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Abstract. A region-based model of physical space is one in which the primitive
spatial entities are regions, rather than points, and in which the primitive spatial
relations take regions, rather than points, as their relata. Historically, the most
intensively investigated region-based models are those whose primitive relations are
topological in character; and the study of the topology of physical space from a
region-based perspective has come to be called mereotopology. This paper concen-
trates on a mereotopological formalism originally introduced by Whitehead, which
employs a single primitive binary relation C(z,y) (read: “z is in contact with y”).
Thus, in this formalism, all topological facts supervene on facts about contact.
Because of its potential application to theories of qualitative spatial reasoning,
Whitehead’s primitive has recently been the subject of scrutiny from within the
Artificial Intelligence community. Various results regarding the mereotopology of
the Euclidean plane have been obtained, settling such issues as expressive power,
axiomatization and the existence of alternative models. The contribution of the
present paper is to extend some of these results to the mereotopology of three-
dimensional Euclidean space. Specifically, we show that, in a first-order setting where
variables range over tame subsets of R®, Whitehead’s primitive is maximally expres-
sive for topological relations; and we deduce a corollary constraining the possible
region-based models of the space we inhabit.
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1. Introduction

A region-based model of physical space is one in which the primitive spa-
tial entities are regions, rather than points, and in which the primitive
spatial relations take regions, rather than points, as their relata. Histor-
ically, the most intensively investigated region-based models are those
whose primitive relations are topological in character. Since the fun-
damental relation involving regions of space is the part-whole relation,
and since the logic of the part-whole relation is known as mereology, the
study of the topology of physical space from a region-based perspective
has come to be called mereotopology.

Work on mereotopology originates with de Laguna [5] and White-
head [20], and was given new impetus by Clarke [3] and [4]. (See also
Simons [18] sec. 2.10). The most basic part of Whitehead’s mereotopol-
ogy employs a single primitive binary relation C(z,y), which may be
read “z is in contact with y”; and this primitive has formed the basis
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for many subsequent approaches. (Galton [7], Ch. 2 contains a use-
ful survey.) Thus, on these approaches, all topological facts supervene
on facts about contact. The purpose of this paper is to answer cer-
tain technical questions concerning the logical properties of any viable
mereotopology based on Whitehead’s primitive. Previous research in
this area has yielded several results on plane mereotopology, settling
such issues as alternative models (Pratt and Lemon [14]), expressive
power (Papadimitriou, Suciu and Vianu [13]) and axiomatization (Pratt
and Schoop [15]). The contribution of the present paper is to extend
these investigations to the mereotopology of three-dimensional space.

The development of any mereotopology requires some assurance
of conformity to the physical space we inhabit; and the most urgent
methodological question concerns the source of this assurance. We
proceed as follows. Denote by L the first-order language whose only
non-logical primitive is the binary predicate C. Beginning with the
familiar point-based Euclidean model of space as R3, we first select
a collection of subsets of R? to qualify as the domain of regions over
which we quantify. Specifically, we confine our attention to a relatively
restricted collection of regions: the set R of regular open polyhedra (de-
fined below). Next, we interpret the non-logical primitive of £ over this
domain so as to reflect its intended meaning. Specifically, we stipulate
that regular open polyhedra r and s are related by C just in case the
closures of r and s have a point in common. Thus we may regard R as a
structure (in the sense of model-theory) interpreting £. This structure
determines a truth-value for every sentence (closed formula) of £, and
the theory consisting of the set of true L-sentences in R—standardly
denoted Th(R)—may reasonably be regarded as the mereotopology of
the space we inhabit.

Two salient questions now arise regarding the language £ and its
polyhedral interpretation R. The first question is: how much expressive
power does L give us? That is: can we express the kind of topological
distinctions over R that will make it a representation language worth
using? The second question is: what alternative region-based models
of space make Th(R) true, and how they are related to R? Note that
general models of this theory are simply structures over one (symmet-
ric) binary relation—in effect, (undirected) graphs. Their elements are
primitives and, unlike the regular open polyhedra in R3, need not owe
their existence to sets of points or indeed to anything else. In this
sense, such models are unimpeachably region-based models of space; at
the same time, the fact that they make true the same L-sentences as
R gives us the right to call these structures models of physical space.

Thus, the first question concerns the usefulness of £ as a spatial
representation language, while the second—more philosophical in char-
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acter—concerns the quest for alternative spatial ontologies. The present
paper answers both questions, and explains the intimate relationship
between them. Our answers are summarized in section 2, and proved
in the following three sections. These three sections are technical in
character, and readers uninterested in such details may skip them
altogether. Section 6 concludes with a discussion of the significance
of our findings, and lists some open problems. Throughout the paper,
technical vocabulary has been kept to relatively familiar notions of
undergraduate-level topology and model theory.

One final terminological remark. Whitehead refers to the relation
denoted by C' as connection, risking confusion with the mathemati-
cally well-established, and quite different, property of connectedness.
We have resolved this terminological clash by substituting the word
contact and its cognates for Whitehead’s relation, and using the term
connected in its usual topological sense. Nothing substantive should be
read into this decision.

2. Summary of results

Let £ be the first-order language over the signature consisting of the
single binary relation C. In the sequel, we refer to £L-formulas simply as
formulas. Our first task is to define our chosen domain of interpretation
for L.

DEFINITION 2.1. A subset a of a topological space X is said to be
regular open if it is equal to the interior of its closure.

NOTATION 2.2. Ifa is any subset of a topological space X, we denote
the interior of a in X by a° and the closure of a in X by a™~, reserving
the more usual notation a to indicate tuples. Thus, regular open sets
satisfy the equation a = (a~)°. In addition, we write F(a) for the
frontier of a—that is, the set a™ \ a°.

The following result is well-known (Koppelberg [10], p. 26):

LEMMA 2.3. If X is a topological space, then the set RO(X) of regular
open sets in X forms a Boolean algebra with top and bottom defined
by 1 = X and 0 = (0, and Boolean operations defined by a-b = a Nb,
a+b=((aUb)7)° and —a=X \a".

The Boolean algebra order < on RO(X) is of course just the subset
relation. For clarity, we write ¢ < b rather than a C b if ¢ and b are
regular open sets.
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As usual, we take a plane in R® to be the set of points satisfying a
non-degenerate linear equation. The two residual domains of a plane
in R3 are clearly regular open sets, which we call half-spaces. We then
define:

DEFINITION 2.4. A polyhedron is a Boolean combination in RO(R?)
of finitely many half-spaces. We denote the set of polyhedra by R.

Thus, the polyhedra are, in effect, the regular open semi-linear subsets
of R3. Polyhedra, on this definition, can be disconnected, and also
unbounded. Furthermore, the empty set and the whole of R? qualify as
polyhedra.

We can regard R as an L-structure by taking the extension of our
binary relation C' to be

CR = {{a,b) € R?| a— Nb~ # 0},

which conforms to the notion of contact which Whitehead denoted by
the same symbol. So understood, any L£-sentence has a truth-value in R;
and more generally, any n-place formula ¢(z) defines an n-ary relation
over R—namely, the set of all and only those n-tuples satisfying it.

REMARK 2.5. Since C* is a symmetric relation, R |= VaVy(C(z,y) —
C(y,z)); since C® is not transitive, R = ~VaVyVz(C(z,y) AC(y, 2) —
C(z,2)); since 0 is a polyhedron and every other polyhedron contacts

itself, R = zVy-C(z,y).

Section 4 contains many examples of relations defined by formulas over
R. Since R is (almost) the only structure discussed in this paper, when
a tuple a of polyhedra satisfies a formula ¢(Z) in R, we simply say that
a satisfies ¢(z), leaving the reference to R implicit.

Our first main result concerns the expressive power of £. The fol-
lowing definition will prove useful.

DEFINITION 2.6. If X is a topological space and a, b are subsets of
X, we say that a and b are similarly situated in X —written a ~ b—if
there is a homeomorphism from X onto itself mapping a to b. This
notion extends to tuples (and tuples of tuples) in the obvious way.

Similarly situated (tuples of) sets may be regarded as topologically in-
distinguishable. Notice that similar situation is a much stronger relation
than merely being homeomorphic. For instance, the open cube, given
by {(z1,72,23) € R® : |z1| < 1, |z2| < 1, |23| < 1} is homeomorphic
to the whole of R?, but the two sets are certainly not similarly situated
in R3.
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It follows from results established below that two tuples of polyhedra
which are similarly situated in R® satisfy exactly the same formu-
las. Conversely, we might wonder if non-similarly situated tuples of
polyhedra satisfy different formulas. Accordingly, we define:

DEFINITION 2.7. A formula is topologically complete if all tuples of
polyhedra satisfying it are similarly situated in the space R3.

THEOREM 2.8. Every tuple of polyhedra satisfies some topologically
complete formula.

Thus, the language £ is maximally expressive among topological lan-
guages interpreted over R, in that every finite configuration of polyhe-
dra can be completely topologically characterized by some formula.

Our second main result concerns alternative models of the theory
of R. Let us say that a rational plane is the set of points satisfying a
non-degenerate linear equation with rational coefficients, and let us call
the two residual domains of a rational plane in R® rational half-spaces.
We then define:

DEFINITION 2.9. A rational polyhedron is a Boolean combination
in RO(R?) of finitely many rational half-spaces. We denote the set of
rational polyhedra by Q.

Again, we can regard ) as a structure interpreting £, by setting:
C9 = {{a,b) € Q*| a~Nb~ £ 0},

exactly as for R. Thus, () is by definition a substructure of R. It follows
from results established below that @ is in fact an elementary submodel
of R and hence that Th(Q) = Th(R). In fact, @ has a special status
among models of its theory. Recall that, in model theory, a structure 2
is said to be prime if, for any structure 8, 2 = %5 implies that 2 can
be elementarily embedded in 8. Prime models of theories are unique
up to isomorphism, and are considered the simplest models of their
theories. The second result proved below is:

THEOREM 2.10. The structure @ is prime.

Thus, any alternative, region-based model of space must either falsify
some L-sentence true in R, or else must contain a copy of () as an
elementary submodel.
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3. The domain of polyhedra

The aim of this (long) section is to prove some technical results about
the set R of polyhedra. In particular, we define the notion of an A-
cell partition of R®—in effect, a kind of triangulation of space by
polyhedra—and we show in Lemma 3.38 that A-cell partitions may be
characterized up to similar situation in combinatorial terms. Readers
may wish to read only the material marked as ‘definition’ or ‘notation’
as well as Lemma 3.38 itself. All other material is ancillary.

3.1. CLOSED SPACE

For technical reasons, it will be useful to work not in the topological
space R?, but rather, in its one-point (Alexandroff) compactification
R? (sometimes written S3). Formally, R® is the set R® U {oc}, where
oo ¢ R3; and the open sets of R are simply the collection:

{X|X C R isopen} U {(R®\Y)U{oo}|Y CR® is compact}.

The point oo is called the point at infinity. We take planes in R3 to be
the sets mU{oc} where 7 is any plane in R®. It is easy to see that planes
in R3 again have two half-spaces as their residual domains, which are
elements of RO(IR?). Accordingly, we define

DEFINITION 3.1. A closed-space polyhedron is a Boolean combi-
nation in RO(R?) of finitely many half-spaces. We denote the set of
closed-space polyhedra by R.

Of course, I3 is not directly visualizable. However, its two-dimensional
analogue, the one-point compactification of R? (denoted R?) is: R?
can be homeomorphically projected onto the surface of a sphere. This
analogy may help to make some of the ensuing lemmas more intuitive.
_ In the sequel, R3 stands ambiguously for either R? or R3; similarly,
R stands ambiguously for either R or R. Disambiguation is assumed to
be uniform in a given context.

NOTATION 3.2. If a € RO(R?), define

4 — { aU{oo} if —a is bounded

a otherwise.

The proof of the following lemma, is routine, though tedious.
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LEMMA 3.3. The function a — a is a Boolean algebra isomorphism
from RO(R?) to RO(R?); furthermore, its restriction to R is a Boolean
algebra isomorphism from R to R.

It is obvious that a € RO(R?) is connected in R® if and only if & is
connected in R3.

NOTATION 3.4. For any point p € R®, and any r > 0, we take B(p,r)
to denote the ball {q € R3|d(q,p) < r}. In addition, we take O to denote
the point (0,0,0).

DEFINITION 3.5. In the topological space R3, q disc is a subset of
R3 similarly situated to {(z1,22,0) € R?|z% + 23 < 1}; and a ball is a
subset of R3 similarly situated to B(O,1). A closed disc is the closure of

a disc; a closed ball is the closure of a ball; and a sphere is the frontier
of a ball.

Of course, the above definitions are relative to the choice of space
R3 = R3 or R? = R?. However, when using these terms in the sequel,
we may suppress mention of the topological space when this is clear
from the context. As usual, a Jordan arc in a topological space X is a
homeomorphism from the interval [0, 1] to a subset of X; and a Jordan
curve in X is a homeomorphism from the unit circle S' to a subset of
X.

3.2. BALLS IN CLOSED SPACE

The main results of section 3.2 are Theorems 3.11 and 3.14.

To motivate the following lemma, we present a two-dimensional
analogue. Let a = {(z1,z3) € R?|2? + 22 < 1}. Thus, a € RO(R?);
in fact, —a = {(z1,22) € R?|z? + 2% > 1} U {o0}. By considering the
usual stereographic projection of ®2 onto the sphere, it is immediate
that that a is similarly situated to —a in the space R?. Furthermore,
this observation generalizes to higher dimensions. In particular we have:

LEMMA 3.6. Let a € RO(IR?) be a ball in R®. Then so is —a.

Proof. Since for any homeomorphism « : R — R3 and any a €
RO(R?), we have a(—a) = —a(a), it suffices to prove that —B(0,1)
is a ball. But the inversion (3 : RS — IR3 defined, using spherical-polar
coordinates, by

B((r,0,4)) = (1/r,0,¢) if r >0

=

Bloo) = O

=
S
|
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is visibly a homeomorphism taking B(O, 1) to —B(0O, 1), whence —B(O, 1)
is a ball.

Elements of R which are balls in R3 admit of a particularly simple
characterization, which we now proceed to develop. First, some general
preliminary results.

LEMMA 3.7. Let a be a regular open set in some topological space.
Then F(a) = F(—a).
Proof. Trivial.

DEFINITION 3.8. Ifa € RO(I@?’), we say that a is cc if a is connected
and nonempty with connected nonempty complement.

We remark that no conflict can arise inAthe above definition for elements
which are in both RO(R?) and RO(R?). The following result is less
trivial than it looks.

LEMMA 3.9. Let a € RO(R?) be cc. Then F(a) is connected.

Proof. Newman [12], p. 137 derives the following corollary of Alexan-
der’s lemma for R* (n > 2): if F} and F, are non-intersecting closed
sets in ]R”, and points p and ¢ are connected in the complement of
F; and also in the complement of F5, then they are connected in the
complement of Fy U Fy. Suppose now that a € RO(R?) is cc but that
the closed set F(a) is not connected. Let F; and Fy be closed sets
partitioning F(a), and let p € a, ¢ € —a. Thus, p and ¢ are not
connected in R\ F(a). Since a is cc, it is easy to see that the conditions
of Newman’s corollary are fulfilled (with n = 3, of course), so that p
and ¢ are connected in R \ (Fj U F). But this is absurd given that
FilUF, =F (a)

Note that Lemma 3.9 fails if R® is replaced by some arbitrary topolog-
ical space. The surface of a torus is a counterexample: it is easy to find
two complementary cc-elements in this space whose common frontier
is not connected.

As usual, we take K5 to denote the pentagram, that is, the complete
graph with five vertices. It turns out that K5 provides a simple means
to identify spheres using the language £ (though it is certainly not the
only method of doing so). Recall that a 2-manifold is a Hausdorff space
locally homeomorphic at every point to a disc, and that a surface is a
connected 2-manifold. It is easy to see that the frontier of a cc element
of R need not be a surface. However, we have the following result.

LEMMA 3.10. Let a € R such that a is cc and F(a) is not a surface.
Then K5 can be embedded in F(a).
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Proof. Decompose F(a) into a finite collection of triangles, i.e., a
triangulation. (Note that a triangle in closed space may have oo as a
vertex.) Given the construction of R, this is clearly possible. Call any
point where F(a) is not locally homeomorphic to a disc a bad point;
and call any edge of the triangulation all of whose points are bad a bad
edge. Obviously, any bad point either occurs on a bad edge or else is
an isolated bad point at a vertex of the triangulation.

If there is a bad edge, then more than two triangles must share this
edge, and the embedding of K5 in F(a) proceeds as shown in figure 1a.
Assume, then, that there are no bad edges, but that some vertex p of
the triangulation is an isolated bad point. Call two triangles with p as
a vertex neighbours if they share an edge having p as a vertex. Since
all edges are good, these triangles can clearly be arranged into disjoint
cycles such that each triangle belongs to the same cycle as its two
neighbours. Choose one such cycle. By applying a homeomorphism if
necessary, we may assume that this triangle-cycle forms a cone with
vertex p as shown in figure 1b. Since there are only finitely many
triangles in the triangulation, we can ensure that we choose a triangle-
cycle such that the points inside the tip of the cone either all belong to
a or all belong to —a. Let b be either a or —a depending on which of
these possibilities is realized. Note that, since a is cc, so is b.

Let ¢ € R be a small element representing the tip of the cone, indicated
by the light dotted lines in figure 1b. Now, removing ¢ from b visibly
does not disconnect b, so that b- —c is connected; moreover, ¢ shares
some face with —b, so that c+ —b = —(b- —c) is also connected. Thus,
b- —c is cc, whence, by Lemma 3.9, F(b - —c) is connected. Moreover,
since p is bad, there must be at least two triangle-cycles with p as
vertex; whence p € F(b- —c). Thus we may choose a point g on the
base rim of ¢ and connect it to p by a Jordan arc « in F(b) such that
the locus of « is disjoint from F(c) except for its endpoints, as shown
in figure 1lc. The embedding of K5 in F(b) = F(a) then proceeds as
depicted.

THEOREM 3.11. For all a € f%, a is a ball in R3 if and only if a is cc
and K5 cannot be embedded in F(a).

Proof. The only-if direction is well-known (see, e.g. Wilson [21],
p- 23). So suppose that a € R is cc and that K5 cannot be embedded in
F(a). By Lemma 3.10, F(a) is a surface. Moreover, F(a) is compact.
By the classification theorem for compact surfaces (Massey [11], p. 10),
F(a) is either (i) a sphere, or (ii) the connected sum of finitely many
tori, or (iii) the connected sum of finitely many projective planes. But
cases (ii) and (iii) are ruled out by the fact that K5 cannot be embedded
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Figure 1. Embedding K5 in non-surfaces (Proof of Lemma 3.10).

in F(a) (indeed, case (iii) is impossible anyway). Therefore F(a) is a
sphere, whence ¢ is a ball, by Lemma 3.6.

Of course, Theorem 3.11 depends on the existence of triangulations of
F(a), and fails for arbitrary a € RO(R?).

COROLLARY 3.12. For all bounded a € R, the following are equiva-
lent: (i) a is a ball in R®; (i) F(a) is a sphere in R®; (iii) a is cc and
K5 cannot be embedded in F(a).

In the sequel, we shall be concerned with assemblies of balls in R3
which are themselves balls in R?. The following preliminary result will
be useful.

LEMMA 3.13. Let a and b be regular open sets in some topological
space, and let c = —(a +b). Then F(a) N (a+ b) = F(a) \ F(c).

Proof. Since a and c are disjoint, ¢ < —a = X \a . Hence, F(a)Nec =
(0. Moreover, ¢~ = F(c) Uc. Thus,

Fla)\ F(c) =F(a)\ ¢ =F(a)N—c=F(a)N(a+Db).

Now to the result about assemblies of balls. Consider the two hemi-
spheres a = {(z1,22,73) € R3|z? + 23 + 23 < 1, 71 < 0} and b =
{(z1,22,73) € R¥|2? + 22 + 2% < 1, 21 > 0}. It is obvious that a and
b are balls, that a + b = B(0,1) is also a ball, and moreover, that
F(a) N F(b) is a closed disc. The following theorem shows that every
arrangement of a and b in RO(R?) such that a-b =0 and a, b and a+b
are all balls looks like this. The proof may be omitted without loss of
understanding of subsequent material.

THEOREM 3.14. Let a,b € RO(R3) be disjoint balls in R® such that
a+ b is also a ball in R3. Then F(a) N F(b) N F(a + b) is the locus of
a Jordan curve, and F(a) N F(b) is a closed disc.
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Proof. Let ¢ = —(a + b). By Lemma 3.6, both ¢ and a + ¢ = —b
are balls. Hence, we may treat b and ¢ symmetrically. By Lemma 3.7,
F(c) = F(a + b). We denote the set F(a) N F(b) N F(c) by J.

As a first step, we show that F(a) is the disjoint union of the sets
F(a)N(a+0b), F(a) N (a+c) and J. By Lemma 3.13,

F(a) N (a+b)
Fla)N(a+c)

Fla)\ F(o)
F(a)\ F(b). M)

It follows that (F(a) N (a + b)) U (F(a) N (a+¢)) UJ = F(a). To
prove disjointness note that equations (1) imply (F(a) b
(F(a)N(a+c))NJ = 0; moreover, (F(a)N(a+b))N(F(
Fl@)Nn((a+b)-(a+c) =F(a)Na=10.

Let F be the frontier of the set F(a)N(a+b) in the space F(a). We show
that F = J. Since F(a) N (a + b) and F(a) N (a + ¢) are disjoint open
subsets of the space F(a), p € F implies that p ¢ F(a) N (a + b) and
also p € F(a) N (a+ c). But then equations (1) yield p € J. Conversely,
suppose p € J. By applying a homeomorphism if necessary, we may
assume that a + b is literally the set B(O, 1), and hence is convex. Now
choose sequences {0; } from a and {g; } from b converging to p. For each i,
the line segment joining o; to g; lies within a+b and so certainly contains
some point p; on F(a) N (a + b). Since the sequence {p;} converges to
p, we have p € F. Thus, J is the frontier of F(a) N (a +b) in the space
F(a). An exactly similar argument applies to F(a) N (a + ¢). We note
in passing that this conclusion does not hold for an arbitrary partition
a,b,c in RO(R?).

Having identified the frontier of F(a) N (a + b) in the space F(a), we
now show that F(a) N (a+b) is locally connected (in the space F(a)) at
every point p in that frontier. That is, we show that, given any p € J
and € > 0, we can find a § > 0 such that any two points lying in
F(a)N(a+b)NB(p,d) are connected in the set F(a)N (a+b) N B(p,¢).
Since local connectedness is a topological property we may continue to
assume without loss of generality that a + b = B(O,1). Let p € J and
€ > 0 be given. Since a and b are balls, and hence are locally connected
at p, choose §, > 0 and &, > 0 such that any two points lying in
a N B(p,d,) are connected in a N B(p,e) and any two points lying in
bN B(p,dp) are connected in b N B(p,€). We show that § := min(d,, dp)
has the properties stated above.

Let p',p" € F(a) N (a+b) N B(p,d). Because both p' and p” are on the
boundaries of both a and b, we can certainly find points p,, p/ in a and
Py, Py in b such that:
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Bl Cbulp . p’
18] C {r'p"} | gaU{p',p”}

a4+ b

Figure 2. Local connectedness of F(a) N (a + b) in the space F(a) (Proof of
Theorem 3.14).

pl, is connected to p' by a Jordan arc lying in (a U {p'}) N B(p, )
p}, is connected to p’ by a Jordan arc lying in (bU {p'}) N B(p, )
Pl is connected to p” by a Jordan arc lying in (a U {p"}) N B(p, 9)
py is connected to p” by a Jordan arc lying in (bU {p"}) N B(p, d),

as shown in fig. 2. Since p/, and p! are in aNB(p, §), they are joined by a
Jordan arc lying entirely in aNB(p, €). Similarly, p; and pj/ are joined by
a Jordan arc lying entirely in b B(p, €). Thus, we can find a Jordan arc
a from p’ to p” lying entirely within (aU{p’, p"})NB(p, €), and a Jordan
arc 8 from p" to p' lying entirely within (bU{p', p"}) N B(p, €). Together,
a and B form a Jordan curve ¥(s) : S' — (a + b) N B(p,€) (where S!
is the unit circle), since, by hypothesis, p’, p” € a + b. Moreover, since
we are assuming a + b to be B(O,1), it is clear that (a + b) N B(p, €)
is convex, so that we can certainly shrink the locus of v homotopically
to a point within this set. That is, we can find a homotopy F(s,t) :
St x [0,1] — (a + b) N B(p,¢) such that F(s,0) = v(s) for all s € S*
and {F(s,1)|s € S'} is a singleton.

Consider the set X = {F(s,t)|s € S',t € [0,1]} N F(a). We show
that p’ and p” are in the same component of X. Clearly X is closed
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in the space F(a). Newman [12] Chapter VI, Theorem 3.3, states that
points in different components of a closed set Y in the closed plane
R? are separated by some J ordan curve lying in the complement of Y.
Since F(a) is homeomorphic to R?, it follows that if p’ and p” are in
different components of X, they are separated by some Jordan curve ~'
in F(a)\ X. Now, 7 consists of two Jordan arcs—one in aU{p’, p"}, and
the other in —aU{p’, p"}—where p’ and p” are separated on F(a) by +'.
Therefore vy and ' are interlinked Jordan curves (i.e. form a Hopf link),
whence, for some t € [0,1], some s € S*, F(s,t) € |¥'|, contradicting
the fact that |y'| C F(a) \ X. Hence p' and p” are connected by X C
F(a) N (a+0b)NB(p,d). This completes the proof of the claim that, in
the space F(a), the set F(a)N(a+b) is locally connected at every point
of its frontier. Exactly similar reasoning shows that the same holds for
F(a) N (a + ¢). Certainly then, F(a) N (a + b) and F(a) N (a + ¢) are
connected.

Newman [12], Chapter VI Theorem 14.4 states that, if a set D is locally
connected at a point p in its frontier, then p is accessible from D. (That
is: p is connected to every point in D by a Jordan arc lying in DU{p}.)
Hence, in the space F(a), every point of the frontier of F(a)N(a+0b) is
accessible from F(a)N(a+b); and similarly for F(a)N(a+c). According
to the converse of the Jordan curve theorem (Newman [12], Chapter
V, Theorem 11.5), if a closed set F has two complementary domains
in the closed plane, from both of which every point of F' is accessible,
then F' is the locus of a Jordan curve. Since F(a) is homeomorphic
to the closed plane, the result holds for this space too. Hence J is the
locus of a Jordan curve as required. For the remainder of the theorem,
by equations (1), F(a) N F(b) = F(a) \ (F(a) N (a + ¢)); but we have
already shown that F(a) N (a + ¢) is one of the residual domains in
F(a) of a Jordan curve. Hence, F(a) N F(b) is a closed disc.

3.3. PARTITIONING CLOSED SPACE

The task of section 3.3 is to define certain polyhedral partitions of
closed space called cell partitions. Cell partitions function, in effect, as
triangulations of closed space.

DEFINITION 3.15. A cell q is a quadruple (q(1),q(2),q(3),q(4)) of
pairwise disjoint elements ofR such that, for all nonempty J C {1,2,3,4},
the element of R given by 3¢ ;q(j) is a ball in R3.

EXAMPLE 3.16. Consider the regular open tetrahedron ty with ver-
tices (0,0,0), (1,0,0), (0,1,0), (0,0,1). Let t1,ta,t3,t4 be the four reg-
ular open tetrahedra (taken in some fized order) having three vertices
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14 I. PRATT-HARTMANN and D. SCHOOP

in common with ty and the point (1/4,1/4,1/4) as the fourth vertez.
Evidently, the quadruple qo = (t1,to,t3,t4) is a cell.

The cell gy is in effect a tetrahedron whose faces (and hence, edges and
vertices) are picked out by its internal division into components. The
next result says that Example 3.16 is as general as we need, in the sense
that cells are topologically indistinguishable from each other. Thus, a
cell is topologically equivalent to the first Barrycentric subdivision of
a polyhedral ball.

When we speak of a homeomorphism « mapping a cell g to a cell
q', we of course mean that a maps each ¢(j) (1 < j < 4) setwise to
q'(j)- To say that cells ¢ and ¢’ are similarly situated in R’ is to say
that some such o : R® — R3 exists.

THEOREM 3.17. All cells are similarly situated in the space R3.

Proof. Let (a, b, ¢, d) be a cell. Since a, b, ¢, a+b, b+c, a+c and a+b+c
are balls, by Theorem 3.14, the sets F(a)NF(b), F(a)NF(c), F(b)NF(c)
and F(a + b) N F(c) are all closed discs. Letting S = F(a + b+ c¢), it is
then easy to show that the sets F(a) NS, F(b) NS and F(c) NS must
be arranged on S as shown in fig. 3a, up to similar situation. Moreover,
letting e = —(a + b+ ¢ + d), by Lemma 3.6, if B is a proper subset of
{a,b,c,d}, > (B U {e}) is a ball. Thus, all of the sets a + b+ ¢, d, e,
a+b+c+dand a+b+c+e are balls. By Theorem 3.14 then, F(d)N.S
and F(e) NS are both closed discs, whose common frontier in the space
S is the locus of some Jordan curve 7, say.

Consider how y might be drawn on S. Since a+d and a+e are balls, by
Theorem 3.14, F(a) N F(d) and F(a) N F(e) are closed discs. Similarly,
F(b) N F(d), F(b) N F(e), F(c) N F(d) and F(c) N F(e) are closed
discs. Hence vy divides each of the three sets F(a) NS, F(b) N S and
F(c) NS into two residual domains. Moreover, v cannot pass through
either of the points X or Y in fig. 3a; for otherwise, one of the sets
F(a) N F(d), F(b) N F(d), F(c) N F(d), F(a) N F(e), F(b) N F(e) or
F(c) N F(e) would have an isolated point, contradicting the fact that
these regions are all closed discs. It is then easy to see that -« and
the region F(d) NS it encloses must lie in S as shown in fig. 3b or
fig. 3¢, up to similar situation. But these two arrangements of a, b, c,d
are obviously similarly situated.

DEFINITION 3.18. Let iy and qo be as defined in Ezample 3.16. Sup-
pose q is any cell, and let o : R> — R3 be any homeomorphism mapping
qo to q. We define a face of q to be the image, under «, of a face of
the tetrahedron tg, and we define the edges and vertices of q similarly.
If ¢’ is any other cell, we say that a face of q and a face of q' are
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X w
.7:((1) S _7:((‘) S

Figure 8. Possible arrangements of F(a)N.S, F(b)NS, F(c)NS and F(d)N S, where
S = F(a+b+c) (Proof of Theorem 3.17).

corresponding faces if they are images in this way of the same face of
to; and similarly for edges and vertices.

LEMMA 3.19. The concepts introduced in Definition 3.18 are well-
defined.

Proof. Theorem 3.17 guarantees the existence of a, so we need only
show that the definitions of faces, vertices and edges of ¢ do not depend
on the choice of a. But the faces, edges and vertices of ¢y can be

characterized in terms of intersections of the sets ¢, ,...,%,, so that
the faces, edges and vertices of ¢ can be characterized in terms of the
corresponding intersections of the sets ¢(1)~™,...,q(4)".

NOTATION 3.20. If q is a cell, denote by K, the set of faces, edges
and vertices of q. For readability, if K C K, we denote the set of points
UK by |K|. Likewise, we denote the set of points q(1)” U...Uq(4)~

by |q|.
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16 I. PRATT-HARTMANN and D. SCHOOP
Thus, if ¢y and g are as defined in Example 3.16, then |Ky | = F (o).

LEMMA 3.21. Let qo be as defined in Example 3.16. Suppose « :
| Kqo| = |Kqo| is a homeomorphism fizing each element of K4, setwise.
Then « can be extended to a homeomorphism o™ : |qo| — |qo| mapping
qo to itself.

Proof. Set at((1/4,1/4,1/4)) = (1/4,1/4,1/4), and then define o™
on the rest of |go| by linear interpolation. Obviously, o™ fixes each go(7)
(1 < j <4) setwise.

LEMMA 3.22. Let q and ¢’ be cells. Suppose o : |Kq| — |Kg| is
a homeomorphism mapping each element of K, to the corresponding
element of Ky. Then « can be extended to a homeomorphism o :
lg| — |¢'| mapping q to q'.

Proof. Denote the restriction of a homeomorphism « to a set S by
7vs- Let go be the cell defined in Example 3.16. By Theorem 3.17, let
B : R3 — R? be a homeomorphism taking ¢ to g, and let A’ : R? —
R3 be a homeomorphism taking ¢’ to go. Then the homeomorphism
ﬁ" Ky @0 ﬂﬁ{lqo‘ satisfies the conditions of Lemma 3.21, and hence

can be extended to the whole of |gg| such that gy is mapped to itself.
Let this extended homeomorphism be «*. Then the homeomorphism
B |713| o a* o B4 has the required properties.

LEMMA 3.23. Let q and ¢’ be cells, and let K C K,. Suppose that o
is a homeomorphism defined on |K| mapping every k € K to the corre-
sponding element of Ky. Then o can be extended to a homeomorphism
at i gl = |¢'| mapping q to ¢'. In particular, a maps every k € K,
to the corresponding element in Ky

Proof. 1t is straightforward to extend « to the entire surface |Kg|
mapping every k € K, to the corresponding element of K. The result
then follows by Lemma 3.22.

DEFINITION 3.24. A cell partition is a tuple qQ = q1,...,qn of cells
satisfying the following conditions.

1. The 4N elements ¢;(j) (1 <1< N, 1< j<4) form a partition in
the Boolean algebra R;

2. For each i,j5 (1 <i< N, 1<j<4), there is exactly one pair i',j'
with i' # 1 such that q;(j) + qi(j') is connected.

Thus, the faces, edges and vertices of the cells in a cell partition ‘match
up’ exactly, just as in a triangulation.
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NOTATION 3.25. Ifq=qi,...,qN is a cell partition, we write q(i,7)
to denote q;(j) for all i,57 (1 < i < N, 1 < j < 4). In addition, we
write Kq for Ui<i<n Ky, .

DEFINITION 3.26. Let q = qi1,...,q8 and 4 = q},-..,qy be cell
partitions. We say that q and q' are equivalent if there is a function
g: Kq = Kq such that, for all i (1 <i < N), g maps every element
in Ky; to the corresponding element in K.

The main result of this section is:

LEMMA 3.27. Equivalent cell partitions are similarly situated in IR3.

Proof. Let q and q’ and g : Kq — Kq be as in Definition 3.26.
Let ap be the empty homeomorphism. For 0 < 5 < N, assume the
homeomorphism «; has been defined on the space U; <;<; |qz| such that,
for all i (1 <4 < j), aj maps each cell ¢; to the cell g). Certamly
then, o; maps every k occurring in any of the K, (1 < i < j) to
the corresponding element in K, which is by assumptlon just g(k).
Let K be the set of elements of Kg;,, occurring in any of the K,
(1 < < j). Then the restriction of a; to |K| satisfies the conditions
of Lemma 3.23, whence o can be extended to a homeomorphism o1
satisfying analogous conditions to a;. Proceeding thus, we eventually

obtain ay mapping q to q'. Since Uy <;<y |gil = 3, we have q ~ q.

We finish with two technical results on cell partitions that will be
useful later.

LEMMA 3.28. Let q be an N-element cell partition, and let p,p' € R3
such that, for alli,j (1 <i< N,1<j<4),pedq(j) if and only
if p' € q(i,7)”. Then there exists a homeomorphzsm of R3 onto itself

fizing every q(i,7) setwise, and mapping p’ to p.
Proof. Obvious.

LEMMA 3.29. Let q and q' be equivalent N-element cell partitions,
and let p € R3 such that, for alli,j (1<i<N,1<j<4), peqli ,j)
if and only if p € q'(i,7)~. Then there exists a homeomorphism of R3
onto itself mapping each q(i,5) to q'(i,7), and fizing p.

Proof. By Lemma 3.27, let o/ be some homeomorphism of 3 onto
itself mapping q to q'. Then we have, for all4, j (1 <7 < N,1 < j <4)
o' (p) € q'(i,7)” if and only if p € ¢'(4,7) . By Lemma 3.28, let 3 be
a homeomorphism of R? onto itself mapping q' to itself, and mapping
o/ (p) to p. Then « := B o' has the properties required by the lemma.
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18 I. PRATT-HARTMANN and D. SCHOOP
3.4. PARTITIONING OPEN SPACE

The task of section 3.4 is to modify the notion of a cell partition
introduced in section 3.3 so that it applies to open space, R®. The
main result is Lemma 3.38.

DEFINITION 3.30. A polyhedron a € R is said to be an A-ball if the
associated closed-space polyhedron & € R is a ball in R3.

EXAMPLE 3.31. Ifa is a ball in the space R?, then a is an A-ball. If
a s an A-ball, then so is —a. Furthermore, a half-space is an A-ball,
as is a prism bounded at either one or both ends. However, a prism
unbounded at both ends is not an A-ball.

DEFINITION 3.32. An A-cell is a quadruple g = (q(1), ¢(2),¢(3),q(4))
€ R* such that, for all nonempty J C {1,2, 3,4}, the polyhedron e a(d)
is an A-ball.

REMARK 3.33. A quadruple ¢ € R* is an A-cell if and only if the
associated quadruple § = (G(1),4(2),4(3),4(4)) is a cell.

DEFINITION 3.34. An A-cell partition is a tuple qQ = ¢q1,...,9n of
A-cells satisfying the following conditions.

1. The 4N elements ¢;(j) (1 <i < N, 1< j<4) form a partition in
the Boolean algebra R;

2. For each i,j5 (1 <i< N, 1<j<4), there is exactly one pair i',j'
with i # 1 such that q;(j) + qi (') is connected.

NOTATION 3.35. Again, if Q = q1,...,9n s an A-cell partition, we
write q(i,7) to denote g;(j).

REMARK 3.36. A tuple q = q1,...,q9n is an A-cell partition if and
only if the associated tuple Q = G1,--.,4n @S a cell partition.

DEFINITION 3.37. Let q and q' be A-cell partitions of length N. We
say that q and q' are equivalent if

1. The associated cell partitions q and (/i’ are equivalent.

2. Foralli,j (1<i<N,1<j<4) q(i,j) is bounded if and only if
d'(%,7) is bounded.
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LEMMA 3.38. Equivalent A-cell partitions are similarly situated in the
space R3.

Proof. Let q and qL be equivalent A-cell partitions, each with N
elements. Then q and q' are equivalent cell partitions such that, for all
1,7 (1<i<N,1<j<4),00€q(i,j)” ifand only if oo € q'(3,5) . By
Lemma 3.29, there exists a homeomorphism of R? onto itself mapping
q to ', and fixing oo. Thus, a = &\ {{0c0,00)} is a homeomorphism of
R3 onto itself mapping q to q'.

4. Defining relations in £

In this section, we establish directly that certain relations are definable
by means of L-formulas.

LEMMA 4.1. The formula ¢(x1,22) := Vy(C(z1,y) — C(x2,y)) is
satisfied by the pair a1,as in R if and only if a1 < as.
Proof. Straightforward.

Since the part-of relation < is £-definable over R, we may henceforth
use the symbol < as a shorthand in L-formulas. It follows in addition
that the Boolean functions and constants + , - , —, 1 and 0 are also
L-definable over R; so again, we may henceforth use these symbols in
formulas without further ado.

The following lemma shows that the language £ allows us to talk
about points in R3. The idea is that a point p is represented by a pair
of regions a;,ay € R such that a; Na, = {p}.

LEMMA 4.2. There ezist formulas ¢(z1, z2), ¢'(z1,22) and ¢"(x1,z2)
satisfying the following conditions for all ay,a2,a3 € R.

1. R |= ¢la1,aq] if and only if a Nay is a singleton.

2. If ay Nay = {p} for some point p € R, then R |= ¢'[a1,a9,a3] if
and only if p € a3

3. If ay Nay = {p} for some point p € R?, then R |= ¢"[a1,a9,a3] if
and only if p € az

Proof. Let:

¢($1,£€2) = 0(561,332)/\

VyiVya(y1 < 21 Aya < o AC(y1,22) A Cy2, z1) = Cly1,42))
¢ (21,72, 73) := Iy (y1 < 21 A C(y1,z2) A ~C(y1, —x3))
" (x1, 29, 23) := Yyi(y1 < 21 A C(y1,22) = Cly1,3)).
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The previous lemma gives us the right to include expressions such as,
for example, 1 Nz; # 0 or F(z1) N F(z2) C F(z1) N F(ze) ete. in
formulas, with the obvious interpretation over R.

LEMMA 4.3. Let ¢(z) abbreviate the formula
~Fy ez Ny #0AzNy; #OAz Cyy Uy, AzNyy Ny, =0).

Then, for all a € R, R = cla] if and only if a is connected.

Proof. The if-direction follows instantly from the definition of con-
nectedness. For the only-if direction, we need to show that a non-
connected element of a € R can be partitioned into two disjoint,
nonempty sets which are the closures in a of elements of R. But this is
simple given that a is evidently the sum in R of finitely many connected
polyhedra.

Of course, an exactly similar technique can be used to express the
connectedness of sets topologically dependent on elements of R, such
as, for instance F(a1), F(a1)NF(az), etc. Thus, we may allow ourselves
to include expressions such as ¢(z1), ¢(F(z1) N F(z2)), etc. in formulas
to denote the connectedness of the sets in question.

LEMMA 4.4. There ezists an L-formula k(x) such that, for all a € R,
R = kla] if and only if K5 is embeddable in F(a).

Proof. The graph Kj is evidently embeddable in F(a) if and only if
there exist polyhedrav; (1 <7 <5)ande;; (1 <i < j <5),all disjoint
from g and from each other, satisfying the following conditions:

1. For alli (1 <i<5),v; Na~ is a singleton
2. Foralli,j (1<i<j<5), e ;Na isconnected

3. For all i,5,i,j' (1<i<j<5 1< <j <5), {i,j} n{i,5'} =0
implies €;; Ne; » Na~ = 0, and {i,5} Nn{7,5'} = {k} implies
€ ﬂei_,,j, Na™ =v, Na™.

But these conditions are expressible in £ over R by the foregoing
lemmas.

We note in passing that, in the above proof, the polyhedra e;; are
not themselves required to be connected—only the sets e; ; Na™ =
.7:(61’,]') N .7:(&)

LEMMA 4.5. Let v(z) be the formula
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(a) N F(by)

F(a) N F(by)

F(a) N F(br) N F(by)
G

Figure 4. Arrangement of F(a)NF(b1) and F(a)NF(b2) on G (Proof of Lemma 4.5).

Fy1Fya(yr -z =0Ay2 -z =0Ac(F(z) N Flyr) N F(y2))A
o(F(z) \ F(y1)) A e(F(z) \ Fly2))A
—c(F(z) \ (F(y1) U F(y2))))-

For all a € R, the following hold.
1. If F(a) is connected and unbounded, then R |= v[a].
2. If F(a) is a sphere in R, then R W~ v[a].

Proof. Suppose F(a) is connected and unbounded. By the definition
of R, a is a Boolean combination of finitely many half-spaces, corre-
sponding to a finite set of planes, say, 71, ..., my; it is then easy to see
that F(a) C m U -+ U my,. Since F(a) is unbounded, we can draw in
F(a) a rectangular figure G, unbounded on one side (dotted lines in
figure 4), such that G intersects only one of the m;. Let by,be € R be
laminas, infinitely extended in one direction, and placed on G (on the
outside of a) so that F(a) N F(b1) and F(a) N F(be) are arranged as
shown. Since F(a) is connected, F(a) \ F(b1) and F(a)\ F(b2) are also
connected; and since G lies on just one of the m;, F(a)\ (F(b1) UF(b2))
is not connected. Thus R = v][al.
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Newman [12], Chapter V, Theorem 9.2 states that, if the common part
of two closed sets F; and F5 in the closed plane is connected, then
two points which are connected in the complement of F; and in the
complement of F5 are connected in the complement of F; U F5. Since a
sphere in R? is homeomorphic to the closed plane, the theorem applies
to this space as well. It immediately follows that, if F(a) is a sphere,
then R [~ v[a].

NOTATION 4.6. In the sequel, we take cc(z) to abbreviate the formula

z#0Nz #1Ac(z) A c(—2x).

Recall from Definition 3.8 that polyhedra satisfying this formula are
said to be cc.

LEMMA 4.7. For all a € R, R = ccla] A —kla] A —~[a] if and only if
F(a) is a sphere.

Proof. The if-direction is immediate given Lemma 4.5. The other
direction follows by Corollary 3.12 and Lemmas 3.9, 4.4 and 4.5.

LEMMA 4.8. Let a € R such that R |= ccla] A —k[a] Ay[a]. Then a is
unbounded.

Proof. Suppose a is bounded. Since ¢ is cc and K5 cannot be em-
bedded in a, Corollary 3.12 implies that F(a) is a sphere. But then
Lemma 4.5 implies that a does not satisfy y(z).

COROLLARY 4.9. There ezists a formula B(x) such that, for all a €
R, R = Bla] if and only if a is bounded.
Proof. Let

B(x) :=FyTz(x <yAy-z=0A
ce(y) A —k(y) A=y (y)A
cc(z) N —k(z) Ay(2)).

If a is bounded, let b € R be a ball in R? such that a < b; and let ¢ € R
be an A-ball such that F(c) is unbounded and b- ¢ = 0. Thus, b and ¢
are suitable witnesses for y and z in 3(z), so that R |= S[a].

Conversely, suppose that R |= 8[a]. Let b and ¢ be witnesses for y and
z. By Lemma 4.7, F(b) is a sphere, whence either b or —b is a ball in
R? (but not both). By Lemma 4.8, ¢ is unbounded, and so intersects
the complement of every ball in R, whence b is a ball in R?, so that a
is bounded.
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For all @ € R, 0o € 4 if and only if —a € R is bounded, and oo € G~
if and only if a is unbounded (where the closure operator — refers to
the topology on R3). Since 3(z) expresses the property of boundedness
over R, we may write expressions such as co € &, oo € F(Z), etc. in
L-formulas with the obvious interpretation over R. By repeating the
reasoning of the preceding lemmas, we may further write expressions
such as ¢(Z1), ¢(F(£1)NF(Z2)), etc. in formulas, again, with the obvious
interpretation. It follows:

LEMMA 4.10. There exists a formula k(z) satisfied by a € R if and
only if K5 is embeddable in F(a).

COROLLARY 4.11. There exists a formula satisfied by a € R if and
only if a is an A-ball in R3.

Proof. By Theorem 3.11 and Lemma 4.10, cc(x) A —4(x) has the
required property.

Putting together all the expressiveness results in this section, we have

COROLLARY 4.12. For all N > 0, there exists a formula pn(z) such
that, for any 4N-tuple ¢, R |= un(c) if and only if ¢ is an N-element
A-cell partition.

5. Model-Theoretic Analysis

Section 5 gathers together the material of sections 3 and 4 to prove the
main results.

LEMMA 5.1. Let ¢ be a 4N-tuple of polyhedra forming an N-element
A-cell partition in R. Then we can find a topologically complete formula
(%) such that R |= v[c].

Proof. Let z = z1,...,z4n. By Corollary 4.12, let un(2) be satisfied
in R by exactly those 4N-tuples which form N-element A-cell parti-
tions. Now consider the collection of all formulas satisfied by ¢ of the
forms:

*(27)N...Nx(Z,y) =0, *(27)N...Nx(Z,y) #0,

where Z is either Z or R3 \ Z for any set-denoting expression Z. Again,
we may regard such formulas as belonging to £ by the definability
results proved in section 4. Finally, consider all the formulas satisfied
by ¢ of the forms (z;) and —5(z;) (where  is as given in Corollary 4.9)
with 1 < ¢ < 4N. The conjunction of all the above formulas is satisfied
only by 4N-tuples forming N-element A-cell partitions equivalent to .
The result then follows from Lemma 3.38.
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LEMMA 5.2. If a is any tuple of polyhedra, then there exists a 4N -
tuple ¢ of polyhedra, for some N, such that ¢ forms an N-element A-cell
partition, and each element of a can be expressed as the sum of zero or
more elements of .

Proof Given ay,...,an, € R, consider the corresponding elements
ai,...,ay, € R Certalnly, we can find a triangulation of R3, with
bi,.. bN € R as the 3- simplices, in such a way that each a; is the sum
of zero or more of the b . Now divide each simplex b into 4 smaller
simplices ¢;1,...,¢6j4 forming a cell with the faces, edges and vertices
of the triangulation in the obvious way. We thus obtain a 4N-tuple
C1,1,---,Cn4 forming a cell-partition, such that each a; is the sum of
zero or more of the ¢;. Now let ¢ = ¢11,...,cy4 be the associated
A-cell partition.

We are now in a position to prove our first main result.

Proof. [of Theorem 2.8] Let a € R". By Lemma 5.2, let ¢ be an A-cell
partition whose elements sum to the elements of a. By Lemma 5.1, let
v(Z) be a topologically complete formula satisfied by ¢. Then @ satisfies
a formula ¢(z1,...,z,) of the form

3z (’y(z)/\ A ZEiZZZi>>

1<i<n

where, for all i (1 <7 < n), Z; is some subset of the variables in z. The
topological completeness of this formula follows easily from that of +y.

Now to the analysis of the alternative models of Th(R). We briefly
recapitulate some standard definitions and results in model theory.

DEFINITION 5.3. Let T be a theory over some fized signature. A
formula ¢(x) is complete in T if, for all formulas 6(z), exactly one of
TE¢—0and T = ¢ — -0 holds. A structure 2 is atomic if every
n-tuple in A satisfies a complete formula in Th(A).

Atomicity is important because of Theorems 5.5 and 5.6 (Chang and
Keisler [2] sec. 2.3.3):

DEFINITION 5.4. A structure 2 is said to be prime if, for any struc-
ture B, A = B implies that A can be elementarily embedded in B.

THEOREM 5.5. A structure is countable and atomic if and only if it
18 prime.
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If a theory has a prime model, then it is unique, in the following sense.

THEOREM 5.6. If A and B are countable atomic models and A =B,
then A ~ B.

Thus, prime models are regarded as the simplest models of their theo-
ries. The task before us is to establish that the structure R is atomic,
and to identify () as its prime model.

The following results concerning the collections R and @ are easily
established:

LEMMA 5.7. Let a1,...,apn,b1,...,bp,a € R such that ay,...,ap ~
bi,...,by. Then there existsb € R such thatay,...,an,a ~ by,..., by, b.

LEMMA 5.8. Let ay,...,a, € Q and let b € R. Then there exists
a € Q such that ay,...,ap,a ~ ai,...,a,,b.

Lemmas 5.7 and 5.8 imply the following two useful results:

LEMMA 5.9. Leta,b € R" such thata ~ b in R3. Then a and b satisfy
the same formulas.

Proof. Suppose R = ¢[a]. We show by structural induction on ¢ that
R = #[b]. The only nontrivial case is where ¢(z) has the form Jy¢(z, y).
Since R [ ¢[a], choose a € R such that R = [a,a]; by Lemma 5.7,
choose b € R such that a,a ~ b, b. By inductive hypothesis, R = b, b];

hence R = ¢[b], as required.

LEMMA 5.10. The structure @ is an elementary submodel of R.

Proof. According to the Tarski-Vaught lemma (Hodges [9] p. 55), if
2A C B and, for any n-tuple a of A and any formula ¢(Z) of the form
Jy1(Z,y) such that B |= ¢[b], there exists a € A such that B = [a, a,
then 2 < 8.

By construction, @ is a substructure of R. Let a be an n-tuple of @,
and let ¢(z) be any formula of the form Jyi(z,y) such that R |= ¢lal.
Then there exists b € R such that R | v[a,b]. By Lemma 5.8, there
exists a € @ such that a,a ~ @,b. By Lemma 5.9, R |= v¢[a, a].

THEOREM 5.11. The structure R is atomic.
Proof. By Lemma 5.9, every topologically complete formula is com-
plete in Th(R). The result then follows by Theorem 2.8.

Finally, we have our second main result.
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Proof. [of Theorem 2.10] By Lemma 5.10 and Theorem 5.11, @ is an
atomic model of Th(R). The result follows by Theorem 5.5.

Finally, we observe that the order of derivation between Theorems 2.8
and 2.10 can actually be reversed! To prove Theorem 2.10 without first
proving Theorem 2.8, recall that Corollary 4.12 ensures the existence
of a formula uy(Z2) satisfied by a 4N-tuple ¢ if and only if ¢ forms
an N-element A-cell partition. But it is an immediate consequence of
Lemma 3.38 that, for a fixed N > 0, there are only finitely many
N-element A-cell partitions up to similar situation. By Lemma 5.9
then, every A-cell partition satisfies a complete formula, whence, by
Lemma 5.2, every tuple from R satisfies a complete formula. To derive
Theorem 2.8 from Theorem 2.10 requires that we show that every com-
plete formula is topologically complete. In fact, this follows with relative
ease, as described in using Pratt and Schoop [16] Theorem 5.13. The
strategy is to show how automorphisms of R (considered as a structure)
induce homeomorphisms from the original space R? onto itself. (This
argument depends on the fact, established in Corollary 4.9, that the
property of boundedness is £-definable.) The interested reader can find
the details in the source just cited. In some ways, this reversed order
of derivation is more elegant and general, in that it can be used to ob-
tain information about alternative models of somewhat less expressive
languages than L. However, for most purposes, the order of derivation
adopted here is probably more straightforward.

6. Discussion and open problems

At this point, we have a fairly clear understanding of the theory of
polyhedra in the first-order language £ based on Whitehead’s contact-
relation. In particular, we have two closely related results concern-
ing, on the one hand, the expressive power of this language, and on
the other, the possibilities for interpreting it within some alternative,
region-based model of space. First: the formulas of £ suffice to char-
acterize any tuple of polyhedra up to the relation of similar situation.
Second: any region-based model of space must either falsify some state-
ment true in the familiar polyhedral interpretation or must contain a
copy of the rational polyhedra as an elementary submodel.

It is natural to ask whether the results obtained here for R can
be generalized to other, more liberal domains of quantification. Of
particular interest is the collection S of regular open semialgebraic
subsets of R® (van den Dries [19], p. 168). Again, S determines an
L-structure by interpreting the binary predicate C' in the usual way; it
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is then easy to show that S and R are elementarily equivalent and that
Theorems 2.8 and 2.10 apply with R replaced by S. (See Pratt and
Lemon [14] sec. 6 for a more detailed discussion in the two-dimensional
case.) Since generalization to the semialgebraic case adds nothing new,
we have kept to the polyhedral case in this paper for perspicuity.

More problematic is the liberalization of quantification to domains
containing non-tame regions, for example, the whole of RO(R?). Re-
stricting quantification to regular open (or closed) sets has now become
standard in treatments of mereotopology (Randell et al. [17], p. 166,
Borgo at al. [1], p. 221, Gotts et al. [8], sec. 3.). Motivations vary, but,
roughly speaking, the idea seems to be that regular open subsets of R?
do a good job of modelling the regions occupied by physical objects,
because they help to suppress awkard and meaningless questions as to
whether such regions include their boundary points. So it is natural to
wonder about the mereotopology that results if we interpret £ in the
usual way over the whole of RO(R?).

However, the choice of RO(R?) as our domain of quantification is less
attractive than might at first appear. Certainly, RO(R?) contains sub-
sets of R? which could not possibly usefully model the regions occupied
by physical objects. For example, the set

{(z1,x2,23) € R3|O <r1<1l,—1—21 <x2 <1/sinz,0 < z3 < 1}

is seen to be regular open, but has an infinitely wiggly boundary that
cannot, it seems, be physically realized. This is precisely the sort of
pathological behaviour which cannot arise in R (or S), and whose elim-
ination has partly motivated the development of mereotopology. More-
over, the bad behaviour of such regions makes the structure RO(R?)
much harder to understand than R. Tt is easily shown that RO(R?) is
not elementarily equivalent (as an L-structure) to R; but little else is
known about it.

Liberalizing our domain of quantification still further, we could even
interpret £ over the entire power set P(R3). Again, it can be shown
that this structure is elementarily equivalent to neither R nor RO(RR?).
However, it also transpires that £ has virtually no useful expressive
power when interpreted over P(R?). For example, the subset-relation,
which we showed in Lemma 4.1 to be defined over R by a very sim-
ple formula, is not definable over P(R?) by any formula of £. Since
L is so inexpressive over this domain of interpretation, we have not
investigated its mereotopology in any detail.

Where do these results leave the program of developing region-based
models of physical space? The answer may depend on our original
motivation. Insofar as that motivation was metaphysical—prompted
by a conviction of the ontological primacy of regions—then the re-
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sults achieved here are surely negative in character. Yes, space can be
modelled as a structure of primitive regions related to each other by a
primitive binary relation of contact; however, assuming the search for
alternative spatial ontologies to be constrained by elementary equiva-
lence to the familiar polyhedral model, nothing results but a copy of the
familiar rational polyhedra together (possibly) with a collection of ad-
ditional regions which are to all intents and purposes redundant. To be
sure, one may simply reject the necessity of elementary equivalence to
R. But this raises the problematic issue of deciding how an alternative
spatial ontology is then to be constrained.

On the other hand, insofar as our motivation was simply to develop
an elementary theory for topological reasoning about well-behaved re-
gions in three-dimensional space, our results are more positive in char-
acter. For they show that recognizing only the regular open polyhedra
as primitive spatial entities, and only contact as a primitive spatial
relation, leads to an expressive language and a nontrivial elementary
theory about which useful results can be derived. Quite what value such
languages may have in real applications—for example in problems of
spatial reasoning in Artificial Intelligence—is unclear at present. On
the one hand, the difficulty of obtaining accurate coordinate informa-
tion about the locations and shapes of objects in a real environment
suggests the usefulness, in principle, of qualitative characterizations.
On the other hand, it is difficult to think of practical spatial reason-
ing problems where purely topological reasoning is of much use. The
fairest assessment is probably that the utility of such languages is still
undetermined.

Form a technical point of view, three salient open questions remain.
The first concerns the extension of the results obtained above to higher
dimensions. The answer to this question hinges on the existence of a
formula such as py(2Z) of Corollary 4.12, stating that z forms an N-
element partition of a sort which can be realized in only finitely many
ways up to similar situation. (Almost all of the material in sections 3
and 4 was in effect devoted to this task.) It is unclear whether the
philosophical significance of the mereotopology of higher-dimensional
spaces is sufficient to justify the effort involved; as far as the author is
aware, this topic has never seriously been addressed.

The second question concerns the model theory of domains of quan-
tification less well-behaved than R, but still included in P(R®)—most
obviously, the collection of regions RO(R3). The analogue of Theo-
rem 2.8 for RO(IR?) fails, by a simple counting argument. Moreover, the
fact that Theorem 2.10 can be used to derive Theorem 2.8, as outlined
briefly at the end of section 5, further suggests that Theorem 2.10 fails
for RO(R3). However, this latter derivation requires that the property

3d.tex; 13/05/2002; 13:24; p.28



ELEMENTARY POLYHEDRAL MEREOTOPOLOGY 29

of boundedness be definable over RO(RR?), an issue which has not been
settled. This question of the behaviour of £ over non-tame domains
of quantification is philosophically interesting, because its answer will
determine to what extent the mereotopology of space depends on which
subsets of R? count as regions.

The third question concerns the prospects for characterizing the set
of L-sentences Th(R) syntactically. It can certainly be shown that this
set is not recursively enumerable. (The corresponding result for the reg-
ular open polygons in the open plane was established by Dornheim [6];
similar techniques can be used in the three-dimensional case.) Hence,
Th(R) has no recursive axiomatization. However, Pratt and Schoop [15]
were able to characterize the theories of closely related structures in the
plane using an infinitary proof-rule to encode the assumption of finite
decomposability into cells. It seems certain that a similar approach
would work for the present case; however, it should be admitted that
the details are likely to be complicated, and the payoffs of a syntactical
characterization of Th(R) perhaps somewhat limited.
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