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Abstract

The fluted fragment is a fragment of first-order logic (without equality) in which,
roughly speaking, the order of quantification of variables coincides with the order
in which those variables appear as arguments of predicates. It is known that
this fragment has the finite model property. We consider extensions of the fluted
fragment with various numbers of transitive relations, as well as the equality
predicate. In the presence of one transitive relation (together with equality),
the finite model property is lost; nevertheless, we show that the satisfiability
and finite satisfiability problems for this extension remain decidable. We also
show that the corresponding problems in the presence of two transitive relations
(with equality) or three transitive relations (without equality) are undecidable,
even for the two-variable sub-fragment.
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1. Introduction

The fluted fragment, here denoted FL, is a fragment of first-order logic in
which, roughly speaking, the order of quantification of variables coincides with
the order in which those variables appear as arguments of predicates. The
allusion is presumably architectural: we are invited to think of arguments of
predicates as being ‘lined up’ in columns. The following formulas are sentences
of FL

No student admires every professor
∀x1(student(x1)→ ¬∀x2(prof(x2)→ admires(x1, x2)))

(1)
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∀x1

(student(x1)

→ ¬∀x2

(prof(x2)

→ admires(x1, x2)))

∀x1

(lecturer(x1)

→ ¬∃x2

(prof(x2)

∧∀x3

(student(x3)

→ intro(x1, x2, x3))))

Figure 1: The ‘lining up’ of variables in the fluted formulas (1) and (2); all quantification is
executed on the right-most available column.

No lecturer introduces any professor to every student
∀x1(lecturer(x1)→

¬∃x2(prof(x2) ∧ ∀x3(student(x3)→ intro(x1, x2, x3)))),
(2)

with the ‘lining up’ of variables illustrated in Fig. 1. By contrast, none of the
formulas

∀x1.r(x1, x1) (3)

∀x1∀x2(r(x1, x2)→ r(x2, x1)) (4)

∀x1∀x2∀x3(r(x1, x2) ∧ r(x2, x3)→ r(x1, x3)), (5)

expressing, respectively, the reflexivity, symmetry and transitivity of the relation
r, is fluted. If equality is present, then reflexivity can be expressed using a fluted
sentence, since we may equivalently write (3) as, for example ∀x1∀x2(x1 = x2 →
r(x1, x2)). On the other hand, no similar trick is available in the case of (4)
or (5). For example, ∀x1∀x2(r(x1, x2)→ ∃x3(r(x2, x3)∧x1 = x3)) is not fluted,
as the equality atom violates the ‘lining-up’ of variables in the same way as does
the atom r(x1, x3) in (5).

The history of this fragment is somewhat tortuous. The basic idea of fluted
logic can be traced to a paper given by W.V. Quine to the 1968 International
Congress of Philosophy [22], in which the author defined the homogeneous m-
adic formulas. Quine later relaxed this fragment, in the context of a discussion of
predicate-functor logic, to what he called ‘fluted’ quantificational schemata [23],
claiming that the satisfiability problem for the relaxed fragment is decidable.
The viability of the proof strategy sketched by Quine was explicitly called into
question by Noah [15], and the subject then taken up by W.C. Purdy [20], who
gave his own definition of ‘fluted formulas’, proving decidability. It is question-
able whether Purdy’s reconstruction is faithful to Quine’s intentions: the matter
is clouded by differences between the definitions of predicate functors in Noah’s
and Quine’s respective papers [15] and [23], both of which Purdy cites. In
fact, Quine’s original definition of ‘fluted’ quantificational schemata appears to
coincide with a logic introduced—apparently independently—by A. Herzig [4].
Rightly or wrongly, however, the name ‘fluted fragment’ has now attached itself
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to Purdy’s definition in [20]; and we shall continue to use it in that way in the
present article. See Sec. 2 for a formal definition.

To complicate matters further, Purdy claimed in [21] that FL (i.e. the fluted
fragment, in our sense, and his) has the exponential-sized model property: if a
fluted formula ϕ is satisfiable, then it is satisfiable over a domain of size bounded
by an exponential function of the number of symbols in ϕ. Purdy concluded
that the satisfiability problem for FL is NExpTime-complete. These latter
claims are false. It was shown in [17] that, although FL has the finite model
property, there is no elementary bound on the sizes of the models required, and
the satisfiability problem for FL is non-elementary. More precisely, define FLm
to be the subfragment of FL in which at most m variables (free or bound)
appear. Then the satisfiability problem for FLm is bm/2c-NExpTime-hard
for all m ≥ 2 and in (m − 2)-NExpTime for all m ≥ 3 [18]. It follows that
the satisfiability problem for FL is Tower-complete, in the framework of [24].
These results fix the exact complexity of satisfiability of FLm for small values of
m. Indeed, the satisfiability problem for FO2, the two-variable fragment of first-
order logic, is known to be NExpTime-complete [3], whence the corresponding
problem for FL2 is certainly in NExpTime. Moreover, FL1 coincides with
the 1-variable fragment of first-order logic, whence its satisfiability problem is
NPTime-complete. Thus, taking 0-NExpTime to mean NPTime, we see that
the satisfiability problem for FLm is bm/2c-NExpTime-complete, at least for
m ≤ 4.

The focus of the present paper is what happens when we add to the fluted
fragment the ability to stipulate that certain designated binary relations are
transitive, or are equivalence relations. The motivation comes from analogous
results obtained for other decidable fragments of first-order logic. Consider
basic propositional modal logic K. Under the standard translation into first-
order logic (yielded by Kripke semantics), we can regard K as a fragment of
first-order logic—indeed as a fragment of FL2. From basic modal logic K, we
obtain the logic K4 under the supposition that the accessibility relation on pos-
sible worlds is transitive, and the logic S5 under the supposition that it is an
equivalence relation: it is well-known that the satisfiability problems for K and
K4 are PSpace-complete, whereas that for S5 is NPTime-complete [13]. (For
analogous results on graded modal logic, see [6].) Closely related are also de-
scription logics (cf. [1]) with role hierarchies and transitive roles. In particular,
the description logic SH, which has the finite model property, is an ExpTime-
complete fragment of FL2 with transitivity. Similar investigations have been
carried out in respect of FO2, which has the finite model property and whose
satisfiability problem, as just mentioned, is NExpTime-complete. The finite
model property is lost when one transitive relation or two equivalence relations
are allowed. For equivalence, everything is known: the (finite) satisfiability
problem for FO2 in the presence of a single equivalence relation remains NExp-
Time-complete, but this increases to 2-NExpTime-complete in the presence of
two equivalence relations [9, 10], and becomes undecidable with three. For tran-
sitivity, we have an incomplete picture: the finite satisfiability problem for FO2

in the presence of a single transitive relation is decidable in 3-NExpTime [16],
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while the decidability of the satisfiability problem remains open (cf. [27]); the
corresponding problems with two transitive relations are both undecidable [11].
The latter results can be easily adapted to show undecidability of the fluted
fragment with unrestricted equality, where one can talk about transitivity of a
binary relation.

Adding equivalence relations to the fluted fragment poses no new problems.
Existing results on of FO2 with two equivalence relations can be used to show
that the satisfiability and finite satisfiability problems for FL (not just FL2)
with two equivalence relations are decidable. Furthermore, the proof that the
corresponding problems for FO2 in the presence of three equivalence relations
are undecidable can easily be seen to apply also to FL2. On the other hand, the
situation with transitivity is less straightforward. We show in the sequel that
the satisfiability and finite satisfiability problems for FL remain decidable in the
presence of a single transitive relation and equality. (This logic lacks the finite
model property.) On the other hand, the satisfiability and the finite satisfiability
problems for FL in the presence of two transitive relations and equality, or
indeed, in the presence of three transitive relations (but without equality) are all
undecidable. For the fluted fragment with two transitive relations but without
equality, the situation is not fully resolved. We show in the sequel that this
fragment lacks the finite model property; this contrasts with the situation in
description logics, where not only SH but also its extension SHI retain the
finite model property, independently of the number of transitive relations [14].
However, the decidability of both satisfiability and finite satisfiability for this
fragment remain open. Table 1 gives an overview of these results in comparison
with known results on FO2.

Some indication that flutedness interacts in interesting ways with transi-
tivity is given by known complexity results on various extensions of guarded
two-variable fragment with transitive relations. The guarded fragment, denoted
GF, is that fragment of first-order logic in which all quantification is of either
of the forms ∀v̄(α→ ψ) or ∃v̄(α∧ψ), where α is an atomic formula (a so-called
guard) featuring all free variables of ψ. The guarded two-variable fragment, de-
noted GF2, is the intersection of GF and FO2. It is straightforward to show that
the addition of two transitive relations to GF2 yields a logic whose satisfiability
problem is undecidable. However, as long as the distinguished transitive rela-
tions appear only in guards, we can extend the whole of GF with any number
of transitive relations, yielding the so-called guarded fragment with transitive
guards, whose satisfiability problem is in 2-ExpTime [26]. Intriguingly, in the
two-variable case, we obtain a reduction in complexity if we require transitive re-
lations in guards to point forward—i.e. allowing only ∀v(t(u, v)→ ψ) rather than
∀v(t(v, u) → ψ), and similarly for existential quantification. These restrictions
resemble flutedness, of course, except that they prescribe the order of variables
only in guards, rather than in the whole formula. Thus, the extension of GF2

with (any number of) transitive guards has a 2-ExpTime-complete satisfiability
problem; however, the corresponding problem under the restriction to one-way
transitive guards is ExpSpace-complete [8]. Since the above-mentioned exten-
sions of GF2 lack the finite model property, their satisfiability and the finite
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satisfiability problems do not coincide. Decidability and complexity bounds for
the finite satisfiability problems are established in [11, 12].

Special symbols Decidability and Complexity
FLm (m ≥ 2) FO2

bm/2c-NExpTime-hard FMP
no transitive r. in (m− 2)-NExpTime∗) NExpTime-compl.

[17, 18] [3]
1 transitive r. FMP [19] Sat: ?

(Fin)Sat: in m-NExpTime FinSat: in 3-NExpTime
Sat: in m-NExpTime Sat: ?

1 transitive r. Theorem 21 FinSat:
with = FinSat: in (m+1)-NExpTime in 3-NExpTime

Corollary 22 [16]
2 transitive r. Sat: ? undecidable

FinSat: ? [7, 5]
2 transitive r. undecidable

with = Theorem 26 undecidable
1 trans.&1 equiv. undecidable

with = Corollary 27 undecidable
undecidable

3 transitive r. Sat: Theorem 38 undecidable
FinSat: Theorem 39

3 equivalence r. undecidable
Corollary 40 undecidable

Table 1: Overview of FLm and FO2 over restricted classes of structures. ∗) in case m > 2,
and NExpTime-complete for FL2. Undecidability of extensions of FO2 shown in grey were
known earlier, but now can be inherited from remaining results of the Table.

2. Preliminaries

All signatures in this paper are purely relational, i.e., there are no individual
constants or function symbols. We do, however, allow 0-ary relations (proposi-
tion letters). We use the notation ϕ∨̇ψ to denote the exclusive disjunction of ϕ
and ψ.

Let x̄ω = x1, x2, . . . be a fixed sequence of variables. We define the sets of
formulas FL[m] (for m ≥ 0) by structural induction as follows: (i) any non-
equality atom α(x`, . . . , xm), where x`, . . . , xm is a contiguous (possibly empty)

subsequence of x̄ω, is in FL[m]; (ii) FL[m] is closed under boolean combinations;

(iii) if ϕ is in FL[m+1], then ∃xm+1ϕ and ∀xm+1ϕ are in FL[m]. The set of fluted
formulas is defined as FL =

⋃
m≥0 FL

[m]. A fluted sentence is a fluted formula
with no free variables. Thus, when forming Boolean combinations in the fluted
fragment, there is some m ≥ 0 such that each of the combined formulas has, as
its free variables, some suffix of the sequence x1, . . . , xm; and, when quantifying,
only the last variable in this suffix may be bound. Note also that proposition
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letters (0-ary predicates) may, according to the above definitions, be combined

freely with formulas: if ϕ is in FL[m], then so, for example, is ϕ ∧ P , where P
is a proposition letter. For m ≥ 0, denote by FLm the m-variable sub-fragment
of FL, i.e. the set of formulas of FL featuring at most m variables, free or
bound. Do not confuse FLm with FL[m]. For example, (1) is in FLm just in

case m ≥ 2, and (2) is in FLm just in case m ≥ 3; but they are both in FL[0].
Note that FLm-formulas cannot, by force of syntax, feature predicates of arity
greater than m. The fragments FL[m]

= , FL= and FLm= are defined analogously,

except that equality atoms xm−1 = xm are allowed in FL[m]
= for m ≥ 2. We

call formulas of FL[0]
= sentences, and those of FL[1]

= , unary formulas.
We denote by FLkT the extension of FL with k distinguished binary predi-

cates assumed to be interpreted as transitive relations; and we denote by FL=kT
the corresponding extension of FL=. We denote their m-variable sub-fragments
(m ≥ 2) by FLmkT, respectively FLm=kT. A predicate is called ordinary if it
is neither the equality predicate nor one of the distinguished predicates.

If L is any logic, we denote its satisfiability problem by Sat(L) and its finite
satisfiability problem by FinSat(L), understood in the usual way. If ϕ is a
formula of any of the above fragments, ||ϕ|| denotes the length of ϕ under any
standard encoding, and similarly for finite sets of formulas.

2.1. Variable-free syntax for fluted formulas

Assuming, as we shall, that the arity of every predicate is fixed in advance,
variables in fluted formulas carry no information, and therefore can be omitted.
Thus, for example, sentences (1) and (2) can be written as follows

No student admires every professor
∀(student→ ¬∀(prof→ admires))

(6)

No lecturer introduces any professor to every student
∀(lecturer→ ¬∃(prof ∧ ∀(student→ intro))),

(7)

As an exercise, try converting (7) back into (2). The only ambiguity here
comes from the choice of the highest-indexed variable; for example, the notation
∀(prof→ admires) can mean ∀xm+1(prof(xm+1)→ admires(xm, xm+1)) for any
m ≥ 1. However, such ambiguity is perfectly harmless, and in fact—as the
present authors have found—rather convenient. Variable-free syntax for fluted
formulas takes a little getting used to, but makes for a compact presentation;
we shall standardly employ it in the sequel. We write ∀m to denote a block of m
universal quantifiers; thus, if ϕ ∈ FL[m], then ∀mϕ ∈ FL[0]. The elimination of
variables seems to have been part of Quine’s original motivation for introducing
the fluted fragment (or at least one of its close relatives).

2.2. Loss of the finite model property

The logic FL1T possesses the finite model property (see Table 1). However,
this is no longer true if we add either equality or a second transitive relation, as
shown by the examples below.
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Example 1. Consider the FL2
=1T-sentence ϕ1 = ∀∃.T1 ∧ ∀∀(T1 → ¬ =),

where T1 is a distinguished binary predicate denoting a transitive relation. This
sentence is satisfiable, but not finitely satisfiable.

Proof. In standard first-order syntax, ϕ1 reads as follows:

ϕ1 = ∀x∃y.T1(x, y) ∧ ∀x∀y(T1(x, y)→ x 6= y).

It is obvious that ϕ1 is satisfiable (for example by the structure N with T1

interpreted as <), but not finitely satisfiable.

Example 2. Consider the FL22T-sentence

ϕ2 = ∃p0 ∧ ∀(p0∨̇p1∨̇p2) ∧ ∀∀¬(T1 ∧ T2)∧∧
i=0,1,2

∀
(
pi →

(
∃(pi+1 ∧ ¬(T1 ∨ T2)) ∧ ∀(pi+2 → T1 ∨ T2)

))
,

where the pi (0 ≤ i ≤ 2) are unary predicates (addition in subscripts interpreted
modulo 3), and T1, T2 are distinguished binary predicates denoting transitive
relations. This sentence is satisfiable, but not finitely satisfiable.

Proof. For readers still getting used to variable-free notation, we again restore
the variables in ϕ2:

∃x1.p0(x1)∧∀x1

(
p0(x1)∨̇p1(x1)∨̇p2(x1)

)
∧∀x1∀x2¬

(
T1(x1, x2)∧T2(x1, x2)

)
∧∧

i=0,1,2

∀x1

(
pi(x1)→

(
∃x2(pi+1(x2) ∧ ¬(T1(x1, x2) ∨ T2(x1, x2))) ∧

∀x2(pi+2(x2)→ (T1(x1, x2) ∨ T2(x1, x2)))
))
.

One can easily check that the structure N with the following interpretation of
the predicate letters

pi[n] iff n mod 3 = i

T1[n,m] iff n+ 1 < m

T2[n,m] iff n > m

is a model of ϕ2.
To see that ϕ2 is not finitely satisfiable, suppose it has a model, A. By

the existential conjuncts of ϕ2, there exist distinct elements a0, a1, a2 ∈ A such
that ai satisfies pi (0 ≤ i < 3), and neither 〈a0, a1〉 nor 〈a1, a2〉 satisfy T1 ∨ T2.
The universal conjuncts of ϕ2 imply that 〈a0, a2〉, 〈a1, a0〉 and 〈a2, a1〉 satisfy
T1 ∨ T2 but not T1 ∧ T2. By the transitivity of TA

1 and TA
2 , this allows for

only two options: (i) A |= T1[a1, a0], A |= T1[a2, a1] and A |= T2[a0, a2]; or (ii)
A |= T2[a1, a0], A |= T2[a2, a1] and A |= T1[a0, a2] (shown in Figure 2). In both
cases, applying transitivity of T1 and T2, we have A |= (T1 ∨ T2)[a2, a0]. But
then the existential conjuncts require a new witness, say a3, for a2 such that
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a0 a1 a2 a3 a4 a5 a6 a7

. . .

Figure 2: Infinite chain in models of ϕ2 from Example 2. Pairs (ai, ai+1) are neither in T1 nor
in T2; depicted by dotted lines. Black and grey arrows depict pairs belonging to the transitive
relations T1 and T2.

A 6|= (T1 ∨ T2)[a2, a3]. Again, taking the universal conjuncts into consideration,
we see that a3 must be related to a0, a1 and a2 either by T1 or by T2 (in the case
of Figure 2, it is T2). So the situation repeats, and indeed A embeds an infinite
chain of elements such that, for each consecutive pair, A 6|= (T1∨T2)[ai, ai+1].

2.3. Fluted types and cliques

Suppose A is a structure interpreting the distinguished binary predicate T as
a transitive relation. A clique of A is a maximal subset B ⊆ A with the property
that, for all distinct a, b ∈ B, A |= T [a, b]. Every element a ∈ A is a member of
exactly one clique, and if that clique has size greater than 1, then, necessarily
A |= T [a, a]. Furthermore, if B1 and B2 are cliques, then either every element
of B1 is related to every element of B2 by T , or no element of B1 is related to
any element of B2 by T . In this way, TA induces a strict partial order on the
set of cliques. If a singleton {a} is a clique, then it may or may not be the case
that A |= T [a, a]. If A |= ¬T [a, a], then we call a (or sometimes {a}) a soliton.

In this paper, we adapt the familiar notions of atom, literal, and m-type to
the fluted environment. Let Σ be a purely relational signature. A fluted m-
atom (over Σ) is an atomic formula of FL[m]

= featuring a predicate p ∈ Σ∪{=}.
Indeed, using variable-free syntax, we can simply say that a fluted m-atom
is an element of Σ ∪ {=} having arity at most m. A fluted m-literal (over
Σ) is a fluted m-atom (over Σ) or its negation; a fluted m-type (over Σ) is a
maximal consistent conjunction of fluted m-literals (over Σ). (Observe that,
if m ≥ 2, then = and 6= are fluted literals.) If ā = a1, . . . , am is a tuple of
elements in some structure A interpreting Σ, then ā satisfies a unique fluted
m-type over Σ, denoted ftpA[ā]. We silently identify fluted m-types with their
conjunctions where appropriate; thus, any fluted m-type may be regarded as
a (quantifier-free) FL[m]-formula. A fluted m-atom/literal is automatically a
fluted m′-atom/literal for all m′ > m.

3. Fluted logic with one transitive relation and equality

In this section, we study the logic FL=1T, the fluted fragment with equality
and a single transitive relation; we also consider its m-variable sub-fragment,

8



FLm= 1T = FL=1T∩FOm, for all m ≥ 2. As already mentioned, even the small-
est of these fragments lacks the finite model property. Nevertheless, we show
that the satisfiability problem for FL=1T is decidable; indeed, Sat(FLm= 1T)
is in m-NExpTime for m ≥ 2. The proof is divided into three parts. In
Sec. 3.1, we define a restricted class of FL2

=1T-formulas, called basic formulas,
in which no binary predicates appear other than T and =. We give a proce-
dure for determining satisfiability for finite sets of basic formulas, and give a
parametrized analysis of its complexity. In Sec. 3.2, we show that Sat(FL2

=1T)
is in 2-NExpTime, by reduction to the case considered in the previous sec-
tion. In Sec. 3.3, we show that Sat(FLm= 1T) is in m-NExpTime, via a series of
exponential-sized reductions to Sat(FL2

=1T).
It was shown in [18] that the satisfiability problem for FLm (the m-variable

fluted fragment without equality or transitive relations) is in (m−2)-NExpTime
for m ≥ 3. The strategy adopted there was to reduce this problem, via a
series of exponential-sized reductions, to the satisfiability problem for FL3, at
which point a direct procedure was described showing this last problem to be
in NExpTime. In the presence of equality and transitivity, however, this direct
procedure is unavailable, and we must carry out the further reduction to basic
formulas as described in Sec. 3.2, at which point we can apply the procedure
of Sec. 3.1. These final steps result in a weakening of the complexity bound by
two exponentials.

We will be dealing here with logics featuring a single distinguished transitive
relation, and we use the letter T for the corresponding binary predicate. Thus,
if A is a structure, we always assume that TA is a transitive relation on A.
We additionally suppose that we have at our disposal a distinguished unary
predicate T̂ , which we take to be satisfied, in any structure, by precisely those
elements related to themselves by T . This constitutes no essential increase in
the expressive power of any of the logics FLm= 1T (m ≥ 2), since we may fix
the interpretation of T̂ by writing the FL2

=1T-formula ∀(T̂ ↔ ∀(=→ T )). It
follows from the constraints imposed on T and T̂ that a T -clique containing any
element not satisfying T̂ in fact consists of just that element, and is a soliton.

3.1. Basic formulas

Throughout this section (3.1), Σ will always stand for a signature consisting
of the distinguished predicates T and T̂ together with any number of ordinary,
unary predicates. We denote by ΠΣ the set of fluted 1-types over Σ. We always
use the (possibly decorated) letters π to range over elements of ΠΣ, µ to range
over arbitrary quantifier-free formulas of arity 1 in the signature Σ, and Π to
range over subsets of ΠΣ. Call an FL2

=1T-formula over Σ basic if it is of one of
the following forms:

(B1) ∀(π → ∃(µ ∧ T ∧ 6=))

(B2) ∀(π → ∃(µ ∧ ¬T ∧ 6=))

(B3) ∀(π → ∀(π′ → T )) (π 6= π′)

(B4) ∀(π → ∀(π′ → ¬T )) (π 6= π′)

(B5) ∀(π → ∀(π → (= ∨ T ))

(B6) ∀(π → ∀(π → (= ∨ ¬T ))
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(B7) ∀µ (B8) ∃µ.

We remark that the unary predicate T̂ will always occur in the fluted 1-types π
and π′ in these forms. Our goal is to give a procedure for determining the satisfi-
ability for finite sets of basic formulas. Our strategy is to characterize (possibly
infinite) structures by means of finite data-structures, called certificates. Essen-
tially, a certificate specifies which fluted 1-types are realized in the structure in
question, and places just enough constraints on the arrangement of the cliques
in that structure to determine whether it is a model of any basic formula. We
remark that flutedness plays a crucial role here: none of the forms (B1)–(B8) cor-
responds to the first-order formula ∀x(π(x)→ ∀y(π′(y)→ (T (x, y)∨T (y, x)))).
In showing that the certificates guarantee the satisfiability of a set of basic
formulas, we rely on the fact that such formulas do not occur.

To define certificates formally, we require the following notions. A clique
type (over Σ) is a function ξ : ΠΣ → {0, 1, 2}. Intuitively, a clique type is a
multi-set of fluted 1-types, with multiplicities truncated at 2. We write π ∈ ξ to
mean that ξ(π) ≥ 1, and treat ξ as the set of fluted 1-types {π | π ∈ ξ} where
convenient, thus writing, for example ξ ∪ Π for {π | π ∈ ξ or π ∈ Π}, and so
on. A clique super-type is a pair 〈ξ,Π〉, where ξ is a clique type and Π a set of
fluted 1-types. We call ξ a soliton clique type if ¬T̂ ∈

⋃
ξ, that is, if some fluted

1-type occurring in ξ with non-zero multiplicity contains the atom ¬T̂ . If A is
a structure interpreting Σ, B a clique of A, and a ∈ B, then the clique type of
a is the function ctpA[a] : ΠΣ → {0, 1, 2} given by

ctpA[a](π) =


2 if π is realized in A by at least two elements of B

1 if π is realized in A by exactly one element of B

0 otherwise,

and the clique super-type of a is the pair cstpA[a] = 〈ctpA[a],Π〉, where

Π = {ftpA[b] | A |= T [a, b] and A 6|= T [b, a] for some b ∈ A}.

If B is a clique in A, then all elements of B obviously have the same clique type
and the same clique super-type, which we denote by ctpA[B] and cstpA[B],
respectively. It is easy to see that a clique B of A is a soliton if and only if
ctpA[B] is a soliton clique type. Intuitively, the type of a clique is a specification
of which fluted 1-types are realized exactly once in that clique, and which fluted
1-types are realized more than once; the super-type of a clique is its type paired
with a specification of which fluted 1-types outside that clique can be reached
from it via the predicate T .

A certificate (over Σ) is a triple C = 〈Ω,�, V 〉, where Ω is a set of clique
super-types over Σ, � a strict partial order on ΠΣ, and V ⊆ ΠΣ, subject to the
following conditions:

(C1) if 〈ξ,Π〉 ∈ Ω and π′ ∈ Π, then there exists 〈ξ′,Π′〉 ∈ Ω such that
(i) π′ ∈ ξ′, (ii) Π′ ∪ ξ′ ⊆ Π, and (iii) ξ ∩ V ∩Π′ = ∅;
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(C2) if 〈ξ,Π〉, 〈ξ′,Π′〉 ∈ Ω are distinct, π ∈ ξ, π′ ∈ ξ′ and π � π′, then
ξ′ ∪Π′ ⊆ Π;

(C3) if 〈ξ,Π〉, 〈ξ′,Π′〉 ∈ Ω and ξ ∩ ξ′ ∩ V 6= ∅, then ξ = ξ′ and Π = Π′;

(C4) if 〈ξ,Π〉 ∈ Ω and ξ is a soliton clique type, then there exists π ∈ ΠΣ such
that ξ(π) = 1 and ξ(π′) = 0 for all π′ ∈ ΠΣ \ {π};

(C5) if 〈ξ,Π〉 ∈ Ω, π′ ∈ ξ and π � π′, then π 6∈ Π;

(C6) if 〈ξ,Π〉 ∈ Ω, π, π′ ∈ ξ and π � π′ then ξ ∩ V 6= ∅.

To make sense of these conditions, imagine that Ω is the set of clique super-
types realized in some structure A, let V be the set of fluted 1-types that are
realized in exactly one clique of A, and define π � π′ (for fluted 1-types π and π′

realized in A) to mean that A |= ∀(π → ∀(π′ → T )) but A 6|= ∀(π′ → ∀(π → T )).
To understand (C1), suppose a ∈ A has clique super-type 〈ξ,Π〉 and π′ ∈ Π.
Then A |= T [a, a′] for some element a′ ∈ A with fluted 1-type π′ not lying in
the same clique as a. Now a′ must realize some clique super-type 〈ξ′,Π′〉, with
π′ ∈ ξ′. But then a is related by T to every element in the clique of a′ and, more
generally, to every element to which a′ is related by T , whence Π′∪ξ′ ⊆ Π. And
furthermore, a′ cannot be related by T to any element a′′ whose fluted 1-type
occurs only in the same clique as a (since then a, a′ and a′′ would all be in the
same clique), whence ξ ∩ V ∩ Π′ = ∅. Condition (C2) reflects the fact that, if
π � π′, then any element a with fluted 1-type π is related by T to any element
a′ having fluted 1-type π′, and indeed to all elements to which a′ is related.
The antecedents of (C3) state that there are cliques having super-types ξ and
ξ′ which both realize an element whose fluted 1-type is realized only in a single
clique; hence these cliques are identical. Condition (C4) reflects the fact that
soliton clique types are realized only by solitons. Condition (C5) follows from
the fact that, if the clique super-type 〈ξ,Π〉 of some element a specifies that
a is related by T to an element, say a′ (of type π) in another clique, then a′

cannot be required to be related by T to anything (of type π′) in the clique of a.
Finally, (C6) states that if some clique of type ξ contains elements whose fluted
1-types are related by �, then there must be a an element whose fluted 1-type
is realized only in that clique. This condition is not satisfied by structures in
general. However, it is satisfied by a particular class of structures which are
easy to work with and to which—it transpires—we may confine attention. We
return to this matter presently.

Having explained what certificates are, we turn our attention now to how
they can be used to determine the truth of basic formulas. Let C = 〈Ω,�, V 〉
be a certificate and ψ a basic formula, both over some signature Σ. We define
the satisfaction relation C |= ψ. In this definition, for any fluted 1-type π, we
say that π occurs in C if, there exists 〈ξ,Π〉 ∈ Ω such that π ∈ ξ. We proceed
by cases.

1. ψ is ∀(π → ∃(µ ∧ T ∧ 6=)): C |= ψ if and only if, for all 〈ξ,Π〉 ∈ Ω, with
π ∈ ξ, either (i) |= π → µ and ξ(π) = 2; or (ii) there exists π′ ∈ ξ such
that π′ 6= π and |= π′ → µ; or (iii) there exists π′ ∈ Π such that |= π′ → µ.
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2. ψ is ∀(π → ∃(µ ∧ ¬T ∧ 6=)): C |= ψ if and only if, for all 〈ξ,Π〉 ∈ Ω with
π ∈ ξ, there exists 〈ξ′,Π′〉 ∈ Ω such that (i) |= π′ → µ; (ii) there exist no
π′′ ∈ Π and π′′′ ∈ ξ′ such that π′′ � π′′′; (iii) ξ′ ∩ Π ∩ V = ∅; and (iv)
〈ξ,Π〉 = 〈ξ′,Π′〉 ⇒ ξ ∩ V = ∅.

3. ψ is ∀(π → ∀(π′ → T )), where π 6= π′: C |= ψ if and only if one of the
following obtains: (i) one of π or π′ does not occur in C; (ii) π � π′; or
(iii) for all 〈ξ,Π〉, 〈ξ′,Π′〉 ∈ Ω such that π ∈ Π and π′ ∈ ξ′, we have ξ = ξ′,
Π = Π′ and ξ ∩ V 6= ∅.

4. ψ is ∀(π → ∀(π′ → ¬T )), where π 6= π′: C |= ψ if and only if for all
〈ξ,Π〉 ∈ Ω such that π ∈ ξ, π′ 6∈ ξ ∪Π.

5. ψ is ∀(π → ∀(π → (= ∨ T ))): C |= ψ if and only if there is at most one
〈ξ,Π〉 ∈ Ω such that π ∈ ξ, and, if such a 〈ξ,Π〉 exists, then ξ ∩ V 6= ∅.

6. ψ is ∀(π → ∀(π → (= ∨ ¬T ))): C |= ψ if and only if for all 〈ξ,Π〉 ∈ Ω,
π 6∈ ξ ∩Π, and ξ(π) ≤ 1.

7. ψ is ∀µ: C |= ψ if and only if, for all 〈ξ,Π〉 ∈ Ω and π ∈ ξ, |= π → µ.

8. ψ is ∃µ: C |= ψ if and only if there exist 〈ξ,Π〉 ∈ Ω and π ∈ ξ such that
|= π → µ.

The reader may wish to postpone digesting the details of these conditions for the
present. Roughly, the intention is that: (i) given a structure A, we can construct
a certificate C satisfying all the basic formulas that A satisfies (Lemma 11); and
(ii) from a certificate C, we can build a structure A, satisfying all the basic
formulas that C satisfies (Lemma 12). This translates the search for a model of
a set of basic formulas Ψ into a search for a certificate satisfying Ψ. We mention
a minor complication at this point: claim (i) is not true in full generality, and
we must restrict attention to a particular class of structures, which we call
“quadratic structures”; however, we show that this class is as general as we
need (Lemma 4).

With the technical apparatus of certificates at our disposal, we are in a posi-
tion to transform the problem of determining the satisfiability of basic formulas
in structures to that of determining their satisfiability by certificates. We begin
by constructing certificates from structures. If A is a structure, then we define
C(A) to be the triple 〈Ω,�, V 〉, where: Ω = {cstpA[a] | a ∈ A} is the set of
clique super-types realized in A; π � π′ if and only if π and π′ are realized in A,
A |= ∀(π → ∀(π′ → T )) and A 6|= ∀(π′ → ∀(π → T )); and V is the set of fluted
1-types realized in exactly one clique of A. We must ensure that the definition
of � has the requisite property:

Lemma 3. The relation � in the construction of C(A) is a strict partial order.

Proof. Antisymmetry is immediate. For transitivity, suppose, π � π′ and π′ �
π′′. Trivially, A |= ∀(π → ∀(π′′ → T )). On the other hand, if we also have
A |= ∀(π′′ → ∀(π → T )), then A |= ∀(π′′ → ∀(π′ → T )), contradicting π′ � π′′.
Hence π � π′′.
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Notice that we have not asserted that C(A) is a certificate. Indeed this is
true only for a specific class of structures, which we now define. Suppose A is a
structure, B a clique of A, and π, π′ fluted 1-types. We say that B is determined
by the pair {π, π′} if it is the unique clique of A in which π and π′ are both
realized. We call A quadratic if, for any clique B determined by some pair of
fluted 1-types {π, π′}, there exists a fluted 1-type π∗ such that B is the unique
clique of A in which π∗ is realized. That is, in a quadratic structure, any clique
which can be uniquely identified as the only clique containing a given pair of
fluted 1-types, π and π′, can be uniquely identified as the only clique containing
some (possibly different) fluted 1-type π∗. Our next task is to show that we
may confine attention, without loss of generality, to quadratic structures.

Let Φ be a set of basic formulas over some signature Σ, and write ` = |Σ|.
Any ϕ ∈ Φ has one of the forms ∀(π → ∃(µ ∧ χ)), ∀(π → ∀(π′ → χ)), ∀µ or
∃µ, where π and π′ are fluted 1-types over Σ, µ a unary, quantifier-free formula
and χ a quantifier-free formula involving only the predicates T and =. Now let
Σ∗ be Σ together with the fresh unary predicates p0, . . . , p2`−1, let p̄0 be the
formula ¬p0 ∧ · · · ∧ ¬p2`−1, and let Φ∗ = {ϕ∗ | ϕ ∈ Φ ∪ {∃>}}, where

ϕ∗ :=


∀(π ∧ p̄0 → ∃(µ ∧ p̄0 ∧ χ) if ϕ = ∀(π → ∃(µ ∧ χ))

∀(π ∧ p̄0 → ∀(π′ ∧ p̄0 → χ) if ϕ = ∀(π → ∀(π′ → χ))

∀(p̄0 → µ) if ψ = ∀µ
∃(µ ∧ p̄0) if ψ = ∃µ.

If π is a fluted 1-type over Σ, then π ∧ p̄0 is a fluted 1-type over Σ∗; hence
Φ∗ is a set of basic formulas over Σ∗. Moreover, Φ∗ can be computed in time
bounded by a polynomial function of ||Φ||. The following lemma tells us that Φ
has a model if and only if Φ∗ has a quadratic model.

Lemma 4. Suppose Φ is a set of basic formulas. The following are equivalent:
(i) Φ is satisfiable; (ii) Φ∗∪{∀p̄0} is satisfiable; (iii) Φ∗ is satisfied in a quadratic
structure; (iv) Φ∗ is satisfiable.

Proof. Let Σ be the signature of Φ, and Σ∗, the signature of Φ∗, as defined
above. Call any fluted 1-type π over Σ∗ such that |= π → p̄0 proper. Clearly,
the proper fluted 1-types over Σ∗ are in natural 1–1 correspondence with the
fluted 1-types over Σ.

(i) ⇒ (ii): If A |= Φ, let B be the expansion of A obtained by taking every
element of A to satisfy p̄0. It is obvious that B |= Φ∗ ∪ {∀p̄0}. (ii) ⇒ (iii):
Suppose A |= Φ∗ ∪ {∀p̄0}. For each (unordered) pair, π, π′ of distinct, proper
fluted 1-types (over Σ∗) such that there is exactly one clique, u of A in which
both are realized, choose a fresh, improper fluted 1-type over Σ∗, and simply
add a new element with that fluted 1-type to u. Because there are certainly
22|σ| − 1 improper fluted 1-types, we never run out of fresh, improper fluted
1-types, so let B be the resulting structure. Since the new elements do not
satisfy p̄0, we have B |= Φ∗. And since all the newly realized fluted 1-types
occur only in single cliques, B is quadratic. (iii) ⇒ (iv) is trivial. (iv) ⇒ (i):
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Suppose A |= Φ∗, and let B be restriction of A to the (necessarily non-empty)
set of elements satisfying p̄0. It is obvious that B |= Φ.

In the sequel, therefore, we may assume the conversion of Lemma 4 has been
carried out, and concern ourselves with the problem of determining whether a
given finite set of basic formulas Φ is satisfied in some quadratic structure. We
show that this problem is equivalent to that of determining whether Φ is satisfied
by some certificate.

Manufacturing a certificate from a quadratic structure is easy.

Lemma 5. If A is any quadratic structure interpreting Σ, then C(A) is a cer-
tificate over Σ.

Proof. Write C(A) = 〈Ω,�, V 〉. By Lemma 3, � is a strict partial order on
ΠΣ. We must check conditions (C1)–(C6).

(C1): Suppose 〈ξ,Π〉 ∈ Ω and π′ ∈ Π. Let a be such that cstpA[a] = 〈ξ,Π〉.
Then there exists b ∈ A such that ftpA[b] = π′ and A |= T [a, b], but with a and
b lying in different cliques. Let cstpA[b] = 〈ξ′,Π′〉. Then: (i) 〈ξ′,Π′〉 ∈ Ω by
construction of Ω; (ii) ξ′ ∪Π′ ⊆ Π by transitivity of TA; and (iii) if π′′ ∈ ξ ∩ V ,
then all elements with fluted 1-type π′′ lie in the same clique as a. Since a and
b are not in the same clique, b cannot be related by T to any of these elements,
which is to say π′′ 6∈ Π′.
(C2): Suppose 〈ξ,Π〉, 〈ξ′,Π′〉 ∈ Ω are distinct, π ∈ ξ, π′ ∈ ξ′ and π � π′. Let
a, b ∈ A be such that cstpA[a] = 〈ξ,Π〉 and cstpA[b] = 〈ξ′,Π′〉. If π � π′, then
A |= T [a, b]. Moreover, if a and b belong to different cliques, then ξ′ ∪ Π′ ⊆ Π,
by the transitivity of T .
(C3): Suppose 〈ξ,Π〉, 〈ξ′,Π′〉 ∈ Ω and ξ ∩ ξ′ ∩ V 6= ∅. Let a, b ∈ A be such
that cstpA[a] = 〈ξ,Π〉 and cstpA[b] = 〈ξ′,Π′〉. If there exists a fluted 1-type π′′

realized both in the clique of a and in the clique of b, and, moreover, in just one
clique of A, then a and b are in the same clique.
(C4): Suppose 〈ξ,Π〉 ∈ Ω and ¬T̂ ∈

⋃
ξ. By construction, there exists b ∈ A

such that ctpA[b] = ξ, and A 6|= T̂ [b]. But then b is the only element of its clique,
and we may set π = ftpA[b].
(C5): Suppose 〈ξ,Π〉 ∈ Ω, π′ ∈ ξ and π � π′. Let a, a′ ∈ A be such that
cstpA[a] = 〈ξ,Π〉, ftpA[a′] = π′, and a′ is in the same clique as a. To show that
π 6∈ Π, we must show that, for all b ∈ A such that ftpA[b] = π, either A 6|= T [a, b]
or b is in the same clique as a. But this follows immediately from π � π′.
(C6): Suppose 〈ξ,Π〉 ∈ Ω, π, π′ ∈ ξ and π � π′. It follows that there is
exactly one clique of A, say u, in which π and π′ are both realized, and that
cstpA[u] = 〈ξ,Π〉. Since A is, by assumption, quadratic, there exists a fluted
1-type π∗ ∈ ξ realized only in u. Thus ξ ∩ V 6= ∅. We mention in passing that
this is the only point where we use the assumption that A is quadratic.

Manufacturing a (quadratic) structure from a certificate is more difficult. As
an aide to intuition, we give an informal sketch first. Suppose C = 〈Ω,�, V 〉 is
a certificate; we proceed to define a structure A. The domain A is the disjoint
union of sets Aξ,Π, where 〈ξ,Π〉 ranges over Ω; the elements of Aξ,Π will all be
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Aξ,Π

π1π2π3

Aξ,Π,0

Aξ,Π,1

...

· · ·

Aξ′,Π′

· · ·

Aξ′′,Π′′

...

· · ·

Aξ′′′,Π′′′

Figure 3: Construction of the domain A of A(C) for C a certificate.

assigned the clique super-type 〈ξ,Π〉. If ξ contains no fluted 1-type π such that
π ∈ V , then Aξ,Π will consist of infinitely many sets Aξ,Π,i (i ≥ 0), referred to
in the construction as ‘cells’. If, on the other hand, ξ contains a fluted 1-type π
such that π ∈ V , then Aξ,Π will consist of a single cell Aξ,Π,0. It will later turn
out that the cells are exactly the T -cliques of A; moreover, we identify certain
cells (consisting of a single element) as ‘soliton cells’, which will turn out to be
the solitons of A. Each cell Aξ,Π,i is in turn the disjoint union of sets Aπ,ξ,Π,i,
where π ranges over the fluted 1-types in ξ. The idea is that the elements
of Aπ,ξ,Π,i will all be given fluted 1-type π; moreover, this set has cardinality
equal to ξ(π) (i.e. either 1 or 2). Fig. 3 gives a schematic representation of the
domain A, featuring, among others, the clique super-types 〈ξ,Π〉, . . . , 〈ξ′′′,Π′′′〉.
In this example, we are supposing that the clique types ξ and ξ′′ are disjoint
from V , so that the corresponding sets Aξ,Π and Aξ′′,Π′′ comprise countably
many cells; by contrast, ξ′ and ξ′′′ intersect V , so that the corresponding sets
Aξ′,Π′ and Aξ′′′,Π′′′ are unicellular. We are further supposing that the clique
type ξ contains three fluted 1-types (with non-zero multiplicity), namely π1, π2

and π3; ξ′ contains four fluted 1-types; ξ′′ and ξ′′′ each contain just one fluted
1-type. Within any cell, each fluted 1-type occurs either once or twice.

We will take the relation TA to be the transitive closure of the union of
three relations, Rcell, Rex and Rall, each of which plays a specific role. The
relation Rcell specifies T within each cell, Aξ,Π,i. It will ensure that, excepting
the case of soliton cells, all pairs of elements within a single cell are related by
T . The relation Rcell, in essence, secures the existential commitments required
by the clique super-types. Specifically, if a ∈ Aξ,Π,i and π′ ∈ Π, we select some
〈ξ′,Π′〉 ∈ Ω such that ξ′ ∪Π′ ⊆ Π (possible by (C1)), and choose cells included
in Aξ′,Π′ whose elements will act as ‘witnesses’ for the fact that a has to be
related by T to something of type π′. Finally, the relation Rall deals with the
T -relations mandated by �: if Aξ,Π,i and Aξ′,Π′,j are distinct cells with π ∈ ξ
and π′ ∈ ξ′, then, in order to secure that A |= ∀(π → ∀(π′ → T )), we take all
elements of the former cell to be related by Rall to all elements of the latter. We
explain how Rcell, Rex and Rall work in more detail after we have defined them
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formally; at this stage however, it is helpful to keep the following objective in
mind. Since we wish the cells of A to become cliques of the model A, we must be
careful not to create cycles in the resulting graph of Rex- and Rall-links. (Any
such cycle would cause several cells to be merged into a single clique.) Most of
the technical complications in the definitions of Rex and Rall derive from this
objective.

We are now ready to give the formal definition of A, beginning with the
construction of the domain, A. For all 〈ξ,Π〉 ∈ Ω, all π ∈ ξ and all i ∈ N, let
a+
π,ξ,Π,i and a−π,ξ,Π,i be fresh objects. Set

Aπ,ξ,Π,i =

{
{a+
π,ξ,Π,i, a

−
π,ξ,Π,i} if ξ(π) = 2

{a+
π,ξ,Π,i} otherwise (i.e. if ξ(π) = 1)

Aξ,Π,i =
⋃
π∈ξ

Aπ,ξ,Π,i

Aξ,Π =

{⋃
i∈NAξ,Π,i if ξ ∩ V = ∅

Aξ,Π,0 otherwise

A =
⋃

〈ξ,Π〉∈Ω

Aξ,Π.

We call the sets Aξ,Π,i cells. Thus, any cell Aξ,Π,i is the union of non-empty
sets Aπ,ξ,Π,i, each with cardinality ξ(π), where π ranges over ξ (considered as
a set). The sets Aξ,Π are unions of cells defined in one of two ways, depending
on ξ. If ξ ∩ V = ∅, then Aξ,Π includes Aξ,Π,i for all i ≥ 0; otherwise, Aξ,Π is
simply the cell Aξ,Π,0. We fix the extensions of unary predicates in A (including

T̂ ) by setting ftpA[a] = π for all a = apπ,ξ,Π,i ∈ A, where p ∈ {+,−}. As already
announced, the intention is that each cell Aξ,Π,i will become a clique of A with
super-type 〈ξ,Π〉. This explains why, if ξ ∩ V 6= ∅, the set Aξ,Π consists of
just one cell: V is meant to represent the set of 1-types occurring in exactly one
clique; hence we certainly do not want infinitely many different cells all realizing
some fluted 1-type in V . We remark in this connection that, in this case, there
will only ever be a single value of Π such that 〈ξ,Π〉 ∈ Ω, by (C3). If ξ is a
soliton clique type, we call the cell Aξ,Π,i a soliton-cell. It follows from (C4)
that, in this case, Aξ,Π,i = {a+

π,ξ,Π,i} for some fluted 1-type π. Note that the
converse does not hold: it is perfectly feasible for the cell Aξ,Π,i to consist of

the single element a+
π,ξ,Π,i even though T̂ ∈ π.

It remains only to set the extension of the distinguished predicate T . As
mentioned earlier, we define three binary relations, Rcell, Rex and Rall, taking
T to be the transitive closure of Rcell ∪Rex ∪Rall. The relations Rcell and Rall

are relatively straightforward, and we consider them first. Let a = apπ,ξ,Π,i and

a′ = ap
′

π′,ξ′,Π′,j ; and let u = Aξ,Π,i and v = Aξ′,Π′,j be the respective cells of
a and a′. We declare aRcella

′ if and only if u = v (i.e. ξ = ξ′, Π = Π′, and
i = j), and ξ is not a soliton clique type. That is: Rcell holds between all pairs
of elements in the same non-soliton cell. (As just mentioned, any soliton cell
is composed of a single element.) Turning now to the relation Rall, we declare
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aRalla
′ if u 6= v and, for some fluted 1-types π ∈ ξ and π′ ∈ ξ′, π � π′. That is:

Rall holds between a and a′ if u contains an element with fluted 1-type π and
v 6= u contains an element with fluted 1-type π′, such that all elements with
fluted 1-type π are required to be related by T to all those having fluted 1-type
π′. Note that the relation Rall depends only on the cells of its relata: that is to
say, if b ∈ u and b′ ∈ v, then aRalla

′ implies bRallb
′. There being no ambiguity,

we shall write, in this case, uRallv.
Turning finally to the relation Rex, let u = Aξ,Π,i and v = Aξ′,Π′,j be the

respective cells of a and a′, as in the previous paragraph. Declare aRexa
′ if (a)

ξ′ ∪ Π′ ⊆ Π; (b) ξ′ ∩ V = ∅ ⇒ j ≥ i+ 2; and (c) ξ ∩ V ∩ Π′ = ∅. As explained
above, the idea is to pick witnesses to realize the fact that a is supposed to
have clique super-type 〈ξ,Π〉, and in particular is supposed to be related via the
predicate T to some element with fluted 1-type π′ for each π′ ∈ Π. Condition
(a) simply ensures that the chosen witnesses have clique super-type 〈ξ′,Π′〉
compatible with that of a. To understand (b), recall that, if ξ′ ∩ V = ∅ then
Aξ′,Π′,j exists for all j ≥ 0, whereas if ξ′ ∩ V 6= ∅, then Aξ′,Π′,j exists only for
j = 0 (reflecting the fact that the cell contains an element whose fluted 1-type
should be realized in only one clique). Condition (b) states that, in the former
case, we are to pick elements of Aξ′,Π′,j as witnesses when j ≥ i + 2: the fact
that j > i avoids cycles of Rex-links being created when this process is repeated.
In the latter case, (b) does not prevent us from selecting elements of Aξ′,Π′,0 as
witnesses: here, the various conditions on certificates will ensure that doing so
still will not give rise to any Rex-cycles. Condition (c) is a technical condition
used in Lemma 8, but essentially, it states that, when seeking witnesses for a,
we may not select any a′ ∈ Aξ′,Π′,j if Π′ requires a′ to be related by T to some
elements whose fluted 1-type is realized only in the same clique as a. Again, the
relation Rex depends only on the cells of its relata, and we write uRexv if some
(equivalently, all) elements of u are related by Rex to some (equivalently, all)
elements of v. Having defined the relations Rcell, Rex and Rall, we let TA be the
transitive closure of Rcell ∪Rex ∪Rall. We denote the structure A, constructed
from the certificate C as just described, by A(C). Notice that A(C) will in general
be infinite.

We must check that A(C) interprets the predicates T and T̂ in a proper
fashion. Lemmas 6–9 do precisely this.

Lemma 6. In the construction of A(C), if aRexa
′, then a and a′ occupy different

cells of A.

Proof. Suppose for contradiction that aRexa
′ with a = apπ,ξ,Π,i and a′ = ap

′

π′,ξ,Π,i.
By condition (a) in the definition of Rex, we have ξ ⊆ Π, and, by (b), we have,
ξ ∩ V 6= ∅, whence ξ ∩ V ∩Π 6= ∅, contradicting (c).

In this paper, we take all (directed) graphs to be simple—i.e., not to have
multiple edges or self-loops. Now, another way of expressing Lemma 6 is to
say that no cell of A is related to itself by Rex; and by definition, no cell of A
is related to itself by Rall. Hence, we may consider the directed graph on the
set of cells of A defined by the relation Rex ∪ Rall. We show that this graph is
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acyclic. It follows that the cells (both soliton and non-soliton) are the cliques of
the relation TA, and hence that TA induces a strict partial order on these cells.

Lemma 7. In the construction of A(C), suppose u0, . . . , uk (k ≥ 1) is a sequence
of cells such that, for all h (0 ≤ h < k) either uhRexuh+1 or uhRalluh+1.
Writing uh = Aξh,Πh,ih for all h (0 ≤ h ≤ k), we have ξk ∪Πk ⊆ Π0.

Proof. We proceed by induction on k. For the base case (k = 1), if u0Rexu1,
then the result is immediate by (a) in the definition of Rex. If u0Rallu1, then
there exist π0 ∈ ξ0 and π1 ∈ ξ1 such that π0 � π1. The result then follows
from (C2). For the inductive case (k > 1), we have by inductive hypothesis,
ξk−1 ∪Πk−1 ⊆ Π0; and from the base case applied to the sequence uk−1, uk, we
have ξk ∪Πk ⊆ Πk−1.

Lemma 8. In the construction of A(C), there exists no sequence of cells u0, . . . ,
uk = u0 (k ≥ 2) such that, for all h (0 ≤ h < k) either uhRexuh+1 or
uhRalluh+1.

Proof. Suppose for contradiction that such a sequence exists, again writing uh =
Aξh,Πh,ih for all h (0 ≤ h ≤ k). By Lemma 7, Π0 = · · · = Πk = Π, say, and
ξh ∈ Π for all h (0 ≤ h ≤ k). It follows that we cannot have uhRalluh+1 for any
h (0 ≤ h < k), since, if there exist πh ∈ ξh and πh+1 ∈ ξh+1 with πh � πh+1,
then, by (C5), πh+1 6∈ Πh = Π, contradicting ξh+1 ⊆ Π. Thus, we may assume
that uhRexuh+1 for all h (0 ≤ h < k). Necessarily, ih+1 ≤ ih for some h in
the same range; indeed, by rotating the original sequence if necessary, we may
assume without loss of generality that h < k − 1. By (b) in the definition of
Rex, ξh+1 ∩ V 6= ∅, and by (c), ξh+1 ∩ V ∩ Πh+2 = ∅. But we have just argued
that ξh+1 ⊆ Π and Πh+2 = Π. This is a contradiction.

Lemma 9. In the structure A = A(C), we have T̂A = {a ∈ A | A |= T [a, a]}.

Proof. Fix a ∈ Aπ,ξ,Π,i. If A |= T̂ [a], then T̂ ∈ π, whence, by (C4), ξ is not a

soliton clique type. Hence aRcella, and A |= T [a, a]. Conversely, if A 6|= T̂ [a],
then ¬T̂ ∈ π, so that ξ is certainly a soliton type, and a is not related to itself by
Rcell. On the other hand, by Lemma 8, there is no sequence of cells u0, . . . , uk
(k ≥ 2) with a ∈ u0 = uk, such that, for all h (0 ≤ h < k), either uhRexuh+1 or
uhRalluh+1. Since TA is the transitive closure of Rcell ∪Rex ∪Rall, we see that
A 6|= T [a, a], as required.

Summing up the above discussion, we have

Lemma 10. If C is a certificate over Σ, then A(C) is a properly defined structure
interpreting Σ.

Thus, from a quadratic structure A, we can define a certificate C(A), and
from a certificate C, we can define a structure A(C). (It is easy to see that A
will in fact be quadratic, though this is inessential.) It remains only show that
satisfaction of formulas by certificates corresponds to satisfaction of formulas by
structures in the sense captured by the following two lemmas.
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Lemma 11. Let ψ be a basic formula, and suppose A |= ψ for some quadratic
structure A. Then C(A) |= ψ.

Proof. Write C(A) = 〈Ω,�, V 〉. We consider the forms of ψ in turn.

1. ψ is ∀(π → ∃(µ ∧ T ∧ 6=)): Suppose A |= ψ and 〈ξ,Π〉 ∈ Ω with π ∈ ξ. Let
a ∈ A be such that cstpA[a] = 〈ξ,Π〉 and ftpA[a] = π. Pick b ∈ A \ {a} such
that A |= µ[b] and A |= T [a, b], and let ftpA[b] = π′. Thus, |= π′ → µ. (i) If a
and b are in the same clique of A and π = π′, then |= π → µ, and ξ(π) = 2.
(ii) If a and b are in the same clique, but π′ 6= π, then π′ ∈ ξ. (iii) If a and b
are not in the same clique, then π ∈ Π.

2. ψ is ∀(π → ∃(µ ∧ ¬T ∧ 6=)): Suppose A |= ψ and 〈ξ,Π〉 ∈ Ω with π ∈ ξ. Let
a ∈ A be such that cstpA[a] = 〈ξ,Π〉 and ftpA[a] = π. Pick b ∈ A \ {a} such
that A |= µ[b] and A 6|= T [a, b], and let cstpA[b] = 〈ξ′,Π′〉, and ftpA[b] = π′.
(i) Thus, |= π′ → µ. (ii) Suppose, for contradiction, that there exist π′′ ∈ Π
and π′′′ ∈ ξ′ such that π′′ � π′′′. Then there exist b′′, b′′′ ∈ A such that
A |= T [a, b′′], A |= T [b′′, b′′′], with b′′′ in the same clique as b, contradicting
the assumption that A 6|= T [a, b]. (iii) Suppose, for contradiction, that π′′ ∈
ξ′ ∩ Π ∩ V . Then there exists b′′ ∈ A with ftpA[b′′] = π′′, realized in just
one clique (namely, the clique of b) and an element b′′′ with ftpA[b′′′] = π′′

and A |= T [a, b′′′]. This contradicts the supposition that A 6|= T [a, b]. (iv)
Suppose, for contradiction, that 〈ξ,Π〉 = 〈ξ′,Π′〉 and π′′ ∈ ξ ∩ V . Then
the cliques of both a and b contain elements of fluted 1-type π′′, with such
elements realized in just one clique. Thus a and b are in the same clique,
which contradicts the supposition that A 6|= T [a, b].

3. ψ is ∀(π → ∀(π′ → T )), where π 6= π′: Suppose A |= ψ. (i) If π and π′ are
not both realized in A, then they do not both occur in C. If π and π′ are both
realized in A, and A 6|= ∀(π′ → ∀(π → T )), then π � π′. (iii) Otherwise,
π and π′ are realized in A, but there is a clique, say u, containing all these
realizing elements. Hence, if 〈ξ,Π〉, 〈ξ′,Π′〉 ∈ Ω with π ∈ ξ and π′ ∈ ξ′, then
〈ξ,Π〉= 〈ξ′,Π′〉, and π ∈ V , whence ξ ∩ V 6= ∅.

4. ψ is ∀(π → ∀(π′ → ¬T )), where π 6= π′: Suppose A |= ψ and 〈ξ,Π〉 ∈ Ω with
π ∈ ξ. Then there exist a ∈ A such that cstpA[a] = 〈ξ,Π〉. By the definition
of cstpA[a], π′ 6∈ ξ ∪Π.

5. ψ is ∀(π → ∀(π → (= ∨ T ))): Suppose A |= ψ. Then all elements a ∈ A such
that ftpA[a] = π lie in a single clique, so let their common clique super-type
be 〈ξ,Π〉. Thus, 〈ξ,Π〉 is the only element of Ω such that π ∈ ξ; moreover, if
this element exists, we have π ∈ V , and hence ξ ∩ V 6= ∅.

6. ψ is ∀(π → ∀(π → (= ∨ ¬T ))): Suppose A |= ψ and 〈ξ,Π〉 ∈ Ω with π ∈ ξ.
Let a ∈ A be such that cstpA[a] = 〈ξ,Π〉 and ftpA[a] = π, and let u be the
clique of a in A. Since A |= ψ, there is certainly no element b ∈ A \ u such
that ftpA[b] = π and A |= T [b, a], whence π 6∈ Π. One the other hand, there
is no element b ∈ u \ {a} such that ftpA[b] = π, whence ξ(π) = 1.
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The cases ∀µ and ∃µ are routine.

Lemma 12. Let ψ be a basic formula, and suppose C |= ψ for some certificate
C. Then A(C) |= ψ.

Proof. Write C = 〈Ω,�, V 〉 and A = A(C). We consider the forms of ψ in turn.

1. ψ is ∀(π → ∃(µ ∧ T ∧ 6=)): Suppose C |= ψ and a ∈ A with ftpA[a] = π.
We may write a = apπ,ξ,Π,i, for 〈ξ,Π〉 ∈ Ω with π ∈ ξ. We must show that
there exists b ∈ A \ {a} such that A |= µ[b] and A |= T [a, b]. (i) If |= π → µ

and ξ(π) = 2, then, by construction of A, there exists b = ap
′

π,ξ,Π,i with

p′ 6= p. Thus, ftpA[b] = π and aRcellb, whence A |= T [a, b]. (ii) If there exists
π′ ∈ ξ such that π′ 6= π and |= π′ → µ, there exists b = apπ′,ξ,Π,i. Thus,

ftpA[b] = π′ and aRcellb, whence A |= T [a, b]. (iii) If there exists π′ ∈ Π such
that |= π′ → µ, then, by (C1), choose 〈ξ′,Π′〉 ∈ Ω with π′ ∈ ξ′, ξ′ ∪ Π′ ⊆ Π
and ξ ∩Π′ ∩ V = ∅. Suppose on the one hand that ξ′ ∩ V = ∅. Then we may
let b = a+

π′,ξ,Π,i+2. Certainly, ftpA[b] = π′. It suffices to prove that aRexb,
whence A |= T [a, b]. We consider conditions (a)–(c) in the definition of Rex.
(a) We have already established that ξ′ ∪Π′ ⊆ Π. (b) Trivially, i+ 2 ≥ i+ 2.
(c) A fortiori, ξ′ ∩ V ∩ Π = ∅. Suppose on the other hand that ξ′ ∩ V 6= ∅.
Then we may let b = a+

π′,ξ,Π,0. Since ξ ∩Π′ ∩ V = ∅, we have ξ 6= ξ′, so that
b 6= a. Again, consider conditions (b) and (c) in the definition of Rex. For
(b), we are supposing anyway that ξ′ ∩ V 6= ∅, and for (c), we have already
established that ξ ∩ Π′ ∩ V = ∅. Thus, in all cases, we have A |= µ[b] and
A |= T [a, b], as required.

2. ψ is ∀(π → ∃(µ ∧ ¬T ∧ 6=)): Suppose C |= ψ and a ∈ A with ftpA[a] = π.
We may write a = apπ,ξ,Π,i, for 〈ξ,Π〉 ∈ Ω with π ∈ ξ. Then we may select
〈ξ′,Π′〉 ∈ Ω with π′ ∈ ξ′ such that: (i) |= π′ → µ; (ii) there exists no
π′′ ∈ Π and π′′′ ∈ ξ′ such that π′′ � π′′′; (iii) ξ′ ∩ Π ∩ V = ∅; and (iv)
〈ξ,Π〉 = 〈ξ′,Π′〉 ⇒ ξ ∩ V = ∅. We consider first the case where 〈ξ′,Π′〉 6=
〈ξ,Π〉. Let b = a+

π′,ξ′,Π′,0, so that, by construction of A, ftpA[b] = π′. We
must show that a 6= b and A 6|= T [a, b]. Let u be the cell containing a and
u′ the cell containing b. Since 〈ξ′,Π′〉 6= 〈ξ,Π〉, we have u 6= u′, whence,
certainly a 6= b. So suppose for contradiction that there is a sequence of
(Rex ∪ Rall)-links from u to u′. Let u′′ ∈ Aξ′′,Π′′ , say, be the penultimate
element of this sequence. Certainly, there is no Rall-link from u′′ to u′, since
this would require π′′ ∈ ξ′′ and π′′′ ∈ ξ′ with π′′ � π′′′. But by Lemma 7,
we would then have π′′ ∈ Π, which is ruled out by (ii). On the other hand,
if there were a Rex-link from u′′ to u′, then we would have ξ′ ∩ V 6= ∅, and
again by Lemma 7, ξ′ ⊆ Π, whence ξ′ ∩ V ∩ Π 6= ∅, which is ruled out by
(iii). We consider next the case where 〈ξ′,Π′〉 = 〈ξ,Π〉. But then (iv) implies
ξ ∩ V = ∅, so that we may select b = a+

π′,ξ,Π,j , where j = 1 if i = 0 and j = 0
otherwise. Again, let u be the cell containing a and u′ the cell containing b.
Thus u 6= u′, whence certainly a 6= b. Moreover, A |= µ[b]. Again, it remains
to show that A 6|= T [a, b]. Suppose there is a chain u = u0, . . . , uk = u′ of
(Rex,∪Rall)-links. By construction of Rex, we must have uk−1Ralluk, since
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j ≤ 1. Then there exists π′′ ∈ ξk−1 and π′′′ ∈ ξk such that π′′ � π′′′. Then,
certainly, k > 1 since, otherwise, ξ0 = ξk = ξ contains both π′′ and π′′′ with
π′′ � π′′′ and ξ ∩ V = ∅, which contravenes (C6). But if k > 1, then π ∈ Π
by Lemma 7, which contravenes (C5). Thus, we have shown that A 6|= T [a, b]
as required.

3. ψ is ∀(π → ∀(π′ → T )), where π 6= π′: Suppose C |= ψ, and that a, a′ ∈ A
with ftpA[a] = π and ftpA[a′] = π′. Write a = apπ,ξ,Π,i and a′ = ap

′

π′,ξ′,Π′,j .
We must show that A 6|= T [a, a′]. We consider the three possibilities in the
definition of C |= ψ. (i) By construction of A, π and π′ both occur in C, so the
first possibility does not arise. (ii) Suppose that π � π′. If a and a′ are in
different cells, then then we immediately have aRalla

′. If, on the other hand,
a and a′ are in the same cell, then since π 6= π′, by (C4), ¬T̂ 6∈

⋃
ξ, whence

aRcella
′. (iii) Suppose that there is a single clique super-type 〈ξ,Π〉 ∈ Ω such

that ξ contains either π or π′ and that ξ ∩ V 6= ∅. By the construction of
A, a and a′ belong to the same cell Aξ,Π,0, and again by (C4), ¬T̂ 6∈

⋃
ξ,

whence aRcella
′. In all cases, then, A |= T [a, a′], as required.

4. ψ is ∀(π → ∀(π′ → ¬T )), where π 6= π′: Suppose C |= ψ, and that a, a′ ∈ A
with ftpA[a] = π and ftpA[a′] = π′. Write a = apπ,ξ,Π,i and a′ = ap

′

π′,ξ′,Π′,j .
From the definition of C |= ψ, we have π′ 6∈ ξ ∪ Π, whence ξ 6= ξ′. Thus, a
and a′ occupy different cells, say, u and u′, respectively. By Lemma 7, there
is no chain u = u0, . . . , uk = u′ of (Rex ∪Rall)-links. Therefore, A 6|= T [a, a′],
as required.

5. ψ is ∀(π → ∀(π → (= ∨ T ))): Suppose C |= ψ, and that a, a′ ∈ A with
ftpA[a] = ftpA[a′] = π and a 6= a′. From the definition of C |= ψ and
the construction of A, a and a′ belong to the same set Aξ,Π and, moreover,
ξ ∩ V 6= ∅. It follows that a and a′ belong to the cell Aπ,ξ,Π,0. Since a 6= a′,
by the construction of A, ξ(π) = 2, whence by (C4), ξ is not a soliton clique
type, whence aRcella

′. Thus A |= T [a, a′], as required.

6. ψ is ∀(π → ∀(π → (= ∨ ¬T ))): Suppose C |= ψ. It follows immediately by
construction of A that no set Aπ,ξ,Π,i can have cardinality greater than 1.

Now suppose a, a′ ∈ A with ftpA[a] = ftpA[a′] = π and a 6= a′. Thus, a and a′

are not in the same cell, and hence by Lemma 7, A |= T [a, a′] implies ξ′ ⊆ Π,
whence π ∈ Π, contradicting the definition of C |= ψ. Thus, A 6|= T [a, a′], as
required.

The cases ∀µ and ∃µ are routine.

We can now achieve the goal of this section.

Lemma 13. There exists a non-deterministic procedure which, when given a
set Φ of basic formulas over a signature Σ, will terminate in time bounded by

g(22g(|Σ|)
+ ||Φ||), for some fixed polynomial g not depending on Φ or Σ, and

which has an accepting run if and only if Φ is satisfiable.
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Proof. Let Φ be given. By Lemma 4, the following are equivalent: Φ is satisfi-
able; Φ∗ is satisfied in a quadratic structure; Φ∗ is satisfiable. Observe that Φ∗

(a set of basic formulas over some signature Σ∗ ⊇ Σ) can be computed in time
bounded by a polynomial function of Φ. By Lemmas 5 and 11, if Φ∗ is satis-
fiable over a quadratic structure, then there exists a certificate C, interpreting
Σ∗, such that C |= Φ∗. By Lemmas 10 and 12, if there exists a certificate C over
Σ∗, such that C |= Φ∗, then Φ∗ is satisfiable. Evidently ||C|| is bounded by a
doubly exponential function of |Σ∗|, and the condition C |= Φ∗ may be checked
in time bounded by a polynomial function of ||Φ∗||+ ||C||.

It is worth remarking that the construction of certificates for satisfiability
described in this section above depends heavily on flutedness, which is built into
the notion of a basic formula and the associated apparatus of super-types. The
most obvious difficulty in generalizing this result to the non-fluted case is posed
by formulas of the form ∀x(π(x)→ ∀y(π′(y)→ T (x, y)∨ T (y, x))), stating that
every element satisfying some formula π must be related by T in one direction or
the other to every element satisfying the formula π′. Such formulas were dealt
with in [16] in the context of the finite satisfiability problem for FL2; however,
the corresponding satisfiability problem remains open. In particular, no obvious
way of augmenting the information contained in super-types appears to lead to
a notion of certificates which would ensure the truth of such formulas.

3.2. The logic FL2
=1T

In this section, we tackle the satisfiability problem for FL2
=1T, the 2-variable

fluted fragment with equality and a single, distinguished, transitive relation T .
Our strategy is to reduce this problem to the corresponding problem for ba-
sic formulas, which we solved in Lemma 13. Unlike basic formulas, FL2

=1T-
formulas in general contain ordinary binary predicates; our principal task, con-
sequently, is to get rid of them. A crucial role in this endeavour will be played
by normal-form formulas in the style of [25]. In fact, we shall have recourse to
several variant normal forms in the sequel. However, we begin with the most
fundamental, which will also recur in Sec. 3.3. A formula of FLm= 1T is in
normal form if it has the shape∧

i∈I
∀m−1(µi → ∃(κi ∧ γi)) ∧

∧
j∈J
∀m−1(νj → ∀δj), (8)

where I and J are finite sets of indices, such that, for i ∈ I and j ∈ J , µi and νj
are quantifier-free FLm−1

= 1T-formulas, κi is a formula of any of the four forms
(T∧ =), (T∧ 6=), (¬T∧ =), (¬T∧ 6=), and γi and δj are quantifier-free FLm= 1T
formulas.

A few remarks on the forms (8) at this point may help to guide the reader’s
intuition. We call a conjunct of the form ∀m−1(µi → ∃(κi ∧ γi)) a witness
requirement. It ensures that any (m − 1)-tuple of elements ā satisfying µi can
be extended to an m-tuple ābi satisfying κi ∧ γi. We call the formula κi a
control formula. It ensures that the relationship between the final element of ā
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and the witness bi is specified completely vis-à-vis the binary predicates T and
=. We call a conjunct of the form ∀m−1(νj → ∀δj) a universal requirement. It
constrains the possible ways in which any (m− 1)-tuple ā satisfying νi may be
extended to an m-tuple āb. In the case where νj is the trivial formula, >, a
universal requirement constrains the fluted m-types that can be realized.

The following lemma is slightly modified from [18, Lemma 4.1], where it
was proved for the fluted fragment without transitivity or equality. The proof,
however, is virtually identical, and we may simply state:

Lemma 14. Let ϕ be an FLm= 1T-sentence. We can compute, in time bounded
by a polynomial function of ||ϕ||, a normal-form FLm= 1T-formula ψ such that:
(i) |= ψ → ϕ; and (ii) any model of ϕ can be expanded to a model of ψ.

In the context of a structure interpreting a relational signature, a king is
an element whose fluted 1-type is not realized by any other element in that
structure. The fluted 1-types of kings are called royal. (This terminology is
taken from [3].) We make use of the well-known fact that, in two-variable logic,
parts of structures may be duplicated as long as they contain no king. We use
the formulation appearing in [16, Lemma 4.1]. The proof given there concerns
two-variable first-order logic with a single distinguished predicate interpreted as
a partial order ; however, the proof for the (present) case in which it is interpreted
as a transitive relation is identical, and we need not repeat it here.

Lemma 15. Let A1 be a structure over domain A1, A0 the set of kings of A1,
A0 the restriction of A to A0, and B1 = A1 \ A0. There exists a family of sets
{Bi}i≥2, pairwise disjoint and disjoint from A1, a family of bijections {fi}i≥1,
where fi : Bi → B1, and a sequence of structures {Ai}i≥2, where Ai has domain
Ai = A0 ∪B1 ∪B2 ∪ · · · ∪Bi, such that, for all i ≥ 1:

(i) Ai−1 ⊆ Ai, and for any pair of elements a, b ∈ Ai, there exist a′, b′ ∈ A1

such that ftpAi [a, a] = ftpA1 [a′, a′] and ftpAi [a, b] = ftpA1 [a′, b′];

(ii) for all a ∈ Bi, ftpAi [a, a] = ftpA1 [fi(a), fi(a)] and, for all b ∈ A1 \{fi(a)},
ftpAi [a, b] = ftpA1 [fi(a), b] and ftpAi [b, a] = ftpA1 [b, fi(a)];

(iii) for all a ∈ Bi, all j (1 ≤ j ≤ i) and all b ∈ Bj, if fi(a) 6= fj(b), then

ftpAi [a, b] = ftpA1 [fi(a), fj(b)];

(iv) TAi is a transitive relation.

Intuitively, the sets B2, . . . , Bi are indistinguishable copies of the set of non-
royal elements, B1. This copying process may be continued indefinitely (or
even infinitely); we require only finitely many iterations in this paper. This
construction is useful in the case where ϕ is a normal-form formula of FL2

=1T.
For suppose ϕ has some model A, and let Ai (i ≥ 1) be as constructed in
Lemma 15. A simple check shows that Ai |= ϕ. Indeed, if a, b ∈ Ai are
distinct elements of Ai with b non-royal, there exists a b′ in each of the sets
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Bj (1 ≤ j ≤ i) such that ftpAi [a, b] = ftpAi [a, b′]. In other words: non-royal
witnesses in Ai occur at least i times.

We next introduce a variant normal form for FL2
=1T, motivated by the ob-

servation that the witnesses corresponding to the different witness requirements
of (8) need not be distinct. Say that a formula of FL2

=1T is in spread normal
form if it has the shape∧

h∈H

∃λh ∧
∧
i∈I
∀(µi → ∃(oi ∧ κi ∧ γi))∧

∧
j∈J
∀(νj → ∀δj) ∧

i 6=i′∧
i,i′∈I

∀(oi → ¬oi′), (9)

where H is an index set, the λh (h ∈ H) are quantifier-free, unary formulas, the
oi (i ∈ I) are unary predicates, and I, J , µi, νj , κi, γi, δj are as before. The
essential change here is the insertion of the atoms oi into the witness require-
ments, together with the addition of the conjuncts ∀(oi → ¬oi′) for distinct
indices i and i′. Thus, if an object satisfies µi for several indices i, the corre-
sponding witnesses of the formula ∃(oi∧κi∧γi) for that element are all distinct,
a feature which we shall rely on when eliminating ordinary binary predicates.
The other change—more technical in character—is the addition of the conjuncts
∃λh. They will enable us to convert normal-form FL2

=1T-sentences into spread
normal form without an unacceptable inflation in the size of the signature, as
promised by the next lemma.

Lemma 16. Let ϕ be a normal-form FL2
=1T-formula and Π = {π1, . . . , πL} a

set of fluted 1-types over the signature of ϕ. We can compute, in time bounded
by an exponential function of ||ϕ||, a formula ψ in spread normal form, such
that: (i) the signature of ψ is bounded in size by a polynomial function of ||ϕ||;
(ii) |= ψ → ϕ; and (iii) if ϕ has a (finite) model in which Π is the set of royal
fluted 1-types, then ψ has a (finite) model.

Proof. Putting m = 2 in (8), let ϕ have the shape∧
i∈I
∀(µi → ∃(κi ∧ γi)) ∧

∧
j∈J
∀(νj → ∀δj).

Observe that, in any structure in which Π is the set of royal fluted 1-types, there
are exactly L kings; denote the king with fluted 1-type πk by ck (1 ≤ k ≤ L).
Setting ` = dlog(L + 1)e, let oi, wi,0, . . . , wi,`−1 be a collection of fresh unary
predicates, for each i ∈ I. Observe that the number of these new predicates is
polynomially bounded as a function of ||ϕ||. As a guide to intuition, think of
the predicates wi,0, . . . , wi,`−1 as representing the binary digits of some number
between 0 and L (inclusive). Then a formula of the form ±wi,0 ∧ · · · ∧ ±wi,`
defines a number k (0 ≤ k ≤ L) by taking the jth binary digit of k to be given
by the polarity of the literal ±wi,j . We are invited to read the (unary) formula
w̄〈i, 0〉 as stating that there is a non-royal ith witness for a, and w̄〈i, k〉 (for
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1 ≤ k ≤ L) as stating that the kth king is an ith witness for a. We mention
at this point that the role of the predicates oi is to pick out pairwise disjoint
collections of non-royal elements; we will say presently how these sets are chosen.

We define ψ to be the conjunction of the following formulas.

L∧
k=1

∃πk (10)∧
i∈I
∀(w̄〈i, 0〉 → ∃(oi ∧ κi ∧ γi)) (11)

∧
i∈I

L∧
k=1

∀(w̄〈i, k〉 → ∀(πk → (κi ∧ γi))) (12)

∧
i∈I
∀
(
µi →

L∨
k=0

w̄〈i, k〉
)

(13)∧
j∈J
∀ (νj → ∀δj) (14)

i 6=i′∧
i,i′∈I

∀¬(oi ∧ o′i). (15)

Modulo trivial re-arrangement, ψ is in spread normal form. The conjuncts (10)–
(13) clearly entail the witness requirements of ϕ. Moreover, the conjuncts (14)
are the universal requirements. Thus, |= ψ → ϕ. Suppose, on the other hand,
A1 |= ϕ, with the set of royal types in A1 equal to Π. We may assume without
loss of generality that I = {1, . . . , s}. Let the set of kings in A1 be A0 =
{c1, . . . , cL}, where A1 |= πk[ck], and apply the construction of Lemma 15 to
obtain the structures A2, . . . ,As. Let B = As, a model of ϕ with domain
B = A0 ∪ B1 ∪ · · · ∪ Bs. For all a ∈ B and i ∈ I, if there exists a non-royal
element b 6= a such that B |= γi[a, b], then there exists such a b in each of the

sets B1, . . . , Bs. Now expand B to a model B+ |= ψ by setting oB
+

i = Bi, and
interpreting the predicates wi,0, . . . , wi,k−1 as follows. We set B+ |= w̄〈i, 0〉[a]
if B |= µi[a] and there exists a non-royal b such that B |= γi[a, b], and we set
B+ |= w̄〈i, k〉[a] (for 1 ≤ k ≤ L) if B |= µi[a] and there exists no non-royal b
such that B |= γi[a, b], but k is the smallest number such that B |= γi[a, ck].
Otherwise, set the wi,k arbitrarily. It is then simple to check that B+ |= ψ.

Spread normal form formulas are useful because they can be easily converted
into equisatisfiable sets of basic formulas using a simple device which we now
introduce (and which will be re-used in Sec. 3.3). Let χ be any quantifier-free
fluted formula in some signature Σ, and let Σ− ⊆ Σ be a smaller signature
containing the distinguished predicates T and T̂ . Then there is a strongest
quantifier-free fluted formula χ◦ in Σ− such that |= χ→ χ◦. To obtain χ◦, write
χ in disjunctive normal form and then delete all literals involving predicates not
in Σ−. This can be done in time bounded by an exponential function of ||χ||.
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Lemma 17. Let χ be a quantifier-free FL=-formula in some signature Σ and
let Σ− be a signature such that {T, T̂} ⊆ Σ− ⊆ Σ. Now let χ◦ be the strongest
quantifier-free FL=-formula in Σ− such that |= χ→ χ◦, and let m be the max-
imum arity of any predicate in Σ and m− the maximum arity of any predicate
in Σ−. If τ− is a fluted m−-type over Σ− such that |= τ− → χ◦, then τ− can
be extended to a fluted m-type τ ⊇ τ− over Σ such that |= τ → χ.

Proof. The disjuncts in the disjunctive normal form of χ are the fluted m-types τ
over Σ such that |= τ → χ. The lemma is then immediate from the construction
of χ◦ just described.

Lemma 18. Let ϕ be a spread normal-form FL2
=1T-formula. We can com-

pute, in time bounded by an exponential function of ||ϕ||, a set Φ of basic formu-
las, such that: (i) the signature of Φ consists of the unary predicates occurring
in ϕ together with the distinguished binary predicate T ; (ii) |= ϕ →

∧
Φ; and

(iii) any model of Φ can be expanded to a model of ϕ.

Proof. Let ϕ in spread normal form be given. From (9), ϕ has the shape

∧
h∈H

∃λh ∧
∧
i∈I
∀(µi → ∃(oi ∧ κi ∧ γi))∧

∧
j∈J
∀(νj → ∀δj)∧

i 6=i′∧
i,i′∈I

∀(oi → ¬oi′).

Let Σ be the signature of ϕ, and Σ− the signature obtained by removing all
ordinary binary predicates from Σ. If χ is a any quantifier-free FL1T-formula
in Σ, denote by χ◦ be the strongest quantifier-free FL1T-formula in Σ− such
that |= χ→ χ◦.

To motivate the construction of Φ, suppose ϕ has a model A, select any
element a ∈ A, and define J ′ = {j ∈ J : A |= νj [a]}. If i ∈ I is such that
A |= µi[a], then there exists a witness bi such that A |= χ[a, bi], where χ is the
(quantifier-free) formula

oi ∧ κi ∧ γi ∧
∧
j∈J′

δj . (16)

It follows that A |= χ◦[a, bi], and furthermore, since oi ∧ κi is in the signature
Σ−, that |= χ◦ → (oi ∧ κi).

Now let ψ be the conjunction of all the following formulas:∧
h∈H

∃λh (17)∧
i∈I

∧
J′⊆J

∀
((
µi ∧

∧
j∈J′

νj
)
→ ∃

(
oi ∧ κi ∧ γi ∧

∧
j∈J

δj
)◦)

(18)

∧
J′⊆J

∀
( ∧
j∈J′

νj → ∀
( ∧
j∈J′

δj
)◦)

(19)

i 6=i′∧
i,i′∈I

∀¬(oi ∧ o′i). (20)
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It is simple to check that |= ϕ→ ψ. Moreover, the formula ψ is in the signature
Σ−, and in fact, following some trivial re-arrangement, can be equivalently
written as a conjunction of basic formulas, of the forms (B1)–(B8). The only
non-obvious case in this regard is (18). We have already noted, however, that if
χ is the formula (16), then |= χ◦ → κi. Hence (18) can be equivalently written∧

i∈I

∧
J′⊆J

∀
((
µi ∧

∧
j∈J′

νj
)
→ ∃

[
κi ∧

(
oi ∧ κi ∧ γi ∧

∧
j∈J

δj
)◦])

.

And re-writing this as a conjunction of formulas of the forms (B1), (B2) and (B8)
in time bounded by an exponential function of ||ϕ|| is completely straightforward.

It remains only to show that any model of ψ may be expanded to a model
of ϕ. Suppose then that B− |= ψ; we expand to a structure B interpreting Σ
over the same domain B as follows. Fix any a ∈ B, and let J ′ = {j ∈ J | B− |=
νj [a]}. For each i ∈ I, if B− |= µi[a], let χ be as in (16), so that, by (18), there
exists bi ∈ B be such that B− |= χ◦[a, bi] (and hence B− |= oi[bi]). Letting

τ− = ftpB− [a, bi], Lemma 17 guarantees that there exists a fluted 2-type τ over
Σ consistent with τ− such that |= τ → χ. Therefore we may set the extensions
of the ordinary binary predicates in Σ so that ftpB[a, b] = τ . If a satisfies
µi for several indices i ∈ I, then by (20), the corresponding elements bi will
be distinct; therefore, these assignments may be carried out for all the required
values of i without interference. (This is the point of using spread normal form.)
Indeed, we may perform these assignments for each a ∈ A, again without pairs
of elements being considered twice, since only fluted literals occur in fluted 2-
types. At the end of this process, all elements a ∈ B have the witnesses required
by the conjuncts ∀(µi → ∃(oi ∧ κi ∧ γi)) of ϕ; moreover, no pair 〈a, b〉 for which
ftpB[a, b] has been defined can violate any of the conjuncts ∀(νj → ∀δj).

We now complete the definition of B for all remaining pairs 〈a, b〉 in such a
way that no conjunct ∀(νj → ∀δj) is violated. Suppose then that ftpB[a, b] has
not been defined, and let J ′ = {j ∈ J | B− |= νj [a]}. Setting χ now to be the
formula

∧
j∈J′ δj , it follows from (19) that B− |= χ◦[a, b], whence, taking τ− in

Lemma 17 to be ftpB− [a, b], we may consistently set ftpB[a, b] = τ such that
|= τ → χ. At the end of this process, B is fully defined, and B |= ϕ.

Thus, we have the promised upper bound for the problem SatFL2
=1T.

Lemma 19. The satisfiability problem for FL2
=1T is in 2 -NExpTime.

Proof. Let an FL2
=1T-sentence ϕ be given. By Lemma 14, we may assume

without loss of generality that ϕ is in normal form. Guess a set Π of fluted 1-
types over the signature of ϕ and apply the procedure guaranteed by Lemma 16
to obtain, in time bounded by an exponential function of ||ϕ||, a spread normal-
form formula ψΠ, over a signature bounded by a polynomial function of ||ϕ||,
such that |= ψΠ → ϕ, and, if ϕ has a (finite) model in which the set of royal
fluted 1-types is Π, then ψΠ has a such a model too. By Lemma 18 we may
then obtain, in time bounded by an exponential function of ||ψΠ||, a set ΦΠ

of basic formulas, over the signature consisting of the unary predicates of ψΠ
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together with the distinguished predicate T , such that ΦΠ is satisfiable over
the same domains as ψΠ. Thus, if ϕ is satisfiable over some domain, taking Π
to be the set of royal 1-types realized, we find that ψΠ, and hence also ΦΠ, is
satisfiable over that domain. Conversely, is ΦΠ is satisfiable over some domain,
so is ψΠ, and hence ϕ. Thus, it suffices to check the satisfiability of each such
ΦΠ, non-deterministically, in time bounded by a doubly exponential function of
||ϕ||. But this we can do by Lemma 13, since the signature of ΦΠ is bounded by
a polynomial function of ||ϕ||.

3.3. The logic FLm= 1T

Finally, we show how the satisfiability problem for FLm= 1T (m ≥ 3) can
be reduced to the corresponding problem for FLm−1

= 1T, but with exponential
blow-up. The following notion will be useful. Let X be a finite set. A cover of
X is a set M = {C1, . . . , C`} of subsets of X such that C1 ∪ · · · ∪ C` = X; the
elements of M will be referred to as patches. A minimal cover of X is a cover
M of X such that no proper subset of M is a cover of X. Denote by MC(X)
the set of minimal covers of X. Since no minimal cover of X can have more
than |X| patches and each patch is a subset of X, we have |MC(X)| ≤ 2|X|

2

.
If X is a set of integers, and M is a minimal cover of X, we may assume the
patches of M to be enumerated in some standard way as C1, . . . , C`.

Lemma 20. Let ϕ be an FLm= 1T-formula (m ≥ 3). We can compute, in time
bounded by an exponential function of ||ϕ||, an FLm−1

= 1T-formula ψ such that
ϕ and ψ are satisfiable over the same domains.

Proof. By Lemma 14, we may take ϕ to be in normal form, as given by (8):∧
i∈I
∀m−1(µi → ∃(κi ∧ γi)) ∧

∧
j∈J
∀m−1(νj → ∀δj).

We may further assume without loss of generality that the indices in I are
integers. Let Σ be the signature of ϕ and Σ− the result of removing from Σ
all predicates of arity m. If χ is any quantifier-free FL-formula over Σ, let χ◦

be the strongest quantifier-free FL-formula over Σ− such that |= χ → χ◦, as
in Lemma 17. To motivate the ensuing construction, we suppose that ϕ has a
model A, and describe how to expand A to a structure A+ interpreting certain
additional predicates of arities m−1 and m−2. We then define the sought-after
FLm−1

= 1T-formula ψ in such a way that A+ |= ψ. To complete the proof, we
show that any model B |= ψ can be expanded to a model B+ |= ϕ.

For each I ′ ⊆ I and each J ′ ⊆ J , let pI′,J′ and qJ′ be fresh (m − 2)-
ary predicates. Further, for each minimal cover M = {C1, . . . , C`} ∈ MC(I ′)
(enumerated in the standard way), let pI′,J′,M be a fresh (m− 2)-ary predicate,
and for each h (1 ≤ h ≤ `), let pI′,J′,M,h be a fresh (m − 1)-ary predicate.
The structure A+ interprets these new predicates over A as follows. For any
(m − 2)-tuple ā and any I ′ ⊆ I and J ′ ⊆ J , we set A+ |= pI′,J′ [ā] just in case
there exists an a ∈ A such that A |= µi[a, ā] for all i ∈ I ′ and A |= νj [a, ā] for all
j ∈ J ′. Similarly, we set A+ |= qJ′ [ā] just in case there exists an a ∈ A such that

28



A |= νj [a, ā] for all j ∈ J ′. Thus, pI′,J′ tells that a given (m− 2) tuple ā is the
‘tail’ of an (m− 1)-tuple aā satisfying the µi and νj specified in the respective
sets I ′ and J ′; and similarly for qJ′ . Now suppose that A+ |= pI′,J′ [ā], and pick
some a ∈ A such that aā satisfies the µi and νj as specified by I ′ and J ′. (If
there are several possibilities for a, choose one arbitrarily.) Since A |= ϕ, there
exists, for each i ∈ I ′, some b′i ∈ A such that A |= µi[aāb

′
i]. Hence there exists

a minimal cover M = {C1, . . . , C`} of I ′, and distinct elements b1, . . . , b` of A
such that, for all h (1 ≤ h ≤ `), the m-tuple 〈a, ā, bh〉, satisfies the quantifier-
free formula

∧
i∈Ch

(κi ∧ γi) ∧
∧
j∈J′ δj . Actually, we can say a little more. The

various κi mentioned in this formula are all control formulas—i.e. of the forms
±T ∧ ± =. Since these four possibilities are mutually exclusive, the κi must
be identical. Call a minimal cover M = {C1, . . . , C`} of I ′ consistent if, for
each patch Ch, the formulas κi are all the same for all i ∈ Ch, and thus may
be denoted κh. Write MCC(I ′) for the set of minimal covers of I ′ that are
consistent in this sense. Thus, there exist M = {C1, . . . , C`} in MCC(I ′), and
distinct elements b1, . . . , b` of A such that, for all h (1 ≤ h ≤ `), A |= χ[a, ā, bh],
where χ is the quantifier-free formula

κh ∧
∧
i∈Ch

γi ∧
∧
j∈J′

δj . (21)

It follows that A |= χ◦[a, ā, bh], and thence, since χ◦ features no predicates
of arity m, that A |= χ◦[ā, bh]. Notice that we are using the fact that χ◦ is
fluted: no predicate of arity m − 1 or lower can ‘see’ the element a. Now set
A+ |= pI′,J′,M [ā], and for all h (1 ≤ h ≤ `), set A+ |= pI′,J′,M,h[ā, bh]. Thus,
pI′,J′,M tells us that the required witnesses for aā may be selected in accordance
with the minimal cover M of I ′, while the predicates pI′,J′,M,h actually identify
those witnesses. Defining ψ to be the conjunction of the formulas∧

I′⊆I

∧
J′⊆J

∀m−1
( ∧
i∈I′

µi ∧
∧
j∈J′

νj → pI′,J′
)

(22)

∧
J′⊆J

∀m−1
( ∧
j∈J′

νj → qJ′
)

(23)

∧
I′⊆I

∧
J′⊆J

∀m−2
(
pI′,J′ →

∨
M∈MCC(I′)

pI′,J′,M
)

(24)

∧
I′⊆I

∧
J′⊆J

∧
M∈MCC(I′)

∀m−2
(
pI′,J′,M →

|M |∧
h=1

∃
(
pI′,J′,M,h ∧

(
κh ∧

∧
i∈Ch

γi ∧
∧
j∈J′

δj
)◦)) (25)

∧
J′⊆J

∀m−2
(
qJ′ → ∀

( ∧
j∈J′

δj
)◦)

(26)

∧
I′⊆I

∧
J′⊆J

∧
M∈MC(I′)

∧
1≤h<h′≤|M |

∀m−1¬(pI′,J′,M,h ∧ pI′,J′,M,h′). (27)
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we have A+ |= ψ. Indeed, the truth of conjuncts (22)–(25) is immediate by
construction of A+; the conjuncts (26) follow straightforwardly from the uni-
versal requirements of ϕ; and the conjuncts (27) reflect the fact that, for each
possible choice of I ′, J ′ and M ∈ MCC(I ′), the various witnesses b1, . . . , b`
chosen in the construction of the predicates pI′,J′,M,h are distinct. Of course,
ψ depends only on ϕ, and not on the structure A; nevertheless, we have shown
that if ϕ is satisfiable over some domain A, then so is ψ. Observe also that ψ is
in FLm−1

= 1T; in particular, there are no predicates of arity m.
We claim that, if ψ is satisfiable over some domain B, then so is ϕ. For

suppose B |= ψ. We expand to a structure B+ interpreting the m-ary predi-
cates of ϕ. Fix for the moment some element a and (m − 2)-tuple of elements
ā, and define I ′ = {i ∈ I | B |= µi[a, ā]} and J ′ = {j ∈ J | B |= νj [a, ā]}. It
follows from (22) that B |= pI′,J′ [ā]. Indeed, from (24), there exists a consis-
tent minimal cover M = {C1, . . . , C`} of I ′ such that B |= pI′,J′,M [ā], whence
from (25), we can find elements b1, . . . , b` such that, for all h (1 ≤ h ≤ `),
B |= pI′,J′,M,h[ā, bh] and B |= χ◦[ā, bh], where χ is as in (21). Letting τ− =

ftpB[ā, bh], it follows from Lemma 17 that there exists a fluted m-type τ ⊇ τ−

such that |= τ → χ. Thus, we may interpret the m-ary predicates of ϕ in

B+ in such a way that ftpB+

[a, ā, bh] = τ . From (27), the bh are all dis-
tinct, so that this may be done for all h (1 ≤ h ≤ `) without clashes. Indeed,
we may carry out this process for all m-tuples (a, ā), again without fear of
clashes, since it is only fluted m-types that are being assigned. We have thus
ensured that, however B+ is completed, all of the witness requirements in ϕ
are satisfied, and, furthermore, none of the fluted m-types so far assigned vi-
olates any of the universal requirements of ϕ. To complete the definition of
B+, let 〈a, ā, b〉 be an m-tuple for which the extensions of the m-ary predi-
cates have not been fixed. Again, let J ′ = {j ∈ J | B |= νj [a, ā]}. It follows

from (23) that B |= qJ′ [ā], and thence from (26) that B |=
(∧

j∈J′ δj

)◦
[ā, b].

Now let τ− = ftpB[ā, b], so that, by Lemma 17, there exists a fluted m-type

τ ⊇ τ− such that |= τ →
(∧

j∈J′ δj

)
. Hence we may interpret the m-ary

predicates of ϕ in B+ so that ftpB+

[a, ā, b] = τ . At the end of this process,
B+ |=

∧
j∈J ∀m(νj → ∀δj). Thus, B+ |= ϕ.

We remark that, in the proof of Lemma 20, no unary or binary predicates
encountered in the structures considered were disturbed. Thus, the lemma does
not hinge on any properties of the distinguished predicates T̂ or T except their
arity: it would hold whatever constraints are imposed on their interpretations.
The only feature of the logic we are using here is flutedness.

We have finally reached the goal of this section.

Theorem 21. The satisfiability problem for FLm= 1T is in m-NExpTime for
all m ≥ 1.

Proof. The case m = 1 is trivial, so suppose m ≥ 2. Let an FLm= 1T-sentence ϕ
be given. By Lemma 14, we may assume without loss of generality that ϕ is in
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normal form. We proceed by induction, starting with m = 2. The base case is
Lemma 19. For the recursive case, Lemma 20 reduces the original problem to
the corresponding problem for m− 1, but with an exponential blow-up.

Before moving to the next section we obtain a corollary concerning the finite
satisfiability problem.

Corollary 22. The finite satisfiability problem for FLm= 1T is in
(m+ 1)-NExpTime.

Proof. The proof differs from the proof of Theorem 21 only in the base case,
where we apply the fact that the finite satisfiability problem for FO2 with one
transitive relation and equality is decidable in 3-NExpTime [16]; this complex-
ity bound obviously applies to FL=1T.

4. Fluted Logic with more Transitive Relations

In the previous section, we considered FLm extended with a single tran-
sitive relation and equality. In this section we consider FL2 extended with
more transitive relations. Specifically, we show that the satisfiability and finite
satisfiability problems for FL2

=2T (two-variable fluted logic with two transi-
tive relations and equality) or for FL23T (two-variable fluted logic with three
transitive relations but without equality), are all undecidable.

A tiling system is a tuple C = (C, H, V ), where C is a finite set of tiles, and
H, V ⊆ C ×C are the horizontal and vertical constraints. A tiling of N2 for C is
a function f : N2 → C, such that for all X,Y ∈ N, (f(X,Y ), f(X + 1, Y )) ∈ H
and (f(X,Y ), f(X,Y + 1)) ∈ V . Intuitively, we think of f as assigning (a copy
of) some tile in C to each point with integer coordinates in the upper-right
quadrant of the plane: this assignment must respect the horizontal and vertical
constraints, understood as a list of which tiles may be placed immediately to the
right of—respectively, immediately above—which others. A tiling is periodic if
there exist m, n such that, for all X and Y , f(X + m,Y ) = f(X,Y + n) =
f(X,Y ); we refer to m and n as periods of the tiling. Alternatively, such a
periodic tiling of N2 can be seen as a tiling of the toroidal grid obtained by
identifying all pairs of points (X,Y ) and (X + m,Y ), and all pairs of points
(X,Y ) and (X,Y + n). We also consider tilings of finite initial segments of N2.
If m and n are natural numbers, denote by N2

m,n the subset [0,m−1]× [0, n−1]
of N2. A tiling of N2

m,n is a function f : N2
m,n → C, such that for all X, Y

(0 ≤ X < m− 1, 0 ≤ Y ≤ n− 1), (f(X,Y ), f(X + 1, Y )) ∈ H and for all X, Y
(0 ≤ X ≤ m − 1, 0 ≤ Y < n − 1), (f(X,Y ), f(X,Y + 1)) ∈ V . If f is a tiling
(of either N2

m,n or N2), we call the value f(0, 0) the initial condition, and, if f
is a tiling of N2

m,n, we call the value f(m− 1, n− 1) the final condition.
We shall require several undecidability results concerning tiling systems. The

infinite tiling problem with initial condition is the following: given a tiling system
C = (C, H, V ) and a tile C0 ∈ C, does there exist a tiling of N2 for C with initial
condition C0? The finite tiling problem with initial and final conditions is the
following: given a tiling system C and tiles C0, C1 ∈ C, do there exist positive
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m, n and a tiling of N2
m,n for C with initial condition C0 and final condition

C1? The unconstrained infinite tiling problem is the following: given a tiling
system C, does there exist a tiling of N2 for C? The periodic tiling problem is
the following: given a tiling system C, does there exist a periodic tiling of N2

for C?
The use of constrained tiling systems to prove undecidability results was

pioneered in [28]; by encoding infinite runs of Turing machines as tilings of N2

(and finite runs as tilings of N2
m,n) it is relatively straightforward to show:

Proposition 23. The infinite tiling problem with initial condition and the finite
tiling problem with initial and final conditions are both undecidable.

Equating a problem with its set of positive instances, we recall that problems
A and B are recursively inseparable if there exists no decidable problem S such
that A ⊆ S and B ∩ S = ∅. Obviously, if A and B are recursively inseparable,
then neither problem is decidable. The following result requires an elaborate
analysis (see e.g. [2, p. 90 and Appendix A] for a comprehensive treatment).

Proposition 24. The periodic tiling problem and the complement of the un-
constrained infinite tiling problem are recursively inseparable.

Typically, fragments of first-order logic whose satisfiability problems are un-
decidable have undecidable finite satisfiability problems and vice versa, and
Prop. 24 is sometimes used in this context to give simultaneous proofs that
both problems for some fragment are undecidable. This, indeed, is the strategy
we employ in Sec. 4.1. In Sec. 4.2, by contrast, we are forced to adopt a more
straightforward, if rather less neat, approach based on Prop. 23.

4.1. The case of two transitive relations

In this section we show that both the satisfiability and the finite satisfiability
problems for FL2

=2T are undecidable. (Recall from Example 2 that FL22T
admits infinity axioms.) We do this by showing how to map a tiling system C
effectively to an FL2

=2T-formula ηC in such a way that: (i) if N2 has a periodic
tiling for C, then ηC is finitely satisfiable; and (ii) if ηC is satisfiable, then N2

has a tiling for C. The result then follows from Prop. 24.
The formula ηC features a conjunct ϕgrid whose canonical model, shown in

Fig. 4, has as its domain the unbounded integer plane Z2. The signature of ϕgrid
consists of the two distinguished binary predicates T1 and T2, together with the
unary predicates ci,j (0 ≤ i, j ≤ 3), which we call local address predicates. The
element with coordinates (X,Y ) satisfies the local address predicate ci,j , where
i = X mod 4 and j = Y mod 4; and the T1- and T2-links connect nearby
elements in the regular pattern shown. We proceed to construct ϕgrid as the
conjunction of (28)-(36).

There is an initial element:
∃c0,0. (28)
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Figure 4: Canonical model of ϕgrid over N2, showing the two transitive relations T1 and T2.
Edges without arrows represent connections in both direction. Elements are labelled with the
indices of the local address predicate cij they satisfy.

The predicates ci,j enforce a partition of the universe:

∀
(∨̇

0≤i≤3

∨̇
0≤j≤3

ci,j
)
. (29)

Transitive paths do not connect distinct elements with the same local address:∧
0≤i,j≤3

∀(ci,j → ∀((T1 ∨ T2) ∧ ci,j →=)). (30)

Each element belongs to a 4-element T1-clique:∧
i,j∈{0,2}

∀
(
(ci,j → ∃(T1 ∧ ci+1,j)) ∧ (ci+1,j → ∃(T1 ∧ ci+1,j+1))∧

(ci+1,j+1 → ∃(T1 ∧ ci,j+1)) ∧ (ci,j+1 → ∃(T1 ∧ ci,j))
)
. (31)

Each element belongs to a 4-element T2-clique:∧
i,j∈{1,3}

∀
(
(ci,j → ∃(T2 ∧ ci+1,j)) ∧ (ci+1,j → ∃(T2 ∧ ci+1,j+1))∧

(ci+1,j+1 → ∃(T2 ∧ ci,j+1)) ∧ (ci,j+1 → ∃(T2 ∧ cij))
)
. (32)

Certain pairs of elements connected by one transitive relation are also connected
by the other one, specifically:∧

i=0,2

∀(ci,i → ∀((T1 ∨ T2) ∧ (ci,i−1 ∨ ci−1,i)→ (T1 ∧ T2)) (33)

∧
i=1,3

∀(ci,i → ∀((T1 ∨ T2) ∧ (ci,i+1 ∨ ci+1,i)→ (T1 ∧ T2)) (34)

∧
i=0,2

∀(ci,i+1 → ∀((T1 ∨ T2) ∧ (ci,i+2 ∨ ci−1,i+1)→ (T1 ∧ T2)) (35)
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∧
i=1,3

∀(ci,i−1 → ∀((T1 ∨ T2) ∧ (ci,i ∨ ci,i−2)→ (T1 ∧ T2)). (36)

A quick check shows that the structure depicted in Fig. 4 is indeed a model
of ϕgrid. Actually, a little more is true. As this structure repeats in a regular
fashion, we easily obtain a finite model of ϕgrid over the toroidal grid Z4m×Z4n

(for all m,n > 0) by identifying elements from columns 0 and 4m and from rows
0 and 4n. Observe that the formulas (31) and (32) work in tandem with (30).
Specifically, both (31) and (32) generate, for a given element a with local address
ci,j four new elements of certain local addresses such that the fourth element,
say a′, has the same local address as the element a. Formula (30) then implies
a = a′, hence the element a is a member of a 4-element T1-clique and a member
of a (distinct) 4-element T2-clique; members of these cliques can be uniquely
identified by their local addresses (cf. Fig. 4).

We now show that, conversely, if A |= ϕgrid, then the standard grid N2 can
be embedded in A. The core of the proof is the (rather technical) Lemma 25,
concerning the formulas hi,j and vi,j , defined, for all i, j in the range 0 ≤ i, j < 4,
as follows:

hi,j :=

{
T1 ∧ ci+1,j if i is even

T2 ∧ ci+1,j otherwise
vi,j :=

{
T1 ∧ ci,j+1 if j is even

T2 ∧ ci,j+1 otherwise.

Intuitively, the lemma states that every element a satisfying ci,j is related by
hi,j to some ‘horizontal neighbour’, b, and by vi,j to some ‘vertical neighbour’, a′

(both satisfying the expected local address predicates); moreover, the resulting
system of horizontal and vertical neighbours exhibits the usual grid confluence
pattern.

Lemma 25. In any model A, of ϕgrid, the following hold for any i, j in the
range 0 ≤ i, j < 4:

A |= ci,j [a] ⇒ there exists b s.t. A |= hi,j [a, b] and a′ s.t. A |= vi,j [a, a
′] (37)

A |= ci,j [a] ∧ hi,j [a, b] ∧ vi,j [a, a′] ∧ vi+1,j [b, b
′] ⇒ A |= hi,j+1[a′, b′]. (38)

Proof. Let a ∈ A and A |= ci,j [a]. The existence of b in (37) is immediate
from (31) for i, j even, and from (32) for i, j odd. Suppose i is even and j is odd.
By the last conjunct of (31), there is a1 ∈ A such that A |= T1[a, a1]∧ ci,j−1[a1].
By (31) again, there are a2, a3, a4 ∈ A such that A |= T1[a1, a2] ∧ ci+1,j−1[a2] ∧
T1[a2, a3]∧ci+1,j [a3]∧T1[a3, a4]∧ci,j [a4]. By transitivity of T1, A |= T1[a, a4] and
by (30), a = a4, so the elements a, a1, a2, a3 form a T1-clique in A, hence T1[a, a3]
holds and, indeed, A |= hi,j [a, a3]. In the same way we show the existence of b
when i is odd and j even, and, also, the existence of a′. We should regard the
witnesses for the formulas ∃hi,j and ∃vi,j with respect to any element a are the
horizontal and vertical neighbours, respectively, of a.

We now establish (38) proceeding separately for the possible indices i and
j. Consider first the case i = j = 0, and suppose a, a′, b and b′ are elements
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of A such that A |= c0,0[a] ∧ T1[a, b] ∧ c1,0[b] ∧ T1[a, a′] ∧ c0,1[a′] ∧ T1[b, b′] ∧
c1,1[b′]. By (31) b′ is a member of a T1-clique consisting of elements of local
addresses c1,1, c0,1, c0,0, c1,0. Since by (30) the relation T1 does not connect
distinct elements of the same local address, a′ belongs to the T1-clique of b′, so
A |= T1[a′, b′], and the claim follows.

Consider now the case i = 3, j = 0, and suppose a, a′, b and b′ are elements
such that A |= c3,0[a] ∧ T1[a, a′] ∧ c3,1[a′] ∧ T2[a, b] ∧ c0,0[b] ∧ T1[b, b′] ∧ c0,1[b′].
Applying (32) together with (30) to b, we see that b is a member of a 4-element
T2-clique consisting of elements of local addresses c0,0, c3,0, c3,3, c0,3. By (30),
a is a member of this clique, whence A |= T2[b, a]. By (33), A |= T1[b, a].
Moreover, b′ is in a T1-clique of b, and so A |= T1[b′, b]. By transitivity of T1,
A |= T1[b′, a′]. Now, by (35), A |= T2[b′, a′]. By (32), a′ is a member of a
T2-clique that, by (30), must contain b′. Hence h3,0[a′, b′] holds and the claim
follows.

The remaining cases are dealt with similarly.

Using Lemma 25, we show how the infinite grid N2 can be embedded into any
model A |= ϕgrid. Specifically, we define a function ι : N2 → A as follows. Set
ι(0, 0) to be some witness for (1). By (37), we may choose ι(1, 0), ι(2, 0), . . . such
that, for all X ≥ 0, setting i = X mod 4, we have A |= hi,0[ι(X, 0), ι(X+1, 0)];
and then, for every X ≥ 0, we may choose ι(X, 1), ι(X, 2), . . . such that for
every Y ≥ 0, setting j = Y mod 4, we have A |= vi,j [ι(X,Y ), ι(X,Y + 1)].
A simple induction on Y using (38) then shows that, for all X and Y , A |=
hi,j [ι(X,Y ), ι(X + 1, Y )].

We can now effectively map any tiling system C to an FL2
=2T-formula ηC,

formed by the conjunction of ϕgrid with the following formulas.

Each node encodes precisely one tile:

∀
( ∨
C∈C

C ∧
∧
C 6=D

(¬C ∨ ¬D)
)
. (39)

Adjacent tiles respect H and V :∧
C∈C

∧
0≤i,j<4

∀
(
C ∧ ci,j → ∀

(
(hi,j →

∨
C′:(C,C′)∈H

C ′) ∧ (vi,j →
∨

C′:(C,C′)∈V

C ′)
))
. (40)

We make two observations. (i) If f is a periodic tiling of N2 for C, with periods
m and n, then we can take the 4m×4n toroidal model of ϕgrid, and expand to a
model of ηC by setting any predicate C ∈ C to be satisfied by (X,Y ) ∈ N2 just in
case f(X,Y ) = C. It is a simple matter to check that ηC is true in the resulting
structure. (ii) If A |= ηC, then A |= ϕgrid, and so there exists a grid embedding
ι : N2 → A. We then define a function f : N2 → C by setting f(X,Y ) to be
the unique tile C ∈ C such that A |= C[ι(X,Y )], which is well-defined by (39).
By (40), f is a tiling for C.

Theorem 26. The satisfiability problem and finite satisfiability problems for
FL2

=2T are both undecidable.
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Proof. It suffices to show that Sat(FL2
=2T) and the complement of the problem

FinSat(FL2
=2T) are recursively inseparable. Now the mapping C 7→ ηC con-

structed above is effective. But we have just shown that: (i) if N2 has a periodic
tiling for C, then ηC is finitely satisfiable; and (ii) if ηC is satisfiable, then N2

has a tiling for C. The theorem then follows by Prop. 24.

A quick check reveals that the formula ηC lies in the guarded fragment of
first-order logic. Moreover, the proof of Lemma 25 remains valid even if T2 is
required to be an equivalence relation. Thus we have:

Corollary 27. The satisfiability problem and the finite satisfiability problems
for the intersection of FL2

=2T with the guarded fragment are both undecidable.
This result continues to hold if, in place of FL2

=2T, we have FL2
=1T1E, the

two-variable fluted fragment together with identity, one transitive relation and
one equivalence relation.

We conclude Sec. 4 by remarking that decidability of the satisfiability and
the finite satisfiability problems for FLm2T remains open for every m ≥ 2. We
showed in Example 2 that these two problems are distinct.

4.2. The case of three transitive relations

In this section we show that the satisfiability problem and the finite satis-
fiability problem for FL23T are both undecidable. (Note that equality is not
available in this logic.) We start by reducing the infinite tiling problem to the
satisfiability problem.

We write a formula ϕgrid whose canonical model has as its domain the upper-
right quadrant of the integer plane, N2. Our construction employs a boustro-
phedon,1 that is, a bijection ς : N 7→ N2, such that for all n, ς(n + 1) is a grid
neighbour of ς(n). Many such functions exist; we shall avail ourselves of the
one depicted by the thick grey arrow in Fig. 5. Denoting ς(t) by (Xt, Yt), it is
defined inductively by setting ς(0) = (0, 0) and, for all t ≥ 0:

ς(t+ 1) =



(Xt, Yt + 1) if Xt = 0 and Yt even,

(Xt + 1, Yt) if Yt > Xt and Yt odd,

(Xt, Yt − 1) if Xt ≥ Yt > 0 and Xt odd,

(Xt + 1, Yt) if Yt = 0 and Xt odd,

(Xt, Yt + 1) if Xt > Yt ≥ 0 and Xt even,

(Xt − 1, Yt) if Yt ≥ Xt > 0 and Yt even.

(41)

Beginning with ς(0) = (0, 0), the first clause of (41) yields ς(1) = (0, 1). If now
u ∈ N is such that σ(u) = (0, k) for some odd k, the remaining clauses yield as

1In linguistics: written from right to left and from left to right in alternate lines. Etymology:
Greek, literally ‘as an ox turns in ploughing’, from bous ‘ox’ + -strophos ‘turning’.
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subsequent values:

a rightward row (0, k), . . . , (k − 1, k) of k points,
a downward column (k, k), . . . , (k, 0) of k + 1 points,
an upward column (k + 1, 0), . . . , (k + 1, k + 1) of k + 2 points, and
a leftward row (k, k + 1), . . . , (0, k + 1) of k + 1 points.

(42)

At that point, the first clause again yields the point (0, k + 2), and the process
repeats.
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Figure 5: Intended expansion of the N2 grid with three transitive relations T0, T1 and T2.
Solid arrows represent generated edges; direction of these arrows follows the boustrophedon
order indicated by the thick grey path starting at the origin. Dashed arrows represent edges
induced by transitivity. Dotted arrows represent edges induced by transfer formulas. The
meaning of the yellow arrows is explained later (cf. page 50).

The formula ϕgrid comprises a large number of conjuncts. To help give an
overview of the construction, we have organized these conjuncts into four groups
called labelling constraints, generation rules, transfer formulas, and control for-
mulas; each of them secures a particular property exhibited by its models. We
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use the following notational conventions. If i is an integer, i/2 indicates in-
teger division without remainder (e.g., 5/2 = 2); moreover, bick denotes the
remainder of i on division by k, and bic (i.e., without the subscript) denotes
bic6.

The signature of ϕgrid features, in addition to the (distinguished) binary
predicates T0, T1 and T2, the unary predicates ci,j and di,j (0 ≤ i, j ≤ 5) and
bt, lf, dg and dg+. We call the ci,j and di,j local address predicates, and the
predicates bt, lf, dg and dg+ control predicates. To aid visualization, we also
refer to the distinguished predicates T0, T1 and T2 as colours, often replacing
them by the respective synonyms black, green and red.

To motivate the definition of ϕgrid, we first describe an intended model
A0 |= ϕgrid, illustrated in Fig. 5. As we shall see in the sequel (Lemma 36), this
model is canonical : it embeds into any other model of ϕgrid. The domain of A0

is the set of grid points N2. We interpret the local address predicates as follows:
if a = (X,Y ), then A0 |= ci,j [a] just in case Y > X, i = bXc and j = bY c, and
A0 |= di,j [a] just in case Y ≤ X, i = bXc and j = bY c. (Remember that bnc
denotes n modulo 6.) Thus, ci,j indicates an element strictly above the diagonal,
and di,j an element on or strictly below the diagonal, with the indices giving the
coordinates of that element modulo 6. The control predicates are interpreted
as follows: if a = (X,Y ), then A0 |= bt[a] just in case Y = 0, A0 |= lf[a] just in
case X = 0 and Y > 0, A0 |= dg[a] just in case Y = X, and A0 |= dg+[a] just in
case Y = X + 1. Thus, we gloss bt as “is on the bottom row”, lf as “is on the
left-most column, but not the origin”, dg as “is on the diagonal” and dg+ as
“is on the super-diagonal”. The colours T0 (black), T1 (green) and T2 (red) are
interpreted as the transitive closures of the solid or dotted arrows having the
respective colours in Fig. 5. (The dashed arrows are induced by transitivity; we
refer to them in the argument below.) For example: (3,2) is related by black
to (3,1), (3,0), (4,0), (4,1), (4,2), by green to (4,2), (4,3), (4,4), (3,4) and by
red to (3,1). Note that pairs of elements can be joined by up to two colours,
and that very distant elements are always unrelated. The general pattern is
that the arrows along downward pointing sequences cycle in pairs through the
colours black, red, and green, while upward pointing sequences cycle through
the colours black, green and red. Similarly for leftward pointing and rightward
pointing sequences. Links between adjacent columns below the diagonal and
adjacent rows above the diagonal follow a similar repeating pattern. Always
remember also that these colours are transitive relations. We shall show in the
course of the ensuing argument that any model A |= ϕgrid homomorphically
embeds a copy of A0, in a sense that we shall make precise.

We begin with two very simple conjuncts of ϕgrid, which we together refer
to as the labelling constraints. The first states that the local address predicates
partition the universe:

∀
( ∨̇

0≤i,j≤5

ci,j ∨̇
∨̇

0≤i,j≤5

di,j
)
. (43)

The second relates local address predicates and the control predicates as sug-
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gested by the glosses above:

∀(bt→
5∨
i=0

di,0)∧∀(lf→
5∨
j=0

c0,j)∧∀(dg→
5∨
i=0

di,i)∧∀(dg+ →
5∨
j=0

cj,bj+1c). (44)

A quick check shows that these formulas are both true in A0.
The next group of conjuncts of ϕgrid all involve existential quantifiers, and

we call them the generation rules. The first two are simple. There is an ‘initial’
element satisfying the predicates d0,0, dg and bt.

∃(d0,0 ∧ dg ∧ bt). (45)

Any model A |= ϕgrid contains an element satisfying d0,0, dg and bt. To aid
readability in the sequel, we suppress reference to the model A where it is clear
from context; thus we simply write d0,0[a] instead of A |= d0,0[a], and so on.
Hence, (45) gives us an element a0 of A such that d0,0[a0], bt[a0], dg[a0]. The
next generation rule ensures that this element has a T1- (i.e. green-) successor,
say a1, satisfying c0,1, dg+ and lf:

∀(bt ∧ dg→ ∃(c0,1 ∧ dg+ ∧ lf ∧ T1). (46)

Applying this universally quantified formula to our element a0, we obtain a
witness a1 such that c0,1[a1], lf[a1], dg+[a1] and T1[a0, a1]. We remark that
these formulas are satisfied in A0, by putting a0 = (0, 0) and a1 = (0, 1).

The remaining generation rules are more complicated. Elements satisfying
di,j (but not both bt and dg) have successors given by the following conjuncts:

∧
i=0,2,4

5∧
j=0

∀(di,j ∧ ¬dg→ ∃(di,bj+1c ∧ ¬bt ∧ Tbj/2c3 ∧ Tb(j+1)/2+1c3)) (47)

∧
i=1,3,5

5∧
j=0

∀(di,j ∧ ¬bt→ ∃(di,bj−1c ∧ ¬dg ∧ Tbj/2+1c3 ∧ Tb(j+1)/2−1c3)) (48)

∧
i=1,3,5

∀(di,0 ∧ bt ∧ ¬dg→ ∃(dbi+1c,0 ∧ bt ∧ ¬dg ∧ T0)) (49)

∧
i=0,2,4

∀(di,i ∧ ¬bt ∧ dg→ ∃(cbi−1c,i ∧ dg+ ∧ ¬lf ∧ Tbi/2−1c3 ∧ Tbi/2c3)). (50)

Likewise, elements satisfying ci,j have successors given by the following con-
juncts:

∧
j=0,2,4

5∧
i=0

∀(ci,j ∧ ¬lf→ ∃(cbi−1c,j ∧ ¬dg+ ∧ Tbi/2−1c3 ∧ Tb(i+1)/2c3)) (51)

∧
j=1,3,5

5∧
i=0

∀(ci,j ∧ ¬dg+ → ∃(cbi+1c,j ∧ ¬lf ∧ Tbi/2+1c3 ∧ Tb(i+1)/2−1c3)) (52)
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∧
j=0,2,4

∀(c0,j ∧ lf→ ∃(c0,j+1 ∧ lf ∧ ¬dg+ ∧ T1)) (53)

∧
j=1,3,5

∀(cj−1,j ∧ dg+ → ∃(dj,j ∧ dg ∧ ¬bt ∧ Tb(j+1)/2c3 ∧ Tb(j+3)/2c3)). (54)

To understand these formulas, consider our arbitrary model A |= ϕgrid, and
suppose that we have generated a sequence a0, . . . , au of elements such that lf[au]
and c0,j [au], with j odd. (Note that this is actually the case: the sequence a0, a1

satisfies these conditions.) Then either of the generation rules (52) and (54)
applies to au, depending on whether dg+[au]. If ¬dg+[au], then rule (52) applies,
and au is related, this time by T1 and T2, to some element, say au+1 such that
c1,j [au+1]. If also ¬dg+[au+1], then rule (52) again applies, and au+1 is related
by T1 and T0 to some element, say au+2, such that c2,j [au+2]. In this way we
obtain a sequence of elements successively satisfying the predicates ci,j , with
i cycling through the numbers 0, . . . , 5 and j constant. We call any sequence
au, . . . , as in which lf[au], s ≥ u, and successive elements are generated by
rule (52), a rightward sequence, and we refer to j as the latitude of that sequence.
Necessarily, j ∈ {1, 3, 5}. If, in addition, dg+[as], then this process stops, and
we call au, . . . , as a rightward row. We remark that the existence of at least
one rightward row in any model A |= ϕgrid is guaranteed: since dg+[a1] and
c0,1[a1], it follows that a1 is a rightward row of length 1 and latitude 1. Notice
in particular the sequence of colours with which each element in a rightward
row is related to its successor, as specified by rule (52). Let us call these—in
the order they appear in the formula—the primary colour and the secondary
colour, respectively. Remembering our mnemonics black, green and red for T0,
T1 and T2, respectively, the sequences of primary and secondary colours on any
rightward sequence are

green, green, red, red, black, black, green, . . .

red, black, black, green, green, red, red, . . .

repeating (as long as the sequence continues) with a period of six. In the struc-
ture A0 (Fig. 5), the elements of the odd-numbered rows from the left margin
to the super-diagonal (inclusive) form rightward rows; the primary colours are
drawn below, and the secondaries above. (For example, look at row 9.) Sum-
marizing these observations:

Lemma 28. Let au, . . . , as be a rightward row of latitude j ∈ {1, 3, 5} in a
model of ϕgrid. Then cbhc,j [au+h] for all h (0 ≤ h ≤ s − u), ¬lf[au+h] for all

h (0 < h ≤ s − u) and ¬dg+[au+h] for all h (0 ≤ h < s − u). Moreover,
Tbh/2+1c3 [au+h, au+h+1] and Tb(h+1)/2−1c3 [au+h, au+h+1] for all h (0 ≤ h <
s− u).

Now consider any rightward row au, . . . , as of latitude j. In particular,
dg+[as], and for some i, ci,j [as]. In fact, by the third conjunct of (44), there is
only one possibility for i, namely, cbj−1c,j [as]. In this case, therefore, rule (54)
applies, and generates a successor, as+1, satisfying the predicates dj,j , dg, and
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¬bt. To make the subsequent argument easier to follow, we write i for the cur-
rent (odd) value of j. That is, we have di,i[as+1], dg[as+1], and ¬bt[as+1]. At
this point, rule (48) applies, yielding as+2 such that di,bi−1c[as+2]. If ¬bt[as+2],
then rule (48) again applies, and we have di,bi−2c[as+3]. In this way we obtain
a sequence of elements satisfying the respective predicates di,j , with j cycling
backwards (starting at j = i) through the numbers 0, . . . , 5, and i constant. We
call any sequence as+1, . . . , at in which dg[as+1], t ≥ s + 1, and successive ele-
ments are generated by rule (48), a downward sequence, and we refer to i as the
longitude of that sequence. Necessarily, i ∈ {1, 3, 5}. If, in addition, bt[at], then
this process stops, and we call as+1, . . . , at a downward column. In the structure
A0, the elements of the odd-numbered columns from the diagonal down to the
bottom edge (inclusive) form downward columns. Rule (48) again assigns two
sequences of colours, repeating with a period of 6, linking successive elements
of downward columns, and which we may again call the primary and secondary
sequences. Since a downward column necessarily ends in an element satisfying
a local address predicate di,0, we see from rule (48) that these sequences end as
follows,

. . . , black red, red, green, green, black, black

. . . , green, green, black, black, red, red, green

having repeated in a period of 6 as long as there have been elements in the se-
quence. In the structure A0 (Fig. 5), the elements of the odd-numbered columns
from the diagonal down to the bottom form downward columns; the primary
colours are drawn to the right, and the secondaries to the left.

We next add a conjunct to ϕgrid ensuring that every model contains at least
one downward column. Returning to our arbitrary model A |= ϕgrid, recall that
a1 is a trivial (i.e. length 1) rightward row, and consider the next element, a2,
generated by (54). We know that dg[a2], d1,1[a2] and ¬bt[a2]. Thus rule (50)
applies, and generates a successor, a3, such that d1,0[a3], T1[a2, a3] and T0[a2, a3]
(for the chromatically inclined: T1 is green and T0 black). But we have already
established that T1[a0, a1] and T1[a1, a2], whence, by transitivity, T1[a0, a3]. (For
the model A0, this is indicated in by the dashed arrow from (0, 0) to (1, 0).) At
this point, we add a conjunct to ϕgrid:

∀(d0,0 ∧ bt→ ∀(T1 ∧ d1,0 → bt)).

In fact, this conjunct is subsumed by a collection conjuncts to be added presently,
specifically by formula (62), below. Anticipating this addition, and bearing in
mind that, as we have established, bt[a0] and T1[a0, a3], it follows from the as-
sumption A |= ϕgrid that bt[a3]. Thus a2, a3 is a downward column of length 2
and longitude 1. Summarizing these observations:

Lemma 29. Any model of ϕgrid contains elements a0, . . . , a3 successively re-
lated by T1, such that a1 is a rightward row with latitude 1, and a2, a3 a down-
ward column with longitude 1.
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Suppose now that as+1, . . . , at is any downward column of longitude i ∈
{1, 3, 5}. Since bt[at] and di,0[at] (i odd), generation rule (49) applies, yielding
at+1 such that bt[at+1], dbi+1c,0[at+1] and ¬dg[at+1]. Now generation rule (47)
therefore applies, yielding at+2 such that dbi+1c,1[at+2]. At this point, one of two
possible generation rules apply, namely (47) and (50), depending on whether
dg[at+2]. If ¬dg[at+2], then rule (47) applies, and we have dbi+1c,2[at+3]. In
this way we obtain a sequence at+1, at+2, . . . satisfying the respective pred-
icates dbi+1c,j , with j cycling forwards through the numbers 0, . . . , 5, and i
constant. This process continues until we encounter an element satisfying dg
(if we ever do). We call any sequence at+1, . . . , av in which bt[at+1], v ≥ t+ 1,
and successive elements are generated by rule (47), an upward sequence; if, in
addition, dg[av], we call it an upward column. Note that the only element of
this sequence satisfying bt is at+1. We refer to the constant index i of the local
address predicates di,j as the longitude of the upward sequence. Necessarily,
i ∈ {0, 2, 4}. Furthermore, we observe that at+1, at+2, . . . defines primary and
secondary colour sequences

black, black, green, green, red, red, . . .

green, red, red, black, black, green, . . .

in the by now familiar way, repeating (as long as the sequence continues) with
a period of six. In the structure A0 (Fig. 5), the elements of the even-numbered
column from the bottom to the diagonal (inclusive) form upward columns; the
primary colours are to the left, and the secondaries to the right. Observe that
the sequences of colours obtained for an upward column is thus the reverse of
that for a downward column. (Look, for example at columns 7 and 8 in Fig. 5.)
Summarizing these observations:

Lemma 30. Let as+1, . . . , at be a downward column of longitude i ∈ {1, 3, 5}.
Then di,bhc[at−h] for all h (0 ≤ h ≤ t− s− 1) and ¬dg[at−h] for all h (0 ≤ h <
t− s− 1). Moreover, Tb(h+3)/2c3 [at−h−1, at−h] and Tbh/2c3 [at−h−1, at−h] for all
h (0 ≤ h < t − s − 1). Suppose at+1, . . . , av is an upward sequence following
at. Then dbi+1c,bhc[at+1+h] for all h (0 ≤ h ≤ v − (t + 1)) and ¬bt[at+1+h]
for all h (1 ≤ h ≤ v − (t + 1)). Moreover, Tbh/2c3 [at+1+h, at+1+(h+1)] and
Tb(h+3)/2c3 [at+1+h, at+1+(h+1)] for all h (0 ≤ h < v − (t+ 1)).

As yet, we have no guarantee that the upward sequence mentioned in Lemma 30
cannot be extended indefinitely. We now add to ϕgrid two final groups of con-
juncts which provide such a guarantee. We refer to the first of these as the
transfer formulas:∧

i=1,3,5

∧
j=0,2,4

∀(di,j → ∀(dbi+1c,j ∧ Tbj/2−1c3 → Tbj/2c3)) (55)

∧
i=0,2,4

∧
j=1,3,5

∀(di,j → ∀(dbi+1c,j ∧ Tbj/2−1c3 → Tbj/2+1c3)) (56)

∧
i=0,2,4

∀(di,i ∧ dg→ ∀(ci,bi+1c ∧ Tbi/2c3 → Tbi/2+1c3)) (57)
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∧
i=1,3,5

∀(di,i ∧ dg→ ∀(ci,bi+1c ∧ Tbi/2c3 → Tbi/2−1c3)) (58)

∧
i=0,2,4

∧
j=0,2,4

∀(ci,j → ∀(ci,bj+1c ∧ Tbi/2c3 → Tbi/2+1c3)) (59)

∧
i=1,3,5

∧
j=1,3,5

∀(ci,j → ∀(ci,bj+1c ∧ Tbi/2c3∧ → Tbi/2−1c3)). (60)

We illustrate how these formulas work with reference to the model A0 of Fig. 5.
Consider the elements (3, 2) and (4, 2). Since the former element satisfies d3,2

and the latter d4,2, the transfer formula (55) tells us that if (3, 2) is related
to (4, 2) by T0 (i.e. black, shown by the dashed arrow in Fig. 5), then (3, 2) is
related to (4, 2) by T1 (i.e. green, shown by the dotted arrow). And similarly
for all the other cases in Fig. 5: they allow us in all cases to infer a dotted arrow
(horizontal or vertical) from the adjacent dashed arrow.

For the last group of conjuncts of ϕgrid, we write T� to abbreviate T0∨T1∨T2;
thus T�[a, b] means that a is related to b by at least one of the colours. The
control formulas are the following conjuncts:

5∧
i=0

∀(di,i ∧ ±dg→ ∀(T� ∧ dbi+1c,bi+1c → ±dg)) (61)

5∧
i=0

∀(di,0 ∧ ±bt→ ∀(T� ∧ dbi+1c,0 → ±bt)) (62)

5∧
j=0

∀(cbj−1c,j ∧ ±dg+ → ∀(T� ∧ cj,bj+1c → ±dg+)) (63)

5∧
j=0

∀(c0,j ∧ ±lf→ ∀(T� ∧ c0,bj+1c → ±lf)). (64)

Here, the occurences of ± are assumed to be resolved in the same way within a
numbered display, thus each of (61)-(64) is actually a pair of formulas. These
formulas are again best illustrated with reference to A0. Fix a value of i (0 ≤
i ≤ 5) and consider elements satisfying di,i. Note that there are infinitely many
of these, dotted throughout the model. Formula (61) states that if any such
element a, is related by one of the colour predicates to an element b satisfying
dbi+1c,bi+1c, then a lies on the diagonal if and only if b does. This is true in
A0, since elements are related by colours only to nearby elements. Similarly,
(62) states that if any element a satisfying di,0 is related by one of the colour
predicates to an element b satisfying dbi+1c,0 then a satisfies the predicate bt if
and only if b does. The formulas (63) and (64) function similarly.

We now show how the transfer and control formulas work together to link
elements of a downward column as, . . . , at to those of any following upward
sequence at+1, . . . , av. It transpires that the latter sequence eventually stops at
an element av satisfying dg (so that we have an upward column), and that this
upward column is longer than the preceding downward column by exactly 1;
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moreover, the elements of these columns are connected ‘horizontally’ by colours
as illustrated in Fig. 5. More precisely:

Lemma 31. Let as+1, . . . , at be a downward column of longitude i ∈ {1, 3, 5}
and length ` = t − s in some model of ϕgrid. Then the generation rules yield
an upward column at+1, . . . , av of longitude bi + 1c and length exactly ` + 1.
Moreover, for all h (0 ≤ h ≤ `− 1 ), Tbh/2c3 [at−h, at+1+h].

Proof. To show that there is an upward sequence at+1, . . . , av of length at least
`+ 1, it suffices to show that, for all h (0 ≤ h ≤ `− 1), ¬dg[at+1+h], since that
is the condition for rule (47)—which generates the upward sequence—to keep
on applying. We proceed by induction, showing the stronger claim, namely,
that for all h (0 ≤ h ≤ ` − 1), both ¬dg[at+1+h] and Tbh/2c3 [at−h, at+1+h].
The case h = 0 is immediate, since rule (49) yields an element at+1 such
that T0[at, at+1] and ¬dg[at+1]. Suppose, then, the claim holds for some non-
negative value h < ` − 1; we show that it holds for h + 1. By inductive hy-
pothesis, then, ¬dg[at+1+h], whence rule (47) applies to at+1+h, yielding an
element at+1+(h+1). Also by inductive hypothesis, Tbh/2c3 [at−h, at+1+h], and by
Lemma 30, Tbh/2c3 [at−(h+1), at−h] and Tbh/2c3 [at+1+h, at+1+(h+1)]. Hence, by
transitivity, Tbh/2c3 [at−(h+1), at+1+(h+1)]. If h is even, then (h+1)/2 = h/2 and
so we have Tb(h+1)/2c3 [at−(h+1), at+1+(h+1)] as required. On the other hand, if h
is odd, then (h+1)/2−1 = h/2, so that Tb(h+1)/2−1c3 [at−(h+1), at+1+(h+1)]. But
by Lemma 30, we have di,bh+1c[at−(h+1)] and dbi+1c,bh+1c[at+1+(h+1)],
and so, by the transfer formula (55) (setting j = bh + 1c), we have
Tb(h+1)/2c3 [at−(h+1), at+1+(h+1)], which completes the inductive step.

Finally, putting h = t − s − 1 = ` − 1, we have ¬dg[at+1+(`−1)], whence
rule (47) applies once again to yield an upward sequence at+1, . . . , at+1+` of
length ` + 1, with Tb(h−(`−1))/2c3 [at+1+(`−1), at+1+`]. To prove the lemma, it
suffices to show that dg[at+1+`], since an element satisfying dg by definition
terminates an upward column. From the claim of the previous paragraph, with
h = ` − 1, we have Tb(h−(`−1))/2c3 [at−(`−1), at+1+(`−1)]. By transitivity of this
relation, it follows that Tb(h−(`−1))/2c3 [at−(`−1), at+1+`], and since at−(`−1) =
as+1 is the first element of our downward column, we have dg[at−(`−1)]. Now
apply (61) to infer that dg[at+1+`]. Thus, setting v = t + ` + 2, we obtain an
upward column at+1, . . . , av of length exactly `+ 1, as required.

Having obtained a downward column as+1, . . . , at with longitude i ∈ {1, 3, 5}
together with a subsequent upward column at+1, . . . , av with longitude bi + 1c
in this way, we see that generation rule (50) applies to av, yielding an element
av+1 satisfying ci,bi+1c and dg+, and to which av is related by Tb(i+1)/2c3 . We
observe in passing that, by Lemma 30, Tb(i+1)/2c3 [av−1, av], and by Lemma 31,
Tb(i+1)/2c3 [as+1, av−1], whence by transitivity, Tb(i+1)/2c3 [as+1, av+1], and hence,
by the transfer formula (57),

Tb(i+1)/2+1c3 [as+1, av+1]. (?)

We return to this observation presently. One of the generation rules (51) or (53)
now applies to av+1, depending on whether lf[av+1].
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We call any sequence av+1, . . . , aw in which dg+[av+1], w ≥ v + 1, and suc-
cessive elements are generated by rule (51), a leftward sequence. If, in addition,
lf[aw], then this process stops, and we call av+1, . . . , aw a leftward row. Writing
j for the value bi+ 1c, we see that successive elements satisfy the local address
predicates ci′,j with j constant (the latitude of the sequence) and i′ cycling
through 5, . . . , 0 (starting at bj − 1c). In the case of a leftward row we have
lf[aw], and hence, by the second conjunct of (44), c0,j [aw]. We see therefore
from rule (51) that the primary and secondary colour sequences must end in
the pattern:

. . . , black, black, red, red, green, green

. . . , red, green, green, black, black, red

having repeated in a period of 6 as long as there have been elements in the
sequence. In the structure A0 (Fig. 5), the elements of the even-numbered rows
from the super-diagonal to the left-hand edge (inclusive) form leftward rows;
the primary colours are drawn above, and the secondaries below. Thus, the
sequences of colours obtained for a leftward row is the reverse of that for a
rightward row. (Look, for example at rows 7 and 8 in Fig. 5.) Summarizing
these observations:

Lemma 32. Let av+1, . . . , aw be a leftward sequence of latitude j and length
` = w − v. Then cbj−1−hc,j [av+1+h] for all h (0 ≤ h < `), and ¬dg+[av+1+h]
for all h (0 < h < `). Moreover, Tb(j−h+1)/2c3 [av+1+h, av+1+h+1] and
Tb(j−h+2)/2c3 [av+1+h, av+1+h+1] for all h (0 ≤ h < `).

Now we establish the connection between a rightward row and its subsequent
leftward sequence.

Lemma 33. Let au, . . . , as be a rightward row of with latitude j and length
` = s − u + 1 in some model of ϕgrid. Let this be followed by the downward
column as+1, . . . , at and upward column at+1, . . . , av. Then the generation rules
yield a leftward row av+1, . . . , aw of latitude bj + 1c and length exactly ` + 1.
Moreover, Tb(j−h)/2+2c[as+1−h, av+1+h] for all h (0 ≤ h ≤ `− 1).

The proof proceeds as for Lemma 31 by induction on h, but using Lem-
mas 28 and 32 instead of Lemma 30. The most significant difference is the
base case (h = 0). Note that the latitude j of the rightward row au, . . . , as
equals the longitude i of the subsequent downward column as+1, . . . , at. Re-
ferring to the observation (?), and remembering that i = j is odd, we have
Tbj/2+2c3 [as+1, av+1] as required. For the inductive case, we employ transitiv-
ity and the transfer formula (59) to move backwards through au, . . . , as and
forwards through av+1, . . . , aw, analogously to Lemma 31.

At this point, the pattern repeats, but with axes transposed. By reasoning
almost identical to that of Lemma 31, we have:

Lemma 34. Let as+1, . . . , at be a leftward row with latitude j and length ` in
some model of ϕgrid. Then the generation rules yield a rightward row at+1, . . . , av
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of latitude bj + 1c and length exactly `+ 1. Moreover, for all h (0 ≤ h ≤ `− 1),
Tbh/2+1c3 [at−h, at+1+h].

And by reasoning almost identical to that of Lemma 33, again with a slight
change to the base case:

Lemma 35. Let au, . . . , as be a upward column of with longitude i ∈ {0, 2, 4}
and length ` = s − u + 1 in some model of ϕgrid. Let this be followed by the
leftward row as+1, . . . , at and rightward row at+1, . . . , av. Then the generation
rules yield a downward column av+1, . . . , aw of longitude bi + 1c and length
exactly `+ 1. Moreover, Tb(i−h+1)/2−1c[as−h, av+2+h] for all h (1 ≤ h ≤ `−1).

Summarizing, suppose A |= ϕgrid. The preceding lemmas yield a sequence
of alternating rows and columns exactly matching the boustrophedon ς defined
above, and illustrated in Fig. 5. Thus, we have a natural mapping (Xt, Yt) 7→ at
which is a homomorphism in the sense captured by the following lemma:

Lemma 36. Let A0 be the model of ϕgrid defined above and illustrated in Fig. 5,
and let ς(t) = (Xt, Yt) be the boustrophedon defined in (41). If A is any model of
ϕgrid, then there exists a sequence of elements a0, a1, . . . from A such that, for
all s, t ≥ 0, all local address and control predicates p, and all colours Th: (i) if
A0 |= p[ς(s)] then A |= p[as]; and (ii) if A0 |= Th[ς(s), ς(t)], then A |= Th[as, at].

Proof. Consider the characterization of ς in terms of alternating rows and columns
in (42). Starting with Lemma 29, we obtain, after the element a0, the first right-
ward row, a1, of length 1 and latitude 1, and the first downward column, a2, a3

of length 2 and longitude 1. Lemmas 30 and 31 then give us the next upward
column a4, a5, a6 of length 3 and longitude 2, and Lemmas 32 and 33 a leftward
row a7, a8 of length 2 and latitude 2. Lemma 34 then generates the next right-
ward row a9, a10, a11 of length 3 and latitude 3. And so the process repeats. As
it does so, Lemmas 28, 30 and 32 ensure that the indices of the predicates ci,j
and di,j satisfied by the elements of the sequence a0, a1, a2 . . . are given by the
latitude and longitude of the corresponding points ς(0), ς(1), ς(2), . . . ; more-
over, extremal elements of either row or column satisfy the control predicates
as required. The repeating patterns of colour predicates shown in Fig. 5 are
likewise secured by the preceding lemmas. Specifically, the colours on the edges
following the course of the boustrophedon are given by Lemmas 28, 30 and 32;
the colours on the edges between neighbouring rows and columns are given by
Lemmas 31, 33, 34 and 35.

Lemma 36 yields an embedding ι of N2 into any model A of ϕgrid defined by
setting ι(Xt, Yt) = at, where ς(t) = (Xt, Yt). This justifies us in picturing the
sequence a0, a1, . . . as laid out in Fig. 5. By inspection of Fig. 5, we see that ι
has the following properties:

� If X ≥ Y then T�[ι(X,Y ), ι(X + 1, Y )]. Moreover, if X is even then
T�[ι(X,Y ), ι(X,Y + 1)], and if X is odd then T�[ι(X,Y + 1), ι(X,Y )].

46



� If X < Y then T�[ι(X,Y ), ι(X,Y + 1)]. Moreover, if Y is even then
T�[ι(X + 1, Y ), ι(X,Y )], and if Y is odd then T�[ι(X,Y ), ι(X + 1, Y )].

The above observation allows us to write formulas that properly assign tiles
from a given tiling system C = (C, H, V ) to elements of the model of ϕgrid. We
do this with a formula ϕtile, which again features several conjuncts. The first
conjunct is straightforward. We require that each node encodes precisely one
tile C ∈ C and the initial element satisfies the initial tiling condition by adding
to ϕtile the formula:

∀
( ∨
C∈C

C ∧
∧
C 6=D

(¬C ∨ ¬D) ∧ (lf ∧ dg→ C0)
)
. (65)

The next formulas ensure that adjacent tiles respect the constraints H and
V . To ensure that the horizontal constraints are satisfied we add to ϕtile the
following conjuncts for every C ∈ C:∧

0≤i,j≤5

∀(C ∧ dij → ∀(T� ∧ dbi+1c,j →
∨

C′:(C,C′)∈H

C ′)) (66)

∧
0≤i≤5

∧
j=1,3,5

∀(C ∧ cij → ∀(T� ∧ (cbi+1c,j ∨ dbi+1c,j)→
∨

C′:(C,C′)∈H

C ′)) (67)

∧
0≤i≤5

∧
j=0,2,4

∀(C ∧ (ci,j ∨ di,j)→ ∀(T� ∧ cbi−1c,j →
∨

C′:(C′,C)∈H

C ′)). (68)

A similar group of conjuncts is added to handle the vertical constraints. Again,
we add to ϕtile the following conjuncts for every C ∈ C:∧

0≤i,j≤5

∀(C ∧ (ci,j ∨ di,j)→ ∀(T� ∧ ci,bj+1c →
∨

C′:(C,C′)∈V

C ′)) (69)

∧
i=0,2,4

∧
0≤j≤5

∀(C ∧ di,j → ∀(T� ∧ di,bj+1c →
∨

C′:(C,C′)∈V

C ′)) (70)

∧
i=1,3,5

∧
0≤j≤5

∀(C ∧ di,j → ∀(T� ∧ di,bj−1c →
∨

C′:(C′,C)∈V

C ′)). (71)

This completes the definition of the formula ϕtile. Finally, let ηC be the con-
junction of ϕgrid and ϕtile. We show that

Lemma 37. ηC is satisfiable iff C tiles N2 with initial condition C0.

Proof. If C tiles N2 with the initial condition then to show that ηC is satisfiable
we expand our intended model G for ϕgrid assigning to every element of the
grid a unique C ∈ C given by the tiling. It is clear that (65) holds in the model.
Moreover, the transitive paths of any of the transitive relations connect at most
three adjacent columns and at most three adjacent rows. So, the distribution
of the local address predicates ensures that also the conjuncts (66)–(71) are
satisfied.
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Now, let A |= ηC. Since A |= ϕgrid consider the embedding ι of the standard
N2 grid into A defined above. We define a tiling of the N2 grid assigning to every
node (X,Y ) ∈ N2 the unique tile C such that A |= C(ι(X,Y )). Formula (65)
ensures that this is well defined and satisfies the initial condition. Formulas (66)-
(68) ensure that the horizontal constraints are satisfied, taking care to ensure the
local address predicates change in the correct way for rows above the diagonal
(and in particular near the diagonal); and formulas (69)-(71) ensure that the
vertical constraints are satisfied.

Hence, we have the following

Theorem 38. The satisfiability problem for FL23T, the two-variable fluted
fragment with three transitive relations, is undecidable.

We now turn towards the finite satisfiability problem. First, anticipating
Theorem 41, we remark that the formula ϕgrid is an axiom of infinity. Hence,
there is no prospect of using it simultaneously to obtain undecidability of the
satisfiability and finite satisfiability problems via Proposition 24. To prove un-
decidability of finite satisfiability for FL23T, we instead reduce from the finite
tiling problem with initial and final conditions, invoking Proposition 23. We
proceed as follows. First, we modify the formula ϕgrid so that it no longer
constructs an infinite sequence of witnesses but the process is allowed to stop
when the boustrophedon meets an element on the bottom row. In other words,
the coordinates assigned to the sequence of witnesses correspond to a square
domain N2

2n,2n, for some n ≥ 1.
Denote the modified formula ϕsgrid. It contains some conjuncts taken di-

rectly from ϕgrid, some that are modified versions of conjuncts in ϕgrid, and
some that are new. First of all, we employ an additional control predicate rt
intended to mark the rightmost column of the square domain. This is secured by
adding the following new conjunct to ϕsgrid (complementing the formula (44)):

∀(rt→
∨

i=0,2,4

5∨
j=0

di,j) (72)

and the following new control formula:

5∧
i=0

5∧
j=0

∀(di,j ∧ ±rt→ ∀(T� ∧ di,bj−1c → ±rt)). (73)

In ϕsgrid we modify the formula (45) by ensuring that the initial element does
not satisfy rt as follows:

∃(d0,0 ∧ dg ∧ bt ∧ ¬rt). (74)

Finally, we modify the generation rule (49); now we require a new witness only
for bottom elements that are not on the rightmost column, writing:∧

i=1,3,5

∀(di,0 ∧ bt ∧ ¬dg ∧ ¬rt→ ∃(dbi+1c,0 ∧ bt ∧ ¬dg ∧ T0)). (75)
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The remaining conjuncts of ϕgrid constitute conjuncts of ϕsgrid without modi-
fication.

Observe that ϕsgrid has finite models: if a witness at of the conjunct (54)
happens to satisfy rt then the following witnesses at′ with t′ > t, corresponding
to a downward column in the model, also satisfy rt due to the new control
formula (73). As argued earlier, the sequence of witnesses eventually reaches an
element at′′ satisfying bt, and this is where no new witnesses are required due
to the modified generation rule (75). Moreover in every finite model of ϕsgrid
one can embed a square grid N2

2n,2n similarly as we did before embedding the
N2 grid in models of ϕgrid.

In order to complete the reduction of the finite tiling problem with initial
and final conditions, we need one more conjunct ensuring the final condition:

∀(dg ∧ rt→ C1). (76)

It should be now straightforward to check that the conjunction of (76) with
ϕsgrid ∧ϕtile is finitely satisfiable iff C tiles N2

2n,2n with initial condition C0 and
final condition C1, for some n ≥ 1. Hence, by Proposition 23:

Theorem 39. The finite satisfiability problem for FL23T, the two-variable
fluted fragment with three transitive relations, is undecidable.

We observe additionally that all formulas used in the proofs of Theorems
38 and 39 are either guarded or can be rewritten as guarded. Furthermore,
in the proof it would suffice to assume that T0, T1 and T2 are interpreted as
equivalence relations. Hence, we can strengthen the above theorem as follows.

Corollary 40. The (finite) satisfiability problem for the intersection of the
fluted fragment with the two-variable guarded fragment is undecidable in the
presence of three transitive relations (or three equivalence relations).

Since the satisfiability problem for FL23T is undecidable, it follows that
FL23T lacks the finite model property; however, as yet, we do not have an
actual axiom of infinity. Recalling the model A0 |= ϕgrid and the boustrophedon
ς : N→ N2, suppose A |= ϕgrid and consider the sequence a0, a1, . . . constructed
by the generation rules. Lemma 36 states that if A0 |= p[ς(t)], where p is in
the signature of ϕgrid, then A |= p[at]. Similarly, if A0 |= p[ς(s), ς(t)], then
A |= p[as, at]. This result invites us, informally, to picture the sequence a0, a1, . . .
as being laid out as shown in Fig. 5. It is important to realize, however, that
we have not shown that these elements are distinct. We do so now.

Theorem 41. The formula ϕgrid is an axiom of infinity.

Proof. Suppose A |= ϕgrid. Let ι be the embedding of N2 into A defined above,
i.e. ι(Xt, Yt) = at, where ς(t) = (Xt, Yt) is the tth point on the boustrophe-
don (41). We show that ι is injective, which proves the theorem.

As a preliminary, consider the rectangles into which the upper-right quadrant
of the plane is divided by the black, green and red lines in Fig. 5. We refer to
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these rectangles as bricks. Each brick consists of four or six points in the plane,
with the former kind confined to the left-hand and bottom edges; moreover,
the bricks form a natural sequence following the boustrophedon. Since every
point ς(t) = (Xt, Yt) is associated with an element at in some model of ϕgrid,
we can think of bricks as the set of associated elements in a given model. And
by condition (ii) of Lemma 36, we see that for any brick B, there exists k
(0 ≤ k < 3) such that, for all elements as, at ∈ B with s < t, we have Tk[as, at].
In other words, each brick has a colour, and, furthermore, an orientation induced
by the ordering of points on the boustrophedon. We call the bricks below the
diagonal having their left-hand margins in even columns downward-pointing,
while those below the diagonal having their left-hand margins in odd columns are
upward-pointing; similarly for leftward- and rightward-pointing bricks above the
diagonal, depicted by yellow arrows in Figure 5. Of course, while the elements
of B lie in order as the periphery of B is traversed, they are not in general
consecutive in the sequence {at}. From Fig. 5, the following are evident.

(E1) Every element satisfying di,j except for a0 lies on at least one upward-
pointing brick and at least one downward pointing brick.

(E2) Any two elements satisfying the same local address and control predicates
lie on bricks with the same set of colours/orientations. (Example: in
Fig, 5, (5,2) and (11,8) both lie on a red downward-pointing brick, a black
upward-pointing brick and a green upward-pointing brick.)

(E3) If B is a 6-element upward-pointing brick and its first element is a non-
diagonal element, then that element has local address di,j (i odd, j even),
while the last element has local address dbi+1c,j , and the colour of B is
Tbj/2−1c3 ; similarly for downward-pointing bricks.

(E4) The first element of each brick B is related to all the others by the colour
of B, and all the elements but the last are related to the last element by
the colour of B.

We are now ready to embark on the proof. Assume for contradiction that
as = at with t < s. We consider the case where as = at satisfies some di,j ; the
case for elements satisfying some ci,j is handled similarly.

Assume first that Ys = Yt. Since t < s, and, as has the same local address as
at (since they are identical), we must have Xt < Xs and therefore, by condition
(i) of Lemma 36, Xt < Xs − 5. As a preliminary, we claim that, if as lies
on a brick B and at on a brick D, then no element of either B or D can
satisfy dg. For if B has an element as′ such that dg[as′ ], then Xt < Xs − 5 ≤
Xs′ − 4 = Ys′ − 4 ≤ Ys − 2 = Yt − 2 < Yt contradicting condition (i) of
Lemma 36 and the fact that as = at satisfies some predicate di,j . In particular,
as = at itself does not satisfy dg. If, on the other hand, D has an element
at′ satisfying dg, then, again by Lemma 36, there is such a t′ satisfying t′ > t.
Letting s′ = s + (t′ − t), we see that the sequences as, . . . as′ and at, . . . at′

are the same (and thus have the same local addresses), whence Xs, . . . Xs′ and
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Xt, . . . Xt′ move in the same way (i.e. Xs+h+1 − Xs+h = Xt+h+1 − Xt+h, for
all h with 0 ≤ h ≤ s′ − s) so that Xt < Xs − 5 implies Xt′ < Xs′ − 5. Thus,
recalling that dg[as′ ] implies Xt′ = Yt′ , and that Ys = Yt by assumption, we
have Xs′ > Xt′ + 5 = Yt′ + 5 ≥ Yt + 3 = Ys + 3 ≥ Ys′ + 1 > Ys′ , contradicting
the supposition that at′ = as′ satisfies dg. This proves the claim that neither
as nor at lie on any brick containing a diagonal element.
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Figure 6: Proof of Lemma 41, illustrating the example in which we suppose ς(s) = (14, 1) and
ς(t) = (8, 1) (circled) are mapped by ι to the same element as = at. We have ς(s0) = (13, 2),
ς(t0) = (8, 2). Now T0[as0 , at0 ] implies T1[as0 , at0 ] implies T1[as1 , at1 ] implies T2[as1 , at1 ]
implies T2[as2 , at2 ] implies T0[as2 , at2 ]. The black edge from (13, 7) to (8, 8) yields the desired
contradiction.

This claim having been established, we proceed to derive the promised con-
tradiction. To make the proof easier, we suggest the reader follows with ref-
erence to the example ς(s) = (14, 1) and ς(t) = (8, 1) (see Fig. 6). By (E1)
and (E2), let B0 and D0 be the upward-pointing bricks containing, respectively,
as and at, and having the same colour, say Tk0

. Let as0 be the first element
on the brick B0, and at0—the last element on the brick D0, in our example,
ς(s0) = (13, 2) and ς(t0) = (8, 2). By (E3), if s0 satisfies—say—ci′,j′ , then t0
satisfies ci′,bj′+1c; and by (E4), Tk0 [as0 , at0 ], i.e. as0 is connected to at0 by an
edge of some colour, Tk0—in our example, black. The transfer formula (55)
implies that Tbk0+1c3 [as0 , at0 ], in our example green. Now, write k1 = bk0 +1c3,
and let B1 and D1 be the upward-pointing bricks of colour Tk1

(in our example,
green), containing, respectively, as0 and at0 . Let as1 be the first element on the
brick B1, and at1—the last element on the brick D1, i.e. ς(s1) = (13, 4) and
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ς(t1) = (8, 4). By the same reasoning as for the previous pair of bricks, as1 is
connected to at1 by a Tk1-edge (in our example, green); hence by (55), as1 is
connected to at1 also by an edge of colour Tk2

, where k2 = bk1 + 1c3 (in our
example, red).

Now the reasoning simply repeats, generating sequences of bricks B0, B1, . . .
and D0, D1, . . . until we reach ` ≥ 0 where either the brick above B` or the brick
above D` contains an element satisfying dg. In particular, in our example, we
consider B2 and D2—the red upward-pointing bricks containing, respectively,
as1 and at1 , and we let as2 be the first element on the brick B2, and at2—the
last element on the brick D2. So, ς(s2) = (13, 6) and ς(s2) = (8, 6). Again,
by (E4), as2 is connected to at2 by a red edge, hence by (55), also by a black
one. Now the black brick above D2 contains diagonal elements (i.e. ` = 2); in
particular, dg[at2+2], where ς(t2 + 2) = (8, 8).

Recall that we are assuming that Ys = Yt. By (E2), we have Ys0 = Yt0 ,
and, since we have been following the two columns of the boustrophedon up-
ward, Ys` = Yt` . Moreover, since t < s, we have Xt` < Xs` , and indeed,
Xt` < Xs` − 5. So, indeed, the process stops when the brick above D` contains
an element satisfying dg and, then, we necessarily have dg[at`+2]. We have al-
ready established that di0,bj0+2`c[as` ], dbi0+1c,bj0+2`c[at` ] and Tk0+l+1[as` , at` ].
By condition (ii) of Lemma 36, we see that Tk0+l+1[as`−1, as` ], and, indeed,
Tk0+l+1[at` , at`+2]. By transitivity, therefore Tk0+l+1[as`−1, at`+2]. On the other
hand, since Xs`−1 > Ys`−1, condition (i) of Lemma 36 implies that as`−1 does
not satisfy dg . But then we have di0,bj0+2`+1c[as`−1], dbi0+1c,bj0+2`+2c[at`+2]
and Tk+l+1[as`−1, at`+2], which, in the presence of (44), violates the control
formula (61). In our example, ς(s2 − 1) = (13, 7) and we have d1,1[as2−1],
d2,2[at2+2], T0[as2−1, at2+2], ¬dg[as2−1] and dg[at2+2]. Thus, if as = at with
s 6= t but Ys = Yt, we obtain two distinct sequences of bricks, marching up-
wards until one (and only one) reaches the diagonal; this contradicts the control
formulas.

This deals with the case Ys = Yt. If Ys 6= Yt, then we letB0 be any downward-
pointing brick containing as, Tk be the colour of B0, and D0 the downward-
pointing brick containing at and having the same colour as D0. Again, we let
s0 be the first element on B0 and t0 be the last element on D0, following the
preceding bricks B1, B2, . . . and D1, D2, . . . . This time, however, we will be
marching down the columns until we reach B` and D` such that one of the
elements as`−1 or at`+1 satisfies bt. Now, the assumption that Ys 6= Yt implies
that at most one of as`−1 and at`+1 satisfies bt, which yields a violation of the
control formula (62) using parallel reasoning to the upward case. The process
is depicted in Figure 7 for the case where ς(s) = (11, 10) and ς(t) = (5, 4).

5. Conclusions

In this paper, we considered the logics FLmkT and FLm=kT, the m-variable
fluted fragment in the presence of (equality and) k transitive relations. We
showed that the satisfiability problem for FLm= 1T is in m-NExpTime, and in-
deed that the corresponding finite satisfiability problem is in (m+1)-NExpTime.
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Figure 7: Proof of Lemma 41, illustrating the example in which we suppose ς(s) = (11, 10) and
ς(t) = (5, 4) (circled) are mapped by ι to the same element as = at. We have ς(s0) = (10, 9),
ς(t0) = (5, 3). Now T0[as0 , at0 ] implies T2[as0 , at0 ] implies T2[as1 , at1 ] implies T1[as1 , at1 ].
Now ς(s1 − 1) = (10, 6), ς(t1 + 1) = (5, 0) and the green edge from (10, 6) to (5, 0), which
follows by transitivity, yields the desired contradiction with (62).

(It seems probable that this latter bound, at least, can be improved.) Together
with known lower bounds on the m-variable fluted fragment, it follows that
the satisfaibility and finite satisfiability problems for FL=1T, the fluted frag-
ment with equality and a single transitive relation, are both Tower-complete.
(This extends the result of [18], which establishes the same complexity for the
fluted fragment without equality or any transitive relations.) We also showed,
however, that decidability is easily lost when additional transitive relations are
added: even the two-variable fluted fragments FL2

=2T (two transitive relations
plus equality) and FL2

=3T (three transitive relations, but without equality) have
undecidable satisfiability and finite satisfiability problems.

It is open whether the satisfiability or finite satisfiability problems for FL2T
(two transitive relations, but without equality) are decidable. We point out
that Lemma 20 in Section 3 could be generalized to normal-form formulas of
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FLm+12T (defined in the natural way). Hence, the (finite) satisfiability problem
for FLm2T (m > 2) is decidable if and only if the corresponding problem FL22T
is. Unfortunately neither the method of Sec. 3 (to show decidability) nor that
of Sec. 4 (to show undecidability) appears to apply here. The barrier in the
former case is that pairs of elements can be related by both of the transitive
relations, T1 and T2, via distinct T1- and T2-chains, so that simple certificates
of the kind employed for FL2

=1Tu do not guarantee the existence of models.
The barrier in the latter case is that the grid construction has to build models
featuring transitive paths of bounded length, and this seems not to be achievable
with just two transitive relations.
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