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By a spatial logic, we understand any formal language interpreted over
a class of structures featuring geometrical entities and relations, broadly
construed. The formal language in question may employ any logical
syntax: that of first-order logic, or some fragment of first-order logic, or
perhaps higher-order logic. The structures over which it is interpreted
may inhabit any class of geometrical ‘spaces’: topological spaces, affine
spaces, metric spaces, or perhaps a specific structure such as the projec-
tive plane or Euclidean 3-space. And the non-logical primitives of the
language may be interpreted as any geometrical properties or relations
defined over the relevant domains: topological connectedness of regions,
parallelism of lines, or perhaps equidistance of two points from a third.
What all these logics have in common is that the operative notion of va-
lidity depends on the underlying geometry of the structures over which
their distinctively spatial primitives are interpreted. Spatial logic, then,
is simply the study of the family of spatial logics, so conceived.

An analogy will help elucidate this rather austere-looking definition.
From our stance, spatial logic parallels the more established area of tem-
poral logic. A temporal logic is a formal language interpreted over some
class of structures based on frameworks of temporal relations, broadly
construed. The language in question, though usually some modal frag-
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ment of first- or higher-order logic, may in principle employ any logical
syntax; the objects over which that syntax is interpreted may include
points, paths, or extended intervals over any variety of partial orders;
and the assumed partial order ultimately provides the interpretation
for the distinctively temporal primitives of the formal language. What
all temporal logics have in common, whether point- or interval-based, is
that their operative notion of validity depends on the assumed properties
of the underlying temporal flow. And what gives them their enduring
appeal is the way in which the formal languages they employ balance
expressive power against computational complexity. In this respect, tem-
poral logic is the computationally motivated study of time.

Let us set the scene for the treatment of spatial logic in this book by
examining some of the historical trends that have given rise to it. Classi-
cal geometry, the cultural model of deductive proof par excellence since
Euclid’s Elements, was finally analyzed in full mathematical precision
in Hilbert’s Grundlagen der Geometrie (Hilbert, 1909; see also Hilbert,
1950), when all its axioms, and possible variations on them, had be-
come clear. Yet, despite its starkly abstract view of points, lines and
planes, the Grundlagen is still couched not in a formal language, but
rather in (lightly mathematicized) idiomatic German. Hilbert’s Axiom
of Parallels provides a good example:

Let a be a line, and A a point not on a. Then, in the plane determined
by a and A, there is at most one line which passes through A and does
not meet a. (tr. from Hilbert, 1909, p. 20)

No attempt is made to tease out the implicit logical syntax of this lan-
guage, or to analyze the underlying inference engine much beyond what
Euclid had already done in his Common Notions. This is perhaps clear-
est in the case of Hilbert’s final Axiom of Completeness:

The elements (points, lines, planes) of the geometry form a system of
objects which is not capable of any extension, subject to maintenance
of all the preceding axioms. That is to say: it is not possible to add to
the system of points, lines and planes another system of objects in such
a way that, in the combined system, all [previous] axioms are satisfied.
(Ibid., p. 22.)

It was not until after the development of the apparatus of formal logic
and model-theoretic semantics in the first half of the Twentieth Century
that logicians were able to probe the precise inferential and expressive
resources of geometry, in a second round of formalization culminating in
Tarski’s Elementary Geometry (Tarski, 1959).

Tarski’s decisive contribution in his 1959 paper was not simply to
force Hilbert’s axioms into the regimented syntax of some formal lan-
guage, but rather, to investigate what happens when that syntax is
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restricted. Specifically, Tarski employs a first-order logic, with vari-
ables ranging over points in the Euclidean plane, and with non-logical
predicates standing for two primitive spatial relations: a ternary rela-
tion of ‘betweenness’ and a quaternary relation of ‘equidistance’. The
resulting language is sufficiently expressive to formulate much of Eu-
clidean geometry—for example, Pythagoras’ theorem, or the existence
of the nine-point Feuerbach circle. The computational reward for this
loss of expressive power is considerable. Tarski showed that the theory
of elementary geometry is decidable: there is a mechanical procedure to
determine, of any given sentence in the relevant language, whether that
sentence is true under the advertised interpretation. By contrast, the
second-order theory needed to express all of Hilbert’s axioms is unde-
cidable.

Tarski’s discovery illustrates the most distinctive feature of logic in
the wake of the model-theoretic revolution of the previous century: its
fundamentally linguistic orientation. The model-theoretic approach to
logic takes as its central concern the often intricate relationship between
mathematical structures and languages which describe them. On this
view, spatial logic, as defined above, becomes the study of the relation-
ship between geometrical structures and the spatial languages which
describe them. It is this preoccupation with language which divides
spatial logic from geometry as traditionally conceived. More recently, of
course, the enterprise of automating logical deduction using electronic
computers has necessitated new levels of precision and sophistication in
reasoning about the properties of formal languages and their relation-
ship to their subject matter. In this setting, the issue of balancing the
expressive power of a language against the computational complexity of
performing deductions within it occupies centre-stage.

We can broaden our perspective by considering two further exam-
ples of spatial logics in addition to Tarski’s Elementary Geometry. To
motivate our second example, recall that, in Elementary Geometry, all
variables are taken to range over points in the Euclidean plane. This al-
lows for quantification over geometrical figures defined by a fixed number
of points, such as line segments, triangles, circles , and so on, but not
over spatial constellations defined by point-sets of arbitrary finite size,
such as polygons, let alone those defined by infinite sets of points, such
as, for example, arbitrary connected regions. The question therefore
arises as to what happens when these restrictions are lifted. In fact,
Tarski himself had already investigated such a language in his Geometry
of Solids (Tarski, 1956). This system employs the syntax of second-order
logic, with the object variables ranging not over points, but instead over
certain ‘regions’ in three-dimensional Euclidean space (hence, the set-
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variables range over sets of regions). The regions in question—Tarski
called them solids—are the regular closed subsets of R?, namely, those
subsets of R? equal to the closure of their interior. Tarski’s language fea-
tures two non-logical predicates: one standing for the the binary relation
of parthood, the other for the unary property of being spherical. Again,
Tarski establishes a remarkable fact about the relationship between the
formal language and the structure it is interpreted over: the resulting
theory can be axiomatized completely (in a second-order sense), and
moreover is categorical: all models of this theory are isomorphic to the
standard interpretation on the reals. This sort of axiomatization in very
powerful logical languages has found many successors, e.g., in qualitative
axiomatizations of physics.

For our third example of a spatial logic, we turn to topology. While
Euclidean geometry is associated with rigid transformations like trans-
lations, rotations, and inversions, the mathematicians creating topol-
ogy in the early decades of the 20th Century focused on much coarser
transformations deforming shapes up to tearing and knotting. Sub-
sequent to its invention, topology, too, became an object of logical
study, and yet again, Tarski’s work proved seminal. Tarski observed
that topology has small decidable fragments which could be brought to
light by treating the topological interior operation as a modal operator
(McKinsey and Tarski, 1944). The connection to the other spatial logics
discussed above becomes apparent if we subject McKinsey and Tarski’s
original modal language to some essentially cosmetic reformulation. The
variables of this language are taken to range over arbitrary subsets of any
fixed topological space. These variables may be combined to form com-
plex terms by means of function-symbols denoting various set-theoretic
operations (union, intersection and complement), and topological opera-
tions (interior and closure); such terms denote subsets of the topological
space over which they are interpreted. With terms constructed in this
way, the language then features equality as its only predicate. Here we
have extreme poverty of expressive resources: primitive function-symbols
expressing only set-theoretic and topological operations, no non-logical
predicates, and no quantifiers. But there is again a computational re-
ward: the satisfiability problem for this logic is decidable in polynomial
space. While too inexpressive to represent much of topology, this lan-
guage has had profound repercussions in other areas, in particular in the
universal algebra of Boolean algebras with added operators, and much
contemporary modal logic. Furthermore, it has also been the inspiration
for much recent work on topological logics, many of them equipped with
more elaborate syntax and richer topological primitives, as the reader of
this book will soon discover.
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With these examples to guide us, let us return to the abstract char-
acterization of spatial logic with which we began. Spatial logics arise
by making a number of design choices, along three principal dimensions.
The first concerns the collection of geometrical entities which make up
our interpretations: points, lines, regions (of various kinds), and so on.
In Tarski’s (plane) Elementary Geometry, variables range over the collec-
tion of points in the Euclidean plane; likewise, in his Geometry of Solids,
variables range over the collection of regular closed subsets of R3; and
in his modal topological language, variables range over the collection of
all subsets of some topological space. The second principal dimension
concerns the choice of primitive relations and operations over these enti-
ties to interpret the non-logical primitives of our language. This choice
of primitives of course reflects the level of spatial structure the particu-
lar logic is concerned with—metric, affine, projective, or topological; but
even within these broad divisions, there is room for almost endless varia-
tion. The third principal dimension concerns the purely logical resources
at our disposal. We have already seen that these can be set at many
levels: from weak ‘constraint’ languages through to richer first-order lan-
guages or even higher-order formalisms which include the resources of
set theory. Needless to say, none of the choices along these principal
dimensions is intrinsically right or wrong: they simply parametrize the
family of available spatial logics.

Classification of geometrical languages in terms of the range of the
spatial primitives they feature of course recalls the long-standing clas-
sification of ‘geometries’, broadly conceived, given by Klein’s Erlanger
Programm (Klein, 1893b; see also Klein, 1893a). And indeed the most
sophisticated accounts of expressive power of such languages today are
couched in terms of invariance relations between models (isomorphism,
bisimulation, and the like), much in the same spirit. However, the logi-
cal approach opens up many new possibilities in this regard, such as, for
instance, a new sort of invariance between topological patterns, much
coarser even than topological homeomorphism, viz. modal bisimulation.
This is topology taken to the extreme, but there are interesting interpre-
tations in terms of model comparison games—a style of thinking which
might have appealed to the founders of geometry, given Brouwer’s early
use of games in defining the notion of topological dimension (Brouwer,
1913, p. 148).

Once we have fixed a spatial logic, four salient issues present them-
selves. First, how can we characterize its valid formulas? Second, what
is its expressive power? Third, what is its computational complexity?
And fourth, what alternative interpretations does it have? We briefly
consider each of these in turn. The first issue is so familiar as to require
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little explanation. Given a formal language interpreted over a certain
class of geometrical structures, it typically makes sense to ask (depend-
ing on details of syntax) which sentences of that language are true in all
structures of that class. Mostly, these characterizations are couched in
the form of a list of axioms and (finitary) rules-of-inference. However,
there are cases where additional machinery is required, for example,
when the set of validities is not recursively enumerable, or where ex-
plicit proof systems are required to provide geometrical ‘constructions’
in Euclid’s sense.

Second, we have already noted that current treatments of expressive
power in logic are derived from the geometrical notions of invariance rela-
tions across models, setting the level of semantic resolution beyond which
the given language cannot probe. Examples of such invariance relations
are potential isomorphism for first-order logic, or bisimulation for modal
languages; but there are many more. Within given models, such rela-
tions specialize to notions of automorphism or internal bisimulation—
a viewpoint which is actually somewhat closer to the mathematician’s
usual way of thinking about ‘symmetries’ of a spatial structure. Weyl
at one point observed that point tuples in Euclidean space which are re-
lated by an automorphism must satisfy the same geometrical formulas,
and raised the converse question of whether sharing the same properties
in some given logical language implies automorphism invariance (Weyl,
1949, p. 73). Indeed, invariance is not just descriptive weakness, but also
the source of information flow across situations! Logical model theory
has a host of sophisticated results concerning invariance. In particu-
lar, invariance relations can be fine-tuned in terms of games, such as
Ehrenfeucht-Fraissé games matching first-order logic. Given a notion of
invariance, the model theory of definability can start, and indeed, many
results about expressive power of spatial languages can be found in the
chapters to follow.

Third, complexity-theoretic analyses of logical systems typically focus
on two problems: model-checking (determining whether a given formula
is true in a given interpretation) and satisfiability checking (determining
whether a given formula is true in some interpretation or other). Model-
checking has been little-explored in the context of spatial logics; satisfi-
ability checking, by contrast, has received much more attention. Most
first- (or higher-) order spatial logics interpreted over familiar spatial do-
mains are undecidable; therefore, this issue is obviously of greatest inter-
est when dealing with spatial logics with more limited expressive power.
A striking example is provided by spatial logics interpreted over the reg-
ular closed sets of arbitrary topological spaces whose language involves
just Boolean connectives (no quantifiers) and whose spatial primitives
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represent various topological relations and functions. The satisfiabil-
ity problem for such logics is generally decidable, and its complexity has
been determined for a range of cases. In this light, spatial logics actually
do pose an interesting challenge which is not yet well-understood. The
general methodology in logic design has been to find expressive yet decid-
able formalisms, cleverly steering a middle course between the opposing
evils of expressive poverty and undecidability. However, methods of anal-
ysis which work with general models are often powerless when confronted
with languages interpreted over specific structures, as is generally the
case with spatial logics. Sometimes, the spatial models over which one
is working themselves support decidability for rich languages—witness
again Elementary Geometry, where it is the structure of Euclidean space
that drives the quantifier elimination procedure establishing decidabil-
ity. We are still far from understanding the precise balance between all
these triggers of higher or lower complexity in spatial logics.

Fourth, and most speculatively, we have the issue of alternative inter-
pretations. Tarski’s Geometry of Solids possesses, as we have seen, just
one model up to isomorphism, but most spatial logics have many models.
To some extent, this is just the expression of a familiar phenomenon in
logic, and mathematics generally. Some theories, such as group theory
or the the theory of affine spaces, are designed to have many models,
and the more of these there are, the greater their range of applicabil-
ity. Other theories were intended to describe one particular structure,
such as the natural numbers, Euclidean space, or most imperialistically
of all, the set-theoretic universe. Geometry provided early examples of
how theories originally conceived as characterizations of specific struc-
tures could turn out to have alternative models. This issue is brought to
the fore in the subject of spatial logic, where the formal systems under
investigation expressly invite the search for alternative interpretations
and thus alternative ways of conceptualizing space. Even bolder views
were ventured by Beth in the 1950s, who claimed that it was geometry’s
move from one unique Space to a plurality of ‘spaces’ that underlay the
system-based methodology of modern science and the fall of Aristotelian
a priori dogmatism (Beth, 1959, Sec. 21). Be that as it may, the present
authors agree that spatial logic can have philosophical repercussions be-
yond its narrower technical confines.

More prosaically, much of the renewed interest in spatial logic in re-
cent years has come from computer science. We identify three examples
of this trend. The first comes from artificial intelligence, where attempts
have recently been made to develop logics of qualitative spatial reasoning.
The motivation is as follows: numerical co-ordinate descriptions of the
objects which surround us are hard to acquire, inherently error-prone,
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and probably unnecessary for most everyday tasks we want to perform
(or want a machine to perform); therefore—so goes the argument—
reasoning with purely qualitative descriptions of those objects’ spatial
configurations is closer to human reasoning and thus will lead to more
efficient and effective AL. But which qualitative spatial terms, exactly,
should we reason with? Ready-made tools from geometry or topology
will not do: we have to devise new logics for ourselves. Many of these
logics are discussed in this book.

The second example comes from the theory of spatial databases. In
computer applications, spatial data is frequently stored in the form of
polygons (or polyhedra)—in effect, sets of points definable by Boolean
combinations of linear inequalities. These sets can be finitely repre-
sented, and their well-behaved character makes them particularly amenable
to computer processing. But in fact there is no need to set our expres-
sive sights so low; for polygons and polyhedra are a special case of the
more general class of semi-algebraic sets, that is, those sets of points
definable by Boolean combinations of polynomial inequalities. Within
mathematics, semi-algebraic sets form the basis for real algebraic geom-
etry; within computer science, they have given rise to the discipline of
constraint databases. In a constraint database, spatial data is stored in
the form of first-order formulas in the language of fields. The key fact
here is the quantifier-elimination theorem for the theory of the reals.
This result allows constraint databases to be accessed effectively using
queries which are likewise written as first-order formulas over an appro-
priate vocabulary. The relevant chapter in this book explores some of
the intricate logical issues that arise from this approach to spatial data.

Our third example comes from image processing, where it is conve-
nient to describe objects as sets of vectors that can be ‘added’ (taking all
linear sums) or ‘subtracted’ (taking all linear differences). By variously
combining these ‘Minkowski operations’, certain useful processing tasks
can be performed, as, for example, when one set of vectors, representing
an ‘eraser’, is used to ‘clean up’ the boundary of another, representing
a perceived object. Mathematical morphology is a theory of subsets of
vector spaces with the two operations of addition and subtraction at
its core; the properties of these operations are generalized in abstract
algebraic and category-theoretic ways. Looking at space in this way
brings to light a surprising amount of new structure. This theory was
not developed within mathematical logic; but the relevant chapter in
this book will show how logical patterns do arise, involving both modal
and first-order languages, while the calculus of valid principles shows
surprising analogies with logical systems proposed in recent decades for
very different purposes, such as linear logics of computational resource
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management. Again, we see how new choices of spatial objects and spa-
tial structures lead to new mathematics—and there is no reason to think
that this creative process has yet run dry.

Finally, let us remove a possible misunderstanding, again taking a cue
from the history of geometry. Our presentation may have made it look
as if there is a vast collection of different spatial logics, each a world unto
itself in terms of objects, primitive relations, and logical strength. But
one of the most striking discoveries in the foundations of geometry in
the 19th Century, prominently displayed in Hilbert’s Grundlagen, was
the fact that very different-looking theories can turn out to be related
at a deeper level of analysis. Inspiring examples are the embeddings of
non-Euclidean logics into Euclidean ones given by Klein and Poincaré.
Likewise, spatial logics show inter-connections which may be brought
out by various means: semantic model transformations, direct linguistic
translations, and so on. Even though little is known about the pre-
cise links between most known systems, we emphasize this point as a
reassuring thought about the coherence of the field.

This concludes the editors’ thoughts about the general setting for this
book, while providing a way of positioning specific chapters. But of
course, the real content is in the chapters themselves, which do much
more than fit editorial preconceptions. Each tells a story about a par-
ticular approach to spatial logic. The chapters have been arranged in
the following thread, though they can be read in other orders as well.

We start in Tarski’s geometrical spirit, with first-order languages. In
Chapter ??, Pratt-Hartmann considers first-order topological languages
interpreted over low-dimensional Euclidean spaces, applying techniques
from logical model theory to analyze expressive power and axiomati-
zability. In Chapter ??, Bennett and Diintsch study both first-order
and weaker modal topological languages over a large class of topological
spaces, emphasizing basic decidable structures of wide use in AI and
beyond. Renz and Nebel take this even further in Chapter 77, with syn-
tactically highly restricted constraint languages for spatial structures,
allowing for great computational efficiency.

From fragments of first-order languages, there is a natural transition
to modal logics for topology, continuing the tradition started by Tarski
and others in the 1930s. Chapter ?? by Bezhanishvili and van Ben-
them tells the story of modern modal approaches to topology (and a few
other spatial structures), emphasizing the main axiomatic and semantic
techniques developed in modern modal logic. This theme is then con-
tinued in Chapter 7?7 by Moss, Parikh and Steinsvold, who explore the
other logical tradition of thinking about topology, viz. as an account of
information structure. Next, Chapter ?? by Balbiani, Goranko, Keller-
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man and Vakarelov takes the modal viewpoint to the study of affine and
metric geometry, moving up to first-order languages where needed. In
particular, completeness theorems turn out to be related to the basic
geometrical issue of coordinatization. Finally, Chapter ??7 by Vickers
takes the epistemic view of topology to the higher mathematical level
of topos theory, merging spatial logic and epistemic logic with category
theory and type theory.

Just as in science generally, so too in spatial logic, space enters into
natural combinations with other fundamental notions. One obvious case
is the combination of space and time, which is unavoidable in many prac-
tical computational settings, and of course, also, in the foundations of
physics. Chapter ?? by Kontchakov, Kurucz, Wolter and Zakharyaschev
studies temporal logics with added affine and metric modalities, using
sophisticated techniques from current research on the complexity of com-
bined modal logics. A special case of this type of combination is found in
Chapter ?? by Kremer and Mints, who add a dynamic temporal operator
of one-step system evolution to modal logics of topology, and show that
this simple move provides significant results like the Poincaré recurrence
theorem. Finally, Chapter ?? by Andréka, Madariasz and Németi goes
far beyond simple modal languages of space-time, and develops both the
special and the general theory of relativity on a first-order basis, contin-
uing Tarski’s program for geometry to obtain striking new foundational
results which are at the same time conceptually enlightening.

The next group of chapters represent a counterpoint to the ‘logical’
investigations so far, reporting further mathematical and computational
advances. Chapter 7?7 by Smyth and Webster explores the extent to
which topological ideas can be developed in discrete spaces, moving
closer to the discrete topologies used in modern mathematics, pattern
recognition, and image processing. Chapter 7?7 by Geerts and Kuipers
describes the use of algebraic constraints for spatial databases to de-
scribe regions in Euclidean space, reminding us of the great tradition of
analytic geometry which also underlies the coordinatizations employed
by Tarski, and by several authors in our book. Chapter 7?7 by Bloch,
Heijmans and Ronse develops the theory of mathematical morphology,
both on concrete vector spaces and in algebraic abstraction, and intro-
ducing, at the end, logical formalisms based on them.

Beyond these technical subjects, our book still has a coda. We have
indicated already that spatial logic also has a broader conceptual aspect.
Chapter 7?7 by Varzi is an extensive discussion of spatial structure in the
philosophical tradition, both ancient and modern, using logical tools to
develop philosophical conceptions.
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Despite the wealth of topics in our fifteen chapters, this book also
set itself definite limits. First, we have not even exhausted the mathe-
matical connection, witness the long-standing historical interest in ‘dia-
grammatic reasoning’ spawned by Euclid’s Elements, and reinforced by
modern research on graphical representation of information and associ-
ated styles of inference. There are deep issues here about the connection
between symbolic and visual paradigms, bypassed in our cheerfully tech-
nical account of ‘spatial logics’. We acknowledge them; but they are be-
yond the scope of this book. Likewise, many further varieties of spatial
representation and spatial reasoning occur in disciplines like linguistics
and psychology, and many more patterns await formal logical study. In
addition, cognitive neuro-science tells us about the often surprising in-
terplay between visual, diagrammatic, and more symbolically oriented
parts of the brain in any reasoning task. Again, we think this is a fasci-
nating theme, and we trust that many interesting interactions with the
spatial logics of this book will one day come to light. But we have chosen
the current set of chapters for their coherence in topic and methodology,
and frankly also, their mathematical quality. We see the broader area
of spatial reasoning; we recognize its relevance to the contents of this
book; and exclusion does not imply disrespect. Broader texts on spatial
reasoning should, and no doubt will, appear. But, in putting together
this tighter book, the editors have stuck to what they see as the basic
axiom of ‘social geometry’: Always leave room for others.

Acknowledgment
The authors wish to thank Dr. Paul van Ulsen for his kind help.

References

Beth, W. (1959). The foundations of mathematics: a study in the phi-
losophy of science. North Holland, Amsterdam.

Brouwer, L.E.J. (1913). Uber den nattirlichen Dimensionsbegriff. Journal
fur die reine und angewandte Mathematik, 142:146-152.

Hilbert, D. (1909). Grundlagen der Geometrie. B.G. Teubner, Leipzig
and Berlin, 3rd edition.

Hilbert, D. (1950). The Foundations of Geometry. Open Court, La Salle,
IL, 2nd edition.

Klein, Felix (1893a). A comparative review of recent researches in geom-
etry. Bulletin of the New York Mathematical Society, 2:215-249.

Klein, Felix (1893b). Vergleichende Betrachtungen iiber neuere geometrische
Forschungen. Mathematische Annalen, 43(1):63-100.



12

McKinsey, J. and Tarski, A. (1944). The algebra of topology. Annals of
Mathematics, 45:141-191.

Tarski, Alfred (1956). Foundations of the geometry of solids. In Logic,
Semantics, and Metamathematics, pages 24-29. Clarendon Press, Ox-
ford.

Tarski, Alfred (1959). What is Elementary Geometry? In Henkin, L.,
Suppes, P., and Tarski, A., editors, The Aziomatic Method, with Spe-
cial Reference to Geometry and Physics, pages 16—29. North-Holland
Publishing Co., Amsterdam.

Weyl, H. (1949). Philosophy of mathematics and natural science. Prince-
ton University Press, Princeton.



