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Best Constants in Kahane-Khintchine Inequalities
for Complex Steinhaus Functions

GORAN PESKIR

Let f'kgk�1 be a sequence of independent random variables uniformly dis-

tributed on [0; 2�[ , and let k � k denote the Orlicz norm induced by the function

 (x) = exp(jxj2)�1 . Then:
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for all z1; . . . ; zn 2 C and all n � 1 . The constant
p
2 is shown to be the

best possible. The method of proof relies upon a combinatorial argument, Taylor

expansion, and the central limit theorem. The result is additionally strengthened

by showing that the underlying functions are Schur-concave. The proof of this

fact uses a result on multinomial distribution of Rinott, and Schur’s proposition on

sum of convex functions. The estimates obtained throughout are shown to be the

best possible. The result extends and generalizes to provide similar inequalities and

estimates for other Orlicz norms.

1. Introduction

Let f"igi�1 be a Bernoulli sequence of random variables defined on the probability space

(
;F ; P ) , and let k � k denote the Orlicz norm induced by the function  (x) = exp(jxj2)�1 .

Thus, whenever X is a random variable defined on (
;F ; P ) , we have:

kXk = inf
�
C > 0 j E (jXj=C) � 1

	
with convention inf ; = +1 . Then:

(1.1)
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for all a1; . . . ; an 2 R and all n � 1 . The constant
p
8=3 is the best possible (see [13]).

The inequality (1.1) is called Kahane-Khintchine’s inequality in (exponential) Orlicz space, and is

known to have a number of applications.

The present paper is motivated by the following observations. Consider random variables "i
in (1.1). Recall that Pf"i = �1g = 1=2 . Thus "i may be interpreted as uniformly distributed on

the unit sphere S1 = f�1;+1g in R . Now let f�kgk�1 be a sequence of independent random

variables uniformly distributed on the unit sphere S2 in R2 . Then the problem appears worthy

of consideration: Does the analogue of (1.1) remain valid, and what is the best possible constant

in this case? It is the purpose of the paper to present solution for this problem.
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In this context we find it convenient to replace R2 with the set of complex numbers C .

Then �k = ei'k for k � 1 , where 'k’s are independent and uniformly distributed on [0; 2�[ .

The analogue of (1.1) may be stated as follows:

(1.2)



 nX
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k=1

jzkj2
�1=2

where z1; . . . ; zn 2 C and n � 1 . In order to prove (1.2) recall that (1.1) generalizes to the form:

(1.3)
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where fXigi�1 is any sequence of independent symmetric a.s. bounded random variables (see

[13]). Notice that zke
i'k � jzkjei'k , thus there is no restriction in (1.2) to assume that zk 2 R+

for all k � 1 . Combining this fact with (1.3), we obtain by triangle inequality:
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for all z1; . . . ; zn 2 C and all n � 1 . Thus (1.2) is valid with C = 2
p

8=3 = 3:26 . . . However,

it is clear that this constant is far from being the best possible in (1.2).

Our main aim in this paper is to present a method of proof which establishes (1.2) with the

best possible constant C . We find it useful here to clarify the main points of the approach. For

this consider (1.1) with given and fixed a1; . . . ; an 2 R and n � 1 . Denote Sn =
Pn

i=1 ai"i ,

and throughout assume that
Pn

i=1 jaij2 = 1 . Note that (1.1) follows as soon as we obtain:

(1.4) E exp

� jSnj2
C2

�
� 2

with C =
p
8=3 . Thus the problem reduces to estimate the left side of (1.4) in an optimal way.

It turns out that the best estimate is as follows:

(1.5) E exp

� jSnj2
C2

�
� E exp

� jZj2
C2

�
=

Cp
C2�2

which is valid for all C >
p
2 and where Z � N(0; 1) is standard Gaussian variable. Identifying

C=
p
C2�2 = 2 , one gets C =

p
8=3 and completes the proof of (1.1).

Probably the best understanding of (1.5) may be obtained through the concept of Schur-convexity

in the theory of majorization, which we find instructive here to explain in more detail. It should be

noted that in this process we also clarify the reason for which (1.5) serves the best possible constant

in (1.1). First note that expanding the integrands in (1.5) into Taylor series, it suffices to show:

(1.6) EjSnj2k � EjZj2k

for all k � 1 . This inequality follows by the central limit theorem from an intermediate fact

which is by itself of theoretical interest:

(1.7) The map (x1; . . . ; xn)
�7�! E

��� nX
i=1

p
xi "i

���2k is Schur-concave on Rn
+ .

Roughly speaking, this means that �(x) dominates �(y) whenever the components of vector x
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are “less spread out” or “more nearly equal” than the components of vector y . More precisely, if

z�1 � . . . � z�n denote the components of vector z in decreasing order, then (1.7) means:

(1.7’)
kX

i=1

x�i �
kX

i=1

y�i (k=1; . . . ; n�1) &
nX
i=1

xi =

nX
i=1

yi ) �(x) � �(y)

whenever x; y 2 Rn
+ . In particular, we obtain:

(1.8) E
��� nX
i=1

ai"i

���2k� E
��� 1p

n

nX
i=1

"i

���2k� E
��� 1p

n+1

n+1X
i=1

"i

���2k
for all k � 1 . Finally, passing to the limit in (1.8), we get (1.6) by the central limit theorem.

Moreover, in this way we also see that inequality (1.6) eventually becomes an equality ( with the

choice ai = 1=
p
n for i = 1; . . . ; n ) . The same fact carries over to (1.5), and explains how

(1.5) serves the best possible constant in (1.1).

We remind that (1.6) is due to Khintchine [8], while (1.7) is due partially to Efron [2], and

fully to Eaton [1]. It should be pointed out that two interesting generalizations of these results may

be encountered, where g(x) = jxj2k for k � 1 is replaced by a wider class of functions (see

[1]). For more information about the theory of majorization and its applications just indicated, we

refer the reader to [11]. In particular, we find it instructive to remind on Schur’s condition which

characterizes Schur’s convexity (concavity) in terms of first partial derivatives (see [11] p.57).

We turn back to the original problem of finding the optimal method for the proof of (1.2). To

the best of our knowledge the theory of majorization described above does not support our needs

explicitly for the optimal (1.2). In particular, putting Sn =
Pn

k=1 zke
i'k for given z1; . . . ; zn 2 C

such that
Pn

k=1 jzkj2 = 1 , nothing seems in general to be known about the analogue of (1.6) and

(1.7) in this case, as well as about their generalizations to a wider class of functions as mentioned

above. It should be noted that for p � 1 we have:

E
��� nX
k=1

zke
i'k
���2p = E

 � nX
k=1

zk cos'k

�2
+
� nX
k=1

zk sin'k

�2!p

To conclude, we may notice that actually two separate problems have appeared. The first one

is to prove (1.2) in an optimal way which will provide the best possible constant C . The second

and more general one is to prove the analogue of (1.6) and (1.7) for a wider class of functions as

indicated above which will include g(x) = jxj2p for p � 1 . In this paper we find complete

solution for the first problem, and partial solution for the second problem which covers our needs

for the first problem. The approach makes no attempt to obtain a more general solution for the

second problem. It is left as worthy of consideration.

2. Preliminary facts

In this section we introduce notation and collect facts needed for the main results in the next

section. Throughout we denote  (x) = exp(jxj2)�1 and work with the Orlicz norms:

kXk = inf f C > 0 j E (jXj=C) � 1 g
kXkT = inf f C > 0 j E (jXj=C) � C g
kXk� = E (jXj)
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where X is a random variable defined on the probability space (
;F ; P ) . Recall that k � k is

called the gauge norm. We remark that the quantity kXkT emerged in the study [5]. Its interest

relies upon the fact that for more general functions  , the map k�k need not be an Fréchet norm,

but k�kT is so (see [5] p.17,18). The quantity kXk� is of an intermediate value for both kXk 
and kXkT . For more information about the Orlicz norm just introduced we refer to [5] and [13].

We turn to the concept of Schur-convexity in the theory of majorization. Let z�1 � . . . � z�n
denote the components of vector z 2 Rn in decreasing order. Given x; y 2 Rn , we say that x
is majorized by y and write x � y , if the conditions are fulfilled:

nX
i=1

xi =
nX
i=1

yi &
kX

i=1

x�i �
kX

i=1

y�i

for all k = 1; . . . ; n�1 . For instance, we have:

(2.1)
� 1
n
; . . . ;

1

n

�
�
� 1

n�1 ; . . . ;
1

n�1 ;0
�
� �

1
2 ;

1
2 ; 0; . . . ; 0

� � (1; 0; . . . ; 0)

(2.2)
� 1
n
; . . . ;

1

n

�
� (a1; . . . ; an) � (1; 0; . . . ; 0) whenever ai � 0 and

Pn
i=1 ai = 1

(2.3)
�
n�1

Pn
i=1xi

�
(1; . . . ; 1) � (x1; . . . ; xn) whenever xi � 0 .

Let D � Rn be a set, and let � : D! R be a function. Then � is said to be Schur-convex

on D , if �(x) � �(y) whenever x; y 2 D and x � y . The map � is said to be Schur-concave,

if �� is Schur-convex. It is easily verified that if � is Schur-convex, and D is symmetric, then

� is symmetric as well. Moreover, if � is symmetric and convex, then � is Schur-convex.

The following well-known result combined with (2.1)-(2.3) may provide a lot of interesting

inequalities (for proof see [11] p.64).

Proposition 2.1 (Schur; Hardy-Litlewood-Pólya)

If I � R is an interval, and g : I ! R is convex, then the function:

�(x) =

nX
i=1

g(xi)

is Schur-convex on In .

The next fundamental theorem characterizes Schur-convexity (concavity) in terms of first partial

derivatives (for proof see [11] p.57).

Theorem 2.2 (Schur-Ostrowski)

Let I � R be an interval, and let � : In ! R be continuously differentiable. Then � is

Schur-convex on In , if and only if the following two conditions are satisfied:

(2.4) � is symmetric on In

(2.5) (xi�xj)
�

@�
@xi

(x)� @�
@xj

(x)
�
� 0 for all x 2 In and all i 6= j .

Moreover, whenever (2.4) is satisfied, (2.5) may be replaced by the condition:

(2.5’) (x1�x2)
�
@�
@x1

(x)� @�
@x2

(x)
�
� 0 for all x 2 In .
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The same characterization remains valid for Schur-concave functions � with inequalities (2.5) and

(2.5’) being reversed.

The following result on multinomial distribution of Rinott is shown to be useful. It might be

proved in a straightforward way by verifying Schur’s condition (2.5’) in Theorem 2.2 (see [15]).

(2.6) Let X = (X1; . . . ; Xn) be a random vector from the multinomial distribution with param-

eters z = (z1; . . . ; zn) 2 [0; 1]n and p � 1 , where
Pn

i=1 zi = 1 . In other words:

PfX1= p1; . . . ; Xn = pn g =
p !

p1! . . . pn!
zp11 . . . zpnn

for p1; . . . ; pn 2 Zn+ with
Pn

i=1 pi = p . If 	 is Schur-convex (-concave), then the

function z 7! Ez	(X) is Schur-convex (-concave).

We conclude with a few facts on the complex Steinhaus sequence of random variables. Let

f'kgk�1 be a sequence of independent random variables uniformly distributed on [0; 2�[ . Then

fei'kgk�1 is a sequence of random variables uniformly distributed on the unit sphere S2 in C . We

denote �k = ei'k for k � 1 , and the sequence f�kgk�1 is called a complex Steinhaus sequence.

Note that E cos'1 = E sin'1 = E cos'i sin'j = 0 for i 6= j , and E cos2'1 = E sin2'1 =
1=2 . Thus by the two-dimensional central limit theorem we have:

(2.7)
1p
n

nX
k=1

ei'k
��! Z1 + iZ2

as n!1 , where Z1 � Z2 � N(0; 1=2) are independent Gaussian variables with joint density:

(2.8) f(Z1;Z2)(x; y) =
1

�
exp(�x2�y2)

for x + iy 2 C . It should be recalled that C is topologically the same as R2 . Thus week

convergence in (2.7) coincides for both C and R2 . From (2.8) we get:

(2.9) E exp
�
jZ1+ iZ2j2=C2

�
= E exp

��
Z2
1+ Z2

2

�
=C2

�
=

Z 1
�1

Z 1
�1

exp
��
x2+ y2

�
=C2

�
� 1
�

exp(�x2�y2) dx dy

=
� 1p

�

Z 1
�1

exp
�
�
�
1 � 1

C2

�
x2
�
dx

�2
=

1

1� 1
C2

=
C2

C2�1

for all C > 1 . Identifying C2=C2�1 = 2 , we obtain C =
p
2 . Thus we have:

(2.10) kZ1+ iZ2k =
p
2 .

Similarly, from (2.8) we get:

(2.11) EjZ1+ iZ2j2p = E(Z2
1+ Z2

2)
p

=
1

�

Z 1
�1

Z 1
�1

(x2+y2)p exp(�x2�y2) dx dy

=
1

�

Z 1
0

Z 2�

0

r2p+1 exp(�r2) dr = 2

Z 1
0

r2p+1 exp(�r2) dr = p!
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for all p � 1 . Finally, to distinguish from the real case in (1.1) where E("i)
2 = 1 for i � 1 ,

it is interesting to observe that E(�k)
2 = 0 , although Ej�kj2 = 1 for k � 1 .

3. Kahane-Khintchine inequalities for complex Steinhaus variables

In this section we present the main results of the paper. We begin with the following basic fact.

Lemma 3.1

Let fei'kgk�1 be a complex Steinhaus sequence. Then the inequality is satisfied:

(3.1) E
��� nX
k=1

zke
i'k
���2p � p!

� nX
k=1

jzkj2
�p

for all z1; . . . ; zn 2 C , and all integers n , p � 1 . The constant p ! is the best possible.

Proof. Since zke
'k � jzkje'k for k � 1 , it is no restriction to assume that the given numbers

z1; . . . ; zn belong to R+ for n � 1 . In order to clarify the combinatorial argument in the general

case below, we first verify (3.1) for n = p = 2 . For this, note that we have:

(3.2) Eei('j�'k+'l�'m) =

�
1 ; if (j; l) 2 f(k;m); (m; k)g
0 ; otherwise

for all j; k; l;m � 1 . From this fact we obtain:

E
��� nX
k=1

zke
i'k
���2p = E

��� 2X
k=1

zke
i'k
���4 = E

� 2X
j=1

2X
k=1

zjzke
i('j�'k)

�� 2X
l=1

2X
m=1

zlzme
i('l�'m)

�

=

2X
j=1

2X
k=1

2X
l=1

2X
m=1

zjzkzlzmEe
i('j�'k+'l�'m) = z41 + 4z21z

2
2 + z42

= 2
�
z41=2 + 2z21z

2
2 + z42=2

�
� 2(z21 + z22)

2

and the proof of (3.1) in this case is complete.

The general case follows from the analogue of (3.2) by the same combinatorial pattern:

(3.3) E
��� nX
k=1

zke
i'k
���2p =

X
pi�0; p1+...+pn=p

Cp1;...;pn � z2p11 � . . . � z2pnn

(3.4) Cp1;...;pn =
� p
p1

�2�p�p1
p2

�2�p�p1� ... �pn�1
pn

�2
=
�

p !
p1! ... pn!

�2
being valid for all p � 1 , where pi � 0 and

Pn
i=1 pi = n . Combining (3.3) and (3.4) we get:

E
��� nX
k=1

zke
i'k
���2p � p!

X
pi�0; p1+...+pn=p

p!

p1! . . . pn!
� z2p11 � . . . � z2pnn

= p !
� nX
k=1

jzkj2
�p

for all p � 1 . Thus the proof of (3.1) is complete.

For the last statement, notice that by the central limit theorem (2.7) with (2.11) we obtain:
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lim
n!1E

��� 1p
n

nX
k=1

ei'k
���2p = EjZ1+ iZ2j2p = p!

for all p � 1 . Thus the last statement follows by putting z1 = . . . = zn = 1=
p
n in (3.1), and

passing to the limit when n ! 1 . These facts complete the proof.

Theorem 3.2

Let fei'kgk�1 be a complex Steinhaus sequence. Then the inequality is satisfied:

(3.5)





 1

C
�Pn

k=1 jzkj2
�1=2 nX

k=1

zke
i'k






� 

� C2

C2�1
� 1

for all z1; . . . ; zn 2 C , all n � 1 , and all C > 1 . The estimate is the best possible (in the

sense described in the proof below).

Proof. It is no restriction to assume that the given numbers z1; . . . ; zn belong to R+ for

n � 1 , as well as that
Pn

k=1 jzkj2 = 1 . Denote Sn =
Pn

k=1 zke
i'k , then by (3.1) and Taylor

expansion we get:

(3.6) E exp

� jSnj2
C2

�
=

1X
p=0

EjSnj2p
p!C2p

�
1X
p=0

1

C2p
=

C2

C2�1

for all C > 1 . Hence (3.5) follows straightforward by definition of the Orlicz norm k � k� .

For the last statement notice that putting z1 = . . . = zn = 1=
p
n in (3.6), we obtain by the

central limit theorem (2.7) with (2.9):

(3.7) lim
n!1E exp

� jSnj2
C2

�
=

C2

C2�1

for all C > 1 . Hence we see that with this choice inequality (3.5) eventually becomes an equality.

This fact completes the proof.

Theorem 3.3

Let fei'kgk�1 be a complex Steinhaus sequence. Then the inequality is satisfied:

(3.8)



 nX
k=1

zke
i'k




 
�
p
2
� nX
k=1

jzkj2
�1=2

for all z1; . . . ; zn 2 C , and all n � 1 . The constant
p
2 is the best possible.

Proof. It is no restriction to assume that the given numbers z1; . . . ; zn belong to R+ for

n � 1 , as well as that
Pn

k=1 jzkj2 = 1 . Identifying C2=C2�1 = 2 in (3.6), we obtain C =
p
2 .

Thus (3.8) is satisfied, and the proof of the first part is complete.

For the last statement take z1 = . . . = zn = 1=
p
n in (3.8), then by (3.7) we easily find:

lim
n!1




 1p
n

nX
k=1

ei'k




 
=
p
2 .

This fact completes the proof.
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Corollary 3.4

Let fei'kgk�1 be a complex Steinhaus sequence. Then the inequality is satisfied:

(3.9)



 nX
k=1

zke
i'k




 
�
p
2n(

1
2
� 1
�
)+
� nX
k=1

jzkj�
�1=�

for all z1; . . . ; zn 2 C , all n � 1 , and all � > 0 .

Proof. It follows from (3.8) by Jensen’s inequality for � � 2 , and the fact that x 7! x�=2

is subadditive on R+ for 0 < � < 2 .

Theorem 3.5

Let fei'kgk�1 be a complex Steinhaus sequence. Then the inequality is satisfied:

(3.10)





 1�Pn
k=1 jzkj2

�1=2 nX
k=1

zke
i'k






T 

� 1+
p
5

2

for all z1; . . . ; zn 2 C , and all n � 1 . The constant (1+
p
5)=2 is the best possible.

Proof. It is no restriction to assume that the given numbers z1; . . . ; zn belong to R+ for

n � 1 , as well as that
Pn

k=1 jzkj2 = 1 . Identifying C2=C2�1 = C in (3.6), we obtain C =
(1+

p
5)=2 . Thus (3.10) is satisfied, and the first part of the proof is complete.

For the last statement take z1 = . . . = zn = 1=
p
n in (3.10), then by (3.7) we easily find:

lim
n!1




 1p
n

nX
k=1

ei'k




T 
=

1+
p
5

2
.

This fact completes the proof.

The preceding results may be additionally strengthened by the next two facts which are also

of interest in themselves (recall (2.1)-(2.3)).

Theorem 3.6

Let fei'kgk�1 be a complex Steinhaus sequence. Then the function:

(jz1j; . . . ; jznj) 7�! E
��� nX
k=1

p
jzkj ei'k

���2p
is Schur-concave on Rn

+ , for all n � 1 , and all p � 1 .

Proof. Let the function be denoted by � . It is no restriction to assume that � is defined on

the set D of all (jz1j; . . . ; jznj) 2 Rn
+ such that

Pn
k=1 jzkj = 1 . Put:

	(p1; . . . ; pn) =
p!

p1! � . . . � pn!

for all p1; . . . ; pn 2 Z+ with
Pn

i=1 pi = p . Then by (3.3) and (3.4) we find:

�(jz1j; . . . ; jznj) = Ejzj	(X)
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where X = (X1; . . . ; Xn) is a random vector from the multinomial distribution with parameters

jzj = (jz1j; . . . ; jznj) and p � 1 , where
Pn

k=1 jzkj = 1 . Thus by Rinott’s result (2.6), the proof

will be completed as soon as we show that 	 is Schur-concave. This is evidently true if and

only if log	 is Schur-concave. Notice that:

log	(p1; . . . ; pn) = log p! �
nX

k=1

log �(pk+1)

for all p1; . . . ; pn 2 Z+ with
Pn

i=1 pi = p . Thus the proof will follow as soon as we show that:

(p1; . . . ; pn) 7!
nX

k=1

log �(pk+1)

is Schur-convex on Rn
+ . However, this follows by Schur’s proposition 2.1, since x 7! log �(x)

is known to be convex on ]0;1[ . The proof is complete.

Corollary 3.7

Let fei'kgk�1 be a complex Steinhaus sequence. Then the function:

(jz1j; . . . ; jznj) 7�! E exp
��� nX
k=1

p
jzkj ei'k

���2
is Schur-concave on Rn

+ , for all n � 1 .

Proof. It follows from Theorem 3.6 by Taylor expansion.

Acknowledgment. The author thanks I. Pinelis for pointing out [1] and [2].
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