Publications (ORCID, Google Scholar)

45. Frontiers of biomolecular simulation, D. J. Huggins, P. C. Biggin, M. A. Damgen, J. W. Essex, S. A. Harris, R. H. Henchman, S. Khalid, A. Kuzmanich, C. A. Laughton, J. Michel, A. J. Mulholland, E. Rosta, M. S. P. Sansom, M. W. van der Kamp, submitted for publication.
44. Entropy of flexible liquids from hierarchical force-torque covariance and coordination, J. Higham, S. Chou, F. Grater, R. H. Henchman, Mol. Phys., 2018, DOI: 10.1080/00268976.2018.1459002.
43. Overcoming the limitations of cutoffs for defining atomic coordination in multicomponent systems, J. Higham and R. H. Henchman, J. Comput. Chem., 2018, 39, 705-710.
42. Assessment of hydration thermodynamics at protein interfaces with grid cell theory, G. Gerogiokas, M. W. Y. Southey, M. P. Mazanetz, A. Heifetz, M. Bodkin, R. J. Law, R. H. Henchman and J. Michel, J. Phys. Chem. B, 2016, 120, 10442–10452.
41. Locally adaptive method to define coordination shell, J. Higham and R. H. Henchman, J. Chem. Phys., 2016, 145, 084108.
40. Water's dual nature and its continuously changing hydrogen bonds, R. H. Henchman, J. Phys.: Condens. Matter, 2016, 28, 384001.
39. Water determines the structure and dynamics of proteins, M. C. Bellissent-Funel, A. Hassanali, M. Havenith, R. Henchman, P. Pohl, F. Sterpone, D. van der Spoel, Y. Xu, A. E. Garcia, Chem. Rev., 2016, 116, 7673-7697.
38. Protons and hydroxide ions in aqueous systems, N. Agmon, H. J. Bakker, R. K. Campen, R. H. Henchman, P. Pohl, S. Roke, M. Thamer, A. Hassanali, Chem. Rev., 2016, 116, 7642-7672.
37. Water - the most anomalous liquid, L. G. M. Pettersson, R. H. Henchman, A. Nilsson, Chem. Rev., 2016, 116, 7459-7462.
36. Parameter-free hydrogen-bond definition to classify protein secondary structure, H. Haghighi, J. Higham, R. H. Henchman, J. Phys. Chem. B, 2016, 120, 8566-8570.
35. Instantaneous, parameter-free methods to define a solute's hydration shell, A. Chatterjee, J. Higham, R. H. Henchman, J. Chem. Phys., 2015, 143, 234501.
34. Macromolecular entropy can be accurately computed from force, U. Hensen, F. Grater, R. H. Henchman, J. Chem. Theory Comput., 2014, 10, 4777-4781.
33. Evaluation of host-guest binding thermodynamics of model cavities with grid cell theory, J. Michel, R. H. Henchman, G. Gerogiokas, M. W. Y. Southey, M. P. Mazanetz, R. J. Law; J. Chem. Theory Comput., 2014, 10, 4055-4068.
32. Prediction of small molecule hydration thermodynamics with grid cell theory, G. Gerogiokas, G. Calabro, R. H. Henchman, M. W. Y. Southey, R. J. Law, J. Michel, J. Chem. Theo. Comput. 2014, 10, 35-48.
31. Water's non-tetrahedral side, R. H. Henchman and S. J. Cockram, Faraday Discuss., 2013, 167, 529-550.
30. Long-range hydrogen-bond structure in aqueous solutions and the vapor-water interface, S. J. Irudayam and R. H. Henchman, J. Chem. Phys., 2012, 137, 034508 (pdf).
29. Molecular interpretation of Trouton's and Hildebrand's rules for the entropy of vaporization of a liquid, J. A. Green, S. J. Irudayam, R. H. Henchman, J. Chem. Thermodyn., 2011, 43, 868-872.
28. Prediction and interpretation of the hydration entropies of monovalent cations and anions, S. J. Irudayam and R. H. Henchman, Mol. Phys, 2011, 109, 37-48.
27. Topological hydrogen-bond definition to characterize the structure and dynamics of liquid water, R. H. Henchman and S. J. Irudayam, J. Phys. Chem. B, 2010, 114, 16792-16810.
26. Solvation theory to provide a molecular interpretation of the hydrophobic entropy loss of noble gas hydration, S. J. Irudayam and R. H. Henchman, J. Phys.: Condens. Matter, 2010, 22, 284108.
25. Inhibitors of PIM-1 kinase: a computational analysis of the binding free energies of a range of imidazo [1,2-b] pyridazines, S. Doudou, R. Sharma, R. H. Henchman, D. W. Sheppard, N. A. Burton, J. Chem. Inf. Mod., 2010, 50, 368-379.
24. Entropic trends in aqueous solutions of common functional groups, S. J. Irudayam, R. D. Plumb and R. H. Henchman, Faraday Discuss., 2010, 145, 467-485.
23. An evaluation review of the prediction of protonation states in proteins versus crystallographic experiment, S. J. Fisher, J. Wilkinson, R. H. Henchman and J. R. Helliwell, Crystallography Rev., 2009, 15, 231-259.
22. Entropic cost of protein-ligand binding and its dependence on the entropy in solution, S. J. Irudayam and R. H. Henchman, J. Phys. Chem. B, 2009, 113, 5871-5884.
21. Standard free energy of binding from a one-dimensional potential of mean force, S. Doudou, N. A. Burton and R. H. Henchman, J. Chem. Theory Comput., 2009, 5, 909-918.
20. Classical and quantum Gibbs free energies and phase behavior of water using simulation and cell theory, M. Klefas-Stennett and R. H. Henchman, J. Phys. Chem. B, 2008, 112, 9769-9776.
19. Free energy of liquid water from a computer simulation via cell theory, R. H. Henchman, J. Chem. Phys., 2007, 126, 064504.
18. A gating mechanism proposed from a simulation of a human α7 nicotinic acetylcholine receptor, R. J. Law, R. H. Henchman and J. A. McCammon, Proc. Natl. Acad. Sci. USA, 2005, 102, 6813-6818.
17. Ligand-induced conformational change in the α7 nicotinic receptor ligand binding domain, R. H. Henchman, H. Wang, S. M. Sine, P. Taylor and J. A. McCammon, Biophys. J., 2005, 88, 2564-2576.
16. Agonist-mediated conformational changes in ACh-binding protein revealed by simulation and intrinsic tryptophan fluorescence, F. Gao, N. Bren, T. P. Burghardt, S. Hansen, R. H. Henchman, P. Taylor, J. A. McCammon and S. M. Sine, J. Biol. Chem., 2005, 280, 8443-8451.
15. Conformational and enantioselectivity in host-guest chemistry: the selective binding of cis amides examined by free energy calculations, R. H. Henchman, J. D. Kilburn, D. L. Turner, and J. W. Essex, J. Phys. Chem. B, 2004, 108, 17571-17582.
14. Discovery of a novel binding trench in HIV integrase, J. R. Schames, R. H. Henchman, J. S. Siegel, C. A. Sotriffer, H. H. Ni, J. A. McCammon, J. Med. Chem., 2004, 47, 1879-1881.
13. Revisiting free energy calculations: a theoretical connection to MM/PBSA and direct calculation of the association free energy, J. M. J. Swanson, R. H. Henchman, J. A. McCammon, Biophys. J., 2004, 86, 67-74.
12. Asymmetric structural motions of the homomeric α7 nicotinic receptor ligand binding domain revealed by molecular dynamics simulation, R. H. Henchman, H. Wang, S. M. Sine, P. Taylor, J. A. McCammon, Biophys. J., 2003, 85, 3007-3018.
11. The dynamics of ligand barrier crossing inside the acetylcholinesterase gorge, J. M. Bui, R. H. Henchman, J. A. McCammon, Biophys. J., 2003, 85, 2267-2272.
10. From model complexes to metalloprotein inhibition: a synergistic approach to structure-based drug design, D. T. Puerta, J. R. Schames, R. H. Henchman, J. A. McCammon, S. M. Cohen, Angew. Chem. Int. Ed., 2003, 42, 3772-3774.
9. Partition function for a simple liquid using cell theory parametrized by computer simulation, R. H. Henchman, J. Chem. Phys., 2003, 119, 400-406.
8. Structural and dynamic properties of water around acetylcholinesterase, R. H. Henchman and J. A. McCammon, Protein Sci., 2002, 11, 2080-2090.
7. Molecular dynamics of acetylcholinesterase, T. Shen, K. Tai, R. H. Henchman, J. A. McCammon, Accounts Chem. Res., 2002, 35, 332-340.
6. Mechanism of acetylcholinesterase inhibition by fasciculin: a 5 ns molecular dynamics simulation, K. Tai, T. Shen, R. H. Henchman, Y. Bourne, P. Marchot, J. A. McCammon, J. Am. Chem. Soc., 2002, 124, 6153-6161.
5. Properties of water molecules in the active site gorge of acetylcholinesterase from computer simulation, R. H. Henchman, K. Tai, T. Shen, J. A. McCammon, Biophys. J., 2002, 82, 2671-2682.
4. Extracting hydration sites around proteins from explicit water simulations, R. H. Henchman and J. A. McCammon, J. Comput. Chem., 2002, 23, 861-869.
3. Free energies of hydration using restrained electrostatic potential derived charges via free energy perturbations and linear response, R. H. Henchman and J. W. Essex, J. Comput. Chem., 1999, 20, 499-510.
2. Generation of OPLS-like charges from molecular electrostatic potential using restraints, R. H. Henchman and J. W. Essex, J. Comput. Chem., 1999, 20, 483-498.
1. Transition-state theory model for the diffusion coefficients of small penetrants in glassy polymers, A. A. Gray Weale, R. H. Henchman, R. G. Gilbert, M. L. Greenfield, D. N. Theodorou, Macromolecules, 1997, 30, 7296-7306.

 

Theses and Other Articles:

4. Mathematics and molecular neurobiology, N. A. Baker, K. Tai, R. Henchman, D. Sept, A. Elcock, M. Holst, J. A. McCammon, in Computational methods for macromolecules: Challenges and applications, Ed: T. Schlick, H. H. Gan, 2002, 24, 31-60.
3. PhD Thesis, Simulation studies of the structure and energetics of a host-guest system, R. H. Henchman, University of Southampton, 1999 (full text).
2. B.Sc. Honours Thesis, Diffusion of small molecules in amorphous glassy polymers, R. H. Henchman, University of Sydney, 1995 (full text).
1. An interesting physics experiment. J. L. Blows, C. Burgess, D. Burn, E. Coen, R. Collins, I. J. Cooper, L. Cram, L. Emerson, G. Facer, T. Feletto, B. Gaensler, R. Henchman, A. Hopkins, A. Lim, J. Quartel, K. Robertson, S. Seth, M. Sheumack and S. Teh, Australian and New Zealand Physicist, Education Supplement, 1994, 31, 1-6.