
The Azéma-Yor Embedding
in Non-Singular Diffusions

J. L. Pedersen and G.Peskir

Let (Xt)t≥0 be a non-singular (not necessarily recurrent) diffusion on R starting at zero, and
let ν be a probability measure on R . Necessary and sufficient conditions are established for
ν to admit the existence of a stopping time τ∗ of (Xt) solving the Skorokhod embedding
problem, i.e. Xτ∗ has the law ν . Furthermore, an explicit construction of τ∗ is carried
out which reduces to the Azéma-Yor construction [1] when the process is a recurrent diffusion.
In addition, this τ∗ is characterized uniquely to be a pointwise smallest possible embedding
that stochastically maximizes (minimizes) the maximum (minimum) process of (Xt) up to
the time of stopping.
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1. Introduction

Let (Xt)t≥0 be a non-singular (not necessarily recurrent) diffusion on R starting at zero, and
let ν be a probability measure on R . In this paper, we consider the problem of embedding
the given law ν in the process (Xt) , i.e. the problem of constructing a stopping time τ∗ of
(Xt) satisfying Xτ∗ ∼ ν and determining conditions on ν which make this possible. This
problem is known as the Skorokhod embedding problem.

The proof (see below) leads naturally to explicit construction of an extremal embedding of
ν in the following sense. The embedding is an extension of the Azéma-Yor construction [1]
that is pointwise the smallest possible embedding that stochastically maximizes max 0≤t≤τ∗ Xt

(or stochastically minimizes min 0≤t≤τ∗ Xt ) over all embeddings τ∗ .
The Skorokhod embedding problem has been investigated by many authors and was initiated

in Skorokhod [17] when the process is a Brownian motion. In this case Azéma and Yor [1] (see
Rogers [14] for an excursion argument) and Perkins [10] yield two different explicit extremal
solutions of the Skorokhod embedding problem in the natural filtration. An extension of the
Azéma-Yor embedding, when the Brownian motion has an initial law, was given in Hobson [7].
The existence of an embedding in a general Markov process was characterized by Rost [16], but
no explicit construction of the stopping time was given. Bertoin and Le Jan [3] constructed
a new class of embeddings when the process is a Hunt process starting at a regular recurrent
point. Furthermore, Azéma and Yor [1] give an explicit solution when the process is a recurrent
diffusion. The case when the process is a Brownian motion with drift (non-recurrent diffusion)
was recently studied in Grandits [5] and Peskir [12], and then again in Grandits and Falkner [6].
A necessary and sufficient condition on ν that makes an explicit Azéma-Yor construction
possible is given in [12]. The same necessary and sufficient condition is also given in [6] with
the embedding that is a randomized stopping time obtained by the general result of Rost [16].
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More general embedding problems for martingales are considered in Rogers [15] and Brown,
Hobson and Rogers [4].

Applications of Skorokhod embedding problems have gained some interest to option pricing
theory. How to design an option given the law of a risk is studied in [11], and bounds on the
prices of Lookback options obtained by robust hedging are studied in [8].

This paper was motivated by the works of Grandits [5], Peskir [12] and Grandits and
Falkner [6] where they consider the embedding problem for the non-recurrent diffusion of Brow-
nian motion with drift. In this paper, we extend the condition given there and the Azéma-Yor
construction to the case of a general non-recurrent non-singular diffusions. The approach of
finding a solution to the Skorokhod problem is the following. First, the initial problem is trans-
formed by composing (Xt) with its scale function into an analogous embedding problem for
a continuous local martingale. Secondly, by the time-change given in the construction of the
Dambis-Dubins-Schwarz Brownian motion (see [13]) the martingale embedding is shown to be
equivalent to embedding in Brownian motion. Finally, when (Xt) is Brownian motion we have
the embedding given in [1]. This methodology is well-known to the specialists in the field (see
e.g. [1]), although we could not find the result in the literature on Skorokhod embedding prob-
lems. The embedding problem for a continuous local martingale introduces some novelty since
the martingale is convergent when the initial diffusion is non-recurrent. Also some properties of
the constructed embedding are given so as to characterize the embedding uniquely (Section 3).

2. The main result

Let x 7→ µ(x) and x 7→ σ(x) > 0 be two Borel functions such that 1/σ2(·) and |µ(·)|/σ2(·)
are locally integrable at every point in R . Let (Xt)t≥0 defined on (Ω,F ,P) be the unique
weak solution up to an explosion time e of the one-dimensional time-homogeneous stochastic
differential equation

(2.1) dXt = µ(Xt) dt + σ(Xt) dBt , X0 = 0

where (Bt) is a standard Brownian motion and e = inf { t > 0 : Xt /∈ R } . See Karatzas and
Shreve [9, Chapter 5.5] for a survey on existence, uniqueness and basic facts of the solutions to
the stochastic differential equation (2.1). For simplicity, the state space of (Xt) is taken to be
R , but it will be clear that the considerations are generally valid for any state space which is
an interval.

The scale function of (Xt) is given by

S(x) =

∫ x

0

exp

(
− 2

∫ u

0

µ(r)

σ2(r)
dr

)
du

for x ∈ R . The scale function S(·) has a strictly positive continuous derivative and the
second derivative exists almost everywhere. Thus S(·) is strictly increasing with S(0) = 0 .
Define the open interval I = (S(−∞), S(∞)) . If I = R then (Xt) is recurrent and if I is
bounded from below or above then (Xt) is non-recurrent (see [9, Proposition 5.22]).

Let ν be a probability measure on R satisfying∫

R
|S(u)| ν(du) < ∞

and denote

m =

∫

R
S(u) ν(du) .
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Let α = inf{ x ∈ R | ν((−∞, S−1(x)]) > 0 } and β = sup{ x ∈ R | ν([S−1(x),∞)) > 0 } . If
m ≥ 0 , define the stopping time

(2.2) τh+ = inf { t > 0 : Xt ≤ h+( max 0≤r≤t Xr) }
where the increasing function s 7→ h+(s) for S−1(m) < s < S−1(β) is expressed through its
right inverse by

h−1
+ (x) = S−1

(
1

ν([x,∞))

∫

[x,∞)

S(u) ν(du)

)
(x < S−1(β))

and set h+(s) = −∞ for s ≤ S−1(m) and h+(s) = s for s ≥ S−1(β) . If m ≤ 0 , define
the stopping time

(2.3) τh− = inf { t > 0 : Xt ≥ h−( min 0≤r≤t Xr) }
where the increasing function s 7→ h−(s) for S−1(α) < s < S−1(m) is expressed through its
right inverse by

h−1
− (x) = S−1

(
1

ν((−∞, x])

∫

(−∞,x]

S(u) ν(du)

)
(x > S−1(α))

and set h−(s) = ∞ for s ≥ S−1(m) and h−(s) = s for s ≤ S−1(α) .
The main problem under consideration in this paper is the following. Given the probability

measure ν , find a stopping time τ∗ of (Xt) satisfying

(2.4) Xτ∗ ∼ ν

and determine the necessary and sufficient conditions on ν which make such a construction
possible.

The following theorem states that the above stopping times are solutions to the Skorokhod
embedding problem (2.4).

Theorem 2.1. Let (Xt) be a non-singular diffusion on R starting at zero, let S(·) denote
its scale function satisfying S(0) = 0 , and let ν be a probability measure on R satisfying∫
R |S(x)| ν(dx) < ∞ . Set m =

∫
R S(x) ν(dx) .

Then there exists a stopping time τ∗ for (Xt) such that Xτ∗ ∼ ν if and only if one of the
following four cases holds:

(i) S(−∞) = −∞ and S(∞) = ∞ ;
(ii) S(−∞) = −∞ , S(∞) < ∞ and m ≥ 0 ;
(iii) S(−∞) > −∞ , S(∞) = ∞ and m ≤ 0 ;
(iv) S(−∞) > −∞ , S(∞) < ∞ and m = 0 .

Moreover, if m ≥ 0 then τ∗ can be defined by (2.2), and if m ≤ 0 then τ∗ can be defined
by (2.3).

Proof. First, we verify that the conditions in cases (i)-(iv) are sufficient.
1. The first step in finding a solution to the problem (2.4) is to introduce the continuous local

martingale (Mt)t≥0 which shall be used in transforming the original problem into an analogous
Skorokhod problem. Let (Mt) be the continuous local martingale given by composing (Xt)
with the scale function S(·) , i.e.

(2.5) Mt = S(Xt) .
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Then S(−∞) < Mt < S(∞) for t < e and if I is bounded from below or above, Mt

converges to the boundary of I for t ↑ e and Mt = Me on {e < ∞} for t ≥ e . By
Itô-Tanaka formula it follows that (Mt) is a solution to the stochastic differential equation

dMt = σ̃(Mt) dBt

where

σ̃(x) =

{
S ′

(
S−1(x)

)
σ
(
S−1(x)

)
for x ∈ I

0 else .

The quadratic variation process is therefore given by

〈M, M〉t =

∫ t

0

σ̃2(Mu) du =

∫ t∧e

0

(
S ′(Xu) σ(Xu)

)2

du

and it is immediately seen that t 7→ 〈M,M〉t is strictly increasing for t < e . If I is bounded
from below or above then 〈M,M〉e < ∞ , and if I = R the local martingale (Mt) is
recurrent, or equivalently 〈M,M〉e = ∞ and e = ∞ . The process (Mt) does not explode,
but the explosion time e for (Xt) can be expressed as e = inf { t > 0 : Mt /∈ I } .

Let U be a random variable satisfying U ∼ ν and let µ be the probability measure
satisfying S(U) ∼ µ . For a stopping time τ∗ of (Xt) it is not difficult to see that Xτ∗ ∼ ν
if and only if Mτ∗ ∼ µ . Therefore, the initial problem (2.4) is analogous to the problem of
finding a stopping time τ∗ of (Mt) satisfying

(2.6) Mτ∗ ∼ µ .

Moreover, if τ∗ is an embedding for (Mt) by the above observations, it follows that S(−∞) <
Mτ∗ < S(∞) and hence τ∗ < e .

2. The second step is to apply time-change and verify that the embedding problem of
continuous local martingale (2.6) is equivalent to the embedding problem of Brownian motion.
Let (Tt) be the time-change given by

(2.7) Tt = inf { s > 0 : 〈M, M〉s > t } = 〈M, M〉−1
t

for t < 〈M,M〉e . Define the process (Wt)t≥0 by

(2.8) Wt =

{
MTt if t < 〈M, M〉e
Me if t ≥ 〈M,M〉e .

Since t 7→ Tt is strictly increasing for t < 〈M,M〉e , we have that
(FM

Tt

)
=

(FW
t

)
. This

implies that, if τ < 〈M,M〉e is a stopping time for (Wt) then Tτ is a stopping time for
(Mt) , and vice versa if τ < e is a stopping time for (Mt) then 〈M,M〉τ is a stopping
time for (Wt) . The process (Wt) is a Brownian motion stopped at 〈M, M〉e according to
Dambis-Dubins-Schwarz theorem (see [13, (1.7) Theorem, Chapter V]). By the definition of
(Wt) it is clear that 〈M,M〉e = inf { t > 0 : Wt /∈ I } and hence the two processes (Wt)t≥0

and (BτS(−∞),S(∞)∧t)t≥0 have the same law where τS(−∞),S(∞) = inf { t > 0 : Bt /∈ I } .
From the above observation we deduce that the embedding problem for the continuous local

martingale is equivalent to embedding in the stopped Brownian motion, i.e the martingale case
(2.6) is equivalent to finding a stopping time τ̃∗ of (Wt) satisfying

(2.9) Wτ̃∗ ∼ µ .
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3. For constructing a stopping time τ̃∗ of (Wt) that satisfies the embedding problem (2.9)
we shall make use of the Azéma-Yor construction. Assume that m ≥ 0 and define the stopping
time

(2.10) τ̃∗ = inf
{

t > 0 : Wt ≤ b+

(
max 0≤r≤t Wr

) }

where the increasing function s 7→ b+(s) for m < s < β is expressed through its right inverse
by

(2.11) b−1
+ (x) =

1

µ([x,∞))

∫

[x,∞)

uµ(du) (x < β)

and for s ≤ m set b+(s) = −∞ and for s ≥ β set b+(s) = s . The stopping time τ̃∗ can
then be described by τ̃∗ = τ̃m + τ̃∗ ◦ θτ̃m , where τ̃m = inf { t > 0 : Wt = m } . Note that
s 7→ b−1

+ (s) is the barycentre function of the probability measure µ . Moreover, the following
connection between h−1

+ (·) and b−1
+ (·) is valid

(2.12) h−1
+ (·) = (S−1 ◦ b−1

+ ◦ S)(·) .

Due to 〈M, M〉e = inf { t > 0 : Wt /∈ (S(−∞), S(∞)) } and the construction of b+(·) it
follows that τ̃∗ < 〈M,M〉e if either S(−∞) = −∞ , or m = 0 with S(−∞) > −∞ and
S(∞) < ∞ . Therefore in the cases (i), (ii) and (iv) we have that τ̃∗ < 〈M, M〉e . (Note that
τ̃∗ < 〈M, M〉e fails in the other cases.) The process (Wt) is a Brownian motion stopped
at 〈M,M〉e . Note if τ̃∗ is an embedding of the centered distribution of S(U) − m then
the strong Markov property ensures that the stopping time τ̃m + τ̃∗ ◦ θτ̃m is an embedding of
S(U) ∼ µ . By this observation we then have from Azéma and Yor [1] that Wτ̃∗ ∼ µ . Then
the stopping time τ∗ for (Mt) given by

τ∗ = Tτ̃∗ = inf { t > 0 : Mt ≤ b+( max 0≤r≤t Mr) }
satisfies Mτ∗ = Wτ̃∗ ∼ µ where (Tt) is the time change given in (2.7). From (2.12) and the
definition of (Mt) we see that τ∗ is given in (2.2) and it clearly fulfills Xτ∗ ∼ ν . The same
arguments hold for m ≤ 0 .

4. Finally the conditions in the cases (i)-(iv) are necessary as well. Indeed, case (i) is trivial
because there is no restriction on the class of probability measures we are considering. In case
(ii) let τ∗ be a stopping time for (Xt) satisfying Xτ∗ ∼ ν or equivalently Mτ∗ ∼ µ . Then the
process (Mτ∗∧t) is a continuous local martingale which is bounded from above by S(∞) < ∞ .
Letting {γn}n≥1 be a localization for the local martingale, and applying Fatou’s lemma and
the optional sampling theorem, we see that m = E

(
Mτ∗

) ≥ lim infn E
(
Mτ∗∧γn

)
= 0 . Cases

(iii) and (iv) are proved in exactly in the same way. Note that (Mt) is a bounded martingale
in case (iv). ¤

3. Characterization of the embedding stopping time

In this section, we examine some extremal properties of the embedding from Theorem 2.1
that are given in [11]-[12] when the process is a Brownian motion with drift. Loosely speak-
ing, the embedding τ∗ is pointwise the smallest embedding that stochastically maximizes
max 0≤t≤τ∗ Xt . This characterizes τ∗ uniquely. In the sequel we assume that m ≥ 0 . The
results for m ≤ 0 can easily be translated from the m ≥ 0 case.
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Proposition 3.1. Let m ≥ 0 and under the assumptions of Theorem 2.1, let τ be any
stopping time of (Xt) satisfying Xτ ∼ ν . If E

(
max 0≤t≤τ S(Xt)

)
< ∞ then

(3.1) P
(
max 0≤t≤τ Xt ≥ s

) ≤ P
(
max 0≤t≤τ∗ Xt ≥ s

)

for all s ≥ 0 . If furthermore ν satisfies

(3.2)

∫ ∞

0

S(u) log(S(u)) ν(du) < ∞

and the stopping time τ satisfies max 0≤t≤τ Xt ∼ max 0≤t≤τ∗ Xt (i.e. there is equality in (3.1)
for all s > 0) then τ = τ∗ P-a.s.

Proof. Let τ be the stopping time given in the proposition. Then we have that Mτ ∼ µ
and E

(
max 0≤t≤τ Mt

)
< ∞ . Since τ and τ∗ are two embeddings we have from Section 2

that the two stopping times τ̃ and τ̃∗ for (Wt) given by τ̃ = 〈M, M〉τ and τ̃∗ = 〈M, M〉τ∗
satisfy Wτ̃ ∼ Wτ̃∗ ∼ µ . Note that τ̃∗ is given in (2.10) and that E

(
max 0≤t≤τ̃ Wt

)
=

E
(
max 0≤t≤τ Mt

)
< ∞ . Thus it is enough to verify

(3.3) P
(
max 0≤t≤τ̃ Wt ≥ s

) ≤ P
(
max 0≤t≤τ̃∗ Wt ≥ s

)

for all s ≥ 0 . Given the following fact (see [4])

(3.4) P
(
max 0≤t≤τ̃∗ Wt ≥ s

)
= inf

y<s

E
(
Wτ̃∗ − y

)+

s− y

the proof of (3.3) in essence is the same as the proof of [4, Lemma 2.1] and we include it merely
for completeness. First note that max 0≤t≤τ̃∗ Wt ≥ m P-a.s. and (3.3) is trivial for 0 ≤ s ≤ m .
Let s > m be given and fix y < s . We have the inequality

(3.5)

(
Wτ̃∧t − y

)+

s− y
+

s−Wτ̃∧t

s− y
1[s,∞)

(
max 0≤r≤τ̃∧t Wr

) ≥ 1[s,∞)

(
max 0≤r≤τ̃∧t Wr

)

which can be verified on a case by case basis. Taking expectation in (3.5) we have by Doob’s
submartingale inequality that

P
(
max 0≤r≤τ̃∧t Wr ≥ s

) ≤ E
(
Wτ̃∧t − y

)+

s− y
.

Since E
(
max 0≤t≤τ̃ Wt

)
< ∞ , we can apply Fatou’s lemma and letting t → ∞ we obtain

that

P
(
max 0≤r≤τ̃ Wr ≥ s

) ≤ E
(
Wτ̃ − y

)+

s− y

for all y < s . Taking infimum over all y < s and since Wτ̃∗ ∼ Wτ̃ together with (3.4) we
have the inequality (3.3).

In order to prove the second part, we have by the foregoing that it is clearly sufficient to
show that

(3.6) τ̃ = τ̃∗ P-a.s.

We shall use a modified proof of [18, Theorem 1] to prove (3.6). First note that from [2] (see
also [12]) that condition (3.2) is satisfied if and only if E

(
max 0≤t≤τ̃∗ Wt

)
< ∞ . Therefore(

(Wτ̃∧t − s)+
)

t≥0
is uniform integrable for any s . Fix s which is not an atom for the
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probability measure µ and set x = b−1
+ (s) where b−1

+ (·) is the barycentre function in (2.11).
Thus by the fact Wτ̃ ∼ Wτ̃∗ and the optional sampling theorem, we get that

E
(
Wτ̃ − s

)+ ≥ E
(
Wτ̃∧τ̃x − s

)+
=

(
b−1
+ (s)− s

)
P(τ̃x ≤ τ̃) + E

(
(Wτ̃ − s)+ ; τ̃ > τ̃x

)

= E
(
(Wτ̃ − s)+ ; Wτ̃ ≥ s

)
+ E

(
(Wτ̃ − s)+ ; τ̃ > τ̃x

)

= E
(
Wτ̃ − s

)+
+ E

(
(Wτ̃ − s)+ ; Wτ̃ ≥ s , τ̃ < τ̃x

)

where we have used (see [2]) that

(3.7) P(Wτ̃ ≥ s) = P
(
max 0≤t≤τ̃ Wt ≥ b−1

+ (s)
)

and the definition of the barycentre function. Hence E
(
(Wτ̃ − s)+ ; Wτ̃ ≥ s , τ̃ < τ̃x

) ≤ 0
and therefore {Wτ̃ ≥ s , τ̃ < τ̃x} is a P-nullset due to the fact that {Wτ̃ = s} is also a
P-nullset. Because of (3.7), we conclude that {Wτ̃ ≥ s} = {max 0≤t≤τ̃ Wt ≥ b−1

+ (s)} P-a.s.
for all s which is not an atom for µ . Since s 7→ b−1

+ (s) is left continuous, we have that
max 0≤t≤τ̃ Wt ≥ b−1

+ (Wτ̃ ) P-a.s. and we deduce that τ̃∗ ≤ τ̃ P-a.s. Finally, let σ̃ be an
any stopping time for (Wt) satisfying τ̃∗ ≤ σ̃ ≤ τ̃ P-a.s. Then, optional sampling theorem

implies that E
(
Wσ̃ − s

)+
= E

(
Wτ̃∗ − s

)+
for all s and therefore Wσ̃ ∼ µ . Clearly, this is

only possible if τ̃ = τ̃∗ P-a.s. The proof is complete. ¤
Remark 3.2. Observe that no uniform integrability condition is needed for the second part
of the result, which normally is assumed in similar statements (see e.g. [2] and [18]), and it is
only necessary to control the size of the maximum process (i.e. condition (3.2)). Furthermore,
note that E

(
max 0≤t≤τ S(Xt)

)
< ∞ and (3.2) are trivial when S(·) is bounded from above

(i.e. when the process (Xt) is non-recurrent).
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