 F(r) n F(s). Then p 2 F(�(r + s)).Proof By Lemma 1.4 (ii), p 62 r + s. QEDLemma 1.73 Let M be a mereotopology over S2 having curve-selection,and let �r = r1; : : : ; rn be a c3-partition inM . For all i, j (1 � i < j � n),F(ri) \ F(rj) is connected.Proof We may assume that n � 3. Since �r is certainly a c2-partition,every F(ri) (1 � i � n) is a Jordan curve by Lemma 1.45. Suppose,for contradiction, that F(ri) \ F(rj) is not connected, and let p; q 2F(ri) \ F(rj) be separated in F(ri) by fp0; q0g � F(ri) n F(rj). ByLemma 1.72, p0; q0 2 F(�(ri + rj)), so that, by the connectedness of�(ri + rj), we can draw a cross-cut 
0 (De�nition 1.41) from p0 to q0 in�(ri + rj) � �ri. By the connectedness of rj, we can likewise draw across-cut 
 from p to q in rj � �ri. But �ri is a 2-cell, whence 
 and
0 are easily seen to intersect at an interior point, which is impossible,since rj \ �(ri + rj) is empty. QED



38Lemma 1.74 Let M be a mereotopology over S2 having curve-selection,and let �r = r1; : : : rn (n � 4) be a c3-partition in M . Then there existsa unique plane graph G drawn in S2 such that the collection of setsfr1; : : : ; rng are exactly F (G) and the collection of sets fF(ri) \ F(rj) j1 � i < j � n; ri + rj is connectedg are exactly E(G).Proof Let i; j; k be distinct integers in the range [1; n]. Since �r is a c3-partition, r�j [ r�k = S2n�(rj+ rk) does not separate the nonempty setsri and �(ri + rj + rk), whence F(ri) \ (F(rj) [ F(rk)) is not the wholeof the Jordan curve F(ri). And since, by Lemma 1.73, F(ri) \ F(rj) isa connected subset of F(ri), F(ri) \F(rj) is either a point or the locusof a Jordan arc. Indeed, F(ri) must include at least three Jordan arcs ofthe form F(ri) \ F(rj) for various j distinct from i. Let the vertices ofG be the endpoints of all Jordan arcs of the form F(ri)\F(rj), and letthe edges of G be the segments of the various F(ri) connecting them. Toshow that G is a plane graph, we must establish that if F(ri)\F(rj) isa Jordan arc 
, then for all k (1 � k � n) with k 6= i; j, F(rk) containsno interior points of 
. For otherwise, let p0 2 F(rk) be an interiorpoint of 
, and pick any q0 2 F(ri) n F(rj). Then p0 2 F(�(ri + rj))and also, by Lemma 1.72, q0 2 F(�(ri + rj)). If we now choose pand q in F(ri) \ F(rj) separating p0 and q0 on the Jordan curve F(ri),the derivation of a contradiction proceeds as in Lemma 1.73. Henceno point of F(rk) is an interior point of 
, as required. Moreover, notwo Jordan arcs in E can have the same end-points, since �r is a c3-partition. It follows that G is a plane graph as required. Evidently,F (G) = fr1; : : : ; rng and E(G0) is the collection of sets F(ri)\F(rj) for1 � i < j � n which are Jordan arcs.It therefore remains only to show that F(ri)\F(rj) is a Jordan arc if andonly if ri + rj is connected. Note that r1 [ r2 is trivially not connected.By Lemma 1.4 (ii), ri [ rj � ri + rj � ri [ rj [ (F(ri) \ F(rj)), andthe removal of a single point from a connected, open set does not renderit disconnected. Hence, if ri + rj is connected, F(ri) \ F(rj) is neitherempty nor a singleton, and hence is a Jordan arc. Conversely, supposeF(ri) \ F(rj) is a Jordan arc. We have already shown that, if p isan interior point of this arc, p 62 [k 6=i;jr�k = (Pk 6=i;j rk)�. That is,p 2 �Pk 6=i;j rk = ri + rj. Hence F(ri) \F(rj) \ (ri + rj) is non-empty,whence ri + rj is connected. QEDDefinition 1.75 Let M be a mereotopology over S2 having curve-selection, and let �r = r1; : : : rn (n � 4) be a c3-partition in M . Wecall the unique plane graph G satisfying the conditions of Lemma 1.74the the partition graph of �r.



First-Order Mereotopology 39Warning: the neighbourhood graph and the partition graph of a c3-partition are not the same sort of thing. The former is an abstract graphwhose nodes are regions and whose edges are pairs of regions; the latteris a plane graph, whose nodes are points and whose edges are the loci ofJordan arcs.Lemma 1.76 Let M be a mereotopology over S2 having curve-selection, let �r = r1; : : : rn (n � 4) be a c3-partition in M , and let Gbe its partition graph. Then there is a plane embedding � of N�r such that�(N�r) is a geometrical dual of G and, for all i, (1 � i � n), �(ri) 2 ri.Proof Almost immediate from the de�nition of partition graph. QEDFrom Claim 1.62, c3-partitions have 3-connected neighbourhood graphs.But 3-connected graphs have the crucial property that all their drawingsare topologically the same.Proposition 1.77 (Whitney) Let G and G0 be 3-connectedplane graphs and f : G ! G0 a graph isomorphism. Then f can beextended to a homeomorphism h : S2! S2.Let M be a �nitely decomposable mereotopology over S2, and let�r = r1; : : : ; rn and �s = s1; : : : ; sn, be n-tuples fromM . We are interestedin the case where the mapping ri 7! si is a graph isomorphism from N�rto N�s|that is, where, for all i, j, (1 � i < j � n), ri + rj is connectedif and only if si+ sj is connected. We say in this case that �r and �s havethe same neighbourhood structure.Theorem 1.78 Let M be a �nitely decomposable mereotopology overS2 having curve-selection. Then any two c3-partitions in M having thesame neighbourhood structure are similarly situated in S2.Proof It is straightforward to verify that, if n � 3, all n-element c3-partitions in M are similarly situated in S2. Thus, we may assume thatn � 4. Let �r = r1; : : : ; rn and �s = s1; : : : ; sn be c3-partitions withthe same neighbourhood structure, and let G and H be their respectivepartition graphs. By Lemma 1.76, let G� and H� be embeddings of N�rand N�s, geometrically dual to G and H, respectively, let pi be the vertexof G� contained in ri and let qi be the vertex of H� contained in si for alli (1 � n). Hence, there is a graph isomorphism f : G� ! H� mappingpi to qi. Since G� and H� are 3-connected, Proposition 1.77 guaranteesthat f can be extended to a homeomorphism h : S2 ! S2. Then h(G)and H are both geometrical duals of the plane graph h(G�) = H�, suchthat, for all i (1 � i � n) the faces h(ri) and si contain the vertexh(pi) = qi. By Proposition 1.71, let h0 be a homeomorphism mapping



40
Figure 1.12. Only the left-hand graph de�nes a connected partition in RO(S2).h(G) to H such that h0(h(ri)) = si. Thus, �r and �s are similarly situated.QEDWe �nish this discussion of partition graphs with some `obvious' lem-mas concerning connected partitions in ROP(S2) and related mereotopolo-gies. Readers irritated by proofs of such evident truths may skip toTheorem 1.82.Lemma 1.79 Let G be a plane graph such that G has no isolated vertices,and every edge of G lies on the boundary of (at least) 2 faces of G. Thenthe members of F (G) are regular open, and form a connected partitionin RO(S2). Moreover, if G0 is another such plane graph, with jGj � jG0j,then, for every f 2 F (G), f =Pff 0 2 F (G0) j f 0 � fg.Proof Let G = (V;E), and suppose f 2 F (G) and p 2 F(f). Since Ghas no isolated vertices, there exists e 2 E such that p 2 e and hencesome f 0 2 F (G), distinct from f , such that e � F(f 0). Since f 0 is disjointfrom f�, p 2 (S2nf�)� = S2n(f�)0, i.e. p 62 (f�)0. Thus, the open set fsatis�es (f�)0 � f , and so is regular open. By Lemma 1.4 (ii), SF (G) �PF (G) � (SF (G))� = Sff� j f 2 F (G)g = S2. But by Lemma 1.3,PF (G) is the unique regular open set lying between SF (G) and itsclosure; i.e.PF (G) = 1. Hence, the elements of F (G) form a connectedpartition in RO(S2). The last part of the lemma then follows fromLemma 1.3, since, if f 2 F (G), then both f andPff 0 2 F (G0) j f 0 � fgare regular open sets sandwiched between Sff 0 2 F (G0) j f 0 � fg andits closure. QEDOf course, the converse of Lemma 1.79 is false: the con�guration ofExample 1.18 shows that not every connected partition in RO(S2) is theset of faces of some plane graph.Lemma 1.80 If G is a piecewise linear plane graph such that G has noisolated vertices and every edge of G lies on the boundary of exactly 2faces, then the faces of G form a connected partition in ROP(S2).



First-Order Mereotopology 41Proof Let L1; : : : ; Lm be straight lines extending (in both directions)each of the line segments making up G. Let G0 be the graph whose nodesare the points of intersection of the Li (including 1) and whose edgesare the segments of the Li joining them; and let P be the set of non-zeroproducts �s1 � � � � � �sm, where si is one of the residual half-planes ofLi for 1 � i � m. By simple set-algebra, SP = SF (G0); and sinceevery r 2 P is connected, and every f 2 F (G0) is a maximal connectedsubset of S2 n jG0j, r \ f 6= ; implies r � f . Hence every f 2 F (G0) isa union of elements of P . But since these elements are non-empty openand disjoint and f is connected, f simply is some element of P , andhence is an element of ROP(S2). Since jGj � jG0j, the result follows bythe last part of Lemma 1.79. QEDLemma 1.80 does have a converse:Lemma 1.81 If �r is a connected partition in ROP(S2), then �r is the setof faces of some piecewise linear plane graph G; moreover, for any suchplane graph G, G has no isolated vertices, and every edge of G lies onthe boundary of exactly 2 faces.Proof By Claim 1.63, re�ne �r = r1; : : : ; rn to a c3-partition �t = ft1; : : : ; tNg,and let G0 be the partition graph of �t. Suppose, by renumbering if nec-essary, that r1 = t1 + � � � + tm. Note that, if e 2 E(G0), we have, forall j (1 � j � N), (e) � t�j or (e) \ t�j = ;. Hence if (e) 6� r1, then(e) \Sm<j�N t�j 6= ;, whence e � t�j for some j (m < j � N).Let G1 be the graph obtained from G0 by �rst removing any edge e suchthat (e) � r1, and then removing any vertex v such that v 2 r1. Since r1is open, the endpoints of every remaining arc are among the remainingvertices, so G1 really is a plane graph. Moreover, if m < j � N , thent�j \ r1 = ;, so that none of the vertices and edges removed from G0intersects t�j ; hence tj is a face of G1. Therefore, the set of pointsS = ftj 2 F (G0) j 1 � j � mg [fe 2 E(G0) j (e) � r1g [ fv 2 V (G0) j v 2 r1gmust be the union of some faces of G1. Trivially, S � r1. We claimthat r1 � S. For if p 2 S2, exactly one of the following three casesholds: (i) p 2 tj for some j; (ii) p 2 V (G0); or (iii) p 2 e for somee 2 E(G0). In case (i), either p 2 S or p 62 r1, according as j � m. Incase (ii), trivially, either p 2 S or p 62 r1. In case (iii), if p 62 S, thenp 2 (e) 6� r1, whence p 2 e � t�j for some j (m < j � N), whencep 2 (Pm<j<N tj)� = S2 n r1. This proves that r1 � S. Thus, r1 = S is



42the union of a number of faces of G1. But r1 is by assumption connected,so r1 is a face of G1. Proceeding in the same way for r2; : : : ; rn, we obtainthe desired graph G = Gn. QEDLemmas 1.80 and 1.81 concern the mereotopology ROP(S2), but al-most exactly similar arguments can be given for ROS(S2) and ROQ(S2).We omit the details, which are routine. Summarizing, we have:Theorem 1.82 A tuple �u of subsets of S2 is a connected partition inROS(S2) (alternatively: ROP(S2), ROQ(S2)) if and only if it is the setof faces of a semi-algebraic (respectively: piecewise linear, rational piece-wise linear) graph with no isolated vertices and every edge lying on theboundary of two faces.4.4 Expressive power of �rst-order languages inplane mereotopologiesWe are now in a position to give an absolute characterization of theexpressive power of the languages Lc;� and LC over certain mereotopolo-gies of interest. Recall the concept of topologically complete formulagiven in De�nition 1.51. The following notation will be useful in con-structing topologically complete formulas.Notation 1.83 Given a �xed Boolean algebra, a Boolean matrix is arectangular matrix whose entries are the elements 1 and 0. If �r is ann-tuple, �s an N -tuple, and A a Boolean matrix with N rows and ncolumns, we write �r = �sA to indicate that each element of �r is the sumof certain elements of �s as indicated by the elements of A via normalmatrix multiplication. Similarly, we write �x = �zA in �rst-order formulasto abbreviate the obvious conjunction of Boolean algebra equations.Theorem 1.84 Let M be any �nitely decomposable mereotopology overS2 having curve-selection, and let � be the signature (c;�;+; �;�). Everytuple from M satis�es some (purely existential) L�-formula which istopologically complete in M over S2.Proof Writing �z for z1; : : : ; zN , let  Nc3(�z) be the formula:^1�i�N(c(zi) ^ zi > 0)^̂1�i�j�N(c(�(zi + zj)) ^ zi � zj = 0) ^ X1�i�N zi = 1:



First-Order Mereotopology 43Thus, M j=  Nc3 [�s] if and only if �s is an N -element c3-partition. If�s = s1; : : : ; sN is a c3-partition in M , let  �s+(�z) be the formula:^fc(zi + zj) j 1 � i < j � N and si + sj is connectedg^^f:c(zi + zj) j 1 � i < j � N and si + sj is not connectedg;where �z is the tuple of variables z1; : : : ; zn. Thus,  �s+(�z) encodes theneighbourhood structure of �s. Now let �r = r1; : : : ; rn be any tuple ofelements of M . By Claim 1.63, there exists a c3-partition �s = s1; : : : ; sNinM and a Boolean matrix A such that �r = �sA. Writing �x for x1; : : : ; xn,let  �r(�x) be the formula9�z( Nc3(�z) ^  �s+(�z) ^ �x = �zA):Certainly, M j=  �r[�r]. And if �r0 is a tuple from M such that M j= �r[�r0], let �s0 = s01; : : : ; s0N be corresponding witnesses for the existentiallyquanti�ed variables �z. Then s1; : : : ; sN and s01; : : : ; s0N are c3-partitionsin S2 which have the same neighbourhood structure, and hence whichare similarly situated in S2, by Theorem 1.78. It follows that �r and �r0are similarly situated in S2 too. Thus,  �r(�x) is topologically completein M over S2. QEDCorollary 1.85 Let M be any �nitely decomposable mereotopologyover S2 having curve-selection. Every tuple from M satis�es some LC-formula which is topologically complete in M over S2.Proof Theorem 1.84 and Lemmas 1.22, 1.27 and 1.49. QEDThus, for certain well-behaved mereotopologies over S2, both LC andLc;� are, as we might put it, `topologically fully descriptive'.We now turn to the question of expressive power in mereotopologiesover R2 . We need some auxiliary lemmas.Lemma 1.86 Let �r = r1; : : : ; rn be a c3-partition in any mereotopologyM over S2 having curve-selection. Let p; p0 2 S2 such that, for all i (1 �i � n), p 2 r�i if and only if p0 2 r�i . Then there is a homeomorphismh : S2! S2 mapping p to p0 and �xing each ri.Proof Obvious, by viewing �r as F (G) for some plane graph G. QEDLemma 1.87 Let �r = r1; : : : ; rn and �r0 = r01; : : : ; r0n be similarly situatedc3-partitions in any mereotopology M over S2 having curve-selection.Let p 2 S2 such that, for all i (1 � i � n), p 2 r�i if and only if p 2 r0i�.



44Then there is a homeomorphism h : S2 ! S2 �xing p and mapping �r to�r0.Proof Let h0 : S2 ! S2 be some homeomorphism mapping �r to �r0.Then, for all i (1 � i � N), h0(p) 2 r0i� if and only if p 2 ri�. ByLemma 1.86, let h00 : S2 ! S2 be a homeomorphism �xing each r0i, andmapping h0(p) to p. Then h := h00 Æh0 has the required properties. QEDTheorem 1.88 Let M be any �nitely decomposable mereotopology overR2 such that _M has curve-selection. Every tuple from M satis�es someLC-formula which is topologically complete in M over R2 .Proof Given any tuple s1; : : : ; sN fromM , let ��s1(�z) be the LC -formula^f�b2(zi) j 1 � i � N and si is boundedg^^f:�b2(zi) j 1 � i � N and si is not boundedg;where �z is the tuple of variables z1; : : : ; zN , and �b2 is as in Lemma 1.30.Thus, ��s1(�z) encodes the pattern of boundedness in the tuple �s. Now,given a tuple �r, let �s be an N -element c3-partition in M re�ning �r, andlet A be a Boolean matrix satisfying �r = �sA. Using the translation fromLc;� to LC established by Lemmas 1.22 and 1.27, let �Nc3(�z) and ��s+(�z)be the LC -formulas corresponding to  Nc3(�z) and  �s+(�z) in the proof ofTheorem 1.84. Writing �x for x1; : : : ; xn, let ��r(�x) be the formula9�z(�Nc3(�z) ^ ��s+(�z) ^ ��s1(�z) ^ �x = �zA):Certainly, M j=  �r[�r]; and if �r0 is a tuple from M such that M j= �r[�r0], let �s0 = s01; : : : ; s0N again be a corresponding witnesses for theexistentially quanti�ed variables �z. Then _s1; : : : ; _sN and _s01; : : : ; _s0N arec3-partitions in S2 which have the same neighbourhood structure, so thatby Theorem 1.78 and Lemma 1.87, there is a homeomorphism h : S2!S2 �xing 1 and mapping each _si to _s0i. Hence �s and �s0 are similarlysituated in R2 , whence �r and �r0 are similarly situated in R2 too. QEDThus, for well-behaved mereotopologies over R2 , LC is, as we might putit, topologically fully descriptive.4.5 Homogeneous mereotopologiesUp to this point, we have been concerned only to show that certainrelations can be de�ned by �rst-order formulas with signatures of topo-logical primitives. We turn now brie
y to the question of which relationscannot be so de�ned.



First-Order Mereotopology 45At �rst glance, one might assume that languages with purely topolog-ical primitives can express only topological concepts in mereotopologiesover which they are interpreted. However, this assumption is correctonly if the mereotopologies in question have a certain property. Recallthat, for a �xed topological space X, we write �u � �v to mean that thetuples of subsets �u and �v are similarly situated in X (De�nition 1.51).Definition 1.89 Let M be a mereotopology over X. We say M ishomogeneous (over X) if, given any tuples �r; �s from M with �r � �s andany element r 2 M , there exists an element s 2 M with �r; r � �s; s.Let M 0 also be a mereotopology over X, with M 0 � M . We say M 0 ishomogeneously embedded in M (over X) if, given any tuple �r from M 0,and any r 2M , there exists s 2M 0 with �r; r � �r; s.Lemma 1.90 Let X be either R2 or S2, and let M be any of ROS(X),ROP(X) or ROQ(X). Then M is homogeneous.Proof AssumeM = ROS(S2); the other cases are identical. Let �r, �s betuples from M , and let r 2 M . Let �t be a connected partition re�ning�r; r and so by Theorem 1.82 is the set of faces of some semi-algebraicplane graph G. If h : S2 ! S2 is a homeomorphism mapping �r to �s,then h maps G to a plane graph H. But then it is not diÆcult to showthat the edges of H can be deformed into a semi-algebraic plane graphH 0, and moreover, that this may be done in such a way that existingsemi-algebraic edges are una�ected. By Theorem 1.82, the faces of theresulting graph are elements of M ; hence we have a homeomorphismmapping �r to �s and taking r to some element s of M . QEDHomogeneity and homogeneous embedding are important because of thefollowing facts.Lemma 1.91 Let M be a homogeneous mereotopology over a topologicalspace X, and �x a signature � of topological primitives. If �r and �s aretuples of M which are similarly situated in X, then �r and �s satisfy thesame L�-formulas in M .Proof We show by induction on the complexity of �(�x) 2 L� that, if�r and �s are tuples of the appropriate arity which are similarly situatedin X, then M j= �[�r] implies M j= �[�s]. The base case follows from thefact that the primitives in � have topological interpretations. The onlynon-trivial recursive case is where �[�x] = 9y (�x; y). If M j= �[�r], thereexists r 2M such that M j=  [�r; r], and by homogeneity, if �r � �s, thereexists s 2 M such that �r; r � �s; s, whence M j=  [�s; s] by inductivehypothesis, so that M j= �[�s] as required. QED



46Lemma 1.91 gives an upper bound on the expressive power of �rst-orderlanguages with signatures of topological primitives interpreted over ho-mogeneous mereotopologies: such languages cannot distinguish betweensimilarly situated tuples. It thus provides a partial converse to Theo-rems 1.84 and 1.88. It also yields an easy proof that, over well-behavedopen-plane mereotopologies, Lc;� cannot express the property of beingbounded:Theorem 1.92 Let M be a mereotopology over R2 such that _M is ho-mogeneous, and suppose M has curve-selection and contains a region rsimilarly situated in R2 to the open unit disc B2. Then there exists noformula  (x) of Lc;� such that, for all r 2M , r is bounded if and onlyif M j=  [r].Proof Suppose such a formula  (x) exists. Then M j=  [r], andby Lemma 1.38, _M j=  [ _r]. Since M has curve-selection, by Propo-sition 1.44 both _r and its complement �( _r) in _M are 2-cells in S2, andhence are similarly situated. By Lemma 1.91, _M j=  [�( _r)], and soby Lemma 1.38, M j=  [�r]. This contradicts the fact that �r is un-bounded. QEDFinally, we return to the relationship between ROS(X), ROP(X) andROQ(X).Lemma 1.93 Let X be either R2 or S2. Then ROQ(X) is homoge-neously embedded in ROP(X), which is in turn homogeneously embeddedin ROS(X).Proof Virtually identical to the proof of Lemma 1.90. QEDThe following result is well-known (see, for example, Hodges, 1993 p. 55).Proposition 1.94 (Tarski-Vaught) Let A, B be structures with A �B, and suppose that, for any n-tuple �a from A and any formula �(�x)of the form 9y (�x; y) such that B j= �[�a], there exists a 2 A such thatB j=  [�a; a]. Then A � B.Lemma 1.95 Let M;M 0 be mereotopologies over a topological space X,with M homogeneous and M 0 homogeneously embedded in M . Fix asignature of topological primitives. Then M 0 �M .Proof By assumption, M 0 � M . Let �r be an n-tuple of elements ofM 0, and let �(�x) be any formula of L� of the form 9y (�x; y) such thatM j= �[�r]. Then there exists r 2 M such that M j=  [�r; r]. SinceM 0 is homogeneously embedded in M , there exists s 2 M 0 such that



First-Order Mereotopology 47�r; r � �r; s. Since M is homogeneous, M j=  [�r; s] by Lemma 1.91. Theresult then follows by Proposition 1.94. QEDHence, for X either R2 or S2, and over any signature � of topologicalprimitives, we have ROQ(X) � ROP(X) � ROS(X). In particular,these three structures have identical L�-theories. We show in the sequelthat this is no accident: almost any `reasonable' mereotopology overS2 has the same L�-theory. Anticipating these results, we employ thefollowing notation and terminology.Definition 1.96 Let � be a signature of topological primitives. Wecall the theory Th�(ROS(S2)) the standard L�-theory (of closed planemereotopology), and denote it T�.5. AxiomatizationIn this section, we provide an axiomatic characterization of Tc;�, thestandard Lc;�-theory of closed plane mereotopology. The material isessentially that of Pratt and Schoop, 1998.The axiom system in questionwill help us to identify mereotopologies over S2 having the standard Lc;�-theory.As before, we write  nc3(�x) for the Lc;�-formula stating that �x formsn-element c3-partition, and x = u� v for the Lc;�-formula stating thatu and v are disjoint, non-zero, connected regions summing to x. LetM be a mereotopology over S2 having curve-selection. Consider a tripler; s; t from M satisfying the formula  3c3(x; y; z). By Lemma 1.45, eachof these regions is a 2-cell, and it is easy to see that the closures ofany two of these intersect in a Jordan arc. (Formally, this follows byLemma 1.73.) Now let  split denote the Lc;�-formula8x8y8z� 3c3(x; y; z)!9u9v�u� v = x ^ c(u+ y) ^ :c(u+ z) ^ c(v + z) ^ :c(v + y))�:Informally,  split `says' that, given two 2-cells r and s whose frontiersintersect in a Jordan arc, r can be partitioned into two connected regionsusing a cross-cut whose end-points are the end-points of that Jordan arc(Fig. 1.13a).Definition 1.97 A mereotopology M is splittable if M j=  split.The following lemma is unsurprising.Lemma 1.98 The mereotopologies ROS(S2), ROP(S2) and ROQ(S2) aresplittable.Proof Almost immediate from Theorem 1.84, Lemma 1.42 and Propo-sition 1.43. QED
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Figure 1.13. a) The con�guration of  split: r and s are disjoint 2-cells with r� \ s�a Jordan arc; r is broken into r1 and r2. b) A pair of regions in ROX(R2) violating split.However, not all �nitely decomposable mereotopologies over S2 havingcurve-selection are splittable. If an (n � 1)-dimensional hyperplane inRn is de�ned by an equation xi = 0, where 0 � i � n, we call it an axis-oriented hyperplane; and if a half-space is bounded by an axis-orientedhyperplane, we call it an axis-oriented half-space.Example 1.99 De�ne ROX(Sn) to be the Boolean sub-algebra of RO(Sn)generated by the axis-oriented half-spaces. It is easy to see that ROX(Sn)is a �nitely decomposable mereotopology over Sn having curve-selection.However, ROX(Sn) 6j=  split, as is clear in the case n = 2 by inspectionof Fig. 1.13b).Thus, whereas RO(S2) has, as it were, too many regions for the stan-dard theory, ROX(S2) has too few. As we have observed, RO(S2) isnot �nitely decomposable, and lacks curve-selection, while ROX(S2)is not splittable. It transpires that these represent the only ways offailing to exhibit the standard theory of closed plane mereotopology.Speci�cally, we show in this section that all splittable, �nitely decom-posable mereotopologies over S2 having curve-selection have the sameLc;�-theory. Our strategy is to pick one splittable, �nitely decomposablemereotopologies over S2 having curve-selection|ROP(S2) will do|andcharacterize its theory axiomatically. We then merely need to check thatour axiom system is correct for all such mereotopologies.



First-Order Mereotopology 495.1 The axiomsOur axiom system comprises three parts: a general inference system,a set of proper axioms and an !-rule. (i) The general inference systemis simply any complete Hilbert, system for �rst-order logic, restricted tothe signature f+; �;�;�; cg. (ii) The proper axioms are as follows:1 the usual axioms of Boolean algebra, and the axiom 0 6= 1;2 the axiom  con (Lemma 1.53);3 where n > 2, the axioms  nsum (Lemma 1.56);4 the axiom:9x1 : : : 9x5� ^1�i�5(c(xi) ^ xi 6= 0)^^1�i<j�5(c(xi + xj) ^ xi � xj = 0)�;5 the axiom:9x1 : : : 9x6� ^1�i�6(c(xi) ^ xi 6= 0)^^1�i<j�6xi � xj = 0 ^ ^1�i�34�j�6 c(xi + xj)�;6 the axioms c(0) and c(1);7 the axiom �break (Lemma 1.57);8 the axiom �split (De�nition 1.97).(iii) The �nal component of our axiom system is the !-rule. If n � 1,we let  nc (x) stand for the formula9z1 : : : 9zn� ^1�i�n c(zi) ^ (x = z1 + � � �+ zn)�:Thus,  nc (x) `says' that x can be formed by summing n connected re-gions. The !-rule is then the (in�nitary) rule of inference:f8x( nc (x)! �(x))jn � 1g8x�(x) :



50Let � be a set of Lc;�-sentences. A proof with premises � in the abovesystem is a sequence of Lc;�-formulas f��g�<� , for some ordinal � (notnecessarily �nite) such that every �� is either (i) an element of � or(ii) an axiom or (iii) the result of applying a rule of inference to someformulas �
 with 
 < �. If  is the last line of some such proof, we write� `  . If � = f�g we write � `  , and if � = ; we write `  and call  a theorem. Let us denote the set of theorems by TAx. The main resultof Section 5 is:Theorem 1.100 TAx is the complete Lc;�-theory of any �nitely decom-posable, splittable mereotopology over S2 having curve-selection.Proof Lemmas 1.102 and 1.104, below. QEDOf course, this entails that all such mereotopologies, considered as fc;�g-structures are elementarily equivalent.The !-rule is less unfamiliar than one might at �rst think. Essentially,it says that if a property holds of every region which is the sum of �nitelymany connected regions, then it simply holds of every region. Thisconditional is obviously true in a �nitely decomposable mereotopology.Thus, a proof involving the !-rule is analogous to an argument of thekind encountered in elementary algebra textbooks in which one provesa property of all polynomials by showing that it holds of all polynomialsof some arbitrary degree n. Nevertheless, the inclusion of an in�nitaryproof rule does mean that we ought to check the deduction theorem.Lemma 1.101 Let � be an Lc;�-sentence and  an Lc;�-formula suchthat � `  . Then ` �!  .Proof By assumption, there is a proof f��g�<�+1 with premises f�gand last line �� =  . Without loss of generality, we may assume that the�rst (actually, zeroth) line of the proof  0 is �. We proceed by inductionon �. The case � = 0 is trivial, since ` �! �. If � > 0, then either �� isan axiom or is derived from applying a rule of inference to earlier lines ofthe proof. The only interesting case is where � = 8x� is derived by the!-rule from the formulas 8x( nc (x) ! �) occurring earlier in the proof.But the inductive hypothesis then yields ` �! 8x( nc (x)! �), for eachn, whence ` 8x( nc (x)! (�! �)). The !-rule then yields ` 8x(�! �),whence ` �! 8x� (note that � is a sentence), as required. QEDWe remark in passing that the axiom c(0) is actually redundant: it canbe derived from the other axioms and proof rules.5.2 CorrectnessIn this section, we establish the easy half of Theorem 1.100.



First-Order Mereotopology 51Lemma 1.102 If M is a splittable, �nitely decomposable mereotopologyover S2 having curve-selection, then M j= TAx.Proof We follow the enumeration in Section 5.1, showing that theproper axioms are all true in M and that the !-rule is truth-preserving.1 M is a mereotopology.2 Lemma 1.53.3 Lemma 1.56.4 Suppose r1; : : : ; r5 are connected, non-empty and pairwise disjoint,and that any pair of them have a connected sum. By Lemma 1.26,choose points pi 2 ri and qi;j 2 F(ri) \ F(rj) \ (ri + rj) (1 � i <j � 5). For each i (1 � i � 5), draw end-cuts in ri from pi to allthe points qi;j and qj;i; it is easy to see that these can be chosenso that any pair of these end-cuts intersect only in the point pi.Ignoring the points qi;j, we have a plane drawing of the graph K5,which is known to be non-planar (Fig. 1.11).5 As for axiom 4, but with K3;3 instead of K5.6 Trivial.7 Lemma 1.57.8 M is splittable.The !-rule is obviously truth-preserving, because M is �nitely decom-posable. QED5.3 CompletenessIn this section, we establish the diÆcult half of Theorem 1.100. Wemake use of the omitting types theorem: for details, see, e.g. Hodges,1993, pp 333. Let A be a structure, �(x) a set of formulas with freevariable x, and T a set of sentences. We say that A omits �(x) if, for alla 2 A, A 6j= �[a]. We say that T locally omits �(x) if, for every formula�(x) with free variable x such that � is consistent with T , there exists�(x) 2 �(x) such that T 6j= 8x(�(x)! �(x)). The following theorem isa well-known strengthening of the completeness theorem for �rst-orderlogic.Proposition 1.103 (Omitting Types Theorem) If a consistent the-ory T locally omits a set of formulas �(x), then T has a countable modelomitting �(x).



52With these preliminaries behind us, we can proceed with our com-pleteness proof.Lemma 1.104 If � is an Lc;�-sentence, and ROP(S2) j= �, then � 2TAx.Proof Suppose that � 62 TAx. We are required to prove that ROP(S2) j=:�. Let T be the set of all and only those Lc;�-sentences  such that:� `  . By Lemma 1.101, T is a consistent set of sentences, and from the!-rule, T locally omits the type f: nc (x) j n > 0g. By Proposition 1.103,there exists a countable model A j= T omitting that type. Fix thestructure A for the remainder of this proof.We now proceed in three stages. Stage 1 establishes some basic factsabout A; Stage 2 shows that A can be embedded in the fc;�g-structureROP(S2); Stage 3 shows that the embedding we have chosen is in factelementary.Stage 1: Axioms 1 ensure that the reduct of A to the signaturef+; �;�;�g is a Boolean algebra. Such structures were discussed inSection 4.2, where various terminology and notational conventions wereintroduced. We carry these over to the present proof. Using that termi-nology, another way of saying that A omits the type f: nc (x) j n > 0gis to say that A is �nitely decomposable.By Axioms 2, 3, 6 and 7, all the claims in Section 4.2 hold of A. In par-ticular, every tuple can be re�ned to a connected partition, and thenceto a c2- and a c3-partition. Furthermore, we haveClaim 1.105 Let �b = b1; : : : ; bn be a connected partition in A. Then theneighbourhood graph of �b is planar.Proof By Proposition 1.68, if the neighbourhood graph G of �b is notplanar, it contains either K5 or K3;3 as a minor. But then there is asequence of contractions of G resulting in a graph H which has eitherK5 or K3;3 as a sub-graph. By repeated applications of Claim 1.60 (re-numbering the bi as necessary), there is a connected partition �s in Awhose neighbourhood graph contains K5 or K3;3 as a sub-graph. Butthis is impossible by Axioms 4 and 5. QEDStage 2: Since A is countable, let A = fa1; a2; : : :g. Let N0 = 1 andlet �c0 be the 1-tuple whose element is the unit of the Boolean algebraA. Trivially, �c0 is a c3-partition. For n � 0, suppose that the c3-partition �c(n) = c(n)1 ; : : : ; c(n)Nn in A has been de�ned; then, by Claim 1.63,let �c(n+1) = c(n+1)1 ; : : : ; c(n+1)Nn+1 be a c3-partition in A re�ning the tuple



First-Order Mereotopology 53c(n)1 ; : : : ; c(n)Nn ; an+1. It is then obvious that, for each n > 0, �c(n) re�nesthe tuple a1; : : : ; an and also every tuple �c(m) for all m (0 < m � n).We �x the enumerations a0; a1; : : : and �c(0); �c(1); : : : for the remainder ofStage 2.For brevity, denote ROP(S2) by S. We now map each initial seg-ment a1; : : : ; an of A into S. Let w(n) be the set of functions g(n) :fc(n)1 ; : : : ; c(n)Nng ! S satisfying the conditions:G1: the regions g(n)(c(n)1 ); : : : ; g(n)(c(n)Nn) form a connected partition;G2: for all i; j (1 � i < j � Nn), g(n)(c(n)i ) + g(n)(c(n)j ) is connected ifand only if c(n)i + c(n)j is connected.We remark that, in G2, we have g(n)(c(n)i ); g(n)(c(n)j ) 2 S and c(n)i ; c(n)j 2A. Hence, di�erent senses of \+" and \connected" apply in the twocases.Claim 1.106 For all n 2 N, w(n) 6= ;.Proof For the proof of this claim, we shall drop the n-sub- and super-scripts and write N for Nn and ci for c(n)i . Let G be the neighbourhoodgraph on c1; : : : ; cN . By Claim 1.105, G is planar. By Axioms 6 andClaim 1.61, G is connected. Let H be a drawing of G in S2 (under somemapping � : V (G)! V (H)); we may assume that H is piecewise linear.By Proposition 1.69, let H� be a geometric dual of H, which we maylikewise assume to be piecewise linear. By Lemma 1.70, every vertex ofH lies in exactly one face of H�. It follows that every edge of H� is onthe boundary of two faces; moreover, H� by construction contains noisolated nodes. By Theorem 1.82, the faces of H� form a connected par-tition in S. So de�ne g(ci) to be the face of H� containing the H-vertex�(ci). Properties G1 and G2 are then almost immediate. QEDClaim 1.107 Let I � f1; : : : ; Nng, and let g(n) 2 w(n). Then Pi2I ci isconnected if and only if Pi2I g(n)(ci) is connected.Proof Claim 1.61 and property G2. QEDSuppose n > m � 0, so that �c(n) re�nes �c(m). For all i (1 � i � Nn), letci;1; : : : ; ci;Mi be the collection of elements of �c(n) which sum to c(m)i . Ifg(n) 2 w(n), then, we may de�ne the restriction of g(n) to �c(m), writteng(n)jm, as follows:g(n)jm(c(m)i ) = g(n)(c(n)i;1 ) + : : :+ g(n)(c(n)i;Mi)



54Claim 1.108 Let g(n) 2 w(n) with 0 � m < n. Then g(n)jm 2 w(m).Proof We must prove that G1 and G2 hold of g(n)jm. G1 is trivial. ForG2, we note that, by construction,g(n)jm(c(m)i ) + g(n)jm(c(m)j ) = g(n)(c(n)i;1 ) + : : : + g(n)(c(n)i;Mi)+ g(n)(c(n)j;1 ) + : : :+ g(n)(c(n)j;Mj ):By Claim 1.107, this element of S is connected if and only if the elementof A c(n)i;1 + : : : + c(n)i;Mi + c(n)j;1 + : : :+ c(n)j;Mj = c(m)i + c(m)jis connected. Hence G2 holds as required. QEDClaim 1.109 Let g 2 w(n). Then there exists a g0 2 w(n+1) such thatg0jn = g.Proof Choose any g00 2 w(n+1). By Claim 1.108, g00jn 2 w(n). Letting�r = g(c1); : : : ; g(cNn ) and �s = g00jn(c1); : : : ; g00jn(cNn), we see that �r and �sare c3-partitions in S with the same neighbourhood graphs|namely, theneighbourhood graph of c1; : : : ; cNn . By Theorem 1.78, let h : S2 ! S2be a homeomorphism taking �s to �r. Thus, h Æ g00 maps �c(n+1) to thefaces of a plane graph G in S2 whose edges include the frontiers of theelements �r. Now let h0 : S2! S2 be a deformation making all the curvededges of G piecewise linear, while leaving any already piecewise linearedges una�ected. By Theorem 1.82, g0 = h0 ÆhÆg00 2 w(n+1) maps �c(n+1)to an Nn+1-tuple in S and it is easy to see that g0 satis�es the conditionsof the claim. QEDBy Claim 1.109, there exists a sequence of embeddings:; = g(0); g(1); g(2); : : :such that, for all n (0 < n), g(n) maps �c(n) to S, and, for all m;n(0 � m < n), g(n)jm = g(m).Now let a 2 A be such that a = c(n)i1 + : : :+ c(n)ik . Then we de�neg(a) = g(n)(c(n)i1 ) + : : :+ g(n)(c(n)ik ) :The fact that g(n)jm = g(m) whenever 0 � m < n means that thismapping is well de�ned. It is easy to see that g : A ! S is a Booleanalgebra isomorphism; moreover, by Claim 1.107, g(a) is connected if andonly if a is connected. That is, we have proved:
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a) b) c)
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Figure 1.14. The `hub' a1 of a radial partitionClaim 1.110 A can be isomorphically embedded in ROP(S2), regardedas a fc;�g-structure.In view of Claim 1.110, and in order to simplify notation, we might aswell take A to be a substructure of ROP(S2). Note that the previouslydistinct uses of the Boolean functions and the term \connected" becomeunambiguous, as do \connected partition", \ch-partition", \neighbour",and so on. Moreover, since A � S, we may meaningfully talk aboutthe frontier F(a) of any a 2 A, and apply all the results establishedpreviously about elements of ROP(S2). For example, by Lemma 1.73, ifr1; : : : ; rn is a c2-partition in A radial about r1 such that r1 has at least2 neighbours, then, for any neighbour ri of r1, F(r1)\F(ri) is a Jordanarc. Recall that, for tuples �r and �s from ROP(S2), we write �r � �s if �rand �s are similarly situated (in S2).Stage 3: In the previous stage, we established that A can be chosento be a substructure of ROP(S2). In this stage, we show that, in thatcase, A is in fact an elementary substructure of ROP(S2).Claim 1.111 Let a1; : : : ; an 2 A be a c2-partition radial about a1 suchthat a1 has at least 3 neighbours. Let r1; r2 2 S be disjoint 2-cells witha1 = r1 + r2. Then there exist c1; c2 2 A such that a1; : : : ; an; c1; c2 �a1; : : : ; an; r1; r2.Proof Since a1; r1; r2 are 2-cells with a1 equal to the disjoint sum ofr1 and r2, r1 and r2 must be separated by a cross-cut 
 in a1. For anyneighbour ai of a1, F(a1) \ F(ai) is a Jordan arc. Let p 2 F(a1). Byinspection, p lies on either one or two Jordan arcs of the form F(a1) \F(ai) where ai is a neighbour of a1. We de�ne the character of p, written�(p) to be the set of those i (2 � i � n) such that ai is a neighbour of a1
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Figure 1.15. The construction of a cross-cut with a given characterand p 2 F(ai) (Fig. 1.14a). Note that �(p) has either 1 or 2 elements. If�(p) has one element, then p lies on some Jordan arc F(a1)\F(ai), butnot at its endpoints. If �(p) has two elements, then since a1 has at leastthree neighbours, �(p) determines p. Now let 
 be a cross-cut in a1. Wede�ne the character of 
, written �(
) to be the set of characters of itsendpoints. (See Fig. 1.14b and Fig. 1.14c for examples.) It is routine toshow that, if 
1 and 
2 are two such cross-cuts and �(
1) = �(
2), thereis a homeomorphism of the closed plane onto itself taking ai to itself forall i (1 � i � n) and taking 
1 to 
2. So, to prove the lemma, it suÆcesto establish that, if 
1 is any cross-cut in a1, there exist disjoint 2-cellsc1; c2 2 A with a1 = c1+ c2 such that the cross-cut 
2 separating c1 andc2 in a1 satis�es �(
1) = �(
2).Let the endpoints of 
1 be p and q. We prove the result for the specialcase where �(
), �(p) and �(q) all contain two elements; the other casesare dealt with similarly. Fig. 1.15a shows the sub-case where �(p) and�(q) are non-disjoint; Fig. 1.15b shows the sub-case where �(p) and �(q)are disjoint.The sub-case of Fig. 1.15a is trivial: Axiom 8 with a1 substituted for xand ai for y immediately guarantees the existence of c1; c2 2 A partition-ing a1, and hence separated by a cross-cut 
2; moreover the connectivityconditions on c1 and c2 mean that 
1 and 
2 have the same endpoints,so that �(
1) = �(
2).The sub-case of Fig. 1.15b requires a little more work. However, twoapplications of Axiom 8 guarantee the existence in A of the regionsa0i; a0k as in Fig. 1.15c. Axiom 7 then guarantees that the region labelleda01 in Fig. 1.15c can be split into two regions as shown in Fig. 1.15d.



First-Order Mereotopology 57Summing together appropriate subdivisions of a1 produces c1; c2 2 Aseparated by an arc 
2 satisfying �(
1) = �(
2). QEDThe rest of this section is devoted to showing that we can relax theconditions of Claim 1.111.Claim 1.112 Let n > 1 and let a1; : : : ; an 2 A be a partition such thata1 is a 2-cell. Let r1; r2 2 S be disjoint 2-cells with a1 = r1 + r2. Thenthere exist c1; c2 2 A such that a1; : : : ; an; c1; c2 � a1; : : : ; an; r1; r2.Proof Immediate given claims 1.65 and 1.111. QEDClaim 1.113 Let n > 1 and let a1; : : : ; an 2 A be a partition such thata1 is a 2-cell. Let r 2 S be such that r � a1. Then there exists c 2 Asuch that a1; : : : ; an; c � a1; : : : ; an; r.Proof By the construction of S = ROP(S2), we can partition a1 into2-cells r1; : : : ; rm such that r can be expressed as the sum of various rj .It suÆces to show that there are c1; : : : ; cm 2 A such thata1; : : : ; an; r1; : : : ; rm � a1; : : : ; an; c1; : : : ; cm:We proceed by induction on m. If m = 1, then r1 = a1 and we aredone. If m > 1, by Corollary 1.67, we can renumber the ri if necessaryso that r1 and r02 = r2 + : : : + rm are 2-cells. By Claim 1.112, thereexist c1; c02 2 A such that a1; : : : ; an; r1; r02 � a1; : : : ; an; c1; c02. Let h bea homeomorphism of the closed plane onto itself mapping ai to itself, r1to c1 and r02 to c02. By exactly the same argument as for Lemma 1.90,h can be chosen so that h(ri) 2 S for all i (2 � i � m). But thenthe h(ri) partition the 2-cell c02 into 2-cells. So consider the partitionc02; c1; a2; : : : ; an. By inductive hypothesis, there exist c2; : : : ; cm 2 Asuch thatc02; c1; a2; : : : ; an; h(r2); : : : ; h(rm) � c02; c1; a2; : : : ; an; c2; : : : ; cm :The result then follows. QEDClaim 1.114 Let n > 1 and let a1; : : : ; an 2 A be a c2-partition. Letr 2 S. Then there exists c 2 A such that a1; : : : ; an; c � a1; : : : ; an; r.Proof Write r as the sum r �a1+ : : :+ r �an By considering these termsseparately, we use Claim 1.113 and an induction similar to that used inthe proof of Claim 1.113. The details are routine. QED



58Claim 1.115 Let n � 0 and let a1; : : : ; an 2 A. Let r 2 S. Then thereexists c 2 A such that a1; : : : ; an; r � a1; : : : ; an; c.Proof Immediate given Claims 1.54, 1.63 and 1.114.Claim 1.116 A � ROP(S2).Proof We certainly have A � ROP(S2). Let n � 0 and let �(x1; : : : ; xn)be any formula of the form 9y (x1; : : : ; xn; y). Let a1; : : : ; an 2 A suchthat ROP(S2) j= �[a1; : : : ; an]. Then there exists r 2 S such thatROP(S2) j=  [a1; : : : ; an; r]. By Claim 1.115, there exists c 2 A suchthat a1; : : : ; an; r � a1; : : : ; an; c. By Lemmas 1.90 and 1.91, ROP(S2) j= [a1; : : : ; an; c]. The claim then follows by Proposition 1.94. QEDBy Claim 1.116, A and ROP(S2) have the same theory. But by con-struction, A j= :�, whence ROP(S2) j= :�, which completes the proofof Lemma 1.104. QEDCorollary 1.117 All splittable, �nitely decomposable mereotopologiesover S2 with curve-selection have the same Lc;�-theory, and hence alsothe same LC-theory.Thus, while Examples 1.17, 1.18 and 1.99 show that there certainlyare elementarily inequivalent mereotopologies over R2 and S2, Corol-lary 1.117 indicates that there is nothing like the free-for-all one mightinitially expect. At least for the signatures fc;�g and fCg, the referenceto T� as the standard �rst-order mereotopological theory of the closedplane is justi�ed. Corollary 1.173 generalizes this result to apply to anysignature of topological primitives.For reasons of simplicity (which we trust the reader will appreciate)we have provided an axiomatization of well-behaved plane mereotopolo-gies only for the language Lc;�. It should be clear from the foregoingdiscussion, however, that an analogous result could be obtained for thelanguage LC , which as we noted, is more expressive over ROP(R2). Suchan axiomatization was developed in Schoop, 1999.Of course, it is one thing to have an axiomatic characterization of theLc;�-theory of ROP(S2)|quite another to determine whether a givenLc;�-sentence is a member of it. The question therefore arises as to thecomputational characteristics of this problem. Dornheim, 1998showed(in e�ect) that this theory is undecidable and hence (since it is a com-plete theory), not r.e. It follows that the !-rule (or some equivalentmechanism) is indispensable in this axiomatization. In fact, Schaeferand �Stefankovi�c, 2004showed (in e�ect) that the decision problem forThc;�ROP(S2) is at least as hard as that of second-order arithmetic.



First-Order Mereotopology 59Speci�cally, Schaefer and �Stefankovi�c e�ectively encode second-orderarithmetic in a �rst-order language with variables ranging over 2-cellsin R2 and primitive predicates expressing the so-called RCC-relations(see Randell et al., 1992,Egenhofer, 1991;but it is easy to see that thattheory can in turn be e�ectively encoded in Thc;�ROP(S2). Schaefer and�Stefankovi�c also consider the complexity of the quanti�er-free fragmentof their logic, a problem closely related to the well-known problem of rec-ognizing so-called string-graphs (see e.g. Erlich et al., 1976,Kratochv��l,1988,and show that it is in NEXPTIME. In Schaefer et al., 2003, thisbound is improved to NP|a very surprising result.6. Spatial mereotopologyIn this section, we extend the main results of Section 4 to the spatialmereotopology ROP(R3). This material is a tidied up version of Prattand Schoop, 2002.6.1 Facts about ROP(R3) and ROP(S3)Recall that a 2-manifold is a Hausdor� space locally homeomorphicat every point to the open disc B2, and that a surface is a connected2-manifold.Lemma 1.118 Let X be either Rn or Sn, and let M be a mereotopologyover X having curve-selection. If r 2M with r and �r both connected,then F(r) is connected.Proof Consider the case X = Rn . Let r 2 M be connected and non-empty with connected, non-empty complement, and suppose the closedset F(r) is not connected. Let d1 and d2 be closed sets partitioning F(r),and let p 2 r, q 2 �r. Since r is connected with connected complement,it is easy to see that the conditions of Proposition 1.19 are ful�lled, sothat p and q are connected in Rn n (d1 [ d2). But this is absurd giventhat d1 [ d2 = F(r). The case X = Sn follows easily. QEDLemma 1.119 Let r 2 ROP(S3) such that r and �r are non-empty andconnected, and F(r) is not a surface. Then the graph K5 can be drawnin F(r).Proof It is easy to see that F(r) can be �nitely triangulated. Call anypoint where F(r) is not locally homeomorphic to B2 a bad point; andcall any edge of the triangulation all of whose points are bad a bad edge.By the properties of triangulations, any bad point either occurs on a badedge or else is an isolated bad point at a vertex of the triangulation.



60
��
��
��
��

�����
�
�
�����

��
��
��
��

��
��
��
��

��
��
��
��

�
�
�
�

�
�
�
�

����
����
����
����
����
����
����

����
����
����
����
����
����
����

��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��

a) c)b)
p

q
�pc

Figure 1.16. Embedding K5 in non-surfaces (Proof of Lemma 1.124).If there is a bad edge, then more than two triangles must share thisedge, and the embedding of K5 in F(r) proceeds as shown in Fig. 1.16a.Assume, then, that there are no bad edges, but that some vertex p ofthe triangulation is an isolated bad point. Call two triangles with p asa vertex neighbours if they share an edge having p as a vertex. Since alledges are good, these triangles can clearly be arranged into disjoint cyclessuch that each triangle belongs to the same cycle as its two neighbours.Choose one such cycle. By applying a homeomorphism if necessary,we may assume that this triangle-cycle forms a cone with vertex p asshown in Fig. 1.16b. Since there are only �nitely many triangles in thetriangulation, we can ensure that we choose a triangle-cycle such thatthe points inside the tip of the cone either all belong to r or all belong to�r. Let s be either r or �r depending on which of these possibilities isrealized. Note that, since r is non-empty and connected with non-empty,connected complement, so is s.Let t 2 ROP(S3) be a small element representing the tip of the cone,indicated by the light dotted lines in Fig. 1.16b. Removing t from svisibly does not disconnect s, so that s � �t is connected; moreover, tshares some face with �s, so that t+�s = �(s � �t) is also connected.Thus, s ��t is non-empty and connected with nonempty-connected com-plement, whence, by Lemma 1.118, F(s � �t) is connected. Moreover,since p is bad, there must be at least two triangle-cycles with p as vertex;whence p 2 F(s � �t). Thus we may choose a point q on the base rim oft and connect it to p by a Jordan arc � in F(s) such that the locus of� is disjoint from F(t) except for its endpoints, as shown in Fig. 1.16c.The embedding of K5 in F(s) = F(r) then proceeds as depicted. QEDOne notable di�erence between S2 and S3 is that the Sch�on
ies The-orem, which holds in the former, fails in the latter. In fact, the patho-



First-Order Mereotopology 61logical `region' known as Alexander's horned sphere, and depicted inFig. 1.3 is the best-known counterexample: the frontier of this regionis homeomorphic to S2, but its exterior is not simply connected, and iscertainly therefore not homeomorphic to B3. Nevertheless, Alexander,1924balso proved a Sch�on
ies-type result for polyhedra, which, in ournotation, can be written as follows. (See also Moise, 1977, Ch. 17.)Proposition 1.120 Let r 2 ROP(S3) be such that F(r) is homeomor-phic to S2. Then both r� and (�r)� are homeomorphic to D3.To avoid cumbersome locutions in the sequel, we de�ne:Definition 1.121 Let X be either Rn or Sn. A ball in X is a subsetof X similarly situated in X to the unit ball B3. A polyhedral ball inX is a ball which is an element of ROP(X).Thus, if r 2 ROP(S3) with F(r) homeomorphic to S2, then r and �r areboth balls in S3. Furthermore, if r 2 ROP(R3 ) with F(r) homeomorphicto S2 (and hence bounded), then then exactly one of r and �r is a ballin R3 . We note in passing:Lemma 1.122 If r 2 RO(S3) is a (polyhedral) ball in S3, then so is �r.Proof By de�nition, r is similarly situated in S3 to u = B3(0; 1). Byconsidering a spherical inversion, u is similarly situated in S3 to �u.QEDThe following well-known theorem will also prove useful in the sequel(see, e.g. Massey, 1967, p. 10).Proposition 1.123 (Classification Theorem for surfaces) Everycompact surface is homeomorphic to either (i) S2 or (ii) the sum of�nitely many connected tori or (iii) the sum of �nitely many projectiveplanes.6.2 Expressing familiar spatial concepts in LCOur next task is to show that certain familiar concepts de�ned onthe mereotopology ROP(R3) can be expressed using LC -formulas. As apreliminary, recall the discussion of Section 3.2, which showed that: (i)expressions such as x�\y�\z 6= ; etc. can be regarded as LC-formulas;and (ii) there is an LC -formula �ci(x; y) which we may read as \x� \ y�is connected".Now suppose r and s are elements of ROP(R3), and consider, forexample, the set F(r)nF(s). Evidently, this set is connected if and only



62if it is piecewise-linear arc-connected, and therefore if and only if anytwo points in it are contained within some connected set of the formr� \ t� � F(r) n F(s) with t 2 ROP(R3). It follows from the discussionof Section 3.2 that there is an LC -formula satis�ed by a pair of regionsr, s if and only if F(r)nF(s) is connected. In the sequel, then, we write,without further commentary, expressions such as c(F(x) n F(y)) etc. asLC -formulas having the obvious interpretations.Lemma 1.124 There exists an LC-formula �K5(x) such that, for allr 2 ROP(R3 ), ROP(R3) j= �K5 [r] if and only if K5 is embeddable inF(r).Proof The graph K5 is evidently embeddable in F(r) if and only ifthere exist polyhedra vi (1 � i � 5) and ei;j (1 � i < j � 5), all disjointfrom r and from each other, satisfying the following conditions:1 For all i (1 � i � 5), v�i \ r� is a singleton2 For all i; j (1 � i < j � 5), e�i;j \ r� is connected3 For all i; j; i0; j0 (1 � i < j � 5, 1 � i0 < j0 � 5), fi; jg\fi0; j0g = ;implies e�i;j \ e�i0;j0 \ r� = ;, and fi; jg \ fi0; j0g = fkg impliese�i;j \ e�i0;j0 \ r� = v�k \ r�.(Note incidentally that the polyhedra ei;j are not themselves required tobe connected|only the sets e�i;j \ r� = F(ei;j) \ F(r).) But the aboveconditions are expressible in LC over ROP(R3). QEDLemma 1.125 There exists an LC-formula �b�(x) such that, for all r 2ROP(R3):1 if F(r) is connected and unbounded, then ROP(R3) j= �b� [r];2 if F(r) is homeomorphic to S2, then ROP(R3) 6j= �b� [r].Proof Let �b�(x) be9y19y2(y1 � x = 0 ^ y2 � x = 0 ^ c(F(x) \ F(y1) \ F(y2))^c(F(x) n F(y1)) ^ c(F(x) n F(y2)) ^ :c(F(x) n (F(y1) [ F(y2)))):Thus, �b�(x) `says' that there exist polyhedra y1 and y2, disjoint from x,such that the sets F(x)\F(y1)\F(y2), F(x) n F(y1) and F(x) n F(y2)are all connected, but the set F(x) n (F(y1) [ F(y2)) is not.
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GF(r) \ F(s1) \ F(s2)

F(r) \ F(s2)
F(r) \ F(s1)

Figure 1.17. Arrangement of F(r) \ F(s1) and F(r) \ F(s2) on G (Proof ofLemma 1.125).Suppose F(r) is connected and unbounded. Let r be a Boolean com-bination of �nitely many half-spaces, corresponding to a �nite set ofplanes, say, P1; : : : ; Pm; it is then easy to see that F(r) � P1 [ � � � [Pm.Since F(r) is unbounded, we can draw in F(r) a rectangular �gure G,unbounded on one side (dotted lines in Fig. 1.17), such that G inter-sects only one of the Pi. Let s1; s2 2 ROP(R3) be laminas, in�nitelyextended in one direction, and placed on G (on the outside of r) so thatF(r) \ F(s1) and F(r) \ F(s2) are arranged as shown. Since F(r) isconnected, F(r)nF(s1) and F(r)nF(s2) are also connected; and since Glies on just one of the Pi, F(r) n (F(s1)[F(s2)) is not connected. ThusROP(R3) j= 
[r]. The second part of the Lemma follows by Proposi-tion 1.47. QEDLet �c(x) be the LC -formula de�ned in Lemma 1.27 and satis�ed byr 2 ROP(R3 ) if and only if r is connected, and let �J(x) abbreviate theformula x 6= 0 ^ x 6= 1 ^ �c(x) ^ �c(�x).Lemma 1.126 For all r 2 ROP(R3), r satis�es �J(x) ^ :�K5(x) ^:�b�(x) if and only if F(r) is homeomorphic to S2.Proof Suppose F(r) is homeomorphic to S2. Certainly, by Proposi-tion 1.120, ROP(R3) j= �J[r]; by Lemma 1.124, ROP(R3) j= :�K5 [r];by Lemma 1.125, ROP(R3 ) j= :�b� [r]. Conversely, suppose that r sat-is�es �J(x) ^ :�K5(x) ^ :�b�(x). By Lemma 1.118, F(r) is connected,



64and by the �rst part of Lemma 1.125, F(r) is bounded. Moreover, K5cannot be embedded in F(r), by Lemma 1.124. Hence F(r) = F( _r)is a compact surface, by Lemma 1.119. The result then follows fromProposition 1.123. QEDLemma 1.127 Let r 2 ROP(R3) satisfy �J(x)^:�K5(x)^�b�(x). Thenr is unbounded.Proof Suppose for contradiction that r is bounded, so that we alsohave r 2 ROP(S3). By Lemma 1.119, F(r) is a surface. Moreover,since r is bounded, F(r) is compact, and since K5 cannot be drawnin F(s), F(r) is homeomorphic to S2 by Proposition 1.123. But sinceROP(R3) j= �b� [r], this contradicts the second part of Lemma 1.125.Hence, r is unbounded. QEDLemma 1.128 There exists an LC-formula �b3(x) such that, for all r 2ROP(R3), ROP(R3 ) j= �b3 [r] if and only if r is bounded.Proof Let �b3(x) be the formula9y9z(x � y ^ y � z = 0^�J(y) ^ :�K5(y) ^ :�b�(y) ^ �J(z) ^ :�K5(z) ^ �b�(z)):If r is bounded, let s 2 ROP(R3) be a ball in R3 such that r � s;and let t 2 ROP(R3 ) be a half-space disjoint from s. By Lemma 1.125,ROP(R3) j= :�b� [s] and ROP(R3 ) j= �b� [t]. Thus, s and t are suitablewitnesses for y and z in �b3(x), so that ROP(R3) j= �b3 [r].Conversely, suppose that ROP(R3) j= �b3 [r]. Let s and t be witnessesfor y and z. By Lemma 1.126, F(s) is homeomorphic to S2, whence,by Proposition 1.120, exactly one of s and �s is a ball in R3 . ByLemma 1.127, t is unbounded, and so intersects the complement of ev-ery ball in R3 . Therefore �s is not a ball in R3 , so s is. Hence, r isbounded. QEDTheorem 1.129 There exists a formula �B(x) such that, for all r 2ROP(R3), ROP(R3 ) j= �B[r] if and only if r is a polyhedral ball in R3 .Proof Let �B(x) be�J(x) ^ :�K5(x) ^ :�b�(x) ^ �b3(x);and apply Lemmas 1.126 and 1.128. QED



First-Order Mereotopology 65Thus, with a little e�ort, we can de�ne certain familiar topologicalnotions over ROP(R3 ) using LC -formulas. The following technical ma-terial, which is devoted to de�ning some decidedly unfamiliar topolog-ical notions over ROP(R3), will be used in the sequel. We recall thediscussion of compacti�cations in Section 3.3, and consider the mappingr 7! _r from ROP(R3) to its 1-point compacti�cation ROP(S3). By Lem-mas 1.36 and 1.37, this mapping is a Boolean algebra isomorphism andpreserves the properties of connectedness and non-connectedness. Fortechnical reasons, we will occasionally need to consider properties of el-ements in ROP(R3 ) whose de�ning conditions make reference to theircounterparts in ROP(S3).For all r 2 ROP(R3 ),1 2 _r if and only if �r is bounded, and1 2 _r�if and only if r is unbounded (where the closure operator � refers to thetopology on S3). By Lemma 1.128 then, it is harmless to employ theexpression 1 2 _x in LC -formulas, since we can take it as a mnemonicfor �b3(�x); and similarly for expressions such as 1 2 _x�, 1 2 F( _x),etc.Lemma 1.130 There exists a formula � _K5(x) satis�ed by r 2 ROP(R3 )if and only if K5 is embeddable in F( _r).Proof As for Lemma 1.124, making the obvious adjustments to accom-modate the point at in�nity. QEDLemma 1.131 There exists a formula � _B(x) such that, for allr 2 ROP(R3 ), ROP(R3) j= � _B[r] if and only if _r is a ball in S3.Proof Let � _B(x) be �J(x) ^ :� _K5(x). If _r is a ball in S3, it is evidentthat ROP(R3 ) j= � _B[r]. Conversely, suppose ROP(R3) j= � _B[r]. ByLemmas 1.119 and 1.130, F( _r) is a surface in S3. Furthermore, byProposition 1.123, F( _r) is homeomorphic to S2. The result then followsby Proposition 1.120. QED6.3 Characterizing triangulations in LCIn Section 4, we showed that every tuple in ROP(R2) satis�es a topo-logically complete LC -formula|that is, an LC-formula with the propertythat all tuples satisfying it are similarly situated. Our proof exploitedWhitney's theorem on 3-connected graphs in the plane to show thatany c3-partition in ROP(S2) is determined up to similar situation by itsneighbourhood graph. However, Whitney's theorem is not available forS3, and so we must adopt an alternative approach to analysing the ex-pressive power of LC over ROP(R3 ). This approach has the advantage of



66
r s F(r) \ F(s)Figure 1.18. The con�guration of Proposition 1.132being, in some ways, more straightforward than that of Section 4, thoughthe topologically complete formulas it constructs are more complicated.We assume familiarity with the basic theory of triangulations andPL-complexes: for details, see, e.g., Moise, 1977, Ch. 7. We also re-quire the following `obvious' result about balls in S3 (Pratt and Schoop,2002,Theorem 3.14).Proposition 1.132 Let r; s 2 RO(S3) be disjoint balls in S3 such thatr + s is also a ball in S3. Then F(r) \ F(s) \ F(r + s) is the locus of aJordan curve, and F(r)\F(s) is homeomorphic to the closed disc D2.The situation is illustrated in Fig. 1.18.Definition 1.133 A quadruple q = hr1; r2; r3; r4i of pairwise disjointelements of ROP(S3) is a q-cell in S3 if, for all non-empty J � f1; 2; 3; 4g,the polyhedron Pj2J rj is a ball in S3.The reference to the containing space S3 is signi�cant: in the sequel, weintroduce q-cells in R3 . However, we sometimes speak simply of q-cells ifit is clear from context which space we are talking about (or if it makesno di�erence).Example 1.134 Consider the regular open tetrahedron t0 with verticesv1 = (0; 0; 0), v2 = (1; 0; 0), v3 = (0; 1; 0), v4 = (0; 0; 1). Let t1; t2; t3; t4be the four regular open tetrahedra (taken in some �xed order) each hav-ing three vertices from fv1; : : : ; v4g and the point (1=4; 1=4; 1=4) as thefourth vertex (Fig. 1.19). Evidently, the quadruple q0 = ht1; t2; t3; t4i isa q-cell.Theorem 1.135 All q-cells in S3 are similarly situated in S3.
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v1
v4 v3

v2Figure 1.19. The q-cell q0
b)

c)

F(b) \ S F(d) \ SF(c) \ S F(a) \ S 

a)F(b) \ S YX F(c) \ S F(b) \ SF(d) \ S F(c) \ SF(a) \ S 
 F(a) \ S

Figure 1.20. Possible arrangements of F(a) \ S, F(b) \ S, F(c) \ S and F(d) \ S,where S = F(a+ b+ c) (Proof of Theorem 1.135).Proof Let ha; b; c; di be a q-cell. Since a, b, c, a + b, b + c, a + cand a + b + c are balls, by Proposition 1.132, the sets F(a) \ F(b),F(a)\F(c), F(b)\F(c) and F(a+b)\F(c) are all closed discs. LettingS = F(a+ b+ c), it is then easy to show that the sets F(a)\S, F(b)\Sand F(c)\S must be arranged on S as shown in Fig. 1.20a, up to similarsituation. Let e = �(a+b+c+d); then, by Lemma 1.122,P(B[feg) isa ball for any proper subset B � fa; b; c; dg. Thus, all of the sets a+b+c,d, e, a+ b+ c+d and a+ b+ c+ e are balls. By Proposition 1.132 again,F(d) \ S and F(e) \ S are both closed discs, whose common frontier inthe space S is the locus of some Jordan curve 
, say.Consider how 
 might be drawn on S. Since a+ d and a+ e are balls,by Proposition 1.132, F(a) \ F(d) and F(a) \ F(e) are closed discs.Similarly, F(b) \ F(d), F(b) \ F(e), F(c) \ F(d) and F(c) \ F(e) areclosed discs. Hence 
 divides each of the three sets F(a)\S, F(b)\S and



68F(c) \ S into two residual domains. Moreover, 
 cannot pass througheither of the points X or Y in Fig. 1.20a; for otherwise, one of the setsF(a) \ F(d), F(b) \ F(d), F(c) \ F(d), F(a) \ F(e), F(b) \ F(e) orF(c) \ F(e) would fail to be a closed disc. It is then easy to see that 
and the region F(d) \ S it encloses must lie in S as shown in Fig. 1.20bor Fig. 1.20c, up to similar situation. But these two arrangements ofa; b; c; d are mirror images. QEDNotation 1.136 If q = ht1; : : : ; t4i is a q-cell, denote the componentpolyhedron ti by q[i] for all i (1 � i � 4). Denote the polyhedron t1 +� � �+ t4 by q̂.In Example 1.134, q̂0 is the interior of the convex hull of the points V =fv1; : : : ; v4g. We employ familiar terms from discussions of simplicialcomplexes: a face of q0 is the convex closure of any non-empty subset ofV ; a face of q0 is proper if it is not the whole of (q̂0)�; a vertex of q0 isan element of V .Definition 1.137 Let q be any q-cell, and h a homeomorphism of S3onto itself taking q0 to q. A (proper) face of q is a set of points h(F ),where F is a (proper) face of q0. A vertex of q is a point h(v), where vis a vertex of q0.We remark that, in De�nition 1.137, a suitable homeomorphism h canalways be found, by Theorem 1.135; moreover, since the faces of q0are expressible as set-algebraic combinations of the polyhedra t1; : : : ; t4and their topological closures, the precise choice of h does not matter.Thus, q-cells are simply homeomorphic images of the q-cell q0 of Exam-ple 1.134, with the notions of face and vertex transferred in the obviousway.Definition 1.138 A q-cell partition (in ROP(S3)) is a sequence �q =q1; : : : ; qn of q-cells in S3 such that (i) q̂1; : : : ; q̂n is a partition in ROP(S3);and (ii) for all i, j (1 � i < j � n), if F is a face of qi and G a face ofqj, then F \G is either empty or a face of both qi and qj. A vertex ofa q-cell partition is a vertex of one of its elements.Thus, q-cell partitions de�ne (�nite) PL-complexes in the obvious way:each q-cell in the partition corresponds to a PL 3-simplex, and its properfaces to PL d-simplices for d < 3.Definition 1.139 Let �q = q1; : : : ; qN and �q0 = q01; : : : ; q0N be q-cell par-titions in ROP(S3). We say that �q and �q0 are isomorphic if there is abijection between the vertices of �q and the vertices of �q0 such that, for all



First-Order Mereotopology 69i, j (1 � i � N , 1 � j � 4), the vertices of qi lying on the frontier ofqi[j] are mapped to the vertices of q0i lying on the frontier of q0i[j].Lemma 1.140 Isomorphic q-cell partitions in ROP(S3) are similarly sit-uated in S3.Proof Isomorphic q-cell partitions de�ne isomorphic PL-complexes.QEDWe conclude this sub-section by extending the notions of q-cell and q-cellpartition to the open space R3 .Definition 1.141 A quadruple q = hr1; r2; r3; r4i of elements ofROP(R3) is a q-cell in R3 if _q = h _r1; _r2; _r3; _r4i is a q-cell in S3. Asequence �q = q1; : : : ; qn of q-cells in R3 is a q-cell-partition in ROP(R3 )if _q1; : : : ; _qn is a q-cell partition in ROP(S3).Definition 1.142 Let �q = q1; : : : ; qn and �q0 = q01; : : : ; q0n be q-cell par-titions in ROP(R3). We say that �q and �q0 are isomorphic if: (i) thecorresponding q-cell partitions _q1; : : : ; _qn and _q01; : : : ; _q0n in ROP(S3) areisomorphic; and (ii) for all i; j (1 � i � n, 1 � j � 4), qi[j] is boundedif and only if q0i[j] is bounded.Intuitively, knowing which qi[j] are bounded for a q-cell partitionq1; : : : ; qn in ROP(R3) amounts to knowing, up to homeomorphism,where the point at in�nity is in the corresponding q-cell partition inROP(S3). More precisely, we have:Lemma 1.143 Let �q = q1; : : : qn and �q0 = q01; : : : q0n be similarly situatedq-cell partitions in ROP(S3). Let p 2 S3 such that, for all i, j (1 � i � n,1 � j � 4), p 2 (qi[j])� if and only if p 2 (q0i[j])�. Then there is ahomeomorphism h : S3! S3 �xing p and mapping �q to �q0.Proof Parallel to the proof of Lemma 1.87. QEDTheorem 1.144 Isomorphic q-cell partitions in ROP(R3 ) are similarlysituated in R3 .Proof Let q1; : : : qn and q01; : : : q0n be isomorphic q-cell partitions inROP(R3). Then _q1; : : : _qn and _q01; : : : _q0n are isomorphic q-cell parti-tions such that, for all i; j (1 � i � n, 1 � j � 4), 1 2 ( _qi[j])� ifand only if 1 2 ( _q0i[j])�. By Lemmas 1.140 and 1.143, there exists ahomeomorphism h of S3 onto itself mapping _q1; : : : _qn to _q01; : : : _q0n, and�xing1. Thus, h0 = hnfh1;1ig is a homeomorphism of R3 onto itselfmapping q1; : : : qn to q01; : : : q0n. QED



706.4 Expressive power of LC in ROP(R3)We are now ready to show that every tuple in ROP(R3) satis�es aformula which is topologically complete in ROP(R3 ) over R3 .Lemma 1.145 For all N > 0, there exists a formula �Nq (�z) such that,for any 4N -tuple �t from ROP(R3), ROP(R3) j= �Nq [�t] if and only if �t isa q-cell partition in ROP(R3 ).Proof Let � _B(x) be as de�ned in Lemma 1.131, and suppose s1; : : : ; s4 2ROP(R3). Then the quadruple h _s1; : : : ; _s4i is a q-cell in S3 if and onlyif ROP(R3 ) j= �q[s1; : : : ; s4], where �q(y1; : : : ; y4) is the formula^n� _B�Xj2J yj� j ; 6= J � f1; 2; 3; 4go:The result then follows easily. QEDLemma 1.146 Let �t be a 4N -tuple forming an N -element q-cell partitionin ROP(R3 ). Then we can �nd a formula 
(�z) such that, for any 4N -tuple �t0 of ROP(R3), ROP(R3 ) j= 
[�t0] if and only if �t0 is an N -elementq-cell partition isomorphic to �t.Proof Almost immediate from Lemmas 1.128 and 1.145 and the dis-cussion of Section 3.2. QEDLemma 1.147 Every q-cell partition in ROP(R3 ) satis�es a LC-formulawhich is topologically complete in ROP(R3) over R3 .Proof Theorem 1.144 and Lemma 1.146. QEDLemma 1.148 Any n-tuple �r from ROP(R3 ) can be re�ned to an N -element q-cell partition. That is: there exists a 4N -tuple �t from ROP(R3)and a (4N � n) Boolean array A such that �t forms a q-cell partition inROP(R3) and �r = �tA.Proof By the de�nition of ROP(R3 ), we can certainly re�ne �r to apartition of convex regions of R3 , each of which is bounded by a �nitenumber of planes, and thence, by triangulating these convex regions,into a partition of polyhedra t1; : : : tN , such that each _ti is a ball in S3,and the boundary of each ti (1 � i � N) is composed of 4 `triangles'(in the sense used earlier in this proof). By subdividing each ti, we canconstruct a q-cell qi whose faces are exactly the triangles bounding ti,



First-Order Mereotopology 71and such that q̂i = ti. Then q1; : : : qN is the required q-cell partition.QEDTheorem 1.149 Every tuple in ROP(R3) satis�es some LC-formulawhich is topologically complete in ROP(R3) over R3 .Proof Let �r be a tuple from ROP(R3). Let �t and A be as inLemma 1.148, and by Lemma 1.147 let ��t(�z) be a formula satis�ed by �twhich is topologically complete in ROP(R3) over R3 . Then the formula9�z(��t(�z) ^ �x = �zA), which is also topologically complete in ROP(R3 )over R3 , is satis�ed by �r. QEDThis concludes the main business of this section: the language LCis suÆciently expressive that every tuple of polyhedra in R3 can becharacterized up to the relation of similar situation in R3 by one of itsformulas. Moreover, it is easy to see that an analogous result mustobtain for polyhedra in S3. Of course, the characterizing formulas fortuples of polyhedra obtained in this section are much more complicatedthan the corresponding Lc;�-formulas for tuples of polygons obtained inSection 4.In Section 5, we exploited the high expressive power of Lc;� in ROP(S2)to obtain an axiomatization of Thc;�(ROP(S2)), and thence, a formu-lation of the conditions under which an arbitrary mereotopology overS2 has the same Lc;�-theory as ROP(S2). The question therefore arisesas to whether an analogous approach is possible for characterizing `rea-sonable' spatial mereotopologies using the results of this section. Themajor disincentive to such an undertaking is the relative weakness ofthe requirement of �nite decomposability in S3. For the plane case, therequirement of �nite decomposability led very easily to the existence ofc3-partition re�nements, which paved the way for an axiomatic char-acterization of Thc;�(ROP(S2)). In the spatial case, by contrast, muchstronger assumptions are needed to guarantee the existence of q-cell par-titions, as examples such as the region depicted in Fig. 1.3 show. Thus,while the identi�cation of a standard theory of spatial mereotopology iscertainly conceivable, it is not obvious, at the time of writing, how bestto approach this matter.7. Model TheoryIn Section 2, we de�ned a mereotopology over a topological space X tobe a Boolean sub-algebraM of RO(X) in which, for all p 2 o � X, with oopen, there exists r 2M such that p 2 r � o. However, we also promiseda purely intrinsic characterization of such structures|one making no



72reference to points or topological spaces. In this section, we ful�l thatpromise, and (partially) realize the vision with which we started thischapter, of a reconstruction of topology where the fundamental objectsare not points, but regions.7.1 Abstract models of mereotopologicaltheoriesWe begin by noting some simple facts about mereotopologies overtopological spaces of various kinds.Lemma 1.150 Let M be a mereotopology over a topological space X,considered as a structure interpreting the signature fC;+; �;�; 0; 1;�g.(i) The sentences �CA consisting of the usual axioms of Boolean algebratogether with 8x:C(x; 0)8x(x > 0! C(x; x))8x8y(C(x; y)! C(y; x))8x8y(C(x; y) ^ y � z ! C(x; z))8x8y(C(x; y + z)! C(x; y) _ C(x; z))are all true in M . (ii) If X is weakly regular, then the sentence �extgiven by 8x8y(8z(C(x; z)! C(y; z))! x � y)is true in M . (iii) If X is compact and Hausdor�, then the sentence�int given by 8x8y(:C(x; y)! 9z(:C(x;�z) ^ :C(y; z)))is true in M .Proof (i) Straightforward. (ii) Lemma 1.22. (iii) Suppose r; s 2 Mwith r� \ s� = ;. Since X is regular, by Lemma 1.23, for each point inp 2 r�, there is rp 2 M with p 2 rp and s� � �rp. Since the rp coverr�, choose a �nite subcover, and let the sum of this subcover be t. Thenr� � t and s� � �t. QEDThe three claims in Lemma 1.150 all have converses. Speci�cally:Proposition 1.151 Let A be a structure interpreting the signature � =fC;+; �;�; 0; 1 �g. (i) If A j= �CA, then A is isomorphic (as a �-structure) to a mereotopology over a topological space X; in fact, Xcan always be chosen so as to be semi-regular and T0. (ii) If A j=�CA [ f�extg, then X can be chosen so as to be weakly regular and T1.



First-Order Mereotopology 73(iii) If A j= �CA[f�ext; �intg, then X can be chosen so as to be compactand Hausdor�.These results �rst appeared (in equivalent form) in Dimov and Vakarelov,2006,D�untsch and Winter, 2005and Roeper, 1997,respectively. In the lit-erature, structures satisfying �CA are sometimes referred to as contactalgebras, the sentence �ext as the extensionality axiom, and the sentence�int as the interpolation axiom. Together, Lemma 1.150 and Proposi-tion 1.151 show that mereotopologies over certain classes of topologi-cal spaces can be characterized purely intrinsically, without referenceto those spaces or the points that make them up. We note in passingthat Proposition 1.151 speaks of mereotopologies over X (De�nition 1.5),where the sources cited refer only to dense sub-algebras of RO(X). Thisslight strengthening is immediate from the relevant proofs, and improvesthe match between Lemma 1.150 and Proposition 1.151. For a fuller dis-cussion, see Ch. ??.Furthermore, it turns out that the topological realizations in Propo-sition 1.151 (iii) are, in an important sense, unique. We motivate thisresult with a simple observation.Lemma 1.152 Let Mi be a mereotopology over the topological space Xi,for i = 1; 2. Suppose there is a homeomorphism h : X1 ! X2 whichmaps M1 onto M2. Then, for any signature � of topological primitives,h induces a structure isomorphism h :M1 '� M2.Proof Immediate. QEDThe uniqueness of the topological realizations in Proposition 1.151 (iii)takes the form of a partial converse of Lemma 1.152:Theorem 1.153 (Roeper, 1997) LetMi be a mereotopology over a com-pact, Hausdor� space Xi (i = 1; 2). Suppose there is a structure isomor-phism f :M1 'C M2. Then there exists a homeomorphism h : X1 ! X2which induces f|that is, one such that, for all r 2M1, f(r) = h(r).Thus, every model of �CA [ f�ext; �intg is isomorphic to exactly onemereotopology over a compact Hausdor� space (up to homeomorphism).Since this fact is important for the development here, we present detailsof the proof.We assume familiarity with the theory of ultra�lters: for details,see Koppelberg, 1989, Ch. 1, Sec. 2. In this context, recall that, forB a Boolean algebra, a �lter on B is a set F � B such that a; b 2 Fimplies a � b 2 F , and a 2 F , a � b 2 B implies b 2 F . A �lter is properif it is not the whole of B, or equivalently, if it does not contain 0. Aproper �lter U is an ultra�lter if it is maximal under set-inclusion, or



74equivalently, if b1 + b2 2 U implies b1 2 U or b2 2 U . The followingresult is standard (Koppelberg, 1989, Chapter 1, 2.16).Proposition 1.154 (Prime Ideal Theorem) Any proper �lter on aBoolean algebra can be extended to an ultra�lter.In the following lemmas, let M be a mereotopology over a compact,Hausdor� space X. Since a compact Hausdor� space is normal (andhence regular), Lemma 1.23 applies.Lemma 1.155 Let U be an ultra�lter on M . Then the set Tfr�jr 2 Ugis a singleton. We denote the member of this set by pU and say that Uconverges to pU .Proof We �rst show that Tfu�ju 2 Ug contains at least one point.For otherwise, SfX n u�ju 2 Ug = X, whence f�uju 2 Ug coversX. By compactness of X, let �u1; : : : ;�un be a �nite subcover. Then�u1 + � � � +�un = 1; i.e. u1 � � � � � un = 0 2 U , contradicting the factthat U is proper. Next we show that Tfu�ju 2 Ug contains at most onepoint. For suppose p, q are distinct points of X. By Lemma 1.23, thereexists r 2M such that p 2 r and q 2 �r. Hence p 62 (�r)� and q 62 r�.Since U is an ultra�lter, either r or �r is in U , so that either p or q isnot in Tfu�ju 2 Ug. QEDLemma 1.156 Let U be an ultra�lter on M , and let r 2 M . If pU 2 r,then there exists s 2 U such that pU 2 s and s� � r. Hence also, r 2 U .Proof Suppose pU 2 r 2 M . Then pU 62 (�r)�, and by Lemma 1.23,there exists s 2M such that pU 2 s and s� � r. But since pU 62 (�s)�we have �s 62 U , and thus s 2 U . QEDDefinition 1.157 If U and V are ultra�lters on M , we say U and Vare contacting if r� \ s� 6= ; for all r 2 U and s 2 V .Lemma 1.158 If U and V are ultra�lters on M , then U and V arecontacting if and only if pU = pV .Proof The if-direction is trivial. For the only-if direction, suppose thatpU 6= pV . By Lemma 1.23, there exist r; s 2M such that pU 2 r, pV 2 sand r� \ s� = ;. By Lemma 1.156, r 2 U , s 2 V , so that U and V arenot contacting. QED



First-Order Mereotopology 75Lemma 1.159 Let M1 and M2 be mereotopologies over weakly regulartopological spaces, let f : M1 'C M2 be an isomorphism, and let U andV be contacting ultra�lters on M1. Then f(U) and f(V ) are contactingultra�lters on M2.Proof Almost immediate given the de�nability of � in terms of C(Lemma 1.22). QEDLemma 1.160 Let M1 and M2 be mereotopologies over weakly regulartopological spaces, such that f :M1 'C M2. Let r 2M , and let U be anultra�lter on M1 with pU 2 r. Then pf(U) 2 f(r).Proof By Lemma 1.156, there exists s 2 U such that pU 2 s ands� � r, so that s� \ (�r)� = ;. Since f is also a Boolean algebraisomorphism, f(s)� \ (�f(r))� = ;, i.e. f(s)� � f(r). Since f(s) 2f(U), pf(U) 2 f(s)� � f(r). QEDProof [Theorem 1.153] Suppose that f : M1 'C M2. De�ne the maph by h(pU ) = pf(U), for U a compact ultra�lter on M1. We show: (i)h is well-de�ned and 1{1, (ii) the domain of h is the whole of X1 andthe range of h is the whole of X2, (iii) for all r 2 M1, f(r) = h(r), andfor all s 2 M2, f�1(s) = h�1(s), and (iv) h and h�1 are continuous.To prove (i), let U , V be compact ultra�lters on M1, both convergingto p. By Lemma 1.159, the isomorphism f maps contacting ultra�ltersto contacting ultra�lters. Hence, h is well-de�ned. Applying the samereasoning to f�1, h is 1{1. To prove (ii), let p 2 X1. Then fr 2M1jp 2rg is a proper �lter on M1, and by Proposition 1.154, this �lter can beextended to an ultra�lter U on M1. By Lemma 1.155, U converges tosome point pU . Since X1 is Hausdor� p = pU . Thus, the domain of h isthe whole ofX1. Similarly, if q 2 X2, we have an ultra�lter V onM2 suchthat q = pV . Thus q = pV = pf(f�1(V )) = h(pf�1(V )), so that the rangeof h is the whole of X2. To prove (iii), let pV 2 f(r) with V an ultra�lteron M2. By Lemma 1.160, pf�1(V ) 2 r. Hence, pV = h(pf�1(V )) 2 h(r).Conversely, let pV 2 h(r). By the de�nition of h, pf�1(V ) 2 r, andby Lemma 1.160, pV 2 f(r). Hence f(r) = h(r). Now if s 2 M2,f�1(s) 2M1, so, applying the results just obtained to this set, we havef�1(s) = h�1(h(f�1(s))) = h�1(f(f�1(s))) = h�1(s). (iv) Let u � X1be an open set. SinceM1 is a mereotopology, for each point p 2 u, thereexists rp 2 M1 with p 2 rp � u. Thus the set U = frp 2 M jp 2 ugsatis�es SU = u. Then h(u) = h(SU) = Sr2U h(r) = Sr2U f(r) is aunion of open sets in X2 and hence is itself an open set in X2. Therefore,h�1 is continuous. By substituting h�1 and for h and repeating theargument, h is continuous. QED



767.2 Abstract models of geometricalmereotopological theoriesWe have shown that mereotopologies over certain classes of topologi-cal spaces can be characterized in terms of certain �rst-order sentenceswhich they make true. But what of speci�c mereotopologies of interest|for instance, those de�ned over the open or closed plane? This is thetopic we now address, based on the results of Pratt and Lemon, 1997.We employ standard results on prime models: for details, see Changand Keisler, 1990, Ch. 2. A structure A is said to be a prime model ifit is elementarily embeddable in any elementarily equivalent submodel.Prime models are considered the `simplest' or `smallest' models of theirtheories, a view which is justi�ed by the following proposition (Changand Keisler, 1990, Theorem 2.3.3). In the sequel, all signatures aresilently assumed to be countable.Proposition 1.161 Elementarily equivalent prime models are isomor-phic.The following notion is closely related to that of primeness. A formula� is said to be complete with respect to a theory T if, for all formulas� having the same free variables of �, exactly one of T j= � ! � orT j= �! :� hold. A structure A is said to be atomic if any n-tuple �a inA satis�es a formula �(�x) in A such that � is complete with respect toTh(A). We have the following standard result (see, for example, Changand Keisler, 1990, Theorem 2.3.4).Proposition 1.162 A structure is countable atomic if and only if it isa prime model.Recall the concepts of topologically complete formula and homogeneousmereotopology given in De�nitions 1.89 and 1.51, respectively.Lemma 1.163 LetM be a homogeneous mereotopology over a topologicalspace X, and let � be a signature of topological primitives. If � 2 L� istopologically complete in X over M , then � is complete with respect toTh�(M).Proof Immediate from Lemma 1.91. QEDTheorem 1.176 below is a partial converse of this result.For the next theorem, recall that ROQ(S2) is the rational polygonalmereotopology over the closed plane, and that its Lc;�-theory isTc;�, thestandard Lc;�-theory of closed plane mereotopology, which we axioma-tized in Section 5. Recall further that  Nc3(�z) is the Lc;�-formula statingthat �z forms a c3-partition, employed in the proof of Theorem 1.84



First-Order Mereotopology 77Theorem 1.164 The mereotopology ROQ(S2), considered as a fc;�g-structure, is a prime model of Tc;�. In fact, for any N , there existformulas 
1(�z); : : : ; 
K(�z) (with K depending on N), complete with re-spect to Tc;�, such thatTc;� j= 8�z( Nc3(�z)! (
1(�z) _ � � � _ 
K(�z))):Proof The �rst part of the theorem is immediate from Theorem 1.84and Lemma 1.163. For the second part, observe that, for a given N ,there are only �nitely many neighbourhood structures on an N -elementc3-partition, each one giving rise to a topologically complete formula ofthe form 9�z( Nc3(�z) ^  �s+(�z) ^ �x = �zA);as described in the proof of Theorem 1.84. QEDNote that, by Lemma 1.38, ROQ(S2) and ROQ(R2 ) are the same fc;�g-structure, so we could replace S2 in Theorem 1.164 by R2 .Similarly, we haveTheorem 1.165 The mereotopologies ROQ(R2 ) and ROQ(S2), consid-ered as fCg-structures, are prime models.Proof As for Theorem 1.164, but using Theorem 1.88 and Corollary 1.85,respectively. QEDAnalogues of Theorem 1.165 hold in three dimensions, of course. Forexample, we have:Theorem 1.166 The mereotopology ROQ(R3 ) is a prime model of theLC-theory of ROP(R3 ).The proof strategy is essentially identical to the plane case, using The-orem 1.149. Note, however, that much more care is required to showthat the topologically complete formulas identi�ed in Theorem 1.149are complete with respect to the LC -theory of ROP(R3 ). We leave thedetails to the interested reader.Returning to mereotopologies over S2, the question then arises as towhether ROQ(S2) is strictly simplest among countable models of Tc;�,in that there are countable models of that theory not isomorphic toROQ(S2). The answer is: yes and no. Recall that a theory is said to be!-categorical if it has exactly one countable model up to isomorphism.Recall also that a type in variables �x = x1; : : : ; xn is a maximal consistentset of formulas whose free variables are among the x1; : : : ; xn, and that



78a theory T is said to have a type �(�x) if �(�x) is consistent with T . Thefollowing result is standard (see, for example, Chang and Keisler, 1990,Theorem 2.3.13).Proposition 1.167 Let T be a complete theory. Then T is !-categoricalif and only if, for each n, T has only �nitely many types in x1; : : : ; xn.Theorem 1.168 Tc;� is not !-categorical.Proof By Proposition 1.167, it suÆces to prove that Tc;� has countablymany types in the single variable x. It is easy to see that, for everypositive integer m, the formula  m(x)9z1 : : : 9zm0@ ^1�i�m(c(zi) ^ zi 6= 0) ^ ^1�i<j�m:c(zi + zj) ^ x = X1�i�m zi1Ais satis�ed in ROQ(S2) by all and only those regions having exactly mcomponents. Hence, the  m(x) are all satis�ed in ROQ(S2); so eachcan be extended to a type �m(x) of Thc;�(ROQ(S2)). But the  m(x)are also pairwise mutually exclusive in Tc;�; so no two of them can beextended to the same type. Hence, Tc;� has in�nitely many types inx. QEDOne the other hand, it turns out that Tc;� is almost countably cat-egorical, in the following sense. Note that, since any model of Tc;�is a Boolean algebra interpreting the predicate c, we may employ theterminology introduced at the start of Section 4.1.Theorem 1.169 All countable �nitely decomposable models of Tc;� areisomorphic.Proof Let A j= Tc;� be �nitely decomposable. By Claims 1.54 and 1.63,every tuple from A can be re�ned to a c3-partition. Theorem 1.164 thenimplies that A is prime. The result follows by Proposition 1.161. QEDThe above results show that, while speci�c mereotopologies such asROS(S2) cannot be characterized in terms of the �rst-order sentenceswhich they make true, they almost can. Speci�cally, we have the follow-ing abstract characterization of the mereotopology ROQ(S2).Corollary 1.170 If A is a countable, �nitely decomposable model ofAxioms 1|8 in Section 5.1, then A is isomorphic (as a fc;�g-structure)to the mereotopology ROQ(S2).Proof Theorem 1.169 and the fact that, by Theorem 1.100, any �nitelydecomposable model A of Axioms 1|8 is elementarily equivalent toROQ(S2). QED



First-Order Mereotopology 797.3 Loose endsWe end this section with some matters touched on earlier in thischapter. We continue to assume all signatures to be countable. Thefollowing proposition is a special case of the L�owenheim-Skolem Theorem(see, for example, Hodges, 1993, p. 90).Proposition 1.171 Let A be a �-structure and Z a countable subset ofA. Then A has a countable elementary submodel whose domain includesZ.Recall that a topological space X is said to be second countable if itstopology has a countable basis.Lemma 1.172 LetM be a mereotopology over a compact, second-countable,Hausdor� space X, and let P �M be countable. Then there is a count-able mereotopology Q over X such that P � Q and Q �M .Proof We construct a countable subset P 0 � M such that, for allp 2 o � X with o open, there exists r 2 P 0 such that p 2 r � o.The lemma then follows from Proposition 1.171 by putting A =M andZ = P [ P 0. Let B be a countable basis for the topology on X. Forany b; c 2 B with b� � c, take a cover of b� by elements s 2 M suchthat s � c (possible because M is a mereotopology), choose a �nitesubcover (possible because X is compact), and let rb;c be the sum, inM , of the elements of this �nite subcover. Certainly, b � rb;c � c�. LetP 0 = frb;c j b; c 2 B; b� � cg. Since X is normal, for all p 2 o � X witho open, we can �nd b; c 2 B with p 2 b, b� � c and c� � o. But thenp 2 rb;c � o as required. QEDNote that Lemma 1.172 holds for all (countable) signatures.We may now derive the promised strengthening of Corollary 1.117.Corollary 1.173 All splittable, �nitely decomposable mereotopologiesover S2 with curve-selection have the same L�-theory for any topologicalsignature �.Proof Let M1, M2 be two such mereotopologies. Extend the sig-nature � if necessary so that it contains the predicates C, c and �,and expand M1 and M2 by interpreting these predicates in the normalway. By Lemma 1.172, let Qi be a countable mereotopology over S2such that Qi �� Mi, for i = 1; 2. Thus, Q1 and Q2 are splittable,�nitely decomposable mereotopologies over S2 having curve-selection.By Corollary 1.117, Q1 �c;� Q2. By Theorem 1.169, Q1 'c;� Q2. ByLemma 1.49, Q1 'C Q2. By Theorem 1.153, there is a homeomorphism



80mapping Q1 onto Q2. Finally, by Lemma 1.152, Q1 '� Q2, whenceM1 �� M2. QEDRecall from De�nition 1.96 that, if � is a signature of topological prim-itives, T� denotes Th�(ROS(S2)). By Corollary 1.173, T� is the L�-theory of any splittable, �nitely decomposable mereotopology over S2having curve-selection. This justi�es our decision to call it the standardL�-theory of closed plane mereotopology.Theorem 1.169 now has the following corollary.Corollary 1.174 Let M be a countable, �nitely decomposable mereo-topology over a locally connected, compact Hausdor� space X, such thatThC(M) = TC. Then there is a homeomorphism h : X $ S2 taking Mto ROQ(S2).Proof By Lemmas 1.22 and 1.27, ThC;c;�(M) = TC;c;�. By Theo-rem 1.169, M 'c;� ROQ(S2). But TC;c;� contains a formula de�ningC explicitly in terms of c and �. Hence M 'C ROQ(S2). Now applyTheorem 1.153. QEDWe remark that there is no prospect of removing the compactness con-dition from Corollary 1.174. For example, let p� be, say, the point of S2with coordinates (0; �), and consider the topological space X = S2nfp�gand the mereotopology M over X given by M = fr n fp�g j r 2ROQ(X)g. Then ROQ(S2) 'C;c;� M ; but S2 and X are not homeo-morphic.A further consequence of Theorem 1.153 is the promised partial con-verse of Lemma 1.163. We require the following fact about prime models.Lemma 1.175 Let A be a countable, atomic model and let �a ,�b be tu-ples from A which satisfy the same formulas in A. Then there is anautomorphism of A taking �a to �b.Proof Almost immediate from Proposition 1.161, by adding a tuple ofindividual constants to stand alternatively for �a and �b. QEDTheorem 1.176 Let M be a mereotopology over a compact, second-countable Hausdor� space X, and let � be a signature of topologicalprimitives such that C (contact) is �rst-order de�nable over M . If everytuple from M satis�es an L�-formula which is complete with respect toTh�, then that L�-formula is topologically complete in M over X.Proof Let � be complete with respect to Th�(M), and suppose thatM j= �[�r], M j= �[�s]. We must show that �r � �s. By Lemma 1.172,let M 0 be any countable mereotopology over X containing the tuples �r



First-Order Mereotopology 81and �s, such that M 0 � M . Thus, M 0 is countable and atomic, and �is a complete formula with respect to Th�(M 0) satis�ed by both �r and�s. By Lemma 1.175, there exists an automorphism f : M 0 '� M 0 suchthat f(�r) = �s. Then, by Theorem 1.153, there is a homeomorphismh : X ! X taking �r to �s. QEDLemma 1.163 and Theorem 1.176 establish the close connection betweenthe notions of topological completeness with respect to a topologicalspace and completeness with respect to a mereotopological theory.8. Philosophical ConsiderationsThe earliest modern work on region-based theories of space is that ofWhitehead and de Laguna (Whitehead, 1919; Whitehead, 1920; White-head, 1929; de Laguna, 1922a; de Laguna, 1922b; de Laguna, 1922c).Both authors propose a system of postulates governing a small collectionof primitive spatial relations, together with reconstructions of familiarspatial concepts in terms of those relations. The postulates serve im-plicitly to de�ne the primitive relations they constrain (and perhaps thedomain of entities over which they quantify), while the reconstructions offamiliar spatial concepts connect the whole system to the data of spatialexperience. To be sure, both Whitehead and de Laguna motivate theirpostulates by providing informal interpretations for their respective spa-tial primitives. Thus, for example, Whitehead illustrates his relation ofextensive connection (as he calls it) using diagrams suggesting that tworegions are extensively connected just in case their topological closuresshare a point in common (this is the interpretation given to the binarypredicate C in this chapter). However, such explanations are intendedonly as a heuristic guide. OÆcially, spatial primitives acquire their con-tent solely from the entire system postulates in which they participate.Primitives, by de�nition, are not explicitly de�nable.The inspiration for such systems was presumably the axiomatic treat-ment of geometry found in Euclid (and latterly Hilbert); and the moti-vation for carrying out the procedure on a purely region-based footingseems, for both authors, to have been a certain disquiet about the em-pirical distance between the concept of a point as a primitive geometri-cal entity and the character of everyday spatial experience. The greatdiÆculty of this approach, of course, is the problem of evaluating thesystem of postulates and conceptual reconstructions proposed. White-head's system has thirty-one postulates (or assumptions, in Whitehead'sterminology) and a similar number of de�nitions. De Laguna's system,though far tidier, is also hardly self-evident. The only obvious sourcesof justi�cation for such systems are their ability to chime with our pre-



82theoretic intuition and their eventual integration into a larger, empiri-cally successful, physical theory. Neither source is very satisfactory. Onthe one hand, as we have seen in this chapter, almost any collection ofspatial primitives enables us to write down propositions on which pre-theoretic intuition cannot be expected to return a reliable verdict. Onthe other hand, although empirical con�rmation of a general physicaltheory must provide some support for the account of space it contains,the size of the undertaking and the diÆculty of assigning credit whentheories perform well (or blame when they perform badly) means thatthere is little practical prospect of any such justi�cation for such systemsof postulates and conceptual reconstructions.An alternative approach to developing a region-based theory of spaceis illustrated by Tarski's Geometry of Solids (Tarski, 1956). Tarski toodevelops a geometry in which regions, not points, are the primitive ob-jects; however, in contrast to Whitehead and Laguna, he does not buildhis theory by writing a collection of plausible-looking, but unprovable,axioms. Rather, beginning with the familiar model of space as R3 , heconsiders a formal language whose variables range over the set of ofspheres in R3 (de�ned in the standard way), and whose sole non-logicalconstant is the part-whole relation (again, de�ned in the standard way).Because the `primitives' in Tarski's geometry of solids are well-de�nedmathematical objects and relations, the question of what postulates theysatisfy is a well-de�ned mathematical problem, not a matter for intu-ition or experiment. And because many familiar spatial concepts haverational reconstructions in terms of the standard model, the question ofhow, if at all, these concepts can be expressed using formulas of Tarski'slanguage is again a purely mathematical a�air. Having thus speci�edthe structure under consideration and the language used to describe it,Tarski then goes on to examine the kinds of logical issues that shouldby now be familiar to us. In fact, Tarski obtains a system of axioms (inhigher-order logic) for which the standard Euclidean interpretation is,up to isomorphism, the only model.This alternative approach is, in contrast to the `postulationist' strat-egy of Whitehead and de Laguna, conservative and rationalist: con-servative, because no attempt is made to build systems of axioms andde�nitions from the ground up; rationalist, because the appropriate-ness of the resulting region-based theories is secured by means of theirlogical relations to point-based models whose usefulness as representa-tions of the space we inhabit|at least approximately and for mesoscopicobjects|is anyway beyond doubt. It is this approach that we have takenin this chapter. Latterly, region-based theories of space have increasedin popularity, following the seminal work of Clarke, 1981, Clarke, 1985,



First-Order Mereotopology 83Biacino and Gerla, 1991,Randell et al., 1992,Gotts et al., 1996and Renzand Nebel, 1997.One reason for this resurgence of interest, particularlywithin the A.I. community, is the requirement to quantify over spatialregions without leaving the realm of �rst-order logic. The technology oftheorem-proving for �rst-order logic is more highly developed than forhigher-order logics; and, more generally, formalisms with limited expres-sive power enjoy a premium in A.I. if they give rise to entailment andsatis�ability problems which have (theoretically or practically) eÆcientalgorithmic solutions. Insofar as the study of region-based theories ofspace is motivated by computational considerations, the best approachto developing and analysing such theories is surely that of Tarski, notthat of Whitehead.These matters notwithstanding, the most striking outcome of the in-vestigation undertaken here is just how much information it gives usabout the possibilities for developing a truly region-based theory ofspace, along the lines apparently envisaged by Whitehead and de La-guna. Consider, for example, the issue of the `correct' set of postulates.True, Examples 1.17 and 1.18 show that di�erent mereotopologies de-�ned over the spaces RO(R2 ) indeed have di�erent �rst-order theories.Nevertheless, the discussion of Section 5 shows that the choices on o�erare much more limited than these examples might initially lead one tosuppose. In particular, all �nitely decomposable, splittable mereotopolo-gies over S2 having curve-selection have identical L�-theories, for anysignature of topological primitives. We proposed that this common L�-theory should therefore be regarded as standard.Or take again the issue of reconstructing familiar spatial conceptsin terms of a chosen collection of primitives. We have seen that �rst-order topological languages interpreted over well-behaved mereotopolo-gies have surprising|but not unlimited|expressive power. In particu-lar, we provided formulas expressing a variety of familiar spatial rela-tionships (as de�ned by their familiar point-based de�nitions, of course)over a wide range of mereotopologies. In addition, we showed that the�rst-order language Lc;� is suÆciently expressive that every tuple ofpolygons in S2 can be characterized up to similar situation by one of itsformulas, and that the �rst-order language LC is suÆciently expressivethat every tuple of polygons in R2 and every tuple of polyhedra in R3can be characterized up to similar situation by one of its formulas.Most striking of all, however, is what the foregoing analysis tells usabout the view of space to which any �rst-order mereotopological the-ory commits us. While almost all interesting mereotopologies have �rst-order theories which are not categorical in any in�nite cardinal, we nev-ertheless showed that the plane mereotopology ROQ(S2) and the spatial
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