
Functions Definable by Arithmetic Circuits

Ian Pratt-Hartmann1 and Ivo Düntsch2

1 School of Computer Science, University of Manchester, Manchester M13 9PL, U.K.
ipratt@cs.man.ac.uk

2 Department of Computer Science, Brock University, St. Catharines, ON, L2S 3A1,
Canada. duentsch@brocku.ca

Abstract. An arithmetic circuit is a labelled, directed, acyclic graph
specifying a cascade of arithmetic and logical operations to be performed
on sets of non-negative integers. In this paper, we consider the definabil-
ity of functions from tuples of sets of non-negative integers to sets of non-
negative integers by means of arithmetic circuits. We prove two negative
results: the first shows, roughly, that a function is not circuit-definable if
it has an infinite range and sub-linear growth; the second shows, roughly,
that a function is not circuit-definable if it has a finite range and fails
to converge on certain ‘sparse’ chains under inclusion. We observe that
various functions of interest fall under these descriptions.

Keywords. Arithmetic circuit, integer expression, complex algebra,
expressive power.

1 Introduction

An arithmetic circuit (McKenzie and Wagner [7, 8]) is a labelled, directed, acyclic
graph specifying a cascade of arithmetic and logical operations to be performed
on sets of non-negative integers. (Henceforth, we refer to non-negative integers
simply as numbers). Each node in this graph evaluates to a set of numbers,
representing a stage of the computation performed by the circuit. Nodes without
predecessors in the graph are called input nodes, and their labels indicate the
sets of numbers to which they evaluate. Nodes with predecessors in the graph
are called arithmetic gates, and their labels indicate operations to be performed
on the values of their immediate predecessors; the results of these operations are
then taken to be the values of the arithmetic gates in question. Multiple edges
are allowed. One of the nodes in the graph (usually, a node with no successors)
is designated as the circuit output; the set of numbers to which it evaluates is
taken to be the value of the circuit as a whole.

We allow input nodes to be labelled with any of the constant symbols {1},
{0}, ∅, N, or with one of an infinite stock of variables. The constants denote
subsets of N in the conventional way, and the variables are taken to range over
the power set of N. Similarly, we allow arithmetic gates to be labelled with any
of the symbols +, •, −, ∩ or ∪, denoting an operation on sets of numbers.
The symbols −, ∩, ∪ have the obvious Boolean interpretations (with − denoting

2

complementation in N), while + and • denote the result of lifting addition and
multiplication to the algebra of sets, thus:

s+ t = {i+ j|i ∈ s and j ∈ t}; s • t = {i · j|i ∈ s and j ∈ t}.

We assume that arithmetic gates have the appropriate number of immediate
predecessors (1 or 2) for their labels.

Fig. 1 shows two examples of arithmetic circuits, where the output gate is
indicated by the double circle. In Fig. 1a, Node 1 evaluates to {1}, and Node 2
to N; hence, Node 3 evaluates to {1} + {1} = {2}, and Node 4, the output
of the circuit, to {2} • N, i.e. the set of even numbers. The circuit of Fig. 1b
functions similarly: Node 2 evaluates to {0} ∪ {n ∈ N | n ≥ 2}, and Node 3 to
{0} ∪ {n ∈ N | n is composite}; hence, Node 4 evaluates to the set of numbers
which are either prime or equal to 1, and Node 5, the output of the circuit, to the
set of primes. We say that the circuits of Fig. 1a and Fig. 1b define, respectively,
the set of even numbers and the set of primes. Any arithmetic circuit with no
variable inputs defines a set of numbers in this way. Likewise, any arithmetic
circuit with one or more variable inputs defines a function from (tuples of) sets
of numbers to sets of numbers. The question naturally arises as to which sets
and functions are definable by arithmetic circuits.

Fig. 1. Arithmetic circuits defining: (a) the set of even numbers; (b) the set of primes.
The integers next to the nodes are for reference only.

1

N

+

•
3

4

2

{1}

(a)

1 2 4

5

3

¯ ¯

∩

{1} •

(b)

The study of arithmetic circuits originates in Stockmeyer and Meyer [9], who
studied integer expressions—in effect, arithmetic circuits in the form of trees,
with no variables and no multiplication gates. (Integer expressions are essentially
the same as star-free regular expressions over a 1-element alphabet, where the
integer n stands for the string of length n). The membership problem for integer
expressions is as follows: given a number and an integer expression, determine
whether that number is in the set defined by that integer expression. The non-

emptiness problem is as follows: given an integer expression, determine whether
the set of numbers it defines is non-empty. Stockmeyer and Meyer showed that
both these problems are PSpace-complete.

The corresponding membership and non-emptiness problems for variable-free
arithmetic circuits—i.e., circuits featuring, additionally, the •-operator, but still
with no variable inputs—are discussed by McKenzie and Wagner [7]. It is easy
to see that these problems are reducible to one another; however, the question
of their decidability is currently still open. The complexity of the membership

3

problem (and related problems) for variable-free arithmetic circuits with opera-
tors chosen from various proper subsets of {∪,∩,−,+, •} are studied in Glaßer
et al. [1, 2], building on the work of Meyer and Stockmeyer, op. cit., McKenzie
and Wagner, op. cit. and Yang [11]. A somewhat different complexity-theoretic
profile is obtained if arithmetic circuits are taken to compute over sets of integers
(possibly negative), as shown in Travers [10].

Arithmetic circuits with variable inputs give rise to different complexity-
theoretic problems. Jeż and Okhotin [6] consider systems of equations φi(x) =
ψi(x) (1 ≤ i ≤ n) where the φi and ψi are arithmetic circuits with a tuple of
variable inputs x, but without the multiplication or complementation operators.
It is shown, inter alia, that all recursively enumerable sets are representable as
the least solutions of such systems of equations. Further, it is shown in Jeż and
Okhotin [5] that, when consideration is restricted to so-called resolved sets of
equations (i.e. φi is the variable xi, where x = x1, . . . , xn), the family of sets
representable as least solutions of such equations is included in ExpTime, and
moreover contains some ExpTime-hard sets.

In the present paper, we consider the expressive power of arithmetic circuits.
In particular, we ask: which functions (from tuples of sets of numbers to sets of
numbers) are definable by arithmetic circuits? We obtain two negative results:
the first shows, roughly, that a function is not circuit-definable if it has an infinite
range and sub-linear growth; the second shows, roughly, that a function is not
circuit-definable if it has a finite range and fails to converge on certain ‘sparse’
chains under inclusion. We observe that various functions of interest fall under
these descriptions.

2 Preliminaries

The full complex algebra of N is the structure Cm = {2N,∩,∪,−, ∅,N,+, {0}, •,
{1}}, with + and • as defined above. Let V be an infinite set of variables. A
complex arithmetic term (or simply term) is a member of the smallest set C of
expressions satisfying the conditions: (i) V ⊆ C; (ii) the constants {0}, {1}, ∅
and N are in C; and (iii) if σ, τ are in C, then so are σ ∩ τ , σ ∪ τ , σ, σ + τ

and σ • τ . If x = x1, . . . , xn is a non-empty tuple of variables, and τ a term all
of whose variables are among the x, we optionally write τ as τ(x) to denote
the order of variables. The algebra of terms τ(x) is denoted C[x]. Likewise, the
algebra of variable-free terms is denoted C[].

An interpretation is a function ι : V → 2N mapping variables to sets of
numbers. For any tuple of variables x (possibly empty), ι is extended homomor-
phically to a function C[x] → Cm . For the sake of readability, if τ is a term in
C[x], and ι an interpretation mapping the tuple of variables x to the tuple of
sets of numbers s, then we denote ι(τ) by τ(s). In particular, if τ is variable-free,
the set ι(τ) (which is independent of ι) is denoted by τ(). If x is an n-tuple
of variables (n > 0), the function defined by a term τ ∈ C[x] is the function
s 7→ τ(s). Any function f : (2N)n → 2N which can be written in this way is said
to be term-definable. Likewise, if τ is a variable-free term, the set defined by τ is

4

the set of numbers τ(). Any set s ⊆ N which can be written in this way is said
to be term-definable.

For the purposes of investigating term-definability, there is no difference be-
tween complex arithmetic terms and arithmetic circuits, as described in Sec-
tion 1. Thus, for example, the circuits of Fig. 1 correspond to the respective
terms

τe = ({1}+ {1}) • N τp = {1} ∩ ({1} • {1}). (1)

For the sake of familiarity, therefore, we speak of circuits in preference to terms,
referring to term-definable functions as circuit-definable functions, and similarly
for term-definable sets.

3 Circuit-definable sets

We observed in Section 1 that it is not known whether the membership problem
for arithmetic circuits is decidable. However, for any fixed arithmetic circuit
τ ∈ C[], the problem of determining membership in the set τ() is easily seen
to be decidable, and in fact to have relatively low computational complexity.

Define the binary operation ◦ on sets of numbers by

s ◦ t = {i · j | i ∈ s \ {0}, j ∈ t \ {0}}.

Thus, ◦ is a modified form of set multiplication. Let us define the set of modified

circuits C◦ in exactly the same way as C, except that the multiplication operator
• is replaced by the modified multiplication operator ◦.

If x is a tuple of variables (possibly empty), the algebra of modified circuits
τ(x) will be denoted C◦[x]. The concept of a circuit’s defining a function or set
is carried over to modified circuits in the obvious way.

Theorem 1. A set is definable by an arithmetic circuit if and only if it is de-

finable by a modified circuit.

Proof. Define g : C[] → C◦[] recursively: (i) if τ ∈ {{0}, {1}, ∅,N}, then
g(τ) = τ ; (ii) g(τ) = g(τ); (iii) if ? ∈ {∩,∪,+}, then g(σ ? τ) = g(σ) ? g(τ); (iv)

g(σ • τ) =











(g(σ) ◦ g(τ)) ∪ {0} if 0 ∈ τ() and σ() 6= ∅

(g(σ) ◦ g(τ)) ∪ {0} if 0 ∈ σ() and τ() 6= ∅

g(σ) ◦ g(τ) otherwise.

Routine induction shows that, for all τ ∈ C[], τ() = g(τ)(). Hence, every set
definable by an arithmetic circuit is definable by a modified circuit. The converse
is proved similarly.

We remark that, since the conditions 0 ∈ τ() or τ() = ∅ are not known to
be decidable, g is not known to be computable. That is: we know that every
circuit-definable set is definable by some modified circuit or other, but we do
not know which one.

5

If m is a number, and s, t sets of numbers, to determine whether m ∈ s ◦ t,
it suffices to check whether m can be factored as m = m1 · m2, with m1,m2

bounded by m, such that m1 ∈ s and m2 ∈ t. (This is not true for s • t.) We
remind the reader that the language of bounded arithmetic is the first-order
language over the signature (+, ·, 1, 0), but with all quantification restricted to
the forms (∀x ≤ t)ϕ and (∃x ≤ t)ϕ, where t is a term (see, e.g. [3]).

Corollary 1. Every circuit-definable set is definable by a formula of bounded
arithmetic.

It follows that every circuit-definable set is in the polynomial hierarchy, PH. It
also follows that the characteristic function of every circuit-definable set is com-
putable in deterministic linear time. Hence, circuit sets, regarded as languages
over the alphabet {0, 1}, are certainly all context-sensitive. Note, however, that
the set of primes, defined by the circuit in Fig. 1b, is known not to be context-free
(Hartmanis and Shank [4]).

4 Circuit-definable functions

Many natural functions involving sets of numbers turn out to be circuit-definable.
For example, the function

d(x) = {n ∈ N | ∀m ∈ x, n < m} (2)

is defined by the circuit τd(x) = x+ N (but cf. Corollary 4 below). Likewise,

µ(x) =

{

{min(x)} if x 6= ∅

∅ otherwise

is defined by the circuit τµ(x) = (τd(x+ {1})) ∩ x (but cf. Corollary 3 below).
Boolean-valued functions may be defined by arithmetic circuits, employing

some encoding of truth values as sets of numbers. The precise encoding chosen
is not important: we write > for {0} and ⊥ for ∅. For example, the function

S(x) =

{

> if x is a singleton

⊥ otherwise
(3)

is defined by the circuit τS(x) = (x • {0}) ∩ ((x ∩ τµ(x)) • {0}).
Definition by cases is also possible: if the functions F,G,H : (2N)n → 2N are

defined by the circuits ρ(x), σ(x), τ(x), respectively, then the function

x 7→

{

G(x) if F (x) 6= ∅

H(x) otherwise

is defined by the circuit (((ρ(x)•{0})+N)∩σ(x))∪ (((ρ(x) • {0}) + N)∩τ(x)).

6

If f : N
n → N is a function from tuples of numbers to numbers, we say that f

is circuit-definable if there exists a circuit-definable function F : (2N)n → 2N such
that, for all m1, . . . ,mn, F ({m1}, . . . , {mn}) = {f(m1, . . . ,mn)}. For example,
given a fixed number p > 1, the function n 7→ (n mod p) is defined, in this
sense, by the circuit

τmod p(x) =
⋃

0≤k<p

(

((x ∩ (({p} • N) + {k})) • {0}) + {k}
)

,

where, for m > 1, {m} abbreviates {1}+ · · ·+{1} (m times). Notice that, when
discussing the circuit-definability of a function f : N

n → N, we do not care what
values the defining circuit takes on non-singleton inputs.

We now proceed to establish some simple results on functions which are not
circuit-definable. We employ the following notation. If s ⊆ N and m ∈ N, denote
by s|m the set s ∩ [0,m]. If s = s1, . . . , sn is a tuple of elements of 2N, write s|m

for (s1)|m, . . . , (sn)|m.

Lemma 1. Let τ ∈ C◦[x] with x of arity n, let m ∈ N, and let s, t ∈ (2N)n. If

s|m = t|m, then, τ(s)|m = τ(t)|m.

Proof. Straightforward induction on the structure of τ(x).

Note that Lemma 1 fails if the condition τ ∈ C◦[x] is replaced by τ ∈ C[x].
Let x be an n-tuple of variables (n ≥ 0). A circuit-condition (in x) is an

expression α of the form
∧

1≤i≤a

σi(x) = ∅ ∧
∧

1≤i≤b

τi(x) 6= ∅ ∧
∧

1≤i≤c

0 ∈ ψi(x) ∧
∧

1≤i≤d

0 6∈ ϕi(x), (4)

where a, b, c, d ≥ 0, and the σi, τi, ψi and ϕi are circuits in C[x]. (The empty
conjunct with a = b = c = d = 0 is allowed.) When writing circuit-conditions,
we silently re-order conjuncts and remove duplicates as necessary. If we wish to
specify a particular order of the variables in α, we write α(x). If s ∈ (2N)n, we
take α(s) to be the Boolean value (either > or ⊥) computed by substituting
s for x in (4), in the obvious way. Two circuit-conditions α(x) and α′(x) are
disjoint if, for all s, one of α(s) or α′(s) is ⊥, and a k-tuple of circuit-conditions
α1(x), . . . , αk(x) is jointly exhaustive if, for all s, one of α1(s), . . . , αk(s) is >.

A circuit-clause (in x) is an expression γ of the form α → τ , where α is a
circuit-condition in x and τ a circuit in x; in this case, α is called the condition

of γ. A circuit-ensemble (in x) is a finite set ε = {γ1, . . . , γk} of circuit-clauses
in x such that the respective conditions α1(x), . . . , αk(x) are pairwise disjoint
and jointly exhaustive. Again, we write γ(x), ε(x) etc. to indicate the order of
the variables; and if s is an n-tuple of elements of 2N, we take ε(s) to be the set
τ(s), where α→ τ is the unique clause of ε such that α(s) = >. If all the circuits
mentioned in ε (including those occurring in the conditions of the clauses), are
modified circuits (i.e. are in C◦[x]), then we say that ε is a modified circuit-
ensemble. We denote the set of all modified circuit-ensembles in x by E◦[x]. Let
τ(x) be a circuit and ε(x) a circuit-ensemble: we say τ(x) is equivalent to ε(x)
if, for all s, τ(s) = ε(s).

7

Lemma 2. For every τ ∈ C[x], there exists an ε ∈ E◦[x] such that τ(x) is

equivalent to ε(x).

Proof. We construct an equivalent modified circuit-ensemble ε by induction on
the structure of τ . We illustrate with the case σ(x) • τ(x). Suppose that σ(x)
is equivalent to a modified circuit-ensemble {αi → σi | 1 ≤ i ≤ l} and τ(x) is
equivalent to a modified circuit-ensemble {βj → τj | 1 ≤ j ≤ m}. Then it is easy
to see that the set of clauses of the forms

αi ∧ βj ∧ σi 6= ∅ ∧ 0 ∈ τj → (σi ◦ τj) ∪ {0}

αi ∧ βj ∧ 0 ∈ σi ∧ τj 6= ∅ ∧ 0 6∈ τj → (σi ◦ τj) ∪ {0}

αi ∧ βj ∧ σi 6= ∅ ∧ 0 6∈ σi ∧ τj 6= ∅ ∧ 0 6∈ τj → σi ◦ τj

αi ∧ βj ∧ σi = ∅ ∧ τj 6= ∅ → ∅

αi ∧ βj ∧ τj = ∅ → ∅,

where i and j take all values in the ranges 0 ≤ i ≤ l and 0 ≤ j ≤ m, is a modified
circuit-ensemble equivalent to σ(x) • τ(x). The other cases are similar.

In the sequel, we use the notation ∅ to denote the tuple ∅, . . . , ∅ whose arity
will be clear from context.

Lemma 3. For any τ ∈ C[x], with x of arity n, there exist k > 0 and τ1, . . . , τk ∈
C[] with the following property: for all m ∈ N and all s ∈ (2N)n with s|m = ∅,

there exists i (1 ≤ i ≤ k) such that τ(s)|m = τi()|m.

Proof. By Lemma 2, let τ(x) be equivalent to ε(x) ∈ E◦[x], and let ε(x) =
{αi(x) → τ ′i(x) | 1 ≤ i ≤ k}. Let τ1, . . . , τk be obtained by replacing all variables
in τ ′1, . . . , τ

′
k with the constant ∅. Fix any m ∈ N and s ∈ (2N)n with s|m = ∅.

Let i be the unique integer (1 ≤ i ≤ k) such that αi(s) = >. Then, τ(s)|m =
τ ′i(s)|m = τ ′i(∅)|m, by Lemma 1 (since s|m = ∅). Thus, τ(s)|m = τi()|m.

Lemma 4. For any τ ∈ C[x], with x of arity n, the family of sets {τ(s)|m |

m ≥ 0, s ∈ (2N)n s.t. s|m = ∅} is the union of finitely many chains under

inclusion.

Proof. Let τ1, . . . , τk be as in Lemma 3. Every {τi()|m}m≥0 is such a chain.

This shows that a function (from numbers to numbers) is not circuit-definable
if it has an infinite range and sub-linear growth:

Theorem 2. Let f : N → N be a function. If {f(n) | n ∈ N, f(n) < n} is

infinite, then f is not circuit-definable.

Proof. Suppose, for contradiction, that τ(x) defines f . Consider an infinite col-
lection M of numbers m such that the values f(m + 1) are pairwise distinct,
with f(m+ 1) ≤ m. Then

{{f(m+ 1)} | m ∈M} ⊆ {τ({n})|m | 0 ≤ m < n}

⊆ {τ(s)|m | m ≥ 0, s ∈ 2N s.t. s|m = ∅}.

But the infinite set of singletons {{f(m+1)} | m ∈M} is certainly not included
in the union of any finite collection of chains, contrary to Lemma 4.

8

Corollary 2. If 0 < α < 1, then the functions f(n) = dαne and f(n) = dnαe
are not circuit-definable. If 1 < β, then neither are:

f(n) =

{

n− 1 if n > 0

0 otherwise
f(n) =

{

dlogβ ne if n > 0

0 otherwise.

Note that Theorem 2 fails if the condition that {f(n) | n ∈ N, f(n) < n}
is infinite is replaced by the condition that {n ∈ N | f(n) < n} is infinite.
For example, we have already seen that the function n 7→ (n mod p) is circuit-
definable, for all p > 1. Thus, arithmetic circuits can compute remainders (for
fixed divisors), but not quotients.

As a further corollary, we see that, while the circuit τµ given above computes
minima, no arithmetic circuit computes maxima:

Corollary 3. If F : 2N → 2N has the property that, for all finite, non-empty

s ⊆ N, F (s) = {max(s)}, then F is not circuit-definable.

Proof. Suppose that F is defined by a circuit τ(x). We observed above that the
function d given in (2) is defined by the circuit τd. Then the circuit τ(τd(x))
maps any singleton {n} (n > 0) to {n− 1}, contradicting Theorem 2.

We remark on another consequence of Lemma 2, contrasting with the circuit-
definability of the function d(x) given in (2).

Corollary 4. Denote {n ∈ N | ∃m ∈ x, n < m} by ↓ (x). There is no arithmetic

circuit τ(x) such that, for all finite s, τ(s) =↓ (s).

Proof. Suppose otherwise. By Lemma 2, let ε(x) be a modified circuit-ensemble
such that ε(s) =↓ (s) for all finite s. For all even numbers i, define si = {m ∈ N |
m odd and m < i}. Note that, for i, j even with i < j, we have (si)|i = (sj)|i,
but (↓ (si))|i = [0, i − 1] 6= [0, i] = (↓ (sj))|i. Since the number of clauses of ε
is finite, we can find even numbers i, j, with i < j, such that si and sj satisfy
(the condition of) the same clause of ε. But then, by Lemma 1, ε(si)|i = ε(sj)|i,
contradicting the fact that (↓ (si))|i 6= (↓ (sj))|i.

Continuing with functions of sets of numbers, we now show that no such
function is circuit-definable if it has a finite range and fails to converge on certain
‘sparse’ chains under inclusion. Let s be a finite, non-empty set of numbers, t a
set of numbers, and m a number. We write s vm t if m ≥ max(s) and s|m = t|m.
In that case, we may think of the (possibly empty) interval [max(s) + 1,m] as a
‘buffer’ following the largest element of s, in which no element of t occurs.

Theorem 3. Let F : 2N → 2N be a function with finite range. And suppose that,

for all finite, non-empty s ⊆ N and all m ≥ max(s), there exists t ⊆ N for which

s vm t and F (t) 6= F (s). Then F is not circuit-definable.

9

Proof. First, since the range of F is finite, fix a number q such that, if F (s) 6=
F (s′), then F (s) and F (s′) differ on some number less than or equal to q.

Suppose, for contradiction, that F is defined by a circuit τ(x); and, by Lemma 2,
let ε(x) = {αi(x) → τ ′i(x) | 1 ≤ i ≤ k} be a modified circuit-ensemble equiv-
alent to τ(x). Let σ1(x), . . . , σp(x) be a list, in some (arbitrary) order, of all
the (modified) circuits σ(x) such that σ(x) occurs in a conjunct σ = ∅, σ 6= ∅,
0 ∈ σ or 0 6∈ σ of any of the αi. If 1 ≤ j ≤ p, we write βj(x) for the condition
σj(x) 6= ∅. If s ⊆ N, let us say that the profile of s is the tuple of Boolean values
π(s) = 〈β1(s), . . . , βp(s)〉. We shall write s � t if (i) s ∩ {0} = t ∩ {0}, and (ii)
for all j (1 ≤ j ≤ p), βj(s) = > implies βj(t) = >.

Now select a �-maximal finite, non-empty set s. That is: if u is finite with s � u,
then π(s) = π(u). This must be possible, since the number of βj is finite. For all
j (1 ≤ j ≤ p), let mj be some element of σj(s) if βj(s) = >, and 0 otherwise.
Let m = max(s ∪ {mj | 1 ≤ j ≤ p} ∪ {q}). By the hypothesis of the lemma, let
t be a subset of N such that s vm t and F (s) 6= F (t). Since s vm t, we have
s|m = t|m. Then βj(s) = > ⇒ mj ∈ σj(s)|m ⇒ mj ∈ σj(t)|m (by Lemma 1)
⇒ βj(t) = >. Moreover, we certainly have s∩{0} = t∩{0}. On the other hand,
since F (s) 6= F (t), it follows that s and t have different profiles. For otherwise,
s and t would satisfy the same αj(x) (1 ≤ j ≤ k), whence F (s) = τ ′j(s) and
F (t) = τ ′j(t). But s|m = t|m would then imply τ ′j(s)|m = τ ′j(t)|m (by Lemma 1),
contradicting the fact that F (s) and F (t) disagree on some number less than
or equal to q ≤ m. Thus, there exists h (1 ≤ h ≤ p) such that βh(t) = >
and βh(s) = ⊥. Let mh be a number in βh(t), let m∗ = max(m,mh), and let
u = t|m∗ . Then u is finite, s � u (by the same argument as for s � t), and
βh(u) = > 6= βh(s). This contradicts the �-maximality of s among finite sets.

Corollary 5. The function Ffin : 2N → 2N such that Ffin(s) = > if s is finite,
and Ffin(s) = ⊥ otherwise, is not circuit-definable. Further, no circuit-definable
function F : 2N → 2N satisfies any of the following conditions for all finite
(non-empty) s ⊆ N:

F (s) =

{

> if |s| is even

⊥ otherwise;
F (s) =

{

> if max(s) even

⊥ otherwise;
F (s) =

{

> if
∑

s even

⊥ otherwise.

Proof. By considering the function s 7→ F (s) • {0} if necessary, we may assume
without loss of generality that the range of F is finite. Now apply Theorem 3.

Observe that the circuit (τe ∩x)•{0}, where τe is given in (1), defines a function
F such that, for all finite s, F (s) = > if

∏

s is even, and F (s) = ⊥ otherwise!

Corollary 6. No circuit-definable function F : 2N → 2N satisfies the condition

F (s) = {
∑

s} for all finite s ⊆ N. No circuit-definable function F : 2N → 2N

satisfies the condition F (s) = {|s|} for all finite s ⊆ N.

Proof. Suppose, for contradiction, that the circuit τ(x) computes the sum of any
finite argument s. Then the circuit (τe ∩ τ(x)) • {0}, where τe is given in (1),
violates Corollary 5. The case of |s| is handled similarly.

10

Acknowledgement

The second author is supported by NSERC. Both authors gratefully acknowledge
the support of the EPSRC (grant ref. EP/F069154), and would like to thank
Alasdair Urquhart for acquainting them with arithmetic circuits.

References

1. C. Glaßer, K. Herr, C. Reitwießner, S. Travers, and M. Waldherr. Equivalence
problems for circuits over sets of natural numbers. In Computer Science Theory

and Applications, volume 4649 of LNCS, pages 127–138, Berlin, 2007. Springer.
2. C. Glaßer, C. Reitwießner, S. Travers, and M. Waldherr. Satisfiability of algebraic

circuits over sets of natural numbers. In Proceedings of FSTTCS 2007, volume
4855 of LNCS, pages 253–264, Berlin, 2007. Springer.

3. K. Harrow. The bounded arithmetic hierarchy. Information and Control,
36(1):102–117, 1978.

4. J. Hartmanis and H. Shank. On the recognition of primes by automata. Journal

of the Association for Computing Machinery, 15(3):382389, 1968.
5. A. Jeż and A. Okhotin. Complexity of solutions of equations over sets of nat-

ural numbers. In S. Albers and P. Weil, editors, Proceedings of STACS 2008,
volume 08001 of Dagstuhl Seminar Proceedings, pages 373–384. Internationales
Begegnungs- und Forschungszentrum für Informatik, Schloß Dagstuhl, 2008.

6. A. Jeż and A. Okhotin. On the computational completeness of equations over
sets of natural numbers. In L. Aceto, I. Damg̊ard, L. Goldberg M. Halldórsson,
A. Ingólfsdóttir, and I. Walukiewicz, editors, Proceedings of ICALP 2008, Part II,
volume 5126 of LNCS, pages 63–74. Springer, 2008.

7. P. McKenzie and K. Wagner. The complexity of membership problems for circuits
over sets of natural numbers. In H. Alt and M. Habib, editors, Proceedings of

STACS 2003, volume 2607 of LNCS, pages 571–582. Springer–Verlag, 2003.
8. P. McKenzie and K. Wagner. The complexity of membership problems for circuits

over sets of natural numbers. Computational Complexity, 16(3):211–244, 2007.
9. L. Stockmeyer and A. Meyer. Word problems requiring exponential time (prelim-

inary report). In Proceedings of the Fifth Annual ACM Symposium on Theory of

Computing, pages 1 – 9. ACM Digital Library, 1973.
10. S. Travers. The complexity of membership problems for circuits over sets of inte-

gers. Theoretical Computer Science, 369:211–229, 2006.
11. K. Yang. Integer circuit evaluation is PSPACE-complete. In Proceedings, 15th

IEEE Conference on Computational Complexity, pages 204–211. IEEE, 2000.

