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Maximal Inequalities for Reflected
Brownian Motion with Drift

G. PeskiR® and A. N. SHIRYAEV™*

Let 8 = (8:)i>0 denote the unique strong solution of the equation
dB: = —p sign(B;) dt + dB;

satisfying Bp = 0, where p > 0 and B = (B;);>0 is a standard Brownian
motion. Then |3| = (|B:])1>0 is known to be a realisation of the reflected Brownian
motion with drift —g . Using this representation we show that there exist universal
constants ¢; > 0 and ¢y > 0 such that

clE(Hu(T)) < E( max |ﬂt|) < CQE(H;L(T))

0<t<r

for all stopping times 7 of 3, where H,(z)=F ;1(1’) denotes the inverse of
the map F),(z) = (e*** —2ux—1)/2u* . In addition, we show that

E ( Jax |3t I) <Gy (E(T))

for all stopping times 7 of 3, where G, (x) = inf.oo(cx+(1/2p)log(14+p/c)) .
Both inequalities have their well-known analogues for Brownian motion (obtained
by letting 1 | 0). The method of proof relies upon Lenglart’s domination principle,
1t6 calculus, and optimal stopping techniques.

1. Introduction

A classic definition in the theory of Markov processes states that the process X = (X¢)¢>o is
a reflected Brownian motion with drift A € IR ,if X is a non-negative diffusion Markov process
associated with the infinitesimal operator ILx acting on a space of C2-functions f :[0,00) — IR
satisfying f'(0+) = 0 according to the rule:

(1) (Lx f)(x) = A f'(w) + % f'(x)

(see e.g. [4]). If such a process X also satisfies Xg =« for some z € IR given and fixed,
then it is customary to write X ~ RBM,(\) .
In the case A =0 it is well-known that such a process can be realised as

(1.2) Xi = |v+ By

where B = (By);>0 is a standard Brownian motion (see e.g. [4] or [7]).
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In the case of general A € IR it was shown only recently (see [3]) that the corresponding
analogue of (1.2) takes the following form:

(1.3) Xi = |A]
where [ = (f¢)¢>0 is the unique strong solution of the “bang-bang” equation:

with fp = x . Then again X ~ RBM,(\) and thus each reflected Brownian motion with drift
can be realised as the modulus of the "bang-bang” process ([ . This representation is useful in
many ways as it enables one to employ the well-known methods and techniques from the theory
of stochastic differential equations and stochastic calculus (e.g. It6-Tanaka formula).

In this note we shall demonstrate this fact by establishing two inequalities for reflected Brownian
motion with drift as a counterpart of the well-known inequalities for Brownian motion without drift.
The first inequality we have in mind is the Burkholder-Gundy inequality [1] stating that

(1.5) aB(V7) < E(J;%‘Bt‘) < B (V7)

for all stopping times 7 of B (see Theorem 2.1). The second inequality is the well-known
Doob-type inequality for Brownian motion stating that

(1.6) E(OrgtagT\BtQ < V2/E(7)

for all stopping times 7 of B (see Theorem 2.4). This inequality was established independently
by several authors, and the constant V2 is known to be best possible (see [2]).

2. The results and proof

1. We first establish an analogue of the Burkholder-Gundy inequality (1.5). For this we shall
define a function [, on IR, by setting

e — 2y — 1
242

for > 0. Then x — F,(z) is strictly increasing on IRy , and we shall set

2.1) Fo(x) =

2.2) H,(x) = F, '(x)
to denote its inverse for x > 0 (see Remarks 2.3 below).

Theorem 2.1
Let X = (Xy)i>0 be a reflected Brownian motion with drift — such that Xo = 0 where
i > 0 is given and fixed. Then the following inequality is satisfied:

23) B (H,(r) < E(ggg; Xt> < 2B (Hy(r)

for all stopping times 7 of X , where c¢; > 0 and c3 > 0 are some universal constants.



Proof. We shall present a proof which is based upon the following domination principle
established by Lenglart [5] (see [7] p.155-156).

Lemma 2.2
Let (Q,F,(Fi)e>0, P) be a filtered probability space, let Z = (Z;)i>0 be an (Fi)-adapted
non-negative continuous process, let A = (Ai)i>0 be an (F;)-adapted increasing continuous

process satisfying Ao =0, andlet H : Ry — R be an increasing continuous function satisfying
H(0) =0 . Suppose that it is known that

(2.4) B(Z,) < E(A,)

for all bounded (F;)-stopping times T such that (ZMT) >0 18 bounded. Then we have:

(2.5) E( sup H(Zt)> < E(}NI(AT)>
0<t<r

for all (F;)-stopping times T , where

(2.6) H(x) = x/mé dH(s) + 2H(x)

for all x> 0.

Proof. By Fubini’s theorem we find:

2.7 E < Oililg)TH(Zt)> = E<H<OS§%I§)TZt>> = E(/O 1{ WPoceer o > S} dH(3)>

< /OOO<P{ sup Zi > s, A, < s} +P{AT>5}> dH (s)

0<t<r

since s +— H(s) is increasing and continuous. Consider the stopping times

(2.8) n=inf{t>0|2,>s}
TQZin{iZO’AtZS}.

Then Markov’s inequality and (2.4) imply:

(2.9) P{ sup Z; > s, ATgs} §P{7'1 <7, T ZT} SP{ZTl/\Tg/\TES}
0<t<r

1

- E<AT1/\T2/\T)

S

IA

whenever 7 is bounded. From (2.7) and (2.9) we conclude:

(2.10) E(Os;gTH(Zt)> < /OOOGE(AT 1{1463}) + 2P{AT>3}> dH (s)
- E(AT /Aooé dH(s)> + 2E<H(AT)> - E(fI(AT)>



for all bounded 7 . Finally, observe that z — H () 1is increasing, and pass to the limit when

k — oo to reach any 7 through bounded ones 7 A &k . This completes the proof of the lemma.
U

From (1.3) and (1.4) above we know that the process X can be realised as X; = |3;| where
B = (Bi)i>0 solves the equation:

(2.11) dfy = —p sign(B;) dt + dBy

with (9 = 0 . The infinitesimal operator [Lx of X is given by (1.1) with A = —p .

Extend the map F), from (2.1) to IR_ by setting F,(x) = F,(—x) for = < 0. Note
that = — F,(z) is even and satisfies Lx(F,)=1 on IR with F,(0) =0 . Moreover, since
x +— F,(z) is C?, Itd formula can be applied to F,(3;) and this yields:

(2.12) F (X)) = Fu(18:]) = Fu(51) :/0 (JLX(FM)>(55) ds+/0 Fl(f,) dBs =t + M,

where M = (M;)¢>o is a continuous local martingale given by M; = fot FL(ﬁs) dB, .
Let 7 be a bounded stopping time such that (F),(X;a-))i>0 is bounded. Passing to a
localising sequence of stopping times for A/ if needed, we find from (2.12) that

(2.13) E(FM(X7)> — E(r)

by means of the optional sampling theorem (see e.g. [7]).
Elementary calculations based on the L’Hospital rule show that

X T dHu(s)\
(2.14) ili% (Hu(x)/x . ) =1

for all x> 0 . By definition (2.6) this fact implies that

(2.15) H,(z) < 3 Hy(x)

for all x > 0. It enables us to conclude the proof in two steps as follows.
Setting 7; = F,,(X;) and A; =t we easily see by (2.13) that all hypotheses in Lemma 2.2
are satisfied, and thus by (2.5) and (2.15) we find:

(2.16) E<0I£ltaSXT Xt> - E(Oxg% HM(Zt)> < E(HM(AT)) < 3E<H,L(AT)> - 3E<HM(T)>
for all stopping times 7 of X . This establishes the right-hand side inequality in (2.3).

On the other hand, setting Z; =¢ and A; = maxo<s<t FM(XS) we again see easily by (2.13)
that all hypotheses in Lemma 2.2 are satisfied, and thus by (2.5) and (2.15) we find:

2.17) E(Hu(r)) - E<Or£1?§xTHM(Zt)> < E(fIM(AT)> < 3E<HM(AT)> - 3E<O%?§Txt>

for all stopping times 7 of X . This establishes the left-hand side inequality in (2.3), and the
proof of the theorem is complete. O



Remarks 2.3
1. It is easily seen that x — F,(x) is convex on IRy , and thus 2 — H,(x) is concave
on IR; . Hence applying Jensen’s inequality in (2.3) we obtain:

(2.18) E< max Xt> < o HM<E(T)>

0<t<r

for all stopping times 7 of X .
2. Recalling further (2.13) we see that (2.18) implies the following Doob-type bound:

(2.19) E<0I£ltaSXT Xt> < e H, (E(FM(XT))>

which is valid for all stopping times 7 of X such that E(7) < oo .
3. It is easily verified that F,(z) — 2? as x| 0, and thus

(2.20) lim H,(z) = V&
wl0

for all = > 0 . Passing to the limit in (2.3) when p | 0 we thus recover (1.5). In exactly the
same way we see that (2.18) implies (1.6) with the constant c3 = 3 on the right-hand side.
4. Using that (2ux)*/(2u2k!) < F,(z) < (e2** —1)/(21®) we find easily that

1 2 k/2 1/k
2.21) 7 108 (1+2p°z) < Hy(z) < 2k

for all # > 0 and all k& > 2. The left-hand side estimate in (2.21) is more accurate for large = ,
and the right-hand side estimate in (2.21) is more accurate for small =z .

2. We turn to establishing an analogue of the Doob-type inequality (1.6). Note that although
(2.18) above provides such a bound, it fails to capture (1.6) with the best constant V2 in the limit
when g | 0. In the following theorem we present a result which repairs this deficiency.

Theorem 2.4
1. Let X = (Xi)i>0 be a reflected Brownian motion with drift —u such that Xo =0 where
i > 0 is given and fixed. Then the following inequality is satisfied:

(2.22) E< max Xt> < inf <c B(r) + —log (1 + ﬁ))
20 c

0<t<r c>0

for all stopping times T of X .
Moreover, the following inequalities are satisfied:

/1 1
(2.23) E<0r£1?§xT Xt> < §E(7) + o log (1 + /L\/QE(T))
(2.24) E< max Xt> < i <1 + log (1 + 2,u2E(T)>>

0<t<r

for all stopping times T of X . The inequality (2.23) is more accurate for small 1 (letting 1 | 0
in (2.23) we obtain (1.6)), and the inequality (2.24) is more accurate for large v (letting p | 0
in (2.24) the right-hand side tends to zero).



Proof. We shall only sketch the main points in the proof, and for remaining details and more
information we shall refer to [2] (Theorem 3) and [6] (Corollary 3.2)

From (1.3) and (1.4) above we know that the process X can be realised as X; = |3;| where
B = (fe)i>0 solves (2.11) with fp =z > 0. Set S; = (maxo<,<¢t X,)Vs for s > 2 and
consider the optimal stopping problem:

(2.25) Vi(z,s) = sup By (ST — CT)

where Xg =2 and Sy = 0 under P,, . The supremum in (2.25) is taken over all stopping
times 7 of X satisfying E,  (7) < oo , and the constant ¢ > 0 is given and fixed.

This problem belongs to the general theory of optimal stopping for Markov processes that
leads to the following free-boundary problem:

(2.26) (LxVi)(x,s) = ¢  (ge(s) < <35)

(2.27) %(I,S) =0 (normal reflection)

(2.28) Vi(z, s) - = s (instantaneous stopping)
=g« (s

(2.29) %(I,S) (o)t = 0 (smooth fit)

where s — g«(s) is an optimal stopping boundary (to be found). Since X is a non-negative
diffusion and 0 is an instantaneously-reflecting (regular) boundary point for X , the following
stopping time is to be optimal in (2.25):

(2.30) T. = Inf {t >0|5 >s, Xy < g*(St)}

where s, > 0 satisfies g.(s.) = 0 .
The solution of (2.26)-(2.29) is given by

T

(2.31) Vi(z,s) = s+ c/ o (L(z)—L(y)) m(dy)

for 0 < g«(s) < x < s, where the optimal boundary s — g¢.(s) is the maximal solution of the
first-order (nonlinear) differential equation:

)
2¢ (L(s) - L(g(5)))

staying strictly below the diagonal in ]R?F . In (2.31) and (2.32) we set L = L(x) denote the scale
function of X , and m = m(dz) denotes the speed measure of X . From (2.11) we read that

(2.32) g'(s)

2ux
(2.33) L) = =1 s

(2.34) m(dz) = 2 e 2 dg



A strong Markov property implies that Vi(z,s) = Vi(sx, sx)—CcEy 5(75.) for 0 <z <5 < sy,
where 75, = inf{¢ > 0| X; = s, } , and this leads to the following explicit expression:

(2.35) Vi(z,s) = s« + C/Om (L(x)—L(y)) m(dy)

for 0 < o < s < 54 .
Inserting (2.33) into (2.32) we easily see that the linear function g.(s) = s— s, is the maximal
solution of (2.32), where s. > 0 is explicitly given by

1
(2.36) e = — log <1 + ﬁ) .
21 c

Thus g¢.(s) = s — s, is the optimal stopping boundary i.e. the stopping time (2.30) is optimal
in (2.25), and from (2.35) we see that

(2.37) V,(0,0) = s, .

By means of (2.36) this fact establishes (2.22), and the first part of the proof is complete.
In order to derive the remaining statements, note first that for each stopping time 7 of X
such that E(7) < oo , the infimum in (2.22) is attained at

_ __H 1 2
(2.38) e = co(p, B(1)) = ) + T(T)+ﬂ .
Inserting this expression into the right-hand side of (2.22) we obtain a sharp inequality (where
equality is attained at the stopping time (2.30) for each ;1 > 0 given and fixed). Moreover, letting
1t ] 0 in this inequality we obtain (1.6) with /2 on the right-hand side.
Unfortunately, the right-hand side of the inequality obtained by inserting (2.37) into (2.22)
defines a complicated function of F(7) . Its simplification can be achieved upon observing that

(2.39) c*m,E(T))eﬁ (1 10)
(2.40) Mcm,E(T»ﬁQE% (11 00).

These facts indicate that letting ¢ = 1/4/2F(7) in (2.22) we get an inequality precise for small
i, and letting ¢ =1/(2uE(7)) in (2.22) we obtain an inequality precise for large p . As these

two inequalities are just those written in (2.23) and (2.24) respectively, the proof is complete.
U
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