
THE ADJACENT FRAGMENT AND QUINE’S LIMITS OF DECISION

BARTOSZ BEDNARCZYK, DAUMANTAS KOJELIS, AND IAN PRATT-HARTMANN

Abstract. We introduce the adjacent fragment AF of first-order logic, obtained by

restricting the sequences of variables occurring as arguments in atomic formulas. The

adjacent fragment generalizes (after a routine renaming) the two-variable fragment of first-

order logic as well as the so-called fluted fragment. We show that the adjacent fragment has

the finite model property, and that the satisfiability problem for its k-variable sub-fragment

is in (k−1)-NExpTime. Using known results on the fluted fragment, it follows that the

satisfiability problem for the whole adjacent fragment is Tower-complete. We additionally

consider the effect of the adjacency requirement on the well-known guarded fragment of

first-order logic, whose satisfiability problem is 2ExpTime-complete. We show that the

satisfiability problem for the intersection of the adjacent and guarded adjacent fragments

remains 2ExpTime-hard. Finally, we show that any relaxation of the adjacency condition

on the allowed order of variables in argument sequences yields a logic whose satisfiability

and finite satisfiability problems are undecidable.

§1. Introduction. The quest to find fragments of first-order logic for which
satisfiability is algorithmically decidable has been a central undertaking of math-
ematical logic since the appearance of D. Hilbert and W. Ackermann’s Grundzüge
der theoretischen Logik [19, 20] almost a century ago. The best-known of these
fragments belong to just three families: (i) quantifier prefix fragments [11], where
we are restricted to formulas in prenex form with a specified quantifier sequence;
(ii) two-variable logics [17], where the only logical variables occurring as argu-
ments of predicates are x1 and x2; and (iii) guarded logics, where either quanti-
fiers or negated formulas are relativized by atomic formulas featuring all the free
variables in their scope [1, 4]. There is, however, a fourth family of first-order
fragments for which satisfiability is decidable, but which has languished in rela-
tive obscurity. The fragments of this family are defined by restricting the allowed
sequences of variables occurring as arguments in atomic formulas, an idea dating
back W. Quine’s homogeneous m-adic formulas [34]. Such argument-sequence
fragments, as we might call them, include the fluted fragment [33], the ordered
fragment [18] and the forward fragment [5]. In this paper, we identify a new
argument-sequence fragment, the adjacent fragment, which includes the fluted,
ordered and forward fragments, and subsumes, in a sense we make precise, the
two-variable fragment. We show that the satisfiability problem for the adjacent
fragment is decidable, and obtain bounds on its complexity. Finally, we show
that the adjacent fragment is maximal among the argument-sequence fragments
whose satisfiability and finite satisfiability problems are decidable.

Bartosz Bednarczyk was supported by the ERC Consolidator Grant No. 771779 (DeciGUT).
Ian Pratt-Hartmann was supported by the NCN grant 2018/31/B/ST6/03662.

1

2 BARTOSZ BEDNARCZYK, DAUMANTAS KOJELIS, AND IAN PRATT-HARTMANN

To explain how restrictions on argument sequences work, we consider pre-
sentations of first-order logic over purely relational signatures, employing indi-
vidual variables from the alphabet {x1, x2, x3, . . .}. Any atomic formula in this
logic has the form p(x̄), where p is a predicate of arity m (possibly 0), and x̄
a word of length m over the alphabet of variables. Call a first-order formula ϕ
index-normal if any occurrence of a quantifier binding a variable xk has as its
scope a Boolean combination of formulas that either (i) are atomic with free
variables among x1, . . . , xk, or (ii) have as their major connective a quantifier
binding xk+1. By re-indexing variables, any first-order formula can easily be
written as a logically equivalent index-normal formula. In the fluted fragment,
as defined by W. Purdy [33, Sec. 3], we confine attention to index-normal for-
mulas, but additionally insist that any atom occurring in a context in which xk
is available for quantification have the form p(xk−m+1 · · ·xk), i.e. p(x̄) with x̄
being a suffix of x1 · · ·xk. In the ordered fragment, due to A. Herzig [18, Sec. 2],
by contrast, we insist that x̄ be a prefix of x1 · · ·xk. In the forward fragment, due
to B. Bednarczyk [5, Sec. 3.1], we insist only that x̄ be an infix (i.e. a factor) of
x1 · · ·xk. All these logics have the finite model property, and hence are decidable
for satisfiability.

We denote the fluted fragment by FL, and the sub-fragment of FL involving
at most k variables (free or bound) by FLk. It is known that the satisfiability

problem for FLk is in (k−2)-NExpTime for all k ≥ 3, and bk/2c-NExpTime-
hard for all k ≥ 2 [31, Thm. 3.2 & Thm. 4.2]. Thus, satisfiability for the whole
of FL is Tower-complete, in the system of trans-elementary complexity classes
due to S. Schmitz [36, Sec. 3.1.1]. By contrast, the satisfiability problem for
the ordered fragment is PSpace-complete [18] (see also a related result by R.
Jaakkola [21, Thm. 13]). On the other hand, the apparent liberalization afforded
by the forward fragment yields no useful increase in expressive power, and there
is a polynomial-time, satisfiability-preserving reduction of the forward fragment
to the fluted fragment [7, p. 182]. The term “fluted” originates with Quine [35],
and presumably invites us to imagine the atoms in formulas aligned in such a
way that the variables form columns. (However, it is unclear that Quine had in
mind the fragment now generally referred to as the fluted fragment; for a brief
historical discussion see, [29, p. 221].) Note that none of these fragments can
state that a relation is reflexive or symmetric, as can be easily established using
a game-theoretic argument [7, Sec. 3].

Say that a word x̄ over the alphabet {x1, . . . , xk} is adjacent if the indices of
neighbouring letters differ by at most 1. For example, x3x2x1x2x2x2x3x4x3 is
adjacent, but x1x3x2 is not. The adjacent fragment is analogous to the fluted,
ordered and forward fragments, but we allow any atom p(x̄) to occur in a context
where xk is available for quantification as long as x̄ is an adjacent word over
{x1, . . . , xk} (see Sec. 2 for a formal definition). As a simple example, the formula

∀x1∀x2∀x3∃x4∀x5

(
p(x1x2x3x2x3x4x5)→ p(x1x2x3x4x3x4x5)

)
.(1)

is in the adjacent fragment. (In fact, it is a validity, as can be seen by assigning x4

the same value as x2.) We denote the adjacent fragment by AF , and the sub-

fragment of AF involving at most k variables (free or bound) by AFk. Evidently,
AF includes the fluted, ordered and forward fragments; the inclusion is strict,

THE ADJACENT FRAGMENT 3

since the formulas ∀x1 r(x1x1) and ∀x1x2(r(x1x2) → r(x2x1)), stating that r
is reflexive and symmetric, respectively, are in AF . As we show in the sequel
(Theorem 4), any formula of the two-variable fragment may be translated to a
logically equivalent formula of AF . Hence, a number of other well-known logics
can be translated naturally into the adjacent fragment, including the system
of basic multimodal propositional logic K (under the standard translation), a
great many description logics [3], and even polyadic extensions of multimodal
logic [14, Sec. 1.5].

Our principal result is that AF has the finite model property, and that the
satisfiability problem for AFk is in (k−1)-NExpTime for all k ≥ 2. The proof

follows the same basic strategy as employed for FLk in [31]: the (finite) satisfia-

bility problem for AFk+1 is reduced, with exponential blow-up, to that for AFk.
The result then follows from the fact that AF2 is subsumed by the two-variable
fragment, FO2, which has the finite model property, and for which satisfiability is
known to be in NExpTime [16]. On the other hand, AFk includes FLk, whence
the above-mentioned lower bounds for the latter carry over: the satisfiability
problem for AFk is bk/2c-NExpTime-hard for all k ≥ 2 (and NPTime-hard
for k ∈ {0, 1}). We remark that, using techniques similar to those employed

in [31], we can in fact shave one exponential off the upper bounds for AFk
(k ≥ 3) when the equality predicate is disallowed; in the interests of simplicity,
we leave this as an exercise to the interested reader. We additionally consider the
guarded adjacent fragment GA, defined as the intersection of the adjacent frag-
ment, AF , and the guarded fragment, GF , due to H. Andréka, J. van Benthem,
and I. Németi [1, Sec. 4.1]. The satisfiability problem for GF is 2ExpTime-
complete, as shown by by E. Grädel [15, Thm. 4.4]. We show in the sequel that
the satisfiability problem for GA remains 2ExpTime-hard. We finish with a pair
of results on the expressiveness of the adjacent fragment. First, we show that this
fragment subsumes, in a sense we make precise, the two-variable fragment, with
a converse subsumption holding for signatures featuring predicates of arity at
most two. Second, we consider liberalizations of the adjacent fragment, in which
the palette of permitted variable sequences is further extended. We show that the
fragment AF is a maximal argument-sequence fragment for which satisfiability
(or finite satisfiability) is decidable.

The structure of the paper is as follows. Sec. 2 defines the fragments con-
sidered in this paper and establishes the notation used throughout. Sec. 3 is
devoted to the combinatorics of words, and presents a pair of results (Lemmas 2
and 3), which form the basis of the following two sections. Sec. 4 establishes

upper bounds on the complexity of satisfiability for the sub-fragment of AFk
without equality ; concentrating on the equality-free case simplifies the combi-
natorics, thus bringing the key technical ideas into sharper focus. Sec. 5 then
extends these results to the logic with equality. Sec. 6 gives the advertised lower
complexity bound for the guarded adjacent fragment. Sec. 7 establishes the ob-
servations on expressive power mentioned in the previous paragraph. The results
of Secs. 4 and 6, concerning the adjacent fragment without equality, were first
announced in the conference paper [8]. The present article provides full proofs,
and extends our results to the full adjacent fragment with equality.

4 BARTOSZ BEDNARCZYK, DAUMANTAS KOJELIS, AND IAN PRATT-HARTMANN

§2. Preliminaries. Let m and k be non-negative integers. For any integers i
and j, we write [i, j] to denote the set of integers h such that i ≤ h ≤ j. A function
f : [1,m] → [1, k] is adjacent if |f(i+1)−f(i)| ≤ 1 for all i ∈ [1,m−1].We write
Am
k to denote the set of adjacent functions f : [1,m] → [1, k]. Since [1, 0] = ∅,

we have A0
k = {∅}, and Am

0 = ∅ if m > 0. Let A be a non-empty set. Regarding
A as an alphabet, a word ā over the alphabet A is simply a tuple of elements
from A; we alternate freely in the sequel between these two ways of speaking, as
the context requires. Accordingly, we take Ak to denote the set of words over A
having length exactly k, and A∗, the set of all finite words over A. If ā = a1 · · · ak,
we write |ā| = k for the length of ā, and ã = ak · · · a1 for the reversal of ā. Any
function f : [1,m] → [1, k] (adjacent or not) induces a natural map from Ak to
Am defined by āf = af(1) · · · af(m). If f ∈ Am

k (i.e. if f is adjacent), we may

think of āf as the result of a ‘going for a stroll’ on the tuple ā, starting at the
element af(1), and moving left, right, or remaining stationary according to the
sequence of values f(i+ 1)−f(i) (for 1 ≤ i < m).

For any k ≥ 0, denote by xk the fixed word x1 · · ·xk (if k = 0, this is the

empty word). A k-atom is an expression p(xfk), where p is a predicate of some
arity m, and f : [1,m] → [1, k]. Thus, in a k-atom, each argument is a variable
chosen from xk. If f is adjacent, we speak of an adjacent k-atom. Thus, in an
adjacent k-atom, the indices of neighbouring arguments differ by at most one.
The equality predicate is allowed when m = 2. Proposition letters (predicates
of arity m = 0) count as (adjacent) k-atoms for all k ≥ 0, taking f to be the
empty function. When k = 0, we perforce have m = 0, since otherwise, there are
no functions from [1,m] to [1, k]; thus the 0-atoms are precisely the proposition
letters. When k ≤ 2, the adjacency requirement is vacuous, and we prefer to
speak simply of k-atoms.

We define the sets of first-order formulas AF [k] by simultaneous structural
induction for all k ≥ 0:

1. every adjacent k-atom is in AF [k];

2. AF [k] is closed under Boolean combinations;

3. if ϕ is in AF [k+1], then ∃xk+1 ϕ and ∀xk+1 ϕ are in AF [`] for all ` ≥ k.

Now let AF =
⋃
k≥0AF

[k] and define AFk to be the set of formulas of AF
featuring no variables other than x1, . . . , xk, free or bound. We call AF the
adjacent fragment and AFk the k-variable adjacent fragment. Note that formulas
of AF contain no individual constants or function symbols; however, they may
contain equality. The primary objects of interest here are the languages AF
and AFk; the sets of formulas AF [k] will make only occasional appearances in
the sequel. Thus, for example, the formula (1) is in AFk if and only if k ≥ 5,

but it is in AF [k] for all k ≥ 0. On the other hand, the quantifier-free formulas

of AF [k] and AFk are the same. A simple structural induction establishes that

AF [k] ⊆ AF [`] for all k ≤ `.
We silently assume the variables xk ··= x1 · · ·xk to be ordered in the standard

way. That is: if ϕ is a formula of AF [k], A a structure interpreting its signature,
and ā ··= a1 · · · ak ∈ Ak, we say simply that ā satisfies ϕ in A, and write A |= ϕ[ā]
to mean that ā satisfies ϕ in A under the assignment xi ← ai (for all 1 ≤ i ≤ k).
(This does not necessarily mean that each of the variables of xk actually appears

THE ADJACENT FRAGMENT 5

in ϕ.) If ϕ is true under all assignments in all structures, we write |= ϕ; the
notation ϕ |= ψ means the same as |= ϕ → ψ (i.e. variables are consistently
instantiated in ϕ and ψ). The notation ϕ(v̄), where v̄ ··= v1 · · · vk are variables
(chosen from among x1, x2, . . .), will always be used to denote the formula that
results from substituting vi for xi (1 ≤ i ≤ k) in ϕ, rather than to indicate the
order in which elements of some structure are to be assigned to variables. If ϕ is
any formula, fv(ϕ) denotes the set of free variables of ϕ. A sentence is a formula

with no free variables. Necessarily, all formulas of AF [0] are sentences. For a
sentence ϕ we write simply A |= ϕ to mean that ϕ is true in A. We call the set
of predicates used in ϕ the signature of ϕ, denoted sig(ϕ).

We adapt the standard notion of (atomic) k-types for the fragments studied
here. Fix some non-logical relational signature τ (i.e. not containing the equality
predicate). An adjacent k-literal over τ is an adjacent k-atom or its negation,
featuring a predicate in τ ∪ {=}. An adjacent k-type over τ is a maximal con-
sistent set of adjacent k-literals over τ . Reference to τ is suppressed where clear
from context. We use the letters ζ, η and ξ to range over adjacent k-types for
various k. We denote by Atpτk the set of all adjacent k-types over τ . For fi-
nite τ , we identify members of Atpτk with their conjunctions, and treat them as

(quantifier-free) AFk-formulas, writing ζ instead of
∧
ζ. Given a pair of integers

i, j (1 ≤ i ≤ j ≤ k), we write ζ�[i,j] for the set η obtained by deleting literals in ζ
that feature variables outside the range [i, j]. It is evident that (after a shift in

indices) η is a (j−i+1)-type. We write ζ+ for the quantifier-free AF`+1-formula
ζ(x2, . . . , xk+1) obtained by incrementing the index of each variable. When k ≤ 2,
the adjacency requirement is vacuous, and in this case we shall simply speak of
k-types. Every quantifier-free AFk-formula χ is thus logically equivalent to a dis-
junction of adjacent k-types, as may be seen by writing χ in disjunctive normal
form. In particular, if χ is satisfiable, then there is an adjacent k-type which
entails it. If A is a τ -structure and ā a k-tuple of elements from A, there is a
unique adjacent k-type ζ such that A |= ζ[ā]; we denote this adjacent k-type
by atpA[ā], and call it the adjacent type of ā in A. It is not required that the
elements of ā be distinct; note however that any (in)equality literals occurring
in adjacent types must themselves be adjacent. For instance, x5 = x6 or x5 6= x6

may occur in an adjacent type, but not x4 = x6 or x4 6= x6.
The following derivative notions relating to adjacent types will feature in the

sequel. Call an adjacent k-literal covering if it features all of the variables in xk,

i.e. if it has the form p(xfk) or ¬p(xfk) with p of arity m and f ∈ Am
k surjective.

Define an incremental k-type over τ to be a maximal consistent set ι of covering
adjacent k-literals over τ . If ξ is an adjacent k-type, then the increment of ξ,
denoted ∂ξ, is the (unique) incremental k-type included in ξ. If A interprets τ
and c̄ is a k-tuple over A, then the incremental type of c̄ in A is the (unique)

incremental type ι such that A |= ι[c̄]; we write itpA[c̄] to denote ι. Suppose now

that c̄ ··= aāb, atpA[aā] = ζ, atpA[āb] = η and itpA[c̄] = ι. It should be obvious
that, writing ξ for atpA[c̄], we have ξ = ζ ∪ η+ ∪ ι, and, moreover, ι = ∂ξ.

The following lemma establishes a normal form for AF`+1-sentences, which
simplifies the decision procedures discussed in Secs. 4 and 5.

6 BARTOSZ BEDNARCZYK, DAUMANTAS KOJELIS, AND IAN PRATT-HARTMANN

Lemma 1. Let ϕ be a sentence of AF`+1, where ` ≥ 1. We can compute, in
polynomial time, an AF`+1-formula ψ satisfiable over the same domains as ϕ,
of the form

ψ ··=
∧
i∈I
∀x`∃x`+1 γi ∧ ∀x`+1 β,(2)

where I is a finite index set, and the formulas γi and β are quantifier-free;
moreover, if ϕ is equality-free, then so is ψ.

Proof. If the sentence ϕ is quantifier-free, then it is a formula of the propo-
sitional calculus, and the result is easily obtained by adding vacuous quantifica-
tion. Otherwise, write ϕ0 = ϕ, and let θ ··= Qxk+1 χ be a subformula of ϕ, where
Q ∈ {∀,∃}, such that χ is quantifier-free. Writing ∃̄ = ∀ and ∀̄ = ∃, let p be a
new predicate of arity k, let ϕ1 be the result of replacing θ in ϕ0 by the atom
p(xk), and let ψ1 be the formula

∀xkQxk+1

(
p(xk)→ χ

)
∧ ∀xkQ̄xk+1

(
χ→ p(xk)

)
.

It is immediate that ϕ1∧ψ1 |= ϕ0. Conversely, if A |= ϕ0, then we may expand A

to a model A′ of ϕ1 ∧ψ1 by taking pA
′

to be the set of k-tuples ā such that A |=
θ[ā]. Evidently, ϕ1 is a sentence of AF`+1. Processing ϕ1 in the same way, and
proceeding similarly, we obtain a set of formulas ϕ2, . . . , ϕm and ψ2, . . . , ψm, with
ϕm quantifier-free and ϕ0 satisfiable over the same domains as ψ1∧· · ·∧ψm∧ϕm.
Since ϕm is a sentence, it is a formula of the propositional calculus. By moving
ϕm inside one of the quantified formulas, re-indexing variables and re-ordering
conjuncts, we obtain a formula ψ of the form (2). a
We refer to any AFk-sentence having the form (2) as a normal-form formula.

The following notation will be useful. If χ is any quantifier-freeAF`+1-formula,
we denote by χ−1 the formula χ(x`+1, . . . , x1) obtained by simultaneously replac-
ing each variable xh by x`−h+2 (1 ≤ h ≤ `+ 1); and we denote by χ̂ the formula

χ ∧ χ−1. Obviously χ−1 and χ̂ are also in AF`+1.

§3. Primitive generators of words. The upper complexity bounds ob-
tained below depend on an observation concerning the combinatorics of words,
which may be of independent interest. For words ā, c̄ ∈ A∗ with |ā| = k and
|c̄| = m, say that ā generates c̄ if c̄ = āf for some surjective function f ∈ Am

k . As
explained above, it helps to think of āf as the sequence of letters encountered on
an m-step ‘stroll’ backwards and forwards on the tuple ā, with f(i) giving the
index of our position in ā at the ith step. The condition that f is adjacent ensures
that we never change position by more than one letter at a time; the condition
that f is surjective ensures that we visit every position of ā. We may depict f as
a piecewise linear graph, with the generated word superimposed on the abscissa
and the generating word on the ordinate (Fig. 1). We refer to any maximal in-
terval [i, j] ⊆ [1,m] over which f(h+1)−f(h) is constant (for i ≤ h < j) as a leg
of f . Thus, the legs correspond to the straight-line segments in the graph of f .
A leg is increasing, flat or decreasing according as f(h+1)−f(h) is 1, 0 or -1.

Every word ā generates both itself and its reversal, ã. Moreover, if ā gener-
ates c̄, then |c̄| ≥ |ā|, by the surjectivity requirement. In fact, ā and ã are the only

THE ADJACENT FRAGMENT 7

c̄

ā
c

b
a

d
e

f
b

a
a b c b a a a d e f e d a d e f b a b f

Figure 1. Generation of abcbaaadefedadefbabf from cbadefba.

words of length |ā| generated by ā. Finally, generation is transitive: if ā generates
b̄ and b̄ generates c̄, then ā generates c̄. We call ā primitive if it is not generated
by any word shorter than itself, equivalently, if it is generated only by itself and
its reversal. For example, babcd and abcbcd are not primitive, because they are
generated by abcd; but abcbda is primitive. Note that factors of primitive words
need not be primitive; for example, abcbda is primitive, but its factor bcb is not.
Define a primitive generator of c̄ to be a generator of c̄ that is itself primitive. It
follows from the foregoing remarks that every word c̄ has some primitive genera-
tor ā, and indeed, ã as well, since the reversal of a primitive generator is clearly a
primitive generator. The following observation, on the other hand, is surprising.

Lemma 2 (Thm. 1 of [30]). The primitive generator of any word is unique up
to reversal.

For a very similar, though not identical, result, see [2].
Define the primitive length of any word c̄ to be the length of any primitive

generator of c̄. By Lemma 2, this notion is well-defined; it will play a significant
role in our analysis of the adjacent fragment. Clearly, the primitive length of c̄
is at most |c̄|, but will be strictly less if c̄ is not primitive.

It is important to realize that, while primitive generators are unique up to
reversal, modes of generation are not. Indeed, ā ··= abcbd is one of the two
primitive generators of c̄ ··= abcbcbd, but we have āf = c̄ for f : [1, 7] → [1, 5]
given by either of the courses of values [1, 2, 3, 4, 3, 4, 5] or [1, 2, 3, 2, 3, 4, 5]. In
the sequel, it will be important to identify those words on which a given pair
of surjective adjacent functions yield identical outputs. A palindrome is a word
equal to its reversal; a palindrome is non-trivial if its length is at least 2. Let
ā ··= a1 · · · ak be a word of length k. We say that a pair 〈i, j〉 is a defect of ā
if the factor ai · · · aj is a non-trivial palindrome. We denote the set of defects
of ā by Dā, and regard it as a a binary relation on the set [1, k]. If R is any
binary relation, we write R∗ for its equivalence closure, i.e. the smallest reflexive,
symmetric and transitive relation that includes R. Now, for any pair of adjacent
functions f, g : [1,m] → [1, k] and any set of pairs D ⊆ {〈i, j〉 | 1 ≤ i < j ≤ k},
we write f

D
= g if 〈f(i), g(i)〉 ∈ D∗ for all i (1 ≤ i ≤ m). Evidently,

D
= is an

equivalence relation.

8 BARTOSZ BEDNARCZYK, DAUMANTAS KOJELIS, AND IAN PRATT-HARTMANN

Lemma 3 (Thm. 4 of [30]). Let ā be a primitive word of length k with defect
set D, and let f and g be surjective functions in Am

k for some m ≥ k. Then

āf = āg if and only if f
D
= g.

Of course, given surjective functions f, g ∈ Am
k and any D ⊆ {〈i, j〉 | 1 ≤ i <

j ≤ k}, it is a simple matter to check whether f
D
= g. Lemma 3 allows us to read

this condition as stating that f and g yield the same tuples when applied to any
primitive word of length k whose defect set includes D.

Any adjacent function f : [1, `],→ [1, k] induces a natural map from quantifier-

free AF`-formulas to quantifier-free AFk-formulas. Specifically, if χ is a
quantifier-free AF`-formula, denote by χg the formula χ(xg(1) · · ·xg(`)), obtained
by simultaneously replacing every variable xi in χ by the corresponding vari-
able xg(i). We claim that χg ∈ AFk. Indeed, any atom α appearing in χ

is of the form p(xfk), where p is a predicate of some arity m and f ∈ Am
` .

But then the corresponding atom in χg has the form β ··= α(xg(1) · · ·xg(`)) =

p(xg(f(1)) · · ·xg(f(m))) = p(x
(g◦f)
k). Since the composition of adjacent functions

is adjacent, the assertion follows. The following (almost trivial) lemma is useful
when manipulating adjacent formulas. Recall in this regard that any function
g ∈ A`

k maps a k-tuple ā over some set to an `-tuple āg over the same set.

Lemma 4. Let χ be a quantifier-free AF`-formula, and let g ∈ A`
k. For any

structure A and any ā ∈ Ak, we have A |= χg[ā] if and only if A |= χ[āg]. Thus, the
adjacent type of any tuple in A is determined by that of its primitive generator.

Proof. We need consider only the case where χ is atomic: the general case

follows by straightforward structural induction. Let χ ··= p(xfk), with p an m-
ary predicate, and f ∈ Am

` . Then, writing ā = a1 · · · am, both sides of the
bi-conditional amount to the statement ag(f(1)) · · · ag(f(m)) ∈ pA. For the second
statement, let A be a structure, and ā an `-tuple from A. Then ā has a primitive
generator, say b̄ of length k ≤ `, with ā = b̄g for some (surjective) g ∈ A`

k. Now

consider any atomic AF`-formula α. Then A |= α[ā] if and only if A |= αg[b̄]. a
Let A and A′ be structures interpreting some common signature over a common

domain A, and let ` ≥ 0. We write A ≈` A′, if, for any predicate p of arity m ≥ 0,
and any m-tuple ā from A of primitive length at most `, we have ā ∈ pA if and
only if ā ∈ pA

′
. That is, A ≈` A′ just in case, for any predicate p interpreted

by A, pA and pA
′

agree on all those m-tuples whose primitive length is at most `.
The next lemma states that, when evaluating AF`-formulas in structures, we can
disregard tuples whose primitive length is greater than `.

Lemma 5. Let ϕ be an AF`-sentence, and suppose A and A′ are sig(ϕ)-
structures over a common domain A such that A ≈` A′. Then A |= ϕ⇔ A′ |= ϕ.

Proof. Let ψ be a formula of AF` (possibly featuring free variables), and

let k (bounded by `) be such that ψ ∈ AF [k]. We claim that, for any k-tuple of
elements ā, A |= ψ[ā] if and only if A′ |= ψ[ā]. The statement of the lemma is
the special case where ψ has no free variables. Again, we need consider only the
case where ψ is atomic: the general case follows by straightforward structural

THE ADJACENT FRAGMENT 9

induction. Let ψ ··= p(xfk), with p an m-ary predicate, and f ∈ Am
k . If ā is a

k-tuple of elements from A, then A |= ψ[ā] if and only if āf ∈ pA, and similarly
for A′. But the primitive length of āf is certainly at most k = |ā|, and thus

āf ∈ pA if and only if āf ∈ pA′ . a
In view of Lemma 5, when considering models of AF`-sentences, it will be

useful to take the extensions of non-logical predicates (of whatever arity) to be
undefined in respect of tuples whose primitive length is greater than `, since these
cannot affect the outcome of semantic evaluation. That is, where ` is clear from
context, we typically suppose any model A of ϕ to determine whether ā ∈ pA
for any m-ary predicate p and any m-tuple ā of primitive length at most `; but
with respect to m-tuples ā having greater primitive length, A remains agnostic.
To make it clear that the structure A need not be fully defined, we refer to it as
a layered structure, of height `. Notice that the notion of height is independent of
the arities of the predicates interpreted. A layered structure A may have height,
say 3, but still interpret a predicate p of arity, say, 5. In this case, it is determined
whether A |= p[babcc], because the primitive generator of babcc is abc; however,
it is not determined whether A |= p[abcab], because abcab is primitive.

This idea enables us to build up models ofAF-formulas layer by layer. Suppose
A is a layered structure of height `, and we wish to construct a layered structure
A+ of height `+1 over the same domain A, agreeing with the assignments made
by A. Clearly, it suffices to fix the adjacent type of each primitive (`+1)-tuple
b̄ from A. Suppose we want to fix the adjacent type of b̄ and hence that of its
reversal b̃. To do so, we consider each predicate p in turn—of arity, say, m—
and decide, for any m-tuple c̄ from A whose primitive generator is b̄, whether
A |= p[c̄]. Now repeat this process for all pairs of mutually inverse primitive

words (b̄, b̃) from A having primitive length `+1. Since every tuple c̄ considered
for inclusion in the extension of some predicate has primitive length `+1, these
assignments will not clash with any previously made in the original structure A.
Moreover, since, by Lemma 2, every m-tuple c̄ assigned in this process has a
unique primitive generator b̄ (up to reversal), these assignments will not clash
with each other. Thus, to elevate A to a layered structure of height `+1, one takes
each inverse pair (b̄, b̃) of primitive (`+1)-tuples in turn, and fixes the adjacent
type of each b̄ consistently with the existing assignments of all tuples generated
by proper infixes of b̄, as given in the original structure A.

We finish this section with an easy technical observation that will be needed

in the sequel. Denote by ~Am
k the set of all functions f ∈ Am

k such that f(m) = k.

We refer to f as a final adjacent function. Thus, if f ∈ ~Am
k is thought of as a

stroll of length m on some word ā of length k, then that stroll ends at the final
position of ā.

Lemma 6. Let c̄ be a word of length m over some alphabet A, and d an element
of A that does not appear in c̄. If c̄d is not primitive, then neither is c̄. In fact,

there is a word ā of length k < m and a function f ∈ ~Am
k such that āf = c̄.

Proof. Suppose c̄d = b̄g for some word b̄ of length k+1 (bounded by m) and
some surjective map g ∈ Am+1

k+1 . Since d does not occur in c̄, it is immediate

that d occupies either the first or last position in b̄, for otherwise, it would be

10 BARTOSZ BEDNARCZYK, DAUMANTAS KOJELIS, AND IAN PRATT-HARTMANN

encountered again in the entire traversal of b̄ (as g is adjacent and surjective).
By reversing b̄ if necessary, assume the latter, so that we may write b̄ = ād, with
g(m+1) = k+1. By adjacency, g(m) = k, so that setting f = g\{〈m+1, k+1〉},
we have the required ā and f . a

We remark that, if f ∈ ~Am
k , then the function f+ = f ∪ 〈m+1, k+1〉 satisfies

f+ ∈ ~Am+1
k+1 . That is, we can extend f by setting f(m+1) = k+1, retaining

adjacency. We utilise this fact as follows. Let ϕ be a normal-form AF`+1-formula
as given in (2). Recalling that we write χh = χ(xh(1) · · ·xh(`+1)) for χ quantifier-

free in AF`+1 and h ∈ A`+1
k , we define the adjacent closure of ϕ, denoted acl(ϕ),

to be: ∧
i∈I

`−1∧
k=1

∧
f∈~A`

k

∀xk∃xk+1 (γi)
f+

∧
∧̀
k=1

∧
g∈A`+1

k

∀xk βg.

Observe that the conjunctions for the ∀`∃-formulas range over f ∈ ~A`
k (so that

f+ ∈ A`+1), while the conjunctions for the purely universal formula range over

the whole of A`+1
k . Up to trivial logical rearrangement and re-indexing of vari-

ables, acl(ϕ) is actually a normal-form AF`-formula. In effect, acl(ϕ) is the result
of identifying various universally quantified variables in ϕ in a way which pre-
serves adjacency. The following lemma is therefore immediate.

Lemma 7. Let ϕ ∈ AF`+1 be in normal-form. Then ϕ |= acl(ϕ).

Important notation mentioned in this and the previous sections is recapitulated
in Table 1 for future reference.

§4. Upper bounds for AF` without equality. Our goal in the following
two sections is to establish a small model property for each of the fragments
AF`, for ` ≥ 2. We proceed by induction on `. The base case (` = 2) involves
no work: it was shown in [16, Thm. 5.1] that each satisfiable FO2-sentence ϕ has
a model of size 2O(||ϕ||); since AF2 ⊆ FO2, the result follows. For the inductive
step, we reduce the case `+1, with exponential blow-up, to the case `. More
precisely, we compute, for a given formula ϕ ∈ AF`+1, an equisatisfiable formula
ψ ∈ AF`, over an exponentially larger signature, together with bounds on the
relative sizes of their respective models. We thereby show that any satisfiable
AF`+1-sentence ϕ is satisfiable in a structure of size t(`−1, O(||ϕ||)), where t is
defined inductively by t(0, n) = n and t(k+1, n) = 2t(k,n). To illustrate the proof
strategy as perspicuously as possible, we confine our attention in this section to
the sub-fragment of AF` without equality. In the next section we generalize the
result to the full fragment AF`, at the cost of some additional combinatorics.
Returning to current affairs, Table 2 provides a summary of important symbols
that will be defined throughout this section. (There is no need to read it just yet!)

For the next few lemmas (8–13), fix an equality-free, normal-form AF`+1-
formula ϕ over some signature τ , as given in (2), with ` ≥ 2. We construct

an equality-free, normal-form formula ψ ∈ AF` such that: (i) if ϕ is satisfiable
over some domain A, then so is ψ; and (ii) if ψ is satisfiable over a domain B,

THE ADJACENT FRAGMENT 11

Functions f : [1,m]→ [1, k] and tuples ā = a1a2 · · · ak
Am
k the set of all adjacent functions f : [1,m]→ [1, k]

~Am
k the set of all final adjacent functions f : [1,m]→ [1, k]

f+ f ∪ {(m+ 1, k + 1)} only if f ∈ ~Am
k

xk x1x2 · · ·xk
ã reversal of ā
āf af(1)af(2) · · · af(m)

Formulas χ ∈ AF [m] with f : [1,m]→ [1, k]
sig(χ) the signature of χ
χ−1 χ(xmxm−1 · · ·x1)
χ̂ χ ∧ χ−1

χf χ(xfk)

Normal form ϕ (in (`+ 1)-variables)
ϕ

∧
i∈I ∀x`∃x`+1 γi ∧ ∀x`+1 β

acl(ϕ)
∧
i∈I
∧`−1
k=1

∧
f∈~A`

k
∀xk∃xk+1 γ

f+

i ∧
∧`
k=1

∧
g∈A`+1

k
∀xk βg

Adjacent k-types χ and the k-type of a k-tuple ā in A
Atpτk the set of all adjacent k-types over τ

atpA
k (ā) the adjacent k-type of ā in A

itpA
k (ā) the incremental k-type of ā in A
∂ξ the incremental k-type included in ξ
χ+ χ(x2x3 · · ·xk+1)

Table 1. Quick reference guide for Sec 2 and 3.

then ϕ is satisfiable over some domain C, with |C|/|B| bounded by an exponen-
tial function of ||ϕ||. For the remainder of this section, all formulas will silently
be assumed to be equality-free, and likewise for adjacent types.

We take ψ to have the form

ψ ··= acl(ϕ) ∧ ψ1 ∧ ψ2 ∧ ψ3 ∧ ψ4,

where acl(ϕ) is the adjacent closure of ϕ (featured in Lemma 7) and ψ1, . . . , ψ4

are AF`-formulas over an expanded signature. To motivate this construction
of ψ, we first suppose ϕ is satisfiable, and consider any model A |= ϕ. We
then introduce the conjuncts ψ1, . . . , ψ4 one by one, simultaneously defining an
expansion A+ of A by interpreting the new predicates so as to satisfy these
conjuncts. (Of course, the ψ1, . . . , ψ4 depend only on ϕ, and not on A+.) Since,
by Lemma 7, A |= acl(ϕ), we have A+ |= ψ. Our main task is then to show
that, given any finite layered structure B |= ψ of height `, we can construct
a finite layered structure C |= ϕ of height `+1, with |C|/|B| bounded by some

exponential function of ||ϕ||. This establishes the finite model property forAF`+1,

and reduces its satisfiability problem to that for AF`, though with exponential
blow-up. In effect, ψ specifies just the right amount of information concerning
the primitive `-tuples occurring in any of its models to ensure that the adjacent

12 BARTOSZ BEDNARCZYK, DAUMANTAS KOJELIS, AND IAN PRATT-HARTMANN

Surjective f, g ∈ Am
k , incremental k-types ι, quantifier-free χ ∈ AF [k]

Do
k all pairs 〈i, j〉 for 1 ≤ i < j ≤ k with j−i+1 ≥ 2 and odd

D+ {〈i+ 1, j + 1〉 | 〈i, j〉 ∈ D}
R∗ the equivalence closure of a binary relation R

f
D
= g 〈f(i), g(i)〉 ∈ D∗ for all i ∈ [1,m]

ι is D-
f
D
= g implies ι |= p(xfk)↔ p(xgk) for all p∈sig(χ), all f, g ∈ Am

kcompatible
χ is D-

there exists an ξ ∈ Atpτk s.t. ξ |= χ and ∂ξ is D-compatible
consistent

Construction of ψ from ϕ
dk(xk) atom implying that xk is a palindrome
δD(x`)

∧
{dj−i+1(xi · · ·xj) | 〈i, j〉 ∈ D}

pζ(x`−1) atom implying there is some x s.t. xx`−1 realizes ζ
B×H the model obtained by cloning elements of B for each h ∈ H

Table 2. Quick reference guide for Sec 4.

types of primitive (`+1)-tuples can be assigned in such a way as to build a model
of ϕ.

We now proceed to the definition of the conjuncts ψ1, . . . , ψ4, and the con-
struction of the expansion A+. Turning first to ψ1, for each s (3 ≤ 2s+1 ≤ `) we
introduce a fresh (2s+1)-ary predicate d2s+1, and declare that a tuple b̄ ∈ A2s+1

satisfies d2s+1 in A+ just in case b̄ is a palindrome. It is then easy to verify that
A+ is a model of the sentence ψ1 given as

ψ1 ··=
∧

3≤2s+1≤`

∀xk+1 d2s+1(x1 · · ·xsxs+1xs · · ·x1).

Conversely, if B is any structure such that B |= ψ1, and c̄ ∈ B2s+1 is a palin-
drome (3 ≤ 2s + 1 ≤ `), then B |= d2s+1[c̄]. Observe that ψ1 employs at most
(`+ 1)/2 < ` variables.

The predicates ds just introduced will be useful for specifying that various
tuples of objects exhibit certain sets of defects, in the sense of Sec. 3. Recall that
a defect of an `-tuple a1 · · · a` is a pair of integers 〈i, j〉 such that ai · · · aj is a
non-trivial palindrome. (Note that the length of this factor is j−i+1 ≥ 2.) In the
sequel, for any k ≥ 2, we denote by Do

k the set of all pairs 〈i, j〉 for 1 ≤ i < j ≤ k
such that j−i+1 is greater than two and odd. (Thus, Do

2 = ∅.) Now, for any
D ⊆ Do

`−1, we write δD for the formula

δD :=
∧
{dj−i+1(xi · · ·xj) | 〈i, j〉 ∈ D}.

Intuitively, δD says that any satisfying tuple has a defect set which includes D.
Note that δD is defined only for D ⊆ Do

`−1: for technical reasons, we are not
interested in defects corresponding to even-length palindromic factors.

Turning now to ψ2, we introduce, for each adjacent `-type ζ ∈ Atpτ` , an (`−1)-
ary predicate pζ intended to identify the tails of `-tuples satisfying ζ. Specifically,
we declare that A+ |= pζ [b̄] just in case there is some a ∈ A such that A |= ζ[ab̄].

THE ADJACENT FRAGMENT 13

It is then easy to verify that A+ is a model of the sentence ψ2 given as

ψ2 ··=
∧

ζ∈Atpτ`

∀x`
(
ζ → pζ(x2 · · ·x`)

)
.

Conversely, if B is a structure interpreting the signature τ , and B+ is an expan-
sion of B such that B+ |= ψ2, then atpB[ab̄] = ζ implies B+ |= pζ [b̄]. Observe
that ψ2 employs ` variables.

The construction of ψ3 and ψ4 requires some preliminary work concerning
palindromes, as tuples containing palindromic factors pose a technical challenge
in the construction of our formula ψ. To explain why, let ā be an (`+1)-tuple
over some set A and ξ an adjacent (`+1)-type, and imagine that we wish to
define a structure A on A in such a way that atpA[ā] = ξ. Is this at all pos-
sible? Suppose, for example, that ā = abcbd, and that ξ contains the literals
p(x1x2x3x2x3x4x5) and ¬p(x1x2x3x4x3x4x5). A moment’s thought shows that
we cannot have atpA[ā] = ξ, since that would require both A |= p[abcbcbd] and
A |= ¬p[abcbcbd]. We need to be able to identify this sort of situation using only
the resources of AF . The next lemma explains how.

Recall the apparatus of incremental types introduced in Sec. 2: if c̄ is a k-
tuple over some structure A, then itpA[c̄] is the set of covering adjacent k-literals
(i.e. those featuring all variables in xk) satisfied by c̄ in A. Recall also the notation
introduced in Lemma 3: for any pair of adjacent functions f, g : [1,m] → [1, k]

and any set D ⊆ {〈i, j〉 | 1 ≤ i < j ≤ k}, we write f
D
= g if 〈f(i), g(i)〉 ∈ D∗

for all i (1 ≤ i ≤ m), where D∗ denotes the equivalence closure of D. Let us say

that an incremental k-type ι is D-compatible if f
D
= g implies ι |= p(xfk)↔ p(xgk)

for all predicates p in the signature of ι and all surjective adjacent functions
f, g : [1,m]→ [1, k] where m is the arity of p.

Lemma 8. Let c̄ be a primitive k-tuple over A, and D the defect set of c̄. If
A is a structure with domain A, then ι = itpA[c̄] is D-compatible. Conversely,
if ι is a D-compatible incremental k-type over some signature τ , then there is a
structure A interpreting τ over A such that itpA[c̄] = ι.

Proof. The first statement of the lemma is almost immediate. Fix a predicate
p of arity m interpreted by A, and suppose f, g ∈ Am

k are surjective. We must

show that f
D
= g implies ι |= p(xfk) ↔ p(xgk). But by Lemma 3, if f

D
= g, then

c̄f = c̄g, hence A |= p[c̄f]⇔ A |= p[c̄g]. Thus ι |= p(xfk)↔ p(xgk).
For the second statement, define A over the domain A by setting, for any

predicate p of τ having arity, say, m:

pA = {āf | there exists a surjective f ∈ Am
k such that ι |= p(xfk)}.

To show that A |= ι[ā], fix any p ∈ τ with arity m. If ι contains the (covering,
adjacent) atom α ··= p(x̄f), where then it is immediate from the construction
of A that A |= α[ā]. It remains to show that if ι contains the negated atom

ν ··= ¬p(xfk), then A |= ν[ā]. Suppose otherwise. From the construction of A,
we have ι |= p(xgk) for some surjective adjacent g : [1,m] → [1, k] such that

āf = āg. By Lemma 3, f
D
= g. Yet ι is by assumption D-compatible, whence

14 BARTOSZ BEDNARCZYK, DAUMANTAS KOJELIS, AND IAN PRATT-HARTMANN

ι |= p(x̄f) ↔ p(x̄g), contradicting the fact that ξ contains both ¬p(xfk) and
p(xgk). a

To explain the significance of this lemma, let us return to our example of the 5-
tuple ā = abcbd, and the adjacent 5-type ξ containing literals p(x1x2x3x2x3x4x5)
and ¬p(x1x2x3x4x3x4x5). Notice that these literals are covering, and thus are
contained in ∂ξ, the incremental 5-type included in ξ. As we have seen, ā can-
not be assigned the adjacent-type ξ, because it makes inconsistent demands in
respect of the 7-tuple abcbcbd. Observe, however, that the defect set of ā is
D = {〈2, 4〉}, and when we write the argument sequences x1x2x3x2x3x4x5 and

x1x2x3x4x3x4x5 in the form xf5 and xg5, respectively, it is easily checked that

f
D
= g, whence ∂ξ is not D-compatible. On the other hand, setting ` ··= 4, and

supposing the formula ψ1 to hold, we see that bcb satisfies the predicate d3,
whence the quadruple abcb satisfies the AF4-formula δD = d3(x2x3x4). Cru-
cially, the fact that abcb satisfies δD allows us to detect, using resources available
only in AF4, that ā = abcbd cannot be assigned the adjacent 5-type ξ, because
∂ξ is not D-compatible.

Returning now to the construction of ψ3 and ψ4, and recalling that Do
`−1

denotes the set of all pairs 〈i, j〉 for 1 ≤ i < j ≤ `−1 such that j−i+1 is
greater than 2 and odd, consider any subset D ⊆ Do

`−1. Denote by D+ the

result of adding 1 to both components of every pair in D, i.e. D+ ··= {〈i+1, j+1〉 |
〈i, j〉 ∈ D}. (Thus, D+ ⊆ Do

` ⊆ Do
`+1.) The intuition here is that if D represents

a set of odd-length non-trivial palindromic factors of an (`−1)-tuple ā, and a
and b are some elements, then D+ represents a set of odd-length non-trivial
palindromic factors of the `-tuple aā and indeed also of the (`+1)-tuple aāb.

Say that a quantifier-free AF`+1-formula χ is D+-consistent if there exists an
adjacent (`+1)-type ξ over the relevant signature such that ξ |= χ and ∂ξ is
D+-compatible. Finally, define the formulas ψ3 and ψ4 as:

ψ3 ··=
∧
i∈I

∧
ζ∈Atpτ`

∧
D⊆Do

`−1

∀x`−1∃x`
((
δD ∧ pζ(x`−1)

)
→∨

{η ∈ Atpτ` | (ζ ∧ β̂ ∧ γi ∧ η+) is D+-consistent}
)

ψ4 ··=

∧
ζ∈Atpτ`

∧
D⊆Do

`−1

∀x`
((
δD ∧ pζ(x`−1)

)
→∨

{η ∈ Atpτ` | (ζ ∧ β̂ ∧ η+) is D+-consistent}
)
.

We claim that A+ |= ψ3. Suppose ā is an (`−1)-tuple such that A+ |= δD[ā] and
A+ |= pζ [ā]. By construction of A+, there exists a ∈ A such that atpA[aā] = ζ.
Now, fix an index i ∈ I of some witness requirement in ϕ. Since A |= ϕ, there
exists an element b ∈ A such that A |= γi[aāb], and in fact such that A |=
(β̂∧γi)[aāb]. Letting ξ ··= atpA[aāb] and η ··= atpA[āb], we have ξ |= ζ∧β̂∧γi∧η+.
On the other hand, since A+ |= δD[ā] we have, by construction of A+, that the
defect set of ā includes D; and hence that the defect set of aāb includes D+.
By the first statement of Lemma 8 we have that ∂ξ is D+-compatible. Hence, b
is a witness for the quantifier ∃x` in ψ3 with respect to ā, so that A+ |= ψ3 as
required. By similar reasoning, A+ |= ψ4.

THE ADJACENT FRAGMENT 15

To motivate these formulas, consider first ψ3, and suppose ψ1 ∧ ψ2 ∧ ψ3 has a
model, say, B. We may assume, by Lemma 5, that B is a layered structure of
height `, and we may take B− to be the reduct of B to the signature τ (i.e. we
forget the predicates pζ and d2s+1). Suppose, now a is an element of B and ā

an (`−1)-tuple over B, and let ζ = atpB− [aā]. Let us further imagine that the
defect set of ā is D ⊆ Do

`−1. (We shall not worry about even-length palindromic
factors for the present.) Since B |= ψ1∧ψ2, the (`−1)-tuple ā will satisfy δD and
pζ in B. Of course, B does not in general define the adjacent types of (`+1)-
tuples (unless they are non-primitive), but we would like to be able to find, for
each index i ∈ I, an element b ∈ B such that the (`+1)-tuple aāb could be
assigned an adjacent type satisfying the existential requirement γi of ϕ without
violating the universal constraints β. Anticipating Lemma 13, this is what ψ3

does: the witnesses it provides for x` have the required properties. Formula ψ4

plays an analogous role with respect to the universal requirements of ϕ. But we
are getting ahead of ourselves. For the present, we have proved:

Lemma 9. Suppose A |= ϕ. Then we can expand A to a model A+ |= ψ.

Having defined ψ and established Lemma 9, we wish to argue for the converse
direction. We begin with three straightforward, technical lemmas. When dealing
with equality-free formulas, we may freely duplicate elements in their models. Let
B be a τ -structure, andH a non-empty set of indices. We define the structure B×
H over the Cartesian product B×H as follows: for any p ∈ τ of arity k, and any
k-tuples b1 · · · bk over B and h1 · · ·hk over H, set B×H |= p[〈b1, h1〉 · · · 〈bk, hk〉]
if and only if B |= p[b1 · · · bk]. By routine structural induction, we have:

Lemma 10. Let ψ be an equality-free first-order formula all of whose free vari-
ables occur in xk, B a structure interpreting the signature of ψ, and H a non-
empty set. Then, for any tuples b̄ = b1 · · · bk from B and h1 · · ·hk from H,
B |= ψ[b̄] if and only if B×H |= ψ[〈b1, h1〉 · · · 〈bk, hk〉].

The following very simple lemma will be used in conjunction with Lemma 10.

Lemma 11. Suppose b̄ is a k-tuple over some set B and H a non-empty set.
Then, for any h1, . . . , hk ∈ H, if c̄ is the tuple 〈b1, h1〉 · · · 〈bk, hk〉 over B × H,
then every defect of c̄ is a defect of b̄.

Proof. Pick some defect 〈i, j〉 of c̄. Thus, ci · · · cj is a non-trivial palindrome,
i.e. 〈bi+m, ki+m〉 = 〈bj−m, kj−m〉 for all 0 ≤ m ≤ b(j− i)/2c. But then bi · · · bj is
certainly a non-trivial palindrome, and hence 〈i, j〉 a defect of b̄ as required. a

Finally, the following combinatorial lemma allows us to extend the technique
of ‘circular witnessing’ (see, e.g. [16, p. 62–64]) frequently used in the analysis

of two-variable logics, to the languages AFk.

Lemma 12. For any integer k > 0 there is a set H with |H| = (k2 +k+ 1)k+1

and a function g : Hk → H such that, for any tuple t̄ ∈ Hk consisting of the
elements t1, . . . , tk in some order: (i) g(t̄) is not in t̄; (ii) if t̄′ ∈ Hk consists of
the elements {t2, . . . , tk, g(t̄)} in some order, then g(t̄′) is not in t̄ either.

Proof. Let z = k2+k+1 and H = [1, z]k+1. Thus, |H| is as required. Writing
any element ofH as the word is̄, where i ∈ [1, z] and s̄ ∈ [1, z]k, let g be defined by

16 BARTOSZ BEDNARCZYK, DAUMANTAS KOJELIS, AND IAN PRATT-HARTMANN

g(i1s̄1, . . . , iks̄k) = i0i1 · · · ik, where i0 is the smallest positive integer not in the
set S = {i1, . . . , ik}∪ s̄1∪· · ·∪ s̄k. (For brevity, we are here identifying words over
the integers with the sets of their members.) Note that i0 ∈ [1, z] since |S| < z.
Now let some tuple t̄ ∈ Hk be given, consisting of words t1, . . . , tk in some order,
and write th = ihs̄h (for all 1 ≤ h ≤ k), where ih ∈ [1, z] and s̄h ∈ [1, z]k. Thus,
t = g(t̄) is a word of the form i0s̄, where s̄ consists of i1, . . . , ik in some order,
and i0 does not occur anywhere in t̄. Condition (i) is then immediate because
of the choice of i0. For condition (ii), we observe that t′ = g(t̄′) is a word of the
form i′s̄′, where s̄′ consists of i0, i2, . . . , ik in some order, and i′ does not occur in
any of the words in t̄′. By the choice of i′, it is immediate that t′ 6∈ {t2, . . . , tk}.
But the value i1 (the first letter of t1) occurs in g(t̄) (which belongs to the tuple
t̄′), whence i′ 6= i1. It follows that t′ 6= t1, whence t′ is not in t̄, as required. a

With the help of these three technical lemmas, we provide the advertised
converse to Lemma 9.

Lemma 13. Suppose B |= ψ. Then we can construct a model C+ |= ϕ such
that |C+|/|B| ≤ |I| · (`2 + `+ 1)`.

Proof. We repeat here for convenience the formula ϕ as defined in (2):∧
i∈I
∀x`∃x`+1 γi ∧ ∀x`+1 β.

In the sequel, we refer to the conjunct ∀x`∃x`+1 γi as the ith witness requirement
of ϕ. Our first step is to define a collection of ‘pseudo-witnesses’ in the structure
B for the various witness requirements of ϕ. These will be used later to select
actual witnesses in the model C+ of ϕ that we eventually construct. Let B− be
the reduct of B to the signature τ (i.e. we forget the predicates pζ and d2s+1).

Consider any `-tuple b̄ = b1 · · · b`: let ζ = atpB− [b̄] and let D be the set of
defects of b2 · · · b` corresponding to odd-length palindromes, i.e., those defects
〈i, j〉 for which j−i+1 is odd. Since B |= ψ1 ∧ψ2, we have B |= δD[b2 · · · b`] and
B |= pζ [b2 · · · b`]. And since B |= ψ3, given any i ∈ I, we may select b ∈ B such
that η = atpB[b2 · · · b`b] is one of the disjuncts in the consequent∨

{η ∈ Atpτ` | (ζ ∧ β̂ ∧ γi ∧ η+) is D+-consistent}

of the implication occurring in ψ3. It follows that there exists some ξ ∈ Atpτ`+1

such that ξ |= (ζ ∧ β̂ ∧ γi ∧ η+) and ∂ξ is D+-compatible. We identify b as the
‘pseudo-witness’ for the ith witness requirement of ϕ, and write bb̄,i ··= b and

ξb̄,i ··= ξ to make the dependencies on i and b̄ explicit.
Next we inflate the model B using the construction of Lemma 10. Let H be a

set of cardinality `2 +`+1 and let g : H` → H be a function satisfying conditions
(i) and (ii) guaranteed by Lemma 12. Define C = B− × (I ×H), and define the
layered structure C′ (with the same domain, C) to be the result of disregarding
any tuples in C of primitive length greater than `. Thus, we may write elements
of C as triples (b, i, j), where b ∈ B, i ∈ I and j ∈ H; and of course, C′ has

height `. By Lemma 10, C |= ψ, and bearing in mind that ψ ∈ AF`, by Lemma 5,
C′ |= ψ. We may now define a collection of ‘witness functions’ wi : C

` → C,
where i ranges over I. Consider any `-tuple c̄ ··= c1 · · · c` of elements in C, with

THE ADJACENT FRAGMENT 17

ch = (bh, ih, jh) for each h (1 ≤ h ≤ `). Writing b̄ = b1 · · · b`, and recalling the
pseudo-witness bb̄,i identified in the previous paragraph, we define wi(c̄) to be
the element (bb̄,i, i, g(j1 · · · j`)). Thus, wi(c̄) is a judiciously chosen copy of bb̄,i,
able, potentially, to serve as an ith witness for ϕ. Most of the work will be done
by its first component, bb̄,i; the remaining components, i and g(j1 · · · j`), simply
ensure that the eventually selected witnesses do not, as it were, tread on each
others’ toes. Note that the functions wi satisfy the following properties:

(w1): for fixed c̄, the wi(c̄) are distinct as i varies over I;
(w2): wi(c̄) does not occur in c̄;
(w3): if c̄ = c1 · · · c` and c̄′ is an `-tuple consisting of the elements c2, . . . , c`, wi(c̄)

in some order, then wi′(c̄
′) does not occur in c̄ for any i′ ∈ I.

Indeed, (w1) is immediate from the fact wi(c̄) contains i as its second element;
(w2) and (w3) follow, respectively, from conditions (i) and (ii) on g guaranteed
in Lemma 12.

We are now ready to elevate the layered structure C′ to a layered structure C+

of height `+1 such that C+ |= ϕ. We first ensure that C+ provides witnesses for
the various witness requirements of ϕ. Fix any `-tuple c̄ = c1 · · · c` and any i ∈ I.
We have two cases, depending on whether the (`+1)-tuple c̄ wi(c̄) is primitive.
Suppose first that it is not. By (w2), wi(c̄) is not an element of c̄, whence by

Lemma 6 there is some k-tuple d̄ (k < `) and f ∈ ~A`
k such that d̄ = c̄f . As before,

define f+ ∈ ~A`+1
k+1 extending f by setting f(k+ 1) = `+ 1. Since k < `, and C′ |=

acl(ϕ), there exists c′ ∈ C such that C′ |= γf
+

i [d̄c′]. By Lemma 4, C′ |= γi[(d̄c
′)f

+

],
or in other words, C′ |= γi[c̄c

′], so that a witness c′ is already present in respect
of the tuple c̄ and the index i. (Notice that we are throwing the element wi(c̄)
away, as an ith witness is already present for the tuple c̄.) Suppose on the other
hand that c̄ wi(c̄) is primitive. Recall that, for all h (1 ≤ h ≤ `), the element ch
has the form (bh, ih, jh), and that wi(c̄) = (bb̄,i, i, g(j1 · · · j`)). Recall in addition
the adjacent (`+1)-type ξb̄,i identified earlier. To reduce notational clutter, we

write c for wi(c̄) and ξ for ξb̄,i. Setting ζ = atpB− [b̄] and η = atpB− [b2 · · · b`bb̄,i],
Lemma 10 guarantees that ζ = atpC′ [c̄] and η = atpC′ [c2 · · · c` c]. Moreover, by
Lemma 11, any defect of c2 · · · c` is evidently a defect of b2 · · · b`. In fact, since
c̄ is primitive and c = wi(c̄) does not occur in c̄, the tuple c̄c cannot have any
defects corresponding to even-length palindromes, and cannot have any defects
of the forms 〈1, j〉 or 〈j, `+1〉. Thus, letting D denote the set of defects of b2 · · · b`
corresponding to odd-length palindromes, we see that the defect set of c̄c is D+.

But we have already argued that ξ |= (ζ ∧ β̂ ∧ γi ∧ η+), and moreover that ∂ξ
is D+-compatible. By Lemma 8, there is a structure over the elements of c̄c in

which the incremental type of c̄c is ∂ξ. Thus we may consistently fix itpC+

[c̄c]
to be ∂ξ. (Observe that this also fixes the incremental type of the reversed tuple

cc̃.) Since ζ = atpC′ [c̄], η = atpC′ [c2 · · · c` c], and ξ = ζ ∪ η+ ∪ ∂ξ, we have

atpC+

[c̄c] = ξ. Moreover, since ξ |= γi, c is an ith witness for ϕ with respect to

the tuple c̄. Finally, since ξ |= β̂ the adjacent (`+1)-types assigned to the tuples
c̄c and cc̃ satisfy β. Still keeping c̄ fixed for the moment, we may carry out the
above procedure for all i ∈ I. To see that these assignments do not interfere with
each other, we invoke property (w1) of the functions wi.

18 BARTOSZ BEDNARCZYK, DAUMANTAS KOJELIS, AND IAN PRATT-HARTMANN

Now make these assignments as just described for each `-tuple c̄ over C. To
ensure that these assignments do not interfere with each other, we make use of
properties (w1) and (w3) of the functions wi. If d̄ is an m-tuple that has been
assigned (or not) to the extensions of various predicates by the process described
above, then the two primitive generators of d̄ must be of the form c̄c and cc̃, where
c = wi(c̄) for some i ∈ I. Since primitive generators are unique up to reversal
by Theorem 2, it suffices to show that, for distinct pairs (c̄, i) and (c̄′, i′), the
corresponding (`+1)-tuples c̄ wi(c̄) and c̄′ wi′(c̄

′) are not the same up to reversal.
Now c̄ wi(c̄) = c̄′ wi′(c̄

′) implies c̄ = c̄′, whence i and i′ are distinct, whence
wi(c̄) 6= wi′(c̄

′) by (w1), a contradiction. On the other hand c̄′wi′(c̄
′) = wi(c̄)c̃

implies c̄′ = wi(c̄), c` · · · c2, whence wi′(c̄
′) does not occur in c̄ (or therefore in c̃)

by (w3), again a contradiction.
At this point, we have assigned a collection of tuples with primitive length `+1

to the extensions of predicates in τ so as to guarantee that C+ |= ∀x`∃x`+1 γi
for all i ∈ I. In addition, no adjacent (`+1)-types thus defined violate ∀x`+1 β.
It remains to complete the specification of C+ by defining the adjacent types of
all remaining primitive `+1-tuples, and showing that, in the resulting structure,
every (`+1)-tuple (primitive or not) satisfies β. Let c̄ = c1 · · · c`+1 be a primitive
(`+1)-tuple whose adjacent type has not yet been defined. Let ζ = atpC[c1 · · · c`]
and η = atpC[c2 · · · c`+1]. Since c̄ is primitive, it has no defects corresponding to
even-length palindromes, and indeed no defects of the forms 〈1, j〉 or 〈j, ` + 1〉.
Letting D be the defect set of c2 · · · c`, therefore, we have D ⊆ Do

`−1; moreover,

the defect set of c̄ is D+. Further, since B |= ψ1 ∧ ψ2, we have B |= δD[c2 · · · c`]
and B |= pζ [c2 · · · c`]. And since B |= ψ4, we see that η = atpC′ [c2 · · · c`+1] is one
of the disjuncts in the consequent of ψ4. Thus, there exists an adjacent (`+1)-type

ξ such that ξ |= (ζ ∧ β̂ ∧ η+) and ∂ξ is D+-compatible. By Lemma 8, therefore,
there is a structure over the elements of c̄ in which c̄ has the incremental type

∂ξ. Thus we may consistently fix itpC+

[c̄] to be ∂ξ. Since ζ = atpC′ [c1 · · · c`],
η = atpC′ [c2 · · · c`+1], and ξ = ζ ∪ η+ ∪ ∂ξ, we have atpC+

[c̄] = ξ. And since

ξ |= β̂, the adjacent (`+1)-types assigned to the tuples c̄ and c̃ satisfy β. Carrying
this procedure out for all remaining primitive (`+1)-tuples, we obtain a layered
structure C+ of depth `+1. Let d̄ be any (`+1)-tuple of elements from C. If d̄ is
primitive, then we have just ensured that C+ |= β[d̄]. If, on the other hand, d̄ = ēf

for some k-tuple ē and some f ∈ A`+1
k , where k ≤ `, then, since C |= acl(ϕ),

we have C |= βf [ē] and hence, by Lemma 4, C |= β[d̄]. This completes the
construction of C+. We have shown that C+ |= ϕ. a
Let us take stock. Since AF2 is included in FO2, we know that each satisfiable
AF2-sentence ϕ has a finite model of size 2O(||ϕ||). Further, given any equality-
free normal-form AF`+1-formula ϕ (` ≥ 2), we can construct an equisatisfiable

equality-free AF`-formula ψ, also—modulo trivial logical re-arrangement—in
normal form. We showed in Lemma 9 that, if ϕ is satisfiable over some domain,
then ψ is satisfiable over the same domain. And we showed in Lemma 13 that,
if ψ is satisfiable over some finite domain, then ϕ is satisfiable over a domain
larger by a factor of at most |I| · (`2 + ` + 1)`. Moreover, a simple check shows
that ||ψ|| is 2O(||ϕ||). It follows by a routine (if slightly fiddly) induction that any

equality-free, satisfiable normal-form formula of AF` (` ≥ 2) has a finite model

THE ADJACENT FRAGMENT 19

of size t(`−1, O(||ϕ||)). We omit a detailed proof, because, in the next section, we

strengthen the above results in two ways. First, we consider normal-form AF`+1-
formulas ϕ involving equality. Using a more elaborate definition of ψ ∈ AF`, we
prove analogues of Lemmas 9 and 13. Secondly, as a by-product, we obtain tighter
size bounds for the latter, showing that, if ψ is satisfiable over some domain, then
ϕ is satisfiable over the same domain. This simplifies the proof of the eventual
bound on model-sizes, which we give in full in Theorem 1.

§5. Adding Equality. In this section, we complete the task of establishing
a small model property for each of the fragments AF`, for ` ≥ 2, using the same
strategy as employed in Sec. 4 for the equality-free sub-fragments. The difference
is that, when equality is present, Lemma 10 becomes invalid. This lemma was
used in the proof of Lemma 13, which constructed a model of the equality-free
normal-form AF`+1-formula ϕ from a model of the equality-free AF`-formula
ψ: by duplicating elements in the model of ψ, we could easily avoid clashes
when selecting elements to serve as witnesses for the existential requirements
of ϕ. When equality is present, such duplication is no longer available, thus
necessitating some additional combinatorial manœuvres. Table 3 provides a guide
to important notions in this section. (Do note that they are, as of yet, undefined.)

Suppose A |= ϕ, where ϕ is an normal form AF`+1-formula (` ≥ 2) over some
signature τ . We fix ϕ and τ for the remainder of this section, writing the former
as in (2), again repeated here for convenience:∧

i∈I
∀x`∃x`+1 γi ∧ ∀x`+1 β.

We employ the letters `, I, β and γi with these denotations, and we assume
without loss of generality that I is non-empty. We proceed to define an expansion
A+ of A, and simultaneously, a normal-form AF`-formula ψ over the expanded
signature, such that A+ |= ψ; we later show that any layered model of ψ (having
height `) has a τ -reduct that can be elevated to a model of ϕ.

We take ψ to have the form

ψ ··= acl(ϕ) ∧ ψ0 ∧ · · · ∧ ψ5,

Construction of ψ from ϕ in the presence of =
Gā directed graph (A,Dā∪Eā) of witnesses in A around ā
σ a star; a function mapping witness (`+ 1)-types to colours C

atp(σ) the underlying `-type of σ
St the set of all stars σ : Atpτ`+1 ↪→ C

tl(ξ) the `-type η s.t. ξ |= η+

sσ(x`) atom implying x` realises σ
qσ,c(x`−1) atom implying there is some x s.t. xx`−1 realise σ and colour c
rσ,c,ξ(x`) atom implying x` is the ξ-witness for xx`−1 realising σ and c

Table 3. Quick reference guide for Sec 5.

20 BARTOSZ BEDNARCZYK, DAUMANTAS KOJELIS, AND IAN PRATT-HARTMANN

where acl(ϕ) is the adjacent closure of ϕ (featured in Lemma 7), and ψ0, . . . , ψ5

are AF`-formulas over an expanded signature, defined below. We proceed to
consider the conjuncts ψ0, . . . , ψ5 in turn.

The conjunct ψ0. The initial step in this process is rather elaborate, and has
no analogue in Sec. 4. For any element a ∈ A and any tuple ā ∈ A`−1, let Baā be
a minimal set such that, for each i ∈ I, there is some b ∈ Baā with A |= γi[aāb].
Since A |= ϕ, such a set exists, and moreover |Baā| ≤ |I|. We call the elements of
Baā the witnesses with respect to aā. By assumption of minimality of Baā, there
are no two distinct elements b, b′ ∈ Baā such that atpA

`+1(aāb) = atpA
`+1(aāb′).

Thus, given an adjacent (`+1)-type ξ such that atpA
`+1(aāb) = ξ for some b ∈ Baā,

we will call this b the ξ-witness with respect to aā. (Of course, this notion depends
on our particular choice of the set Baā.)

Having chosen the witnesses with respect to the various `-tuples over A, con-
sider now any (`−1)-tuple ā over A. Defining the sets of ordered pairs over A

Dā ··= {(a, b) | a 6= b and b ∈ Baā}
Eā ··= {(a, a′) | a 6= a′ and there is some b ∈ Baā s.t. a′ ∈ Bbã}

we let Gā be the directed graph with vertices A and edges Dā ∪ Eā. Thus, in
this directed graph, there is an edge from a to every witness b with respect to
aā (except a itself), and an edge from any element of a to any other element
a′ if there exists a witness b with respect to aā such that a′ is a witness with
respect to bã. Since no `-tuple has more than I witnesses, the out-degree of
any vertex in Gā is at most |I|2 + |I|. Recall that a k-colouring of a directed
graph Gā = (V,E) is a function f : V → [0, k−1] satisfying f(u) 6= f(v) for all
(u, v) ∈ E. It is well-known that any directed graph with maximum out-degree d
has a (2d+ 1)-colouring (see e.g. [29, p. 612]). Thus, we may colour the directed
graph Gā with colours from a set C of cardinality 2(|I|2 + |I|) + 1. For every
(`−1)-tuple ā, then, let some such colouring of Gā be fixed.

The importance of this colouring will become clearer as the proof unfolds. For
the present, however, we note the following: (i) if b is one of the witnesses with
respect to aā, and is distinct from a, then a and b are differently coloured in Gā;
(ii) if, in addition, a′ is one of the witnesses with respect to bã, and is distinct
from a, then a and a′ are differently coloured in Gā. It does not follow that the
various witnesses with respect to aā will be differently coloured from each other
in Gā. Notice also that, for distinct (`−1)-tuples ā and ā′, an element a might
be coloured differently in the graphs Gā and Gā′ ; this is true even if ā′ = ã.

Now let us treat the elements of C as `-ary predicates, which we interpret in
our expansion A+ of A. Specifically, for all a ∈ A, ā ∈ A`−1 and c ∈ C, we
declare that A+ |= c[aā] just in case a is assigned the colour c in the colouring
of Gā, and we write colA

+

[aā] to denote c. Note that, defining

ψ0 := ∀x`

∨
c∈C

c(x`) ∧
c 6=c′∧
c,c′∈C

(
¬c(x`) ∨ ¬c′(x`)

) ,

we have A+ |= ψ0. Conversely, if B is any model of ψ0, every `-tuple over B is
assigned a unique colour from C in the obvious way.

THE ADJACENT FRAGMENT 21

The conjunct ψ1. Here we can simply repeat material from Sec. 4. For each s
(2 < 2s + 1 ≤ `) we introduce a fresh (2s+1)-ary predicate d2s+1, and declare
that a (2s+1)-tuple over A satisfies d2s+1 in the expansion A+ just in case it is

a palindrome. In addition, we define the AF`-formula

ψ1 ··=
∧

2<2s+1≤`

∀xs+1 d2s+1(x1 · · ·xsxs+1xs · · ·x1).

Thus, A+ |= ψ1, and, conversely, if B is any structure such that B |= ψ1, and
c̄ ∈ B2s+1 is a palindrome (2 < 2s + 1 ≤ `), then B |= d2s+1[c̄]. As before,
we write δD :=

∧
{dj−i+1(xi · · ·xj) | 〈i, j〉 ∈ D} where D is any set of pairs of

integers 〈i, j〉 for 1 ≤ i < j ≤ ` with j−i+1 odd and greater than 2.

The conjunct ψ2. The treatment of this conjunct is more elaborate than in
Sec. 4, and involves the colouring of `-tuples encountered above. However, the
essential function of securing witnesses and imposing universal constraints is the
same. We remind the reader that, if ā is a tuple, then ã denotes its reversal.
Observe that each `-tuple aā over A gives rise to a partial function σ : Atpτ`+1 ↪→
C mapping adjacent (`+1)-types over τ to colours, namely,

σ(ξ) =

{
colA

+

[bã] if b is the (unique) ξ-witness in A with respect to aā,

undefined if aā does not have a ξ-witness in A.

Thus, for every adjacent (`+1)-type ξ for which aā has a ξ-witness b in A, the
value σ(ξ) tells us the colour of the ‘reversed’ `-tuple bã in A+. We denote the
domain of σ (i.e. the set of ξ ∈ Atpτ`+1 for which σ(ξ) is defined) by dom(σ).
Since I is non-empty, the `-tuple aā has at least one witness, whence dom(σ)

is also non-empty. We call σ the star of aā in A+, and denote it stA
+

[aā]. Al-
ways remember that the elements of Atpτ`+1 are adjacent types over the original
signature τ of A, not over any expanded signature.

A simple check with reference to the formula ϕ given above verifies that σ
satisfies the following conditions:

1. there exists a (unique) adjacent `-type ζ over τ such that, for all ξ ∈ dom(σ),
we have ξ |= ζ.

2. for every ξ ∈ dom(σ) there exists i ∈ I such that ξ |= γi;
3. for every i ∈ I there is exactly one ξ ∈ dom(σ) such that ξ |= γi; and

4. for every ξ ∈ dom(σ), ξ |= β̂ (remember that β̂ := β ∧ β−1).

Condition 1 is verified by setting ζ = atpA[aā]; it is obvious that this is the unique
adjacent `-type with the required properties; we call ζ the underlying adjacent
type of σ and denote it atp(σ). The remaining conditions are immediate from the
properties of witnesses. Accordingly, we call any partial function σ : Atpτ`+1 ↪→ C
satisfying conditions 1–4 above a star, and we denote the set of all such stars as

St. Thus, for any (`+1)-tuple over A, we have stA
+

[aā] ∈ St. We remark that
the notion of a star depends on the formula ϕ (and on the parameters `, C, β, I,
γi and τ associated with ϕ). Since, however, ϕ may be considered fixed for the
present, we suppress these parameters to avoid notational clutter.

22 BARTOSZ BEDNARCZYK, DAUMANTAS KOJELIS, AND IAN PRATT-HARTMANN

Now we are ready to fix some additional predicates in the expansion A+. Since
we have settled the interpretations of the predicates C in A+, the adjacent star-

type stA
+

[aā] = σ of any `-tuple aā is unaffected by these additional predicates:
in particular, the domain of σ consists of adjacent (`+1)-types ξ over the original
signature τ ; and the values σ(ξ) are determined by the interpretations of the
predicates C in A+. With this in mind, for every ζ ∈ Atpτ` , we introduce the
(`−1)-ary predicate pζ familiar from Sec.4, declaring A+ |= pζ [ā] just in case, for
some a ∈ A, atpA[aā] = ζ. Thus, A+ |= ψ2,0, where

ψ2,0 :=
∧

ζ∈Atpτ`

∀x` (ζ → pζ(x2 · · ·x`)) .

In addition, for every σ ∈ St, we introduce a new `-ary predicate sσ, and declare

A+ |= sσ[aā] if and only if stA
+

[aā] = σ, for any `-tuple aā over A. It is then
easy to verify that A+ |= ψ2,1 ∧ ψ2,2, where

ψ2,1 := ∀x`
∨
σ∈St

sσ(x`) ∧ ∀x`
σ 6=σ′∧

σ,σ′∈St

(¬sσ(x`) ∨ ¬sσ′(x`))

ψ2,2 := ∀x`
∨
σ∈St

(sσ(x`)→ atp(σ)) .

Indeed, the first of these formulas states that any `-tuple satisfies exactly one
of the predicates sσ, and the second, that its adjacent type in A is given by
atp(σ). (Recall in this connection that atp(σ) is an `-type, and thus a formula
with variables x`.) Further, for every σ ∈ St and every c ∈ C, we introduce a
new (`−1)-ary predicate qσ,c, and declare A+ |= qσ,c[ā] just in case there is some

a ∈ A such that stA
+

[aā] = σ and colA
+

[aā] = c. Thus, qσ,c identifies tails of
`-tuples whose star in A+ is σ and whose colour in A+ is c. It is thus immediate
that A+ |= ψ2,3, where

ψ2,3 := ∀x`
∧
σ∈St

∧
c∈C

((
sσ(x`) ∧ c(x`)

)
→ qσ,c(x2 · · ·x`)

)
.

Still proceeding with the construction of ψ2, for every σ ∈ St, every c ∈
C, and every ξ ∈ dom(σ), we introduce a new `-ary predicate rσ,c,ξ, and fix
its interpretation in A+ as follows. Take any (`−1)-tuple ā over A. If, on the

one hand, A+ |= qσ,c[ā], then select some a ∈ A such that stA
+

[aā] = σ and

colA
+

[aā] = c. By the interpretation of qσ,c in A+, this is possible. Now, for each
ξ ∈ dom(σ), let b be the ξ-witness for aā, and set A+ |= rσ,c,ξ[āb]. If, on the
other hand, A+ 6|= qσ,c[ā], then do nothing in respect of the tuple ā. By carrying
out this procedure for every (`−1)-tuple ā over A, we thus fix the extensions of
the predicates rσ,c,ξ in A+. Informally, it helps to read the atom rσ,c,ξ(x`) as “x`
wants to be the ξ-witness with respect to the tuple x′x`−1 for a particular x′

such that x′x`−1 has star-type σ and colour c”. Since ξ ∈ dom(σ) implies that a
ξ-witness exists, we have A+ |= ψ2,4, where

ψ2,4 := ∀x`−1∃x`
∧
σ∈St

∧
c∈C

∧
ξ∈dom(σ)

(qσ,c(x`−1)→ rσ,c,ξ(x`)) .

THE ADJACENT FRAGMENT 23

Let us return to our `-tuple aā with stA
+

[aā] = σ, colA
+

[aā] = c and ξ-witness
b. Let tl(ξ) denote the unique adjacent `-type η over τ such that ξ |= η+. Thus,

atpA[āb] = tl(ξ). Moreover, from the fact that stA
+

[aā] = σ and b is the ξ-witness

with respect to aā, we have colA
+

[bã] = σ(ξ). Thus, A+ |= ψ2,5, where

ψ2,5 ··= ∀x`−1

∧
σ∈St

∧
c∈C

∧
ξ∈dom(σ)

(rσ,c,ξ(x`)→ tl(ξ) ∧ (σ(ξ))(x` · · ·x1)) .

Recall in this regard that tl(ξ) is an adjacent `-type (hence a formula with free
variables x`), and σ(ξ) ∈ C is an `-ary predicate of τ .

More can be said considering the `-tuple āb and its reversal, bã. This latter

tuple has some star in A+, say stA
+

[bã] = σ′. Consider, then, any adjacent (`+1)-
type ξ′ ∈ dom(σ′). Thus, bã has a ξ′-witness in A, say b′. If b′ = a, then atpA[aāb]
and atpA[bãb′] are mutually inverse (`+1)-types, and we have ξ′ = ξ−1. If, on
the other hand, b′ 6= a, then 〈a, b′〉 is an edge of the directed graph Gā, whence

colA
+

[aā] 6= colA
+

[b′ā], by construction of A+. Thus, A+ |= ψ2,6, where

ψ2,6 ··= ∀x`
∧
σ∈St

∧
c∈C

∧
ξ∈dom(σ)

(
rσ,c,ξ(x`)→

∨
{sσ′(x` · · ·x1) |

σ′ ∈ St and, for all ξ′ ∈ dom(σ′), ξ′ 6= ξ−1 ⇒ σ′(ξ′) 6= c}
)
.

That is to say: if b is the ξ-witness with respect to aā and b′ the ξ′-witness with
respect to bã, then either ξ and ξ′ are mutually inverse types in A or else the
tuples aā and b′ā are differently coloured in A+.

We complete the construction of ψ2 with a somewhat simpler constraint con-
cerning the predicates rσ,c,ξ. Consider again any (`−1)-tuple ā over A, and sup-
pose that, for some σ ∈ St, some c ∈ C and some pair of distinct (`+1)-types
ξ, ξ′ ∈ dom(σ), there exist elements b and b′ such that A+ |= rσ,c,ξ[āb] and
A+ |= rσ,c,ξ′ [āb

′]. From the construction of A+, b and b′ must have been chosen
as ξ- and ξ′-witnesses, respectively, with respect to a tuple aā for some particular
element a. It follows that b and b′ must be distinct. That is, A+ |= ψ2,7, where

ψ2,7 ··= ∀x`
∧
σ∈St

∧
c∈C

ξ 6=ξ′∧
ξ,ξ′∈dom(σ)

(
rσ,c,ξ(x`)→ ¬rσ,c,ξ′(x`)

)
.

Conversely, if B is any structure making ψ2,7 true, and ā an (`−1)-tuple over
B, then we cannot have the same element b such that B |= rσ,c,ξ[āb] and B |=
rσ,c,ξ′ [āb] for different ξ and ξ′ in the domain of σ.

Setting ψ2 ··= ψ2,0 ∧ · · · ∧ ψ2,7, we have thus established that A+ |= ψ2.

The conjuncts ψ3 and ψ4. Here, we can again recapitulate the ideas of Sec. 4,
though in a slightly different guise. As before, we take Do

k to denote the set of
all pairs 〈i, j〉 for 1 ≤ i < j ≤ k such that j−i+1 is greater than 2 and odd.
Fix some subset D ⊆ Do

`−1, and suppose ā is an (`−1)-tuple over A such that

A+ |= δD[ā]. By construction of A+, the defect set of ā includes D, whence, for
any elements a, b ∈ A, the defect set of aāb certainly includes D+. It follows
that, if σ ∈ St, c ∈ C and ξ ∈ dom(σ), but with ∂ξ not D+-compatible, then
there cannot exist b ∈ A such that A |= rσ,c,ξ[āb]. For otherwise, by construction

24 BARTOSZ BEDNARCZYK, DAUMANTAS KOJELIS, AND IAN PRATT-HARTMANN

of A+, there exists a such that stA
+

[aā] = σ, and b is the ξ-witness with respect
to aā, whence atpA[aāb] = ξ, contradicting the first statement of Lemma 8. We
have thus proved A+ |= ψ3, where

ψ3 ··=
∧

D⊆Do
`−1

∀x`
(
δD →

∧
{¬rσ,c,ξ(x`)

)
| σ ∈ St, c ∈ C, ξ ∈ dom(σ), ∂ξ not D+-compatible}

)
.

For ψ4, we recapitulate the formula from Sec. 4, namely

ψ4 ··=

∧
ζ∈Atpτ`

∧
D⊆Do

`−1

∀x`
((
δD ∧ pζ(x`−1)

)
→∨

{η ∈ Atpτ` | (ζ ∧ β̂ ∧ η+) is D+-consistent}
)
.

And by the same reasoning as in Sec. 4, we have A+ |= ψ4.

The conjunct ψ5. Our final conjunct again has no analogue in Sec. 4, and
concerns extra conditions we need to impose on certain non-primitive (`+1)-
tuples in models of ψ. We need to ensure that, when reconstructing a model of
ϕ from such structures, we do not attempt to assign these tuples incompatible
adjacent types. We require the following simple lemma regarding words. Recall

that ~A`
k denotes the set of adjacent functions f : [1, `]→ [1, k] such that f(`) = k.

We say that an `-tuple b̄ is terminal if it can be written b̄ = d̄f for some k-tuple

d̄ with k < `, and some f ∈ ~A`
k. As explained in Sec. 2, for any f ∈ A`

k, a leg of
f is a maximal interval [i, j] ⊆ [1, `] such that f(h+1)−f(h) is constant for all h
(i ≤ h < j); such an interval corresponds to a straight-line segment of the graph
of f .

Lemma 14. Let b̄ be an `-tuple over some set and b an element of that set.
Then at least one of the following holds: (i) b̄b is primitive; (ii) b is the last
element of b̄; (iii) b̄b has a suffix which is an odd-length, non-trivial palindrome;
(iv) b̄ is terminal.

Proof. Suppose that b̄b is not primitive. If b̄ has an immediately repeated
letter, then it is certainly terminal: indeed b̄ = āccd̄ is generated from ācd̄ via

a function f ∈ ~A`
`−1 which pauses for one step on the letter c. Hence we may

assume that there are no immediately repeated letters in b̄. Furthermore, if b is
not the last element of b̄, then the whole of b̄b has no immediately repeated letters.
Since b̄b is not primitive, we have b̄′b = c̄f for some k-tuple b̄′ and some f ∈ Am

k

with at least two legs (i.e. maximal strictly ascending or descending intervals). If
the final leg of f is shortest, then some suffix of b̄b is a non-trivial palindrome, and
this palindrome must have odd length, since there are no immediately repeated
letters. Otherwise b̄b has either of the forms cd̄dd̃cēb or ācd̄dd̃cd̄dēb, depending
on whether the shortest leg is initial or internal. In the former case, b̄ = (dd̃cē)g

for some final adjacent function g; in the latter, b̄ = (ācd̄dē)h for some final
adjacent function h In both cases, b̄ is terminal. a

We remark that, in the case were b̄b has a suffix which is an odd-length
non-trivial palindrome, that palindrome may be the whole of b̄b. The cases of
Lemma 14 correspond to conditions on the adjacent type of the (`+1)-tuple in

THE ADJACENT FRAGMENT 25

question. Say that an adjacent (`+1)-type ξ is palindromic if, for any AF [`+1]-
atom α (over the relevant signature), ξ |= α implies ξ |= α(x`+1 · · ·x1). Evi-
dently, if an (`+1)-tuple is a palindrome, then its adjacent type in any structure

is palindromic. Say that ξ is blunt if, for any AF [`+1]-atom α, ξ |= α implies
ξ |= α(x`x`). If an (`+1)-tuple has the same last two elements, then its ad-
jacent type in any structure is blunt. Say that ξ is s-hooked (for s satisfying

2 < 2s + 1 < `+1) if, for any AF [`+1]-atom α we have that ξ |= α implies
ξ |= α(x1 · · ·x`+1−sx`−s · · ·x`+1−2s). If an (`+1)-tuple has a proper suffix that
is a non-trivial palindrome of length 2s+1, then its adjacent type in any structure
is s-hooked. Observe the strict inequality 2s+ 1 < `+1 governing the parameter
s in this last definition: if ξ is palindromic (and `+ 1 is odd), we do not say that
ξ is (`/2)-hooked.

Now let ā be an (`−1)-tuple over A and b ∈ A, and suppose A+ |= rσ,c,ξ[āb].
By the construction of A+, there exists a ∈ A such that b is the ξ-witness with

respect to aā, and, moreover, colA
+

[aā] = c. If ξ is palindromic, blunt or s-
hooked for some s (2 < 2s+ 1 < `+1), then the (`+1)-tuple aāb exhibits certain
properties, which we proceed to describe. Consider first the case where `+1 is
odd and ξ is not palindromic, and suppose in addition that A+ |= d`−1[ā]. By the
construction of A+ again, ā is a palindrome, i.e. ā = ã. It follows that a 6= b, since
otherwise, aāb is a palindrome, contradicting the assumption that ξ = atpA[aāb]
is not palindromic. And since b is a witness with respect to aā with a 6= b, the
ordered pair 〈a, b〉 is an edge of the directed graph Gā = Gã, so that by the

construction of A+, we have c = colA
+

[aā] 6= colA
+

[bā] = colA
+

[bã]. Thus we
have shown that A+ |= ψ5,1, where, for (`+1) odd,

ψ5,1 := ∀x`
∧
σ∈St

∧
c∈C

ξ not palindromic∧
ξ∈dom(λ)

(
rλ,c,ξ(x`) ∧ d`−1(x`−1)→ ¬c(x` · · ·x1)

)
,

and for (`+1) even, ψ5,1 := >. We remark that even-length palindromes have im-
mediately repeated letters in the middle, which obviates—as we shall see later—
the need for an analogue of the odd-length case.

Second, consider the case where ξ is not blunt. Here, we do not need to add any
conjuncts to ψ, since the consistency of ξ requires that it contains the inequality
literal x` 6= x`+1. Hence, atpA[āb] contains the inequality literal x`−1 6= x`, which
is all the information we shall require.

Third, consider the case where, for any s in the range 2 < 2s + 1 < `+1, ξ
is not s-hooked. Since ξ = atp[aāb], it follows that aāb has no proper suffix of
length 2s + 1 that is a palindrome, and therefore, āb has no suffix of the same
length that is a palindrome. Thus we have shown that A+ |= ψ5,2, where

ψ5,2 := ∀x`
∧
σ∈St

∧
c∈C

s≤(`−1)/2∧
s=1

ξ not s-hooked∧
ξ∈dom(λ)

(
rλ,c,ξ(x`)→ ¬d2s+1(x`−2s · · ·x`)

)
.

Writing ψ5 := ψ5,1 ∧ ψ5,2 ∧ ψ5,2, we have shown that A+ |= ψ5. This completes
the definition of the formula ψ.

26 BARTOSZ BEDNARCZYK, DAUMANTAS KOJELIS, AND IAN PRATT-HARTMANN

Summarizing the above discussion, and recalling that, by Lemma 7, ϕ |=
acl(ϕ), we have:

Lemma 15. Suppose A |= ϕ. Then we can expand A to a model A+ |= ψ.

Having defined ψ and established Lemma 15, we establish a converse in the
form of the following lemma.

Lemma 16. Suppose A |= ψ. Then we can construct a model B |= ϕ over the
same domain.

Proof. Since ψ ∈ AF`, by Lemma 5 we may take A to be a layered structure
of the height `. Setting A− to be the contraction of A to the signature τ (the
original signature of ϕ), we proceed to elevate A− to a model B |= ϕ (with
the same domain, A) by setting the interpretations of the predicates in τ with
respect to the primitive (`+1)-tuples over A.

Let a be any element of A and ā any (`−1)-tuple over A. By ψ0, aā has a
unique colour, say c = colA[aā], and by ψ2,1, there is a unique σ ∈ St such that
A |= sσ[aā]. Let ζ = atp(σ) be the underlying `-type of σ, and let us fix, for the

moment, any ξ ∈ dom(σ). Thus, ζ = ξ�[1,`]. By ψ2,2, atpA− [aā] = ζ. Moreover, by
ψ2,3, A |= qσ,c[ā], and hence, by the fact that A |= ψ2,4, there exists b ∈ A such

that A |= rσ,c,ξ[āb]. Let η = tl(ξ); it follows from ψ2,5 that atpA− [āb] = η and

colA[bã] = σ(ξ). The intention is that we should set the interpretations of the
predicates in the structure B in such a way that the (`+1)-tuple aāb is assigned
the adjacent type ξ. The various other conjuncts of ψ will ensure that this can
be done consistently.

Suppose on the one hand that the (`+1)-tuple aāb is primitive. Thus, no prefix
or suffix of aāb is a non-trivial palindrome, and aāb contains no immediately
repeated letters. Hence, any defect 〈i, j〉 of aāb satisfies 2 ≤ i < j ≤ `, with
j−i+1 greater than 2 and odd. Letting D now be the set of defects 〈i, j〉 of the
(`−1)-tuple ā (so that D ⊆ Do

`−1), we see that the set of defects of aāb is given

by D+ = {〈i+ 1, j+ 1〉 | 〈i, j〉 ∈ D}. By ψ1, we have that A |= δD[ā]; and by ψ3,
bearing in mind that A |= rσ,c,ξ[āb], we have that ∂ξ is D+-compatible. Lemma 8

thus ensures that that it is meaningful to set itpB
`+1(aāb) = ∂ξ. Moreover, since

atpA− [aā] = ζ, atpA− [āb] = η, and ξ = ζ ∪ η+ ∪ ∂ξ, we have atpB
`+1(aāb) = ξ.

We remark that the adjacent type of the primitive (`+1)-tuple bãa is also set in
this process, but no other primitive (`+1)-tuples have their adjacent types set.

Observe that, since ξ |= β̂, the newly-set adjacent types of aāb and bãa will not
violate β.

Suppose on the other hand that that aāb is not primitive. We show that, in
that case, A already provides a ξ-witnesses with respect to aā, so that there is
nothing to do. Here, we make use of the fact that A |= acl(ϕ)∧ψ5. By Lemma 14,
either b is the last element of aā, or aāb has a suffix that is a non-trivial odd-
length palindrome, or aā is terminal. The case where aā is terminal is easily

dealt with. There exists a k-tuple d̄ and f ∈ ~A`
k such that aā = d̄f for some k

(2 ≤ k < `). Defining, as before, f+ = f ∪ 〈k+1, `+1〉, by acl(ϕ) there exists, for

each i ∈ I, some b′ ∈ A such that A |= γi[(d̄b
′)f

+

], i.e. A |= γi[aāb
′]. In effect,

THE ADJACENT FRAGMENT 27

we are discarding our originally chosen element b, since the required witness is
already present.

Consider next the case where b is the last element of ā. We have already argued

that atpA− [āb] = η = tl(ξ), whence tl(ξ) |= x`−1 = x`, whence ξ |= x` = x`+1.
Thus, ξ is blunt, by consistency of ξ. But in that case, writing ā = a1 · · · a`−1, we
have A− |= ζ[aa1 · · · a`−1] implies A− |= ξ[aa1 · · · a`−1a`−1], that is, A− |= ξ[aāb].
Thus, our chosen element b is already a ξ-witness with respect to aā, without
our having to do anything.

Consider finally the case where aāb is not terminal and has a suffix that
is an odd-length, non-trivial palindrome. Suppose, on the one hand, that the
suffix in question is the whole of aāb—that is, `+1 is odd, and aāb has the
form aa1 · · · a`/2a`/2−1 · · · a1a. Thus, a = b and ā = ã. Hence, aā = bã, whence

colA
−

[bã] = colA
−

[aā] = c. It follows by ψ1 that A |= d`−1[ā], and thence, by ψ5,1

that ξ is palindromic. Thus, atpA−(aa1 · · · a`/2) = ζ�[1,`/2+1] = ξ�[1,`/2+1], whence

atpA−(aa1 · · · a`/2a`/2−1 · · · a1a) = ξ. Again, our chosen element b = a is already
a ξ-witness with respect to aā.

On the other hand, suppose that aāb has a proper suffix that is a non-trivial,
odd-length palindrome. Thus, aāb is of the form aa1 · · · a`−sa`−(s+1) · · · a`−2s (for
some s with 2 < 2s+ 1 ≤ `). But by ψ1, A |= ds[a`−2s · · · a`−sa`−(s+1) · · · a`−2s].
Hence, by ψ5,2, we have that ξ is s-hooked. As in the previous case, it follows
that b = a(`−2s) is already a ξ-witness with respect to aā. This completes the
process of finding a ξ-witness with respect to aā.

Keeping a and ā fixed for the moment, carry out the above assignments for
all ξ ∈ dom(σ), choosing, for each such ξ, a ξ-witness bξ with respect to aā. It
follows from ψ2,7 that the various elements bξ must be distinct, so no clashes
can arise. This completes the process of finding all the required witnesses with
respect to aā. From the properties of the elements of St, we see that, however B
is completed, the `-tuple aā will satisfy ∃x`+1 γi in B for every i ∈ I. Moreover,
each of the newly-fixed primitive (`+1)-tuples (and their reversals) satisfies β.

Now vary a and ā freely. We must show that, for a′ and ā′ with aā 6= a′ā′, the
chosen witnesses b and b′ can never lead to a clash. Suppose then that some m-
tuple d̄ is assigned (or not) to the extension of an m-ary predicate p when defining
the adjacent (`+1)-types of both of the primitive tuples aāb and a′ā′b′. Then d̄
is generated by both aāb and a′ā′b′, and there exist adjacent (`+1)-types ξ and
ξ′ such that b is selected as the ξ-witness with respect to aā and b′ is selected as
the ξ-witness with respect to a′ā′. Since, by assumption, aā 6= a′ā′, Theorem 2
implies aāb is the reversal of a′ā′b′, so that a′ = b, b′ = a and ā′ = ã; henceforth,
we shall write bã in preference to a′ā′. It suffices to show that ξ′ = ξ−1, because
in that case there can be no clash in the assignment of d̄ to the extension of the
predicate p.

Suppose, for contradiction that ξ′ 6= ξ−1. By ψ2,1, let σ and σ′ be the unique
elements of St such that A |= sσ[aā] and A |= sσ′ [bã]; and by ψ0, let c and c′ be
the unique elements of C such that A |= c[aā] and A |= c′[bã]. Since b was chosen
as a ξ-witness for aā, we have A |= rσ,c,ξ[āb], and similarly A |= rσ′,c′,ξ′ [ãa].
Recalling that A |= rσ,c,ξ[āb] and ξ′ 6= ξ−1, we have by ψ2,6 that σ′(ξ′) 6= c.

28 BARTOSZ BEDNARCZYK, DAUMANTAS KOJELIS, AND IAN PRATT-HARTMANN

Moreover, since A |= rσ′,c′,ξ′ [ãa], by ψ2,5 we have A |= (σ′(ξ′))[aā], contradicting
A |= c[aā]. Thus ξ′ = ξ−1 as required.

This completes the process of finding witnesses for all `-tuples from A, in
the course of which we have partially defined a layered structure B, such that,
however it is completed, B |= ∀x`∃x`+1 γi for every i ∈ I. Moreover, each of the
newly-fixed primitive (`+1)-tuples (and their reversals) satisfies β.

All that remains is to complete the construction of B by assigning adjacent
types to all primitive (`+1)-tuples whose adjacent types have not yet been
fixed, without violating the condition ∀x`+1 β. Suppose, then c̄ = aāb is such
a primitive (`+1)-tuple. By primitiveness, any defect 〈i, j〉 of c̄ is such that
2 < i < j ≤ ` and j−i+1 is odd. Thus, writing D for the set of defects of
ā, we have that D ⊆ Do

`−1, and D+ is exactly the defect set of c̄. By ψ1 we

have A |= δD[ā] and, writing ζ = atpA− [aā], we have that A |= pζ [ā] by ψ2,0.

And writing η = atpA− [āb], by ψ4 there exists an adjacent (`+1)-type ξ such

that ξ |= ζ ∧ β̂ ∧ η+ and ∂ξ is D+-compatible. By the second statement of

Lemma 8, then, we can consistently assign itpB[c̄] = ∂ξ. Since ζ = atpA− [aā],

η = atpA− [āb], and ξ = ζ ∪ η+ ∪ ∂ξ, we have atpB[c̄] = ξ. Additionally, since

ξ |= β̂, both c̄ and c̃ satisfy the universal requirements β in B. Repeated applica-
tions of this procedure result in all primitive (`+1)-tuples having their adjacent
types defined in such a way that B |= ∀x`+1 β. Hence B |= ϕ. a

Taken together, Lemmas 15 and 16 reduce the satisfiability problem for AF`+1

to that for AF` (` ≥ 2), though with exponential blow-up. We thus obtain the
decidability of satisfiability for the whole of AF . More precisely:

Theorem 1. If ϕ is a satisfiable AF`+1-formula, with ` ≥ 1, then ϕ is sat-
isfied in a structure of size at most t(`, ||ϕ||O(1)). Hence the satisfiability problem

for AFk is in (k − 1)-NExpTime for all k ≥ 2, and the adjacent fragment is
Tower-complete.

Proof. Fix ` ≥ 2 and suppose ϕ is a satisfiable AF`+1-formula over a sig-
nature τ . By Lemma 1, we may assume that ϕ is in normal form. Writing ϕ`+1

for ϕ, let ϕ` now denote the formula ψ ··= acl(ϕ) ∧ ψ0 ∧ · · · ∧ ψ5 as defined
above. Repeating this process, we obtain a sequence of formulas ϕ`+1, . . . , ϕ2.
By Lemma 15, ϕ2 is then also satisfiable. For all k, (2 ≤ k ≤ `+ 1), let ϕk have
signature τk, and for k ≤ `, consider the construction of ϕk from ϕk+1. Since∑k+1
k′=1 |A

k+1
k′ | is bounded by a constant, we see that ||acl(ϕ)k+1|| is O(||ϕk+1||).

In regard to ψ0, . . . , ψ5 we may, when considering the adjacent (k+1)-types over
τk+1, disregard all adjacent atoms whose argument sequence is not a substitution
instance of some argument sequence xgk+1 occurring in an atom of ϕk+1, as these
cannot affect the evaluation of ϕk+1. And since k ≤ `, the number of functions
from xk+1 to itself is again bounded by a constant, and the number of adja-
cent (k+1)-atoms over τk+1 that impact the satisfaction of ϕk+1 is O(||ϕk+1||).
Thus, the number of adjacent (k+1)-types over τk+1 that we need to consider is
2O(||ϕk+1||). (This cardinality bounds the number of predicates pζ as featured in
ψ2,0 and ψ4). Keeping the number of (k+1)-types we need to consider in mind
recall that a star is a partial function mapping (k+1)-types to a set of colours
C. Pick any such star σ and let m be the cardinality of dom(σ). Clearly, m is

THE ADJACENT FRAGMENT 29

at most ||ϕk+1|| as no tuple needs more witnesses than there are existential re-
quirements. On the other hand, |C| is also bounded by the number of existential
requirements in ϕk+1 and is at most 2(||ϕk+1||2 + ||ϕk+1||) + 1. Noting that there
are at most |C|m functions over a domain of size m and image C, we have that

the total number of stars does not exceed
∑||ϕk+1||
m=0 (|C|m · (2O(||ϕk+1||))m) which is

clearly bounded by 2||ϕk+1||O(1)

. Taking these considerations together and noting
that the set of defects Do

k−1 is bounded by the constant (k − 1)2, we have that

each of the sentences ψ0, . . . , ψ5 contain at most 2||ϕk+1||O(1)

conjuncts. Some care
is needed when calculating the sizes of these conjuncts themselves, as they fea-
ture disjunctions over stars as in ψ2,6 or that over tailing ends of D+-compatible

(k+1)-types obtained by processing ζ ∧ β̂ for some set of defects D ⊆ Do
k−1

as in ψ4. However, in the first case, the disjunction rages over a maximum of

2||ϕk+1||O(1)

predicates sσ′ , and in the second case the formulas are, in effect, in
disjunctive normal form over atoms contained in ϕk+1, and hence have cardi-

nality 2O(||ϕk+1||). Hence, ||ϕk|| is 2||ϕk+1||O(1)

. By an easy induction, ||ϕ2|| is then
t(`− 1, ||ϕ`+1||O(1)).

Since ϕ2 is a sentence in the two-variable fragment of first-order logic, we have,
by [16], that ϕ2 has a model A2 of cardinality 2O(||ϕ2||). Moreover, by Lemma 16,
each of the formulas ϕk+1 (2 ≤ k ≤ `) have a model over the same domain as
A2. Since |τk| ≥ |τk+1|, we conclude that the expansion of A2 (and subsequent
models) into models A3, . . . ,A`+1 of ϕ3, . . . , ϕ`+1 remains bounded by 2O(||ϕ2||)

and thus is of size t(`, ||ϕ`+1||O(1)) as required. a
We note that one can do better if the equality predicate is disallowed. As shown

in [8, Lemma 4.6], AF3-sentences have a model exponential size in regard to the
input. Thus, by reducing variables of ϕ`+1 as in Theorem 1 until an equisatisfiable
AF3-sentence ϕ3 is reached, we have that ϕ3 (and thus also ϕ`+1) has a model
of size t(`− 1, ||ϕ`+1||O(1)) thus establishing the following:

Theorem 2. The satisfiability problem for the sub-fragment of AFk without
equality is in (k−2)-NExpTime for all k ≥ 3.

It may not have escaped the reader’s attention that the equality predicate
barely features in the proof of Theorem 1. This is because the reduction from
the satisfiability problem for AF`+1 to that for AF` effected in Lemmas 15
and 16 does not interfere with predicates of arity less than (`+1) ≥ 3, and does
not interfere with the domain of quantification. The special status of the equality
predicate is thus, in a sense, pushed back into the two-variable fragment.

This observation suggests a generalization. Recent decades have witnessed
concerted attempts to investigate the decidability of the satisfiability problem
for FO2 over various classes of structures, where certain distinguished predicates
are required to be interpreted as relations subject to various restrictions, e.g. as
linear orders [25, 37], trees [13, 6], equivalences [25, 23] and more (see [24] for a
survey). If such an extension of FO2 is decidable for (finite) satisfiability, then
the reduction outlined in this section applies to the corresponding extension of
AF—it being understood that the distinguished predicates in question have arity
at most 2. On the other hand, if the extension of FO2 is undecidable for (finite)

30 BARTOSZ BEDNARCZYK, DAUMANTAS KOJELIS, AND IAN PRATT-HARTMANN

satisfiability, then—anticipating Theorem 4, which states that AF subsumes
FO2—this undecidability result likewise immediately transfers to AF .

§6. The Guarded Subfragment. We next shift our attention to the guarded
adjacent fragment, denoted GA, defined as the intersection of AF with the
guarded fragment, GF [1, Sec. 4.1]. In GF , quantification is relativized by atoms,
i.e. all quantification takes the form ∀x̄(α→ ψ) and ∃x̄(α∧ψ), where α (a guard)
is an atom featuring all the variables in x̄ and all the free variables of ψ. The
satisfiability problem for GF is 2ExpTime-complete [15, Thm. 4.4]. We show
that the satisfiability problem for GA remains 2ExpTime-complete, and thus
is as hard as for full GF . This contrasts with the ExpTime-completeness of
the k-variable guarded fragment GFk [15, Cor. 4.6] and of the guarded forward
fragment [5, Thm. 4]. Our proof follows the same reduction strategy as the
2ExpTime-hardness proof for GF by E. Grädel [15, Thm. 4.4]. Because we are
working in the guarded adjacent fragment, however, Grädel’s reduction is not
directly available, and some new techniques are required. To aid readability, we
employ the variable names w, x, y, z, . . . in adjacent formulas, rather than the of-
ficial x1, x2, x3, x4, The reader may easily check that all formulas in question
are indeed in AF modulo variable renaming.

6.1. Generating Words. We start with a combinatorial exercise concerning
the generation of words by the recurrent application of certain adjacent functions.
Let m ∈ N and consider the adjacent functions λ1, λ2, λ3 : [1,m+ 2]→ [1,m+ 1]
defined by the following courses of values (λi(1) · · · λi(m+ 2)):

λ1 :
(
1 2 2 3 4 . . . m+1

)
λ2 :

(
1 2 1 2 3 . . . m

)
λ3 :

(
1 2 3 3 4 . . . m+1

)
.

Using the imagery of Sec. 3, we can think of these functions as describing strolls
on a word of length (m+1), in each case starting at the left-most position, and
proceeding generally rightwards: λ1 pauses at the second time step before contin-
uing; λ2 returns to the beginning after the second time step, but then resumes
its rightward journey (without quite reaching the end); and λ3 pauses at the
third time step before continuing.

We show that repeated application of these functions to the bit-string 011m

yields the whole of the (exponentially large) language 01{0, 1}m.

Lemma 17. Let W0 ⊆ {0, 1}∗ contain 011m and Wi ··= Wi−1 ∪{w̄λ1 , w̄λ2 , w̄λ3 |
w̄ ∈Wi−1}. Setting W ··=

⋃
i≥0Wi, we have 01{0, 1}m ⊆W .

Proof. We establish by induction on i ∈ [0,m] that, for any word c̄ ∈ {0, 1}i,
the word 01c̄1m−i is in W ; the case i = m then yields the statement of the
lemma. The base case, i = 0 follows from the assumption that W0 contains 011m.
Suppose now i > 0. We show that, for any x ∈ {0, 1}, the word ū = 01xc̄1m−i−1

is in W . Letting c1 be the first character of c̄, and writing c̄ = c1d̄, it follows by
inductive hypothesis that the words v̄ = 01c̄1m−i−11 and w̄ = 01d̄1m−i−111 are
in W . Consider cases: (i) if x = 1 then ū = v̄λ1 , (ii) if both x = 0 and c1 = 0

then ū = v̄λ3 , and otherwise, (iii) x = 0, c1 = 1 and ū = w̄λ2 . Thus ū ∈W . a

THE ADJACENT FRAGMENT 31

We now apply Lemma 17 to GA. For m ≥ 0, let Gm be an (m+2)-ary predi-

cate. We proceed to write, for any binary predicate p, a GA-sentence
−−−→
allSeqm(p)

ensuring that, if p is satisfied by a pair of objects, say ab, then Gm is satisfied
by any (m + 2)-tuple abw̄ for w̄ ∈ {a, b}m. By Lemma 17, it suffices so take
−−−→
allSeqm(p) to be

∀xy
(
p(xy)→ Gm(xy y · · · y︸ ︷︷ ︸

m

)
)
∧
∧

i∈[1,3]

∀um+2

(
Gm(um+2)→ Gm(uλim+2)

)
.

Thus, if A |= −−−→allSeqm(p), and A |= p[ab], we may freely quantify over words of
length (m+2) over the alphabet {a, b} as long as they have the prefix ab, since
Gm can always be used as a guard.

We shall require a ‘mirrored’ version of the above device, this time involving a
pair of 2-element alphabets and a pair of words of length m over these alphabets.
For m ≥ 0, let Fm be a (2m + 4)-ary predicate. We proceed to write, for any

quaternary predicate r, a GA-sentence
←−−→
allSeqm(r) ensuring that, if r is satisfied

by a quartet of objects bacd, then, for any m-tuple ū over the alphabet {a, b},
and any m-tuple v̄ over the alphabet {c, d}, the predicate Fm is satisfied by
ūbacdv̄. Let λ0 denote the identity function on [1,m+ 2], and take λ1, λ2, λ3 as
defined above. In addition, for any word w̄, we write w̄R for the reversal of w̄.
(Thus, w̄R = w̃; but the new notation is more readable in what follows.) By two

applications of Lemma 17, it suffices so take
←−−→
allSeqm(r) to be:

∀yxzt
(
r(yxzt)→ Fm(y . . . y︸ ︷︷ ︸

m

yxzt t . . . t︸ ︷︷ ︸
m

)
)
∧

∧
i,j∈[0,3]

∀uR
m+2vm+2

(
Fm(uR

m+2vm+2)→ Fm((uλim+2)R v
λj
m+2)

)
.

Again, if A |=←−−→allSeqm(r), and A |= r[bacd], we may freely quantify over words of
the language {a, b}mbacd{c, d}m in GA, since Fm can always be used as a guard.
Note that the variables of um+2 = u1 · · ·um+2 are quantified above in ‘reverse

order’. This ensures, after renaming, the adjacency of the formula
←−−→
allSeqm(r).

6.2. ATMs. An alternating Turing machine (ATM) [12] is a tuple
M ··= 〈Q,Σ, q0,∆〉, where Q is a non-empty finite set (the states of M), Σ
a non-empty finite alphabet, q0 an element of Q (the initial state), and ∆ a set
transitions δ, defined presently. We imagine M to operate on an 1-way infinite
tape by means of a read-write head as usual, but we take Q to be partitioned into
the sets Q∃ (existential states), Q∀ (universal states) and {qa, qr} (the accepting
and rejecting state, respectively). Writing Σ′ for the alphabet Σ augmented with
the blank cell symbol ‘xy’, we define a transition δ ∈ ∆ to be a relation

δ ∈ Q× Σ′ ×Q× Σ′ × {−1, 0, 1}.

The transition δ = 〈q, s, q′, s′, k′〉 is enabled when the machine is in state q and
the read-write head is positioned over a tape square containing the letter s. On
execution of δ, the current tape square is overwritten with s′, the head is moved
by k′ squares, and the current state is updated to q′. We denote the set of δ ∈ ∆
enabled by state q and letter s by ∆(q, s).

32 BARTOSZ BEDNARCZYK, DAUMANTAS KOJELIS, AND IAN PRATT-HARTMANN

A configuration C of M is a triple 〈q, ω, h〉, where q ∈ Q, ω is an infinite
word over Σ′ and h a non-negative integer. We read the triple C as stating that
the machine is in state q, the tape contents are given by ω, and the head is
situated over the hth tape square (counting from 0). If w̄0 is a finite word over Σ
representing the input to the machine, the initial configuration is 〈q0, w̄0xy∗, 0〉,
where xy∗ represents an infinite series of blanks. The successors of C are defined
in the usual way via transitions in ∆. A halting configuration is one which is in
state qa or qr. We assume that halting configurations have no enabled transitions,
and non-halting configurations always have at least one enabled transition.

We shall be interested in the case where every computation ofM (understood
as a sequence of enabled transitions starting in the initial configuration) is of
finite length, so that there is a function f such that, whenM runs on input w0,
the read-write head never reaches positions beyond f(|w0|)−1. In that case, we
may as well take a configuration to have the form 〈q0, w̄, h〉 where w̄ is a (finite)
word over Σ′ of length f(|w0|)−1 and h is an integer in the range [0, f(|w0|)−1].
The notions of acceptance and rejection may then be defined as follows: a halting
configuration is accepting if it is in state qa; an existential configuration is accept-
ing if it has an accepting successor; a universal configuration is accepting if all
its successors are accepting; a configuration which is not accepting is rejecting.
We take M to accept w̄0 if the initial configuration is accepting.

We witness acceptance of an input w̄0 byM using an acceptance tree T . This
is a finite tree with vertices labelled by (accepting) configurations. The root is
labelled by an initial configuration; and for any vertex labelled with a particu-
lar configuration, its children are labelled with the results of executing enabled
transitions in that configuration. Vertices labelled with existential configurations
have at least one child corresponding to an enabled transition; those labelled with
universal configurations have a child corresponding to every enabled transition;
the leaves of the tree are labelled with accepting configurations.

We are interested in the case where the function f bounding the space required
by M is of the form f(n) = 2n. Thus, M accesses at most 2|w̄0| tape squares
in the course of any computation on input w̄0. We now fix such a machine M,
and show how, for a given input w̄0, we can manufacture a GA-formula ϕM,w̄0

satisfiable if and only if M accepts w̄0. The computation of ϕM,w̄0
runs in

polynomial time (in fact, in logarithmic space) as a function of |w̄0|. Since there
are problems in ASpace(2n) that are complete for AExpSpace, we can thereby
reduce any problem in AExpSpace to the the satisfiability problem for GA.
Hence the latter problem is AExpSpace-hard. Using the well-known equation
AExpSpace = 2ExpTime, this achieves our goal.

6.3. Encoding numbers. In the sequel, we will consider structures A inter-
preting a unary predicate O. Whenever A |= α[ab], where α(xy) is the formula
¬O(x) ∧O(y), we say that a and b act as zero and unit bits (O for “One”), and
for any word ū over {a, b}, we write valA(ū) to denote the integer represented
by ū, considered as a bit-string, with a standing for 0 and b for 1 (most signifi-
cant bit first). Notice that there may be other elements, say c and d, such that
A |= α[cd], in which case may write valA(w̄) for the integer represented by any
word w̄ over {c, d}. Clearly, the GA-formula eq(un,vn) ··=

∧n
i=1O(ui)↔ O(vi)

THE ADJACENT FRAGMENT 33

satisfies A |= eq[c̄, d̄] if and only if valA(c̄) = valA(d̄). Other arithmetical prop-
erties can be expressed similarly. In particular, for each k ∈ {−1,+1}, we may
easily write a GA-formula eq(un,vn+k) satisfying the following property:

A |= eq[c̄, d̄+k] iff valA(c̄) = valA(d̄) + k.

The details are routine (see [8, p. 15]). Observe that the formula eq(x̄, ȳ) is not
atomic! Indeed, all the predicates appearing in this formula are unary; thus, this
formula may appear in adjacent formulas whatever the order of quantification
among the variables x̄ and ȳ. Similar remarks apply to eq(x̄, ȳ+k).

6.4. Encoding configurations. We proceed to describe a method of en-
coding, within a certain class of structures, configurations of an ATM M =
〈Q,Σ, q0,∆〉 that never accesses more than f(n) = 2n tape squares on an input
of size n. Recall that we agreed to regard configurations in this case as triples
〈q, w̄, h〉, where q ∈ Q, w̄ is a word over Σ′ of length N = 2n, and 0 ≤ h < N . In
doing so, we take the various states q ∈ Q to be binary predicates: a configuration
is then represented by an ordered pair of (distinct) elements ab satisfying any of
these predicates. If A |= q[ab], we take it that the represented configuration has
state q. Since we shall want words over the alphabet {a, b} to represent integers,
we shall insist that, in this case, ab satisfies the formula α defined in Sec. 6.3.
This we ensure by writing the GA-sentence

∧
q∈Q ∀xy (q(xy)→ ¬O(x) ∧O(y)).

(Thus, we think of a as a 0 and b as a 1.) To represent further aspects of the
configuration ab, we treat each symbol s ∈ Σ′ as an n-ary predicate, and addi-
tionally employ an n-ary predicate H. Specifically, for any w̄ ∈ {a, b}n, we read
A |= H[w̄] as “the head of the configuration represented by ab is at position
valA(w̄)”, and we read A |= s[w̄] as “the tape square valA(w̄) of the configura-
tion represented by ab contains the symbol s”. Of course, these interpretations
are only meaningful if:

1. there is at most one string in {a, b}n satisfying H and thus encoding the
head position;

2. each bit-string over {a, b}n satisfies at most one predicate s ∈ Σ′, thus
ensuring that a tape cell contains at most one symbol; and

3. ab satisfies at most one q ∈ Q, thus ensuring that the configuration is in at
most one state.

For any state q ∈ Q we construct a GA-formula ψq ··= ψq,1∧ψq,2∧ψq,3 enforcing
these conditions for any configuration whose state is q. The first conjunct, ψq,1,
may be given as follows:

ψq,1 ··=
−−−→
allSeq2n(q) ∧ ∀xyunvn

(
G2n(xyunvn)→(

(H(un) ∧H(vn))→ eq(un,vn)
))
.

Note that this sentence is (adjacent and) guarded, with the atom G2n(xyunvn)

acting as a guard. Of course, thanks to the conjunct
−−−→
allSeq2n(q), this guard is,

as it were, semantically inert, since, assuming that q is satisfied by ab, G2n is
satisfied by every word of ab{a, b}2n. The remaining conjuncts ψq,2 and ψq,3 can
be easily formulated.

34 BARTOSZ BEDNARCZYK, DAUMANTAS KOJELIS, AND IAN PRATT-HARTMANN

6.5. Encoding instances of transitions. For each transition δ ∈ ∆ we
employ a quaternary predicate Eδ and read A |= Eδ[bacd] as “the configuration
encoded by ab enables a transition δ thus producing the configuration encoded
by cd”. (Do note the reversal of ab in Eδ[bacd]!) We call bacd a δ-transition in-
stance in A with ab corresponding to the predecessor configuration and cd to the
successor configuration. To make sure that each δ-transition instance is indeed
a result of transitioning via δ = 〈q, s, q′, s′, k′〉 we write the following in GA:

1. the successor configuration is in state q′;
2. the head of the successor configuration is moved by k′ relative to the pre-

decessor configurations head;
3. the h-th tape cell on the successor configuration is occupied by s′, where h

is the position of the predecessor’s head;
4. all tape cells that the predecessor’s head does not point to are inherited by

the successor.

For any transition δ ∈ ∆, we construct a GA-formula ψδ ··= ψδ,1 ∧ · · · ∧ ψδ,4
enforcing these conditions. We write ψδ,4 in detail as an example; the preceding
three conjuncts are handled similarly or more easily:

ψδ,4 ··=
←−−→
allSeqn(Eδ) ∧ ∀unyxztvn

(
Fn(unyxztvn)→((

Eδ(yxzt) ∧ ¬H(un) ∧ eq(un,vn)
)
→
∧
s∈Σ

(
sa(un)↔ sa(vn)

)))
.

Suppose now that A |= ψδ, and moreover, that A |= Eδ[bacd] for some bacd ∈ A4,

where ab and cd both encode configurations. By
←−−→
allSeqn(Eδ), we have that A |=

Fn[ūbacdv̄] for all ū ∈ {a, b}n and v̄ ∈ {c, d}n. By picking any 0 ≤ i < 2n that
is not the head position of the configuration encoded by ab, and ū ∈ {a, b}n,
v̄ ∈ {c, d}n with valA(ū) = valA(v̄) = i, we are guaranteed that, for each
symbol s ∈ Σ, A |= s[ū] if and only if A |= s[v̄].

6.6. Encoding acceptance trees. The last step in our reduction is to
write a formula whose models contain configurations arranged as an accep-
tance tree witnessing the fact that M accepts some input w0 = s1 · · · sn. Re-
call that, the root of this tree is labelled with the initial configuration, namely
C = 〈q0, w̄0xy`, 0〉, where ` = 2n − |w̄0|. We ensure the existence of such a root
configuration in a structure with the following GA-sentence:

−−−→
allSeqn(q0) ∧ ∃xy

(
q0(xy) ∧H(“0”) ∧

i<|w̄0|∧
i=0

si+1(“i”) ∧

∀ū
(
G(xyū)→

(
(

i<|w̄0|∧
i=0

¬eq(“i”, ū))→ xy(ū)
)))

,

where “i” is the binary encoding of i using x as a zero bit and y as a unit bit.
We ensure the existence of successor configurations required by existential con-
figurations as follows. Suppose that q is an existential state, and s a symbol. The
following sentence ensures that any configuration in state q ∈ Q∃ with the head

THE ADJACENT FRAGMENT 35

reading symbol s ∈ Σ′ has a child in the acceptance tree:

−−−→
allSeqn(q) ∧ ∀ũnyx

(
Gn(xyun)→(

(q(xy) ∧H(un) ∧ s(un))→
∨

δ∈∆(q,s)

∃ztEδ(yxzt)
))
.

In case q is universal, the disjunction over ∆(q, s) is replaced by a conjunction.
Lastly, we write the sentence ¬∃xy qr(xy) to ensure that a rejecting configuration
is never encoded by any pair of elements in any structure.

For any input string w0, let ϕM,w̄0
be the conjunction of all the GA-sentences

given above. We remark that ϕM,w̄0
does not feature the equality predicate.

Bearing in mind that M is guaranteed to terminate on w̄0 in a finite number of
steps, accessing no more than 2|w0| tape squares, we see that any model of ϕM,w̄0

embeds an acceptance tree forM on input w̄0. Conversely, any acceptance trees
for M on input w̄0 can be expanded to a model of ϕM,w̄0

by interpreting the
relevant predicates as suggested above. We conclude:

Theorem 3. The finite and general satisfiability problem for the (equality-
free) guarded adjacent fragment of first-order logic is 2ExpTime-hard.

§7. Extending the adjacent fragment. In this final section, we consider
the prospects for extending the logic AF within the family of argument-sequence
fragments. As a preliminary, we compare the expressive power of AF to that of
the two-variable fragment of first-order logic.

Denote by FO2 the two-variable fragment of first-order logic, namely, the set of
first-order formulas over a purely relational signature (i.e. no individual constants
or function symbols) in which the only logical variables occurring are x1 and x2.
We allow the equality predicate in FO2.

Theorem 4. Every FO2-formula is logically equivalent to an AF-formula.
Conversely, every AF-sentence featuring predicates of arity at most two is logi-
cally equivalent to an FO2-sentence.

Proof. Let Q stand for either of the quantifiers ∀ or ∃. For the first statement
of the theorem, suppose that ϕ is an FO2-formula. Let k be the highest index
of any free variable of ϕ, and k = 0 if ϕ is a sentence. (Thus, 0 ≤ k ≤ 2.) We

claim that ϕ is logically equivalent to an AF [k]-formula, proceeding by structural
induction on ϕ. For the base case, ϕ is an atom of FO2, and therefore certainly in

AF [k]. The case of Boolean operators is routine (bearing in mind that AF [0] ⊆
AF [1] ⊆ AF [2]). Now consider the case where ϕ has the form Qx1 ψ. If x1 does
not occur free in ψ, then ϕ and ψ are logically equivalent, and the result follows
immediately by inductive hypothesis. If x1 does occur free in ψ, but x2 does not,

then, by inductive hypothesis, let ψ′ ∈ AF [1] be logically equivalent to ψ. Then

ϕ′ = Qx1 ψ
′ ∈ AF [0] is logically equivalent to ϕ as required. Otherwise, both

x1 and x2 occur free in ψ: let ϕ∗ be the result of transposing the variables x1

and x2 everywhere in ϕ, and similarly for ψ. Thus ϕ is satisfied in a structure
A under an assignment in which x2 ← a if and only if ϕ∗ is satisfied in A under
an assignment in which x1 ← a. Moreover, ϕ∗ = Qx2 ψ

∗, with x2 free in ψ∗. By

36 BARTOSZ BEDNARCZYK, DAUMANTAS KOJELIS, AND IAN PRATT-HARTMANN

inductive hypothesis, ψ∗ is equivalent to a formula ψ′ ∈ AF [2], and hence ϕ∗ is

equivalent to Qx2ψ
′ ∈ AF [1]. Now let ϕ′ ∈ AF [2] be the result of incrementing

the indices of all variables (free or bound) in Qx2ψ
′. Thus ϕ′ is satisfied in A

under an assignment in which x2 ← a if and only if ϕ∗ is satisfied in A under
any assignment in which x1 ← a. That is to say, ϕ′ is logically equivalent to
ϕ as required. The remaining case is where ϕ is of the form Qx2ψ. If x2 does
not occur free in ψ, then ϕ and ψ are logically equivalent, and the result follows
immediately by inductive hypothesis. If x1 does not occur free in ϕ (i.e. ϕ is a
sentence), then ϕ is logically equivalent to ϕ∗ = Qx1ψ

∗, and by the previous case,

ϕ∗ is equivalent to a formula of AF [0]. Otherwise, if both x1 and x2 occur free

in ψ, by inductive hypothesis, ψ is logically equivalent to a formula ψ′ ∈ AF [2],

whence ϕ is logically equivalent to Qx2 ψ
′ ∈ AF [1]. Since x1 is free in ϕ, this is

what is required, completing the induction.
Turning to the second statement of the theorem, denote by FO2∗ the frag-

ment of first-order logic consisting of those formulas with the property that no
sub-formula contains more than two free variables. A simple variable re-naming
procedure shows that any sentence of FO2∗ is logically equivalent to a sentence
of FO2. We prove the following claim: if ϕ is a formula of AFk featuring predi-
cates of arity at most 2, then there exists a formula ϕ′ such that: (i) ϕ and ϕ′

have the same free variables and are logically equivalent; and (ii) ϕ′ is a Boolean

combination of atomic AF [k]-formulas and FO2∗-formulas having at most one
free variable. Since every sentence of AF is (by adding vacuous quantification if

necessary) an AF [0]-formula, and since any FO2∗-sentence is logically equivalent
to an FO2-sentence, putting k = 0 yields the desired result. Observe that, since
all predicates have arity at most 2, atomic formulas can contain at most two
variables; and since ϕ is in AF , any two distinct free variables occurring in an
atomic formula must have indices differing by exactly one. To avoid special cases
in the following proof, we assume that x0 is a variable, though this variable will
never actually appear in any formulas. We prove the claim by structural induc-
tion on ϕ. If ϕ is atomic, the claim is immediate. Likewise, if ϕ is ¬ψ or ψ1 ◦ψ2,
where ◦ is a Boolean connective, it follows immediately by inductive hypothesis.

Suppose then ϕ has the form ∀xk′ψ. By the formation rules for AF , we have

ψ ∈ AF [k′]. Let ψ′ be the formula guaranteed by the inductive hypothesis applied
to ψ. Using standard Boolean identities, we may re-write the Boolean combina-
tion ψ′ in conjunctive normal form, say as χ := χ1 ∧ · · · ∧ χ`, where each χi is

a disjunction, say θi,1 ∨ · · · ∨ θi,mi , and each θi,j is either a literal in AF [k′] or

an FO2∗-formula having at most one free variable. Thus, ϕ is logically equivalent
to the conjunction ∀xk′ χ1 ∧ · · · ∧ ∀xk′ χ`. Fixing one of these conjuncts, say
∀xk′ χi, consider the various disjuncts of χi. Let γi be the disjunction of those
disjuncts θi,j in which xk′ does not occur free, and let let δi be the disjunction
of the rest. Thus, ∀xk′χi is logically equivalent to γi ∨ ∀xk′δi. Clearly, γi is a

Boolean combination of atomic AF [k′]-formulas and FO2∗-formulas with at most
one free variable. Moreover, the free variables of γi are confined to xk, since the
free variables of ϕ are are confined to xk as well. On the other hand, if θi,j occurs
in δi, then either its free variables are included in {xk′}, or it is a literal with
free variables exactly {xk′−1, xk′}. Hence, ∀xk′δi is an FO2∗-formula with free

THE ADJACENT FRAGMENT 37

variables included in {xk′−1}. Moreover, if xk′−1 actually occurs free in θi,j , we
must have k′−1 ≤ k, since the free variables of ϕ are confined to xk. Thus, χ
and hence ϕ, is logically equivalent to a Boolean combination of formulas of the
required forms.

Suppose finally that ϕ has the form ∃xk′ψ. Then we proceed as in the previous
case, but use disjunctive normal form rather than conjunctive normal form.

This completes the induction, and hence the proof. a
Now let us return to the question of extending the adjacent fragment. The

adjacent fragment is defined by restricting the permitted argument sequences
appearing in atoms. More precisely, within the régime of index-normal formulas,
we insist that, in contexts where the variable xk is available for quantification, all

atoms have the form p(xfk), where p is an m-ary predicate, and f : [1,m]→ [1, k]
is an adjacent function. It is natural to ask whether the adjacency restriction
might be relaxed without compromising the decidability of satisfiability. As we
now show, the answer must be no.

Let f : [1,m]→ [1, k] be a non-adjacent function, with m, k ≥ 2: that is, there

is some j (1 ≤ j < m) for which |f(j + 1) − f(j)| ≥ 2. Denote by AFf the

extension of AF obtained by allowing atoms of the form p(xfk) in clause (1) of

the definition of AF [k] on page 4. We show that AFf is expressive enough to
state that a given binary relation is transitive.

Lemma 18. Let f : [1,m]→ [1, k] be a non-adjacent function, T a binary pred-

icate, and Q an m-ary predicate. There exists a formula ϕT of AFf , such that:
(i) if A |= ϕT then TA is transitive, and (ii) any structure A interpreting T as a
transitive relation, but not interpreting Q, can be expanded to a model of ϕT .

Proof. Since f is non-adjacent, fix an index j ∈ [1,m−1] for which |f(j+1)−
f(j)| ≥ 2. We may assume without loss of generality that f(j+1) > f(j), as the
proof for the other case is obtained by swapping all occurrences of j and j+1.
Notice that, in this case, we must have f(j) < f(j+1)−1 and hence f(j) < k−1.
Define ϕT ··= ∀xm ϕ1

T ∧ ∀xk ϕ2
T , where

ϕ1
T
··= (Q(xm)→ T (xj , xj+1))

ϕ2
T
··=
(
T (xf(j), xf(j)+1) ∧ T (xf(j)+1, xf(j)+2) ∧

f(j+1)−1∧
i=f(j)+2

xi = xi+1

)
→ Q(xfk).

To establish (i), we take any A |= ϕT and any elements a, b, c of A with (a, b) ∈ TA

and (b, c) ∈ TA. We must show that (a, c) ∈ TA. Let d̄ = d1 · · · dk be a tuple
with df(j) = a, df(j)+1 = b, and di = c for all i except f(j) and f(j)+1. Thus,
A |= T [df(j), df(j)+1], A |= T [df(j)+1, df(j)+2], and df(j)+2 = · · · = df(j+1).

Since A |= ϕ2
T [d̄], we have A |= Q[d̄f]. But the jth position of d̄f is occupied

by df(j) = a, and the (j+1)th position is occupied by df(j+1) = c; and since

A |= ϕ1
T [d̄f], we have (a, c) ∈ TA, as required.

To establish (ii), suppose A interprets T as a transitive relation. We expand A
to A+ by fixing the interpretation of Q to be the set of all m-tuples ā such that

38 BARTOSZ BEDNARCZYK, DAUMANTAS KOJELIS, AND IAN PRATT-HARTMANN

(aj , aj+1) ∈ TA. It is immediate that A+ |= ∀xm ϕ1
T . Now take any k-tuple c̄

satisfying the antecedent of ϕ2
T in A+. Thus, (cf(j), cf(j)+1) and (cf(j)+1, cf(j)+2)

are both in the relation TA, and, moreover, cf(j)+2 = · · · = cf(j+1). By transi-

tivity, (cf(j), cf(j)+2) ∈ TA, whence (cf(j), cf(j+1)) ∈ TA. But cf(j) and cf(j+1)

are, respectively, the jth and (j+1)th element of c̄f , and so, by construction,
A+ |= Q[c̄f]. Thus A+ |= ∀xk ϕ2

T . a

Theorem 5. Let f : [1, k] → [1, n] be a non-adjacent function. Then the sat-

isfiability and finite satisfiability problems for AFf are undecidable.

Proof. We reduce from the (finite) satisfiability problem for FO2 with two
transitive relations, known to be undecidable [22, Thm. 3]. Let an FO2-sentence ϕ
be given (possibly featuring the two binary predicates T and T ′ (required to be
interepreted as transitive relations), and let ϕ∗ to be its logically equivalent AF-

formula, guaranteed by Theorem 4. Define ϕT and ϕT ′ to be the AFf -formulas
guaranteed by Lemma 18, stating that T and T ′ are transitive. (The respective
predicates Q appearing in these formulas are chosen afresh.) Applying Lemma 18
we see that ϕ has a (finite) model interpreting T and T ′ as transitive relations

if and only if the AFf -formula ϕ∗ ∧ ϕT ∧ ϕT ′ has a (finite) model. a

REFERENCES

[1] Hajnal Andréka, István Németi, and Johan van Benthem, Modal Languages and

Bounded Fragments of Predicate Logic, Journal of Philosophical Logic, vol. 27 (1998), no. 3,
pp. 217–274.

[2] Javed A. Aslam and Ronald L. Rivest, Inferring graphs from walks, Colt ’90: Pro-
ceedings of the third annual workshop on computational learning theory (Mark Fulk and
John Case, editors), Morgan Kaufmann, 1990, pp. 359–370.

[3] Franz Baader, Ian Horrocks, Carsten Lutz, and Ulrike Sattler, An Introduc-
tion to Description Logic, Cambridge University Press, 2017.

[4] Vince Bárány, Balder ten Cate, and Luc Segoufin, Guarded Negation, Journal of
the ACM, vol. 62 (2015), no. 3, pp. 22:1–22:26.

[5] Bartosz Bednarczyk, Exploiting forwardness: Satisfiability and query-entailment in
forward guarded fragment, Logics in artificial intelligence - 17th european conference,
JELIA 2021, virtual event, may 17-20, 2021, proceedings (Wolfgang Faber, Gerhard

Friedrich, Martin Gebser, and Michael Morak, editors), Lecture Notes in Computer Science,
vol. 12678, Springer, 2021, pp. 179–193.

[6] Bartosz Bednarczyk, Witold Charatonik, and Emanuel Kieroński, Extending
two-variable logic on trees, 26th EACSL annual conference on computer science logic,
CSL 2017, august 20-24, 2017, stockholm, sweden (Valentin Goranko and Mads Dam, edi-

tors), LIPIcs, vol. 82, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017, pp. 11:1–11:20.
[7] Bartosz Bednarczyk and Reijo Jaakkola, Towards a model theory of ordered logics:

Expressivity and interpolation, 47th international symposium on mathematical founda-
tions of computer science, MFCS 2022, august 22-26, 2022, vienna, austria (Stefan
Szeider, Robert Ganian, and Alexandra Silva, editors), LIPIcs, vol. 241, Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2022, pp. 15:1–15:14.

[8] Bartosz Bednarczyk, Daumantas Kojelis, and Ian Pratt-Hartmann, On the Lim-
its of Decision: the Adjacent Fragment of First-Order Logic, 50th international colloquium
on automata, languages, and programming (icalp 2023) (Dagstuhl, Germany) (Kousha
Etessami, Uriel Feige, and Gabriele Puppis, editors), Leibniz International Proceedings in Infor-
matics (LIPIcs), vol. 261, Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2023, pp. 111:1–
111:21.

THE ADJACENT FRAGMENT 39

[9] Bartosz Bednarczyk and Sebastian Rudolph, How to Tell Easy from Hard: Com-

plexities of Conjunctive Query Entailment in Extensions of ALC, Journal of Artificial In-
telligence Research, vol. 78 (2023).

[10] Michael Benedikt, Egor Kostylev, and Tony Tan, Two Variable Logic with Ulti-

mately Periodic Counting, SIAM Journal on Computing, vol. 53 (2024), no. 4, pp. 884–968.

[11] Egon Börger, Erich Grädel, and Yuri Gurevich, The classical decision problem,
Perspectives in Mathematical Logic, Springer, 1997.

[12] Ashok K. Chandra, Dexter C. Kozen, and Larry J. Stockmeyer, Alternation,

Journal of the ACM, vol. 28 (1981), no. 1, p. 114–133.
[13] Witold Charatonik, Emanuel Kieroński, and Filip Mazowiecki, Decidability of

weak logics with deterministic transitive closure, Joint meeting of the twenty-third EACSL
annual conference on computer science logic (CSL) and the twenty-ninth annual
ACM/IEEE symposium on logic in computer science (lics), CSL-LICS ’14, vienna,
austria, july 14 - 18, 2014 (Thomas A. Henzinger and Dale Miller, editors), ACM, 2014,
pp. 29:1–29:10.

[14] Valentin Goranko and Martin Otto, Model Theory of Modal Logic, Handbook of
modal logic (Patrick Blackburn, J. F. A. K. van Benthem, and Frank Wolter, editors), Studies
in logic and practical reasoning, vol. 3, North-Holland, 2007, pp. 249–329.

[15] Erich Grädel, On the Restraining Power of Guards, The Journal of Symbolic Logic,

vol. 64 (1999), no. 4, pp. 1719–1742.
[16] Erich Grädel, Phokion G. Kolaitis, and Moshe Y. Vardi, On the decision problem

for two-variable first-order logic, The Bulletin of Symbolic Logic, vol. 3 (1997), no. 1, pp. 53–

69.
[17] Leon Henkin, Logical systems containing only a finite number of symbols,

Séminaire de mathématiques supérieures, Presses de l’Université de Montréal, 1967.
[18] Andreas Herzig, A new decidable fragment of first order logic, Abstracts of the

3rd logical biennial summer school and conference in honour of S. C. Kleene (Varna,

Bulgaria), June 1990.
[19] David Hilbert and Wilhelm Ackerman, Grundzüge der theoretischen Logik,

Springer, Berlin, 1928.

[20] , Principles of mathematical logic, Chelsea, New York, 1950.
[21] Reijo Jaakkola, Ordered fragments of first-order logic, 46th international sym-

posium on mathematical foundations of computer science, MFCS 2021, august 23-27,
2021, tallinn, estonia (Filippo Bonchi and Simon J. Puglisi, editors), LIPIcs, vol. 202, Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2021, pp. 62:1–62:14.

[22] Emanuel Kieronski, Results on the Guarded Fragment with Equivalence or Transitive
Relations, Computer science logic, 19th international workshop, CSL 2005, 14th annual
conference of the eacsl, oxford, uk, august 22-25, 2005, proceedings (C.-H. Luke Ong,

editor), Lecture Notes in Computer Science, vol. 3634, Springer, 2005, pp. 309–324.
[23] Emanuel Kieroński and Martin Otto, Small substructures and decidability issues

for first-order logic with two variables, The Journal of Symbolic Logic, vol. 77 (2012), no. 3,

pp. 729–765.
[24] Emanuel Kieroński, Ian Pratt-Hartmann, and Lidia Tendera, Two-variable logics

with counting and semantic constraints, ACM SIGLOG News, vol. 5 (2018), no. 3, pp. 22–43.

[25] Emanuel Kieroński and Lidia Tendera, On finite satisfiability of two-variable first-
order logic with equivalence relations, Proceedings of the 24th annual IEEE symposium on
logic in computer science, LICS 2009, 11-14 august 2009, los angeles, ca, USA, IEEE

Computer Society, 2009, pp. 123–132.
[26] Daumantas Kojelis, On Homogenous Models of Fluted Languages, Under submis-

sion to CSL’25: Proceedings of the 33rd EACSL Annual Conference on Computer Sci-
ence Logic, 2025.

[27] Ian Pratt-Hartmann, The two-variable fragment with counting revisited, Logic,
language, information and computation, 17th international workshop, wollic 2010,
brasilia, brazil, july 6-9, 2010. proceedings (Anuj Dawar and Ruy J. G. B. de Queiroz,

editors), Lecture Notes in Computer Science, vol. 6188, Springer, 2010, pp. 42–54.

40 BARTOSZ BEDNARCZYK, DAUMANTAS KOJELIS, AND IAN PRATT-HARTMANN

[28] , Fluted logic with counting, 48th international colloquium on automata,
languages, and programming, ICALP 2021, july 12-16, 2021, glasgow, scotland (virtual
conference) (Nikhil Bansal, Emanuela Merelli, and James Worrell, editors), LIPIcs, vol. 198,
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021, pp. 141:1–141:17.

[29] Ian Pratt-Hartmann, Fragments of First-Order Logic, Oxford University Press,

2023.
[30] Ian Pratt-Hartmann, Walking on Words, 35th annual symposium on combinato-

rial pattern matching, CPM 2024, june 25-27, 2024, fukuoka, japan (Shunsuke Inenaga

and Simon J. Puglisi, editors), LIPIcs, vol. 296, Schloss Dagstuhl - Leibniz-Zentrum für Infor-
matik, 2024, pp. 25:1–25:17.

[31] Ian Pratt-Hartmann, Wieslaw Szwast, and Lidia Tendera, The fluted fragment
revisited, The Journal of Symbolic Logic, vol. 84 (2019), no. 3, pp. 1020–1048.

[32] Ian Pratt-Hartmann and Lidia Tendera, The fluted fragment with transitive rela-

tions, Annals of Pure and Applied Logic, vol. 173 (2022), no. 1, p. 103042.
[33] William C. Purdy, Fluted formulas and the limits of decidability, The Journal of

Symbolic Logic, vol. 61 (1996), no. 2, pp. 608–620.

[34] Willard Van Orman Quine, On the Limits of Decision, Proceedings of the 14th
international congress of philosophy, vol. III, University of Vienna, 1969, pp. 57–62.

[35] , Algebraic logic and predicate functors, The ways of paradox, Harvard Uni-

versity Press, Cambridge, MA, revised and enlarged ed., 1976, pp. 283–307.
[36] Sylvain Schmitz, Complexity hierarchies beyond elementary, ACM Transactions on

Computational Logic, vol. 8 (2016), no. 1.
[37] Thomas Schwentick and Thomas Zeume, Two-Variable Logic with Two Order Re-

lations, Logical Methods in Computer Science, vol. Volume 8, Issue 1 (2012).

COMPUTATIONAL LOGIC GROUP, TECHNISCHE UNIVERSITÄT DRESDEN, GERMANY

INSTITUTE OF COMPUTER SCIENCE, UNIVERSITY OF WROC lAW, POLAND

E-mail : bartosz.bednarczyk@cs.uni.wroc.pl

DEPARTMENT OF COMPUTER SCIENCE, UNIVERSITY OF MANCHESTER, UK

E-mail : daumantas.kojelis@manchester.ac.uk

DEPARTMENT OF COMPUTER SCIENCE, UNIVERSITY OF MANCHESTER, UK

INSTITUTE OF COMPUTER SCIENCE, UNIVERSITY OF OPOLE, POLAND

E-mail : ian.pratt@manchester.ac.uk

	1. Introduction
	2. Preliminaries
	3. Primitive generators of words
	4. Upper bounds for AF without equality
	5. Adding Equality
	6. The Guarded Subfragment
	6.1. Generating Words.
	6.2. ATMs.
	6.3. Encoding numbers.
	6.4. Encoding configurations.
	6.5. Encoding instances of transitions
	6.6. Encoding acceptance trees

	7. Extending the adjacent fragment

