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Abstract. The numerical syllogistic is the extension of the traditional
syllogistic with numerical quantifiers of the forms at least C and at most

C. It is known that, for the traditional syllogistic, a finite collection of
rules, similar in spirit to the classical syllogisms, constitutes a sound and
complete proof-system. The question arises as to whether such a proof
system exists for the numerical syllogistic. This paper answers that ques-
tion in the negative: no finite collection of syllogism-like rules, broadly
conceived, is sound and complete for the numerical syllogistic.

1 Introduction

The numerical syllogistic is the set of English sentences of the forms

At least C p are q At least C p are not q

At most C p are q At most C p are not q,

where p and q are common (count) nouns, and C is a (decimal) digit string
representing a natural number in the usual way. We here ignore, and henceforth
silently correct, details of English number-agreement and plural morphology,
since these matters have no bearing on the ensuing discussion. The argument

At least 13 artists are beekeepers

At most 3 beekeepers are not carpenters

At most 1 carpenter is not a dentist

At least 9 artists are dentists,

(1)

whose premises and conclusion all belong to the numerical syllogistic, is evi-
dently valid: any circumstance in which all the premises are true is one in which
the conclusion is true. For suppose the premises are true. Take any collection of
thirteen artists who are beekeepers; since at most three of these are not carpen-
ters, the remaining ten are; and since, of these ten, at most one is not a dentist,
the remaining nine are.

The numerical syllogistic generalizes the traditional syllogistic, which, for our
purposes, we may take to be the set of English sentences of the forms

Some p are q Some p are not q

All p are q No p are q.
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To see this, note that the sentence Some p are q may be equivalently written
At least 1 p is a q; likewise, All p are q may be equivalently (if somewhat unid-
iomatically) written At most 0 p are not q; and so on. Since the standard system
of syllogisms presented in Aristotle’s Prior Analytics can be shown—with a few
relatively minor adjustments—to license exactly the valid arguments in the tra-
ditional syllogistic [1–4], it is natural to ask whether a similar situation holds for
the numerical syllogistic.

To understand what this question means more concretely, consider the rule

At most C p are not q At least D o are p

At least E o are q
(0 ≤ E ≤ D − C),

(2)

which we interpret as licensing an inference from any instances of the sentence-
schemata above the line to the corresponding instance of the sentence schema
below the line, subject to the side-condition 0 ≤ E ≤ D − C. Clearly, this rule
is valid: it never leads from true premises to a false conclusion. For suppose the
premises are true. Take any collection of D o which are p; since at most C of
them are not q, the remaining D − C are. In fact, by chaining two instances of
Rule (2) together, we can formally demonstrate the validity of Argument (1),
thus:

At most 1 carpenter is not a dentist

At most 3 beekeepers

are not carpenters

At least 13 artists

are beekeepers

At least 10 artists are carpenters

At least 9 artists are dentists.

Rule (2) might reasonably be regarded as a “numerical syllogism”. Indeed,
the traditional syllogism Darii is simply the special case obtained by putting
C = 0 and D = E = 1:

All p are q Some o are p

Some o are q
.

Thus, we are led to ask whether there exists a finite collection of such numerical
syllogisms—broadly conceived—that licenses all (and only) the valid arguments
in the numerical syllogistic? We show in the sequel that there is not.

Despite its obviousness as a generalization of the traditional syllogistic, the
numerical syllogistic seems not to have attracted the attention of logicians before
the Nineteenth Century. The first systematic investigation known to the author
is that of de Morgan [5] (Ch. VIII), though this work was closely followed by
treatments in Boole [6] (reprinted as [7], Sec. IV) and Jevons [8], (reprinted as [9],
Part I, Sec. IV). For a historical overview of this episode in logic, see [10]. De
Morgan presented a list of what he took to be the valid numerical syllogisms.
Latterly, various other proof-systems have been proposed, also based on numer-
ical generalizations of the traditional syllogisms. Good examples are those of
Murphree [11, 12], and of Hacker and Parry [13]. The negative results presented
below apply to all of these systems. These same results constitute a strengthen-
ing (and simplification) of earlier observations made by the author in [14], Sec. 5.
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At the same time, the present paper can be seen as a contribution—though per-
haps something of a negative one—to an established tradition of attempts to
provide logical calculi more or less closely modelled on aspects of natural lan-
guages. Examples of work in this tradition include Fitch’s use of combinatory
logic [15], Suppes’ use of relation algebra [16], Purdy’s ‘natural logic’ [17–19],
and Fyodorov et al.’s inference calculus based on monotonicity features [20].

The plan of the paper is as follows. Section 2 presents the syntax and seman-
tics of a formal language, N , which faithfully reconstructs the numerical syllo-
gistic, together with a natural extension of N , which we denote N †. Section 3
reconstructs—as liberally as possible—the notion of a numerical syllogism, and
states the main result of this paper: that neither N nor N † admit a finite system
of numerical syllogisms that licenses exactly the valid inferences. In stating this
result, we pay particular attention to indirect proof and the rule of reductio ad

absurdum. Section 4 proves the result.

2 Syntax and semantics of N † and N

Fix a countably infinite set P. We may assume P to contain all English common
count-nouns such as man, animal etc. An atom is an element of P; a literal is an
expression of either of the forms p or p̄, where p is an atom. A literal which is
an atom is said to be positive; all other literals are said to be negative. If l = p̄ is
a negative literal, then we take l̄ to denote the positive literal p. An N †-formula

is an expression of either of the forms (≤ C)[l, m] or (> C)[l, m], where C is
a decimal string representing a non-negative integer, and l, m are literals. To
avoid cumbersome circumlocutions, we henceforth ignore the distinction between
natural numbers and the decimal strings representing them. An N -formula is
an N †-formula at least one of whose literals is positive. We denote the set of
N †-formulas by N †; and similarly for N . A subset P ⊆ P is a signature. If P

is a signature, we denote by N †(P ) the set of N †-formulas involving no atoms
other than those in P ; and similarly for N (P ).

We provide formal semantics for the language N †—and hence for N—as
follows. A structure A is a pair 〈A, {pA}p∈P〉, where A is a non-empty set, and
pA ⊆ A, for every p ∈ P. The set A is called the domain of A. Given a structure
A, we extend the map p 7→ pA to all literals by setting p̄A = A \ pA. We define
the truth-relation |= between structures and N †-formulas by declaring

A |= (≤ C)[l, m] iff |lA ∩ mA| ≤ C

A |= (> C)[l, m] iff |lA ∩ mA| > C.

Note that these truth-conditions are symmetric in the literals l and m. Accord-
ingly, we henceforth identify formulas differing only with respect to the order of
their literals, silently performing any transpositions required.

These semantics justify the following English glosses for N -formulas, where
p and q are English count nouns (and hence also elements of P):

(≤ C)[p, q] At most C p are q (≤ C)[p, q̄] At most C p are not q

(> C)[p, q] At least C + 1 p are q (> C)[p, q̄] At least C + 1 p are not q.
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We also provide pseudo-English glosses for N †-formulas in a similar way, except
that ‘negated’ subjects are required when both literals are negative:

(≤ C)[p̄, q̄] At most C non-p are not q

(> C)[p̄, q̄] At least C + 1 non-p are not q.

The use of ≤ and > (rather than the ≤ and ≥ employed in Section 1) simplifies
various technical details in the ensuing presentation. Nothing of substance hinges
on this decision, however; the results obtained below would not be materially
altered by expanding our languages to include formulas of the form (≥ 0)[l, m].

If Θ is a set of formulas, we write A |= Θ if, for all θ ∈ Θ, A |= θ. A formula
θ is satisfiable if there exists A such that A |= θ; a set of formulas Θ is satisfiable

if there exists A such that A |= Θ. If, for all structures A, A |= Θ implies A |= θ,
we say that Θ entails θ, and write Θ |= θ. We take it as uncontroversial that
Θ |= θ constitutes a rational reconstruction of the pre-theoretic judgment that
a conclusion θ may be validly inferred from premises Θ. For example, the valid
argument (1) corresponds to the entailment

{(> 12)[artst, bkpr] , (≤ 3)[bkpr, crpntr]

(≤ 1)[crpntr, dntst]} |= (> 8)[artst, dntst]. (3)

No formula of the form (> C)[l, l̄] is satisfiable: that is, for all A,
A 6|= (> C)[l, l̄]. We refer to any such formula as an absurdity; and we use
the (possibly decorated) symbol ⊥ to denote, ambiguously, any absurdity. Note
that all absurdities are actually N -formulas.

If θ is an N †-formula, we define the N †-formula θ̄ to be the result of ex-
changing the symbols ≤ and > in θ. That is:

θ̄ =

{

(> C)[l, m] if θ = (≤ C)[l, m]

(≤ C)[l, m] if θ = (> C)[l, m].

It is easy to see that, for any structure A, A |= θ if and only if A 6|= θ̄. Moreover,

for any N †-formula θ, we have ¯̄θ = θ, and if θ is an N -formula, then so is θ̄.
Informally, we may think of θ̄ as the negation of θ. Thus, the languages N † and
N are, in essence, closed under negation.

The satisfiability problem for N † is the following problem: given a finite set of
N †-formulas Θ, determine whether Θ is satisfiable. The validity problem for N †

is the following problem: given a finite set of N †-formulas Θ and an N †-formula
θ, determine whether Θ |= θ. The satisfiability and validity problems for N
are defined analogously. Since N † and N are, in effect, closed under negation,
satisfiability and validity are dual notions in the usual sense. It is known [21,
14] that the satisfiability problems for N † and N are both NPTime-complete;
hence the corresponding validity problems are both Co-NPTime-complete.

3 Proof theory for N † and N

This section develops a framework for formalizing systems of syllogism-like rules
in N and N †. Because we shall be deriving negative results about such systems,
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and wish these results to be as general as possible, our presentation will be
in some respects rather abstract. However, we shall never stray far from the
intuitions developed in Section 1.

We begin with some very general notions. Let L be any formal language,
understood as a set of L-formulas for which a truth-relation |= is defined. By
a derivation relation (in L), we simply mean a subset of P(L) × L, where P(L)
is the power set of L. If |∼ is a derivation relation, we write Θ |∼ θ instead
of 〈Θ, θ〉 ∈|∼. We call |∼ sound (for L) if, for all sets of L-formulas Θ and all
L-formulas θ, Θ |∼ θ implies Θ |= θ. We call |∼ complete (for L) if, for all sets
of L-formulas Θ and all L-formulas θ, Θ |= θ implies Θ |∼ θ. In this paper, we
are interested in derivation relations in N † and N generated by finite sets of
syllogism-like rules. These we now proceed to define.

A formula schema in N † is an expression of the form (Q)[l, m] where Q is
either of the symbols ≤ or >, and l and m are literals. A formula schema in N
is a formula schema in N † subject to the additional condition that at least one
of l and m is positive. A syllogistic rule in N † (in N ) is a pair (ξ, R), where, for
some k ≥ 0, ξ is a (k + 1)-tuple of formula schemata in N † (respectively, N ),
and R is a (k + 1)-ary relation over N. A substitution is a function f : P → P.
Substitutions are applied to negative literals in the expected way: f(p̄) = f(p).
An instance of the syllogistic rule

(〈(Q1)[l1, m1], . . . , (Qk)[lk, mk], (Q)[l, m]〉, R), (4)

is any (k + 1)-tuple

〈(Q1 C1)[f(l1), f(m1)], . . . , (Qk Ck)[f(lk), f(mk)], (Q C)[f(l), f(m)]〉 (5)

where f is a substitution and C1, . . . , Ck, C are integers such that
〈C1, . . . , Ck, C〉 ∈ R. It is easy to see that, if (4) is a syllogistic rule in N †

(or in N ), then the elements of (5) are N †-formulas (respectively, N -formulas).
The intuitive meaning of any instance 〈θ1, . . . , θk, θ〉 of a syllogistic rule is that θ

may be inferred from θ1, . . . , θk. Officially, no restrictions at all are placed on the
relation R. In practice, however, R will usually be defined as {〈x1, . . . , xk+1〉 ∈
N

k+1 | π(x1, . . . , xk+1)}, for some (arithmetic) expression π. In that case, we
may display the syllogistic rule (4) in a more readable way as:

(Q1 C1)[l1, m1] · · · (Qk Ck)[lk, mk]

(Q C)[l, m]
(π(C1, . . . , Ck, C)).

(6)

A syllogistic rule is valid if, for any instance 〈θ1, . . . , θk, θ〉 of that rule, we have
{θ1, . . . , θk} |= θ—that is to say, if all the inference steps it licenses are entail-
ments.
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Some examples will help to motivate the rather austere definitions just given.
Consider the following syllogistic rules, displayed in the style of (6):

(≤ C)[l, m̄] (≤ D)[m, n]

(≤ E)[l, n]
(E ≥ C + D)

(7)

(≤ C)[m, n̄] (> D)[l, m]

(> E)[l, n]
(0 ≤ E ≤ D − C).

(8)

These syllogistic rules are easily seen to be valid. We encountered (8), in a slightly
different guise (and with all literals positive), as Rule (2) in Section 1.

If X is a set of syllogistic rules in N †, we define the relation of direct derivation

relative to X, denoted `X, to be the smallest subset of P(N †)×N † satisfying the
following conditions:

1. if θ ∈ Θ, then Θ `X θ;
2. if 〈θ1, . . . , θk, θ〉 is an instance of some syllogistic rule in X, and Θ `X θi for

all i (1 ≤ i ≤ k), then Θ `X θ.

Instances of the relation `X can be established by derivations in the form of
finite trees in the usual way. For instance, from the premises of Argument (1),
two applications of Rule (8) yield the derivation

(≤ 1)[crpntr, dntst]

(≤ 3)[bkpr, crpntr] (> 12)[artst, bkpr]

(> 9)[artst, crpntr]

(> 8)[artst, dntst]
,

which, again, we encountered in Section (1). Thus, for any set of syllogistic rules
X containing (8), we have:

{(> 12)[artst, bkpr] , (≤ 3)[bkpr, crpntr]

(≤ 1)[crpntr, dntst]} `X (> 8)[artst, dntst]. (9)

We remark in passing that, if X contains both Rules (7) and (8), we have an
alternative derivation showing (9):

(≤ 3)[bkpr, crpntr] (≤ 1)[crpntr, dntst]

(≤ 4)[bkpr, dntst]
Rule (7)

(> 12)[artst, bkpr]

(> 8)[artst, dntst]
Rule (8).

Classical treatments of the syllogistic actually recognize a slightly more lib-
eral notion of derivation than that presented above. Suppose we have derived
⊥ from a set of premises Θ ∪ {θ}, where ⊥ is some absurdity. The rule of re-

ductio ad absurdum allows us then to infer the formula θ̄ (semantically: the
negation of θ) from Θ alone. Reductio is not a syllogistic rule, in the technical
sense employed in this paper: for one thing it decreases the set of premises in a
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derivation—something no syllogistic rule can do. Nevertheless, it evidently pre-
serves entailment: if Θ∪{θ} |= ⊥, then Θ |= θ̄. For these reasons, we might wish
to take account of this rule in our analysis of the numerical syllogistic.

We do so as follows. If X is a set of syllogistic rules in N †, we define the
relation of indirect derivation relative to X, denoted 
X, to be the smallest subset
of P(N †) ×N † satisfying the following conditions:

1. if θ ∈ Θ, then Θ 
X θ;
2. if Θ 
X θ1, . . . , Θ 
X θk, and 〈θ1, . . . , θk, θ〉 is an instance of some syllogistic

rule in X, then Θ 
X θ;
3. if Θ ∪ {θ} 
X ⊥, then Θ 
X θ̄ (the rule of reductio ad absurdum).

Instances of the indirect derivation relation 
X may be established by construct-
ing proof-trees similar to those for direct derivations, except that we need a little
more machinery to keep track of premises. This may be done as follows. Suppose
we have a derivation (direct or indirect) showing that Θ ∪ {θ} 
X ⊥, for some
absurdity ⊥. Let this derivation be displayed as

Θ · · · · · · θ....
⊥.

Applying Clause 3 of the definition of 
X, we have Θ 
X θ̄, which we take to be
established by the derivation

Θ · · · · · · [θ]1
....
⊥
θ̄

(RAA)1.

The premise θ of the original derivation no longer counts as a premise in the new
derivation. As we say, the premise in question has been discharged. In displaying
derivations, we enclose any discharged premise in brackets, and co-index it with
the application of reductio which discharges it. Two minor complications regard-
ing indirect derivations should be noted at this point. The first concerns the case
where a derivation of ⊥ involves multiple instances of some premise θ. In that
case, the rule of reductio should be understood as allowing us to discharge any

number (including zero) of those occurrences. The second complication concerns
the case where a derivation of ⊥ involves no instances of some premise θ. In
that case, the rule of reductio should be understood as still allowing us to dis-
charge (zero occurrences of) θ. Put another way: we do not have to discharge
occurrences of premises if we do not want.

If X is a set of syllogistic rules in N , we define the derivation relations `X

and 
X analogously.
Thus, given a set of syllogistic rules X (in either N † or N ), we have two

derivation relations of interest: `X (direct derivation) and 
X (indirect deriva-
tion), with the latter always including the former. The following are evidently



8

equivalent: (i) `X is sound; (ii) 
X is sound; (iii) every rule in X is valid. Moreover,
if `X is complete, then, trivially, so is 
X.

The following questions now arise. Does there exist a finite set X of syllogistic
rules in N † such that the direct derivation relation `X is sound and complete?
If not, does there at least exist a finite set X of syllogistic rules in N † such that
the indirect derivation relation 
X is sound and complete? And is the situation
any different for the smaller language N ? The main result of this paper is that
the answer to all of these questions is no.

We close this section with a simple observation on derivations. Suppose Θ

is a set of N †-formulas and θ an N †-formula such that Θ 
X θ; and let P be
the signature of atoms occuring in Θ ∪ {θ}. Consider any (indirect) derivation
of θ from Θ (via the syllogistic rules X). If that derivation involves any atoms
not in P , we may evidently uniformly replace them by atoms in P , obtaining
another derivation of θ from Θ. The same holds for direct derivations, and also
for the language N . Thus, when considering derivations from Θ to θ, we may
limit ourselves entirely to the languages N †(P ) or N (P ).

4 Main result

Let n be an integer (n ≥ 4), and let P (n) be a signature of cardinality n + 1—
say {p1, . . . , pn, q}. We denote by Γ (n) the following (infinite) set of N †(P (n))-
formulas, where i, j range over all distinct integers in the interval 1, . . . , n, C

ranges over all natural numbers in the intervals indicated, and o ranges over
P (n).

1. There are exactly n − 1 objects in the domain, all satisfying q:

(≤ C)[q, q] (C ≥ n − 1) (≤ C)[q̄, q̄] (C ≥ 0)
(> C)[q, q] (C ≤ n − 2).

2. Each pi is realized exactly once; and its complement is realized exactly n−2
times:

(≤ C)[pi, pi] (C ≥ 1) (≤ C)[p̄i, p̄i] (C ≥ n − 2)
(> 0)[pi, pi] (> C)[p̄i, p̄i] (C ≤ n − 3).

3. All the pi and all the non-pi are q:

(≤ C)[pi, q] (C ≥ 1) (≤ C)[pi, q̄] (C ≥ 0)
(> 0)[pi, q]
(≤ C)[p̄i, q] (C ≥ n − 2) (≤ C)[p̄i, q̄] (C ≥ 0)
(> C)[p̄i, q] (C ≤ n − 3).

4. No pi is a pj (remember that i 6= j):

(≤ C)[pi, pj ] (C ≥ 0)
(≤ C)[pi, p̄j ] (C ≥ 1) (≤ C)[p̄i, p̄j] (C ≥ n − 3)
(> 0)[pi, p̄j ] (> C)[p̄i, p̄j] (C ≤ n − 4)
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5. The logical truths of N †(P (n)):

(≤ C)[o, ō] (C ≥ 0).

When considering derivations from Γ (n), we limit ourselves entirely to the lan-
guage P (n). Where n can be regarded as a constant, we omit it, and write Γ for
Γ (n).

Lemma 1. Γ is unsatisfiable.

Proof. The formulas (≤ n − 1)[q, q], (> 0)[pi, q] (1 ≤ i ≤ n) and (≤ 0)[pi, pj ]
(1 ≤ i < j ≤ n) together violate the pigeonhole principle.

Lemma 2. For every θ ∈ N †(P (n)), either θ ∈ Γ or θ̄ ∈ Γ .

Proof. Exhaustive check.

For all i, (1 < i ≤ n), define

γi = (≤ 0)[p1, pi] δi = (> 0)[p1, p̄i]
εi = (> 0)[p̄1, pi] ζi = (≤ n − 3)[p̄1, p̄i],

so that
γ̄i = (> 0)[p1, pi] δ̄i = (≤ 0)[p1, p̄i]
ε̄i = (≤ 0)[p̄1, pi] ζ̄i = (> n − 3)[p̄1, p̄i].

And for all i, (1 < i ≤ n), define

Θi = {γi, δi, εi, ζi} Θ̄i = {γ̄i, δ̄i, ε̄i, ζ̄i}.

Note that Θi ⊆ Γ ; indeed, all the Θi are given in Clause 4 of the definition of
Γ . (Remember: the order of literals in N †-formulas is not significant.) In the
presence of the formulas given in Clauses 1–3 of the definition of Γ , any formula
in Θi is equivalent to any other, and states that the interpretations of p1 and
pi are disjoint. Similarly, any formula in Θ̄i states that the interpretations of p1

and pi coincide. It is not hard to see that any set (Γ \ Θi) ∪ Θ̄i is satisfiable.
For let A = {2, . . . , n}, and, for all i (1 < i ≤ n), let Ai be the structure with
domain A and interpretations

qAi = A pAi

1 = {i} pAi

j = {j} (2 ≤ j ≤ n).

Thus, each Ai distributes the interpretations of p2, . . . , pn disjointly over the
universe {2, . . . , n}, and makes the interpretations of p1 and pi coincide.

Lemma 3. For all i (1 < i ≤ n), Ai |= (Γ \ Θi) ∪ Θ̄i.

Proof. Routine check.

For all i, j, (1 < i < j ≤ n), define

∆
(n)
i,j = Γ (n) \ (Θi ∪ Θj).

Again, for clarity, the superscript (n) is omitted where n can be regarded as a
constant. Thus, ∆i,j removes from Γ the formulas stating that the interpretation
of p1 is disjoint from those of both pi and pj .
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Lemma 4. Let θ be a formula of N †(P (n)), and let 1 < i < j ≤ n. If ∆i,j |= θ,

then θ ∈ ∆i,j .

Proof. From Lemma 2, either θ ∈ Γ or θ̄ ∈ Γ . Hence, if θ 6∈ ∆i,j , then one of
the following possibilities holds: (i) θ ∈ Θi; (ii) θ ∈ Θj ; (iii) θ̄ ∈ ∆i,j ∪Θi; or (iv)
θ̄ ∈ ∆i,j ∪ Θj . From Lemma 3, we see that, in cases (i) and (iv), the fact that
Ai |= ∆i,j ∪ Θ̄i ∪ Θj contradicts ∆i,j |= θ, and that, in cases (ii) and (iii), the
fact that Aj |= ∆i,j ∪ Θ̄j ∪ Θi contradicts ∆i,j |= θ.

Lemma 5. Let X be a finite set of valid syllogistic rules in N †, and let r be the

maximum number of antecedents in any syllogistic rule of X. If θ ∈ N †(P (n)),
and Γ (n) `X θ, where n ≥ r + 3, then θ ∈ Γ (n).

Proof. We proceed by induction on the lengths of (direct) derivations. If a deriva-
tion of θ from Γ (n) employs no syllogistic rules, then, trivially, θ ∈ Γ (n). For the
inductive step, consider the last rule-instance 〈θ1, . . . , θk, θ〉 in the derivation. By
inductive hypothesis, {θ1, . . . , θk} ⊆ Γ (n). But because k ≤ r ≤ n− 3, we in fact

have, for some i, j (1 < i < j ≤ n), {θ1, . . . , θk} ⊆ ∆
(n)
i,j . Since every rule in X is

valid, ∆
(n)
i,j |= θ. By Lemma 4, θ ∈ ∆

(n)
i,j ⊆ Γ (n). This completes the induction.

Note that, from Lemma 5, we see immediately that there is no finite set X of
syllogistic rules for N † such that the direct derivation relation `X is sound and
complete. For suppose r is the maximum number of antecedents in any of the
syllogistic rules in X, and let n ≥ r + 3. If ⊥ = (> 0)[l, l̄] is any absurdity, we
have Γ (n) |= ⊥, by Lemma 1. But, by inspection, ⊥ 6∈ Γ (n). Of course, Lemma 5
does not by itself establish the incompleteness of the indirect system 
X, which
includes the rule of reductio. However, Lemma 2 ensures that reductio actually
does no useful work in the present case, as we now proceed to show.

Theorem 1. There is no finite set X of syllogistic rules in N † such that 
X is

sound and complete for N †.

Proof. We assume otherwise and derive a contradiction. Suppose X is a finite set
of syllogistic rules for the numerical syllogistic with 
X sound and complete. Let
r be the maximum number of antecedents in any of the syllogistic rules in X, and
let n ≥ r +3. For any absurdity ⊥ = (> 0)[l, l̄], we have Γ (n) |= ⊥, by Lemma 1.
By the (assumed) completeness of 
X, we have Γ (n)


X ⊥. Let k be the smallest
integer with the property that there is a derivation of some absurdity in 
X

from Γ (n) employing at most k applications of the rule of reductio. Since Γ (n)

contains no absurdities at all, it follows from Lemma 5 that k > 0. Now take
any such derivation employing the minimal number k of applications of reductio,
and consider the last such application, which, we may suppose, discharges (more
than zero occurrences of) a premise θ as a result of deriving some absurdity
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(> 0)[m, m̄]:
Γ · · · · · · [θ]1

....
(> 0)[m, m̄]

θ̄
(RAA)1

· · · · · · Γ....
(> 0)[l, l̄].

By Lemma 2, either θ ∈ Γ (n) or θ̄ ∈ Γ (n). But then either one of the smaller
derivations

Γ · · · · · · θ....
(> 0)[m, m̄]

θ̄ · · · · · · Γ....
(> 0)[l, l̄]

is a derivation of an absurdity from Γ (n) involving fewer than k applications of
reductio, which is impossible.

By restricting all formulas in the above proof to be N -formulas, we obtain,
by identical reasoning:

Theorem 2. There is no finite set X of syllogistic rules in N such that 
X is

sound and complete for N .

The details are left to the reader.
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