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A Change-of-Variable Formula
with Local Time on Surfaces

GORAN PESKIR
�

Let X = (X1; . . . ; Xn) be a continuous semimartingale and let b : IRn�1 ! IR be a

continuous function such that the process bX = b(X1; . . . ; Xn�1) is a semimartingale. Setting

C = f (x1; . . . ; xn) 2 IRn j xn < b(x1; . . . ; xn�1) g and D = f (x1; . . . ; xn) 2 IRn j xn >
b(x1; . . . ; xn�1) g suppose that a continuous function F : IRn ! IR is given such that F is

Ci1;...;in on �C and F is Ci1 ;...;in on �D where each ik equals 1 or 2 depending on whether

Xk is of bounded variation or not. Then the following change-of-variable formula holds:
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where `bs(X) is the local time of X on the surface b given by:

`bs(X) = IP�lim
"#0

1

2"

Z s

0

I(�"<Xn
r �bXr <") dhXn�bX; Xn�bXir

and d`bs(X) refers to integration with respect to s 7! `bs(X) . The analogous formula extends

to general semimartingales X and bX as well. A version of the same formula under weaker

conditions on F is derived for the semimartingale ((t;Xt; St))t�0 where (Xt)t�0 is an Itô

diffusion and (St)t�0 is its running maximum.

1. Introduction

Let (Xt)t�0 be a continuous semimartingale (see e.g. [13]) and let b : IR+ ! IR be a

continuous function of bounded variation. Setting C = f (t; x) 2 IR+�IR j x < b(t) g and

D = f (t; x) 2 IR+�IR j x > b(t) g suppose that a continuous function F : IR+�IR ! IR is

given such that F is C1;2 on �C and F is C1;2 on �D .

Then the following change-of-variable formula is known to be valid (cf. [11]):

(1.1) F (t; Xt) = F (0; X0) +

Z t
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Fxx(s;Xs) I(Xs 6= b(s)) dhX;Xis
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where `bs(X) is the local time of X on the curve b given by:

(1.2) `bs(X) = IP�lim
"#0

1

2"

Z s

0
I(b(r)�"<Xr<b(r)+") dhX;Xir

and d`bs(X) refers to integration with respect to the continuous increasing function s 7! `bs(X) .

A version of the same formula for an Itô diffusion X derived under weaker conditions on F has

found applications in free-boundary problems of optimal stopping (cf. [11]).

The main aim of the present paper is to extend the change-of-variable formula (1.1) to a multi-

dimensional setting of continuous functions F which are smooth above and below surfaces.

Continuous semimartingales are considered in Section 2, and semimartingales with jumps are

considered in Section 3. A version of the same formula under weaker conditions on F is

derived in Section 4 for the continuous semimartingale ((t; Xt; St))t�0 where (Xt)t�0 is an Itô

diffusion and (St)t�0 is its running maximum. This version is useful in the study of free-boundary

problems for optimal stopping of the maximum process when the horizon is finite (for the infinite

horizon case see [10] with references).

The study of Section 4 serves as an example of what generally needs to be done in order to

relax the smoothness conditions on F from �C and �D to C [D . These relaxed versions of

the formula are important for applications. It is thus hoped that the programme started in Section

3 of [11] and in Section 4 of the present paper will be continued.

For related results on the local time-space calculus see [1], [5], [3], [2], [8]. Older references

on the topic include [7], [14], [9], [15], [4].

2. Continuous semimartingales

Let X = (X1; . . . ; Xn) be a continuous semimartingale and let b : IRn�1 ! IR be a

continuous function such that the process bX = b(X1; . . . ; Xn�1) is a semimartingale. [Note that

the sufficient condition b 2 C2 is by no means necessary.] Setting:

(2.1) C = f (x1; . . . ; xn) 2 IRn j xn < b(x1; . . . ; xn�1) g
(2.2) D = f (x1; . . . ; xn) 2 IRn j xn > b(x1; . . . ; xn�1) g

suppose that a continuous function F : IRn ! IR is given such that:

(2.3) F is Ci1;...;in on �C

(2.4) F is Ci1;...;in on �D

where each ij equals 1 or 2 depending on whether Xj is of bounded variation or not. More

explicitly, it means that F restricted to C coincides with a function F1 which is Ci1;...;in on

IRn , and F restricted to D coincides with a function F2 which is Ci1;...;in on IRn . [We

recall that a continuous function Fk : IRn ! IR is Ci1;...;in on IRn if the partial derivatives

@Fk=@xj when ij = 1 as well as @2Fk=@xj@xj 0 when ij ; ij0 = 2 exist and are continuous as

2



functions from IRn to IR for all 1 � j; j0 � n where k equals 1 or 2 .]

Then the natural desire arising in free-boundary problems of optimal stopping (and other

problems where the hitting time of D by the process X plays a role) is to apply a change-

of-variable formula to F (Xt) so to account for possible jumps of (@F=@xn)(x1; . . . ; xn) at

xn = b(x1; . . . ; xn�1) being measured by:

(2.5) `bs(X) = IP�lim
"#0
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Z s
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I(�"<Xn

r �bXr <") dhXn�bX; Xn�bXir

which represents the local time of X on the surface b for s 2 [0; t] . Note that the limit in (2.5)

exists (as a limit in probability) since Xn � bX is a continuous semimartingale.

In the special case when the semimartingale equals (t; Xt) it is evident that the previous setting

reduces to the setting leading to the change-of-variable formula (1.1) above. Further particular cases

of the formula (1.1) are reviewed in [11]. The following theorem provides a general formula of

this kind for continuous semimartingales (see also Section 3 below).

Theorem 2.1

Let X = (X1; . . . ; Xn) be a continuous semimartingale, let b : IRn�1 ! IR be a continuous

function such that the process bX = b(X1; . . . ; Xn�1) is a semimartingale, and let F : IRn ! IR
be a continuous function satisfying (2.3) and (2.4) above.

Then the following change-of-variable formula holds:

(2.6) F (Xt) = F (X0) +
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where `bs(X) is the local time of X on the surface b given in (2.5) above, and d`bs(X) refers

to integration with respect to the continuous increasing function s 7! `bs(X) .

Proof. 1. Set Z1
t = Xn

t ^ bXt and Z2
t = Xn

t _ bXt for t > 0 given and fixed. Denoting

X̂t = (X1
t ; . . . ; X

n�1
t ; Z1

t ) , �Xt = (X1
t ; . . . ; X

n�1
t ; Z2

t ) and ~Xt = (X1
t ; . . . ; X

n�1
t ; bXt ) , we see

that the following identity holds:

(2.7) F (Xt) = F1(X̂t) + F2( �Xt) � F ( ~Xt)

where we use that F (x) = F1(x) = F2(x) for x = (x1; . . . ; xn�1; b(x1; . . . ; xn�1)) . The processes

(Z1
t )t�0 and (Z2

t )t�0 are continuous semimartingales admitting the following representations:
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Recalling the Tanaka formula:

(2.10) jXn
t �bXt j = jXn

0 �bX0 j +
Z t
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In the sequel we set Di = @=@xi and Dij = @2=@xi@xj as well as D2
i = @2=@x2i .

2. Applying the Itô formula to F1(X̂t) and using (2.11) we get:
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where in the last four integrals we make use of the general fact:

(2.14) I(Y 1
s = Y 2

s ) dhY 1; Y 3is = I(Y 1
s = Y 2

s ) dhY 2; Y 3is
whenever Y 1; Y 2 and Y 3 are continuous (one-dimensional) semimartingales. The identity (2.14)

can easily be verified using the Kunita-Watanabe inequality and the occupation times formula (for

more details see the proof following (3.11) below).

The right-hand side of (2.13) can further be expressed in terms of ~X using (2.14) as follows:
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By grouping the corresponding terms in (2.15) we obtain:
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3. Applying the Itô formula to F2(X̂t) and using (2.12) we get:

(2.17) F2( �Xt) = F2( �X0) +
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where in the last four integrals we make use of the general fact (2.14).

The right-hand side of (2.17) can further be expressed in terms of ~X using (2.14) as follows:

(2.18) F2( �Xt) = F2( �X0) +
n�1X
i=1
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0
DiF2(Xs) I(X
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By grouping the corresponding terms in (2.18) we obtain:

(2.19) F2( �Xt) = F2( �X0)

+
nX

i=1

Z t

0
DiF2(Xs) I(X

n
s <bXs ) dX i

s +
1

2

nX
i=1

Z t

0
DiF2(Xs) I(X

n
s = bXs ) dX i

s

+
1

2

nX
i;j=1

Z t

0
DijF2(Xs) I(X

n
s < bXs ) dhX i; Xjis

+
1

4

nX
i;j=1

Z t

0
DijF2(Xs) I(X

n
s = bXs ) dhX i; Xjis

+
1

2

Z t

0
DnF2(Xs) I(X

n
s = bXs ) d`bs(X)

+

nX
i=1

Z t

0
DiF2( ~Xs) I(X

n
s >bXs ) d ~X i

s +
1

2

nX
i=1

Z t

0
DiF2( ~Xs) I(X

n
s = bXs ) d ~X i

s

+
1

2

nX
i;j=1

Z t

0
DijF2( ~Xs) I(X

n
s > bXs ) dh ~X i; ~Xjis

+
1

4

nX
i;j=1

Z t

0
DijF2( ~Xs) I(X

n
s = bXs ) dh ~X i; ~Xjis .

4. Combining the right-hand sides of (2.16) and (2.19) we conclude:

(2.20) F (Xt) = F1(X̂t) + F2( �Xt) � F ( ~Xt) = F (X0)

+
nX

i=1

Z t

0

1

2

�
DiF (X

1
s ; . . . ; X

n
s +) + DiF (X

1
s ; . . . ; X

n
s �)

�
dX i

s

+
1

2

nX
i;j=1

Z t

0

1

2

�
DijF (X

1
s ; . . . ; X

n
s +) +DijF (X

1
s ; . . . ; X

n
s �)

�
dhX i; Xjis

+
1

2

Z t

0

�
DnF (X

1
s ; . . . ; X

n
s +)�DnF (X

1
s ; . . . ; X

n
s �)

�
I(Xn

s = bXs ) d`bs(X) + Rt

where the final term is given by:

(2.21) Rt = F ( ~X0) +
nX

i=1

Z t

0
DiF1( ~Xs) I(X

n
s > bXs ) d ~X i

s

+
1

2

nX
i;j=1

Z t

0
DijF1( ~Xs) I(X

n
s >b

X
s ) dh ~X i; ~Xjis + 1

2

nX
i=1

Z t

0
DiF1( ~Xs) I(X

n
s =bXs ) d ~X i

s

+
1

4

nX
i;j=1

Z t

0
DijF1( ~Xs) I(X

n
s =bXs ) dh ~X i; ~Xjis +

nX
i=1

Z t

0
DiF2( ~Xs) I(X

n
s <b

X
s ) d ~X i

s
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+
1

2

nX
i;j=1

Z t

0
DijF2( ~Xs) I(X

n
s <b

X
s ) dh ~X i; ~Xjis + 1

2

nX
i=1

Z t

0
DiF2( ~Xs) I(X

n
s =b

X
s ) d ~X i

s

+
1

4

nX
i;j=1

Z t

0
DijF2( ~Xs) I(X

n
s = bXs ) dh ~X i; ~Xjis � F ( ~Xt) .

Hence we see that (2.6) will be proved if we show that Rt = 0 . Note that if F1 = F2 then

the identity Rt = 0 reduces to the Itô formula applied to F ( ~Xt) . In the general case we may

proceed as follows.

5. Since F1(x) = F2(x) for x = (x1; . . . ; xn�1; b(x1; . . . ; xn�1)) , we see that the two

semimartingales F1( ~X) and F2( ~X) coincide, so that:

(2.22)

Z t

0
I(Xn

s > bXs ) d(F1( ~Xs)) =

Z t

0
I(Xn

s > bXs ) d(F2( ~Xs))

(2.23)

Z t

0
I(Xn

s = bXs ) d(F1( ~Xs)) =

Z t

0
I(Xn

s = bXs ) d(F2( ~Xs)) .

Applying the Itô formula to F1( ~Xs) and F2( ~Xs) we see that (2.22) and (2.23) become:

(2.24)

nX
i=1

Z t

0
DiF1( ~Xs) I(X

n
s >b

X
s ) d ~X i

s +
1

2

nX
i;j=1

Z t

0
DijF1( ~Xs) I(X

n
s >b

X
s ) h ~X i; ~Xjis

=
nX

i=1

Z t

0
DiF2( ~Xs) I(X

n
s >b

X
s ) d ~X i

s +
1

2

nX
i;j=1

Z t

0
DijF2( ~Xs) I(X

n
s >b

X
s ) h ~X i; ~Xjis

(2.25)

nX
i=1

Z t

0
DiF1( ~Xs) I(X

n
s = bXs ) d ~X i

s +
1

2

nX
i;j=1

Z t

0
DijF1( ~Xs) I(X

n
s = bXs ) h ~X i; ~Xjis

=
nX
i=1

Z t

0
DiF2( ~Xs) I(X

n
s =bXs ) d ~X i

s +
1

2

nX
i;j=1

Z t

0
DijF2( ~Xs) I(X

n
s =bXs ) h ~X i; ~Xjis .

Making use of (2.24) and (2.25) we see that F1 in the first four integrals on the right-hand side

of (2.21) can be replaced by F2 . This combined with the remaining terms shows that the identity

Rt = 0 reduces to the Itô formula applied to F2( ~Xt) . This completes the proof of the theorem.

Remark 2.2

The change-of-variable formula (2.6) can obviously be extended to the case when instead of

one function b we are given finitely many functions b1; b2; . . . ; bm which do not intersect.

More precisely, let X = (X1; . . . ; Xn) be a continuous semimartingale and let us assume

that the following conditions are satisfied:

(2.26) bk : IRn�1 ! IR is continuous such that bk;X = bk(X
1; . . . ; Xn�1) is a semimartingale

for 1 � k � m

(2.27) Fk : IRn ! IR is Ci1;...;in for 1 � k � m + 1 where each ij equals 1 or 2
depending on whether Xj is of bounded variation or not
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(2.28) F (x) = F1(x) if xn < b1(x1; . . . ; xn�1)

= Fk(x) if bk(x1; . . . ; xn�1) < xn < bk+1(x1; . . . ; xn�1) for 2 � k � m

= Fm+1(x) if xn > bm+1(x1; . . . ; xn�1)

where F : IRn ! IR is continuous and x = (x1; . . . ; xn) belongs to IRn .

Then the change-of-variable formula (2.6) extends as follows:

(2.29) F (Xt) = F (X0) +
nX
i=1

Z t

0

1

2

�
@F

@xi
(X1

s ; . . . ; X
n
s +) +

@F

@xi
(X1

s ; . . . ; X
n
s�)

�
dX i

s

+
1

2

nX
i;j=1

Z t

0

1

2

�
@2F

@xi@xj
(X1

s ; . . . ; X
n
s +) +

@2F

@xi@xj
(X1

s ; . . . ; X
n
s�)

�
dhX i; Xjis

+
1

2

mX
k=1

Z t

0

�
@F

@xn
(X1

s ; . . . ; X
n
s +)� @F

@xn
(X1

s ; . . . ; X
n
s�)

�
I(Xn

s =bk;Xs ) d`bks (X)

where `bks (X) is the local time of X on the surface bk given in (2.5) above, and d`bks (X)
refers to integration with respect to s 7! `bks (X) .

Note in particular that an open set C in IRn (such as a ball) can often be described in

terms of functions b1; b2; . . . ; bm so that (2.29) becomes applicable. Perhaps the most interesting

example of a function F is obtained by looking at �D = inff t > 0 j Xt 2 D g and setting

F (x) = Ex(G(X�D)) where G is an admissible function and X0 = x under Px for x 2 IRn .

One such example will be studied in Section 4 below.

Remark 2.3

The change-of-variable formula (2.6) is expressed in terms of the symmetric local time (2.5).

It is evident from the proof above that one could also use the one-sided local times defined by:

(2.30) `b+s (X) = IP�lim
"#0

1

"

Z s

0
I(0�Xn

r �bXr <") dhXn�bX ; Xn�bXir

(2.31) `b�s (X) = IP�lim
"#0

1

"

Z s

0
I(�"<Xn

r �bXr � 0) dhXn�bX ; Xn�bXir .

Then under the same conditions as in Theorem 2.1 we find that the following two equivalent

formulations of (2.6) are valid:

(2.32) F (Xt) = F (X0) +
nX

i=1

Z t

0

@F

@xi
(X1

s ; . . . ; X
n
s�) dX i

s

+
1

2

nX
i;j=1

Z t

0

@2F

@xi@xj
(X1

s ; . . . ; X
n
s�) dhX i; Xjis

+
1

2

Z t

0

�
@F

@xn
(X1

s ; . . . ; X
n
s +)� @F

@xn
(X1

s ; . . . ; X
n
s�)

�
I(Xn

s = bXs ) d`b�s (X) .

Clearly (2.29) above can also be expressed in terms of one-sided local times. Note finally that if

Xn�bX is a continuous local martingale, then the three definitions (2.5), (2.30) and (2.31) coincide.
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3. Semimartingales with jumps

In this section we will extend the change-of-variable formula (2.6) first to semimartingales with

jumps of bounded variation (Theorem 3.1) and then to general semimartingales (Theorem 3.2).

1. Let X = (X1; . . . ; Xn) be a semimartingale (see e.g. [12]). Recall that each sample path

t 7! X i
t is right continuous and has left limits for 1 � i � n . In Theorem 3.1 below we will

assume that each semimartingale X i has jumps of bounded variation in the sense that:

(3.1)
X
0<s�t

j�X i
sj < 1

where �X i
s = X i

s�X i
s� for 1 � i � n . In this case each X i can be uniquely decomposed into:

(3.2) X i
t = X i

0 + X i;c
t + X i;d

t

where X i;c = M i;c +Ai;c is a continuous semimartingale and X i;d is a discrete semimartingale

(of bounded variation) given by:

(3.3) X i;d
t =

X
0<s�t

�X i
s .

Moreover, if F : IRn ! IR is C2 then Itô’s formula takes any of the two equivalent forms:

(3.4) F (Xt) = F (X0) +
nX

i=1

Z t

0

@F

@xi
(Xs�) dX i

s +
1

2

nX
i;j=1

Z t

0

@2F

@xi@xj
(Xs�) d[X i;c; Xj;c]s

+
X
0<s�t

�
F (Xs) � F (Xs�) �

nX
i=1

@F

@xi
(Xs�)�X i

s

�

= F (X0) +
nX

i�1

Z t

0

@F

@xi
(Xs�) dX i;c

s +
1

2

nX
i;j=1

Z t

0

@2F

@xi@xj
(Xs�) d[X i;c; Xj;c]s

+
X
0<s�t

�
F (Xs) � F (Xs�)

�
.

Both of these forms will be used freely below without further mentioning.

Let b : IRn�1 ! IR be a continuous function such that the process bX = b(X1; . . . ; Xn�1)
is a semimartingale with jumps of bounded variation. Then Xn � bX is a semimartingale with

jumps of bounded variation and the local time of X on the surface b is well-defined as follows:

(3.5) `bs(X) = IP�lim
"#0

1

2"

Z s

0
I(�"<Xn

r �bXr <") d[Xn�bX; Xn�bX ]cr

where [Xn�bX; Xn�bX ]c is the continuous (path by path) component of [Xn�bX; Xn�bX ] .

Recalling that Xn;c and bX;c are continuous semimartingales associated with Xn and bX as

in (3.2) above, we know that [Xn�bX; Xn�bX ]c = [Xn;c�bX;c; Xn;c�bX;c] .

The following theorem extends the change-of-variable formula (2.6) to semimartingales with

jumps of bounded variation.
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Theorem 3.1

Let X = (X1; . . . ; Xn) be a semimartingale where each X i has jumps of bounded variation,

let b : IRn�1 ! IR be a continuous function such that the process bX = b(X1; . . . ; Xn�1) is a

semimartingale with jumps of bounded variation, and let F : IRn ! IR be a continuous function

satisfying (2.3) and (2.4) above.

Then the following change-of-variable formula holds:

(3.6) F (Xt) = F (X0) +
nX

i=1

Z t

0

1

2

�
@F

@xi
(X1

s�; . . . ; X
n
s�+) +

@F

@xi
(X1

s�; . . . ; X
n
s��)

�
dX i;c

s

+
1

2

nX
i;j=1

Z t

0

1

2

�
@2F

@xi@xj
(X1

s�; . . . ; X
n
s�+) +

@2F

@xi@xj
(X1

s�; . . . ; X
n
s��)

�
d[X i;c; Xj;c]s

+
X
0<s�t

�
F (Xs) � F (Xs�)

�
+

1

2

Z t

0

�
@F

@xn
(X1

s�; . . . ; X
n
s�+)� @F

@xn
(X1

s�; . . . ; X
n
s��)

�
I(Xn

s�=bXs�; X
n
s =bXs ) d`bs(X)

where `bs(X) is the local time of X on the surface b given in (3.5) above, and d`bs(X) refers

to integration with respect to the continuous increasing function s 7! `bs(X) .

Proof. The proof can be carried out similarly to the proof of Theorem 2.1 and we will only

highlight a few novel points appearing due to the existence of jumps. The remaining details are

the same as in the proof of Theorem 2.1.

1. We begin as in the proof of Theorem 2.1 by introducing the processes Z1; Z2; X̂; �X; ~X
and observing that (2.7)-(2.9) carries over unchanged. Since Xn and bX both have jumps of

bounded variation, it is easily seen that so do Z1 and Z2 as well. Thus the analogue of (2.10)

which is obtained by applying the Tanaka formula reads:

(3.7) jXn
t �bXt j = jXn

0 �bX0 j +
Z t

0
sign(Xn

s��bXs�) d(X
n;c
s �bX;c

s ) + `bt(X)

+
X
0<s�t

�
jXn

s �bXs j � jXn
s��bXs�j

�
where sign(0) = 0 . Similarly to (2.11) and (2.12) we find that:

(3.8) dZ1;c
t =

1

2

��
1� sign(Xn

t��bXt�)
�
dXn;c

t +
�
1 + sign(Xn

t��bXt�)
�
dbX;c

t � d`bt(X)
�

(3.9) dZ2;c
t =

1

2

��
1 + sign(Xn

t��bXt�)
�
dXn;c

t +
�
1� sign(Xn

t��bXt�)
�
dbX;c

t + d`bt(X)
�

.

2. Applying the Itô formula to F1(X̂t) we get:

(3.10) F1(X̂t) = F1(X̂0) +
nX

i=1

Z t

0
DiF1(X̂s�) dX̂ i;c

s +
1

2

nX
i;j=1

Z t

0
DijF1(X̂s�) d[X̂ i;c; X̂j;c]s

+
X
0<s�t

F1(X̂s)�F1(X̂s�) .
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Hence using (3.8) and proceeding in the same way as in (2.13) and (2.15) we obtain the analogue

of the identity (2.16) where all Xi and ~X i in the integrators (including those with the angle

brackets) are replaced by X i;c and ~X i;c (now written as the square brackets).

It may be noted (as in the proof of Theorem 2.1) that in the preceding derivation (and in the

derivation following (3.12) below) we need to make use of the general fact:

(3.11) I(Y 1
s�=Y 2

s�) d[Y
1;c; Y 3;c]s = I(Y 1

s�= Y 2
s�) d[Y

2;c; Y 3;c]s

whenever Y 1; Y 2 and Y 3 are (one-dimensional) semimartingales. To verify (3.11) note that

the claim is equivalent to the fact that for two (one-dimensional) semimartingales Y 1 and Y 2

we have I(Y 1
s�=0) d[Y 1;c; Y 2;c] = 0 . To derive the latter we may invoke the Kunita-Watanabe

inequality (cf. [12; p.61]) according to which it is enough to show that I(Y 1
s�=0) d[Y 1;c; Y 1;c] = 0 .

This identity however follows by the occupation times formula (cf. [12; p. 168]) since g = 1f0g
equals zero almost everywhere with respect to Lebesgue measure on IR . This proves (3.11) in

the general case (recall also (2.14) above).

3. Applying the Itô formula to F2( �Xt) we get:

(3.12) F2( �Xt) = F2( �X0) +
nX

i=1

Z t

0
DiF2( �Xs�) d �X i;c

s +
1

2

nX
i;j=1

Z t

0
DijF2( �Xs�) d[ �X i;c; �Xj;c]s

+
X
0<s�t

F2( �Xs)�F2( �Xs�) .

Hence using (3.9) and proceeding in the same way as in (2.17) and (2.18) we obtain the analogue

of the identity (2.19) where all X i and ~X i in the integrators (including those with the angle

brackets) are replaced by X i;c and ~X i;c (now written as the square brackets).

4. Combining the right-hand sides of the resulting identities we find the analogue of (2.20) to be:

(3.13) F (Xt) = F1(X̂t) + F2( �Xt) � F ( ~Xt) = F (X0)

+
nX

i=1

Z t

0

1

2

�
DiF (X1

s�; . . . ; X
n
s�+) + DiF (X1

s�; . . . ; X
n
s��)

�
dX i;c

s

+
1

2

nX
i;j=1

Z t

0

1

2

�
DijF (X1

s�; . . . ; X
n
s�+) +DijF (X1

s�; . . . ; X
n
s��)

�
d[X i;c; Xj;c]s

+
1

2

Z t

0

�
DnF (X1

s�; . . . ; X
n
s�+) � DnF (X1

s�; . . . ; X
n
s��)

�
d`bs(X)

+
X
0<s�t

F (Xs)�F (Xs�) + Rt

where we use that:

(3.14)
X
0<s�t

F1(X̂s)�F1(X̂s�) +
X
0<s�t

F2( �Xs)�F2( �Xs�)�
X
0<s�t

F ( ~Xs)�F ( ~Xs�)

=
X
0<s�t

F (Xs)�F (Xs�)
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and the final term in (3.13) is given by:

(3.15) Rt = F ( ~X0) +
nX

i=1

Z t

0
DiF1( ~Xs�) I(Xn

s�> b
X
s�) d ~X i;c

s

+
1

2

nX
i;j=1

Z t

0
DijF1( ~Xs�) I(Xn

s�> bXs�) d[ ~X i;c; ~Xj;c]s

+
1

2

nX
i=1

Z t

0
DiF1( ~Xs�) I(Xn

s� = bXs�) d ~X i;c
s

+
1

4

nX
i;j=1

Z t

0
DijF1( ~Xs�) I(Xn

s�= bXs�) d[ ~X
i;c; ~Xj;c]s

+
nX

i=1

Z t

0
DiF2( ~Xs�) I(Xn

s� < b
X
s�) d ~X i;c

s

+
1

2

nX
i;j=1

Z t

0
DijF2( ~Xs�) I(Xn

s�< b
X
s�) d[ ~X

i;c; ~Xj;c]s

+
1

2

nX
i=1

Z t

0
DiF2( ~Xs�) I(Xn

s� = bXs�) d ~X i;c
s

+
1

4

nX
i;j=1

Z t

0
DijF2( ~Xs�) I(Xn

s�= bXs�) d[ ~X
i;c; ~Xj;c]s � F ( ~Xt)

c

where F ( ~X)c is the continuous semimartingale part of F ( ~X) . From (3.13) and (3.15) we see

that (3.6) will be proved if we show that Rt = 0 .

5. The same arguments as those given in (2.22)-(2.25) show again that F1 in the first four

integrals on the right-hand side of (3.15) can be replaced by F2 . This combined with the remaining

terms shows that the identity Rt = 0 reduces to applying the Itô formula to F2( ~Xt) and identifying

the continuous part of the resulting semimartingale. This completes the proof of the theorem.

2. The condition (3.1) applied to the semimartingale Xn�bX is the best known sufficient

condition for the local time of X on the surface b to be given by means of the explicit expression

(3.5) above. In the case of general semimartingales X and bX , however, the local time of X
on the surface b (i.e. the local time of the semimartingale Xn � bX at zero) can still be defined

by means of the Tanaka formula (3.17) retaining its role as the occupation density relative to the

random clock [Xn�bX ; Xn�bX ]c (see [12; p.168]) but we do not have the explicit representation

(3.5) anymore and the use of the local time is somewhat less transparent.

If X = (X1; . . . ; Xn) is a general semimartingale (not necessarily satisfying (3.1) above) then

each X i can still be decomposed into (3.2) with X i;c = M i;c + Ai;c and X i;d = M i;d + Ai;d

where M i;c is a continuous local martingale, Ai;c is a continuous process of bounded variation,

M i;d is a purely discontinuous local martingale, and Ai;d is a pure jump process of bounded

variation. Since the condition (3.1) may fail (due to the existence of many small jumps) we know

that Itô’s formula takes only the first form in (3.4) above. It is well-known (and easily verified
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by localization using Taylor’s theorem) that the first series over 0 < s � t in (3.4) is absolutely

convergent (even if (3.1) fails to hold).

The following theorem extends the change-of-variable formula (2.6) to general semimartingales.

Note that (1.1), (2.6) and (3.6) above are special cases of the general formula (3.16) below.

Theorem 3.2

Let X = (X1; . . . ; Xn) be a semimartingale, let b : IRn�1 ! IR be a continuous function

such that the process bX = b(X1; . . . ; Xn�1) is a semimartingale, and let F : IRn ! IR be a

continuous function satisfying (2.3) and (2.4) above.

Then the following change-of-variable formula holds:

(3.16) F (Xt) = F (X0) +
nX

i=1

Z t

0

1

2

�
@F

@xi
(X1

s�; . . . ; Xn
s�+) +

@F

@xi
(X1

s�; . . . ; Xn
s��)

�
dX i

s

+
1

2

nX
i;j=1

Z t

0

1

2

�
@2F

@xi@xj
(X1

s�; . . . ; X
n
s�+) +

@2F

@xi@xj
(X1

s�; . . . ; X
n
s��)

�
d[X i;c; Xj;c]s

+
X
0<s�t

 
F (Xs)�F (Xs�)�

nX
i=1

1

2

�
@F

@xi
(X1

s�; . . . ; Xn
s�+)+

@F

@xi
(X1

s�; . . . ; Xn
s��)

�
�X i

s

!

+
1

2

Z t

0

�
@F

@xn
(X1

s�; . . . ; X
n
s�+)� @F

@xn
(X1

s�; . . . ; X
n
s��)

�
I(Xn

s�=bXs�; X
n
s =bXs ) d`

b
s(X)

where `bs(X) is the local time of X on the surface b given by means of (3.17) below and d`bs(X)
refers to integration with respect to the continuous increasing function s 7! `bs(X) .

Proof. The proof can be carried out similarly to the proof of Theorem 2.1 and Theorem 3.1

and we will only highlight a few novel points appearing due to the absence of the condition (3.1).

The remaining details are the same as in the proof of Theorem 2.1 and Theorem 3.1.

1. We begin as in the proof of Theorem 2.1 by introducing the processes Z1; Z2; X̂; �X; ~X
and observing that (2.7)-(2.9) carries over unchanged. The analogue of (2.10) which is obtained

by applying the Tanaka formula now reads:

(3.17) jXn
t �bXt j = jXn

0 �bX0 j +
Z t

0
sign(Xn

s��bXs�) d(Xn
s �bXs ) + `bt(X)

+
X

0<s�t

�
jXn

s �bXs j � jXn
s��bXs�j � sign(Xn

s��bXs�)�(Xn�bX )s

�
where sign(0) = 0 . Similarly to (2.11) and (2.12) we now find that:

(3.18) dZ1
t =

1

2

��
1� sign(Xn

t��bXt�)
�
dXn

t +
�
1 + sign(Xn

t��bXt�)
�
dbXt � d`bt(X)� dJt(X)

�
(3.19) dZ2

t =
1

2

��
1 + sign(Xn

t��bXt�)
�
dXn

t +
�
1� sign(Xn

t��bXt�)
�
dbXt + d`bt(X) + dJt(X)

�
where we denote:

(3.20) Jt(X) =
X

0<s�t

�
jXn

s �bXs j � jXn
s��bXs�j � sign(Xn

s��bXs�)�(Xn�bX)s
�

.
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2. Applying the Itô formula to F1(X̂t) we get:

(3.21) F1(X̂t) = F1(X̂0) +
nX

i=1

Z t

0
DiF1(X̂s�) dX̂ i

s +
1

2

nX
i;j=1

Z t

0
DijF1(X̂s�) d[X̂ i;c; X̂j;c]s

+
X
0<s�t

�
F1(X̂s)�F1(X̂s�) �

nX
i=1

DiF1(X̂s�)�X i
s

�
.

Hence using (3.18) and proceeding in the same way as in (2.13) and (2.15), making use of the

general fact (3.11), we obtain the analogue of the identity (2.16) where all X i and ~X i in the

integrators with the angle brackets are replaced by X i;c and ~X i;c now written as the square

brackets, and the right-hand side of the identity contains a new term given by:

(3.22) �1

2

Z t

0
DnF1(X̂s�) dJs(X)

due to the appearance of �dJt(X) in (3.18).

3. Applying the Itô formula to F2( �Xt) we get:

(3.23) F2( �Xt) = F2( �X0) +
nX

i=1

Z t

0
DiF2( �Xs�) d �X i

s +
1

2

nX
i;j=1

Z t

0
DijF2( �Xs�) d[ �X i;c; �Xj;c]s

+
X
0<s�t

�
F2( �Xs)�F2( �Xs�) �

nX
i=1

DiF2( �Xs�)�X i
s

�
.

Hence using (3.19) and proceeding in the same way as in (2.17) and (2.18), making use of the

general fact (3.11), we obtain the analogue of the identity (2.19) where all X i and ~X i in the

integrators with the angle brackets are replaced by X i;c and ~X i;c now written as the square

brackets, and the right-hand side of the identity contains a new term given by:

(3.24)
1

2

Z t

0
DnF2( �Xs�) dJs(X)

due to the appearance of dJt(X) in (3.19).

4. Combining the right-hand sides of the resulting identities we find the analogue of (2.20) to be:

(3.25) F (Xt) = F1(X̂t) + F2( �Xt) � F ( ~Xt) = F (X0)

+
nX

i=1

Z t

0

1

2

�
DiF (X1

s�; . . . ; X
n
s�+) + DiF (X1

s�; . . . ; X
n
s��)

�
dX i

s

+
1

2

nX
i;j=1

Z t

0

1

2

�
DijF (X1

s�; . . . ; X
n
s�+) +DijF (X1

s�; . . . ; X
n
s��)

�
d[X i;c; Xj;c]s

+
1

2

Z t

0

�
DnF (X1

s�; . . . ; X
n
s�+) �DnF (X1

s�; . . . ; X
n
s��)

�
d`bs(X) + Rt

where the final term is given by:
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(3.26) Rt = F ( ~X0) +
nX

i=1

Z t

0
DiF1( ~Xs�) I(Xn

s� > bXs�) d ~X i
s

+
1

2

nX
i;j=1

Z t

0
DijF1( ~Xs�) I(Xn

s�> bXs�) d[ ~X
i;c; ~Xj;c]s

+
1

2

nX
i=1

Z t

0
DiF1( ~Xs�) I(Xn

s� = bXs�) d ~X i
s

+
1

4

nX
i;j=1

Z t

0
DijF1( ~Xs�) I(Xn

s�= bXs�) d[ ~X
i;c; ~Xj;c]s

+
nX

i=1

Z t

0
DiF2( ~Xs�) I(Xn

s� < bXs�) d ~X i
s

+
1

2

nX
i;j=1

Z t

0
DijF2( ~Xs�) I(Xn

s�< bXs�) d[ ~X i;c; ~Xj;c]s

+
1

2

nX
i=1

Z t

0
DiF2( ~Xs�) I(Xn

s� = bXs�) d ~X i
s

+
1

4

nX
i;j=1

Z t

0
DijF2( ~Xs�) I(Xn

s�= bXs�) d[ ~X
i;c; ~Xj;c]s � F ( ~Xt)

+
X
0<s�t

�
F1(X̂s) � F1(X̂s�) �

nX
i=1

DiF1(X̂s�)�X̂ i
s

�
+
X
0<s�t

�
F2( �Xs) � F2( �Xs�) �

nX
i=1

DiF2( �Xs�)� �X i
s

�
+

1

2

Z t

0
DnF2( �Xs�) dJs(X) � 1

2

Z t

0
DnF1(X̂s�) dJs(X) .

5. The same arguments as those given in (2.22) and (2.23) now lead to the following analogues

of (2.24) and (2.25) respectively:

(3.27)

nX
i=1

Z t

0
DiF1( ~Xs�) I(Xn

s�>b
X
s�) d ~X i

s +
1

2

nX
i;j=1

Z t

0
DijF1( ~Xs�) I(Xn

s�>b
X
s�) [ ~X

i;c; ~Xj;c]s

+
X
0<s�t

I(Xn
s�>bXs�)

�
F1( ~Xs) � F1( ~Xs�) �

nX
i=1

DiF1( ~Xs�)� ~X i
s

�
=

nX
i=1

Z t

0
DiF2( ~Xs�) I(Xn

s�>b
X
s�) d ~X i

s +
1

2

nX
i;j=1

Z t

0
DijF2( ~Xs�) I(Xn

s�>b
X
s�) [ ~X

i;c; ~Xj;c]s

+
X
0<s�t

I(Xn
s�>bXs�)

�
F2( ~Xs) � F2( ~Xs�) �

nX
i=1

DiF2( ~Xs�)� ~X i
s

�

(3.28)

nX
i=1

Z t

0
DiF1( ~Xs�) I(Xn

s�=b
X
s�) d ~X i

s +
1

2

nX
i;j=1

Z t

0
DijF1( ~Xs�) I(Xn

s�=b
X
s�) [ ~X

i;c; ~Xj;c]s
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+
X
0<s�t

I(Xn
s�= bXs�)

�
F1( ~Xs) � F1( ~Xs�) �

nX
i=1

DiF1( ~Xs�)� ~X i
s

�
=

nX
i=1

Z t

0
DiF2( ~Xs�) I(Xn

s�=bXs�) d ~X i
s +

1

2

nX
i;j=1

Z t

0
DijF2( ~Xs�) I(Xn

s�=bXs�) [ ~X
i;c; ~Xj;c]s

+
X
0<s�t

I(Xn
s�= bXs�)

�
F2( ~Xs) � F2( ~Xs�) �

nX
i=1

DiF2( ~Xs�)� ~X i
s

�
.

Making use of (3.27) and (3.28) we see that F1 in the first four integrals in (3.26) can be replaced

by F2 upon taking into account the four series over 0 < s � t appearing in (3.27) and (3.28).

Adding and subtracting the same series over 0 < s � t we see that the first nine terms on the

right-hand side of (3.26), together with the series added, assemble exactly the expression obtained

by applying the Itô formula to F2( ~Xt) . Since F ( ~Xt) = F2( ~Xt) hence we see that the first

ten terms obtained on the right-hand side of (3.26) equals the eleventh term which is the series

subtracted. Recalling also the four series from (3.27) and (3.28) this shows that:

(3.29) Rt =
X
0<s�t

I(Xn
s�>bXs�)

�
F2( ~Xs) � F2( ~Xs�)�

nX
i=1

DiF2( ~Xs�)� ~X i
s

�
�
X
0<s�t

I(Xn
s�>bXs�)

�
F1( ~Xs)� F1( ~Xs�) �

nX
i=1

DiF1( ~Xs�)� ~X i
s

�
+

1

2

X
0<s�t

I(Xn
s�= bXs�)

�
F2( ~Xs)� F2( ~Xs�)�

nX
i=1

DiF2( ~Xs�)� ~X i
s

�
� 1

2

X
0<s�t

I(Xn
s�= bXs�)

�
F1( ~Xs)� F1( ~Xs�)�

nX
i=1

DiF1( ~Xs�)� ~X i
s

�
�
X
0<s�t

�
F2( ~Xs) � F2( ~Xs�) �

nX
i=1

DiF2( ~Xs�)� ~X i
s

�
+
X
0<s�t

�
F1(X̂s) � F1(X̂s�) �

nX
i=1

DiF1(X̂s�)�X̂ i
s

�
+
X
0<s�t

�
F1( �Xs) � F1( �Xs�) �

nX
i=1

DiF1( �Xs�)� �X i
s

�
+

1

2

Z t

0
DnF2( �Xs�) dJs(X) � 1

2

Z t

0
DnF1(X̂s�) dJs(X) .

From (3.25) we thus see that the proof of (3.16) reduces to verify the following identity:

(3.30) Rt =
X
0<s�t

�
F (Xs)� F (Xs�) �

nX
i=1

�
I(Xn

s�<bXs�)DiF1(Xs�)�X i
s

+ I(Xn
s�= bXs�)

1

2

�
DiF1( ~Xs�) +DiF2( ~Xs�)

�
�X i

s

+ I(Xn
s� > bXs�)DiF2(Xs�)�X i

s

��
.
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To this end it is helpful to note that:

(3.31)
1

2

Z t

0
DnF2( �Xs�) dJs(X) � 1

2

Z t

0
DnF1(X̂s�) dJs(X)

=
1

2

X
0<s�t

I(Xn
s >bXs ; X

n
s�= bXs�)

�
DnF2( ~Xs�) �DnF1( ~Xs�)

�
(Xn

s �bXs )

+
X
0<s�t

I(Xn
s >bXs ; X

n
s�<bXs�)

�
DnF2( ~Xs�)� DnF1(Xs�)

�
(Xn

s �bXs )

�
X

0<s�t
I(Xn

s <bXs ; X
n
s�>bXs�)

�
DnF2(Xs�) �DnF1( ~Xs�)

�
(Xn

s �bXs )

� 1

2

X
0<s�t

I(Xn
s <bXs ; X

n
s�= bXs�)

�
DnF2( ~Xs�)�DnF1( ~Xs�)

�
(Xn

s �bXs ) .

A lengthy but straightforward verification shows that the two sides in (3.30) coincide i.e. that

the right-hand side of (3.29) equals the right-hand side of (3.30). This can be done by recalling that

each series over 0 < s � t in (3.29) and (3.31) is absolutely convergent so that all eleven of them

appearing on the right-hand side of (3.29) can be combined into a single series of the finite sum of

the eleven individual terms. Multiplying the sum by each of the indicators I(Xn
s >bXs ; X

n
s�=bXs�),

I(Xn
s =bXs ; X

n
s�=bXs�), I(Xn

s <bXs ; X
n
s�=bXs�), I(Xn

s �bXs ; Xn
s�>bXs�), I(Xn

s <bXs ; X
n
s�>bXs�),

I(Xn
s > bXs ; X

n
s� < bXs�), I(Xn

s = bXs ; X
n
s� < bXs�), I(Xn

s < bXs ; X
n
s� < bXs�) and comparing the

result with the corresponding expression on the right-hand side of (3.30) it is seen that all eight of

them coincide. This establishes the identity (3.30) and completes the proof of the theorem.

Remark 3.3

It is evident that the contents of Remark 2.2 and Remark 2.3 carry over to the setting of

Theorem 3.2 (or Theorem 3.1) without major change. By adding the corresponding jump terms to

(2.29) and (2.32) one obtains their extension to general semimartingales (or semimartingales with

jumps of bounded variation). We will omit the explicit expressions of these formulas.

4. The time-space maximum process

In this section we first apply the change-of variable formula (2.6) to a three-dimensional

continuous semimartingale and then derive a version of the same formula under weaker conditions

on the function. This version is useful in the study of free-boundary problems.

1. Let X be a diffusion process solving:

(4.1) dXt = �(t; Xt) dt + �(t; Xt) dBt

in Itô’s sense. The latter more precisely means that X satisfies:

(4.2) Xt = X0 +

Z t

0
�(r;Xr) dr +

Z t

0
�(r;Xr) dBr

for all t � 0 where � and � are locally bounded (continuous) functions for which the integrals

18



in (4.2) are well-defined (the second being Itô’s) so that X itself is a continuous semimartingale

(the process B is a standard Brownian motion). To ensure that X is non-degenerate we will

assume that � > 0 .

Associated with X we consider the maximum process S defined by:

(4.3) St =
�

max
0�r�tXr

�
_ S0 .

Then ((t; Xt; St))t�0 is a continuous semimartingale taking values in IR+�E where we set

E = f (x; s) 2 IR2 j x � sg .

2. Let b : IR+�IR ! IR be a continuous function such that the process bX defined by

bXt = b(t; St) is a semimartingale. Setting:

(4.4) C = f (t; x; s) 2 IR+�E j x > b(t; s) g
(4.5) D = f (t; x; s) 2 IR+�E j x < b(t; s) g

suppose that a continuous function F : IR+�E ! IR is given such that:

(4.6) F is C1;2;1 on �C

(4.7) F is C1;2;1 on �D

in the sense explained following (2.3) and (2.4) above. [A slight notational change in the definition

of the process ((t; Xt; St))t�0 and the sets C and D in comparison with those given in Section

2 above is made to meet the notation used in [10] and related papers.]

Moreover, since � > 0 it follows that:

(4.8) P
�
Xr = bXr

�
= 0 for r 2 h0; t]

so that under (4.6) and (4.7) the change-of-variable formula (2.6) takes the simpler form:

(4.9) F (t; Xt; St) = F (0; X0; S0) +

Z t

0
Ft(r;Xr; Sr) I(Xr 6= bXr ) dr

+

Z t

0
Fx(r;Xr; Sr) I(Xr 6= bXr ) dXr +

Z t

0
Fs(r;Xr; Sr) I(Xr 6= bXr ) dSr

+

Z t

0
Fxx(r;Xr; Sr) I(Xr 6= bXr ) dhX;Xir

+
1

2

Z t

0

�
Fx(r;Xr+; Sr) � Fx(r;Xr�; Sr)

�
d`br(X)

where `br(X) is the local time of X on the surface b given by:

(4.10) `br(X) = IP�lim
"#0

1

2"

Z r

0
I(�"<Xu�bXu <") dhX�bX; X�bXiu

and d`br(X) in (4.9) refers to integration with respect to the continuous increasing function

r 7! `br(X) . [The appearance of X in d`br(X) is motivated by the fact that St is a functional
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of X .] Note also that using (4.1) the formula (4.9) can be rewritten as (4.22) below.

3. It turns out, however, that similarly to the case studied in Section 3 of [11] the conditions

(4.6) and (4.7) are not always readily verified. The main example we have in mind (arising from

the free-boundary problems mentioned above) is:

(4.11) F (t; x; s) = Et;x;s

�
G(t+�D; Xt+�D ; St+�D)

�
where (Xt; St) = (x; s) under Pt;x;s , an admissible function G is given and fixed, and:

(4.12) �D = inf f r > 0 j (t+r;Xt+r; St+r)2D g .

Then one directly obtains the ’interior condition’ (4.13) by standard means while the ’closure

condition’ (4.6) is harder to verify at b since (unless we know a priori that r 7! b(r; s) is

Lipschitz continuous or even differentiable) both Ft and Fxx may in principle diverge when b
is approached from the interior of C .

Motivated by applications in free-boundary problems we will now present a version of the

formula (4.9) where (4.6) and (4.7) are replaced by the conditions:

(4.13) F is C1;2;1 on C

(4.14) F is C1;2;1 on D .

The rationale behind this version is the same as in [11]. Given that one has some basic control over

Fx at b (in free-boundary problems mentioned above such a control is provided by the principle of

smooth fit) even if Ft is formally to diverge when the boundary b is approached from the interior

of C , this deficiency is counterbalanced by a similar behaviour of Fxx through the infinitesimal

generator of X , and consequently the first integral in (4.22) below is still well-defined and finite.

4. Given a subset A of IR+�E and a function f : A! IR we say that f is locally bounded

on A ( in IR+�E ) if for each a in �A there is an open set U in IR+�E containing a such

that f restricted to A\U is bounded. Note that f is locally bounded on A if and only if for

each compact set K in IR+�E the restriction of f to A\K 6= ; is bounded. Given a function

g : [0; t] ! IR of bounded variation we let V (g)(t) denote the total variation of g on [0; t] .

To grasp the meaning of the condition (4.19) below in the case of F from (4.11) above, letting

ILX = @=@t + � @=@x + (�2=2) @2=@x2 denote the infinitesimal generator of X , recall that the

infinitesimal generator IL of ((t; Xt; St))t�0 can formally be described as follows (cf. [10]):

(4.15) IL = ILX in x < s

(4.16) @
@s = 0 at x = s .

Denoting Cs = f (t; x) j (t; x; s) 2 C g and Ds = f (t; x) j (t; x; s) 2 D g hence we see that:

(4.17) ILF = 0 in Cs

(4.18) ILF = ILG in Ds .

This shows that ILF is locally bounded on Cs [Ds as soon as ILG is so on Ds . The latter
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condition (in free-boundary problems) is easily verified since G is given explicitly.

The main result of the present section may now be stated as follows (see also Remark 4.2

below for further sufficient conditions).

Theorem 4.1

Let X be a diffusion process solving (4.1) in Itô’s sense, let b : IR+� IR ! IR be a

continuous function such that the process bX defined by bXt = b(t; St) is a semimartingale, and

let F : IR+�E ! IR be a continuous function satisfying (4.13) and (4.14) above.

If the following conditions are satisfied:

(4.19)
�
Ft + �Fx + (�2=2)Fxx

�
( � ; � ; s) is locally bounded on Cs [Ds

(4.20) Fx( � ; b( � ; s)�"; s) ! Fx( � ; b( � ; s)�; s) uniformly on [0; t] as " # 0

(4.21) sup
0<"<�

V (F ( � ; b( � ; s)�"; s))(t) < 1 for some � > 0

for each s given and fixed, then the following change-of-variable formula holds:

(4.22) F (t; Xt; St) = F (0; X0; S0) +

Z t

0

�
Ft + �Fx + (�2=2)Fxx

�
(r;Xr; Sr) I(Xr 6=bXr ) dr

+

Z t

0
(�Fx)(r;Xr; Sr) I(Xr 6= bXr ) dBr

+

Z t

0
Fs(r;Xr; Sr) I(Xr 6= bXr ; Xr = Sr) dSr

+
1

2

Z t

0

�
Fx(r;Xr+; Sr)�Fx(r;Xr�; Sr)

�
I(Xr= bXr ) d`br(X)

where `br(X) is the local time of X at the surface b given by (4.10) above, and d`br(X) refers

to integration with respect to the continuous increasing function r 7! `br(X) .

Proof. The key observation is that off the diagonal x = s in E the process (t; Xt; St)
can be identified with a process (t; Xt) and the surface process b(t; St) can be identified with a

curve b(t) . By slightly extending the ’two-map argument’ given in Remark 4.2 of [6] the previous

observation can be embedded rigorously in a well-defined mathematical setting. In this setting the

problem becomes equivalent to the problem treated in Theorem 3.1 of [11]. Applying the same

method of proof, upon making use of (2.16) and (2.19) above, and relying upon the properties of the

local time and Helly’s selection theorem, it is seen that the conditions (3.26)-(3.28) in Theorem 3.1

of [11] become the conditions (4.19)-(4.21) above. As this verification is lengthy, but in principle

the same, further details will be omitted (for more details see [11]).

Remark 4.2

It is evident that all of the number of sufficient conditions discussed in [11], which are either

to imply (4.19)-(4.21) or could be used instead, can easily be translated into the present setting.

We will state explicitly only one set of these conditions. Assume that F satisfies (4.13) and (4.14)
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above. If (4.19) is satisfied and for each s given and fixed we have:

(4.23) x 7! F (r; x; s) is convex or concave on [b(r; s)��; b(r; s)] and convex or concave on

[b(r; s); b(r; s)+�] for each r 2 [0; t] with some � > 0

(4.24) r 7! Fx(r; b(r; s)�; s) is continuous on [0; t] with values in IR

then both (4.20) and (4.21) hold. This shows that (4.23) and (4.24) imply (4.22) when (4.19) holds.

The condition (4.23) can further be relaxed to the form where:

(4.25) Fxx( � ; � ; s) = G1( � ; � ; s) + G2( � ; � ; s) on Cs [ Ds

where G1( � ; � ; s) is non-negative (non-positive) and G2( � ; � ; s) is continuous on �Cs and �Ds

for each s given and fixed. Thus, if (4.24) and (4.25) hold, then both (4.20) and (4.21) hold

implying also (4.22) when (4.19) holds.
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