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Abstract
We consider the two-variable fragment of first-order logic with
counting, subject to the stipulation that a single distinguished bi-
nary predicate be interpreted as an equivalence. We show that
the satisfiability and finite satisfiability problems for this logic are
both NEXPTIME-complete. We further show that the correspond-
ing problems for two-variable first-order logic with counting and
two equivalences are both undecidable.

Categories and Subject Descriptors F.4.1 [Computational logic]

General Terms Theory

Keywords Equivalence relation, Satisfiability, Complexity

1. Introduction
The two-variable fragment of first-order logic, denoted L2, is the
set of function-free, first-order formulas (with equality) featuring at
most two variables. The two-variable fragment with counting, de-
noted C2, is the set of function-free, first-order formulas featuring at
most two variables, but with the counting quantifiers ∃[≤M ], ∃[≥M ]

and ∃[=M ] (M ≥ 0) allowed. It is impossible, in either logic, to
express the fact that a given binary relation is an equivalence (i.e. is
reflexive, symmetric and transitive). This suggests the possibility
of adding such a facility. We denote by L2kE the extension of L2

in which k ≥ 1 distinguished binary predicates are required to be
interpreted as equivalences; and we denote by C2kE the analogous
extension of C2.

For any logic L, the satisfiability problem is the problem of de-
termining whether, given a formula ϕ of L, there exists a struc-
ture in which ϕ is satisfied; the finite satisfiability problem is the
problem of determining whether there exists a finite structure in
which ϕ is satisfied. We say L has the finite model property if
these problems coincide. The following facts are known: L2 has
the finite model property, and its satisfiability (= finite satisfiability)
problem is NEXPTIME-complete [3, 12]; C2 lacks the finite model
property, and its satisfiability and finite satisfiability problems are
both NEXPTIME-complete [4, 13, 14]; L21E retains the finite
model property, and its satisfiability problem remains NEXPTIME-
complete [9]; L22E lacks the finite model property, and its satis-
fiability and finite satisfiability problems are both 2-NEXPTIME-
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complete [11]; the satisfiability and finite satisfiability problems
for L2kE (k ≥ 3) are both undecidable [9]. In this paper, we in-
vestigate C21E—the two variable fragment with counting and one
equivalence, and C22E—the two variable fragment with counting
and two equivalences. We show that the satisfiability and finite sat-
isfiability problems for C21E are both NEXPTIME-complete. We
also show that the satisfiability and finite satisfiability problems for
C22E are both undecidable. Note that the undecidability of the cor-
responding problems for C2kE where k ≥ 3 follows anyway from
the above-mentioned results on L2kE.

A related family of logics is obtained by considering transitive
relations in place of equivalences. We denote by L2kT the exten-
sion of L2 in which k distinguished binary predicates are required
to be interpreted as transitive relations, and similarly for C2kT.
It is easy to show that L21T lacks the finite model property; and
it is known (but not easy to show) that its satisfiability problem
is in 2-NEXPTIME-time [17]. (The best known lower bound is
2-EXPTIME-hard, and decidability of finite satisfiability remains
open.) The satisfiability and finite satisfiability problems for L2kT
(k ≥ 2) are undecidable [6, 8]. (In fact, the corresponding prob-
lems for the weaker two-variable fragment with one equivalence
and one transitive relation are also both undecidable [10].) How-
ever, the satisfiability and finite satisfiability problems for C2kT
are both undecidable for all k ≥ 1 [7, 18]. Decidability can be
restored—even in the presence of an arbitrary number of transitive
relations—by restricting the underlying logical syntax, and a great
variety of such languages have been studied under the rubric of de-
scription logics; these logics will not be investigated here.

Of some historical interest in this connection is the first-order
theory of k equivalence relations. Here, we have full-first-order
logic at our disposal (not just C2), but no non-logical predicates
other than those denoting equivalences. It is reported in [5] that
membership of a sentence in the first-order theory of one equiv-
alence is decidable (even with equality); however, the first-order
theory of two equivalences is undecidable (even without equality).

The structure of the paper is as follows. Section 2 establishes
basic concepts and notation. Section 3 shows how, given a formula
of C21E, a certificate can be constructed which, on the assumption
that ϕ is finitely satisfiable, is guaranteed to satisfy a collection
of algorithmically checkable properties. Section 4 establishes the
converse: if a certificate for ϕ satisfies these properties, then ϕ is
finitely satisfiable. Section 5 establishes that the required proper-
ties of certificates can be checked in nondeterministic exponential
time, thus proving that the finite satisfiability problem for C21E is
NEXPTIME-complete; in addition, we outline how our proof can
be adapted to deal with the satisfiability problem for C21E. Sec-
tion 6 shows that the satisfiability and finite satisfiability problems
for C22E are undecidable.



2. Preliminaries
We employ standard logical notation and terminology throughout
(see, e.g. [1]); however, we allow structures to be empty. The two-
variable fragment with counting, denoted C2, is the set of function-
free, first-order formulas featuring only the variables x and y, but
with the counting quantifiers ∃[≤M ], ∃[≥M ] and ∃[=M ] allowed.
Formally, the subscripts M are bit-strings; however, we equivocate
in the natural way between these bit-strings and the non-negative
integers they encode. We read ∃[≤M ]x.ϕ as “There exist at most
M x such that ϕ”, and similarly for the other counting quantifiers.
The formal semantics are as expected. The two-variable fragment
with counting and one equivalence, C21E, employs the same syntax
and semantics as C2, but with the restriction that, in any structure
A, the distinguished binary predicate E be interpreted as an equiv-
alence. Where A is clear from context, we refer to the cliques of
EA as equivalence classes. The two-variable fragment with count-
ing and two equivalences, C22E, employs the same syntax and se-
mantics as C2, but with the restriction that, in any structure A, the
distinguished binary predicates E1 and E2 be interpreted as equiv-
alences.

We allow equality in formulas; this represents no increase in ex-
pressive power, since identity is anyway definable by the formula
∀x.r(x, x) ∧ ∀x∃[=1]y.r(x, y). We do not allow individual con-
stants; this represents no effective decrease in expressive power,
since we can always declare a unary predicate p to be uniquely in-
stantiated by writing ∃[=1]x.p(x). Likewise, the use of predicates
of arity greater than two adds no effective increase in expressive
power, and we therefore assume all predicates are unary or binary.

We write N for the non-negative integers, and [m,n] = {k |
m ≤ k ≤ n}. We assume all entries in matrices to be integers
(possibly negative), denoting the (i, j)th entry of a matrix A by
A[i, j]; similarly for vectors. A matrix or vector is (absolutely)
bounded by a number M if (the modulus of) each of its entries
is at most M . If U and V are sets of vectors, U ⊕ V = {u + v |
u ∈ U, v ∈ V }. Matrices and vectors (occasionally scalars) that
it is helpful to think of as constants are typically in bold type. We
write systems of linear inequalities in matrix form: Aw ≤ b, with
solutions sought over N. If E is such a system, we refer to the
elements of A as variable coefficients of E and the elements of b as
constant coefficients of E ; a coefficient is an element of either A or
b. We write ‖E‖ to denote the size of E , i.e. the total number of bits
required to write all its coefficients; and we write |E| to denote the
cardinality of E , i.e. the number or rows in A. It is a standard result
of integer linear programming (see, e.g. [15, Ch. 16]), that the set of
solutions of E has the form W⊕

{∑L
`=1 ζ`w` | ζ1, . . . , ζL ∈ N

}
,

where W is a finite set of vectors and w1, . . . ,wL a list of vectors.
The ensemble W, w1, . . . ,wL is known as a Hilbert basis. It
is routine to check that all of the vectors involved in this Hilbert
basis may be assumed to be absolutely bounded by an exponential
function of ‖E‖.

If w is a solution of E , the footprint of w is the set of vari-
ables taking non-zero values. The following result on footprints of
solutions of systems of linear inequalities will be used on several
occasions in the sequel.

Proposition 1 ([2], Theorem 2). Let E be a system of n inequalities
with integer coefficients such that the absolute value of any variable
coefficient of E is bounded by N > 0. If E has a solution over
N, then it has a solution over N with footprint of size at most
2n log(4nN).

Note that this bound is independent of the constant coefficients
of E .

2.1 Normal forms
A formula of C21E is in normal form if it conforms to the pattern

∀x∀y(x = y ∨ α) ∧
m∧
`=1

∀x∃[=M`]y(β` ∧ x 6= y) (1)

where α and the β` are quantifier-free, equality-free L2-formulas,
m > 0, and the M` are (bit-strings representing) positive integers.
We call M = max{M` | 1 ≤ ` ≤ m} the ceiling of ϕ. The
following lemma uses a technique originally employed by [16] in
the context of L2.

Lemma 2. Given a C21E-formula ϕ, we can compute, in polyno-
mial time, a formula ψ, with ceiling M , such that, for any set A of
cardinality greater than M , ψ is satisfiable over A if and only if ϕ
is.

Note that the formula ψ in Lemma 2 may in general feature a larger
signature than ϕ.

In the sequel, we fix a normal-form C21E-formula ϕ, and con-
sider the problem of determining the existence of (finite) models
of ϕ. We use the symbols α, m, M`, β` throughout to refer to the
parts of ϕ as indicated in (1), and we additionally define M to be
the ceiling of ϕ. We denote the number of symbols occurring in
ϕ by ‖ϕ‖, it being understood that a counting subscript M` con-
tributes dlogM`e symbols. Henceforth, let

Z = max(3mM + 1, (mM + 1)2 + 1), (2)

and fix Σ to be the signature of ϕ together with (‖ϕ‖+ 5dlogZe)
fresh unary predicates. (We also assume Σ features at least two
binary predicates other than E.) Since ϕ is fixed in the sequel, we
refer to any quantity bounded by p(‖ϕ‖), where p is a fixed polyno-
mial, as polynomially bounded, or simply polynomial. Similar for
singly exponentially bounded (2p(‖ϕ‖)) and doubly exponentially
bounded (22p(‖ϕ‖)

). Thus, |Σ| is polynomial, while M and Z are
singly exponential.

2.2 Rays, chromaticity and differentiation
A 1-type is a maximal consistent set of literals over Σ involving
only the variable x. Likewise, a 2-type is a maximal consistent
set of literals over Σ involving only the variables x and y and
containing x 6= y. Here, consistency is understood to take account
of the requirement that E is interpreted as an equivalence: every 1-
type contains E(x, x); every 2-type contains E(x, x) and E(y, y);
and every 2-type containsE(x, y) if and only if it containsE(y, x).
We denote by τ−1 the 2-type obtained by exchanging the variables
x and y in τ , and call τ−1 the inverse of τ . We denote by tp1(τ) the
1-type obtained by removing from τ any literals containing y; and
we write tp2(τ) = tp1(τ−1). We equivocate freely between finite
sets of formulas and their conjunctions.

Let A be any structure interpreting Σ. If a ∈ A, there exists a
unique 1-type π(x) such that A |= π[a]; we denote π by tpA[a].
If, in addition, b ∈ A \ {a}, there exists a unique 2-type τ(x, y)
such that A |= τ [a, b]; we denote τ by tpA[a, b]. Evidently, τ−1 =
tpA[b, a]; tp1(τ) = tpA[a]; and tp2(τ) = tpA[b]. If π is a 1-type,
we say that π is realized in A if there exists a ∈ Awith tpA[a] = π;
similarly for 2-types.

Recalling the form (1) of ϕ, we say that a 2-type τ is compatible
with ϕ if |= τ → (α(x, y) ∧ α(y, x)). Thus, in any model of
ϕ, all realized 2-types are compatible with ϕ. We call the 2-type
τ galactic if it contains E(x, y), and cosmic otherwise, i.e. if it
contains ¬E(x, y). For any 2-type τ , τ is galactic (cosmic) if and
only if τ−1 is. We call the 2-type τ a ray-type if |= τ → β`
for some ` (1 ≤ ` ≤ m). If ρ is a ray-type such that ρ−1

is also a ray-type, we say that ρ is invertible. A ray-type ρ is



polarized if it is either non-invertible or tp1(ρ) 6= tp2(ρ). If ρ is
a polarized, invertible cosmic ray-type, we refer to the unordered
pair (ρ, ρ−1) as a symmetrized cosmic ray-type. (We do not require
a corresponding notion for other sorts of ray-types.) If τ is a 2-type
such that neither τ nor τ−1 is a ray-type, we say that τ is dark.

The above terminology is supposed to suggest the following
imagery. If tpA[a, b] is a ray-type ρ, then we may imagine that a
emits a ray, of type ρ, that is absorbed by b. If ρ is invertible, then b
reciprocates (with a ray of type ρ−1). Accordingly, we refer to the
1-types tp1(ρ) and tp2(ρ) as the emission-type and absorption-type
of ρ, respectively. If tpA[a, b] is dark, then neither element emits a
ray that is absorbed by the other.

We say that A is polarized if every ray realized in A is polarized.
We say that A is chromatic if: (i) A is polarized; and (ii) for all
1-types π and all a ∈ A, a emits at most one invertible ray with
absorption-type π. It is easy to see that A is chromatic if and only if
no two distinct elements with the same 1-type are joined by a chain
of at most two invertible rays. We say A is differentiated if, for
every 1-type π: (i) π is realized either in at most one or in at least Z
equivalence classes; and (ii) π is realized in any equivalence class
either at most once or at least Z times. Using the (‖ϕ‖+5dlogZe)
unary predicates of Σ that do not appear in ϕ, we can show:

Lemma 3. Ifϕ has a model interpreting Σ, thenϕ has a chromatic,
differentiated model interpreting Σ over the same domain.

Let π and π′ be 1-types, not necessarily distinct. Recalling the
form (1) of ϕ, define γ to be the formula
(α(x, y)∧α(y, x)∧π(x)∧π′(y)) →

∨m
`=1 (β`(x, y)∨β`(y, x)).

We say that π and π′ are galactically coupled, and write π
g∼ π′, if

|= E(x, y) ∧ x 6= y → γ; and we say that π and π′ are cosmically
coupled, and write π c∼ π′, if |= ¬E(x, y) → γ. Galactic and
cosmic coupling are important for the following reason. Suppose
A |= ϕ, and a, b are distinct but equivalent elements of A such that
tpA[a] = π and tpA[b] = π′. If π

g∼ π′, then either tpA[a, b] or
tpA[b, a] (possibly both) is a galactic ray-type. Similarly, suppose
a, b are non-equivalent elements of A such that tpA[a] = π and
tpA[b] = π′. If π c∼ π′, then either tpA[a, b] or tpA[b, a] (possibly
both) is a cosmic ray-type.

2.3 Star-types and enumerations
Let us enumerate the 1-types as π1, . . . , πI . We fix this enumera-
tion for the remainder of this paper. Let us enumerate the polarized
ray-types as ρ1, . . . , ρ8J . We may choose the enumeration so that
ρ1, . . . , ρ2J are all galactic and invertible, ρ2J+1, . . . , ρ4J are all
galactic and non-invertible, ρ4J+1, . . . , ρ6J are all cosmic and in-
vertible, and ρ6J+1, . . . , ρ8J are all cosmic and non-invertible. We
need not worry that there are more invertible than non-invertible
polarized ray-types: just ‘pad out’ the latter with unrealized dum-
mies. Since these rays are all polarized, we may unproblematically
stipulate that, for j ∈ [1, J ] ∪ [4J + 1, 5J ], ρ−1

j = ρJ+j . Thus,
invertible ray-types (galactic or cosmic) and their inverses are enu-
merated in parallel. We fix this enumeration for the remainder of
this paper.

A star-type is a pair σ = 〈π, (v1, . . . , v8J)〉 where π is a 1-
type and the vj are non-negative integers such that vj > 0 implies
tp1(ρj) = π. We write, tp(σ) = π and, abusing vector notation
slightly, σ[j] = vj . Informally, we think of a star-type σ as a finite
multiset over the list of polarized ray-types ρ1, . . . , ρ8J ; and we
speak of its elements as rays emitted by σ.

We say σ is chromatic if it emits no two invertible rays with the
same absorption-type: i.e. if for every 1-type π,

∑
{vj : 1 ≤ j ≤

2J, tp2(ρj) = π} +
∑
{vj : 4J < j ≤ 6J, tp2(ρj) = π} ≤ 1.

We say σ is compatible with ϕ if: (i) for all j (1 ≤ j ≤ 8J),
σ[j] > 0 ⇒ ρj is compatible with ϕ; and (ii) for all ` (1 ≤

` ≤ m),
∑
{σ[j] | 1 ≤ j ≤ 8J , |= ρj → β`} = M`.

Thus, σ is compatible with ϕ if it emits no rays forbidden by
∀x∀y(x = y ∨ α) and the right numbers of rays required by
the ∀x∃[=M`]y(β ∧ x 6= y). If A is a finite, polarized structure
interpreting Σ, and a ∈ A, define stA[a] = 〈tpA[a], (v1, . . . , v8J)〉,
where vj = |{b ∈ A : b 6= a and tpA[a, b] = ρj}|. Evidently,
stA[a] is a star-type, and we call it the star-type of a in A. If
σ = stA[a] for some a ∈ A, we say σ is realized in A. It is routine
to check: A is chromatic if and only if every star-type realized in A
is chromatic; and A |= ϕ if and only if every star-type and every
dark 2-type realized in A is compatible with ϕ.

3. From models to certificates
Suppose the C21E-formula ϕ given in (1) has a finite, chromatic,
differentiated model A interpreting Σ. Any a ∈ A thus emits at
most M rays of any given type. Enumerate the star-types realized
in A as σ1, . . . , σK ; we fix this enumeration for the remainder of
Sec. 3. Although this list of star-types depends on A, K is bounded
as a fixed doubly exponential function of ‖(ϕ)‖. We proceed to
describe the construction of a certificate for ϕ.

3.1 Special and ordinary equivalence classes
For all i (1 ≤ i ≤ I), execute the following procedure. If πi

is realized in at least Z equivalence classes, select Z of those
equivalence classes. If, on the other hand, πi is realized in just one
equivalence class B, select B, and if, in addition, π is realized by
exactly one element a of B, also select every equivalence class
B′ containing any b such that tpA[a, b] is a cosmic ray-type. Call
an equivalence class special if it is selected in this process. An
equivalence-class that is not special is ordinary, and an element
is special (ordinary) if its equivalence class is. Let A† be the set
of special elements, and A∗ the set of ordinary elements. Thus,
A = A† ∪A∗, and A† 6= ∅.

Enumerate the special equivalence classes as B1, . . . , BG.
Thus, G is (positive and) singly exponentially bounded. Define
I = {i | πi is realized exactly once in A}. For all i (1 ≤ i ≤ I)
define Gi = {g ∈ [1, G] | πi is realized at least once in Bg}.

Consider the following sets of statements.

{(|Gi| ≤ 1) or (|Gi| ≥ Z) | 1 ≤ i ≤ I} (B1)
{Gi is a singleton | i ∈ I} (B2)
{(Gi = ∅) or (Gi′ = ∅) or

(Gi = Gi′ and |Gi| = 1) | i, i′ ∈ [1, I] \ I, πi
c∼ πi′}. (B3)

We write B = B1 ∪ B2 ∪ B3.

Lemma 4. All the statements in B are true.

Proof. Statement B1 follows from the selection of the special
equivalence classes together with the fact that A is differenti-
ated. Statement B2 follows from the definition of I. Statement
B3 follows—via a straightforward combinatorial argument—from
the definition of cosmic coupling together with the fact that A is
differentiated.

3.2 Profiles of equivalence classes
Let A′ ⊆ A. The profile of A′ is the vector prA[A′] =
(w1, . . . , wK), where wk = |{a ∈ A′ : stA[a] = σk}|. Thus,
the profile of A′ gives the numbers of elements in A′ realizing
each of the star-types σ1, . . . , σK . We observed above that the
length K of this vector is doubly exponential in ‖(ϕ)‖. Intuitively,
we may think of prA[A′] as a histogram of A′, summarizing the
set in statistical terms. Of primary interest in the sequel will be the



case where A′ is an equivalence class or a union of equivalence
classes.

Recall the enumerations {πi}I1, {ρj}8J1 and {σk}K1 . For all i,
k (1 ≤ i ≤ I , 1 ≤ k ≤ K), define the constant pi,k to be 1
if tp(σk) = πi, and 0 otherwise. Thus, the equation pi,k = 1
states that any element with star-type σk has 1-type πi. For all j,
k (1 ≤ j ≤ 4J, 1 ≤ k ≤ K), let uj,k = σk[j]. Thus, uj,k gives
the number of rays of (galactic) type ρj emitted by any element
having star-type σk. Finally, for all i, i′, k, c (1 ≤ i, i′ ≤ I ,
1 ≤ k ≤ K, 1 ≤ c ≤ mM+1), let the constants oc

i,i′,k and o∗i,i′,k
with values in {0, 1} be defined in such a way that: oc

i,i′,k = 1 if
and only if tp(σk) = πi and σk emits at least c galactic rays with
absorption-type πi′ ; and o∗i,i′,k = 1 if and only if tp(σk) = πi and
σk emits no non-invertible galactic rays with absorption-type πi′ .
Let qc

i,i′,k and q∗i,i′,k be defined analogously, but with “galactic
ray” replaced by “cosmic ray”. For convenience, we collect those
constants whose indices differ only in the value k into vectors of
length K, thus: p

i
= (pi,1, . . . ,pi,K), uj = (uj,1, . . . ,uj,K),

oc
i,i′ = (oc

i,i′,1, . . . ,o
c
i,i′,K), and similarly for qd

i,i′
, o∗i,i′ and q∗

i,i′
.

These constants allow us to compute various statistics concerning
any subset of A′ ⊆ A from its profile. For example, suppose
prA[A′] = w. Then the number of elements of A′ having 1-type
πi (1 ≤ i ≤ I) is p

i
· w. If, in addition, A′ is the union of some

collection of equivalence classes, then the total number of rays of
galactic type ρj (1 ≤ j ≤ 4J) emitted (and therefore absorbed) by
elements of A′ is uj · w.

Now let w = (w1, . . . , wK) be a tuple of variables, and con-
sider the following sets of statements regarding w.

{uj · w = uJ+j · w | 1 ≤ j ≤ J} (C01 )

{(p
i
· w ≤ 1) ∨ (p

i
· w ≥ Z) | 1 ≤ i ≤ I} (C0

2 )

{(p
i
· w ≥ c) ∨ (oc

i′,i · w = 0) | 1 ≤ i, i′ ≤ I, c = 1, 2} (C03 )

{(p
i
· w > 1) ∨ (oc

i,i′ · w = 0) ∨ (o∗i′,i · w ≥ c) |
1 ≤ i, i′ ≤ I, 1 ≤ c ≤ mM} (C04 )

{(p
i
· w = 0) ∨ (o∗i′,i · w < c) ∨ (oc

i,i′ · w ≥ 1) |

1 ≤ i, i′ ≤ I, πi
g∼ πi′ , c ≤ mM + 1} (C05 )

{p
i
· w ≤ 1) | i ∈ I} (C06 )

{q2

i′,i
· w = 0) | i ∈ I, 1 ≤ i′ ≤ I} (C07 )

{q1

i′,i
· w = 0) | 1 ≤ i, i′ ≤ I,Gi = ∅} (C08 )

{(p
i
· w ≤ 1) ∨ (p

i′
· w ≤ 1) | 1 ≤ i, i′ ≤ I, πi

g∼ πi′}. (C09 )

We write C0 = C01 ∪ · · · ∪ C09 .

Lemma 5. Suppose B is an equivalence class. Then prA[B] satis-
fies C0(w).

Proof. For C01 , observe that, since B is an equivalence class, the
total number of rays of (invertible, galactic) type ρj (1 ≤ j ≤ J)
emitted by elements of B equals the total number of rays of type
ρ−1
j = ρJ+j emitted by B. For C02 , observe that, since A is

differentiated, the number of elements of 1-type πi is either at most
1 or at least Z. The rest are similar.

Turning our attention now to the ordinary equivalence classes,
consider the following sets of equations in w.

{p
i
· w = 0 | 1 ≤ i ≤ I, |Gi| ≤ 1} (C∗1 )

{q∗
i′,i
· w = 0 | i ∈ I, 1 ≤ i′ ≤ I, πi

c∼ πi′} (C∗2 )

We write C∗ = C0∪C∗1 ∪C∗2 . We see that |C∗|—that is, the number
of statements in C∗—is singly exponentially bounded.

Lemma 6. Suppose B is an ordinary equivalence class. Then
prA[B] satisfies C∗(w).

Proof. For C∗1 , fix i (1 ≤ i ≤ I). By construction of the special
equivalence classes, if πi is realized in exactly one special equiv-
alence class, then it is realized in no ordinary equivalence classes.
For C∗2 , fix i ∈ I and i′ (1 ≤ i′ ≤ I). By construction of I, πi is
realized exactly once in A, and so let a be the element realizing πi.
By definition, a and all elements to which a sends any cosmic rays
lie in special equivalence classes. Hence, if b, realizing 1-type πi′ ,
lies in an ordinary equivalence class, and tpA[a, b] is not dark, then
b sends at least one non-invertible cosmic ray to an element of type
πi.

For all g (1 ≤ g ≤ G), let wg be a K-tuple of fresh variables.
Write w† to denote the (KG)-tuple w1, . . . , wG, and write 1 for
the vector (1, . . . , 1) of lengthK. For any g, consider the following
sets of statements regarding w†:

{p
i
· wg = 0 | 1 ≤ i ≤ I and g 6∈ Gi} (Cg1 )

{p
i
· wg ≥ 1 | 1 ≤ i ≤ I and g ∈ Gi} (Cg2 )

{p
i
· wg ≥ 2 | 1 ≤ i ≤ I, Gi = {g} and i 6∈ I} (Cg3 )

{1 · wg ≥ 1} (Cg4 )

{q1

i′,i
· wg = 0 | 1 ≤ i, i′ ≤ I, Gi = {g}} (Cg5 )

{(qd

i,i′
· wg = 0)∨

h 6=g∑
1≤h≤G

q∗
i′,i
· wh ≥ d |

i ∈ I, Gi = {g}, 1 ≤ i′ ≤ I, d ≤ mM} (Cg6 )

{(qd

i,i′
· wg ≥ 1) ∨

h6=g∑
1≤h≤G

q∗
i′,i
· wh < d |

1 ≤ i, i′ ≤ I, g ∈ Gi, πi
c∼ πi′ , d ≤ mM + 1}. (Cg7 )

Observe that Cg6 and Cg7 involve variables of w† other than those of
wg . For all g (1 ≤ g ≤ G), we write Cg = Cg1 ∪ · · · ∪ C

g
7 .

Lemma 7. Let B1, . . . , BG be the special equivalence classes of
A. Then, for all g (1 ≤ g ≤ G), the (KG)-tuple
prA[B1], . . . , prA[BG] satisfies Cg(w†).

Proof. Similar to Lemmas 5 and 6.

Now define the collection of statements C† by

C†(w†) =

G⋃
g=1

(
C0(wg) ∪ Cg(w†)

)
.

Again, we see that |C†| is singly exponentially bounded.

3.3 Spectra and clusters
We now group the equivalence classes of A into larger units, called
clusters. We employ the following apparatus for this purpose. Let
A′ ⊆ A. The cosmic spectrum (or c-spectrum) of A′ is the vector
csA[A′] = (v1, . . . , v4J), where vj = |{〈a, b〉 ∈ A′ × A : b 6=
a and tpA[a, b] = ρ4J+j}|. The symmetrized c-spectrum of A′ is
the vector ssA[A′] = (t1, . . . , tJ), where tj = |{〈a, b〉 ∈ A′×A :
b 6= a and tpA[a, b] = ρ4J+j or tpA[a, b] = ρ5J+j}|. Thus, the c-
spectrum lists the total number of rays of each cosmic type emitted
by elements of A′; similarly, the symmetrized c-spectrum lists the
total number of rays of each symmetrized cosmic type emitted by



elements of A′. Intuitively, we may think of these vectors as more
compressed versions of the profile of A′.

We can easily calculate (symmetrized) c-spectra from profiles.
Define the array V, of dimension (4J×K), by V[j, k] = σk[4J+
j] (1 ≤ j ≤ 4J, 1 ≤ k ≤ K). Taking I to be the identity matrix and
O the zero-matrix, both of dimension (J×J), define the (J×4J)-
matrix T = (I | I | O | O). Evidently, if the profile of A′ is w,
then its c-spectrum and symmetrized c-spectrum are, respectively,
Vw and TVw.

Now we can explain how to group equivalence classes into
clusters. For the special elementsA† = B1∪· · ·∪BG, clustering is
degenerate: we define the special clusters to beC1, . . . , CG, where
Cg = Bg for all g (1 ≤ g ≤ G). Since, for all g (1 ≤ g ≤ G),
prA[Bg] = wg , we have:

csA[Bg] = Vwg ssA[Bg] = Tvg. (3)

Let us now consider the ordinary equivalence classes. Lemma 6
states that the profile of any ordinary equivalence class satisfies
C∗(w). Evidently, C∗(w) is equivalent to a disjunction of systems
of inequalities Aw ≤ b. And for each of these systems, we can
compute a Hilbert basis W, w1, . . . ,wL, such that its space of
solutions is W⊕

{∑L
`=1 ζ`w` | ζ1, . . . , ζL ∈ N

}
. Thus, although

there is no a priori bound on the number of ordinary equivalence
classes in A, we do know that the profile of any of these equivalence
classes is a linear combination of one of a bounded collection
of sequences of vectors obtained from these Hilbert bases. This
observation plays a fundamental role in our decision procedure.

In order to obtain a tight complexity bound, we need to exercise
care in choosing these Hilbert bases. Using Proposition 1, we can
find integers H ≥ G, L ≥ 1 (both doubly exponentially bounded)
and a partition of A∗ into sets CG+1, . . . , CH , such that, for all h
(G < h ≤ H), there exist a matrix Ah, a vector bh, and anL-tuple
of vectors wh

0 , . . . ,w
h
L satisfying the following properties:

(i) Ch is a union of equivalence classes, and for each of these
equivalence classes, B, there exist non-negative integers ζ1, . . . ζL
(depending on B) such that, writing vh

` = Vwh
` and th` =

TVwh
` ,

csA[B] =vh
0 + ζ1v

h
1 + · · ·+ ζLv

h
L (4)

ssA[B] =th0 + ζ1t
h
1 + · · ·+ ζLt

h
L; (5)

(ii) the vectors wh
` (0 ≤ ` ≤ L) satisfy

Ahwh
0 ≤ b

h (6)

Ahwh
` ≤ 0 for all ` (1 ≤ ` ≤ L); (7)

(iii) the system of linear inequalities Ahw ≤ bh propositionally
entails C∗(w);
(iv) for some fixed integer N (singly exponentially bounded), the
matrix Ah has dimension N × K and is singly exponentially
absolutely bounded; the vector bh has length N , and is singly
exponentially absolutely bounded; the vectors wh

` (0 ≤ ` ≤ L)
are doubly exponentially absolutely bounded, of lengthK, but with
singly exponential footprint.

We call the setsCh (G < h ≤ H) the ordinary clusters of A. Thus,
we have partitioned A into the special clusters, C1, . . . , CG, each
comprising exactly one equivalence class, together with the ordi-
nary clusters, CG+1, . . . , CH , each comprising some non-empty
collection of equivalence classes. This partition is illustrated in
Fig. 1.

To understand the significance of the partition of Fig. 1, fix some
ordinary cluster Ch (G < h ≤ H), and consider its c-spectrum.

Evidently, csA[Ch] =
∑
{csA[B] | B ⊆ Ch}, whence, from (4),

csA[Ch] has the form

zh0v
h
0 + zh1v

h
1 + · · ·+ zhLv

h
L.

where zh0 is the number of equivalence classes in Ch, and zh` ∈ N
(1 ≤ ` ≤ L). Pictorially, we may imagine each equivalence class
B ⊆ Ch to be composed of various groups of elements, or ‘constel-
lations’: a single ‘core constellation’ having c-spectrum vh

0 , and,
for each ` (1 ≤ ` ≤ L), some number (possibly zero) of ‘periph-
eral constellations’ each having c-spectrum vh

` . The numbers zh`
(0 ≤ ` ≤ L) are simply the totals obtained by summing over allB.
The key to our approach is that—subject to a caveat to be discussed
in Sec. 3.4—we do not particularly mind how the various periph-
eral constellations are distributed between the equivalence classes
in Ch: all that matters is the total number of constellations of each
type, as given by the parameters zh` (G < h ≤ H , 0 ≤ ` ≤ L).
And, while we have no a priori bound on the number of ordinary
equivalence classes, we do have such a bound on L and H .

We conclude with some motivating remarks concerning equa-
tions (6) and (7). Consider again any equivalence class B ⊆ Ch,
and define the vector

w = wh
0 + ζ1w

h
1 + · · ·+ ζLw

h
L, (8)

where the coefficients ζ1, . . . , ζL are those satisfying equations (4)–
(5). We know from (6) and (7) that w is a solution of Ahw ≤ bh,
and hence satisfies C∗(w); moreover equations (4)–(5), ensure that
Vw = csA[B] and TVw = ssA[B]. Intuitively, we may think of
w as an ersatz profile forB: a vector which satisfies C∗(w) (i.e. the
conditions required for a vector to be the profile of an ordinary
equivalence class), and which yields the correct c-spectrum on ap-
plication of V. Note that there is no guarantee that w is equal to
prA[B]; however, as far as the rest of the structure is concerned, B
behaves as if this equation held. We remark that it is crucial to the
subsequent proof that every wh

` is doubly exponentially absolutely
bounded, and has singly exponential footprint.

3.4 Sectors and terminators
It turns out that clusters are not quite sufficient for our purposes,
and in this section, we corral the equivalence classes in every
ordinary cluster Ch into an alternating sequence of groups which
we refer to as sectors and terminators. If H = G, there are no
ordinary clusters, and so nothing to do. Therefore, we may assume
H > G ≥ 1. Denoting the number of equivalence classes in Ch

by c(h), let us enumerate them as Bh
1 , . . . , B

h
c(h). From (8), for all

h, s (G < h ≤ H , 1 ≤ s ≤ c(h)), Bh
s has an ersatz profile

ζhs,0w
h
0 + ζhs,1w

h
1 + · · ·+ ζhs,Lw

h
L. (9)

where ζhs,0 = 1 and ζhs,1, . . . , ζhs,L ∈ N. Indeed:

csA[Bh
s ] =ζhs,0v

h
0 + ζhs,1v

h
1 + · · ·+ ζhs,Lv

h
L (10)

ssA[Bh
s ] =ζhs,0t

h
0 + ζhs,1t

h
1 + · · ·+ ζhs,Lt

h
L. (11)

To reduce notational clutter, for all h and s (1 ≤ h ≤ H ,
1 ≤ s ≤ c(h)), we write ths for ssA[Bh

s ], i.e., the symmetrized
c-spectrum of the sth equivalence class in the hth cluster. Now fix
some j (1 ≤ j ≤ J): thus, ρ4J+j is an invertible cosmic ray-type,
and (ρ4J+j , ρ

−1
4J+j) = (ρ4J+j , ρ5J+j) is a symmetrized cosmic

ray-type. Observe that, for every h (1 ≤ h ≤ H), and every s
(1 ≤ s ≤ c(h)) the elements ofBh

s cannot possibly emit more rays
of symmetrized cosmic type (ρ4J+j , ρ5J+j) than all the rest of A
put together, that is to say:

ths [j] ≤
∑{

th
′

s′ [j]

∣∣∣∣ 1 ≤ h′ ≤ H, 1 ≤ s′ ≤ c(h′),
(h, s) 6= (h′, s′)

}
. (12)
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Figure 1: The partition of equivalence classes into clusters.

As we might put it: no equivalence class has an absolute majority
in respect of any symmetrized cosmic ray-type.

Let us write (h, s) ≺ (h′, s′) if either h < h′, or both h =
h′ and s < s′. Thus, ≺ is simply the lexicographic ordering
of indices, and enumerates the equivalence classes of A left-to-
right as depicted in Fig. 1. We define the symbols �, � and �
in the expected way, and we always compare pairs of integers
(h, s) with reference to this ordering, employing terms such as
greatest, maximal etc., with the obvious meaning. Continuing to
fix j (1 ≤ j ≤ J), define (h(j), s(j)) to be the greatest index pair
(1, 1) ≺ (h(j), s(j)) � (H, c(H)), satisfying∑

{tsh[j] | (h, s) ≺ (h(j), s(j))} ≤∑
{tsh[j] | (h, s) � (h(j), s(j))}. (13)

To see that (h(j), s(j)) exists, note that, by assumption, H ≥ 2,
and put h = s = 1 in (12). We claim that∑

{tsh[j] | (h, s) � (h(j), s(j))} ≥∑
{tsh[j] | (h, s) � (h(j), s(j))}. (14)

If (h(j), s(j)) = (H, c(H)), then (14) is trivial; if (h(j), s(j))
is the immediate ≺-predecessor of (H, c(H)), then it follows by
putting h = H and s = c(H) in (12); otherwise, it follows from
the maximality of (h(j), s(j)). Furthermore, putting h = h(j) and
s = s(j) in (12), we have

t
s(j)

h(j)[j] ≤
∑
{tsh[j] | (h, s) ≺ (h(j), s(j))}+∑

{tsh[j] | (h, s) � (h(j), s(j))}. (15)

Let this construction be carried out for all j (1 ≤ j ≤ J).
Inequalities (13)—(15) will play a key role in constructing the
certificate for ϕ—once we have re-organized them slightly. To this
end, fix h (1 ≤ h ≤ H), and let

Sh = {s(j) | 1 ≤ j ≤ J, h(j) = h} ∪ {c(h)}.

Thus, Sh records those indices s(j) (with j varying), for which
B

h(j)

s(j) is included in Ch, and adds in the final index c(h). We
remark that c(h) may be the only element of Sh. Let b(h) = |Sh|,
and enumerate Sh as a strictly increasing sequence of integers
s1 ≤ · · · ≤ sb(h). Thus, 1 ≤ b(h) ≤ J + 1, and sb(h) = c(h). By
definition, s(j) must be one of the elements sp in the enumeration
s1, . . . , sb(h) of Sh(j); and we write p(j) = p to identify the index
of this element. The functions

h : [1, J ]→ [1, H] p : [1, J ]→ [1, J + 1]

will form part of the certificate for ϕ. Notice that p(j) ≤ b(h(j)).
Keeping h fixed, and writing s0 = 0, define, for all p (1 ≤ p ≤

b(h)),

Ḃh
p =Bh

sp

B̂h
p =

⋃
{Bh

s | sp−1 < s < sp}.

We refer to the Ḃh
p as terminators, and to the B̂h

p as sectors. This
internal organization of clusters is illustrated in Fig. 2.

Now consider the c-spectra and symmetrized c-spectra of these
sectors and terminators. For all h, p (1 ≤ h ≤ H , 1 ≤ p ≤ b(h)),
let

v̇gp = csA[Ḃh
p ] ṫ

g

p = ssA[Ḃh
p ]

v̂gp = csA[B̂h
p ] t̂

g

p = ssA[B̂h
p ].

We proceed to write arithmetic expressions for these quantities.
Again, we adopt different strategies for the special clusters and
ordinary clusters. The special clusters involve no new work. By
construction, if 1 ≤ h ≤ G, then Ḃh

1 = Bh
1 and Ḃh

1 = ∅;
consulting (3), therefore, we have, for all g (1 ≤ g ≤ G):

{v̇g1 = Vwg, ṫ
g

1 = Tv̇g1 | 1 ≤ g ≤ G} (D1)

{v̂g1 = 0, t̂
g

1 = 0 | 1 ≤ g ≤ G}. (D2)

The ordinary clusters require more careful treatment. Fixing h
(G < h ≤ H), recall the expressions (10) and (11) giving the c-
spectrum and symmetrized c-spectrum of any equivalence classBh

s

(1 ≤ s ≤ s(h)). Recalling the enumeration s1 ≤ · · · ≤ sb(h) of
Sh (where the sp depend on h), we see that the c-spectrum of Ḃh

p

is simply the c-spectrum of Bh
sp ; moreover, the c-spectrum of B̂h

p

is the sum of the c-spectra of the equivalence classes Bh
s such that

Bh
s ⊆ B̂h

p . (See Fig. 2.) Corresponding remarks apply in the case
of symmetrized c-spectra. Let us therefore write

żhp,` =ζhsp,`

ẑhp,` =
∑
{ζhs,` | sp−1 < s < sp}.

It follows that, for all h (G < h ≤ H) and all p (1 ≤ p ≤ b(h)),
the following sets of equations hold:

{v̇hp = ΣL
`=0ż

h
p,`v

h
` | G < h ≤ H, p ≤ b(h)} (D3)

{v̂hp = ΣL
`=0ẑ

h
p,`v

h
` | G < h ≤ H, p ≤ b(h)} (D4)

{ṫhp = ΣL
`=0ż

h
p,`t

h
` | G < h ≤ H, p ≤ b(h)} (D5)

{t̂hp = ΣL
`=0ẑ

h
p,`t

h
` | G < h ≤ H, p ≤ b(h)}. (D6)

Observe that, with the aid of D1–D6, we have expressed the c-
spectrum and symmetrized c-spectrum of every sector and every
terminator in terms of the various parameters wg , żhp,` and ẑhp,`.

Since, in (9), we set ζhs,0 = 1, it follows that that żhp,0 = 1,
while ẑhp,0 equals the number of equivalence classes included in the
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2 Ḃh

2 · · · B̂h
b(h) Ḃh
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Figure 2: The division of Ch into sectors B̂h
p and terminators Ḃh

p .

sector B̂h
s . (The condition ẑhp,0 = 0 means that the sector B̂h

p is
empty.) Thus, the following sets of equations hold:

{żhp,0 = 1 | G < h ≤ H, 1 ≤ p ≤ b(h)} (E1)

{(ẑhp,0 = 0)→
L∑

`=1

ẑhp,` = 0 |

G < h ≤ H, 1 ≤ p ≤ b(h)}. (E2)

Now let us express the c-spectrum and symmetrized c-spectrum
of every cluster (special or ordinary) in terms of the various param-
eters wg , żhp,` and ẑhp,`. For all h (1 ≤ h ≤ H), let

vh = csA[Ch] th = ssA[Ch].

Then we have

{vh =

b(h)∑
p=1

(
v̂hp + v̇hp

)
| 1 ≤ h ≤ H} (D7)

{th =

b(h)∑
p=1

(
t̂
h

p + ṫ
h

p

)
| 1 ≤ h ≤ H}. (D8)

And of course we may write analogous expressions for the c-
spectrum and symmetrized c-spectrum of the entire structure.
Defining

v = csA[A] t = ssA[A].

we have:

v =

H∑
h=1

vh t =

H∑
h=1

th. (D9)

Since each ray of invertible cosmic type ρ4J+j (1 ≤ j ≤ J) may
be paired with a ray of (distinct) inverse type, ρ−1

4J+j = ρ5J+j , we
have the equations

{v[j] = v[j + J ] | 1 ≤ j ≤ J}. (E3)

It easily follows from D1–D9 that t = Tv, and hence from E3 that
every entry in t is even.

Now we can complete the required re-organization of the in-
equalities (13)—(15). We first define three additional scalar vari-
ables for each j (1 ≤ j ≤ J):

t−j =
∑
{ṫhp | (h, p) ≺ (h(j), p(j))}+∑
{t̂hp [j] | (h, p) � (h(j), p(j))} (D10)

t◦j = ṫ
h(j)

p(j)[j] (D11)

t+j =
∑
{ṫhp + t̂

h

p [j] | (h(j), p(j)) ≺

(h, p) � (H, b(H))}. (D12)

Thus, t−j is the number of rays of symmetrized type (ρ4J+j , ρ5J+j)
emitted by those equivalence classes lying strictly to the left of
B

h(j)

p(j) in the diagram of Fig. 1; t◦j is the number of rays emitted

by Bh(j)

p(j) itself; and t+j is the the number of rays emitted by those

equivalence classes lying strictly to its right. Then (13)—(15) can
be written as:

{t−j ≤ t
◦
j + t+j | 1 ≤ j ≤ J} (E4)

{t+j ≤ t
−
j + t◦j | 1 ≤ j ≤ J} (E5)

{t◦j ≤ t
−
j + t+j | 1 ≤ j ≤ J}. (E6)

The significance of E4–E6 is that they constitute a succinct guar-
antee that, for each j (1 ≤ j ≤ J), no sector or terminator—and
hence certainly no equivalence class—has an absolute majority in
respect of the symmetrized cosmic ray-type (ρ4J+j , ρ5J+j).

Let us gather together the above sets of equations, writing:

D = D1 ∪ · · · ∪ D12

E = E1 ∪ · · · ∪ E6.

Regarding the equations in D as definitions of the expressions on
their left-hand sides, we can view the equations in E as constraints
on the vector variable w† and the integer variables żhp,` and ẑhp,`
(G < h ≤ H , 1 ≤ ` ≤ L, 1 ≤ p ≤ b(h)). Note that |E1|
and |E2| are doubly exponentially bounded, and |E3|, . . . , |E6| are
singly exponentially bounded.

We let ż stand for the tuple of all integers żhp,` in some order, and
similarly for ẑ. Given a formula ϕ of the form (1), let Σ, π1, . . . , πI

and ρ1, . . . , ρ8J , be as described in Sec. 2. A certificate (for ϕ)
is a tuple C = 〈G,H,K,L, {σk}, I, {Gi}, b, h, p, {Ah}, {bh},
{wh

` }, {w
g}, {żhp,`}, {ẑhp,`}〉, as described in this section, such that

the tuple w† = w1, . . . , wG satisfies C†, and the tuple (w†, ż, ẑ)
satisfies E (under the definitions D). By Lemma 3, if ϕ has a
finite model, then ϕ has a chromatic, differentiated, finite model
interpreting Σ. In this section, we used such a model to guide the
construction of a certificate for ϕ. We have thus shown:

Lemma 8. Suppose ϕ is a C21E-formula in the form (1). If ϕ is
finitely satisfiable, then ϕ has a certificate.

4. From certificates to models
Suppose C is a certificate for ϕ, and let {σk} be the collection of
star-types in C. Consider any multiset defined over these star-types.
It will be helpful to regard this multiset as a set, A, in which every
element is identified as an instance of a particular star-type σk. We
call any element a ∈ A a star, and we call the star-type σk of
which it is an instance the intrinsic star-type of a, denoted st(a).
If A′ ⊆ A, we define the intrinsic profile of A′, denoted pr(A′),
to be the vector (w1, . . . , wK), where wk = |{a ∈ A′ | st(a) =
σk}|. Again, it helps to think of a star as object emitting a set of
(polarized) rays, each having some intrinsic ray-type.

Suppose now that the set of stars A forms the domain of some
finite, polarized structure A interpreting Σ. In this case, for all
a ∈ A, the star-type stA[a] is defined as in Sec. 2.3. Do not confuse
stA[a] with st(a): the former depends on the structure A; the latter,
only on the identity of a as an element of the setA. Define a cosmos
to be a finite polarized structure A |= ϕ over a set of starsA where,
for all a ∈ A, st(a) = stA[a]. We proceed to construct a cosmos.



4.1 Galaxies
Let σ = 〈π, (v1, . . . , v8J)〉 be a star-type. Recall that the ray-types
(ρ1, . . . , ρ8J) are divided into the galactic ray-types (ρ1, . . . , ρ4J)
and the cosmic ray-types (ρ4J+1, . . . , ρ8J). Accordingly, we de-
fine the galactic part of σ to be the pair σ? = 〈π, (v1, . . . , v4J)〉;
and we speak of any such object as a galactic star-type. Thus, if A
is a set of stars and a ∈ A, then a has an intrinsic galactic star-type
σ?(a). If, in addition, A is a polarized structure over A interpreting
Σ, then a also has a galactic star-type σA

? [a]. Recalling the formula
ϕ given in (1), we say that a galaxy is a polarized structure B over
a set of stars B satisfying the following properties:

(i) EB is the total relation B ×B;

(ii) for all b ∈ B, st(b) is compatible with ϕ, and stB? [b] = st?(b);

(iii) every (dark, galactic) 2-type realized in B is compatible with
ϕ.

Thus, in a galaxy, there is just one equivalence class, all galactic
rays emitted by stars have been found landing sites, and, as far as
galactic 2-types are concerned, the requirements of ϕ are satisfied.

The next lemma is, in effect, the converse of Lemma 5: it allows
us to construct galaxies from sets of stars whose profiles satisfy the
conditions C0.

Lemma 9. Suppose w = (w1, . . . , wK) satisfies C0(w). Then
there exists a galaxy B such that pr(B) = w.

4.2 Constructing the cosmos: the stars
Consider again the certificate C. By assumption, we have C†(w†),
and hence, for all g (1 ≤ g ≤ G), C0(wg). By Lemma 9, then, let
Bg be a galaxy with intrinsic profile wg . By Cg4 , Bg is non-empty.

Now fix some h (G < h ≤ H). For any p (1 ≤ p ≤ b(h)),
define

ẇh
p =żhp,0w

h
0 + żhp,1w

h
1 + · · ·+ żhp,Lw

h
L

ŵh
p =ẑhp,0w

h
0 + ẑhp,1w

h
1 + · · ·+ ẑhp,Lw

h
L.

By E1, żhp,0 = 1, whence, by (6)—(7), ẇh
p is a solution of Ahw ≤

bh, and thus satisfies C∗(w). By Lemma 9, then, let Ḃh
p be a

galaxy with intrinsic profile ẇh
p over a domain Ḃh

p . Now consider
ŵh

p . We have two cases. If ẑhp,0 = 0, then, by E2, ŵh
p = 0;

in that case, we let B̂h
p be the empty structure, with profile 0.

Otherwise, ẑhp,0 > 0, and we proceed as follows. By (6)—(7), both
wh

0 and also the vector w̃ = wh
0 + żhp,1w

h
1 + · · · + żhp,Lw

h
L are

solutions of Ahw ≤ bh, and thus satisfy C∗(w). By Lemma 9,
then, there exist galaxies B, with intrinsic profile wh

0 , and B̃,
with intrinsic profile w̃. Now take ẑhp,0 − 1 copies of B and a
single copy of B̃ (all disjoint), and let B̂h

p be the union of their
domains, so that pr(B̂h

p ) = ŵh
p . We remark in passing that this

construction reflects the observation, made in Sec. 3.3, concerning
the notional decomposition of any equivalence class (here: galaxy)
into a core constellation (corresponding to some vector wh

0 ) and
peripheral constellations (corresponding to vectors wh

` for 1 ≤
` ≤ L). We remarked there that we do not particularly mind how
the peripheral constellations are distributed between the various
equivalence classes. In the present construction, we have placed all
peripheral constellations in a single galaxy B̃ within the relevant
sector. Let

A = (B1 ∪ · · · ∪BG) ∪
H⋃

h=G+1

b(h)⋃
p=1

(Ḃh
p ∪ B̂h

p ).

This completes the definition of the domain, A.

We wish to define a model A |= ϕ over A. If B is any of the
galaxies formed in the construction of A, then we set A|B = B.
Thus, all galactic rays emitted by the stars in A have been found
absorption sites in the same galaxy as the star emitting them, and
all remaining pairs of elements from the same galaxy of A have
been assigned a dark galactic 2-type compatible with ϕ. It remains
to specify the 2-types of pairs of elements from different galaxies
in such a way that stA[a] = st(a) for all a ∈ A, and that all dark
cosmic 2-types are compatible with ϕ.

We outline the construction only. Consider first the invertible
cosmic rays emitted by the stars of A. By E3 we know that, for all
j (1 ≤ j ≤ J), the total number of such rays of type ρ4J+j equals
the total number of such rays of type ρ5J+j = ρ−1

4J+j . Thus these
sets of rays can be put in 1–1 correspondence. Indeed, E1–E3 imply
that no galaxy accounts for an absolute majority of the cosmic rays
of symmetrized invertible type (ρ4J+j , ρ5J+j) emitted throughout
the cosmos. This can be shown to be sufficient to ensure that the
pairing of rays of type ρ4J+j with those of type ρ5J+j can in fact
be chosen in such a way that rays emitted by stars in the same
galaxy are never paired. In this way, if a emits a ray of invertible
cosmic type ρ, paired with a ray of type ρ−1 emitted by b, we may
legitimately set tpA[a, b] to be the invertible cosmic ray-type ρ. It
easily follows from the fact that every σk is chromatic that these
assignments do not overwrite each other.

Consider next the non-invertible cosmic rays emitted by the
stars of A. In this case, we use the statements B ∪ C† ∪ C∗1 ∪ C∗2
to show that there are sufficient stars of the appropriate types
among B1 ∪ · · · ∪ BG to absorb all such rays emitted throughout
the cosmos. To complete the construction, we need to define any
remaining 2-types to be dark, cosmic 2-types compatible with ϕ.
Specifically, let a and b be stars from different galaxies of A, with
respective 1-types π and π′. Using the statements B∪C†∪C∗1 ∪C∗2 ,
it can be shown that either tpA[a, b] has already been defined (as a
ray-type or its inverse), or π and π′ are not cosmically coupled. In
the latter case, choose a dark cosmic 2-type τ compatible with ϕ
and satisfying tp1(τ) = π, tp2(τ) = π′, and set tpA[a, b] = τ .

We thus obtain a structure A in which the galaxies are exactly
the equivalence classes, and every dark 2-type realized in A is
compatible with ϕ. Since the star-types σk appearing in C are all
by assumption compatible with ϕ, we have A |= ϕ. That is:

Lemma 10. Suppose ϕ is a C21E-formula in the form (1). If a
certificate for ϕ exists, then ϕ is finitely satisfiable.

5. Proof of main result
The proof of Lemma 8 constructs a certificate C from a finite, chro-
matic, differentiated model ϕ. We were careful to note that each of
the vectors wh

` is doubly exponentially absolutely bounded and has
singly exponential footprint (and thus requires only exponentially
many bits to write). On the other hand, the quantities H , K and L
are doubly exponentially bounded. Using Proposition 1, however,
it can be shown that, if a certificate exists for ϕ, then one can be
found in which only a singly exponential number of the variables
involved are non-zero. By eliminating any zero-variables, we can
require H , K and L to be singly exponentially bounded.

Lemma 11. Suppose ϕ is a C21E-formula in the form (1). If ϕ
is finitely satisfiable, then ϕ has a certificate C such that the total
number of bits required to write C is singly exponentially bounded
as a function of ‖ϕ‖.

Theorem 12. The finite satisfiability problem for C21E is
NEXPTIME-complete.

Proof. The upper bound follows from Lemmas 2, 10 and 11.
The lower bound follows from the fact that the (finite) satisfia-



bility problem for the two-variable fragment of first-order logic is
NEXPTIME-hard.

Denote by N∗ the set N ∪ {ℵ0}. We interpret the arithmetic
operations + and · as well as the ordering < over N∗ as expected.
By considering solutions of systems of linear inequalities over N∗
rather than over N, and making various minor adjustments to the
above proof, we easily obtain

Theorem 13. The satisfiability problem for C21E is in NEXPTIME.

6. Two equivalence relations
In this section, we show that the satisfiability and finite satisfiability
problems for C22E are both undecidable.

A deterministic 2-counter machine M has a finite set of states
s0, . . . , sL and two counters, c1 and c2, each holding a non-
negative integer. We regard s0 as a start state and sL as a stop state.
The basic operations of M are: test whether ci holds the value 0;
and increment/decrement ci (where attempting to decrement zero
yields zero). The program of M associates with each state s` other
than sL a basic operation (i.e. an increment, a decrement or a zero-
test), together with a specification of the next state of the machine
(depending, in the case of of zero-tests, on the outcome). No action
is specified for the stop state. A configuration for M is a triple
comprising a state together with the values of c1 and c2. The run of
M is the (finite or infinite) sequence of configurations starting with
〈s0, 0, 0〉, where each configuration is obtained from its predeces-
sor as specified by the program of M, in the obvious way. We allow
this sequence to stop if a configuration featuring the stop state, sL,
is encountered, in which case we say that the machine M termi-
nates. It is well-known that deterministic Turing machines may be
effectively simulated by deterministic 2-counter machines. Hence,
the problem of deciding whether a given deterministic 2-counter
machine terminates is r.e.-complete.

We proceed to show how runs of deterministic 2-counter ma-
chines can be encoded using the logic C22E. Recall that, in C22E,
the distinguished binary predicates E1 and E2 must be interpreted
as equivalences. Where a structure A is clear from context, we re-
fer to the equivalence classes ofEA

1 asE1-classes, and similarly for
E2. Note that the coarsest common refinement EA

1 ∩ EA
2 of these

two equivalences is also an equivalence; to aid intuition, we refer
to its equivalence classes as configurations. We write E12(x, y) as
an abbreviation for the formula E1(x, y) ∧ E2(x, y). We employ
unary predicates d1, d2 to partition the universe, in such a way that,
within anyE1- orE2-class, the elements satisfying them form con-
figurations:

∀x((d1(x) ∨ d2(x)) ∧ (¬d1(x) ∨ ¬d2(x))) (16)
2∧

k=1

∀x∀y(E12(x, y) ∧ dk(x)→ dk(y)) (17)

2∧
k=1

2∧
j=1

∀x∀y(Ek(x, y) ∧ dj(x) ∧ dj(y)→ E3−k(x, y)). (18)

We call a configration whose elements satisfy dk a dk-configuration.
It follows that each equivalence class contains at most one d1-
configuration, and at most one d2-configuration. Where two differ-
ent configurations, B and B′, lie in some Ek-class (k ∈ {1, 2}),
then we say thatB′ is the successor ofB ifB is a dk-configuration
andB′ a d3−k-configuration. Thus, forB andB′ as described, one
is the successor of the other. Note also that successors, where they
exist, are unique.

We employ unary predicates s1, . . . , sL, and refer to them as
states; we also employ an additional unary predicate s to stand

E1 E1

E2 E2

s0

d1 d1 d1d2 d2

Figure 3: Initial segment of a chain of configurations: each con-
figuration (white region) contains a unique s-element determining
its state; the first configuration is in the start state, and forms an
E2-class on its own.

for their disjunction. We require that every configuration contains a
unique element satisfying s, which will be in exactly one state:

∀x∃[=1]y(E12(x, y) ∧ s(y)) (19)

∀x

(
s(x)→

L∨
`=1

s`(x)

)
∧

∧
1≤`<`′≤L

∀x(s`(x)→ ¬s`′(x)). (20)

A configuration whose s-element satisfies s` will be said to be in
state s`. We call s0 the start state and sL, the stop state. We employ
a binary predicate t, and we require that t(x, y) holds only between
s-elements of configurations one of which is the successor of the
other:

∀x∀y(t(x, y)→
(s(x) ∧ s(y)∧

2∨
k=1

(Ek(x, y) ∧ ¬E3−k(x, y) ∧ dk(x)))). (21)

We require that there exists a d1-configuration in the start state,
that this configuration is the only one in its E2-class (i.e., is not the
successor of any configuration), and that every configuration in a
state other than the stop state has a successor:

∃x(d1(x) ∧ s0(x) ∧ ∀y(E2(x, y)→ E1(x, y))) (22)
L−1∧
`=0

∀x(s`(x)→ ∃y.t(x, y)). (23)

It follows that, in any model of (16)–(23), there is a chain,
B0, B1, . . . , (possibly infinite) of distinct configurations, where
B0 is in the start state, and where each Bi+1 is the successor of
Bi. Moreover, if this chain is finite and maximal (i.e. cannot be ex-
tended), then its final configuration must be in the stop state. Notice
that this condition must obtain if the model is finite. The situation
is illustrated in Fig. 3.

Recall that, if B is any configuration, then B contains exactly
one element satisfying s. We employ two further unary predicates
c1 and c2: we refer to the set of elements of B satisfying ci
(1 ≤ i ≤ 2) as the the ci-counter in B, and we refer to the
cardinality of this set as the value of that counter. It helps to assume
that the sets of elements ofB satisfying the respective predicates s,
c1 and c2 partition B; however, this is not formally a requirement.

We now consider any deterministic 2-register machine, M, and
proceed to describe the run of M using C22E-formulas. We first
define, for i = 1, 2, a 1-place formula c◦i (x), which, in effect, states
that the ci-register in the configuration containing x is zero:

¬∃y(E12(x, y) ∧ ci(y)).



Eks s
ci ci

rk

Figure 4: Successive configurations whose elements satisfy the
formula c=i (x, y): the ci counters are in 1–1 correspondence under
rk, and so are equinumerous.

Using these formulas, we fix these register values for any d1-
configuration that is not a successor to be zero:

∀x(d1(x) ∧ ∀y(E2(x, y)→ E1(x, y))→ c◦1(x) ∧ c◦2(x)).

We next define a formula c=i (x, y) with the following property.
Suppose b and b′ are elements of configurations B and B′, respec-
tively, where B′ is the successor of B: if the pair 〈b, b′〉 satisfies
c=i (x, y) then the ci-counter of B and the ci-counter of B′ contain
the same value. To construct c=i (x, y), we employ a pair of binary
predicates r1, r2, denoting relations contained within the equiva-
lences E1, E2, respectively, but disjoint from the other:

2∧
k=1

∀x∀y(rk(x, y)→ Ek(x, y) ∧ ¬E3−k(x, y)). (24)

Recall that, under our assumptions concerning b and b′, if b satisfies
dk then b and b′ lie in a common Ek class. The formula c=i (x, y)
then simply states that, in that case, every element in the ci-register
of B is related by rk to exactly one element in the ci-register of
B′, and that every element in the ci-register of B′ is related by the
inverse of rk to exactly one element in the ci-register of B.

2∧
k=1

(dk(x)→

∀y(E12(x, y) ∧ ci(y)→ ∃[=1]x(rk(y, x) ∧ ci(x)))∧
∀x(E12(y, x) ∧ ci(x)→ ∃[=1]y(rk(y, x)) ∧ ci(y))).

Note how the variables x and y are ‘re-used’ by quantifiers. This
formula relies on the sentence (24) to have its advertised effect: the
relation rk holds only between elements in the same Ek-class but
different E3−k-classes. The situation is illustrated in Fig. 4.

Similarly, we can define a formula c+i (x, y) entailing that, if the
configuration B′ containing y is the successor of the configuration
B containing x, then the ci-register of B′ is one greater than that
of B, and a formula c−i (x, y) entailing that the ci-register of B′ is
one less than that of B (or that both are zero).

Using the formulas c◦i (x), c+i (x, y) and c−i (x, y), we may then
encode the program of M in the expected way. For example, if
the basic operation of M associated with state si is to increment
counter c1 and move to state sj , then we require:

∀x∀y(si(x) ∧ t(x, y)→ (c+1 (x, y) ∧ c=2 (x, y) ∧ sj(y))).

Writing such formulas for all states si (0 ≤ i < L), we
can effectively construct a C22E-formula ϕM any model of which
contains a sequence of configurations B0, B1, . . . , encoding the
run of M. Indeed, ϕM has a finite model if and only if M has a
terminating run. Hence:

Theorem 14. The finite satisfiability problem for C22E is r.e.-
complete.

Bearing in mind that M terminates just in case its run encoun-
ters the stop state, we see that ϕM ∧ ∀x¬sL(x) has an (infinite)
model if and only if M is non-terminating. Hence:

Theorem 15. The satisfiability problem for C22E is co-r.e.-
complete.
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