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Maximal Inequalities for Reflected
Brownian Motion with Drift

G. PESKIR
� and A. N. SHIRYAEV

�

Let � = (�t)t�0 denote the unique strong solution of the equation

d�t = �� sign(�t) dt + dBt

satisfying �0 = 0 , where � > 0 and B = (Bt)t�0 is a standard Brownian

motion. Then j�j = (j�tj)t�0 is known to be a realisation of the reflected Brownian

motion with drift �� . Using this representation we show that there exist universal

constants c1 > 0 and c2 > 0 such that

c1E
�
H�(�)

�
� E

�
max
0�t��

j�tj
�
� c2E

�
H�(�)

�
for all stopping times � of � , where H�(x) = F�1� (x) denotes the inverse of

the map F�(x) = (e2�x�2�x�1)=2�2 . In addition, we show that

E

�
max
0�t��

j�tj
�
� G�

�
E(� )

�
for all stopping times � of � , where G�(x) = infc>0(cx+(1=2�) log(1+�=c)) .

Both inequalities have their well-known analogues for Brownian motion (obtained

by letting � # 0 ). The method of proof relies upon Lenglart’s domination principle,

Itô calculus, and optimal stopping techniques.

1. Introduction

A classic definition in the theory of Markov processes states that the process X = (Xt)t�0 is

a reflected Brownian motion with drift � 2 IR , if X is a non-negative diffusion Markov process

associated with the infinitesimal operator ILX acting on a space of C2-functions f : [0;1)! IR
satisfying f 0(0+) = 0 according to the rule:

(1.1) (ILXf)(x) = � f 0(x) +
1

2
f 00(x)

(see e.g. [4]). If such a process X also satisfies X0 = x for some x 2 IR given and fixed,

then it is customary to write X � RBMx(�) .

In the case � = 0 it is well-known that such a process can be realised as

(1.2) Xt = jx+Btj

where B = (Bt)t�0 is a standard Brownian motion (see e.g. [4] or [7]).
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In the case of general � 2 IR it was shown only recently (see [3]) that the corresponding

analogue of (1.2) takes the following form:

(1.3) Xt = j�tj
where � = (�t)t�0 is the unique strong solution of the ”bang-bang” equation:

(1.4) d�t = � sign(�t) dt + dBt

with �0 = x . Then again X � RBMx(�) and thus each reflected Brownian motion with drift

can be realised as the modulus of the "bang-bang” process � . This representation is useful in

many ways as it enables one to employ the well-known methods and techniques from the theory

of stochastic differential equations and stochastic calculus (e.g. Itô-Tanaka formula).

In this note we shall demonstrate this fact by establishing two inequalities for reflected Brownian

motion with drift as a counterpart of the well-known inequalities for Brownian motion without drift.

The first inequality we have in mind is the Burkholder-Gundy inequality [1] stating that

(1.5) c1E
�p

�
�
� E

�
max
0�t��

jBtj
�
� c2E

�p
�
�

for all stopping times � of B (see Theorem 2.1). The second inequality is the well-known

Doob-type inequality for Brownian motion stating that

(1.6) E

�
max
0�t�� jBtj

�
�
p
2
p
E(�)

for all stopping times � of B (see Theorem 2.4). This inequality was established independently

by several authors, and the constant
p
2 is known to be best possible (see [2]).

2. The results and proof

1. We first establish an analogue of the Burkholder-Gundy inequality (1.5). For this we shall

define a function F� on IR+ by setting

(2.1) F�(x) =
e2�x � 2�x� 1

2�2

for x � 0 . Then x 7! F�(x) is strictly increasing on IR+ , and we shall set

(2.2) H�(x) = F�1� (x)

to denote its inverse for x � 0 (see Remarks 2.3 below).

Theorem 2.1

Let X = (Xt)t�0 be a reflected Brownian motion with drift �� such that X0 = 0 where

� > 0 is given and fixed. Then the following inequality is satisfied:

(2.3) c1E
�
H�(�)

�
� E

�
max
0�t��

Xt

�
� c2E

�
H�(�)

�
for all stopping times � of X , where c1 > 0 and c2 > 0 are some universal constants.
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Proof. We shall present a proof which is based upon the following domination principle

established by Lenglart [5] (see [7] p.155-156).

Lemma 2.2

Let (
;F ; (Ft)t�0; P ) be a filtered probability space, let Z = (Zt)t�0 be an (Ft)-adapted

non-negative continuous process, let A = (At)t�0 be an (Ft)-adapted increasing continuous

process satisfying A0 = 0 , and let H : R+ ! R+ be an increasing continuous function satisfying

H(0) = 0 . Suppose that it is known that

(2.4) E(Z� ) � E(A� )

for all bounded (Ft)-stopping times � such that
�
Zt^�

�
t�0 is bounded. Then we have:

(2.5) E

�
sup
0�t��

H(Zt)

�
� E

� eH(A� )
�

for all (Ft)-stopping times � , where

(2.6) eH(x) = x

Z 1

x

1

s
dH(s) + 2H(x)

for all x � 0 .

Proof. By Fubini’s theorem we find:

(2.7) E

�
sup

0�t��
H(Zt)

�
= E

�
H

�
sup

0�t��
Zt

��
= E

�Z 1
0

1�
sup 0�t�� Zt � s

	 dH(s)

�
�
Z 1

0

�
P

�
sup
0�t��

Zt � s ; A� � s

�
+ P

n
A� >s

o�
dH(s)

since s 7! H(s) is increasing and continuous. Consider the stopping times

(2.8) �1 = inf f t � 0 j Zt � s g
�2 = inf f t� 0 j At � s g .

Then Markov’s inequality and (2.4) imply:

(2.9) P

�
sup
0�t��

Zt � s ; A� � s

�
� P

n
�1 � � ; �2 � �

o
� P

n
Z�1^�2^� � s

o
� 1

s
E
�
A�1^�2^�

�
whenever � is bounded. From (2.7) and (2.9) we conclude:

(2.10) E

�
sup

0�t��
H(Zt)

�
�
Z 1

0

�
1

s
E
�
A� 1�A��s

	� + 2P
n
A� >s

o�
dH(s)

= E

�
A�

Z 1
A�

1

s
dH(s)

�
+ 2E

�
H(A� )

�
= E

� eH(A� )
�
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for all bounded � . Finally, observe that x 7! eH(x) is increasing, and pass to the limit when

k !1 to reach any � through bounded ones � ^ k . This completes the proof of the lemma.

From (1.3) and (1.4) above we know that the process X can be realised as Xt = j�tj where

� = (�t)t�0 solves the equation:

(2.11) d�t = �� sign(�t) dt + dBt

with �0 = 0 . The infinitesimal operator ILX of X is given by (1.1) with � = �� .

Extend the map F� from (2.1) to IR� by setting F�(x) = F�(�x) for x < 0 . Note

that x 7! F�(x) is even and satisfies ILX(F�) = 1 on IR with F�(0) = 0 . Moreover, since

x 7! F�(x) is C2 , Itô formula can be applied to F�(�t) and this yields:

(2.12) F�(Xt) = F�
�j�tj� = F�(�t) =

Z t

0

�
ILX

�
F�
��

(�s) ds+

Z t

0
F 0�(�s) dBs = t+Mt

where M = (Mt)t�0 is a continuous local martingale given by Mt =
R t
0 F

0
�(�s) dBs .

Let � be a bounded stopping time such that (F�(Xt^� ))t�0 is bounded. Passing to a

localising sequence of stopping times for M if needed, we find from (2.12) that

(2.13) E
�
F�(X� )

�
= E(�)

by means of the optional sampling theorem (see e.g. [7]).

Elementary calculations based on the L’Hospital rule show that

(2.14) sup
x>0

�
x

H�(x)

Z 1

x

dH�(s)

s

�
= 1

for all � > 0 . By definition (2.6) this fact implies that

(2.15) eH�(x) � 3 H�(x)

for all x � 0 . It enables us to conclude the proof in two steps as follows.

Setting Zt = F�(Xt) and At = t we easily see by (2.13) that all hypotheses in Lemma 2.2

are satisfied, and thus by (2.5) and (2.15) we find:

(2.16) E

�
max
0�t��Xt

�
= E

�
max
0�t��H�

�
Zt)

�
� E

� eH�(A� )
�
� 3E

�
H�(A� )

�
= 3E

�
H�(�)

�
for all stopping times � of X . This establishes the right-hand side inequality in (2.3).

On the other hand, setting Zt = t and At = max0�s�t F�(Xs) we again see easily by (2.13)

that all hypotheses in Lemma 2.2 are satisfied, and thus by (2.5) and (2.15) we find:

(2.17) E
�
H�(�)

�
= E

�
max
0�t��H�

�
Zt)

�
� E

� eH�(A� )
�
� 3E

�
H�(A� )

�
= 3E

�
max
0�t��

Xt

�
for all stopping times � of X . This establishes the left-hand side inequality in (2.3), and the

proof of the theorem is complete.
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Remarks 2.3

1. It is easily seen that x 7! F�(x) is convex on IR+ , and thus x 7! H�(x) is concave

on IR+ . Hence applying Jensen’s inequality in (2.3) we obtain:

(2.18) E

�
max
0�t�� Xt

�
� c2 H�

�
E(�)

�
for all stopping times � of X .

2. Recalling further (2.13) we see that (2.18) implies the following Doob-type bound:

(2.19) E

�
max
0�t��Xt

�
� c2 H�

�
E
�
F�(X� )

��
which is valid for all stopping times � of X such that E(�) < 1 .

3. It is easily verified that F�(x) ! x2 as � # 0 , and thus

(2.20) lim
�#0

H�(x) =
p
x

for all x � 0 . Passing to the limit in (2.3) when � # 0 we thus recover (1.5). In exactly the

same way we see that (2.18) implies (1.6) with the constant c2 = 3 on the right-hand side.

4. Using that (2�x)k=(2�2k!) � F�(x) � (e2�x � 1)=(2�2) we find easily that

(2.21)
1

2�
log

�
1 + 2�2x

� � H�(x) � k=2

(2�)1�2=k
x1=k

for all x � 0 and all k � 2 . The left-hand side estimate in (2.21) is more accurate for large x ,

and the right-hand side estimate in (2.21) is more accurate for small x .

2. We turn to establishing an analogue of the Doob-type inequality (1.6). Note that although

(2.18) above provides such a bound, it fails to capture (1.6) with the best constant
p
2 in the limit

when � # 0 . In the following theorem we present a result which repairs this deficiency.

Theorem 2.4

1. Let X = (Xt)t�0 be a reflected Brownian motion with drift �� such that X0 = 0 where

� > 0 is given and fixed. Then the following inequality is satisfied:

(2.22) E

�
max
0�t��

Xt

�
� inf

c>0

�
cE(�) +

1

2�
log

�
1 +

�

c

��
for all stopping times � of X .

Moreover, the following inequalities are satisfied:

(2.23) E

�
max
0�t��

Xt

�
�
r

1

2
E(�) +

1

2�
log

�
1 + �

p
2E(�)

�
(2.24) E

�
max
0�t��

Xt

�
� 1

2�

�
1 + log

�
1 + 2�2E(�)

��
for all stopping times � of X . The inequality (2.23) is more accurate for small � ( letting � # 0
in (2.23) we obtain (1.6)), and the inequality (2.24) is more accurate for large � ( letting � # 0
in (2.24) the right-hand side tends to zero).
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Proof. We shall only sketch the main points in the proof, and for remaining details and more

information we shall refer to [2] (Theorem 3) and [6] (Corollary 3.2)

From (1.3) and (1.4) above we know that the process X can be realised as Xt = j�tj where

� = (�t)t�0 solves (2.11) with �0 = x � 0 . Set St = (max 0�r�tXr) _ s for s � x and

consider the optimal stopping problem:

(2.25) V�(x; s) = sup
�
Ex;s

�
S� � c�

�
where X0 = x and S0 = 0 under Px;s . The supremum in (2.25) is taken over all stopping

times � of X satisfying Ex;s(�) <1 , and the constant c > 0 is given and fixed.

This problem belongs to the general theory of optimal stopping for Markov processes that

leads to the following free-boundary problem:

(2.26) (ILXV�)(x; s) = c (g�(s)< x < s)

(2.27)
@V�
@s

(x; s)
���
x=s�

= 0 (normal reflection)

(2.28) V�(x; s)
���
x=g�(s)+

= s (instantaneous stopping)

(2.29)
@V�
@x

(x; s)
���
x=g�(s)+

= 0 (smooth fit)

where s 7! g�(s) is an optimal stopping boundary (to be found). Since X is a non-negative

diffusion and 0 is an instantaneously-reflecting (regular) boundary point for X , the following

stopping time is to be optimal in (2.25):

(2.30) �� = inf
�
t > 0 j St � s� ; Xt � g�(St)

	
where s� � 0 satisfies g�(s�) = 0 .

The solution of (2.26)-(2.29) is given by

(2.31) V�(x; s) = s + c

Z x

g�(s)

�
L(x)�L(y)�m(dy)

for 0 � g�(s) � x � s , where the optimal boundary s 7! g�(s) is the maximal solution of the

first-order (nonlinear) differential equation:

(2.32) g0(s) =
L0(g(s))

2 c
�
L(s)�L(g(s))�

staying strictly below the diagonal in IR2
+ . In (2.31) and (2.32) we set L = L(x) denote the scale

function of X , and m = m(dx) denotes the speed measure of X . From (2.11) we read that

(2.33) L(x) =
e2�x � 1

2�
(x � 0)

(2.34) m(dx) = 2 e�2�x dx .
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A strong Markov property implies that V�(x; s) = V�(s�; s�)�cEx;s(�s�) for 0 � x � s � s� ,

where �s� = inf f t > 0 j Xt = s� g , and this leads to the following explicit expression:

(2.35) V�(x; s) = s� + c

Z x

0

�
L(x)�L(y)�m(dy)

for 0 � x � s � s� .

Inserting (2.33) into (2.32) we easily see that the linear function g�(s) = s�s� is the maximal

solution of (2.32), where s� > 0 is explicitly given by

(2.36) s� =
1

2�
log

�
1 +

�

c

�
.

Thus g�(s) = s � s� is the optimal stopping boundary i.e. the stopping time (2.30) is optimal

in (2.25), and from (2.35) we see that

(2.37) V�(0; 0) = s� .

By means of (2.36) this fact establishes (2.22), and the first part of the proof is complete.

In order to derive the remaining statements, note first that for each stopping time � of X
such that E(�) < 1 , the infimum in (2.22) is attained at

(2.38) c� = c�(�;E(�)) = ��
2
+

s
1

2E(�)
+ �2 .

Inserting this expression into the right-hand side of (2.22) we obtain a sharp inequality (where

equality is attained at the stopping time (2.30) for each � > 0 given and fixed). Moreover, letting

� # 0 in this inequality we obtain (1.6) with
p
2 on the right-hand side.

Unfortunately, the right-hand side of the inequality obtained by inserting (2.37) into (2.22)

defines a complicated function of E(�) . Its simplification can be achieved upon observing that

(2.39) c�(�;E(�)) ! 1p
2E(�)

( � # 0 )

(2.40) � c�(�;E(�)) ! 1

2E(�)
( � " 1 ) .

These facts indicate that letting c = 1=
p
2E(�) in (2.22) we get an inequality precise for small

� , and letting c = 1=(2�E(�)) in (2.22) we obtain an inequality precise for large � . As these

two inequalities are just those written in (2.23) and (2.24) respectively, the proof is complete.
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