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Sequential Testing Problems
for Poisson Processes

G. PESKIR
� and A. N. SHIRYAEV

�

We present the explicit solution of the Bayesian problem of sequential testing

of two simple hypotheses about the intensity of an observed Poisson process.

The method of proof consists of reducing the initial problem to a free-boundary

differential-difference Stephan problem, and solving the latter by use of the principles

of smooth and continuous fit. A rigorous proof of the optimality of the Wald’s

sequential probability ratio test in the variational formulation of the problem is

obtained as a consequence of the solution of the Bayesian problem.

1. Description of the problem

Suppose that at time t=0 we begin to observe a Poisson process X = (Xt)t�0 with intensity

�>0 which is either �0 or �1 where �0<�1 . Assuming that the true value of � is not known

to us, our problem is then to decide as soon as possible and with a minimal error probability (both

specified later) if the true value of � is either �0 or �1 .

Depending on the hypotheses about the unknown intensity � , this problem admits two

formulations. The Bayesian formulation relies upon the hypothesis that an a priori probability

distribution of � is given to us, and that � takes either of the values �0 and �1 at time

t = 0 according to this distribution. The variational formulation (sometimes also called a fixed

error probability formulation) involves no probabilistic assumptions on the unknown intensity � .

The Wald sequential probability ratio test (SPRT) is known to be optimal in this context for a large

class of observable processes (see [5], [6], [2]).

Despite the fact that the Bayesian approach to sequential analysis of problems on testing two

statistical hypotheses has gained a considerable interest in the last fifty or so years (see e.g. [15],

[16], [3], [8], [4], [13], [14]), it turns out that not many problems of that type have been solved

explicitly (by obtaining a solution in closed form). In this respect the case of testing two simple

hypotheses about the mean value of a Wiener process with drift is exceptional as the explicit

solution to the problem has been obtained in both Bayesian and variational formulation. These

solutions (including the proof of the optimality of the SPRT) were found by reducing the initial

problem to a free-boundary Stephan problem (for a second order differential operator) which could

be solved explicitly (see [12], [13]).

Our main aim in this paper is to present the explicit solution of the Poisson intensity problem

stated above in the context of a Bayesian formulation (Section 2), and then apply this result to

deduce the optimality of the method (SPRT) in the context of a variational formulation (Section 3)
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with a precise description of the set of all admissible probabilities of a wrong decision (“errors of

the first and second kind”). It will be clear from the sequel that the corresponding Stephan problem

becomes more delicate, since in the present case one needs to deal with a differential-difference

operator, the appearance of which is a consequence of the discontinuous character of the observed

(Poisson) process. The problem solved in Section 2 has been open for some time. (In the 1984

paper [6] the authors write that “in the case of Poisson processes, an explicit solution [of the

Bayesian and Stephan problem] is not known”.)

2. Solution of the Bayesian problem

1. In the Bayesian formulation of the problem (see [13] Ch. 4) it is assumed that at time t = 0
we begin observing a trajectory of the point process X=(Xt)t�0 with the compensator (see [9]

Ch. 18) A = (At)t�0 , where At = �t and a random intensity � = �(!) takes two values �1
and �0 with probabilities � and 1�� . (We assume that �1>�0>0 and �2 [0; 1].)

For a precise probability-statistical description of the Bayesian sequential testing problem it

is convenient to assume that all our considerations take place on a filtered probability space

(
;F ; (Ft)t�0; P�) , where P� has the following special structure:

(2.1) P� = �P1 + (1��)P0

for � 2 [0; 1] . We further assume that the F0-measurable random variable � = �(!) takes two

values �1 and �0 with probabilities P�(�=�1) = � and P�(�=�0) = 1� � . Concerning the

observable point process X = (Xt)t�0 , we assume that P�(X 2 � j � = �i) = Pi(X 2 � ) , where

Pi(X 2 � ) coincides with the distribution of a Poisson process with intensity �i for i = 0; 1 .

Probabilities � and 1�� play a role of a priori probabilities of the statistical hypotheses:

(2.2) H1 : � = �1

(2.3) H0 : � = �0 .

2. Based upon the information which is continuously updated through the observation of the

point process X , our problem is to test sequentially the hypotheses H1 and H0 . For this it is

assumed that we have at disposal a class of sequential decision rules (�; d) consisting of stopping

times � = �(!) with respect to (FX
t )t�0 where FX

t = �fXs j s � tg , and FX
� -measurable

functions d = d(!) which take values 0 and 1 . Stopping the observation of X at time � ,

the terminal decision function d indicates that either the hypothesis H1 or the hypothesis H0

should be accepted; if d = 1 we accept H1 , and if d = 0 we accept that H0 is true.

3. Each decision rule (�; d) implies losses of two kinds: the loss due to a cost of the

observation, and the loss due to a wrong terminal decision. The average loss of the first kind may

be naturally identified with cE�(�) , and the average loss of the second kind can be expressed

as a P�(d= 0; �= �1) + b P�(d= 1; �= �0) , where c; a; b > 0 are some constants. It will be

clear from (2.8) below that there is no restriction to assume that c = 1 , as the case of general

c> 0 follows by replacing a and b with a=c and b=c respectively. Thus, the total average

loss of the decision rule (�; d) is given by
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(2.4) L�(�; d) = E�

�
� + a 1(d=0 ;�=�1) + b 1(d=1 ;�=�0)

�
.

Our problem is then to compute

(2.5) V (�) = inf
(�;d)

L�(�; d)

and to find the optimal decision rule (��; d�) , called the �-Bayes decision rule, at which the

infimum in (2.5) is attained.

Observe that for any decision rule (�; d) we have:

(2.6) a P�(d=0; �=�1) + b P�(d=1; �=�0) = a � �(d) + b (1��) �(d)

where �(d) = P1(d=0) is called the probability of an error of the first kind, and �(d) = P0(d=1)
is called the probability of an error of the second kind.

4. The problem (2.5) can be reduced to an optimal stopping problem for the a posteriori

probability process defined by

(2.7) �t = P�

�
� = �1 j FX

t

�
with �0 = � under P� . Standard arguments (see [13] p.166-167) show that

(2.8) V (�) = inf
�

E�

�
� + ga;b(�� )

�
where ga;b(�) = a� ^ b(1��) ; the optimal stopping time �� in (2.8) is also optimal in (2.5),

and the optimal decision function d� is obtained by setting

(2.9) d� = 1 if ��� � b=(a+b)

= 0 if ��� < b=(a+b) .

Our main task in the sequel is therefore reduced to solving the optimal stopping problem (2.8).

5. Another natural process, which is in a one-to-one correspondence with the process (�t)t�0 ,

is the likelihood ratio process; it is defined as the Radon-Nikodym density

(2.10) 't =
d (P1 j FX

t )

d (P0 j FX
t )

where Pi j FX
t denotes the restriction of Pi to FX

t for i = 0; 1 . Since

(2.11) �t = �
d (P1 j FX

t )

d (P� j FX
t )

where P� j FX
t = � P1 j FX

t + (1��) P0 j FX
t , it follows that

(2.12) �t =

�
�

1�� 't

���
1 +

�

1�� 't

�
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as well as that

(2.13) 't =
1��
�

�t
1��t .

Moreover, the following explicit expression is known to be valid (see e.g. [5] or [9] Theorem 19.7):

(2.14) 't = exp

�
Xt log

�
�1
�0

�
� (�1��0) t

�
.

This representation may now be used to reveal the Markovian structure in the problem. Since the

process (Xt)t�0 is a time-homogeneous Markov process having stationary independent increments

(Lévy process) under both P0 and P1 , from the representation (2.14), and due to the one-to-one

correspondence (2.12), we see that ('t)t�0 and (�t)t�0 are time-homogeneous Markov processes

under both P0 and P1 with respect to natural filtrations which clearly coincide with (FX
t )t�0 .

Using then further that E�(Y j FX
t ) = E1(Y j FX

t ) �t + E0(Y j FX
t ) (1��t) for any (bounded)

measurable Y , it follows that (�t)t�0 , and thus ('t)t�0 as well, is a time-homogeneous Markov

process under each P� for � 2 [0; 1] . (Observe, however, that although the same argument shows

that (Xt)t�0 is a Markov process under each P� for � 2 
0; 1� , it is not a time-homogeneous

Markov process unless � equals 0 or 1 .) Note also directly from (2.7) that (�t)t�0 is a

martingale under each P� for � 2 [0; 1] . Thus, the optimal stopping problem (2.8) falls into

the class of optimal stopping problems for Markov processes, and we therefore proceed by finding

the infinitesimal operator of (�t)t�0 . A slight modification of the arguments above shows that all

these processes possess a strong Markov property actually.

6. By Itô’s formula (see e.g. [10] Ch. 2, §3 or [7] Ch. I, §4) one can verify that processes

('t)t�0 and (�t)t�0 solve the following stochastic equations respectively:

(2.15) d't =

�
�1
�0

� 1

�
't� d

�
Xt��0 t)

(2.16) d�t =
(�1��0) �t�(1��t�)
�1�t� + �0 (1��t�)

�
dXt �

�
�1�t� + �0 (1��t�)

�
dt

�
(cf. formula (19.86) in [9]). The equation (2.16) may now be used to determine the infinitesimal

operator of the Markov process (�t;FX
t ; P�)t�0 for � 2 [0; 1] . For this, let f = f(�) from

C1[0; 1] be given. Then by Itô’s formula we find

(2.17) f(�t) = f(�0) +

Z t

0
f 0(�s�) d�s +

X
0<s�t

�
f(�s)� f(�s�)� f 0(�s�) ��s

�
= f(�0) +

Z t

0
f 0(�s�)

�
�(�1��0) �s�(1��s�)

�
ds +

X
0<s�t

�
f(�s)� f(�s�)

�
= f(�0)+

Z t

0
f 0(�s�)

�
�(�1��0)�s�(1��s�)

�
ds+

Z t

0

Z 1

0

�
f(�s�+y)�f(�s�)

�
��(ds; dy)

= f(�0)+

Z t

0
f 0(�s�)

�
�(�1��0)�s�(1��s�)

�
ds+

Z t

0

Z 1

0

�
f(�s�+y)�f(�s�)

�
��(ds; dy)

+

Z t

0

Z 1

0

�
f(�s� + y)� f(�s�)

� �
��(ds; dy)� ��(ds; dy)

�
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= f(�0) +

Z t

0
(ILf)(�s�) ds + Mt

where �� is the random measure of jumps of the process (�t)t�0 and �� is a compensator

of �� (see e.g. [10] Ch. 3 or [7] Ch. II), the operator IL is given as in (2.19) below, and

M = (Mt)t�0 defined as

(2.18) Mt =

Z t

0

Z 1

0

�
f(�s� + y)� f(�s�)

� �
��(ds; dy)� ��(ds; dy)

�
is a local martingale with respect to (FX

t )t�0 and P� for every � 2 [0; 1] . It follows from

(2.17) that the infinitesimal operator of (�t)t�0 acts on f 2 C1[0; 1] like

(2.19) (ILf)(�) = �(�1��0)�(1��)f 0(�)+
�
�1�+�0(1��)

� 
f

�
�1�

�1� + �0 (1��)
�
�f(�)

!
.

7. Looking back at (2.5) and using explicit expressions (2.4) and (2.6) with (2.1), it is easily

verified (cf. [8] p. 105) that the payoff � 7! V (�) is a concave function on [0; 1] , and thus it is

continuous on


0; 1
�

. Evidently, this function is pointwise dominated by � 7! ga;b(�) . From

these facts and from the general theory of optimal stopping for Markov processes (see e.g. [13])

we may guess that the payoff � 7! V (�) from (2.8) should solve the following Stephan problem

(for a differential-difference equation defined by the infinitesimal operator):

(2.20) (ILV )(�) = �1 , A� < � < B�
(2.21) V (�) = a � ^ b (1��) , � =2 


A�; B�
�

(2.22) V (A�+) = V (A�) , V (B��) = V (B�) (continuous fit)

(2.23) V 0(A�) = a (smooth fit)

for some 0 < A� < b=(a+b) < B� < 1 to be found. Observe that (2.21) contains two conditions

relevant for the system: (i) V (A�) = aA� and (ii) V (�) = b(1��) for � 2 [B�; S(B�)] with

S = S(�) from (2.24) below. These conditions are in accordance with the fact that if the process

(�t)t�0 starts or ends up at some � outside


A�; B�

�
, we must stop it instantly.

Note from (2.16) that the process (�t)t�0 moves continuously towards 0 and only jumps

towards 1 at times of jumps of the point process X . This provides some intuitive support for

the principle of smooth fit to hold at A� . However, without a concavity argument it is not a

priori clear why the condition V (B��) = V (B�) should hold at B� . As Figure 1 below shows,

this is a rare property shared only by exceptional pairs (A;B) , and one could think that once

A� is fixed through the “smooth fit”, the unknown B� will be determined uniquely through the

“continuous fit”. While this train of thoughts sounds perfectly logical, we shall see quite opposite

below that the equation (2.19) dictates our travel to solution from B� to A� .

Our next aim is to show that the three conditions in (2.22) and (2.23) are sufficient to determine a

unique solution of the Stephan problem which in turn leads to the solution of the optimal stopping

problem (2.8).
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Figure 1. In view of the problem (2.8) and its decomposition via (2.4) and (2.6) with (2.1), we consider

� = inf f t � 0 j �t =2 A;B g for (�t)t�0 from (2.7)+(2.12)+(2.14) with �2 A;B given and

fixed, so that �0 = � under P0 and P1 ; the computer drawings above show the following functions

respectively: (1) � 7! P1(�� =A); (2) � 7! P0(�� �B); (3) � 7! E1(�); (4) � 7! E0(�);
(5) � 7! �E1(�) + (1��)E0(�) + a�P1(�� = A) + b (1��) P0(�� � B) = E�(�+ga;b(��));
(6) � 7! E�(�+ga;b(�� )) and � 7! ga;b(�) , where A = 0:3 , B = 0:7 , �0 = 1 , �1 = e
and a = b = 8 . Functions (1)-(4) are found by solving systems analogous to the system (3.15)-

(3.17); their discontinuity at B should be noted, as well as the discontinuity of their first derivative at

B1 = 0:46 . . . from (2.25); observe that the function (5) is a superposition of functions (1)-(4), and thus

the same discontinuities carry over to the function (5), unless something special occurs. The crucial

fact to be observed is that if the function (5) is to be the payoff (2.8), and thus extended by the gain

function � 7! ga;b(�) outside A;B , then such an extension would generally be discontinuous at

B and have a discontinuous first derivative at A ; this is depicted in the final picture (6). It is a matter

of fact that the optimal A� and B� are to be chosen in such a way that both of these discontinuities

disappear; these are the principles of continuous and smooth fit respectively. Observe that in this case

the discontinuity of the first derivative of (5) also disappears at B1 , and the extension obtained is C1

everywhere but at B� where it is only C0 generally (see Figure 3 below).
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8. Solution of the Stephan problem (2.20)-(2.23). Consider the equation (2.20) on


0; B] with

some B > b=(a+b) given and fixed. Introduce the “step” function

(2.24) S(�) =
�1 �

�1 � + �0 (1��)
for � � B . Observe that � 7! S(�) is increasing, and find points . . . < B2 < B1 < B0 := B
such that S(Bn) = Bn�1 for n � 1 . It is easily verified that

(2.25) Bn =
(�0)

nB

(�0)nB + (�1)n(1�B)
(n=0; 1; . . . ) .

Denote In =


Bn; Bn�1] for n � 1 , and introduce the “distance” function

(2.26) d(�;B) = 1 +

"
log

�
B

1�B
1��
�

��
log

�
�1
�0

�#

for � � B , where [x] denotes the integer part of x . Observe that d is defined to satisfy

(2.27) � 2 In () d(�;B) = n

for all 0 < � � B .

Consider the equation (2.20) on I1 upon setting V (�) = b(1��) for � 2 
B; S(B)] ;

this is then a first-order linear differential equation which can be solved explicitly, and imposing

a continuity condition at B which is in agreement with (2.22), we obtain a unique solution

� 7! V (�;B) on I1 ; move then further and consider the equation (2.20) on I2 upon using the

solution found on I1 ; this is then a first-order linear differential equation which can be solved

explicitly, and imposing a continuity condition over I2 [ I1 at B1 , we obtain a unique solution

� 7! V (�;B) on I2 ; continuing this process by induction, we find the following formula:

(2.28) V (�;B) =
(1��)1

�0

n�1X
k=0

 
Cn�k

�k

k!
logk

��
�1
�0

�k�1
�

1��
�!

�
�
n
�1��0
�0�1

+ b

�
� +

�
n

�0
+ b

�
for � 2 In , where C1; . . . ; Cn are constants satisfying the following recurrent relation:

(2.29) Cp+1 =

p�1X
k=0

�
Cp�k

�
f
(p)
k �f

(p)
k+1

��
+

(Bp)
0

(1�Bp)1

�
�1��0
�0�1

Bp � 1

�0

�
for p = 0; 1; . . . ; n�1 , with

(2.30) f
(p)
k =

�k

k!
logk

��
�1
�0

�k�p�1
B

1�B
�

and where we set
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(2.31) 0 =
�0

�1��0 ; 1 =
�1

�1��0 ; � =
1

(�1��0)
(�0)

1

(�1)0
.

Making use of the distance function (2.26), we may now write down the unique solution of

(2.20) on


0; B] satisfying (2.21) on [B; S(B)] and the second part of (2.22) at B :

(2.32) V (�;B) =
(1��)1
�0

d(�;B)�1X
k=0

 
Cd(�;B)�k

�k

k!
logk

��
�1
�0

�k�1 �

1��
�!

�
�
d(�;B)

�1��0
�0�1

+ b

�
� +

�
d(�;B)

�0
+ b

�
for 0 < � � B . It is clear from our construction above that � 7! V (�;B) is C1 on



0; B

�
and C0 at B .

Observe that when computing the first derivative of � 7! V (�;B) , we can treat d(�;B) in

(2.32) as not depending on � . This then gives the following explicit expression:

(2.33) V 0(�;B) =
(1��)1�1
�0+1

d(�;B)�1X
k=0

 
Cd(�;B)�k

�k

k!
logk

��
�1
�0

�k�1
�

1��
�
�

�
 
k
�
log

��
�1
�0

�k�1 �

1��
�
� (�+ 0)

!!
�
�
d(�;B)

�1��0
�0�1

+ b

�
for 0 < � � B .

Setting C=b=(a+b) elementary calculations show that � 7! V (�;B) is concave on


0; B

�
,

as well as that V (�;B)! �1 as � # 0 , for all B 2 [C; 1] . Moreover, it is easily seen from

(2.28) (with n= 1 ) that V (�; 1) < 0 for all 0<� < 1 . Thus, if for some B̂ > C , close to

C , it happens that � 7! V (�; B̂) crosses � 7! a� when � moves to the left from B̂ , then a

uniqueness argument presented in Remark 2.2 below (for different B’s the curves � 7! V (�;B)
do not intersect) shows that there exists B� 2



C; 1

�
, obtained by moving B from B̂ to 1 or

vice versa, such that for some A� 2


0; C

�
we have V (A�;B�) = aA� and V 0(A�;B�) = a (see

Figure 2). Observe that the first identity captures part (i) of (2.22), while the second settles (2.23).

These considerations show that the system (2.20)-(2.23) has a unique (non-trivial) solution

consisting of A� , B� and � 7! V (�;B�) , if and only if

(2.34) lim
B#C

V 0(B�;B) < a .

Geometrically this is the case when for B > C , close to C , the solution � 7! V (�;B) intersects

� 7! a� at some � < B . It is now easily verified by using (2.28) (with n=1 ) that (2.34) holds

if and only if the following condition is satisfied:

(2.35) �1��0 >
1

a
+

1

b
.

In this process one should observe that B1 from (2.25) tends to a number strictly less than C
when B # C , so that all calculations are actually performed on I1 .
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�

1B�A�

1
� 7! ga;b(�)

(0; 0)

Figure 2. A computer drawing of “continuous fit” solutions � 7! V (�;B) of (2.20), satisfying

(2.21) on [B; S(B)] and the second part of (2.22) at B , for different B in b=(a+b); 1 ; in this

particular case we took B = 0:95; 0:80; 0:75; . . . ; 0:55 , with �0 = 1 , �1 = 5 and a = b = 2 .

The unique B� is obtained through the requirement that the map � 7! V (�;B�) hits “smoothly”

the gain function � 7! ga;b(�) at A� ; as shown above, this happens for A� = 0:22 . . . and

B� = 0:70 . . . ; such obtained A� and B� are a unique solution of the system (2.38)-(2.39). The

solution � 7! V (�;B�) leads to the explicit form of the payoff (2.8) as shown in Figure 3 below.

Thus, the condition (2.35) is necessary and sufficient for the existence of a unique non-trivial

solution of the system (2.20)-(2.23); in this case the optimal A� and B� are uniquely determined

as the solution of the system of transcendental equations V (A�;B�) = aA� and V 0(A�;B�) = a ,

where � 7! V (�;B) and � 7! V 0(�;B) are given by (2.32) and (2.33) respectively; once A�
and B� are fixed, the solution � 7! V (�;B�) is given for � 2 [A�; B�] by means of (2.32).

9. Solution of the optimal stopping problem (2.8). We shall now show that the solution of

the Stephan problem (2.20)-(2.23) found above coincides with the solution of the optimal stopping

problem (2.8). This in turn leads to the solution of the Bayesian problem (2.5).

Theorem 2.1

(I): Suppose that the condition (2.35) holds. Then the �-Bayes decision rule (��; d�) in the

problem (2.5) of testing two simple hypotheses H1 and H0 is explicitly given by (see Remark 2.3):

9



(2.36) �� = inf
�
t� 0 j �t =2 


A�; B�
� 	

(2.37) d� = 1 ( accept H1 ) , if ��� �B�

= 0 ( accept H0 ) , if ��� =A�

where the constants A� and B� satisfying 0 < A� < b=(a+b) < B� < 1 are uniquely determined

as solutions of the system of transcendental equations:

(2.38) V (A�;B�) = aA�
(2.39) V 0(A�;B�) = a

with � 7! V (�;B) and � 7! V 0(�;B) in (2.32) and (2.33) respectively.

(II): In the case when the condition (2.35) fails to hold, the �-Bayes decision rule is trivial:

Accept H1 if � > b=(a+b) , and accept H0 if � < b=(a+b) ; either decision is equally good

if � = b=(a+ b) .

Proof. (I): 1. We showed above that the Stephan problem (2.20)-(2.23) is solvable if and only

if (2.35) holds, and in this case the solution � 7! V�(�) is given explicitly by � 7! V (�;B�) in

(2.32) for A� � � � B� , where A� and B� are a unique solution of (2.38)-(2.39).

In accordance with the interpretation of the Stephan problem, we extend � 7! V�(�) to the

whole of [0; 1] by setting V�(�) = a� for 0 � � < A� and V�(�) = b (1��) for B� < � � 1
(see Figure 3). Note that � 7! V�(�) is C1 on [0; 1] everywhere but at B� where it is C0 .

To complete the proof it is enough to show that such defined map � 7! V�(�) equals the payoff

defined in (2.8), and that �� defined in (2.36) is an optimal stopping time.

2. Since � 7! V�(�) is not C1 only at one point at which it is C0 , we can apply Itô’s

formula to V�(�t) . In exactly the same way as in (2.17) this gives

(2.40) V�(�t) = V�(�) +
Z t

0
(ILV�)(�s�) ds +Mt

where M = (Mt)t�0 is a martingale given by

(2.41) Mt =

Z t

0

�
V�
�
�s�+ ��s

� � V�(�s�)
�
d bXs

and bXt = Xt�
R t
0 E�(� jFX

s�)ds = Xt�
R t
0 (�1�s� + �0(1��s�))ds is the so-called innovation

process (see e.g. [9] Theorem 18.3) which is a martingale with respect to (FX
t )t�0 and P� when-

ever � 2 [0; 1] . Note in (2.40) that we may extend V 0� arbitrarily to B� as the time spent by

the process (�t)t�0 at B� is of Lebesgue measure zero.

3. Recall that (ILV�)(�) = �1 for � 2 

A�; B�

�
, and note that due to the smooth fit (2.23)

we also have (ILV�)(�) � �1 for all � 2 [0; 1] n
A�; B�] .

To verify this claim first note that (ILV�)(�) = 0 for � 2 

0; S�1(A�)

� [ 

B�; 1

�
, since

ILf � 0 if f(�) = a� or f(�) = b(1��) . Observe also that (ILV�)(S�1(A�)) = 0 and

(ILV�)(A�) = �1 both due to the smooth fit (2.23). Thus, it is enough to verify that (ILV�)(�) �
�1 for � 2 


S�1(A�); A�
�

.
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For this, consider the equation ILV = �1 on


S�1(A�); A�] upon imposing V (�) = V (�;B�)

for � 2 

A�; S(A�)] , and solve it under the initial condition V (A�) = V (A�;B�) + c where

c � 0 . This generates a unique solution � 7! Vc(�) on


S�1(A�); A�] , and from (2.28) we read

that Vc(�) = V (�;B�)+Kc(1��)1=�0 for � 2 

S�1(A�); A�] where Kc = c(A�)0=(1�A�)1 .

(Observe that the curves � 7! Vc(�) do not intersect on


S�1(A�); A�] for different c’s.) Hence

we see that there exists c0 > 0 large enough such that for each c > c0 the curve � 7! Vc(�)
lies strictly above the curve � 7! a� on



S�1(A�); A�] , and for each c < c0 the two curves

intersect. For c 2 [0; c0
�

let �c denote the (closest) point (to A� ) at which � 7! Vc(�) intersects

� 7! a� on


S�1(A�); A�] . Then �0 = A� and �c decreases (continuously) in the direction of

S�1(A�) when c increases from 0 to c0 . Observe that the points �c are ’good’ points since by

Vc(�c) = a�c = V�(�c) with V 0
c (�c) > a = V 0�(�c) and Vc(S(�c)) = V (S(�c);B�) = V�(S(�c))

we see from (2.19) that (ILV�)(�c) � (ILVc)(�c) = �1 . Thus, if we show that �c reaches

S�1(A�) when c " c0 , then the proof of the claim will be complete. Therefore assume on

the contrary that this is not the case. Then Vc1(S
�1(A�)�) = aS�1(A�) for some c1 < c0 ,

and Vc(S
�1(A�)�) > aS�1(A�) for all c > c1 . Thus by choosing c > c1 close enough

to c1 , we see that a point e�c > S�1(A�) arbitrarily close to S�1(A�) is obtained at which

Vc(e�c) = ae�c = V�(e�c) with V 0
c (e�c) < a = V 0�(e�c) and Vc(S(e�c)) = V (S(e�c);B�) = V�(S(e�c)) ,

from where we again see by (2.19) that (ILV�)(e�c) � (ILVc)(e�c) = �1 . This however leads to

a contradiction because � 7! (ILV�)(�) is continuous at S�1(A�) (due to the smooth fit) and

(ILV�)(S�1(A�)) = 0 as already stated earlier. Thus, we have (ILV�)(�) � �1 for all � 2 [0; 1]
(upon setting V 0�(B�) := 0 for instance).

4. Recall further that V�(�) � ga;b(�) for all � 2 [0; 1] . Moreover, since � 7! V�(�) is

bounded, and (Xt��i t )t�0 is a martingale under Pi for i = 0; 1 , it is easily seen from (2.41)

with (2.17) upon using the optional sampling theorem, that E�(M� ) = 0 whenever � is a stopping

time of X such that E�(�) <1 . Thus, taking the expectation on both sides in (2.40), we obtain

(2.42) V�(�) � E�

�
� + ga;b(�� )

�
for all such stopping times, and hence V�(�) � V (�) for all � 2 [0; 1] .

5. On the other hand, the stopping time �� from (2.36) clearly satisfies V�(���) = ga;b(���) .

Moreover, a direct analysis of �� based on (2.12)-(2.14) (see Remark 2.3 below), together with

the fact that for a Poisson process (Nt)t�0 the exit time of the process (Nt�� t)t�0 from [ eA; eB]
has a finite expectation for any real � , shows that E�(��) <1 for all � 2 [0; 1] . Taking then

the expectation on both sides in (2.40), we get

(2.43) V�(�) = E�

�
�� + ga;b(���)

�
for all � 2 [0; 1] . This fact and the consequence of (2.42) stated above show that V� = V , and

that �� is an optimal stopping time. The proof of the first part is complete.

(II): Although, in principle, it is clear from our construction above that the second part of the

theorem holds as well, we shall present a formal argument for completeness.

Suppose that the �-Bayes decision rule is not trivial. In other words, this means that

V (�) < ga;b(�) for some � 2 

0; 1

�
. Since � 7! V (�) is concave, this implies that there

are 0<A�<b=(a+b)<B�<1 such that �� = inf f t>0 j �t =2


A�; B�

�g is optimal for the prob-
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�

1B�A�

1
� 7! ga;b(�)

(0; 0)

� 7! V (�)

Figure 3. A computer drawing of the payoff (2.8) in the case �0 = 1 , �1 = 5 and a = b = 2
as indicated in Figure 2 above. The interval A�; B� is the region of continued observation of the

process (�t)t�0 , while its complement in [0; 1] is the stopping region. Thus, as indicated in (2.36),

the observation should be stopped as soon as the process (�t)t�0 enters [0; 1] n A�; B� , and this

stopping time is optimal in the problem (2.8). The optimal decision function is then given by (2.37).

lems (2.8) and (2.5) respectively, with d� from (2.9) in the latter case. Thus V (�) = E�(��+
ga;b(���)) for � 2 [0; 1] , and therefore by the general Markov processes theory, and due to the

strong Markov property of (�t)t�0 , we know that � 7! V (�) solves (2.20) and satisfies (2.21)

and (2.22); a priori we do not know if the smooth fit condition (2.23) is satisfied. Nevertheless,

these arguments show the existence of a solution to (2.20) on


0; B�] which is b(1�B�) at B�

and which crosses � 7! a� at (some) A�<b=(a+b) . But then the same uniqueness argument

used in Subsection 8 above (see Remark 2.2 below) shows that there must exist points bA��A�
and bB��B� such that the solution � 7! bV (�; bB�) of (2.20) satisfying bV ( bB�; bB�) = b(1� bB�)
hits � 7! a� smoothly at bA� . The first part of the proof above then shows that the stopping

time b�� = inf f t>0 j �t =2

 bA�; bB�

� g is optimal. As this stopping time is known to be P�-a.s.

pointwise the smallest possible optimal stopping time (see the proof of Theorem 3.1 below), this

shows that �� cannot be optimal unless the smooth fit condition holds at A� , that is, unlessbA� = A� and bB� = B� . In any case, however, this argument implies the existence of a non-trivial

solution to the system (2.20)-(2.23), and since this fact is equivalent to (2.35) as shown above, we

see that condition (2.35) cannot be violated.

Observe that we have actually proved that if the optimal stopping problem (2.8) has a non-

trivial solution, then the principle of smooth fit holds at A� . An alternative proof of the statement

12



could be done by using Lemma 3 on page 118 in [13]. The proof of the theorem is complete.

Remark 2.2

The following probabilistic argument can be given to show that the two curves � 7! V (�;B0)
and � 7! V (�;B00) from (2.32) do not intersect on



0; B0] whenever 0<B0<B00�1 .

Assume that the two curves do intersect at some Z < B0 . Let � 7! ��+� denote the tangent

of the map V ( � ;B0) at Z . Define a map � 7! g(�) by setting g(�) = (��+�)^ b(1��) for

� 2 [0; 1] , and consider the optimal stopping problem (2.8) with g instead of ga;b . Let V = V (�)
denote the value function. Consider also the map � 7! V�(�) defined by V�(�) = V (�;B0) for

� 2 [Z;B0] and V�(�) = g(�) for � 2 [0; 1] n [Z;B0] . As � 7! V�(�) is C0 at B0 and

C1 at Z , then in exactly the same way as in Subsections 3-5 (Part I) of the proof above we

find that V�(�) = V (�) for all � 2 [0; 1] . However, if we consider the stopping time �� =
inf f t > 0 j �t =2



Z;B00� g , then it follows in the same way as in Subsection 5 (Part I) of the

proof above that V (�;B00) = E�(�� + g(���)) for all � 2 [Z;B00] . As V (�;B00) < V�(�) for

� 2 

Z;B0] , this is a contradiction. Thus, the curves do not intersect.

Remark 2.3

1. Observe that the optimal decision rule (2.36)-(2.37) can be equivalently rewritten as follows

(2.44) �� = inf
�
t� 0 j Zt =2


 eA�; eB�
� 	

(2.45) d� = 1 ( accept H1 ) , if Z�� � eB�

= 0 ( accept H0 ) , if Z�� = eA�

where we use the following notation:

(2.46) Zt = Xt � �t

(2.47) eA� = log

�
A�

1�A�
1��
�

��
log

�
�1
�0

�
(2.48) eB� = log

�
B�

1�B�
1��
�

��
log

�
�1
�0

�
(2.49) � =

�
�1��0

��
log

�
�1
�0

�
.

2. The representation (2.44)-(2.45) reveals the structure and applicability of the optimal decision

rule in a clearer manner. The result proved above shows that the following sequential procedure is

optimal: While observing Xt , monitor Zt , and stop the observation as soon as Zt enters either
�1; eA�] or [ eB�;1
�

; in the first case conclude � = �0 , in the second conclude � = �1 .

In this process the condition (2.35) must be satisfied, and the constants A� and B� should

be determined as a unique solution of the system (2.38)-(2.39). This system can be successfully

treated by means of standard numerical methods if one mimics our travel from B� to A� in

the construction of our solution in Subsection 8 above. A pleasant fact is that only a few steps by

(2.24) will be often needed to recapture A� if one starts from B� .
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3. After we completed our work we observed that the same problem was treated by different

methods in [11]. It is interesting to note that we could not find any later reference to that work. We

also observed that the necessary and sufficient condition (2.35) of Theorem 2.1 is different from

the condition a�1+b(�0+�1) < b=a found in [11].

3. Solution of the variational problem

In the variational formulation of the problem it is assumed that the sequentially observed process

X = (Xt)t�0 is a Poisson process with intensity �0 or �1 , and no probabilistic assumption is

made about the outcome of �0 and �1 at time 0 . To formulate the problem we shall adopt

the setting and notation from the previous section. Thus Pi is a probability measure on (
;F)
under which X = (Xt)t�0 is a Poisson process with intensity �i for i = 0; 1 .

1. Given the numbers � ; � > 0 such that � + � < 1 , let �(�; �) denote the class of

all decision rules (�; d) satisfying

(3.1) �(d) � � and �(d) � �

where �(d) = P1(d = 0) and �(d) = P0(d = 1) . The variational problem is then to find a

decision rule (b� ; bd ) in the class �(�; �) such that

(3.2) E0(b� ) � E0(�) and E1(b�) � E1(�)

for any other decision rule (�; d) from the class �(�; �) . Note that the main virtue of the

requirement (3.2) is its simultaneous validity for both P0 and P1 .

This formulation of the problem is due to Wald [15]. In the papers [17] and [18] Wald and

Wolfowitz proved the optimality of the SPRT in the case of i.i.d. observations and under special

assumptions on the admissibility of (�; �) (see [17], [18], [1], [8] for more details and compare

it with the admissability notion given below). In the paper [5] Dvoretzky, Kiefer and Wolfowitz

considered the problem of optimality of the SPRT in the case of a continuous time and satisfied

themselves with the remark that “a careful examination of the results of [17] and [18] shows that

their conclusions in no way require that the processes be discrete in time” omitting any further

detail and concentrating their attention to the problem of finding the error probabilities �(d) and

�(d) with expectations E0(�) and E1(�) for the given SPRT (�; d) defined by "stopping

boundaries" A and B in the cases of a Wiener and Poisson process. The explicit solution of

the Bayesian problem in the case of a Wiener process was given in [12] (see also [13]). For the

general problem of the minimax optimality of the SPRT for the case of a continuous time see [6].

Our main aim in this section is to show how the solution of the variational problem together

with a precise description of all admissible pairs (�; �) can be obtained from the Bayesian solution

in the previous section. The sequential procedure which leads to the optimal decision rule (b� ; bd )
in this process is a SPRT which (as already mentioned earlier) was studied for the first time in [5].

We now describe a well-known procedure of passing from the Bayesian solution to the variational

solution with some basic facts from [5] adapted to our aims.

2. Note that the explicit procedure of passing from the Bayesian solution to the variational

solution presented in the next three steps is not confined to a Poissonian case but is also valid in
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greater generality (cf. [8]).

Step 1 (Construction): Given � ; �>0 with �+� < 1 , find constants A and B satisfying

A < 0 < B such that the stopping time

(3.3) b� = inf
�
t� 0 j Zt =2 


A;B
� 	

satisfies the following identities:

(3.4) P1
�
Z�̂ = A

�
= �

(3.5) P0

�
Z�̂ � B

�
= �

where (Zt)t�0 is as in (2.46). Associate with b� the following decision function:

(3.6) bd = 1 ( accept H1 ) , if Z�̂ �B

= 0 ( accept H0 ) , if Z�̂ =A .

We shall actually see below that not for all values � and � such A and B exist; a function

G :


0; 1

�! 

0; 1

�
is displayed in (3.24) such that the solution (A;B) to (3.4)-(3.5) exists only

for � 2 

0; G(�)

�
if � 2 


0; 1
�

. Such values � and � will be called admissible.

Step 2 (Embedding): Once A and B are found for admissible � and � , we may respectively

identify them with eA� and eB� from (2.47) and (2.48). Then, for any b� 2 

0; 1

�
given and

fixed, we can uniquely determine A� and B� satisfying 0<A�<B�<1 such that (2.47) and

(2.48) hold with � = �̂ . Once A� and B� are given, we can choose a>0 and b>0 in the

Bayesian problem (2.4)+(2.5) such that the optimal stopping time in (2.8) is exactly the exit time

�� of (�t)t�0 from


A�; B�

�
as given in (2.36). Observe that this is possible to achieve since

the optimal A� and B� range through all


0; 1

�
when a and b satisfying (2.35) range through


0;1�
. (For this, let any B� 2



0; 1

�
be given and fixed, and choose ea > 0 and eb > 0 such

that B� = eb=(ea+eb) with �1��0 = 1=ea+1=eb . Then consider the solution V ( � ;B�) := Vb( � ;B�)
of (2.20) on



0; B�

�
upon imposing Vb(�;B�) = b(1��) for � 2 [B�; S(B�)] where b � eb . To

each such a solution there corresponds a > 0 such that � 7! a� hits � 7! Vb(�;B�) smoothly

at some A = A(b) . When b increases from eb to 1 , then A(b) decreases from B� to

zero. This is easily verified by a simple comparison argument upon noting that � 7! Vb(�;B�)
stays strictly above � 7! V (�;B�) + Vb(B�;B�) on



0; B�

�
(recall the idea used in Remark 2.3

above). As each A(b) obtained (in the pair with B� ) is optimal (recall the arguments used in

Subsections 3-5 (Part I) of the proof of Theorem 2.1), the proof of the claim is complete.)

Step 3 (Verification): Consider the process (b�t)t�0 defined by (2.12)+(2.14) with � = b� , and

denote by (b��; bd�) the optimal decision rule (2.36)-(2.37) associated with it. From our construction

above note that b� from (3.3) actually coincides with b�� , as well as that (b��̂� =A�) = (Z�̂ =A)
and (b��̂� �B�) = (Z�̂ �B) . Thus (3.4) and (3.5) show that

(3.7) P1

�bd�= 0
�

= �

(3.8) P0

�bd�= 1
�

= �
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for the admissible � and � . If now any decision rule (�; d) from �(�; �) is given, then

either P1(d=0) = � and P0(d=1) = � , or at least one strict inequality holds. In both cases,

however, from (2.4)-(2.6) and (3.7)+(3.8) we easily see that E�̂(b��) � E�̂(�) , since otherwise b��
would not be optimal. Since b�� = b� , it follows E�̂(b� ) � E�̂(�) , and letting b� first to 0 and

then to 1 , we obtain (3.2) in the case when E0(�) < 1 and E1(�) < 1 . If either E0(�)
or E1(�) equals 1 , then (3.2) follows by the same argument after a simple truncation (e.g. if

E0(�) <1 but E1(�) =1 choose n � 1 such that P0(� >n) � " , apply the same argument

to �n := � ^ n and dn := d 1f��ng+ 1f�>ng , and let " go to zero in the end.) This solves the

variational problem posed above for all admissible � and � .

3. The preceding arguments also show:

(3.9) If either P1(d=0) < � or P0(d=1) < � for some (�; d) 2 �(�; �) with admissible

� and � , then at least one strict inequality in (3.2) holds.

Moreover, since b�� is known to be P�̂-a.s. the smallest possible optimal stopping time (see the

proof of Theorem 3.1 below), from the arguments above we also get:

(3.10) If P1(d= 0) = � and P0(d=1) = � for some (�; d) 2 �(�; �) with admissible �
and � , and both equalities in (3.2) hold, then � = b� P0-a.s. and P1-a.s.

The property (3.10) characterises �̂ as a unique stopping time of the decision rule with maximal

admissible error probabilities having both P0 and P1 expectation at minimum.

4. It remains to determine admissible � and � in (3.4) and (3.5) above. For this, considerb� defined in (3.3) for some A < 0 < B , and note from (2.14) that 't = exp
�
Zt log(�1=�0)

�
.

By means of (2.10) we find

(3.11) P1

n
Z�̂ =A

o
= P1

(
'�̂ = exp

�
A log

�
�1
�0

��)
= exp

�
A log

�
�1
�0

��
P0

n
Z�̂ =A

o
= exp

�
A log

�
�1
�0

���
1� P0

n
Z�̂ �B

o�
.

Using (3.4)-(3.5), from (3.11) we see that

(3.12) A = log

�
�

1��
��

log

�
�1
�0

�
.

To determine B , let P z
0 be a probability measure under which (Xt)t�0 is a Poisson process

with intensity �0 and (Zt)t�0 starts at z . It is easily seen that the infinitesimal operator of

(Zt)t�0 under (P z
0 )z2R acts like

(3.13) (IL0f)(z) = ��f 0(z) + �0

�
f(z+1) � f(z)

�
.

In view of (3.5), introduce the function

(3.14) u(z) = P z
0

�
Z�̂ � B

�
.

Strong Markov arguments then show that z 7! u(z) solves the following system:
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-1 1 2

1

z 7! P z
0 (Z�̂ �B)

z

Figure 4. A computer drawing of the map u(z) = P z
0 (Z�̂�B) from (3.14) in the case A = �1 , B = 2

and �0 = 0:5 . This map is a unique solution of the system (3.15)-(3.17). Its discontinuity at B should be

noted, as well as the discontinuity of its first derivative at B�1 . Observe also that u(A+) = u(A) = 0 .

The case of general A , B and �0 looks very much the same.

(3.15) (IL0u)(z) = 0 if z 2 
A;B�nfB�1g
(3.16) u(A) = 0

(3.17) u(z) = 1 if z � B .

The solution of this system is given in (4.15) of [5]. To display it, introduce the function

(3.18) F (x;B) =

�(x;B)X
k=0

(�1)k

k!

��
B�x�k� � e���k

for x � B , where we denote

(3.19) �(x;B) = �[x�B+1]

(3.20) � = log

�
�1
�0

���
�1
�0

� 1

�
.

Setting Jn = [B�n�1; B�n� for n � 0 , observe that �(x;B) = n if and only if x 2 Jn .

It is then easily verified that the solution of the system (3.15)-(3.17) is given by

(3.21) u(z) = 1 � e��(z�A)
F (z;B)

F (A;B)

for A � z < B . Note that z 7! u(z) is C1 everywhere in


A;B

�
but at B�1 where it is

only C0 ; note also that u(A+) = u(A) = 0 , but u(B�) < u(B) = 1 (see Figure 4).
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� 1

1

�

� + � = 1

� 7! G(�)

A

(0; 0)

Figure 5. A computer drawing of the map � 7! G(�) from (3.24) in the case �0=1 and �1=3 .

The area A which lies below the graph of G determines the set of all admissible � and � . The

case of general �0 and �1 looks very much the same; it can also be shown that G(0+) decreases if

the difference �1��0 increases, as well as that G(0+) increases if both �0 and �1 increase so that

the difference �1��0 remains constant; in all cases G(1�) = 0 . It may seem somewhat surprising

that G(0+) < 1 ; observe, however, this is in agreement with the fact that (Zt)t�0 from (2.46) is a

supermartingale under P0 . (A little peak on the graph, at �̂ = 0:19 . . . and �̂ = 0:42 . . . in this

particular case, corresponds to the disturbance when A from (3.12) passes through �1 while B=0+ ;

it is caused by a discontinuity of the first derivative of the map from (3.22) at B�1 (see Figure 4).)

Going back to (3.5), and using (3.21), we see that

(3.22) P0
�
Z�̂ �B

�
= 1 � e�A

F (0;B)

F (A;B)
.

Letting B # 0 in (3.22), and using the fact that the expression (3.22) is continuous in B and

decreases to 0 as B " 1 , we clearly obtain a necessary and sufficient condition on � to satisfy

(3.5), once A = A(�; �) is fixed through (3.12); as F (0; 0) = 1 , this condition reads

(3.23) � < 1 � e�A(�;�)

F
�
A(�; �); 0

� .

Note, however, if � increases, then the function on the right-hand side in (3.23) decreases, and

thus there exists a unique �� = ��(�) > 0 at which equality in (3.23) is attained. (This value can

easily be computed by means of standard numerical methods.) Setting
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(3.24) G(�) = 1 � e�A(�;��(�))

F
�
A(�; ��(�)); 0

�
we see that admissible � and � are characterised by 0 < � < G(�) (see Figure 5). In this

case A is given by (3.12), and B is uniquely determined from the equation

(3.25) F (0;B) � (1��) F (A;B) e��A = 0 .

The set of all admissible � and � will be denoted by A . Thus, we have

(3.26) A =
�
(�; �) j 0< �< 1 ; 0<� <G(�)

	
.

5. The preceding considerations may be summarised as follows (see also Remark 3.2 below).

Theorem 3.1

In the problem (3.1)-(3.2) of testing two simple hypotheses (2.2)-(2.3) based upon sequential

observations of the Poisson process X = (Xt)t�0 under P0 or P1 , there exists a unique decision

rule (b� ; bd ) 2 �(�; �) satisfying (3.2) for any other decision rule (�; d) 2 �(�; �) whenever

(�; �) 2 A . The decision rule (b� ; bd ) is explicitly given by (3.3)+(3.6) with A in (3.12) and B
from (3.25), it satisfies (3.9), and is characterised by (3.10).

Proof. It only remains to prove (3.10). For this, in the notation used above, assume that � is

a stopping time of X satisfying the hypotheses of (3.10). Then clearly � is an optimal stopping

time in (2.8) for � = b� with a and b as in Step 2 above.

Recall that V�(�) � ga;b(�) for all � , and observe that b� can be written as

(3.27) b� = inf
�
t� 0 j V�(b�t) � ga;b(b�t)

	
where � 7! V�(�) is the payoff (2.8) appearing in the proof of Theorem 2.1. Supposing now that

P�̂(� < b� ) > 0 , we easily find by (3.27) that

(3.28) E�̂

�
� + ga;b

�b��

� �
> E�̂

�
� + V�

�b��

� �
.

On the other hand, it is clear from (2.40) with LV� � �1 that ( t+V�(b�t))t�0 is a submartingale.

Thus by the optional sampling theorem it follows that

(3.29) E�̂

�
� + V�

�b��

� � � V�(b�) .

However, from (3.28) and (3.29) we see that � cannot be optimal, and thus we must have

P�̂(��b� ) = 1 . Moreover, since it follows from our assumption that E�̂(�) = E�̂(b� ) , this implies

that � = b� P�̂-a.s. Finally, as Pi << P�̂ for i = 0; 1 , we see that � = b� both P0-a.s. and

P1-a.s. The proof of the theorem is complete.

Observe that the sequential procedure of the optimal decision rule (b� ; bd ) from Theorem 3.1

is precisely the SPRT. The explicit formulas for E0(b�) and E1(b� ) are given in (4.22) of [5].
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Remark 3.2

If (�; �) =2 A , that is, if � � G(�) for some �; �>0 such that �+�<1 , then no decision

rule given by the SPRT-form (3.3)+(3.6) can solve the variational problem (3.1)-(3.2).

To see this, let such (�; ��) =2 A be given, and let (�; d) be a decision rule satisfying

(3.3)+(3.6) for some A<0<B . Denote � = P0(Z� �B) and choose � to satisfy (3.12). Then

� < G(�) � �� by definition of the map G . Given �0 2 

�;G(�)

�
, let B0 be taken to satisfy

(3.5) with �0 , and let �0 be determined from (3.12) with �0 so that A remains unchanged.

Clearly 0<B0 <B and 0<�0<� , and (3.4) holds with A and �0 respectively. But then

(� 0; d0) satisfying (3.3)+(3.6) with A< 0<B0 still belongs to �(�; ��) , while clearly � 0 < �
both under P0 and P1 . This shows that (�; d) does not solve the variational problem.

The preceding argument shows that the admissible class A from (3.26) is exactly the class of

all error probabilities (�; �) for which the SPRT is optimal. A pleasant fact is that A always

contains a neighborhood around (0; 0) in [0; 1]�[0; 1] , which is the most interesting case from

the point of view of statistical applications.
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