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1. Introduction

One of the many achievements of coordinate geometry has been to
provide a conceptually elegant and unifying account of the nature of ge-
ometrical entities. According to this account, the one primitive spatial
entity is the point, and the one primitive geometrical property of points
is coordinate position. All other geometrical entities—lines, curves, sur-
faces and bodies—are nothing but collections of points; and all prop-
erties and relations involving these entities may be defined in terms of
the relative positions of the points which make them up. The success
and power of this reduction is so great that the identification of spatial
regions with the sets of points they contain has come to seem virtually
axiomatic.

Over the years, however, various authors have expressed disquiet with
this conceptual régime. The primary source of the disquiet is the convic-
tion that our theory of space should use only those resources absolutely
necessary to systematize the data of spatial experience. For points are
such remote abstractions from the objects with which we daily interact,
and co-ordinate position such a distant relative of the spatial properties
and relations which we directly perceive, that the question arises as to
whether alternative mathematical models of space are not possible—in
particular, models in which the primitive spatial entities are not points,
but regions, and in which the primitive spatial properties and relations
are qualitative rather than quantitative.



An example will help to make these worries more concrete. Consider
any stable, medium-sized physical object, for example, a coffee cup. We
all agree that this cup has a particular shape, which we may take to
correspond to the region of space which it occupies at some instant. On
the familiar point-based model of space, this region is a set of points. But
suppose we now ask: is this set topologically open, semi-open or closed?
That is: does it include none, some, or all of its boundary points? It
is hard to see how we could answer this question. Not by microscopic
analysis, since physical objects lose their definition on very small scales.
And not by mathematical argument, since a world in which—say—cups
are closed and saucers open is surely as logically possible as one where
these topological characteristics are reversed. But if space really is made
up of points as (modern) textbooks tell us, any assignment of a region
of space to the coffee cup must answer the question. Perhaps then this
model postulates too much.

This chapter addresses the question: what region-based accounts of
the topological structure of space are possible? What can we say about
them? How do they relate to each other and to the point-based models
with which we are so familiar?

2. Mereotopologies

The purpose of section is to outline the conceptual framework for
region-based theories of space adopted in this chapter. Specifically, we
introduce the concept of a mereotopology over a topological space, we
discuss the role of mereotopologies as interpretations of signatures of
topological primitives, and we list some key mathematical questions con-
cerning them.

We assume familiarity with fundamental concepts and standard facts
of point-set topology and Boolean algebra: for details, see, e.g. Kelley,
1955 and Koppelberg, 1989, Ch. 1, respectively. In the context of point-
set topology, if u is any subset of a topological space X, we denote the
interior of u by u® and the closure of u by u~. (The more usual notations
of w and [u] for the closure of u are reserved for other purposes.) We
write F(u) to denote the frontier of u, namely v~ \ u°.

2.1 Regular open sets

How might we go about building a region-based model of the space
we inhabit? The example of the coffee cup suggests that any such model
should resolve the issue of frontier points. The following technical details
are well-suited to this purpose.
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DEFINITION 1.1 Let u be a subset of some topological space X. We say

that u is regular open (in X) if u is equal to the interior of its closure.
We denote the set of reqular open subsets of X by RO(X).

To fix our intuitions, consider the space X = R?. The elements of
RO(R?) are the open subsets of R? having no ‘cracks’ or ‘pin-holes’
(Fig. 1.1). Corresponding remarks apply to the case X = R3. Taking

Regular Non-regular

Figure 1.1. Some regular and non-regular open sets of the Euclidean plane.

regions of space to be regular open subsets of R? finesses the issues en-
countered above concerning frontier points: regions are open by fiat.
At the same time, however, it provides us with satisfying formal recon-
structions of the intuitive notions of intersecting, merging and comple-
menting regions, by means of the following standard theorem (see, for
example, Koppelberg, 1989, pp. 25-27).

PROPOSITION 1.2 Let X be a topological space. Then RO(X) is a Bool-
ean algebra under the order C. In this Boolean algebra, top and bottom
are defined by 1 = X and 0 = (), and Boolean operations are defined by
ry=xNy, r+y= (acUy)*0 and —z =X\ z".

Again, we can fix our intuitions regarding Proposition 1.2 by considering
the case X = R?. The product, z.y, of two regular open sets z and y
is simply their intersection, which is guaranteed to be a regular open
set. The sum, x + y, of two regular open sets z and y is a little more
complicated; very roughly, it is the union of x and y with any internal
boundaries removed (Fig. 1.2). Finally, the complement, —z, of a regular
open set z in RO(IR?) is simply that part of the plane not occupied by
x or its frontier. Corresponding remarks apply to the case X = R3.

It sometimes helps to reformulate the definition of regular open sets as
follows. If u C X, then (J{o C X|o open, oNu = P} is the largest open
subset of X disjoint from u. We call this set the pseudo-complement of
u, denoted u*. From the above definitions, u* = X \u~ and u*™* = (u~)°.
Hence, u is regular if and only if © = u™*; and, if u is regular open, u* is
simply —u. The following lemma shows that every subset of X is ‘close’
to a regular open subset.
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LEMMA 1.3 Let X be a topological space. For every u C X, the set
r = (u")" is an element of RO(X) such that v’ Cr Cu . If u is open,
then r is unique.

Proof Obviously u® C r C u~. To show that (u7)? € RO(X), it
suffices to show that w**** = u**. If v is any set at all, then v** Nv* = 0,
whence v* C v***. Moreover, if o is any open set, then 0*** is an open set
disjoint from o** and hence disjoint from every open set disjoint from o*
and hence disjoint from o itself, whence 0*** C 0*. Thus, for any open
set o, 0™ = o0*. Since u" is open, we have v**** = u**. For the final
statement, if s € RO(X) also satisfies u C s C u™, then the (regular)
open sets s - —r and 7 - —s are both in = \ v and so are empty.  QED

-
-

Figure 1.2. Three pairs of regions and their sums in RO(R?).
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For the above reasons, it has become common practice in discussions
of mereotopology to model regions of space as regular open subsets of
R3; and that is the approach we shall take here. In the sequel, we shall
always use the letters r,s,t to range over regular open sets; when we
are concerned only with regular open sets, we write r < s in preference
to r C s, 0 in preference to ) and r - s in preference to r N s. Resort-
ing to regular open sets is of course not the only way of dealing with
boundary disputes. One obvious alternative is to use regular closed sets
(sets equal to the closures of their interiors), since the regular closed
sets of any topological space also form a Boolean algebra, which is in
fact isomorphic to the Boolean algebra of regular open sets. Thus, in
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modelling regions as regular open sets of R?, it is understood that it is
the resulting structure that is important, not the precise constitution
of its elements. Understanding what this idea means in detail forms a
central theme of this chapter.

We conclude our discussion of regular open sets by proving some tech-
nical results which will be useful below. Recall in this context that, if
u, v are connected subsets of a topological space, with v Nv # (), then
u U v is connected. Moreover, if u is connected and v C v C u~, then v
is connected.

LEMMA 1.4 Let X be a topological space, let u,v C X and let r,s €
RO(X). We have:

(1) (wU v)*0 =u "+ v*O;

(i) rUsCr+sCrUsU(r-Ns™)C(rUus);
(1it) (r+s)" =r"Us =(rUs);
(

i) if r and s are connected with r - s > 0, then r + s is connected.

Proof (i) By Lemma 1.3, (uUwv) " is a regular open set which ev-

idently contains the re§ular open sets u=" and v="°. Certainly, then
w070 C (uUwv)~". For the reverse inclusion, (X \ u)? N (X \

)0 N (wUv)~" = 0, whence (X\u)of0 N(X\v)Nn@uo)’ =0,
whence (X \ 4)°™° N (X \0)°~° A (wUv)~" = 0, whence (X \u)°” N
(X\v)°)0 n (wUv)" = 0, whence (X \w)? Nn(X\v)°)
N(wUv)~% = 0. That is: (wUv)™" C (u="Uw )_0. But by Proposi-
tion 1.2, (v U U*O)*O =u ' +ov "

(ii) The only non-trivial inclusion is r+s C rUsU(r~ Ns~). So suppose
p & sand p € r—. That is, p € (—s)” and p € —r. But then, for
all open o with p € o, o N —r is also open with p € o N —r, whence
(oN —r)N —s # D—that is, oN (—r - —s) # 0. Hence p € (—r - —s)~ so
p ¢ —(—r-—s) =r-+s. A similar argument applies if p € r and p € s~
(iii) (r+s)” = X\=(r+s) = X\(-r-—s) = (X\—-r)U(X\—s) =r"Us .

(iv) Certainly, r U s is connected, and by (ii), rUs Cr+s C (rUs)™,
whence r + s is connected. QED

We note in passing that determining the validity of statements such as
those of Lemma 1.4 is actually a decidable problem. See, e.g. Cantone
and Cutello, 1994, Nutt, 1999, Pratt-Hartmann, 2002 and, for a fuller
discussion, Ch. 77.



Figure 1.3. Alexander’s horned sphere

2.2 Mereotopologies

We have argued, provisionally, that, for a subset of R? to count as
a region, it should be regular open. However, it would be hasty to
assume that all regular open subsets of R? should count as regions, at
least if spatial regions are supposed to be parts of space occupied (or
left unoccupied) by physical objects. Consider, for example, the bizarre
region commonly known as Alexander’s horned sphere and depicted in
Fig. 1.3. (The reader is referred to Alexander, 1924a for details of the
construction.) The interior of Alexander’s horned sphere is certainly
regular open, yet it is a poor candidate to represent the space occupied
by a physical object. In fact, this region is a “ball” is so twisted in space
that its complement in RO(R?) is not simply connected! Nor are such
pathological objects to be found only in three-dimensional space, as we
shall see below. And such examples suggest that we should at least be
open to the possibility of region-based models of space in which only
some regular open subsets of R® qualify as regions. This immediately
presents us with the question: if not all subsets of R® qualify as bona
fide regions, which do? As we shall see, the answers available and the
issues which hinge on them require detailed analysis.

In view of these uncertainties, we adopt a very general notion of a
region-based model of space—just sufficiently constrained that we can
sensibly confine attention to the structure of regions in question without
worrying about the points of which they are composed. In the context
of point-set topology, a topological space is commonly said to be semi-
reqular if it has a basis of regular open sets, and locally connected if it
has a basis of connected sets. It easy to see that, in a locally connected
space, every component of an open set is open. Recall also, in the context
of Boolean algebras, that, if B is a Boolean algebra and B’ a Boolean
subalgebra of B, then B’ is said to be dense (in B) if, for every b € B
with 0 < b, there exists b’ € B’ with 0 < b’ < b.
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DEFINITION 1.5 Let X be a topological space. A mereotopology over X
is a Boolean sub-algebra M of RO(X) such that, if o is an open subset
of X and p € o, there exists r € M such that p € v C o. We refer to
the elements of M as regions. If M is a mereotopology such that any
component of a region in M s also a region in M, then we say that M
respects components.

Note that a mereotopology over X is always a dense subalgebra of
RO(X). Our first task is to check that RO(X) is a mereotopology,
for a suitable class of topological spaces.

LEMMA 1.6 Let X be a semi-regular space. Then RO(X) is a mereo-
topology over R™; if X is also locally connected, then RO(X) respects
components.

Proof The first part of the lemma is instant from the relevant defini-

tions. For the second part, let » € RO(X), and let s be a component of

r. Since X is locally connected, s is open, whence, by Lemma, 1.3, (s~ )°

is regular open with s C (s7)? C s~. Then, s~ is a connected subset of
. . _0 .

r including s, whence s™ = s by the maximality of s. QED

Some etymological explanation is in order here. The term mereology
was first introduced by Les$niewski,, and denotes the logic of the part-
whole relationship. (For a survey, see, e.g. Simons, 1987.) The term
mereotopology is a much more recent coinage, and standardly denotes the
study of topological relationships in which regions, rather than points,
are the primitive objects. (It is unclear where the word first appeared in
print.) The employment of the word as a count-noun in Definition 1.5,
to denote a certain class of mathematical structures, is new here, and
prompted by analogy with the parallel usage of the word topology.

The foregoing discussion suggests that our search for a region-based
model of space should begin with an examination of mereotopologies over
R3. This approach may at first seem dissatisfying, because it depends
for its formulation on the very point-based model of space we are trying
to escape. As we shall see, however, it is the structure of the resulting
collection of regions that will interest us—and the characterization of
that structure in purely intrinsic terms form one of the main themes of
this chapter. But before we can seek such intrinsic characterizations, we
must first clarify what it is we want to characterize.

2.3 Geometric mereotopologies

The question before us is to identify the regular open subsets of R?
which we are prepared to count as ‘sensible’ regions of space. Here is a



8

standard answer from the mathematical literature. Let L' be the first-
order language with the arithmetic signature (<,+,-,0, 1), interpreted
over R in the usual way. (This interpretation is of course completely
separate from our use of the same symbols to denote Boolean operations
on regular open sets!) For the purposes of this chapter, we may say that
a set u C R™ is semi-algebraic if there exists an L'-formula ¢(Z,7) in
n + m variables Z, j and an m-tuple of real numbers b such that

u = {a € R"| the (n + m)-tuple @, b satisfies the formula ¢(Z,7)}.

For a detailed discussion of semi-algebraic sets, see, e.g. van den Dries,
1998, Bochnak et al., 1998 and also Ch. ??. (The more standard defini-
tion of semi-algebraic sets is equivalent to ours, and makes the name less
puzzling.) For mereotopological purposes, we are exclusively interested
in those semi-algebraic subsets of R” which are regular open.

DEFINITION 1.7 For n > 0, we denote the set of reqular open, semi-
algebraic sets in R by ROS(R™).

LEMMA 1.8 Forn > 0, ROS(R") is a mereotopology over R".

Proof We first show that ROS(R™) is a Boolean subalgebra of RO(R™).
Evidently, 0,1 € ROS(R™). Moreover, if a set u is definable by a first-
order formula in the language of arithmetic, then so are its closure v~
and its interior u°. Hence, if r,s € ROS(R"), then so are 7 - s = r N s,
r4+s=(rUs) " and —r = R" \ 7. We must establish that, for p € o
with o C R" open, there exists » € ROS(R") such that p € r C 0. But
this is obvious since any open ball is an element of ROS(R™). QED

The structure of regular open semi-algebraic subsets of R? might have a
better claim to count as a region-based model of space than the whole
of RO(R?), because it does a good job of ruling out pathological regu-
lar open sets. For example, the horned sphere of Fig. 1.3 is not semi-
algebraic.

More generally, semi-algebraic sets count as well-behaved. One of
their fundamental properties is that they admit of ‘cell decompositions’.
If d > 0, d-cell in R"™ is any semi-algebraic subset of R"” homeomorphic
to the open d-dimensional ball; a 0-cell in R" is a singleton; and a cell
is a d-cell for some d (0 < d < n). The following result is standard (
van den Dries, 1998, Ch. 3, Theorem 2.11).

PROPOSITION 1.9 (CELL DECOMPOSITION THEOREM) If u is a semi-
algebraic subset of R, then wu is the union of a finite collection of pair-
wise disjoint, semi-algebraic cells.
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For regular open semi-algebraic sets, this yields:

LEMMA 1.10 Every r € ROS(R™) is the sum of finitely many pairwise
disjoint n-cells in ROS(R™).

Proof By Proposition 1.9, let » = u; U ... U uy, where the u; are

pairwise disjoint, semi-algebraic cells. Since r is regular, r = r— =
(upU...U um)_0 = ufo +...+ u,‘no, by Lemma 1.4 (i). If u; is a d-cell

_0 . . _0
for d < n, then u; ~ = 0; if u; is an n-cell, u; = u;. QED

The following notion will play an important part in the ensuing discus-
sion.

DEFINITION 1.11 A mereotopology M is finitely decomposable if every
region in M is the sum of finitely many connected regions in M.

LEMMA 1.12 ROS(R™) is finitely decomposable.

Proof By Lemma 1.10, since cells are connected. QED

LEmMA 1.13 Every finitely decomposable mereotopology M over a lo-
cally connected space X respects components; moreover, every region in
M is the sum of its components.

Proof Suppose r € M, and s is a component of . By Lemma 1.6,
s € RO(X). Let rq,...,r, be connected elements of M such that r =
71+ ...+ r,. By the maximality of s and Lemma 1.4 (iv), either r; < s
orr;-s=0foralli(l <i<mn). Thus, sis the sum of those r; such
that r; < s. QED

Of course, the converse of Lemma 1.13 is false: although RO(X) respects
components for any locally connected space X, it is easy to see that, for
example, RO(R™) is not finitely decomposable for any n > 0.

The mereotopology ROS(R™) is thus at least a plausible region-based
model of the space we inhabit. But it is not the only candidate for this
job. Observe that any (n — 1)-dimensional hyperplane of R” cuts R"
into two residual domains, which we shall call half-spaces. It is easy to
see that these half-spaces are regular open, with each being the pseudo-
complement of the other. Hence, we can speak about the sums, products
and complements of half-spaces in RO(R").

DEFINITION 1.14 A basic polytope in R™ is the product, in RO(R"™), of
finitely many half-spaces. A polytope in R™ is the sum, in RO(R"), of
any finite set of basic polytopes. We denote the set of polytopes in R"
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Figure 1.4. Three (differently shaded) regions in the mereotopology ROP(RR?).

by ROP(R"); we call the polytopes in ROP(R?) polygons and those in
ROP(R3) polyhedra.

Thus, polytopes (in our sense) may be unbounded, disconnected, and
may have disconnected complements. Fig. 1.4 shows a selection of poly-
gons. (In alternative parlance, the elements of ROP(R"™) are the regular
open semi-linear sets.) Evidently, the polyhedra constitute a more par-
simonious region-based model of space than does ROS(R?).

Indeed, the following construction gives us a more parsimonious spa-
tial ontology still. If an (n — 1)-dimensional hyperplane in R" is defined
by an equation ag + @121 + - - apxy, = 0, where the a; (0 < i < n), are
rational numbers, we call it a rational hyperplane; and if a half-space is
bounded by a rational hyperplane, we call it a rational half-space. Now
we define:

DEFINITION 1.15 A basic rational polytope in R" is the product, in
RO(R™), of finitely many rational half-spaces. A rational polytope in
R™ is the sum, in RO(R™), of any finite set of basic rational polytopes.
We denote the set of rational polytopes in R" by ROQ(R™); we call the
elements of ROQ(R?) rational polygons and those of ROQ(R?) rational
polyhedra.

Evidently, ROQ(R") C ROP(R*) C ROS(R*) C RO(R"). Note that
ROQ(R™) is countable.

LEMMA 1.16 The collections ROP(R™) and ROQ(R™) are finitely de-
composable mereotopologies over R™,
Proof Basic polytopes are convex, and hence connected. QED

As models of the space we inhabit, ROP(R?) and ROQ(RR?) may seem
overly austere—for they contain no regions with curved boundaries.
However, their study turns out to be instructive, as we shall see below.

2.4 Interpretations

So far, we have discussed various ways of selecting a collection of
‘regions’ from among the subsets of R". But this selection process only
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really becomes interesting when we consider formal languages whose
variables range over these collections, and whose non-logical constants
belong to a limited repertoire of spatial primitives.

We assume familiarity with basic first-order logic: for details, see
Hodges, 1993, Ch 1. In this context, we employ the following stan-
dard notation and terminology. Let X be a signature counsisting of
(zero or more) predicates, function-symbols and individual constants;
we denote the first-order language with signature ¥ by Ly. An Ly-
formula with no free variables is called an Lyx-sentence. Let 2 be a
structure interpreting the symbols in 3 over some domain A (assumed
non-empty). For any Ly-formula ¢(z), with n > 0 free-variables z and
any n-tuple a from A, we write 2 |= ¢[a] if a satisfies ¢(z) in 2; sim-
ilarly, for any Ly-sentence ¢, we write A = ¢ if ¢ is true in A. We
call {¢) | 9 an Ly-sentence and U |= v} the Ly-theory of 2, denoted
Thy(A). Two structures 20 and B are elementarily equivalent (for ),
written 2 =y, B, if Thy(A) = The(B). We write f : A ~x, B if f is
a X-structure isomorphism from 2 onto B (and A ~y %B if such an f
exists). It is a simple result that if f : A ~y B and ¢(Z) is an Ly-
sentence, then 2 = ¢[a] implies B = ¢[f(a)] for every tuple a from A;
in particular, 2 ~x B implies A =5 B. We write A Cy B, if A is a
submodel of B (i.e. A C B and 2 is the restriction of B to A), and
A <y B if A is an elementary submodel of B (i.e. A C B and and every
tuple @ of A satisfies the same Ly-formulas in both 2 and 9B). We say
that 2 is elementarily embeddable in B if 2 is isomorphic to an elemen-
tary submodel of 9%B. Trivially, 2 <y B implies 2 =y, ®B. Reference to
the signature X, and the associated subscripts, is suppressed when clear
from context.

Let M be a mereotopology over some topological space X. If ¥ is a
signature whose symbols conventionally denote familiar mereological or
topological concepts, then M can always be regarded as a X-structure
by interpreting the symbols of 3 in the familiar way. In particular, we
take the symbols 0, 1, 4+, -, — and < to have the obvious (Boolean
algebra) interpretations over M; similarly, we take the unary predicate
¢ to denote the property of being connected, and the binary predicate
C to denote the relation which holds between two regions if and only if
their topological closures intersect. Table 1.1 gives a formal summary.
Under these interpretations, we may regard any mereotopology M as an
interpretation for the signature ¥ = (0,1,4+, -, —, <, ¢, C), or any subset
thereof. That is: any Ly-sentence has a truth-value in M, and any Lx-
formula ¢(z) with n > 0 free-variables defines an n-ary relation over
M, namely, the set of n-tuples from M satisfying ¢(z). We remark
that our interpretation of C is intended as a rational reconstruction of
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Symbol | Type Interpretation

0 individual constant | 0™ =

1 individual constant | 1 = X

+ binary function +M(r,5) = ((rus)”)°

- binary function M s)y=rNs

— unary function ME)y=X\r"

< binary predicate <M={(r,s) € M?|r C s}

¢ unary predicate M = {r € M | r connected}

c binary predicate CM ={(r,s) e M?* |r~ Ns~ #0}

Table 1.1. Interpretations of common mereotopological primitives, where M is a
mereotopology over a topological space X.

the relation which Whitehead, 1929 called “extensive connection”, and
which has historically played a prominent role in region-based theories
of space. Since Whitehead’s term risks confusion with the standard
topological notion of connectedness, we follow more recent usage and
read C'(x,y) as “x contacts y”.

Some examples will help to clarify the issues that arise concerning
first-order languages interpreted over mereotopologies.

EXAMPLE 1.17 Let ¥ = (C, ¢, <), and let 1y be the Ly-sentence
VaVy(Cl(z,y) — 3z(c(z) ANz <y A C(x, 2))).

This sentence ‘says’ that, if a region contacts another region, then it
contacts some connected part of it. Let M be any finitely decompos-
able mereotopology; then M = iy ¢. For suppose M = C|r,s], and let
S1y---y8m, be connected regions of M summing to s. By Lemma 1.4 (iii),
sT =8, U---Us,,, whence M {= C[r,s;] for some i. On the other hand,
it is not difficult to see that RO(R?) [ e Fig. 1.5 shows two regular
open regions r,s in the plane, where r has infinitely many components,
and s touches the closure of r but is separated from each of its compo-
nents.

Example 1.5 shows, in particular, that the differences between the
region-based models of space RO(R?) and ROS(R?) are ‘visible’ to cer-
tain first-order languages with signatures of topological primitives. In
fact, the existence of regions with infinitely many components is not
the only difference between these mereotopologies, as the next example
shows.

EXAMPLE 1.18 Let ¥ = (¢,+), and let sym be the Ly-sentence

Vo VaoVes(c(zr)Ac(ze) Ae(zs) Ae(x +xotx3) — (c(z1+22)Ve(zi+23))).
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Figure 1.5. Two elements in RO(RR?), one with infinitely many components.

3
1

T2

Figure 1.6. Three elements in RO(R?).

This sentence ‘says’ that if three connected regions have a connected sum,
then the first must form a connected sum with one of the other two. We
show in Lemma 1.56 below that, if M is any of ROS(R?), ROP(R?) or
ROQ(R?), then M |= tsum. However, it turns out that RO(R?) & thsum-
For let

rio= {l&yl-1<z<0; -1-z<y<l+z}
rg = {(z,9)0<z<1; —1-2z<y<sin(l/z)}
rs = {(z,y)[0 <z <1;sin(l/z)<y<l+z},

as depicted in Fig. 1.6. It is easy to check that ry + 1o + 13 s the large
triangle, and so is certainly connected, but that neither r1+ro norri+r;
s connected.

We shall see in Section 5 that, in some sense, Examples 1.17 and 1.18
represent the only differences between RO(R?) and ROS(R?).
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Figure 1.7. The (complements of) two connected elements r and s in the regular
open algebra of a torus: r - s is not connected, and (—r)” N (—s)” = 0.

Our final example illustrates a rather different set of issues concerning
first-order mereotopological theories. We require the following fact about
the topology of Euclidean spaces (Newman, 1964,p. 137).

PropPoOSITION 1.19 If dy and ds are non-intersecting closed sets in R",
and points p and q are connected in R" \ dy and also in R" \ dy, then p
and q are connected in R" \ (d; U dy).

ExXAMPLE 1.20 Let ¥ = (C,¢,-,—), and let }sep be the Ly -sentence
Vavy(c(z) Acly) — (c(z-y) vV C(-z, —y))).

This sentence ‘says’ that the closures of the complements of any two
connected regions whose product is not connected intersect. Suppose that
r,s € RO(R™) are connected, with r-s not connected. Putting d; = R"\r
and do = R™\s, we have dyUds = R™\(r-s), whence, by Proposition 1.19,
(=r)" N (=s)= # 0. Thus, if M is a mereotopology over any of the
spaces R", M |= tsep. However, 1)se, is not true for all mereotopologies.
For example, let X be the surface of a torus, let M be RO(X), and let
r,s € M be such that —r and —s are as illustrated in Fig. 1.7. By
inspection, r and s are connected, r-s is not connected, and —r does not
contact —s. Hence, M |= —1sep.

Thus the regular open algebra of the torus and the Euclidean plane
have different first-order mereotopological theories over the signature
{C,c,-,—}.

There is nothing privileged about the above collection of primitives:
in principle, we could employ any signature whose symbols can be given
fixed interpretations over the structures we choose to confine our at-
tention to. Since this chapter deals with fopological notions, we con-
sider only signatures with fixed topological interpretations—that is, sig-
natures whose interpretations are preserved by homeomorphisms of the
underlying topological space. For brevity, we speak of a ‘signature of
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topological primitives’. For investigations of region-based theories with
non-topological signatures, see, e.g. Davis et al., 1999,Pratt, 1999.

Given a mereotopology M and a signature X of topological primitives,
three salient issues present themselves. The first concerns the ezpressive
power of a first-order topological language Ly, over a mereotopology M.
Any Ly-formula ¢(z) with free variables = z1, ...z, defines an n-ary
relation over M—mnamely, the set of n-tuples 7 satisfying ¢(z) in M.
And it is therefore natural to ask which relations can be so defined, and
in particular, which primitives can be defined in terms of which others.
Of particular interest in this regard is the property of being topologi-
cally indistinguishable from a specific object or tuple of objects. That is,
given a tuple 7 from M, we would particularly like to know whether Ly,
is expressive enough to give a topologically complete characterization
of . The answers to these questions depends heavily on the mereo-
topology M: Sections 3 and 4 analyse the expressive power of various
first-order topological languages for well-behaved mereotopologies over
the Euclidean plane. Section 6 analyses the much more difficult case of
well-behaved mereotopologies over R3.

The second salient issue concerns the Ly-theory of M. Examples 1.17
and 1.18 show that restricting regions to be semi-algebraic (regular open)
sets does affect the resulting first-order theory over some signatures of
topological primitives. And the question therefore arises as to what
other restrictions might be sensible, and what effect, if any, these restric-
tions have on the resulting first-order mereotopological theories. Most
ambitiously, perhaps, we might ask whether the set of first-order sen-
tences in various mereotopologies can be axiomatically characterized.
Section 5 provides an example of such an axiomatic characterization.
As a by-product of this analysis, we show that a wide range of plane
mereotopologies share the same Ly-theory for (most) topological signa-
tures I, and we venture to take that theory as the standard first-order
Ly-theory of plane mereotopology. In this sense, the choice of what,
exactly, counts as a region is much less critical than we might at first
have supposed.

The third salient issue concerns the ontological commitments entailed
by first-order mereotopological theories. To understand this issue, recall
that a mereotopology M is a collection of subsets of some topological
space, which we have chosen to regard as a X-structure, for some sig-
nature X of topological primitives. Any such mereotopology M thus
defines an Ly-theory Thy(M). But of course, any ¥ structure 2 with
Thy(A) = Thy (M) can be thought of as a (region-based) model of space
which, from the point of view of Ly, makes exactly the same predictions
as M. It is therefore natural to ask which structures these are, and what,
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if anything, we can say about their relationship to M. Notice that the
elements of such Y-structures need not be regions of topological spaces
at all; as such they are genuinely region-based theories of space. In
particular, we may ask whether mereotopologies in general admit of in-
trinsic characterizations making no reference to the topological spaces
whose regions they make up. And we may further ask—particularly in
the light of Example 1.20—what information those intrinsic characteri-
zations yield about the topological spaces in question. Section 7 answers
these, and related, questions.

The above three issues constitute the primary agenda of mereotopol-
ogy, as conceived here.

3. Defining topological relations

Our task in this section is to compare the relative expressiveness of
first-order languages having different signatures of topological primitives.
Our main result is that Lc is at least as expressive as L. < over all
sensible mereotopologies. We also show that over some mereotopologies
of interest, L. < is also at least as expressive as L.

We assume familiarity with the standard (T;-) separation properties
of topological spaces. Terminology varies here: we adopt the conven-
tion according to which Tj-separation for ¢ > 2 does not by definition
imply Ti-separation; and we say that a space X is Hausdorff if it satis-
fies To-separation, reqular if it satisfies both T3- and T;-separation, and
normal if it satisfies both T4- and Ty-separation.) In addition, we occa-
sionally employ the following less familiar separation property (Diintsch
and Winter, 2005).

DEFINITION 1.21 A topological space is weakly regular if it is semi-
reqular and, for any non-empty open set w, there exists a non-empty
open set v with v~ C u.

We have
X is normal = X is regular = X is weakly regular = X is semi-regular.
The reverse implications all fail (see Diintsch and Winter, 2005regarding
weak regularity, and Steen and Seebach, 1995 for the other cases).
3.1 Contact
We begin by defining the part-of relation in L.

LEMMA 1.22 Let M be a mereotopology over a weakly regular space X,
and let r1,r9 € M. Then 1 < ro if and only if M |= ¢<[ri,rs], where
< (x1,22) is the Lo-formula Vz(C(x1,2) — C(xg, 2)).
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Proof Ifr; <rythenr; Cry,,sos” Nr; # 0 implies s~ Nr, # 0 for
any s. Conversely, if r; £ ro, by weak regularity, let 4 be a non-empty,
open set such that u= C 7y - (—r2). Since M is a mereotopology, let
s € M be such that 0 # s Cu. Then s~ Nry # 0, but s~ Nry = 0.
QED

In dealing with mereotopologies over weakly regular spaces, we may
therefore write the expression v < v in Lc-formulas, as a shorthand for
¢<(u,v). It follows that the Boolean constants and functions 0, 1, + ,
-and — are also L¢-definable for mereotopologies over weakly regular
spaces, and we again freely employ these symbols in Lo-formulas as a
shorthand for their definitions.

We now turn to defining the property of connectedness in Lo. We
need some technical lemmas.

LEMMA 1.23 Let M be a mereotopology over a regular topological space
X. Ifd C X is closed and p & d, there exists r € M such that p € r
and d C —r. In fact, there exist r,s € M such that p € r, d C s and
rTNs” =0.

Proof For the first statement, by T'3-separation, let u, v be disjoint open
subsets of X such that p € v and d C v. Since M is a mereotopology,
there exists r € M such that p € r C u, whenced Cvo C X \r~ = —r.
The second statement follows by two applications of the first: choose
s € M such that p € —s and d C s; now choose r € M such that p € r
and s C —r. QED

LEMMA 1.24 Let r,s € RO(X) for some topological space X. If p € r~
and p € s, thenp € (r-s)”.

Proof Let u be any open set containing p. Then uNs is also an open set
containing p, whence (uNs)Nr # ), since p € r~. That is, uN(s-r) # (.
QED

LEMMA 1.25 Let M be a mereotopology over a reqular topological space.
For all ri,ro € M, r7 Nry N (r1 +r2) # 0 if and only if there exist
ri,ry € M such that ) < ri, vy <ro, v} Nrh #0 and (r} +7r5) " N
(=(r1+m2))” =0.

Proof The if-direction is immediate. For the only-if-direction, suppose
p €y Nry N(r1+72). By Lemma 1.23, let s € M be such that p € s and
(—(r14+1r2))” € —s; and let ] =7y - s and 75, = r9 - s. By Lemma 1.24,
p € ri” Nrh”, whence ] and 7}, have the required properties. QED



18

LEMMA 1.26 Let M be a mereotopology which respects components. Then
r € M is connected if and only if r{ Nry N1 # O for all nonempty, dis-
joint ri,r9 € M such that ri +ro = 1.

Proof Suppose r; and ro are non-empty, disjoint elements of M such
that r + 79 = r and r{ Nry; Nr = (. By Lemma 1.4 (ii), r = r; Urg, so
that r is not connected. Conversely, suppose r is not connected. Let rq
be a component of  and let 7o = r \ r1. Since M respects components,
r1 € M. Sincer; C riU(ry Nre) C ry, mU(r; Nrg) is connected, whence
ry Nre = by maximality of components. Thus, ro =7\ r; =r-(—ry).
Moreover, since r; is open and r;Nry = (), we have ryNr, = (. Therefore
0=r; Nry N(ryUrg) =7 Nry N7 as required. QED

LEMMA 1.27 Let M be a mereotopology over a regular topological space
X such that M respects components, and let r € M. Then r is connected
if and only if M |= ¢.[r], where ¢.(z) is the Lc-formula

Ve Vao(zy > 0Aze >0Az -2 =0Ax) +29 =2 —
Iz 3Axh (2] <z Ay < @0 A C(2h, 2h) A =C(x) + 24, —x))).

Proof Lemmas 1.25 and 1.26. QED

Together, Lemmas 1.22 and 1.27 guarantee that, for all mereotopologies
over regular topological spaces which respect components, the language
L¢ is at least as expressive as L. <. We take it that all mereotopologies
of interest fulfil these conditions: that is, the above reconstructions of
the part-whole relation and the property of connectedness in L¢ are very
robust.

We present a further—and more surprising—demonstration of the ex-
pressive power of Lo in mereotopologies defined over R?. We require
the following fact about the topology of Euclidean spaces (Newman,
1964,p. 112, c.f. Proposition 1.19).

PROPOSITION 1.28 Let di and do be closed sets in R?, at least one of
which is bounded. If R? \ dy, R? \ dy and di Ndy are all connected, then
s0 is R2 \ (dy U dy).

LEMMA 1.29 Let s1,52,t € RO(R?) such that: (i) either s is bounded
or sy is bounded; (i1) —(s1 +t), —(s2 +1t) and t are all connected; and
(iti) s; Nsg =0. Then —(s1 + so +t) is also connected.

Proof Set d; = (s; +t)~ (for 4 = 1,2). Thus, the complement of d; is
—(s; +1) (for i =1,2), and the complement of d; Udz is —(s1 + s2 +1).
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Figure 1.8. Expressing boundedness in L¢: s; and s» are unbounded to the right

Moreover, since ¢ is connected, so is t~, whence dy Nds = (s1 +t)~ N
(sg4+1t)" = (s Ut7)N(sy3 Ut") = (s] Nsy)Ut =1 is connected.
The result follows by Proposition 1.28. QED

Let ¢, be as defined in Lemma 1.27, and let ¢up(y1, y2) be the Leo-formula

Fz2(Pe(—(y1 + 2)) A pe(—(y2 + 2)) A pe(2) A =¢e(—(y1 + y2 + 2))).

LEMMA 1.30 Let M be a mereotopology over R? such that M respects
components and every unbounded element in M includes regions si, So
and t situated as in Fig. 1.8. Then for all r € M, r is bounded if and
only if M = ¢y2[r], where ¢p2(x) is the Lo-formula:

VyiVye(y1 <z Ay2 <o A dun(yr, y2) — Cy1, y2))-

(The superscript 2 in ¢y refers to the fact that this formula works for
mereotopologies over R?, and not, for example R3.)
Proof 1If r does not satisfy ¢y2(z) then, by Lemma 1.29, r contains two

unbounded regions, so is certainly itself unbounded. Conversely, if r is
unbounded, let s1, so,t € M be subsets of r situated as in Fig. 1.8. Thus,
s1 <r,s9 <rands Ns; = (, but at the same time, s1, so satisfies
dub(y1,y2), with t a witness for the existentially quantified z. Hence r
does not satisfy ¢pz(z). QED

It is simple to verify that the mereotopologies RO(R?), ROS(RR?),
ROP(R?) and ROQ(R?) satisfy the conditions of Lemma 1.30. Hence,
the property of boundedness is Lo-definable in all these mereotopolo-
gies. Nevertheless, Lemma 1.30, unlike Lemmas 1.22 and 1.27, has a
fragile character, in that it depends on a very specific feature of the
topological space R?; in particular, it fails to define boundedness for the
corresponding mereotopologies over R3. We will see in Section 6 that
boundedness is also L¢-definable in well-behaved mereotopologies over
R3, but we have to go to much more trouble.
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3.2 Reconstruction of points

In mereotopologies, the primitive objects—that is, the entities over
which variables range—are regions, rather than points; but it is of-
ten simple to ‘construct’ points from regions, and ‘simulate’ statements
about points using statements about regions. One way to construct the
point p is as a pair of regions whose closures intersect in the singleton
{p}, as we now proceed to show. (There are also more sophisticated
ways, described in Section 7.1.)

LEMMA 1.31 Let M be a mereotopology over a reqular topological space,
and let r,s € M. Then r~Ns~ is a singleton if and only if M |= ¢u[r, 5],
where ¢uq(z1,x2) is the formula

C(.Tl,.’lig)/\
VyiVye(y1 < o1 Aya < w2 AC(y1, 22) A Cly2, 1) = C(y1,92))-

Furthermore, if r~ Ns~ = {p} and t € M, then p € t if and only if
M = ¢cr, s, t], where ¢e(xy1,z2,23) is the formula

1 (yr < w1 AC(y1,m2) A =C(y1, —13));

likewise, p € t~ if and only if M = ¢z[r, s, t], where ¢z (z1,x2,x3) is the
formula
Vyi(y1 < z1 AC(y1,22) = C(y1,23)).

Proof Routine by Lemmas 1.23 and 1.24. QED

If M is a mereotopology over a topological space X, let us say that M
is complete if every point in X is the singleton intersection of some pair
regions in M. For example, the mereotopologies ROP(R™), ROS(R") ev-
idently possess this property; by contrast, ROQ(R™) does not. We might
say that, in a complete mereotopology, points can be ‘simulated’ by pairs
of regions satisfying the formula ¢pq. If M is a complete mereotopology
over a regular space, Lemma 1.31 gives us the right to include expressions
such as, for example, 1Nz5 # 0 or F(z1)NF(x2) C F(x3)NF(z4) etc. in
Lc-formulas with the obvious interpretation, since such expressions can
evidently be replaced by bona fide Lo-formulas with the appropriate
extension over M.

The following lemma illustrates how easily we can express various
topological relations in L¢:

LEMMA 1.32 Let r,s € ROP(R™). Then r~ Ns~ is connected if and
only if ROP(R™) = ¢¢i[r, s], where ¢ci(z,y) is the formula

Vza(z7 Ny~ Nz£0Az "Ny N—z#0Az" Ny~ CzU —2).
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Proof The only-if direction is immediate. So suppose r~MNs~ is not con-
nected; we must find a witness for z to show that ROP(R") = —¢i[r, s].
But, by construction of ROP(R™), both »~ and s~ are expressible as
finite unions of closed, convex sets; and so, therefore, is r~ N s~. Since
this latter set is not connected, it can be written as d U e, such that
dNe = () and d and e are both finite unions of non-empty, closed, convex
sets—say, d = dy U--- ,Ud;, e = e U -+ Uey,. Given that any pair
of disjoint, closed, convex sets in R” can be separated by a hyperplane,
we have half-spaces h; j such that d; C h;; and e; C —h;; for all 7, j
(1<i<l,1<j<m). Then the required witness is

t=>" [ b

1<i<l1<j<m

QED

3.3 Compactifications

Before discussing the expressive power of L. <, we introduce some
additional technical material that will be useful throughout this chapter.
Recall that a topological space is said to be locally compact if every point
has a compact neighbourhood. This property ‘transfers’, for Hausdorff
spaces, to mereotopologies defined over them:

LEMMA 1.33 Let M be a mereotopology over a locally compact, Haus-
dorff space X, and let p € X. Then p is contained within some r € M
such that v~ is compact.

Proof Let p € X. Assuming X is locally compact, let d C X be
compact and o C d be open such that p € o. Now let » € M such that
p €r CoCd. But a closed subset of a compact set is always compact,
and, in a Hausdorff space, every compact set is closed. Therefore r— C
d~ = d is compact, as required. QED

Let X be a topological space, and let 7 denote the collection of open
sets of X. Now set X = X U {oo}, where oo is some object not in X.
For o € 7, denote by o the set

B {0 U {oo} if X \ o0 is compact;

o otherwise,

and denote by 7 the set 7 U {6 | 0 € 7}. Then we can take X to be a
topological space whose collection of open sets is 7. Under this topology
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(which we always assume), we call X the one-point (or Alezandroff)
compactification of X. The object oo is called the point at infinity. The
space X is always compact. If X is locally compact and Hausdorff, then
X is also Hausdorff, and hence normal.

NOTATION 1.34 In this chapter, we denote spheres, open balls and closed
balls in Euclidean spaces as follows

S" = {(a1,...,an41) ER" @i+ +a2, =1}
B" = {(a1,...,a,) ER" |al+ - +a? <1}
D" = {(a1,...,ap) ER" | a? +--- +a% < 1};

and we assume the usual topology on these sets.

(Recall that, by a d-cell, we mean any set homeomorphic to the open
d-dimensional ball B¢.) In the special cases X = R", it is well-known
that X is homeomorphic to S™ via the mapping:

00— (0,...,0,1)

(a1,...ay) — (a},... a;lH),
where

a = 4a;/(at + - + a2 +4) for1<i<n
Gnir = (01 - Fay = 4)/(a] + -+ ap +4).

This mapping may be regarded as a stereographic projection by embed-
ding R” in the hyperplane of R**! defined in Cartesian geometry by the
equation z,4; = —1. This projection is depicted for the case n = 2 in
Fig. 1.9. By way of allusion to this homeomorphism:

NOTATION 1.35 Let S™ denote the 1-point compactification of R".

LEMMA 1.36 Let X be a non-compact topological space. Then the map-
ping r — 7 is a Boolean algebra isomorphism from RO(X) to RO(X).

Proof The function o — ¢ is monotone, because a closed subset of
a compact set is compact. Let o1 and oo be open subsets of X, with
0=o01 N0y Since X \ o= (X \o1)U (X \ 02) is compact if and only if
both (X \ 01) and (X \ 02) are compact, we have oo € ¢ if and only if
00 € 01 N o9, whence 0 = 01 N 0o.
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(0,0,1)

Figure 1.9. Stereographic projection of S? onto the 1-point compactification of R?.

If u is open in X, let u* denote the pseudo-complement of v in X, and
let (%)* denote the pseudo-complement of 4 in X. We claim that, for
any open set u of X, with v = v*, (u)* = ©. By definition, ¢ is open in
X, and we have just shown that @ N9 = () = (). Moreover, if w is any
open set in X disjoint from 4, then for some open subset w' of X, we
have either w = w' or w = w'. Either way u N w' = ), whence w' C v
and w' C v by monotonicity. Hence v is the largest open subset of X
disjoint from 4, i.e. (4)* = 0.

Note that if € RO(X), we have r = r** and —r = r*. Hence 7** =7,
so that » € RO(X). Conversely, if v’ € RO(X), then ' = 4, for some
open v C X. But then, we have 4 = 4** = &, where x = u**. Since the
function o — 0 is injective, u = «w**. That is, u € RO(X). QED

LEMMA 1.37 Let X be a topological space and o C X open. If o is
connected in X, then o is connected in X . Conversely, suppose X is non-
compact, and for any closed subsets dy and de of X with X = dyUds and
di Ndy compact, either dy is compact or dy is compact. If 0 is connected
in X, then o is connected in X.

Proof Suppose o is open in X. If ¢ is not connected in X, let o1, 09
be non-empty open subsets of X such that 0 = 6; U 02 and 01 N oy = 0.
Then o = 0; Uos and 01 Nog = (), so o is not connected in X. Conversely,
suppose o is not connected in X, so let o1, 03 be nonempty open subsets
of X such that 0 = 01 Uog and 01 Nog = (). If X \ 0 is not compact, then
neither X \ o; nor X \ 02 is compact, so that 0 = 0 = 01 U0y = 61 U 02
and 01 N oy = ), whence 0 is not connected. If, on the other hand, X \ o
is compact, by the condition of the lemma, either X \ o1 or X \ oy is
compact, whence 0 = oU {oo} = 01 U oy U {00} = 61 U o2. Moreover,
by repeating the first paragraph of the proof of Lemma 1.36, we have
01 Nog =0 = 0. It follows that ¢ is not connected. QED
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The well-known Heine-Borel theorem states that, in R”, a set is compact
if and only if it is closed and bounded. It is therefore easy to see that
R" satisfies the condition of Lemma 1.37.

LEMMA 1.38 Letn > 0 and let M be any mereotopology over R". Then
the mapping v+ 71 defines a structure isomorphism from M to M for
the signature (c, <): that is, M ~.< M.

Proof Lemmas 1.36 and 1.37. QED

LEMMA 1.39 Let X be a locally compact, non-compact topological space
and M a mereotopology over X. Define M = {r |r € M}. Then M is
a mereotopology over X. We call M the 1-point compactification of M.
If M is finitely decomposable, then so is M.

Proof Suppose that co € o with o open in X; we show that there
exists some r € M such that co € r C 0. Since M is a mereotopology
over X and X is locally compact, Lemma 1.33 gives us a cover of X \ o
by elements of M whose closures are compact. Since co € 0, X \ 0 is
compact, so that this cover has a finite sub-cover, say ry,...,r,. Let
r=—(ri+---+ry). Thus, X \r =r; U---Ur;, is compact and includes
o, whence r has the required properties. The rest of the Lemma follows
from Lemma 1.37. QED

Suppose now that X = R" for some n > 0, and let M be a mereotop-
ology over R" respecting components. Then X satisfies the condition of
Lemma 1.37, so by Lemma 1.39, M is a mereotopology over R" respect-
ing components. Since S” denotes the 1-point-compactification of R,
the 1-point compactification of RO(R") is thus RO(S™).

NOTATION 1.40 Let ROS(S™) denote the 1-point compactification of
ROS(R™), and similarly for ROP(S™), ROQ(S").

It is often more convenient to work with S? and S3 rather than R? and R3.
When we need to make the distinction explicit, we refer to elements of
ROP(R™) as polytopes (polyhedra, polygons) in open space and those of
ROP(S™) as polytopes (polyhedra, polygons) in closed space. Note that,
by Lemma 1.38, the mereotopologies RO(R™), ROP(R"), ROQ(R™) and
ROS(R") certainly all have the same L. <-theories as their respective
1-point compactifications.

3.4 Connectedness: the closed plane

We have seen that, over most mereotopologies of interest, the language
L¢ is as expressive as the language L. <. The question therefore arises
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as to whether a converse reduction is possible. In this section, we show
that, for well-behaved mereotopologies over S?, the answer is positive.

We assume familiarity with basic geometric topology in the plane: for
details, see Newman, 1964.Recall in this context that a Jordan arc in
a topological space X is a homeomorphism from the unit interval [0, 1]
into X, and a Jordan curve in X, a homeomorphism from the unit circle
S! into X. The Jordan curve, Theorem states that the locus of a Jordan
curve in R? separates R? into two residual domains, exactly one of which
is bounded. If we regard S' as the intersection of the plane z; = 0 with
S2, the Schonflies Theorem states that a Jordan curve v : S' — S? may
be extended to a homeomorphism S? <+ S?. Thus, if v is a Jordan curve
in S?, the residual domains of |y| are 2-cells in S% and if 7 is a Jordan
curve in R?, the bounded residual domain of v is a 2-cell in R?.

The following concepts are important in understanding the good be-
haviour of the mereotopologies ROS(R?), ROP(R?) and ROQ(R?).

DEFINITION 1.41 Let X be a topological space, w C X and p,q € F(u).
An end-cut to p in u is a Jordan arc in X such that f(1) = p and
f([0,1]) C u. Likewise, a cross-cut from p to ¢ in u is a Jordan arc in X
such that f(0) = p, f(1) = q and f(]0,1[) C u. Let M be a mereotopology
over X. We say that M has curve-selection if, for all v € M and all
p € F(r), there exists an end-cut in r to p.

The existence of end-cuts is by no means a universal property of regular
open sets in R" (for n. > 1). However, the regions in ROS(R?), ROP(R?)
and ROQ(R?) are well-behaved in this regard, as the following results
show.

LEMMA 1.42 Let r € ROP(R") and p € r—. Then there exists a linear
function f :[0,1] — R® such that f(1) = p and f([0,1]) C r. If p has

rational coordinates, we may choose f so that it has parameters from Q.

Proof The proposition holds for basic polytopes because their closures
are convex. It holds for all polytopes because if r = ry 4+ -+ 1, ¥~ =
ry U---Ur, by Lemma 1.4 (iii). QED

The semi-algebraic case is much more involved. However, we have the
following Theorem (van den Dries, 1998, Ch. 6, Corollary 1.5; Bochnak
et al., 1998 Theorem 2.5.5).

PROPOSITION 1.43 (CURVE-SELECTION LEMMA) Let S be a semi-

algebraic subset of R" and p € S—. Then there exists a continuous semi-
algebraic function f :[0,1] — R" such that f(1) = p and f([0,1]) C S.
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Thus, the mereotopologies ROS(R?), ROP(R?) and ROQ(RR?) all cer-
tainly have curve-selection. Moreover, by making only minor modifica-
tions to the relevant arguments, it can be shown that ROS(S?), ROP(S?)
and ROQ(S?) all have curve-selection too.

With these preliminaries behind us, we can turn to the expressive
power of L. <. We note in passing that, since < is a primitive of L. <,
we may write the Boolean operators and constants +, -, —, 0 and 1 in
L. <-formulas, assuming them to be replaced by their usual definitions.
In mereotopologies over the closed plane having curve-selection, we can
express the property of being a 2-cell using an L. <-formula. To see this,
we recall that the Jordan Curve Theorem has the following converse
(see Newman, 1964Chapter VI, Theorem 16.1).

PROPOSITION 1.44 (CONVERSE OF JORDAN’S THEOREM) Let d be a
closed subset of S? such that S?\ d has two components, and suppose
that, for each p € d, and each component o of S?\ d, there is an end-cut
to p in 0. Then d is the locus of a Jordan curve.

Then we have:

LEMMA 1.45 Let M be any mereotopology over S? having curve-selection.
Then, for all r € M, r is a 2-cell if and only if r is non-zero and
connected with non-zero connected complement—that is, if and only if
M = 3[r], where 1p3(x) is the L. <-formula

c(xy Ne>0ANc(—z) AN —z > 0.

Proof If M = 43[r], then d = F(r) satisfies the conditions of Proposi-
tion 1.44, since M has curve-selection. The other direction is immediate.
QED

Furthermore:

LEMMA 1.46 Let M be a mereotopology over R? having curve-selection
and also satisfying the conditions of Lemma 1.30. Then r € M 1is a
2-cell if and only if r satisfies the Lo-formula

de(x) N > 0N pe(—2) A —x > 0 A ¢p2(x),

where ¢c(x) and ¢y2(x) are as defined in Lemmas 1.27 and 1.30, respec-
tively.

Proof 1f r satisfies the formula, then the bounded set F(r) is the locus
of a Jordan curve in S? and hence in R? by the same reasoning as for
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Lemma 1.45, and since r is the bounded residual domain of this set, it
is a 2-cell. The other direction is again immediate. QED

We now proceed to a direct comparison between L. < and L¢. Proposi-
tion 1.28 has a closed-plane variant, in which the condition that one of
di and ds is bounded may be dropped.

PROPOSITION 1.47 Let dy and dy be closed sets in S, If S?\ dy, S?\ dy
and dy N dy are all connected, then so is S\ (dy U dy).

This leads to a closed-plane variant of Lemma 1.29:

LEMMA 1.48 Let s1,s9,t € RO(S?) such that: (i) —(s1 +1t), —(s2 + 1)
and t are all connected; and (ii) s; Nsy = 0. Then —(s; + s2 +t) is
also connected.

Proof As for Lemma 1.29, using Proposition 1.47 in place of Proposi-
tion 1.28. QED

LEMMA 1.49 Let M be any finitely decomposable mereotopology over S?
having curve-selection, let ¢y (y1,y2) be the L. <-formula

Fz(e(=(y1 + 2)) Ae(=(y2 + 2)) Acz) A=e(=(y1 + 42 + 2))),

and let c(x1,w2) be the Le <-formula

Jy13y2(y1 < 21 Ay2 < 22 Athub (Y1, 92))-
Then, for all ri,ro € M, r{ Nry # 0 if and only if M |= c[ri,ra].

Proof The if-direction follows from Lemma 1.48. The only-if direction
is left as a (fiddly) exercise. QED

Putting together Lemmas 1.22, 1.27 and 1.49, we see that L. < is ex-
actly as expressive as L¢ in well-behaved mereotopologies over the closed
plane S2.

As a final example of the expressiveness of the language L¢, we ob-
serve that it can distinguish between R? and its 1-point compactification.

THEOREM 1.50 Let M be any of ROS(R?), ROP(R?*) or ROQ(R?).
Then M #¢ M.

Proof Recall the Le-formula ¢z () defined in Lemma 1.30, and ex-
pressing the property of being bounded over M. Evidently,
M W~ Vg (r). But it is an easy consequence of Lemma 1.48 that
M E=Vzpp(x). QED

Theorem 1.50 stands in sharp contrast to the situation with the signature
{¢, <} reported in Lemma 1.38.
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4. Expressiveness of first-order languages in
plane mereotopologies

In the previous section, we examined the relative expressive power
of the languages L¢ and L. < for various mereotopologies, in particular
those defined over R? and S?. This section characterizes that expressive
power in a more ‘absolute’ way. We employ the following terminology:

DEFINITION 1.51 Let X be a topological space and let 4 = uy,. .., Up,
v = vy,...,v, be n-tuples of subsets of X. We say that u and v are
similarly situated (in X), and write u ~x v, if there is a homeomorphism
of X onto itself mapping u to v. If X 1is clear from context, we omit
reference to it, and simply write u ~ v. Now let M be a mereotopology
over X and X a signature of topological primitives. For any Lyx.-formula
¢ with free-variables x, we say that ¢ is topologically complete (in M
over X) if any pair of tuples of the appropriate arity satisfying ¢(z) in
M are similarly situated in X.

Readers familiar with basic geometric topology will recognize that the
mereotopologies ROS(S?), ROP(S?) and ROQ(S?) are all (finitely) ‘tri-
angulable’ (in the sense of van den Dries, 1998).Moreover, the observa-
tions of Section 3.2 strongly suggest that triangulations in these mereotopolo-
gies can be combinatorially described using first-order formulas with
C as their only primitive. And since combinatorially isomorphic tri-
angulations are similarly situated, it should be entirely unsurprising
that every tuple in these mereotopologies satisfies a topologically com-
plete Lc-formula (and hence also a topologically complete L, <-formula).
That is: every tuple of regions in any of the mereotopologies ROS(S?),
ROP(S?) and ROQ(S?) can be completely topologically described by an
Lc-formula (or by an L. <-formula). Results of this general kind were
proved, independently, by Kuijpers et al., 1995,Papadimitriou et al.,
1999and Pratt and Schoop, 2000,by a variety of methods. Our objec-
tive here is a systematic and general investigation of this topic, using an
approach which will prove useful in Sections 5 and 7.

4.1 Connected partitions

We have seen that, given a collection ¥ of topological primitives,
any mereotopology can be regarded as a X-structure by interpreting the
symbols in ¥ in the standard way. And the question then naturally
arises as to whether we can obtain a converse to this observation. That
is: under what conditions is a given Y-structure isomorphic to some
mereotopology—or perhaps, to some mereotopology belonging to a cer-
tain class? Since this question will preoccupy us in the sequel, some of
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the results below will be presented at a higher level of generality than
their immediate applications warrant.

Accordingly, throughout Sections 4.1 and 4.2, 2 shall denote an arbi-
trary structure interpreting the signature {0, 1,4+, -, —, ¢}, such that the
reduct of 2 to the signature {0, 1, +,-, —}, is a Boolean algebra. To avoid
notational clutter, if a,b € A, we write 0, —a, a + b etc., rather than the
more correct 0%, —*(a), +*(a,b) etc. In addition, abusing terminology
slightly, we call an element a € A connected if A = c[a]; and we say
that 20 is finitely decomposable if, for every a € A, there exist connected
elements a1, ..., a, of A such that a = a1 +...+a,. Of course, in case 2
is a mereotopology M, this usage is consistent with that adopted above.
As usual in the context of Boolean algebras, we take a partition in 2 to
be a tuple of non-zero, pairwise disjoint elements summing to 1. If a is
any tuple from 2 (not necessarily a partition), and b a partition in 2,
we say that @ can be refined to b if every element of @ can be written as
the sum of (zero or more) elements of b.

DEFINITION 1.52 A partition a = aq,...,a, in A such that a; is con-
nected for all i (1 <1i < n) is called a connected partition.

Let tcon denote the L. <-sentence
VaVy(c(z) Ae(y) ANz -y #0 = c(z +y)).

Thus, 1oy ‘says’ that the sum of two overlapping connected regions is
connected.

LEMMA 1.53 Let M any mereotopology. Then M = teon.

Proof A restatement of Lemma 1.4 (iv). QED

CLAIM 1.54 Suppose AU is finitely decomposable, and A = eon. Then
every tuple in A can be refined to a connected partition.

Proof Given elements ay,...,a,, collect all the non-zero products
bi,...,bn of the form: +ay - --- - £a,. For each j (1 < j < N),
let bj1,...,bjn; be connected elements of 2 summing to b;. If, for any

two of these elements, say b;; and b;;, we have b - bj; > 0, then we

can replace them by their sum b;; + b;; (which is connected, because

M = teon). Proceeding in this way, we obtain the desired refinement.
QED

Note that, in particular, every tuple in any finitely decomposable mer-
eotopology can be refined to a connected partition.
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Let us restrict attention now to finitely decomposable mereotopologies
over S? having curve-selection.

LEMMA 1.55 Let M be a mereotopology over R?> or S? having curve-
selection. If ri,r9 and r3 are pairwise disjoint, connected elements of
M, then there exist at most two points lying on the frontiers of all three
regions.

Proof We suppose that pi,p2 and p3 are distinct points all lying on
the frontiers of r1,79 and r3 and derive a contradiction. Choose points
41,92, qs such that ¢; € r; (i = 1,2,3). By curve-selection, draw three
end-cuts in r;, say 7; 1, ¥;,2 and ; 3 from g; to p1, p2 and p3, respectively.
It is easy to see that, within each r; (1 < j < 3), the +; ; can be chosen
so that they intersect only at g;. But since the r; are disjoint, each -; ;
intersects any other v ;- only in p; or ¢;. And it is well known that this
is impossible (see the right-hand graph in Fig. 1.11). QED

For n > 2, let 14, denote the L. <-formula

Vxl...vgcn(c(xl—i-----l-xn)/\ /\ c(x;) — \/ c(x1+xi)>.

1<i<n 2<i<n

(The formula ts,m of Example 1.18 is just 3, .) Thus, 4% = ‘says’
that, if n connected regions have a connected sum, the first must form
a connected sum with at least one of the others.

LEMMA 1.56 Let M be a finitely decomposable mereotopology over S?
having curve-selection. Then M =%, for alln > 1.

Proof Let rq,...,r, be connected with r; + --- + r, also connected.
Assume first that the r; are pairwise disjoint. Let p € r1 and ¢ €
r9 + --- + r,. By the connectedness of 1 + --- 4+ r,,, draw a Jordan arc
v from p to ¢ lying within 1 +--- 4+ r,. By Lemma 1.55, only finitely
many points can lie on the frontiers of more than two of the r;, and we
may certainly ensure that v avoids all such points. By renumbering if
necessary, we may assume that + visits a point p € ri Nry N(ri+...4ry).
But by the construction of v, p € r;” for all « > 2, whence p € —r; for all
such i. Therefore, p € r{ Nry N (r; 4+ r2), whence 1 + 72 is connected.
Finally, we relax the assumption that the r; are pairwise disjoint. Since
M is finitely decomposable, we have that each element of 7 is the sum
of zero or more members of a tuple 5 of pairwise disjoint connected
elements with the same sum. The result then follows easily by repeated
applications of Lemma 1.53. QED

In the sequel, we abbreviate the formula

z1+xe=x A2y >0AN22>0AZ-22=0Ac(21)Ac(z2)
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Figure 1.10. The configuration of ¢preak:

by x1 @ x2 = x; thus, x1 & x2 = z ‘says’ that x can be partitioned into
non-empty, disjoint connected regions x; and x2. Now let 9peac denote
the L. <-formula

VxVyNyz((c(x) Ac(yr) Ace(ye) Aclz + yi1)A
c(T+y)Az-y1 =0Az-ys =0Az #0) —
dz1 3z (361 @xe =xAc(xr+y1) Ac(zr+y2) Ae(xa +y1) Ac(ze +y2))>‘

Thus, Ypreakx ‘says’ that, if r;s1, so are connected regions such that r is
non-zero, disjoint from s; and sz, and forms a connected sum with both
s1 and sg, then r can be partitioned into connected, non-zero regions 71,
r9 such that each of r; and ro forms a connected sum with each of s;
and sg. Fig. 1.10a illustrates this configuration; note that —r need not
be connected.

LEMMA 1.57 Let M be a finitely decomposable mereotopology over S?
having curve-selection. Then M = preak-

Proof Let r, s1, so be as above. We may assume that s; and sy are
nonzero, since otherwise, similar or easier arguments apply. Refer to
Fig. 1.10b. For ¢ = 1,2, since r + s; is connected, by Lemma 1.4 (ii),
r~Ns; N(r+s;) # 0. In fact, since the removal of finitely many points
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from the open set r+s; does not disconnect it, we can choose four distinct
points p;, ¢; (¢ = 1,2) such that p;,¢; € v~ Ns; N(r+s;). Since M has
curve-selection and r is connected it is easy to see that, by exchanging
q1 and ¢ if necessary, we can draw cross-cuts v from p; to po and ¢ from
q1 to gz such that |y| and |§| are disjoint. Since S? is normal and M a
mereotopology, we can cover |d| with elements of M whose closures are
disjoint from |y|. By compactness of ||, this cover has a finite subcover,
t1,...,tn, say. Let t =7 (t; + -+ +tn); evidently, ¢g; and go lie on the
frontier of the same component t' of t. Likewise, p; and po lie on the
frontier of the same component of r - —t': call this component r € M,
and let ro = - —ry. It is easy to check that 1 and r have the required

properties. QED

4.2 Neighbourhood graphs

As before, 20 shall denote an arbitrary structure interpreting the sig-
nature {0,1,4,-, —, ¢}, such that the reduct of 2 to {0,1,+,-,—}, is a
Boolean algebra. Recall the notion of connected partition introduced in
Definition 1.52.

DEFINITION 1.58 Let a = ay,...,a, be a connected partition in A. A
connected partition @ is called a c"-partition if, for every I C {1,...,n}
such that |I| < h, the element (=), ; a;) is connected.

If A = ¢(1), then a c!-partition in 2 is the same thing as a connected
partition. Furthermore, if 2l is in fact a mereotopology over S? having
curve-selection, then, by Lemma 1.45, a c¢?-partition in 2 is the same
thing as a partition consisting entirely of 2-cells. It is c3-partitions,
however, that will mainly preoccupy us in the sequel.

We assume familiarity with basic graph theory: for details, see Diestel,
1991 Chapter 1. Recall in this context that a graph is a pair G = (V, F)
where V' is a set (called vertices) and F is a set of 2-element subsets of
V (called edges). We denote V by V(G) and E by E(G). Note that,
on this definition, graphs have no ‘loops’ or ‘multiple edges’. If G is a
graph and U is a proper subset of V (G), we denote by G\ U the result of
deleting all the nodes in U from G; and if e = (v,v") € E(G), we denote
by the G/e the result of contracting G by merging v and v’ into a single
(new) node v"”, such that (v”,w) is an edge of G/e just in case either
(v,w) or (v',w) is an edge of G. If a graph H can be obtained from G by
a sequence of deletions and contractions, then H is said to be a minor
of G. Finally we take the terms path, cycle, connected, component to be
defined in the standard way. In particular, recall that, for A > 0, G is
said to be h-connected if G \ U is connected for every U C G such that
|U| < h.
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DEFINITION 1.59 Let a = a1,...,a, be a tuple from . If a; + a; 1s
connected for 1 < i < j < n, we say that a; and a; are neighbours.
The neighbourhood, graph of a, denoted Ng, is the graph with nodes
{a1,...,an} and edges {(a;,a;) | a; and a; are neighbours}.

CLAIM 1.60 Suppose A |= eon and A = YL for alln > 2. Let a =
ai,...,ay be a tuple of connected elements of A, such that a,—1 + ay is
connected. Leta' = ay,...,an_2,(an—1+ay). Then Ny = Nz/(n—1,n).

Proof For1<j<mn-—1,aj+ (an—1 + ay,) is connected if and only if
a;j + a1 is connected or a; + a, is connected. QED

CLAIM 1.61 Suppose U |= heon and A |= YL for alln > 2. Let a =
a1,...,a, be a tuple of connected elements of A, with a = a1 + ...+ ay.
Then a s connected if and only if Nz is a connected graph.

Proof The if-direction follows easily from the fact that 2 |= teon. For
the only-if direction, note that the claim is trivial if n = 1, so assume
n > 1, and that the claim holds for tuples of fewer than n elements.
Since 2 = 9, there exists ¢ (1 < i < n) such that a; and a, are
neighbours. By renumbering if necessary, assume 7 = n — 1, and let @’
be as in Claim 1.60, so that Nz = N;/(ap—1,ay). But Ny is connected
by inductive hypothesis, whence Nj is connected too. QED

CLAIM 1.62 Suppose A |= heon and A =L, for alln > 2. Let a be a
connected partition in A, and let h > 1. Then @ is a c-partition if and
only if Ng 1s an h-connected graph.

Proof Immediate by Claim 1.61. QED

CrLAIM 1.63 Suppose A = ¢(1), A E Yeon, A = P2 for all n > 2, and
A = Ypreak- Then every connected partition in A can be refined to a
c-partition.

Proof We make free use of Claim 1.61. Let a be a connected partition.
We show first that @ can be refined to a c?-partition. Choose an element
a of @ such that the number k of components of the graph N; \ {a} is
maximal. And let there be m > 0 elements ¢ for which this maximum
value is attained. If @ is not already a c?-partition, then k¥ > 1. Let
H,, Hy be distinct components of N \ {a}. Since Nj is connected,
there exist by € Hy, by € Hy such that a + by and a + by are connected.
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Since A |= Ypreak, let a1, as be non-empty, connected, disjoint elements
summing to a with a; + by, a; + be, as + b; and as + by all connected;
and let b be the connected partition which results from replacing a by
a; and ap. Evidently, for i = 1,2, N \ {a;} has strictly fewer than k
components. That is, the number of elements b in b such that N \ {b}
has k components is strictly less than m. Proceeding in this way, we
eventually obtain a c?-partition.

Now let @ be a c?-partition. We show that @ can be refined to a c3-

partition. If @ is not a c>-partition, choose a pair of distinct elements a
and o’ such that the number k of components of the graph N; \ {a,a’}
is maximal; and let there be m > 0 unordered pairs (a,a’) for which
this maximum value is attained. Let Hy, Ho be distinct components of
Nz \ {a,a'}. Since a is a c?-partition, there exist b; € Hy, by € Hy such
that a + b; and a + by are connected. And since 2 = Ypreak, let aq,a
be non-empty, connected, disjoint elements summing to a with a; + by,
a1 + by, as + by and ay + by all connected; and let b be the connected
partition which results from replacing a by a; and ay. Evidently, for
i = 1,2, N; \ {a;,a'} has strictly fewer than k components. Moreover,
suppose a” is any other element of @ (distinct from a and a’) such that
N; \ {a,a"} also has k components. We claim that Nj \ {a1,a”} and
N3\ {a2,a"} cannot both have k components. Working for the moment
on this assumption, we see that the number of pairs b, b’ in b such that
N; \ {b,0'} has k components is strictly less than m. Proceeding in this
way, we eventually obtain a c¢3-partition.

It remains only to verify that the graphs Nj \ {a1,a"} and N; \ {ag,a"}
encountered above do not both have k components. If a € A and B C A,
let us say that a is a neighbour of B if ¢ is a neighbour of some element
of B. Let the components of Nj \ {a,a”} be Hi,...H. Since b is a
c2-partition, we have that, for all i (1 < i < k), a is a neighbour of H;,
and therefore either a; or ay is a neighbour of H;. Hence, we can re-
order the H; if necessary so that, for some p,q with 0 <p < ¢ < k+1,
a1 is a neighbour of H; if and only if + < ¢ and a9 is a neighbour of
H; if and only if p < 4. Thus, the components of N; \ {a1,a”} are
Hy,...,Hy, ({a2} UHpy1 -+ - U Hy), and the components of Nj \ {az,a”}
are ({a1} UH---UHy_1),Hy,...,H. If these number & in each case,
we have p = k — 1 and ¢ = 2. But «’ lies in one of the H;, and a; and
as were chosen so that they are both neighbours of this a’. Hence a;
and ay are both neighbours of H;, whence p < ¢ — 1. This yields & < 1,
contradicting our assumption that @ is not a c3-partition. QED

We finish with a technical result which will be required later.
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DEFINITION 1.64 If @ = ay,...,an is a connected partition in 2 such
that, for any neighbour a; of a;, —(a; + a;) is connected, we say that @
18 radial about a;.

Note incidentally that a c3-partition is radial about each of its members.

CrLAM 1.65 Suppose A |= ¢(1), A = Yeon, A = YL, for all n > 2,
and A = Yoreax- Let n > 1 and let @ = ay,...,a, be a connected
partition in A with —ay connected. Then @ can be refined to a c*-partition
ai,bo, ..., by, radial about a1, in which ay has at least three neighbours.

Proof Similar to the above. QED

We conclude with a further corollary of Claim 1.61. We employ the
following fact from graph theory, whose proof we leave to the reader.

PROPOSITION 1.66 If G is a finite 2-connected graph of order at least 2,
and v € V(G), then there ezists a w € V(G) such that {v,w} € E(G),
and the removal of both v and w from G leaves a connected graph.

COROLLARY 1.67 Let M be a finitely decomposable mereotopology over
S? having curve-selection, and let ¥ = ry,...,r, be a partition in M
consisting entirely of 2-cells. Then, by re-numbering if necessary, we
have, for all k (1 <k <mn), 1 +---+rg is a 2-cell.

That is: partitions of the closed plane into 2-balls are always ‘shellable’.
The analogous result for three-dimensional space fails (Rudin, 1958).

4.3 Partition graphs

We now prove that, if 7 is a c3-partition in a finitely decomposable
mereotopology over S? having curve-selection, then the neighbourhood
graph of r fixes its topological properties completely.

We assume familiarity with the basic theory of plane graphs: for
details, see Diestel, 1991 Chapter 4. In this context, suppose that e C S?
is the locus of a Jordan arc. Then e has two endpoints; all other points
are called interior points, and we denote the set of these interior points
by (e). (Of course, e is not the topological interior of the set e in S?
but no confusion should arise in this regard.) A plane graph is a pair
G = (V, E), where V is a finite subset of S? and E is a collection of sets
e C S? such that e is the locus of a Jordan arc, satisfying the following
conditions for all v € V and all e, ¢’ € E:

1 if e € E and p is an endpoint of e, then p € V;
2 v # (e), and if e # €’ then (e) N (') = 0;
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q1 q2 qs

Figure 1.11. The non-planar graphs K and Ks 3.

3 if e # €', then e and €’ do not join the same pair of endpoints.

The elements of V' are called vertices of G, and the elements of E, the
edges of G; an edge e € F is said to join the vertices at its endpoints.
We denote V by V(G), E by E(G) and VUJ E by |G|. The components
of S2\ |G| are called the faces of G, and we denote the set of these faces
by F(G). A plane graph is semi-algebraic if its edges are the loci of
semi-algebraic Jordan arcs; similarly for the terms piecewise linear and
rational piecewise linear. Notice that, on our definition, plane graphs
have no ‘loops’ or ‘multiple edges’. (Some authors prefer the term simple
graph.) A plane graph will be regarded as an abstract graph in the
obvious way, and we carry over notation and terminology accordingly.
Conversely, if G = (V, E) is an abstract graph, a drawing of G is a plane
graph G' = (V' E') for which there exists a function € mapping V' 1-1
onto V' and E 1-1 onto E’ such that for all (v,v") € E, €((v,v")) joins
€(v) and €(v'). We call € an embedding. If G has a drawing, G is planar.
Not all abstract graphs are planar, of course: the graphs K° and K33
illustrated in Fig. 1.11 are familiar non-planar graphs. Indeed, this fact
has a converse:

PROPOSITION 1.68 (KURATOWSKI, WAGNER) A graph is planar if and
only if it has no minor isomorphic to either K° or K3 3.

We further assume familiarity with the notion of duality for plane
graphs. Let G and G’ be plane graphs. We say that G’ is a geometrical
dual of G if there are bijections fp : F(G) — V(G') and fg : E(G) —
E(G") such that, for all f € F(G) and e € E(G):

L fr(f) €f;

2 fr(e)Ne is a single point interior to both fx(e) and e, and fg(e)N
e/ = for all ¢’ # e.
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In our terminology, not every plane graph has a dual, because we do not
allow graphs to contain loops or multiple edges. However, we rely below
on the following sufficient condition (Wilson, 1979, p. 76).

PRroOPOSITION 1.69 FEvery 3-connected plane graph has a dual.
The following fact is also well-known.

LEMMA 1.70 Let G and G' be connected plane graphs such that G' is
a geometrical dual of G. Then there is a bijection fy : V(G) — F(G")
such that, for all v € V(Q), v € fy(v). Hence, G is a dual of G'.

Proof Every face of G' contains at least one vertex of G by construction;
it contains at most one by Euler’s formula |F(G)| — |E(G)|+ |V (G)| = 2
applied to G and G'. QED

Finally, duals are unique, in the following sense (Diestel, 1991, p. 88).

PROPOSITION 1.71 Let G be a plane graph and let G' and G" be plane
graphs which are both geometric duals of G. Then there is a homeo-
morphism h : S? = S? mapping G’ to G". In fact, h can be chosen such
that, for allv € G, if f" and f" are the faces of G' and G", respectively,
containing v, then h maps f' to f".

Now let us apply these ideas to the graphs whose faces are c3-partitions
in well-behaved, closed-plane mereotopologies.

LEMMA 1.72 Let X be a topological space, and let r, s be disjoint ele-
ments of RO(X) with p € F(r)\ F(s). Then p € F(—(r +s)).

Proof By Lemma 1.4 (ii), p € r + s. QED

LEMMA 1.73 Let M be a mereotopology over S? having curve-selection,
andletT =11,...,7r, be a -partition in M. Foralli, j (1 <i < j <n),
F(ri) N F(rj) is connected.

Proof We may assume that n > 3. Since 7 is certainly a c?-partition,
every F(r;) (1 <4 < n) is a Jordan curve by Lemma 1.45. Suppose,
for contradiction, that F(r;) N F(r;) is not connected, and let p,q €
F(r;) N F(rj) be separated in F(r;) by {p',q¢'} C F(r;)\ F(rj). By
Lemma 1.72, p',¢' € F(—(r; + r;)), so that, by the connectedness of
—(r; + 1), we can draw a cross-cut ' (Definition 1.41) from p’ to ¢’ in
—(r; +7;) € —r;. By the connectedness of r;, we can likewise draw a
cross-cut «y from p to ¢ in r; C —r;. But —r; is a 2-cell, whence v and
v are easily seen to intersect at an interior point, which is impossible,
since r; N —(r; + ;) is empty. QED
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LEMMA 1.74 Let M be a mereotopology over S? having curve-selection,
and let ¥ = r1,...7, (n > 4) be a c*-partition in M. Then there exists
a unique plane graph G drawn in S? such that the collection of sets
{ri,...,m} are exactly F(G) and the collection of sets {F(r;) N F(rj) |
1 <i<j<n,ri+r;is connected} are exactly E(G).

Proof Let 4,7,k be distinct integers in the range [1,n]. Since 7 is a c3-
partition, r; Ur; = S?\ —(rj 4+ r¢) does not separate the nonempty sets
ri and —(r; +r;j 4+ 1), whence F(r;) N (F(r;) U F(r)) is not the whole
of the Jordan curve F(r;). And since, by Lemma 1.73, F(r;) N F(r;) is
a connected subset of F(r;), F(r;) N F(r;) is either a point or the locus
of a Jordan arc. Indeed, F(r;) must include at least three Jordan arcs of
the form F(r;) N F(r;) for various j distinct from . Let the vertices of
G be the endpoints of all Jordan arcs of the form F(r;) N F(r;), and let
the edges of G be the segments of the various F(r;) connecting them. To
show that G is a plane graph, we must establish that if F(r;) N F(r;) is
a Jordan arc vy, then for all £ (1 < k < n) with k # 4, j, F(rg) contains
no interior points of v. For otherwise, let p' € F(ry) be an interior
point of v, and pick any ¢’ € F(r;) \ F(r;). Then p' € F(—(r; + rj))
and also, by Lemma 1.72, ¢ € F(—(r; + r;)). If we now choose p
and ¢ in F(r;) N F(r;) separating p’ and ¢' on the Jordan curve F(r;),
the derivation of a contradiction proceeds as in Lemma 1.73. Hence
no point of F(rg) is an interior point of vy, as required. Moreover, no
two Jordan arcs in F can have the same end-points, since 7 is a c3-
partition. It follows that G is a plane graph as required. Evidently,
F(G) ={r1,...,rn} and E(G") is the collection of sets F(r;) N F(r;) for
1 <14 < j < n which are Jordan arcs.

It therefore remains only to show that F(r;)NF(r;) is a Jordan arc if and
only if r; 4+ r; is connected. Note that r1 Ury is trivially not connected.
By Lemma 1.4 (ii), , Ur; C ry+17; C r; Ur; U (F(r;) N F(rj)), and
the removal of a single point from a connected, open set does not render
it disconnected. Hence, if 7; + r; is connected, F(r;) N F(r;) is neither
empty nor a singleton, and hence is a Jordan arc. Conversely, suppose
F(r;) N F(rj) is a Jordan arc. We have already shown that, if p is
an interior point of this arc, p & Ugy jry, = (Ek#’j ri)~ . That is,
P E =3 i Tk = 1i +1j. Hence F(r;) NF(r;) N (r; +r;) is non-empty,
whence r; +r; is connected. QED

DEFINITION 1.75 Let M be a mereotopology over S? having curve-
selection, and let ¥ = r1,...7, (n > 4) be a c3-partition in M. We
call the unique plane graph G satisfying the conditions of Lemma 1.7/
the the partition graph of r.
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Warning: the neighbourhood graph and the partition graph of a c3-
partition are not the same sort of thing. The former is an abstract graph
whose nodes are regions and whose edges are pairs of regions; the latter
is a plane graph, whose nodes are points and whose edges are the loci of
Jordan arcs.

LEMMA 1.76 Let M be a mereotopology over S? having curve-
selection, let ¥ = r1,...7, (n > 4) be a c -partition in M, and let G
be its partition graph. Then there is a plane embedding € of Ny such that
€(N7) is a geometrical dual of G and, for all i, (1 <1i <mn), e(r;) € r;.

Proof Almost immediate from the definition of partition graph. Qb

From Claim 1.62, c3-partitions have 3-connected neighbourhood graphs.
But 3-connected graphs have the crucial property that all their drawings
are topologically the same.

PROPOSITION 1.77 (WHITNEY) Let G and G be 3-connected
plane graphs and f : G — G’ a graph isomorphism. Then f can be
extended to a homeomorphism h : S* — S2.

Let M be a finitely decomposable mereotopology over S, and let
r=ry,...,pand § = $y,..., Sy, be n-tuples from M. We are interested
in the case where the mapping r; — s; is a graph isomorphism from N7
to Ny—that is, where, for all 7, 7, (1 <4 < j < n), 5 + rj is connected
if and only if s; + s; is connected. We say in this case that 7 and 5 have
the same neighbourhood structure.

THEOREM 1.78 Let M be o finitely decomposable mereotopology over
S? having curve-selection. Then any two c3-partitions in M having the
same neighbourhood structure are similarly situated in S>.

Proof It is straightforward to verify that, if n < 3, all n-element c3-
partitions in M are similarly situated in S2. Thus, we may assume that
n >4 Let 7 =ry,...,r, and § = s1,...,5, be c3-partitions with
the same neighbourhood structure, and let G and H be their respective
partition graphs. By Lemma 1.76, let G* and H* be embeddings of N;
and Nj, geometrically dual to G and H, respectively, let p; be the vertex
of G* contained in 7; and let ¢; be the vertex of H* contained in s; for all
i (1 < n). Hence, there is a graph isomorphism f : G* — H* mapping
p; to g;. Since G* and H* are 3-connected, Proposition 1.77 guarantees
that f can be extended to a homeomorphism A : S2 — S?. Then h(G)
and H are both geometrical duals of the plane graph h(G*) = H*, such
that, for all 7 (1 < i < n) the faces h(r;) and s; contain the vertex
h(p;) = q;- By Proposition 1.71, let A’ be a homeomorphism mapping
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Figure 1.12. Only the left-hand graph defines a connected partition in RO(S?).

h(G) to H such that h'(h(r;)) = s;. Thus, 7 and s are similarly situated.
QED

We finish this discussion of partition graphs with some ‘obvious’ lem-
mas concerning connected partitions in ROP(S?) and related mereotopolo-
gies. Readers irritated by proofs of such evident truths may skip to
Theorem 1.82.

LEMMA 1.79 Let G be a plane graph such that G has no isolated vertices,
and every edge of G lies on the boundary of (at least) 2 faces of G. Then
the members of F(G) are reqular open, and form a connected partition
in RO(S2). Moreover, if G' is another such plane graph, with |G| C |G'|,
then, for cvery f € F(G), f = S/ € F(G') | £/ C f1

Proof Let G = (V, E), and suppose f € F(G) and p € F(f). Since G
has no isolated vertices, there exists e € F such that p € e and hence
some f' € F(G), distinct from f, such that e C F(f’). Since f’ is disjoint
from f~,p e (S2\f ) =S2\(f ) ie p ¢ (f )" Thus, the open set f
satisfies (f )° C £, and so is regular open. By Lemma 1.4 (ii), |J F(G) C
SNF(G)C(UF(GR) =U{f | f € F(G)} = S% But by Lemma 1.3,
> F(G) is the unique regular open set lying between |J F(G) and its
closure; i.e. ) F'(G) = 1. Hence, the elements of F'(G) form a connected
partition in RO(S?). The last part of the lemma then follows from
Lemma 1.3, since, if f € F(G), then both f and > {f' € F(G") | f' C f}
are regular open sets sandwiched between J{f’ € F(G') | f' C f} and
its closure. QED

Of course, the converse of Lemma 1.79 is false: the configuration of
Example 1.18 shows that not every connected partition in RO(S?) is the
set of faces of some plane graph.

LEemMmA 1.80 If G is a piecewise linear plane graph such that G has no
isolated vertices and every edge of G lies on the boundary of exactly 2
faces, then the faces of G form a connected partition in ROP(S?).
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Proof Let Ly,..., L, be straight lines extending (in both directions)
each of the line segments making up G. Let G’ be the graph whose nodes
are the points of intersection of the L; (including co) and whose edges
are the segments of the L; joining them; and let P be the set of non-zero
products £s7 - --- - £s,,, where s; is one of the residual half-planes of
L; for 1 < i < m. By simple set-algebra, |JP = |JF(G'); and since
every r € P is connected, and every f € F(G") is a maximal connected
subset of S2\ |G’|, r N f # () implies r C f. Hence every f € F(G') is
a union of elements of P. But since these elements are non-empty open
and disjoint and f is connected, f simply is some element of P, and
hence is an element of ROP(S?). Since |G| C |G'], the result follows by
the last part of Lemma 1.79. QED

Lemma 1.80 does have a converse:

LEMMA 1.81 If 7 is a connected partition in ROP(S?), then 7 is the set
of faces of some piecewise linear plane graph G; moreover, for any such
plane graph G, G has no isolated vertices, and every edge of G lies on
the boundary of exactly 2 faces.

Proof By Claim 1.63, refine 7 = rq,...,r, toac3-partitiont = {t1,...,ty},
and let G be the partition graph of . Suppose, by renumbering if nec-
essary, that 1y = t; + -+ + t,,,. Note that, if e € E(Gj), we have, for
all j (1 <j < N), (e) Ct; or (e)Nt; = 0. Hence if (e) Z r1, then
(€) NUpcjen t; # 0, whence e C ¢ for some j (m < j < N).

Let GG be the graph obtained from Gy by first removing any edge e such
that (e) C r1, and then removing any vertex v such that v € 1. Since ry
is open, the endpoints of every remaining arc are among the remaining
vertices, so 1 really is a plane graph. Moreover, if m < 7 < N, then
t; Nry = (), so that none of the vertices and edges removed from G

intersects s hence ¢; is a face of G1. Therefore, the set of points

S ={t; € F(Go) | 1< j <m} U
{e€ E(Gy) | (e) Cri}U{veV(Gy) |ver}

must be the union of some faces of G;. Trivially, S C r;. We claim
that 71 C S. For if p € S? exactly one of the following three cases
holds: (i) p € t; for some j; (ii) p € V(Gy); or (iii) p € e for some
e € E(Gyp). In case (i), either p € S or p € r1, according as j < m. In
case (ii), trivially, either p € S or p & 1. In case (iii), if p ¢ S, then
p € (e) € r, whence p € e C ¢; for some j (m < j < N), whence
PE Dmejenti)™ = S?\ r1. This proves that r; C S. Thus, r; = S is
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the union of a number of faces of G;. But r; is by assumption connected,
so rq is a face of G1. Proceeding in the same way for rs, ..., 7,, we obtain
the desired graph G = G,. QED

Lemmas 1.80 and 1.81 concern the mereotopology ROP(S?), but al-
most exactly similar arguments can be given for ROS(S?) and ROQ(S?).
We omit the details, which are routine. Summarizing, we have:

THEOREM 1.82 A tuple @ of subsets of S? is a connected partition in
ROS(S?) (alternatively: ROP(S?), ROQ(S?)) if and only if it is the set
of faces of a semi-algebraic (respectively: piecewise linear, rational piece-
wise linear) graph with no isolated vertices and every edge lying on the
boundary of two faces.

4.4 Expressive power of first-order languages in
plane mereotopologies

We are now in a position to give an absolute characterization of the
expressive power of the languages L. < and L¢ over certain mereotopolo-
gies of interest. Recall the concept of topologically complete formula
given in Definition 1.51. The following notation will be useful in con-
structing topologically complete formulas.

NOTATION 1.83 Given a fized Boolean algebra, a Boolean matrix is a
rectangular matriz whose entries are the elements 1 and 0. If r is an
n-tuple, 5 an N-tuple, and A a Boolean matriz with N rows and n
columns, we write T = §A to indicate that each element of ¥ is the sum
of certain elements of 5 as indicated by the elements of A via normal
matriz multiplication. Similarly, we write T = ZA in first-order formulas
to abbreviate the obvious conjunction of Boolean algebra equations.

THEOREM 1.84 Let M be any finitely decomposable mereotopology over
S? having curve-selection, and let X3 be the signature (¢, <,+,-, —). Every
tuple from M satisfies some (purely existential) Ly -formula which is
topologically complete in M over S2.

Proof Writing z for z1, ..., zn, let wé\;(é) be the formula:

/\ (c(zi) Az > 0)A

1<i<N

/\ (C(—(Zi—i-Zj))/\Zi-Zj:O)/\ Z zi = 1.
1<i<j<N 1<i<N
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Thus, M = 1/1(]:\3( [5] if and only if 5 is an N-element c3-partition. If
§=s51,...,5N is a ¢-partition in M, let 9 (2) be the formula:

/\{c(zZ +2;) |1 <i<j<N and s; + s; is connected }A
/\{ﬂc(zi +2z;) |1 <i<j <N and s; + s; is not connected},

where Z is the tuple of variables zy,...,2,. Thus, % (Z) encodes the
neighbourhood structure of s. Now let ¥ = ry,...,r, be any tuple of
elements of M. By Claim 1.63, there exists a c3-partition 5 = s1,..., sy
in M and a Boolean matrix A such that 7 = §A. Writing T for x1, ..., z,,
let ¥7(z) be the formula

32N () A3 (2) AT = 24).

Certainly, M |= 7[f]. And if 7 is a tuple from M such that M |=
Pr[], let 3 = s,..., s’y be corresponding witnesses for the existentially
quantified variables z. Then s1,...,sy and §),..., sy are c3-partitions
in S? which have the same neighbourhood structure, and hence which
are similarly situated in S? by Theorem 1.78. It follows that 7 and 7
are similarly situated in S? too. Thus, 97(Z) is topologically complete
in M over S2. QED

COROLLARY 1.85 Let M be any finitely decomposable mereotopology
over S? having curve-selection. Every tuple from M satisfies some L¢-
formula which is topologically complete in M over S2.

Proof Theorem 1.84 and Lemmas 1.22, 1.27 and 1.49. QED

Thus, for certain well-behaved mereotopologies over S?, both Lo and
L. < are, as we might put it, ‘topologically fully descriptive’.

We now turn to the question of expressive power in mereotopologies
over R?2. We need some auxiliary lemmas.

LEMMA 1.86 Let 7 = r1,...,r, be a ¢ -partition in any mereotopology
M over S? having curve-selection. Let p,p' € S? such that, for alli (1 <
i <n),per; if and only if p' € r;. Then there is a homeomorphism
h : S? = S? mapping p to p’ and fizing each r;.

Proof Obvious, by viewing 7 as F/(G) for some plane graph G.  QED
LEMMA 1.87 Let 7 =r1,...,rp and ¥ =1, ... rl be similarly situated

c3-partitions in any mereotopology M over S? having curve-selection.
Let p € S? such that, for alli (1 <i<n),p€r; ifand only if p € ri”.
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Then there is a homeomorphism h : S? — S? fizing p and mapping 7 to
=
7.
Proof Let h' : S2 — S? be some homeomorphism mapping 7 to 7.
Then, for all 4 (1 < i < N), h/(p) € v, if and only if p € ;7. By
Lemma 1.86, let " : S — S? be a homeomorphism fixing each r/, and

mapping h'(p) to p. Then h := h" o b’ has the required properties. qep

THEOREM 1.88 Let M be any finitely decomposable mereotopology over
R? such that M has curve-selection. Every tuple from M satisfies some
L¢-formula which is topologically complete in M over R?.

Proof Given any tuple s1,...,sy from M, let ¢ (z) be the Lo-formula

/\{(;sz(zi) | 1 <i < N and s; is bounded}A
/\{—|¢bz (zi) | 1 <4 < N and s; is not bounded},

where z is the tuple of variables z1, ..., zy, and ¢ is as in Lemma 1.30.
Thus, ¢3_(z) encodes the pattern of boundedness in the tuple 5. Now,
given a tuple 7, let 5 be an N-element c3-partition in M refining 7, and
let A be a Boolean matrix satisfying 7 = §A. Using the translation from
Le< to L¢ established by Lemmas 1.22 and 1.27, let ¢%%(2) and ¢% (2)
be the L¢-formulas corresponding to 9% (2) and % (2) in the proof of
Theorem 1.84. Writing & for z1,...,x,, let ¢7(Z) be the formula

IEGN(2) A 6L() A P (2) AT = 2A).
Certainly, M | 97[7]; and if 7 is a tuple from M such that M |
P[], let ' = si,..., sy again be a corresponding witnesses for the
existentially quantified variables z. Then $;,...,$x and §),..., s are
c3-partitions in S? which have the same neighbourhood structure, so that
by Theorem 1.78 and Lemma 1.87, there is a homeomorphism A : S? —

S? fixing co and mapping each §; to $.. Hence 5 and &' are similarly
situated in R?, whence 7 and 7 are similarly situated in R? too.  qep

Thus, for well-behaved mereotopologies over R?, L¢ is, as we might put
it, topologically fully descriptive.

4.5 Homogeneous mereotopologies

Up to this point, we have been concerned only to show that certain
relations can be defined by first-order formulas with signatures of topo-
logical primitives. We turn now briefly to the question of which relations
cannot be so defined.
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At first glance, one might assume that languages with purely topolog-
ical primitives can express only topological concepts in mereotopologies
over which they are interpreted. However, this assumption is correct
only if the mereotopologies in question have a certain property. Recall
that, for a fixed topological space X, we write u ~ v to mean that the
tuples of subsets u and v are similarly situated in X (Definition 1.51).

DEFINITION 1.89 Let M be a mereotopology over X. We say M 1is
homogeneous (over X) if, given any tuples 7,5 from M with 7 ~ s and
any element r € M, there exists an element s € M with r,7 ~ §,s.
Let M' also be a mereotopology over X, with M' C M. We say M' is
homogeneously embedded in M (over X) if, given any tuple ¥ from M’',
and any v € M, there exists s € M' with 7,7 ~ 7, s.

LEMMA 1.90 Let X be either R? or S?, and let M be any of ROS(X),
ROP(X) or ROQ(X). Then M is homogeneous.

Proof Assume M = ROS(S?); the other cases are identical. Let 7, 5 be
tuples from M, and let 7 € M. Let t be a connected partition refining
7,7 and so by Theorem 1.82 is the set of faces of some semi-algebraic
plane graph G. If h : S — S? is a homeomorphism mapping 7 to 3,
then h maps G to a plane graph H. But then it is not difficult to show
that the edges of H can be deformed into a semi-algebraic plane graph
H', and moreover, that this may be done in such a way that existing
semi-algebraic edges are unaffected. By Theorem 1.82, the faces of the
resulting graph are elements of M; hence we have a homeomorphism
mapping 7 to 5§ and taking r to some element s of M. QED

Homogeneity and homogeneous embedding are important because of the
following facts.

LEMMA 1.91 Let M be a homogeneous mereotopology over a topological
space X, and fix a signature X of topological primitives. If ¥ and s are
tuples of M which are similarly situated in X, then 7 and s satisfy the
same Ly.-formulas in M.

Proof We show by induction on the complexity of ¢(Z) € Ly that, if
7 and 5 are tuples of the appropriate arity which are similarly situated
in X, then M = ¢[F] implies M = ¢[5]. The base case follows from the
fact that the primitives in ¥ have topological interpretations. The only
non-trivial recursive case is where ¢[z] = Jyp(Z,y). If M |= ¢[F], there
exists 7 € M such that M |= ¢[F,r], and by homogeneity, if 7 ~ §, there
exists s € M such that 7,7 ~ 5, s, whence M [= 4[5, s] by inductive
hypothesis, so that M = ¢[s] as required. QED
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Lemma 1.91 gives an upper bound on the expressive power of first-order
languages with signatures of topological primitives interpreted over ho-
mogeneous mereotopologies: such languages cannot distinguish between
similarly situated tuples. It thus provides a partial converse to Theo-
rems 1.84 and 1.88. It also yields an easy proof that, over well-behaved
open-plane mereotopologies, L. < cannot express the property of being
bounded:

THEOREM 1.92 Let M be a mereotopology over R? such that M is ho-
mogeneous, and suppose M has curve-selection and contains a region r
similarly situated in R? to the open unit disc B2. Then there exists no
formula 1(x) of L. < such that, for all v € M, r is bounded if and only

if M |=lr].

Proof  Suppose such a formula (z) exists. Then M = +[r], and
by Lemma 1.38, M [ ¢[f]. Since M has curve-selection, by Propo-
sition 1.44 both 7 and its complement —(7) in M are 2-cells in S?, and
hence are similarly situated. By Lemma 1.91, M = ¢[—(7)], and so
by Lemma 1.38, M k= ¢[—r]. This contradicts the fact that —r is un-
bounded. QED

Finally, we return to the relationship between ROS(X), ROP(X) and
ROQ(X).

LEMMA 1.93 Let X be either R2 or S?2. Then ROQ(X) is homoge-
neously embedded in ROP(X), which is in turn homogeneously embedded
in ROS(X).

Proof Virtually identical to the proof of Lemma 1.90. QED
The following result is well-known (see, for example, Hodges, 1993 p. 55).

PROPOSITION 1.94 (TARSKI-VAUGHT) Let A, B be structures with 2 C
B, and suppose that, for any n-tuple a from A and any formula ¢(x)
of the form Jyy(z,y) such that B = ¢lal, there exists a € A such that
B = la,a]. Then A <B.

LEMMA 1.95 Let M, M' be mereotopologies over a topological space X,
with M homogeneous and M' homogeneously embedded in M. Fiz a
signature of topological primitives. Then M' < M.

Proof By assumption, M' C M. Let ¥ be an n-tuple of elements of
M’, and let ¢(Z) be any formula of Ly, of the form 3y (Z,y) such that
M = ¢[F]. Then there exists r € M such that M |= ¢[F,r]. Since
M’ is homogeneously embedded in M, there exists s € M’ such that
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r,r ~ 7,s. Since M is homogeneous, M = 9[r,s] by Lemma 1.91. The
result then follows by Proposition 1.94. QED

Hence, for X either R? or S?, and over any signature Y of topological
primitives, we have ROQ(X) < ROP(X) < ROS(X). In particular,
these three structures have identical Ly-theories. We show in the sequel
that this is no accident: almost any ‘reasonable’ mereotopology over
S? has the same Ly-theory. Anticipating these results, we employ the
following notation and terminology.

DEFINITION 1.96 Let % be a signature of topological primitives. We
call the theory Thy(ROS(S?)) the standard Ly-theory (of closed plane
mereotopology), and denote it Ty.

5. Axiomatization

In this section, we provide an axiomatic characterization of T, <, the
standard L. <-theory of closed plane mereotopology. The material is
essentially that of Pratt and Schoop, 1998.The axiom system in question
will help us to identify mereotopologies over S? having the standard L.<-
theory.

As before, we write 97 (z) for the L. <-formula stating that z forms
n-element c3-partition, and z = u ® v for the L. <-formula stating that
u and v are disjoint, non-zero, connected regions summing to z. Let
M be a mereotopology over S? having curve-selection. Consider a triple
r,s,t from M satisfying the formula 4% (x,y, z). By Lemma 1.45, each
of these regions is a 2-cell, and it is easy to see that the closures of
any two of these intersect in a Jordan arc. (Formally, this follows by
Lemma 1.73.) Now let tgp1i; denote the L. <-formula
VzVyVz (1/15’3 (z,y,2) —

FuIv(u®v =z Aclu+y)A-clut+z)Aclv+z) A=clv+y))).

Informally, g5 ‘says’ that, given two 2-cells r» and s whose frontiers
intersect in a Jordan arc, r can be partitioned into two connected regions
using a cross-cut whose end-points are the end-points of that Jordan arc
(Fig. 1.13a).

DEFINITION 1.97 A mereotopology M is splittable if M |= 1t
The following lemma, is unsurprising.

LEMMA 1.98 The mereotopologies ROS(S?), ROP(S?) and ROQ(S?) are
splittable.

Proof Almost immediate from Theorem 1.84, Lemma 1.42 and Propo-
sition 1.43. QED
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Figure 1.13. a) The configuration of ¢t 7 and s are disjoint 2-cells with r~ N s~
a Jordan arc; r is broken into 1 and r». b) A pair of regions in ROX(R?) violating

'l/)split .

However, not all finitely decomposable mereotopologies over S? having
curve-selection are splittable. If an (n — 1)-dimensional hyperplane in
R" is defined by an equation x; = 0, where 0 < ¢ < n, we call it an axis-
oriented hyperplane; and if a half-space is bounded by an axis-oriented
hyperplane, we call it an azis-oriented half-space.

EXAMPLE 1.99 Define ROX(S™) to be the Boolean sub-algebra of RO(S™)
generated by the axis-oriented half-spaces. It is easy to see that ROX(S™)
is a finitely decomposable mereotopology over S™ having curve-selection.

However, ROX(S™) & vspiit, as is clear in the case n = 2 by inspection
of Fig. 1.13b).

Thus, whereas RO(S?) has, as it were, too many regions for the stan-
dard theory, ROX(S?) has too few. As we have observed, RO(S?) is
not finitely decomposable, and lacks curve-selection, while ROX(S?)
is not splittable. It transpires that these represent the only ways of
failing to exhibit the standard theory of closed plane mereotopology.
Specifically, we show in this section that all splittable, finitely decom-
posable mereotopologies over S? having curve-selection have the same
L. <-theory. Our strategy is to pick one splittable, finitely decomposable
mereotopologies over S? having curve-selection—ROP(S?) will do—and
characterize its theory axiomatically. We then merely need to check that
our axiom system is correct for all such mereotopologies.
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5.1 The axioms

Our axiom system comprises three parts: a general inference system,
a set of proper azioms and an w-rule. (i) The general inference system
is simply any complete Hilbert, system for first-order logic, restricted to
the signature {+,, —, <,c}. (ii) The proper axioms are as follows:

1 the usual axioms of Boolean algebra, and the axiom 0 # 1;
the axiom 9con (Lemma 1.53);

where n > 2, the axioms 92, (Lemma 1.56);

= W N

the axiom

=3zy .. 3z (0 N\ (e(mi) Awi # 0)A
1<i<5

/\ (clzi+aj)Nay-xj = 0));
1<i<j<5

5 the axiom

ﬁaxl...axﬁ( A (clwi) Azi # 0)A

1<i<6
/\ zi-xj =0A /\ c(wi—i-xj));
1<i<j<6 1<i<3
4<5<6

6 the axioms ¢(0) and ¢(1);
7 the axiom @preax (Lemma 1.57);
8 the axiom ¢gp1i; (Definition 1.97).

(iii) The final component of our axiom system is the w-rule. If n > 1,
we let 97 (z) stand for the formula

Elzl...Elzn(1</i\<nc(zi)/\(x:z1+---+zn)).

Thus, ¥ (z) ‘says’ that x can be formed by summing n connected re-
gions. The w-rule is then the (infinitary) rule of inference:

{Va (e (z) = ¢(z))|n = 1}
Vod(x) '
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Let ® be a set of L. <-sentences. A proof with premises ® in the above
system is a sequence of L. <-formulas {¢4 }n<p, for some ordinal # (not
necessarily finite) such that every ¢, is either (i) an element of ® or
(ii) an axiom or (iii) the result of applying a rule of inference to some
formulas ¢, with v < «. If 1) is the last line of some such proof, we write
OFp. If & ={p} we write ¢ F 1, and if & = () we write - 1) and call 9
a theorem. Let us denote the set of theorems by Thy. The main result
of Section 5 is:

THEOREM 1.100 Tay is the complete L. <-theory of any finitely decom-
posable, splittable mereotopology over S? having curve-selection.

Proof Lemmas 1.102 and 1.104, below. QED

Of course, this entails that all such mereotopologies, considered as {¢, <}-
structures are elementarily equivalent.

The w-rule is less unfamiliar than one might at first think. Essentially,
it says that if a property holds of every region which is the sum of finitely
many connected regions, then it simply holds of every region. This
conditional is obviously true in a finitely decomposable mereotopology.
Thus, a proof involving the w-rule is analogous to an argument of the
kind encountered in elementary algebra textbooks in which one proves
a property of all polynomials by showing that it holds of all polynomials
of some arbitrary degree n. Nevertheless, the inclusion of an infinitary
proof rule does mean that we ought to check the deduction theorem.

LEMMA 1.101 Let ¢ be an L¢<-sentence and v an L. <-formula such
that ¢ = 1. Then = ¢ — .

Proof By assumption, there is a proof {¢q}a<g+1 with premises {¢}
and last line ¢g = 1. Without loss of generality, we may assume that the
first (actually, zeroth) line of the proof 1 is ¢. We proceed by induction
on 3. The case 8 = 0 is trivial, since - ¢ — ¢. If 8 > 0, then either ¢g is
an axiom or is derived from applying a rule of inference to earlier lines of
the proof. The only interesting case is where ¢ = Var is derived by the
w-rule from the formulas Vz (¢ (z) — 7) occurring earlier in the proof.
But the inductive hypothesis then yields - ¢ — Vz(¢7(xz) — ), for each
n, whence - V(¢ (x) = (¢ — m)). The w-rule then yields - Vz(¢ — =),
whence - ¢ — Vam (note that ¢ is a sentence), as required. QED

We remark in passing that the axiom ¢(0) is actually redundant: it can
be derived from the other axioms and proof rules.
5.2 Correctness

In this section, we establish the easy half of Theorem 1.100.
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LEmMA 1.102 If M is a splittable, finitely decomposable mereotopology
over S? having curve-selection, then M = Tax.

Proof We follow the enumeration in Section 5.1, showing that the
proper axioms are all true in M and that the w-rule is truth-preserving.

1 M is a mereotopology.
2 Lemma 1.53.
3 Lemma 1.56.

4 Suppose r1,...,rs5 are connected, non-empty and pairwise disjoint,
and that any pair of them have a connected sum. By Lemma 1.26,
choose points p; € r; and ¢; j € F(r;) N F(r;) N (ri +1j) (1 <i<
j <5). For each i (1 <4 <5), draw end-cuts in r; from p; to all
the points ¢; ; and g;;; it is easy to see that these can be chosen
so that any pair of these end-cuts intersect only in the point p;.
Ignoring the points g; j, we have a plane drawing of the graph K 5
which is known to be non-planar (Fig. 1.11).

5 As for axiom 4, but with K33 instead of K°.
6 Trivial.

7 Lemma 1.57.

8 M is splittable.

The w-rule is obviously truth-preserving, because M is finitely decom-
posable. QED

5.3 Completeness

In this section, we establish the difficult half of Theorem 1.100. We
make use of the omitting types theorem: for details, see, e.g. Hodges,
1993, pp 333. Let A be a structure, ®(x) a set of formulas with free
variable z, and T' a set of sentences. We say that 2 omits ®(z) if, for all
a € A, A~ ®la]. We say that T locally omits ®(z) if, for every formula
O(x) with free variable z such that € is consistent with 7, there exists
é(z) € ®(z) such that T = YV (0(x) — ¢(z)). The following theorem is
a well-known strengthening of the completeness theorem for first-order
logic.

PROPOSITION 1.103 (OMITTING TYPES THEOREM) If a consistent the-
ory T locally omits a set of formulas ®(z), then T' has a countable model
omitting ®(z).
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With these preliminaries behind us, we can proceed with our com-
pleteness proof.

LEMMA 1.104 If ¢ is an L. <-sentence, and ROP(S?) k= ¢, then ¢ €
Thrx.

Proof Suppose that ¢ & Tayx. We are required to prove that ROP(S?) |=
—¢. Let T be the set of all and only those L. <-sentences ¢ such that
=¢ 1. By Lemma 1.101, T is a consistent set of sentences, and from the
w-rule, T" locally omits the type {—97(z) | n > 0}. By Proposition 1.103,
there exists a countable model 2 = T omitting that type. Fix the
structure 2l for the remainder of this proof.

We now proceed in three stages. Stage 1 establishes some basic facts
about 2; Stage 2 shows that 2 can be embedded in the {¢, <}-structure
ROP(S?); Stage 3 shows that the embedding we have chosen is in fact
elementary.

Stage 1: Axioms 1 ensure that the reduct of 2 to the signature
{+,,—,<} is a Boolean algebra. Such structures were discussed in
Section 4.2, where various terminology and notational conventions were
introduced. We carry these over to the present proof. Using that termi-
nology, another way of saying that 2 omits the type {=92(z) | n > 0}
is to say that %[ is finitely decomposable.

By Axioms 2, 3, 6 and 7, all the claims in Section 4.2 hold of . In par-
ticular, every tuple can be refined to a connected partition, and thence
to a ¢?- and a c*-partition. Furthermore, we have

CramM 1.105 Let b = bi,...,by be a connected partition in 2A. Then the
neighbourhood graph of b is planar.

Proof By Proposition 1.68, if the neighbourhood graph G of b is not
planar, it contains either K® or K33 as a minor. But then there is a
sequence of contractions of G resulting in a graph H which has either
K? or K3 3 as a sub-graph. By repeated applications of Claim 1.60 (re-
numbering the b; as necessary), there is a connected partition s in 2
whose neighbourhood graph contains K° or K33 as a sub-graph. But
this is impossible by Axioms 4 and 5. QED

Stage 2: Since 2l is countable, let A = {aj,a9,...}. Let Ny = 1 and
let ¢® be the 1-tuple whose element is the unit of the Boolean algebra
2. Trivially, & is a c3-partition. For m > 0, suppose that the c3-
partition ¢ = cgn), . ,05\2 in 2 has been defined; then, by Claim 1.63,

let ¢t = an+1)’ . ,cg\%:ll) be a c3-partition in 2 refining the tuple
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cgn), e ,c%j,anﬂ. It is then obvious that, for each n > 0, &™) refines
the tuple ay,...,a, and also every tuple &™) for all m (0 <m < mn).
We fix the enumerations ag, a1, ... and 9,1, ... for the remainder of
Stage 2.

For brevity, denote ROP(S?) by S. We now map each initial seg-
ment ai,...,a, of A into S. Let w(™ be the set of functions ¢(™ :
{cgn), e 705\?2} — S satisfying the conditions:

G1: the regions g™ (cgn)), g™ (cg\rfrz) form a connected partition;

G2: for all i,j (1 <i < j < N,), g™ (cl(-n)) + g™ (cg-n)) is connected if

(n) + <™ is connected.

and only if ¢; :

i
A. Hence, different senses of “4+”7 and “connected” apply in the two
cases.

CLAIM 1.106 For alln € N, w™ #£ 0.

We remark that, in G2, we have g(™ (cgn)),g(”) (cg-n)) € S and c(n), cg-n) €

Proof For the proof of this claim, we shall drop the n-sub- and super-
scripts and write N for N, and ¢; for cgn). Let G be the neighbourhood
graph on ci,...,cy. By Claim 1.105, G is planar. By Axioms 6 and
Claim 1.61, G is connected. Let H be a drawing of G in S? (under some
mapping € : V(G) — V(H)); we may assume that H is piecewise linear.
By Proposition 1.69, let H* be a geometric dual of H, which we may
likewise assume to be piecewise linear. By Lemma 1.70, every vertex of
H lies in exactly one face of H*. It follows that every edge of H* is on
the boundary of two faces; moreover, H* by construction contains no
isolated nodes. By Theorem 1.82, the faces of H* form a connected par-
tition in S. So define ¢(c;) to be the face of H* containing the H-vertex
€(c;). Properties G1 and G2 are then almost immediate. QED

CrAM 1.107 Let I C {1,...,N,}, and let g™ € w(™. Then Y icrCi is
connected if and only if Y ;. ; g™ (¢;) is connected.

Proof Claim 1.61 and property G2. QED

Suppose 7. > m > 0, so that &™) refines &™), For all i (1 <i < N,,), let
Ci1,---,Cim; be the collection of elements of ¢™ which sum to cgm). If
g € w™ then, we may define the restriction of g™ to &™), written
9" |1, as follows:

9 (™) = ¢ () + o+ g™ ()

s VL
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CLAIM 1.108 Let g™ € w™ with 0 < m < n. Then g™|,, € w™.

Proof We must prove that G1 and G2 hold of ¢(® |m- G1is trivial. For
G2, we note that, by construction,

9 (™) + g (™) = gD () + .+ g™ ()
+ g+ g ()

By Claim 1.107, this element of S is connected if and only if the element
of A

é?+”ﬁﬂﬂa+éﬁ+”ﬁuﬁhzém+ém

is connected. Hence G2 holds as required. QED

CLAIM 1.109 Let g € w'™. Then there exists a ¢ € w™ V) such that
!
9l =g

Proof Choose any ¢" € w(™t!). By Claim 1.108, ¢"|,, € w(™. Letting
r=g(c1),...,9(cn,) and s = ¢"|,(c1), ..., 9"|n(cn, ), we see that 7 and 5
are c3-partitions in S with the same neighbourhood graphs—mnamely, the
neighbourhood graph of ci,...,cy,. By Theorem 1.78, let h : S — S2
be a homeomorphism taking 5 to 7. Thus, h o g maps ¢t to the
faces of a plane graph G in S? whose edges include the frontiers of the
elements 7. Now let A’ : S? — S? be a deformation making all the curved
edges of G piecewise linear, while leaving any already piecewise linear
edges unaffected. By Theorem 1.82, ¢’ = h'ohog" € w(™t1) maps ¢ t1)
to an N,,.1-tuple in S and it is easy to see that ¢’ satisfies the conditions
of the claim. QED

By Claim 1.109, there exists a sequence of embeddings:
D=g®, ¢1 @ .

such that, for all n (0 < n), g™ maps é™ to S, and, for all m,n
(0 <m <n), g™, =gm.
Now let a € A be such that a = cl(-?) + ...+ CE:). Then we define

g(a) = g™ () + ...+ g™ (™) .

The fact that g(”)|m = ¢(™ whenever 0 < m < m means that this
mapping is well defined. It is easy to see that g : A — S is a Boolean
algebra isomorphism; moreover, by Claim 1.107, g(a) is connected if and
only if @ is connected. That is, we have proved:
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L &

x(p) = {i} x(9) = {i,5} x(v) = {{,5}, {k}} x(v) = {{i}}

a) b) c)

Figure 1.14. The ‘hub’ a; of a radial partition

CrLAIM 1.110 2 can be isomorphically embedded in ROP(S?), regarded
as a {c, <}-structure.

In view of Claim 1.110, and in order to simplify notation, we might as
well take 2 to be a substructure of ROP(S?). Note that the previously
distinct uses of the Boolean functions and the term “connected” become
unambiguous, as do “connected partition”, “c-partition”, “neighbour”,
and so on. Moreover, since A C S, we may meaningfully talk about
the frontier F(a) of any a € A, and apply all the results established
previously about elements of ROP(S?). For example, by Lemma 1.73, if
T1,...,Tn is a c>-partition in A radial about r; such that r has at least
2 neighbours, then, for any neighbour r; of r1, F(r1) N F(r;) is a Jordan
arc. Recall that, for tuples 7 and 5 from ROP(S?), we write 7 ~ 5 if 7
and 5 are similarly situated (in S?).

Stage 3: In the previous stage, we established that 2l can be chosen
to be a substructure of ROP(S?). In this stage, we show that, in that
case, 2 is in fact an elementary substructure of ROP(S?).

CLAIM 1.111 Let ay,...,a, € A be a c-partition radial about a; such
that a1 has at least 3 neighbours. Let ri,19 € S be disjoint 2-cells with
a1 =11 +19. Then there exist c1,co € A such that aq,...,a,,c1,c0 ~
A1y---,0n,T1,72-

Proof Since ay,71,7r9 are 2-cells with a; equal to the disjoint sum of
r1 and 73, 1 and ro must be separated by a cross-cut v in a;. For any
neighbour a; of a1, F(a1) N F(a;) is a Jordan arc. Let p € F(a1). By
inspection, p lies on either one or two Jordan arcs of the form F(aqy) N
F(a;) where a; is a neighbour of a;. We define the character of p, written
X(p) to be the set of those i (2 < i < n) such that a; is a neighbour of a;
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Figure 1.15. The construction of a cross-cut with a given character

and p € F(a;) (Fig. 1.14a). Note that x(p) has either 1 or 2 elements. If
X(p) has one element, then p lies on some Jordan arc F(aq)NF(a;), but
not at its endpoints. If x(p) has two elements, then since a1 has at least
three neighbours, x(p) determines p. Now let 7y be a cross-cut in a;. We
define the character of v, written x(y) to be the set of characters of its
endpoints. (See Fig. 1.14b and Fig. 1.14c for examples.) It is routine to
show that, if 7, and 7, are two such cross-cuts and x(y1) = x(72), there
is a homeomorphism of the closed plane onto itself taking a; to itself for
all i (1 <4 <mn) and taking 7, to v2. So, to prove the lemma, it suffices
to establish that, if 7, is any cross-cut in a;, there exist disjoint 2-cells
c1,c2 € A with a; = ¢1 + ¢o such that the cross-cut 9 separating c¢; and
¢y in a; satisfies x(71) = x(72)-

Let the endpoints of 1 be p and q. We prove the result for the special
case where x(7v), x(p) and x(q) all contain two elements; the other cases
are dealt with similarly. Fig. 1.15a shows the sub-case where x(p) and
x(q) are non-disjoint; Fig. 1.15b shows the sub-case where x(p) and x(q)
are disjoint.

The sub-case of Fig. 1.15a is trivial: Axiom 8 with a; substituted for z
and a; for y immediately guarantees the existence of ¢, co € A partition-
ing a1, and hence separated by a cross-cut y; moreover the connectivity
conditions on ¢; and ¢ mean that vy, and -y have the same endpoints,

so that x(71) = x(72).

The sub-case of Fig. 1.15b requires a little more work. However, two
applications of Axiom 8 guarantee the existence in A of the regions
a;,aj, as in Fig. 1.15c. Axiom 7 then guarantees that the region labelled
a} in Fig. 1.15¢ can be split into two regions as shown in Fig. 1.15d.
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Summing together appropriate subdivisions of a; produces ci,co € A
separated by an arc 7, satisfying x(v1) = x(72). QED

The rest of this section is devoted to showing that we can relax the
conditions of Claim 1.111.

CrAamM 1.112 Let n > 1 and let ay,...,a, € A be a partition such that
a1 is a 2-cell. Let ri,ro € S be disjoint 2-cells with a1 = r1 + 2. Then
there exist c1,co € A such that ay,...,a,,C1,Co ~ G1,... 0y, T1,T2.

Proof Immediate given claims 1.65 and 1.111. QED

CrAamM 1.113 Let n > 1 and let ay,...,a, € A be a partition such that
ay s a 2-cell. Let r € S be such that r < ay. Then there exists c € A
such that ai,...,a,,¢c~ay,...,a0,,T.

Proof By the construction of S = ROP(S?), we can partition a; into
2-cells rq,...,r, such that r can be expressed as the sum of various r;.
It suffices to show that there are cq,..., ¢, € A such that

Alye ey Ay T1ye e s Tm ~ A1y oo yQpysClye..y Cpy.

We proceed by induction on m. If m = 1, then r; = a; and we are
done. If m > 1, by Corollary 1.67, we can renumber the r; if necessary
so that r; and 7, = 79 + ... 4+ rpp, are 2-cells. By Claim 1.112, there
exist ¢1,c, € A such that ay,...,apn, 71,75 ~ ay,...,an,c1,c,. Let h be
a homeomorphism of the closed plane onto itself mapping a; to itself, r;
to ¢; and 7, to ¢,. By exactly the same argument as for Lemma 1.90,
h can be chosen so that h(r;) € S for all 7 (2 < i < m). But then
the h(r;) partition the 2-cell ¢, into 2-cells. So consider the partition

chy,c1,a9,...,a,. By inductive hypothesis, there exist cg,...,c, € A
such that

chye1,a0, ..y an, h(re), ... h(rm) ~ Cyc1,a9, ..oy an,Cay ety Cy
The result then follows. QED

CLAIM 1.114 Let n > 1 and let a1,...,a, € A be a c?-partition. Let
r € S. Then there exists c € A such that a1,...,0p,C~ G1,...,0Qpn,T.

Proof Write r as the sum r-ay +...+7-a, By considering these terms
separately, we use Claim 1.113 and an induction similar to that used in
the proof of Claim 1.113. The details are routine. QED
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CrAmM 1.115 Let n > 0 and let ay1,...,ay, € A. Let r € S. Then there
exists ¢ € A such that ay,...,0n, 7 ~ G1,...,0y,C.

Proof Immediate given Claims 1.54, 1.63 and 1.114.
CLAIM 1.116 24 < ROP(S?).

Proof We certainly have 2 C ROP(S?). Let n > 0 and let ¢(z1,...,z,)
be any formula of the form 3y (zq,...,z,,y). Let a1,...,a, € A such
that ROP(S?) = ¢[a1,...,a,]. Then there exists » € S such that
ROP(S?) = ¢lai,...,an,r]. By Claim 1.115, there exists ¢ € A such
that ai,...,an,7 ~ ai,...,an,c. By Lemmas 1.90 and 1.91, ROP(S?) |=
Ylai,...,an,c]. The claim then follows by Proposition 1.94. QED

By Claim 1.116, 2 and ROP(S?) have the same theory. But by con-
struction, A &= —¢, whence ROP(S?) |= =¢, which completes the proof
of Lemma 1.104. QED

COROLLARY 1.117 All splittable, finitely decomposable mereotopologies
over S? with curve-selection have the same L <-theory, and hence also
the same Lc-theory.

Thus, while Examples 1.17, 1.18 and 1.99 show that there certainly
are elementarily inequivalent mereotopologies over R? and S?, Corol-
lary 1.117 indicates that there is nothing like the free-for-all one might
initially expect. At least for the signatures {c, <} and {C'}, the reference
to Ty, as the standard first-order mereotopological theory of the closed
plane is justified. Corollary 1.173 generalizes this result to apply to any
signature of topological primitives.

For reasons of simplicity (which we trust the reader will appreciate)
we have provided an axiomatization of well-behaved plane mereotopolo-
gies only for the language L. <. It should be clear from the foregoing
discussion, however, that an analogous result could be obtained for the
language L¢, which as we noted, is more expressive over ROP(R?). Such
an axiomatization was developed in Schoop, 1999.

Of course, it is one thing to have an axiomatic characterization of the
L <-theory of ROP(S?%)-—quite another to determine whether a given
L. <-sentence is a member of it. The question therefore arises as to the
computational characteristics of this problem. Dornheim, 1998showed
(in effect) that this theory is undecidable and hence (since it is a com-
plete theory), not r.e. It follows that the w-rule (or some equivalent
mechanism) is indispensable in this axiomatization. In fact, Schaefer
and Stefankovi¢, 2004showed (in effect) that the decision problem for
Th.,<ROP(S?) is at least as hard as that of second-order arithmetic.
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Specifically, Schaefer and Stefankovic effectively encode second-order
arithmetic in a first-order language with variables ranging over 2-cells
in R? and primitive predicates expressing the so-called RCC-relations
(see Randell et al., 1992,Egenhofer, 1991;but it is easy to see that that
theory can in turn be effectively encoded in Th, <ROP(S?). Schaefer and
Stefankovic also consider the complexity of the quantifier-free fragment
of their logic, a problem closely related to the well-known problem of rec-
ognizing so-called string-graphs (see e.g. Erlich et al., 1976,Kratochvil,
1988.and show that it is in NEXPTIME. In Schaefer et al., 2003, this
bound is improved to NP—a very surprising result.

6. Spatial mereotopology

In this section, we extend the main results of Section 4 to the spatial
mereotopology ROP(R?). This material is a tidied up version of Pratt
and Schoop, 2002.

6.1 Facts about ROP(R®*) and ROP(S?)

Recall that a 2-manifold is a Hausdorff space locally homeomorphic
at every point to the open disc B?, and that a surface is a connected
2-manifold.

LEMMA 1.118 Let X be either R" or S™, and let M be a mereotopology
over X having curve-selection. If r € M with r and —r both connected,
then F(r) is connected.

Proof Consider the case X = R". Let » € M be connected and non-
empty with connected, non-empty complement, and suppose the closed
set F(r) is not connected. Let d; and dy be closed sets partitioning F(r),
and let p € r, ¢ € —r. Since r is connected with connected complement,
it is easy to see that the conditions of Proposition 1.19 are fulfilled, so
that p and ¢ are connected in R" \ (d; Udz). But this is absurd given
that dy Uds = F(r). The case X = S" follows easily. QED

LEMMA 1.119 Let r € ROP(S?) such that r and —r are non-empty and
connected, and F(r) is not a surface. Then the graph K° can be drawn

in F(r).

Proof 1Tt is easy to see that F(r) can be finitely triangulated. Call any
point where F(r) is not locally homeomorphic to B? a bad point; and
call any edge of the triangulation all of whose points are bad a bad edge.
By the properties of triangulations, any bad point either occurs on a bad
edge or else is an isolated bad point at a vertex of the triangulation.
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Figure 1.16. Embedding K° in non-surfaces (Proof of Lemma 1.124).

If there is a bad edge, then more than two triangles must share this
edge, and the embedding of K° in F(r) proceeds as shown in Fig. 1.16a.
Assume, then, that there are no bad edges, but that some vertex p of
the triangulation is an isolated bad point. Call two triangles with p as
a vertex neighbours if they share an edge having p as a vertex. Since all
edges are good, these triangles can clearly be arranged into disjoint cycles
such that each triangle belongs to the same cycle as its two neighbours.
Choose one such cycle. By applying a homeomorphism if necessary,
we may assume that this triangle-cycle forms a cone with vertex p as
shown in Fig. 1.16b. Since there are only finitely many triangles in the
triangulation, we can ensure that we choose a triangle-cycle such that
the points inside the tip of the cone either all belong to r or all belong to
—r. Let s be either r or —r depending on which of these possibilities is
realized. Note that, since r is non-empty and connected with non-empty,
connected complement, so is s.

Let t € ROP(S?) be a small element representing the tip of the cone,
indicated by the light dotted lines in Fig. 1.16b. Removing ¢ from s
visibly does not disconnect s, so that s - —% is connected; moreover, ¢
shares some face with —s, so that ¢t + —s = —(s - —t) is also connected.
Thus, s-—t is non-empty and connected with nonempty-connected com-
plement, whence, by Lemma 1.118, F(s - —t) is connected. Moreover,
since p is bad, there must be at least two triangle-cycles with p as vertex;
whence p € F(s- —t). Thus we may choose a point ¢ on the base rim of
t and connect it to p by a Jordan arc « in F(s) such that the locus of
« is disjoint from F(t) except for its endpoints, as shown in Fig. 1.16c¢.
The embedding of K° in F(s) = F(r) then proceeds as depicted. — qED

One notable difference between S? and S? is that the Schonflies The-
orem, which holds in the former, fails in the latter. In fact, the patho-
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logical ‘region’ known as Alexander’s horned sphere, and depicted in
Fig. 1.3 is the best-known counterexample: the frontier of this region
is homeomorphic to S?, but its exterior is not simply connected, and is
certainly therefore not homeomorphic to B3. Nevertheless, Alexander,
1924balso proved a Schonflies-type result for polyhedra, which, in our
notation, can be written as follows. (See also Moise, 1977, Ch. 17.)

PROPOSITION 1.120 Let r € ROP(S?) be such that F(r) is homeomor-
phic to S%. Then both r— and (—r)~ are homeomorphic to D3.

To avoid cumbersome locutions in the sequel, we define:

DEFINITION 1.121 Let X be either R or S™. A ball in X is a subset
of X similarly situated in X to the unit ball B3. A polyhedral ball in
X is a ball which is an element of ROP(X).

Thus, if r € ROP(S?) with F(r) homeomorphic to S, then 7 and —r are
both balls in S3. Furthermore, if r € ROP(R?) with F(r) homeomorphic
to S? (and hence bounded), then then ezactly one of r and —r is a ball
in R3. We note in passing:

LEMMA 1.122 Ifr € RO(S?) is a (polyhedral) ball in S3, then so is —r.

Proof By definition, r is similarly situated in S? to v = B3(0,1). By
considering a spherical inversion, u is similarly situated in S3 to —u.
QED

The following well-known theorem will also prove useful in the sequel
(see, e.g. Massey, 1967, p. 10).

PROPOSITION 1.123 (CLASSIFICATION THEOREM FOR SURFACES) FEuvery
compact surface is homeomorphic to either (i) S% or (ii) the sum of
finitely many connected tori or (iii) the sum of finitely many projective
planes.

6.2 Expressing familiar spatial concepts in Lc

Our next task is to show that certain familiar concepts defined on
the mereotopology ROP(R?) can be expressed using Lo-formulas. As a
preliminary, recall the discussion of Section 3.2, which showed that: (i)
expressions such as ~ Ny~ Nz # 0 etc. can be regarded as L¢-formulas;
and (ii) there is an Lo-formula ¢i(z,y) which we may read as “z~ Ny~
is connected”.

Now suppose r and s are elements of ROP(R?), and consider, for
example, the set F(r)\ F(s). Evidently, this set is connected if and only



62

if it is piecewise-linear arc-connected, and therefore if and only if any
two points in it are contained within some connected set of the form
r~ Nt~ C F(r)\ F(s) with t € ROP(R?). It follows from the discussion
of Section 3.2 that there is an Lo-formula satisfied by a pair of regions
r, s if and only if F(r)\ F(s) is connected. In the sequel, then, we write,
without further commentary, expressions such as ¢(F(z) \ F(y)) etc. as
Le-formulas having the obvious interpretations.

LEMMA 1.124 There exists an Lc-formula ¢ys(x) such that, for all
r € ROP(R?), ROP(R?) = ¢xs[r] if and only if K° is embeddable in
F(r).

Proof The graph K° is evidently embeddable in F(r) if and only if
there exist polyhedra v; (1 <4 <5) and e;; (1 <4< j <5), all disjoint
from r and from each other, satisfying the following conditions:

1 Forall i (1 <¢<5),v; Nr~ is a singleton
2 Forall 4,5 (1 <i<j<5), e ;Nr is connected

3 Foralld,j,i',j' (1 <i<j <5 1<i<j <5),{i,j}n{i",j'} =0
implies €; ; Ney , N1~ = 0, and {4,7} N {',5'} = {k} implies
e;jﬂe;j, Nr-=uv, Nr-.

(Note incidentally that the polyhedra e; ; are not themselves required to
be connected—only the sets e; ; N7~ = F(e;;) N F(r).) But the above

conditions are expressible in Lc over ROP(R?). QED

LEMMA 1.125 There exists an Lc-formula ¢y () such that, for all r €
ROP(R?):

1 if F(r) is connected and unbounded, then ROP(R?) = ¢p+[r];
2 if F(r) is homeomorphic to S?, then ROP(R?) [ dp-[r].

Proof Let ¢p«(z) be

Jy1Fye(yr -z =0Ay2 -z =0Ac(F(x) NF(y1) N F(y2))A
o(F(@) \ Fy1) Ae(F(x) \ Fly2)) A —e(F(z) \ (F(y1) U F(y2))))-
Thus, ¢p-(z) ‘says’ that there exist polyhedra y; and y9, disjoint from z,

such that the sets F(z) N F(y1) N F(y2), F(z) \ F(y1) and F(x) \ F(y2)
are all connected, but the set F(z) \ (F(y1) UF(y2)) is not.
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A

F(r) N F(sz2)

F(r) N F(s1)

F(r) N F(s1) N F(s2)

Figure 1.17. Arrangement of F(r) N F(s1) and F(r) N F(sz2) on G (Proof of
Lemma 1.125).

Suppose F(r) is connected and unbounded. Let r be a Boolean com-
bination of finitely many half-spaces, corresponding to a finite set of
planes, say, Py,..., Py; it is then easy to see that F(r) C Py U---UP,,.
Since F(r) is unbounded, we can draw in F(r) a rectangular figure G,
unbounded on one side (dotted lines in Fig. 1.17), such that G inter-
sects only one of the P;. Let s1,s5 € ROP(R?) be laminas, infinitely
extended in one direction, and placed on G (on the outside of r) so that
F(r) N F(s1) and F(r) N F(sz) are arranged as shown. Since F(r) is
connected, F(r)\ F(s1) and F(r)\F(s2) are also connected; and since G
lies on just one of the P;, F(r) \ (F(s1) U F(s2)) is not connected. Thus
ROP(R?) = v[r]. The second part of the Lemma follows by Proposi-
tion 1.47. QED

Let ¢.(x) be the Lo-formula defined in Lemma 1.27 and satisfied by
r € ROP(R?) if and only if r is connected, and let ¢;(z) abbreviate the
formula z # 0Ax # 1A ¢e(x) A pe(—1).

LEMMA 1.126 For all r € ROP(R?), r satisfies ¢3(z) A =¢s(z) A
—¢p- () if and only if F(r) is homeomorphic to S?.

Proof Suppose F(r) is homeomorphic to S?. Certainly, by Proposi-
tion 1.120, ROP(R?) |= ¢,[r]; by Lemma 1.124, ROP(R?) & —¢gs|r];
by Lemma 1.125, ROP(R?) = =+ [r]. Conversely, suppose that r sat-
isfies ¢5(z) A ~dgs(x) A =¢p«(z). By Lemma 1.118, F(r) is connected,
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and by the first part of Lemma 1.125, F(r) is bounded. Moreover, K°
cannot be embedded in F(r), by Lemma 1.124. Hence F(r) = F(r)
is a compact surface, by Lemma 1.119. The result then follows from
Proposition 1.123. QED

LEMMA 1.127 Letr € ROP(R?) satisfy ¢3(z) A—=dgs(z) App-(x). Then
r 15 unbounded.

Proof Suppose for contradiction that r is bounded, so that we also
have r € ROP(S?). By Lemma 1.119, F(r) is a surface. Moreover,
since 7 is bounded, F(r) is compact, and since K> cannot be drawn
in F(s), F(r) is homeomorphic to S? by Proposition 1.123. But since
ROP(R?) = ¢p+[r], this contradicts the second part of Lemma 1.125.
Hence, r is unbounded. QED

LEMMA 1.128 There ezists an Lc-formula ¢yns(x) such that, for all r €
ROP(R?), ROP(R?) |= ¢ps[r] if and only if r is bounded.

Proof Let ¢p3(z) be the formula

JyIz(z <yAy-z=0A
G3(y) A =gs (y) A =p(y) A pu(2) A =dgs(2) A db-(2)).

If r is bounded, let s € ROP(R?) be a ball in R® such that r < s;
and let t € ROP(R?) be a half-space disjoint from s. By Lemma 1.125,
ROP(R?) |= —p+[s] and ROP(R?) |= ¢p,<[t]. Thus, s and ¢ are suitable
witnesses for y and z in ¢ps(z), so that ROP(R?) = ¢ps(r].

Conversely, suppose that ROP(R?) |= ¢ps[r]. Let s and ¢ be witnesses
for y and z. By Lemma 1.126, F(s) is homeomorphic to S2, whence,
by Proposition 1.120, exactly one of s and —s is a ball in R3. By
Lemma 1.127, ¢ is unbounded, and so intersects the complement of ev-
ery ball in R?. Therefore —s is not a ball in R3, so s is. Hence, r is
bounded. QED

THEOREM 1.129 There exists a formula ¢p(x) such that, for all r €
ROP(R?), ROP(R?) = ¢g[r] if and only if r is a polyhedral ball in R3.

Proof Let ¢p(x) be

$3(2) AN —dpes (@) A == (2) A dus (2),
and apply Lemmas 1.126 and 1.128. QED
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Thus, with a little effort, we can define certain familiar topological
notions over ROP(R?) using Lc-formulas. The following technical ma-
terial, which is devoted to defining some decidedly unfamiliar topolog-
ical notions over ROP(R?), will be used in the sequel. We recall the
discussion of compactifications in Section 3.3, and consider the mapping
r + 1 from ROP(IR?) to its 1-point compactification ROP(S?). By Lem-
mas 1.36 and 1.37, this mapping is a Boolean algebra isomorphism and
preserves the properties of connectedness and non-connectedness. For
technical reasons, we will occasionally need to consider properties of el-
ements in ROP(R?) whose defining conditions make reference to their
counterparts in ROP(S?).

For all » € ROP(R?), oo € 7 if and only if —r is bounded, and oo € 7~
if and only if 7 is unbounded (where the closure operator ~ refers to the
topology on S%). By Lemma 1.128 then, it is harmless to employ the
expression oo € & in Le-formulas, since we can take it as a mnemonic
for ¢ps(—x); and similarly for expressions such as co € £, oo € F(z),
etc.

LEMMA 1.130 There exists a formula ¢ () satisfied by r € ROP(RR?)
if and only if K® is embeddable in F (7).

Proof As for Lemma 1.124, making the obvious adjustments to accom-
modate the point at infinity. QED

LEMMA 1.131 There exists a formula ¢y(x) such that, for all
r € ROP(R?), ROP(R®) |= ¢y[r] if and only if 7 is a ball in S®.

Proof Let ¢(z) be ¢py(z) A ¢ 5(z). If 7 is a ball in S?, it is evident
that ROP(R?) = ¢p[r]. Conversely, suppose ROP(R?) = ¢y[r]. By
Lemmas 1.119 and 1.130, F(7) is a surface in S®. Furthermore, by
Proposition 1.123, F(7) is homeomorphic to S?. The result then follows
by Proposition 1.120. QED

6.3 Characterizing triangulations in L¢

In Section 4, we showed that every tuple in ROP(R?) satisfies a topo-
logically complete Lo-formula—that is, an Lo-formula with the property
that all tuples satisfying it are similarly situated. Our proof exploited
Whitney’s theorem on 3-connected graphs in the plane to show that
any c¢3-partition in ROP(S?) is determined up to similar situation by its
neighbourhood graph. However, Whitney’s theorem is not available for
S3, and so we must adopt an alternative approach to analysing the ex-
pressive power of L over ROP(R?). This approach has the advantage of
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F(r) N F(s)

Figure 1.18. The configuration of Proposition 1.132

being, in some ways, more straightforward than that of Section 4, though
the topologically complete formulas it constructs are more complicated.

We assume familiarity with the basic theory of triangulations and
PL-complexes: for details, see, e.g., Moise, 1977, Ch. 7. We also re-
quire the following ‘obvious’ result about balls in S® (Pratt and Schoop,
2002, Theorem 3.14).

PROPOSITION 1.132 Let r,s € RO(S?) be disjoint balls in S® such that
r+ s is also a ball in S3. Then F(r) N F(s) NF(r + s) is the locus of a
Jordan curve, and F(r) N F(s) is homeomorphic to the closed disc D2.

The situation is illustrated in Fig. 1.18.

DEFINITION 1.133 A quadruple ¢ = (ri,r9,73,74) of pairwise disjoint
elements of ROP(S?) is a q-cell in S3 if, for all non-empty J C {1,2,3,4},
the polyhedron ng r; is a ball in S3.

The reference to the containing space S is significant: in the sequel, we
introduce g-cells in R?. However, we sometimes speak simply of ¢-cells if
it is clear from context which space we are talking about (or if it makes
no difference).

EXAMPLE 1.134 Consider the regular open tetrahedron ty with vertices
v = (0,0,0), V2 = (1,0,0), v3 = (0, 1,0), V4 = (0,0, 1). Let tl,tg,tg,t4
be the four regular open tetrahedra (taken in some fized order) each hav-
ing three vertices from {vy,...,v4} and the point (1/4,1/4,1/4) as the
fourth vertex (Fig. 1.19). Evidently, the quadruple qo = (t1,1t2,t3,t4) is
a q-cell.

THEOREM 1.135 All g-cells in S? are similarly situated in S3.
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Vg ¢

U3

v1 v

Figure 1.19. The g-cell go

RNy
F(d)yn s F(e)n s

a) b)

Figure 1.20. Possible arrangements of F(a) NS, F(b)N S, F(c)NS and F(d)N S,
where S = F(a + b+ ¢) (Proof of Theorem 1.135).

Proof Let {(a,b,c,d) be a g-cell. Since a, b, ¢, a +b, b+ ¢, a+ ¢
and a + b + ¢ are balls, by Proposition 1.132, the sets F(a) N F(b),
F(a)NF(c), F(b)NF(c) and F(a+b)NF(c) are all closed discs. Letting
S = F(a+b+c), it is then easy to show that the sets F(a)NS, F(b)NS
and F(c)NS must be arranged on S as shown in Fig. 1.20a, up to similar
situation. Let e = —(a+b+c+d); then, by Lemma 1.122, Y (BU{e}) is
a ball for any proper subset B C {a, b, c,d}. Thus, all of the sets a+b+c,
d, e, a+b+c+dand a+b+c+ e are balls. By Proposition 1.132 again,
F(d)n S and F(e) NS are both closed discs, whose common frontier in
the space S is the locus of some Jordan curve v, say.

Consider how v might be drawn on S. Since a + d and a + e are balls,
by Proposition 1.132, F(a) N F(d) and F(a) N F(e) are closed discs.
Similarly, F(b) N F(d), F(b) N F(e), F(c) N F(d) and F(c) N F(e) are
closed discs. Hence y divides each of the three sets F(a)NS, F(b)NS and
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F(c) NS into two residual domains. Moreover, vy cannot pass through
either of the points X or Y in Fig. 1.20a; for otherwise, one of the sets
F(a) N F(d), F(b) N F(d), F(c) N F(d), Fla) N F(e), F(b) N F(e) or
F(c) N F(e) would fail to be a closed disc. It is then easy to see that v
and the region F(d) NS it encloses must lie in S as shown in Fig. 1.20b
or Fig. 1.20c, up to similar situation. But these two arrangements of
a, b, c,d are mirror images. QED

NOTATION 1.136 If ¢ = (t1,...,t4) is a g-cell, denote the component
polyhedron t; by q[i] for all i (1 < i < 4). Denote the polyhedron t; +
ot ty by G

In Example 1.134, ¢y is the interior of the convex hull of the points V' =
{v1,...,v4}. We employ familiar terms from discussions of simplicial
complexes: a face of qq is the convex closure of any non-empty subset of
V; a face of g is proper if it is not the whole of (go) ; a vertez of ¢ is
an element of V.

DEFINITION 1.137 Let g be any g-cell, and h a homeomorphism of S*
onto itself taking qo to q. A (proper) face of q is a set of points h(F),
where F is a (proper) face of qo. A vertex of q is a point h(v), where v
s a vertex of qo.

We remark that, in Definition 1.137, a suitable homeomorphism h can
always be found, by Theorem 1.135; moreover, since the faces of ¢o
are expressible as set-algebraic combinations of the polyhedra ¢,...,%4
and their topological closures, the precise choice of h does not matter.
Thus, g-cells are simply homeomorphic images of the g-cell ¢o of Exam-
ple 1.134, with the notions of face and vertex transferred in the obvious
way.

DEFINITION 1.138 A q-cell partition (in ROP(S?)) is a sequence ¢ =
qi,-- ., qn of g-cells in S® such that (i) G1, ..., Gy s a partition in ROP(S3);
and (i) for all i, j (1 <i < j <n), if F is a face of q; and G a face of
qj, then F'N G is either empty or a face of both q; and q;. A vertex of
a g-cell partition is a vertex of one of its elements.

Thus, g-cell partitions define (finite) PL-complexes in the obvious way:
each g-cell in the partition corresponds to a PL 3-simplex, and its proper
faces to PL d-simplices for d < 3.

DEFINITION 1.139 Let ¢ = qi,...,qn and § =q},...,q be g-cell par-
titions in ROP(S3). We say that § and @ are isomorphic if there is a
bijection between the vertices of ¢ and the vertices of ¢ such that, for all
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i, 7 (1 <i <N, 1< j<4), the vertices of q; lying on the frontier of
q¢i[j] are mapped to the vertices of ¢, lying on the frontier of ¢}[j].

LEMMA 1.140 Isomorphic q-cell partitions in ROP(S3) are similarly sit-
uated in S3.

Proof Isomorphic g-cell partitions define isomorphic PL-complexes.
QED

We conclude this sub-section by extending the notions of g-cell and g-cell
partition to the open space R3.

DEFINITION 1.141 A quadruple ¢ = (ri,ro,r3,74) of elements of
ROP(R?) is a g-cell in R® if ¢ = (r1,79,73,74) is a g-cell in S3. A
sequence § = q1,...,qy of q-cells in R3 is a g-cell-partition in ROP(R?)
if 41,...,Gn is a g-cell partition in ROP(S?).

DEFINITION 1.142 Let ¢ = qu,...,qn and ¢ = q},...,q, be g-cell par-
titions in ROP(R3). We say that ¢ and ¢ are isomorphic if: (i) the
corresponding q-cell partitions qi,...,q, and g}, ...,q, in ROP(S?) are
isomorphic; and (i1) for all 1,5 (1 <i <mn, 1 <j <4), g;[j] is bounded
if and only if ¢}[j] is bounded.

Intuitively, knowing which ¢;[j] are bounded for a g-cell partition
qi,...,q, in ROP(R?) amounts to knowing, up to homeomorphism,
where the point at infinity is in the corresponding g-cell partition in
ROP(S?). More precisely, we have:

LEMMA 1.143 Let ¢ = q1,...qn and ¢ = q,...q,, be similarly situated
g-cell partitions in ROP(S3). Let p € S? such that, for alli, j (1 <i < n,
1 <j<4),pe€ (qglf])” if and only if p € (¢i[j])~. Then there is a
homeomorphism h : S — S? fizring p and mapping q to q'.

Proof Parallel to the proof of Lemma 1.87. QED

THEOREM 1.144 Isomorphic g-cell partitions in ROP(R?) are similarly
situated in R3.

Proof Let qi,...q, and ¢},...q¢,, be isomorphic g-cell partitions in
ROP(R?). Then ¢i,...qG, and q"l,...q"n are isomorphic g-cell parti-
tions such that, for all i,j (1 <4 < n, 1 < j < 4), 00 € (¢ly])~ if
and only if co € (¢/;[j])~. By Lemmas 1.140 and 1.143, there exists a
homeomorphism 4 of S onto itself mapping ¢, ... ¢, to ¢',...¢,, and
fixing co. Thus, ' = h\ {{c0, 00)} is a homeomorphism of R® onto itself
mapping qi,...qp to ¢i,...q,. QED
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6.4 Expressive power of Lc in ROP(R?)

We are now ready to show that every tuple in ROP(R?) satisfies a
formula which is topologically complete in ROP(IR?) over R3.

LEMMA 1.145 For all N > 0, there exists a formula ¢£1V(2) such that,
for any 4N -tuple t from ROP(R3), ROP(R?) = ¢év[ﬂ if and only if t is
a g-cell partition in ROP(R?).

Proof Let ¢y (z) be as defined in Lemma 1.131, and suppose s1, ..., 54 €
ROP(R?). Then the quadruple (31,...,3,) is a g-cell in S3 if and only
if ROP(R?) |= ¢q[s1,- - ,54], where ¢q(y1,...,ys) is the formula

/\{%(Zyj) |0 #JC {1,2,3,4}}-
jel

The result then follows easily. QED

LEMMA 1.146 Lett be a 4N -tuple forming an N -element g-cell partition
in ROP(R3). Then we can find a formula ~(2) such that, for any 4N -
tuple t' of ROP(R?), ROP(R?) |= v[t'] if and only if t' is an N-element

g-cell partition isomorphic to t.

Proof Almost immediate from Lemmas 1.128 and 1.145 and the dis-
cussion of Section 3.2. QED

LEMMA 1.147 Ewvery g-cell partition in ROP(R?) satisfies a Lc-formula
which is topologically complete in ROP(R?) over R3.

Proof Theorem 1.144 and Lemma 1.146. QED

LEMMA 1.148 Any n-tuple ¥ from ROP(R?) can be refined to an N-
element g-cell partition. That is: there exists a 4N -tuple t from ROP(R?)

and a (4N x n) Boolean array A such that t forms a g-cell partition in
ROP(R3) and 7 = tA.

Proof By the definition of ROP(R?), we can certainly refine 7 to a
partition of convex regions of R, each of which is bounded by a finite
number of planes, and thence, by triangulating these convex regions,
into a partition of polyhedra ti,...ty, such that each ¢; is a ball in S3,
and the boundary of each ¢; (1 < i < N) is composed of 4 ‘triangles’
(in the sense used earlier in this proof). By subdividing each t¢;, we can
construct a g-cell g; whose faces are exactly the triangles bounding t;,
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and such that ¢; = t;. Then q1,...qy is the required g-cell partition.
QED

THEOREM 1.149 Every tuple in ROP(R3) satisfies some Lc-formula
which is topologically complete in ROP(R?) over R,

Proof Let 7 be a tuple from ROP(R3). Let f and A be as in
Lemma 1.148, and by Lemma 1.147 let ¢;(z) be a formula satisfied by ¢
which is topologically complete in ROP(R?) over R3. Then the formula
3z(¢g(z) Az = zA), which is also topologically complete in ROP(IR?)
over R3, is satisfied by 7. QED

This concludes the main business of this section: the language L¢
is sufficiently expressive that every tuple of polyhedra in R?® can be
characterized up to the relation of similar situation in R® by one of its
formulas. Moreover, it is easy to see that an analogous result must
obtain for polyhedra in S3. Of course, the characterizing formulas for
tuples of polyhedra obtained in this section are much more complicated
than the corresponding L. <-formulas for tuples of polygons obtained in
Section 4.

In Section 5, we exploited the high expressive power of L. < in ROP(S?)
to obtain an axiomatization of Th. <(ROP(S?)), and thence, a formu-
lation of the conditions under which an arbitrary mereotopology over
S? has the same L <-theory as ROP(S?). The question therefore arises
as to whether an analogous approach is possible for characterizing ‘rea-
sonable’ spatial mereotopologies using the results of this section. The
major disincentive to such an undertaking is the relative weakness of
the requirement of finite decomposability in S3. For the plane case, the
requirement of finite decomposability led very easily to the existence of
c3-partition refinements, which paved the way for an axiomatic char-
acterization of Th, <(ROP(S?)). In the spatial case, by contrast, much
stronger assumptions are needed to guarantee the existence of g-cell par-
titions, as examples such as the region depicted in Fig. 1.3 show. Thus,
while the identification of a standard theory of spatial mereotopology is
certainly conceivable, it is not obvious, at the time of writing, how best
to approach this matter.

7. Model Theory

In Section 2, we defined a mereotopology over a topological space X to
be a Boolean sub-algebra M of RO(X) in which, forallp € o C X, witho
open, there exists r € M such that p € » C 0. However, we also promised
a purely intrinsic characterization of such structures—one making no
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reference to points or topological spaces. In this section, we fulfil that
promise, and (partially) realize the vision with which we started this
chapter, of a reconstruction of topology where the fundamental objects
are not points, but regions.

7.1 Abstract models of mereotopological
theories

We begin by noting some simple facts about mereotopologies over
topological spaces of various kinds.

LEMMA 1.150 Let M be a mereotopology over a topological space X,
considered as a structure interpreting the signature {C,+,-,—,0,1,<}.
(i) The sentences ®ca consisting of the usual axioms of Boolean algebra
together with

Va—C(z,0)

Ve(z >0 — C(z,z))

VzVy(C(z,y) — C(y,z))
VaVy(Clz,y) Ny < z — C(x, 2))
VaVy(C(z,y + 2) = C(z,y) V Clz, 2))

are all true in M. (ii) If X is weakly regular, then the sentence eyt
given by
VaVy(Vz(C(z,z) = C(y,2)) = = < y)

is true in M. (ii1) If X is compact and Hausdorff, then the sentence
Pint given by

VaVy(—C(z,y) — Fz(=C(z, —2) A =C(y, 2)))
18 true in M.

Proof (i) Straightforward. (ii) Lemma 1.22. (iii) Suppose r,s € M
with 7~ Ns~ = (. Since X is regular, by Lemma 1.23, for each point in
p € r—, there is 7, € M with p € 7, and s~ C —rp. Since the 7, cover
r~, choose a finite subcover, and let the sum of this subcover be ¢. Then
r~ Ctand s~ C —t. QED

The three claims in Lemma 1.150 all have converses. Specifically:

PropPOSITION 1.151 Let 2l be a structure interpreting the signature ¥ =
{C,+,-,—,0,1 <}. (i) If A = Pca, then A is isomorphic (as a -
structure) to a mereotopology over a topological space X; in fact, X
can always be chosen so as to be semi-regular and Ty. (i1) If A |=
Dop U{dext}, then X can be chosen so as to be weakly regular and T;.
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(131) If A = Pca U{bext, Pint }, then X can be chosen so as to be compact
and Hausdorff.

These results first appeared (in equivalent form) in Dimov and Vakarelov,
2006,Duntsch and Winter, 2005and Roeper, 1997 respectively. In the lit-
erature, structures satisfying ®c5 are sometimes referred to as contact
algebras, the sentence ¢eyy as the extensionality aziom, and the sentence
dint as the interpolation axiom. Together, Lemma 1.150 and Proposi-
tion 1.151 show that mereotopologies over certain classes of topologi-
cal spaces can be characterized purely intrinsically, without reference
to those spaces or the points that make them up. We note in passing
that Proposition 1.151 speaks of mereotopologies over X (Definition 1.5),
where the sources cited refer only to dense sub-algebras of RO(X'). This
slight strengthening is immediate from the relevant proofs, and improves
the match between Lemma 1.150 and Proposition 1.151. For a fuller dis-
cussion, see Ch. 77,

Furthermore, it turns out that the topological realizations in Propo-
sition 1.151 (iii) are, in an important sense, unique. We motivate this
result with a simple observation.

LEMMA 1.152 Let M; be a mereotopology over the topological space X;,
for v = 1,2. Suppose there is a homeomorphism h : X1 — Xo which
maps My onto My. Then, for any signature % of topological primitives,
h induces a structure isomorphism h : My ~x, Mo.

Proof Immediate. QED

The uniqueness of the topological realizations in Proposition 1.151 (iii)
takes the form of a partial converse of Lemma 1.152:

THEOREM 1.153 (ROEPER, 1997) LetM; be a mereotopology over a com-
pact, Hausdorff space X; (i = 1,2). Suppose there is a structure isomor-
phism f . My ~c Ms. Then there exists a homeomorphism h : X1 — Xo
which induces f—that is, one such that, for all v € My, f(r) = h(r).

Thus, every model of ®ca U {ext, ¢int} is isomorphic to exactly one
mereotopology over a compact Hausdorff space (up to homeomorphism).
Since this fact is important for the development here, we present details
of the proof.

We assume familiarity with the theory of ultrafilters: for details,
see Koppelberg, 1989, Ch. 1, Sec. 2. In this context, recall that, for
B a Boolean algebra, a filter on B is a set F C B such that a,b € F
impliesa-b € F,and a € F, a <b € B implies b € F. A filter is proper
if it is not the whole of B, or equivalently, if it does not contain 0. A
proper filter U is an wltrafilter if it is maximal under set-inclusion, or
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equivalently, if by + by € U implies by € U or by € U. The following
result is standard (Koppelberg, 1989, Chapter 1, 2.16).

PROPOSITION 1.154 (PRIME IDEAL THEOREM) Any proper filter on a
Boolean algebra can be extended to an ultrafilter.

In the following lemmas, let M be a mereotopology over a compact,
Hausdorff space X. Since a compact Hausdorff space is normal (and
hence regular), Lemma 1.23 applies.

LEMMA 1.155 Let U be an ultrafilter on M. Then the set (\{r |r € U}
is a singleton. We denote the member of this set by py and say that U
converges to py.

Proof We first show that (J{u"|u € U} contains at least one point.
For otherwise, [J{X \ v |u € U} = X, whence {—u|u € U} covers
X. By compactness of X, let —uq,...,—u, be a finite subcover. Then
—uy+ -+ —u, = 1;ie. uy - -+ -u, =0 € U, contradicting the fact
that U is proper. Next we show that [{u"|u € U} contains at most one
point. For suppose p, ¢ are distinct points of X. By Lemma 1.23, there
exists r € M such that p € r and ¢ € —r. Hence p & (—r)” and ¢ & r.
Since U is an ultrafilter, either r or —r is in U, so that either p or ¢ is
not in ({u"|u € U}. QED

LEMMA 1.156 Let U be an ultrafilter on M, and let r € M. If py € 1,
then there exists s € U such that py € s and s~ C r. Hence also, r € U.

Proof Suppose py € r € M. Then py ¢ (—r), and by Lemma 1.23,
there exists s € M such that py € s and s~ C r. But since py & (—s)~
we have —s € U, and thus s € U. QED

DEFINITION 1.157 If U and V are ultrafilters on M, we say U and V
are contacting if r~ Ns~ £ 0 for allr €U and s € V.

LEMMA 1.158 If U and V' are ultrafilters on M, then U and V are
contacting if and only if py = py.

Proof The if-direction is trivial. For the only-if direction, suppose that
pu # py. By Lemma 1.23, there exist r, s € M such that py € r, py € s
and v~ Ns~ = (. By Lemma 1.156, r € U, s € V, so that U and V are
not contacting. QED



First-Order Mereotopology 75

LEMMA 1.159 Let My and My be mereotopologies over weakly regular
topological spaces, let f : My ~¢c My be an isomorphism, and let U and
V' be contacting ultrafilters on My. Then f(U) and f(V) are contacting
ultrafilters on Ms.

Proof Almost immediate given the definability of < in terms of C
(Lemma 1.22). QED

LEMMA 1.160 Let My and My be mereotopologies over weakly regular
topological spaces, such that f: My ~¢c Ms. Let r € M, and let U be an
ultrafilter on My with py € r. Then pyqry € f(r).

Proof By Lemma 1.156, there exists s € U such that py € s and

s~ C r, so that s~ N (—=r)~ = (. Since f is also a Boolean algebra
isomorphism, f(s)” N (—=f(r))~ = 0, i.e. f(s)~ C f(r). Since f(s) €
fU), pry € f(s)™ C f(r). QED

Proof [Theorem 1.153] Suppose that f : M; ~¢ M,. Define the map
h by h(py) = pyw), for U a compact ultrafilter on M;. We show: (i)
h is well-defined and 1-1, (ii) the domain of A is the whole of X; and
the range of h is the whole of X, (iii) for all » € My, f(r) = h(r), and
for all s € My, f(s) = h~1(s), and (iv) h and h~! are continuous.
To prove (i), let U, V be compact ultrafilters on M7, both converging
to p. By Lemma 1.159, the isomorphism f maps contacting ultrafilters
to contacting ultrafilters. Hence, h is well-defined. Applying the same
reasoning to f~!, his 1-1. To prove (ii), let p € X1. Then {r € M;|p €
r} is a proper filter on M, and by Proposition 1.154, this filter can be
extended to an ultrafilter U on M;. By Lemma 1.155, U converges to
some point py. Since X is Hausdorff p = pyy. Thus, the domain of A is
the whole of X;. Similarly, if ¢ € X9, we have an ultrafilter V on Ms such
that ¢ = py. Thus ¢ = py = py-1(v)) = h(ps-1()), so that the range
of h is the whole of X5. To prove (iii), let pyy € f(r) with V an ultrafilter
on M. By Lemma 1.160, py-1(y) € 7. Hence, py = h(ps-1()) € h(r).
Conversely, let py € h(r). By the definition of h, ps-1y;) € 7, and
by Lemma 1.160, py € f(r). Hence f(r) = h(r). Now if s € My,
f~1(s) € My, so, applying the results just obtained to this set, we have
F71s) = hoL(A(F1(s)) = AL (F(F1(5))) = h=Y(s). (iv) Let u C X,
be an open set. Since M; is a mereotopology, for each point p € u, there
exists 7, € My with p € r, C u. Thus the set U = {r, € M|p € u}
satisfies [ JU = u. Then h(u) = h(JU) = U, h(r) = U, f(r) is a
union of open sets in X9 and hence is itself an open set in Xs. Therefore,
h~! is continuous. By substituting h~! and for h and repeating the
argument, h is continuous. QED
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7.2 Abstract models of geometrical
mereotopological theories

We have shown that mereotopologies over certain classes of topologi-
cal spaces can be characterized in terms of certain first-order sentences
which they make true. But what of specific mereotopologies of interest—
for instance, those defined over the open or closed plane? This is the
topic we now address, based on the results of Pratt and Lemon, 1997.

We employ standard results on prime models: for details, see Chang
and Keisler, 1990, Ch. 2. A structure 2 is said to be a prime model if
it is elementarily embeddable in any elementarily equivalent submodel.
Prime models are considered the ‘simplest’ or ‘smallest’ models of their
theories, a view which is justified by the following proposition (Chang
and Keisler, 1990, Theorem 2.3.3). In the sequel, all signatures are
silently assumed to be countable.

ProproOSITION 1.161 Elementarily equivalent prime models are isomor-
phic.

The following notion is closely related to that of primeness. A formula
¢ is said to be complete with respect to a theory T if, for all formulas
0 having the same free variables of ¢, exactly one of T' = ¢ — @ or
T = ¢ — —0 hold. A structure 2 is said to be atomic if any n-tuple a in
A satisfies a formula ¢(z) in 2 such that ¢ is complete with respect to
Th(). We have the following standard result (see, for example, Chang
and Keisler, 1990, Theorem 2.3.4).

PROPOSITION 1.162 A structure is countable atomic if and only if it is
a prime model.

Recall the concepts of topologically complete formula and homogeneous
mereotopology given in Definitions 1.89 and 1.51, respectively.

LEMMA 1.163 Let M be a homogeneous mereotopology over a topological
space X, and let 2 be a signature of topological primitives. If ¢ € Ly is
topologically complete in X over M, then ¢ is complete with respect to
Thy(M).

Proof Immediate from Lemma 1.91. QED

Theorem 1.176 below is a partial converse of this result.

For the next theorem, recall that ROQ(S?) is the rational polygonal
mereotopology over the closed plane, and that its L. <-theory is T, <, the
standard L. <-theory of closed plane mereotopology, which we axioma-
tized in Section 5. Recall further that 4% (2) is the L. <-formula stating
that z forms a c3-partition, employed in the proof of Theorem 1.84
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THEOREM 1.164 The mereotopology ROQ(S?), considered as a {c,<}-
structure, is a prime model of T.<. In fact, for any N, there exist
formulas v1(Z), ..., vk (Z) (with K depending on N), complete with re-
spect to T¢ <, such that

Te< = V2($3(2) =& (1(2) V-V yx(2)))-

Proof The first part of the theorem is immediate from Theorem 1.84
and Lemma 1.163. For the second part, observe that, for a given N,
there are only finitely many neighbourhood structures on an N-element
c3-partition, each one giving rise to a topologically complete formula of
the form

23 (2) A3 (2) AT = 24),
as described in the proof of Theorem 1.84. QED

Note that, by Lemma 1.38, ROQ(S?) and ROQ(RR?) are the same {c, <}-
structure, so we could replace S? in Theorem 1.164 by R?.
Similarly, we have

THEOREM 1.165 The mereotopologies ROQ(R?) and ROQ(S?), consid-
ered as {C}-structures, are prime models.

Proof As for Theorem 1.164, but using Theorem 1.88 and Corollary 1.85,
respectively. QED

Analogues of Theorem 1.165 hold in three dimensions, of course. For
example, we have:

THEOREM 1.166 The mercotopology ROQ(R?) is a prime model of the
Lc-theory of ROP(RR?).

The proof strategy is essentially identical to the plane case, using The-
orem 1.149. Note, however, that much more care is required to show
that the topologically complete formulas identified in Theorem 1.149
are complete with respect to the Lo-theory of ROP(R?). We leave the
details to the interested reader.

Returning to mereotopologies over S?, the question then arises as to
whether ROQ(S?) is strictly simplest among countable models of T.<,
in that there are countable models of that theory not isomorphic to
ROQ(S?). The answer is: yes and no. Recall that a theory is said to be
w-categorical if it has exactly one countable model up to isomorphism.
Recall also that a type in variables T = 1, ..., x;, is a maximal consistent
set of formulas whose free variables are among the zy,...,z,, and that
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a theory T is said to have a type ®(z) if ®(z) is consistent with 7". The
following result is standard (see, for example, Chang and Keisler, 1990,
Theorem 2.3.13).

PROPOSITION 1.167 LetT be a complete theory. Then T is w-categorical
if and only if, for each n, T has only finitely many types in x1,...,x,.

THEOREM 1.168 T, < is not w-categorical.

Proof By Proposition 1.167, it suffices to prove that T, < has countably
many types in the single variable z. It is easy to see that, for every
positive integer m, the formula ,,(x)

21 ...z /\ (c(z) Nz £0) A /\ ac(z; + 25) Nz = Z 2

1<i<m 1<i<j<m 1<i<m

is satisfied in ROQ(S?) by all and only those regions having exactly m
components. Hence, the 1,,(z) are all satisfied in ROQ(S?); so each
can be extended to a type I';,(z) of Th,<(ROQ(S?)). But the 9, (z)
are also pairwise mutually exclusive in T, <; so no two of them can be
extended to the same type. Hence, T < has infinitely many types in
x. QED

One the other hand, it turns out that T. < is almost countably cat-
egorical, in the following sense. Note that, since any model of T, <
is a Boolean algebra interpreting the predicate ¢, we may employ the
terminology introduced at the start of Section 4.1.

THEOREM 1.169 All countable finitely decomposable models of T < are
isomorphic.

Proof Let 2 |= T, < be finitely decomposable. By Claims 1.54 and 1.63,
every tuple from A can be refined to a c3-partition. Theorem 1.164 then
implies that 2 is prime. The result follows by Proposition 1.161.  qEp

The above results show that, while specific mereotopologies such as
ROS(S?) cannot be characterized in terms of the first-order sentences
which they make true, they almost can. Specifically, we have the follow-
ing abstract characterization of the mereotopology ROQ(S?).

COROLLARY 1.170 If 2 is a countable, finitely decomposable model of
Azioms 1—8 in Section 5.1, then 2L is isomorphic (as a {c, <}-structure)
to the mereotopology ROQ(S?).

Proof Theorem 1.169 and the fact that, by Theorem 1.100, any finitely
decomposable model 2 of Axioms 1—8 is elementarily equivalent to
ROQ(S?). QED
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7.3 Loose ends

We end this section with some matters touched on earlier in this
chapter. We continue to assume all signatures to be countable. The
following proposition is a special case of the Lowenheim-Skolem Theorem
(see, for example, Hodges, 1993, p. 90).

PROPOSITION 1.171 Let 2 be a X-structure and Z o countable subset of

A. Then 2 has a countable elementary submodel whose domain includes
Z.

Recall that a topological space X is said to be second countable if its
topology has a countable basis.

LEMMA 1.172 Let M be a mereotopology over a compact, second-countable,
Hausdorff space X, and let P C M be countable. Then there is a count-
able mereotopology Q) over X such that P C Q) and Q < M.

Proof We construct a countable subset P’ C M such that, for all
p € o C X with o open, there exists r € P’ such that p € r C o.
The lemma then follows from Proposition 1.171 by putting %l = M and
Z = PUP'. Let B be a countable basis for the topology on X. For
any b,c € B with b~ C ¢, take a cover of b~ by elements s € M such
that s C ¢ (possible because M is a mereotopology), choose a finite
subcover (possible because X is compact), and let 7, . be the sum, in
M, of the elements of this finite subcover. Certainly, b C r, . C ¢™. Let
P'={rp.|bc€ B,b- Cc}. Since X is normal, for all p € 0o C X with
o open, we can find b,c € B with p € b, b~ C ¢ and ¢~ C o. But then
P € 1pc C 0 as required. QED

Note that Lemma 1.172 holds for all (countable) signatures.
We may now derive the promised strengthening of Corollary 1.117.

COROLLARY 1.173 All splittable, finitely decomposable mereotopologies
over S? with curve-selection have the same Ly,-theory for any topological
signature 2.

Proof Let My, My be two such mereotopologies. Extend the sig-
nature X if necessary so that it contains the predicates C, ¢ and <,
and expand M; and Ms by interpreting these predicates in the normal
way. By Lemma 1.172, let @); be a countable mereotopology over S?
such that Q; <y M;, for + = 1,2. Thus, (}; and (2 are splittable,
finitely decomposable mereotopologies over S? having curve-selection.
By Corollary 1.117, Q1 =< Q2. By Theorem 1.169, Q1 ~.< Q2. By
Lemma 1.49, Qi ~¢ Q2. By Theorem 1.153, there is a homeomorphism
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mapping Q1 onto (3. Finally, by Lemma 1.152, @)1 ~y» @2, whence
M1 =y MQ. QED

Recall from Definition 1.96 that, if X is a signature of topological prim-
itives, Ty, denotes Thy(ROS(S?)). By Corollary 1.173, Ty is the Ly-
theory of any splittable, finitely decomposable mereotopology over S?
having curve-selection. This justifies our decision to call it the standard
Ly-theory of closed plane mereotopology.

Theorem 1.169 now has the following corollary.

COROLLARY 1.174 Let M be a countable, finitely decomposable mereo-
topology over a locally connected, compact Hausdorff space X, such that
The(M) = Te. Then there is a homeomorphism h : X < S? taking M
to ROQ(S?).

Proof By Lemmas 1.22 and 1.27, Thg . <(M) = T¢<. By Theo-
rem 1.169, M ~, < ROQ(S?). But T¢, < contains a formula defining
C explicitly in terms of ¢ and <. Hence M ~¢c ROQ(S?). Now apply
Theorem 1.153. QED

We remark that there is no prospect of removing the compactness con-
dition from Corollary 1.174. For example, let p, be, say, the point of S?
with coordinates (0, 7), and consider the topological space X = S?\ {p,}
and the mereotopology M over X given by M = {r \ {p:} | r €
ROQ(X)}. Then ROQ(S?) ~c.< M; but S and X are not homeo-
morphic.

A further consequence of Theorem 1.153 is the promised partial con-
verse of Lemma 1.163. We require the following fact about prime models.

LEMMA 1.175 Let 2 be a countable, atomic model and let a ,b be tu-
ples from A which satisfy the same formulas in 2. Then there is an
automorphism of A taking a to b.

Proof Almost immediate from Proposition 1.161, by adding a tuple of
individual constants to stand alternatively for a and b. QED

THEOREM 1.176 Let M be a mereotopology over a compact, second-
countable Hausdorff space X, and let 3 be a signature of topological
primitives such that C (contact) is first-order definable over M. If every
tuple from M satisfies an Lx-formula which is complete with respect to
Thy, then that Ly-formula is topologically complete in M over X.

Proof Let ¢ be complete with respect to Thy (M), and suppose that
M = ¢[f], M = ¢[5]. We must show that 7 ~ 5. By Lemma 1.172,
let M' be any countable mereotopology over X containing the tuples 7
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and 5, such that M’ < M. Thus, M’ is countable and atomic, and ¢
is a complete formula with respect to Thy(M') satisfied by both 7 and
5. By Lemma 1.175, there exists an automorphism f : M’ ~y, M' such
that f(7) = 5. Then, by Theorem 1.153, there is a homeomorphism
h: X — X taking 7 to 5. QED

Lemma 1.163 and Theorem 1.176 establish the close connection between
the notions of topological completeness with respect to a topological
space and completeness with respect to a mereotopological theory.

8. Philosophical Considerations

The earliest modern work on region-based theories of space is that of
Whitehead and de Laguna (Whitehead, 1919; Whitehead, 1920; White-
head, 1929; de Laguna, 1922a; de Laguna, 1922b; de Laguna, 1922c).
Both authors propose a system of postulates governing a small collection
of primitive spatial relations, together with reconstructions of familiar
spatial concepts in terms of those relations. The postulates serve im-
plicitly to define the primitive relations they constrain (and perhaps the
domain of entities over which they quantify), while the reconstructions of
familiar spatial concepts connect the whole system to the data of spatial
experience. To be sure, both Whitehead and de Laguna motivate their
postulates by providing informal interpretations for their respective spa-
tial primitives. Thus, for example, Whitehead illustrates his relation of
extensive connection (as he calls it) using diagrams suggesting that two
regions are extensively connected just in case their topological closures
share a point in common (this is the interpretation given to the binary
predicate C in this chapter). However, such explanations are intended
only as a heuristic guide. Officially, spatial primitives acquire their con-
tent solely from the entire system postulates in which they participate.
Primitives, by definition, are not explicitly definable.

The inspiration for such systems was presumably the axiomatic treat-
ment of geometry found in Euclid (and latterly Hilbert); and the moti-
vation for carrying out the procedure on a purely region-based footing
seems, for both authors, to have been a certain disquiet about the em-
pirical distance between the concept of a point as a primitive geometri-
cal entity and the character of everyday spatial experience. The great
difficulty of this approach, of course, is the problem of evaluating the
system of postulates and conceptual reconstructions proposed. White-
head’s system has thirty-one postulates (or assumptions, in Whitehead’s
terminology) and a similar number of definitions. De Laguna’s system,
though far tidier, is also hardly self-evident. The only obvious sources
of justification for such systems are their ability to chime with our pre-
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theoretic intuition and their eventual integration into a larger, empiri-
cally successful, physical theory. Neither source is very satisfactory. On
the one hand, as we have seen in this chapter, almost any collection of
spatial primitives enables us to write down propositions on which pre-
theoretic intuition cannot be expected to return a reliable verdict. On
the other hand, although empirical confirmation of a general physical
theory must provide some support for the account of space it contains,
the size of the undertaking and the difficulty of assigning credit when
theories perform well (or blame when they perform badly) means that
there is little practical prospect of any such justification for such systems
of postulates and conceptual reconstructions.

An alternative approach to developing a region-based theory of space
is illustrated by Tarski’s Geometry of Solids (Tarski, 1956). Tarski too
develops a geometry in which regions, not points, are the primitive ob-
jects; however, in contrast to Whitehead and Laguna, he does not build
his theory by writing a collection of plausible-looking, but unprovable,
axioms. Rather, beginning with the familiar model of space as R?, he
considers a formal language whose variables range over the set of of
spheres in R? (defined in the standard way), and whose sole non-logical
constant is the part-whole relation (again, defined in the standard way).
Because the ‘primitives’ in Tarski’s geometry of solids are well-defined
mathematical objects and relations, the question of what postulates they
satisfy is a well-defined mathematical problem, not a matter for intu-
ition or experiment. And because many familiar spatial concepts have
rational reconstructions in terms of the standard model, the question of
how, if at all, these concepts can be expressed using formulas of Tarski’s
language is again a purely mathematical affair. Having thus specified
the structure under consideration and the language used to describe it,
Tarski then goes on to examine the kinds of logical issues that should
by now be familiar to us. In fact, Tarski obtains a system of axioms (in
higher-order logic) for which the standard Euclidean interpretation is,
up to isomorphism, the only model.

This alternative approach is, in contrast to the ‘postulationist’ strat-
egy of Whitehead and de Laguna, conservative and rationalist: con-
servative, because no attempt is made to build systems of axioms and
definitions from the ground up; rationalist, because the appropriate-
ness of the resulting region-based theories is secured by means of their
logical relations to point-based models whose usefulness as representa-
tions of the space we inhabit—at least approximately and for mesoscopic
objects—is anyway beyond doubt. It is this approach that we have taken
in this chapter. Latterly, region-based theories of space have increased
in popularity, following the seminal work of Clarke, 1981, Clarke, 1985,
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Biacino and Gerla, 1991,Randell et al., 1992,Gotts et al., 1996and Renz
and Nebel, 1997.0ne reason for this resurgence of interest, particularly
within the A.Il. community, is the requirement to quantify over spatial
regions without leaving the realm of first-order logic. The technology of
theorem-proving for first-order logic is more highly developed than for
higher-order logics; and, more generally, formalisms with limited expres-
sive power enjoy a premium in A.L if they give rise to entailment and
satisfiability problems which have (theoretically or practically) efficient
algorithmic solutions. Insofar as the study of region-based theories of
space is motivated by computational considerations, the best approach
to developing and analysing such theories is surely that of Tarski, not
that of Whitehead.

These matters notwithstanding, the most striking outcome of the in-
vestigation undertaken here is just how much information it gives us
about the possibilities for developing a truly region-based theory of
space, along the lines apparently envisaged by Whitehead and de La-
guna. Consider, for example, the issue of the ‘correct’ set of postulates.
True, Examples 1.17 and 1.18 show that different mereotopologies de-
fined over the spaces RO(R?) indeed have different first-order theories.
Nevertheless, the discussion of Section 5 shows that the choices on offer
are much more limited than these examples might initially lead one to
suppose. In particular, all finitely decomposable, splittable mereotopolo-
gies over S? having curve-selection have identical Ly-theories, for any
signature of topological primitives. We proposed that this common Ly-
theory should therefore be regarded as standard.

Or take again the issue of reconstructing familiar spatial concepts
in terms of a chosen collection of primitives. We have seen that first-
order topological languages interpreted over well-behaved mereotopolo-
gies have surprising—but not unlimited—expressive power. In particu-
lar, we provided formulas expressing a variety of familiar spatial rela-
tionships (as defined by their familiar point-based definitions, of course)
over a wide range of mereotopologies. In addition, we showed that the
first-order language L. < is sufficiently expressive that every tuple of
polygons in S? can be characterized up to similar situation by one of its
formulas, and that the first-order language L¢ is sufficiently expressive
that every tuple of polygons in R? and every tuple of polyhedra in R3
can be characterized up to similar situation by one of its formulas.

Most striking of all, however, is what the foregoing analysis tells us
about the view of space to which any first-order mereotopological the-
ory commits us. While almost all interesting mereotopologies have first-
order theories which are not categorical in any infinite cardinal, we nev-
ertheless showed that the plane mereotopology ROQ(S?) and the spatial
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mereotopology ROQ(S?) are prime models of their first-order theories
over standard signatures of topological primitives. We further showed
that ROQ(S?) is, up to isomorphism, the only countable, finitely decom-
posable model of its L. <-theory; and we remarked that a corresponding
observation—albeit with a more complex version of the finite decompos-
ability condition—must apply in three dimensions as well. Finally, we
showed that mereotopologies over compact, Hausdorff spaces, regarded
as structures interpreting suitably rich topological signatures, determine
their underlying spaces up to homeomorphism. In conclusion, the log-
ical possibilities for region-based topological theories of space are more
constrained than their earliest proponents might perhaps have thought.
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