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Let ("i)i�1 be a sequence of independent Rademacher variables, and let (Bt)t�0
be a standard Brownian motion. Then the conjecture made in [5] that the best

constant in the maximal Khintchine inequality:�
E

�
max
1�k�n

��� kX
i=1

ai"i

���p��1=p� B�p� nX
i=1

jaij2
�1=2

equals B�p = (E(max 0�t�1 jBtjp)1=p fails for p in a neighborhood of 1 . This

can be established by using a variant of the following general formula:

E

�
g
�
z _ max

0�t�T
jx+Btj

��
= g(z) + 2

1X
k=1

(�1)k�1E
 
g

� jx+BT j
2k�1

�
� g(z)

!+
being valid for all z � x � 0 and all increasing functions g : IR+ ! IR+ which

are continuous at zero and satisfy E
�
g
�jx+BT j

��
<1 . The method of proof relies

upon a multiple reflection argument. In addition, it is shown that�
E

�
max
1�k�n

� kX
i=1

ai"i

�p
+

��1=p
�
�
E
�
max
0�t�1

Bt

�p
+

�1=p� nX
i=1

jaij2
�1=2

for all p� 2 , and the constant appearing on the right-hand side is best possible.

The main aim of the paper is to present some basic facts and formulas arising in the

study of these questions with a special emphasis on unresolved issues.

1. Introduction

1. Let "1; . . . ; "n be independent (Rademacher) random variables taking values �1 with

probability 1=2 . The Khintchine inequalities (dating back to [8]) state that

(1.1) Ap

� nX
i=1

jaij2
�1=2

�
�
E
�� nX
i=1

ai"i
��p�1=p� Bp

� nX
i=1

jaij2
�1=2

for all a1; . . . ; an 2 R , where Ap and Bp are universal constants and 0 < p < 1 . These

inequalities are known to play a fundamental role in probability theory.

The best constants Ap and Bp in (1.1) are known (see [6]). In this paper we only focus on

the right-hand side inequality and for further reference recall that
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(1.2) Bp =
�
EjB1jp

�1=p
(2� p <1)

where B1�N(0; 1) . The case 0<p< 2 is less interesting as then Bp = 1 .

2. If �1; . . . ; �n are independent random variables that are symmetrically distributed around

zero (i.e. ��i � �i for all i ), then Lévy’s inequality (cf. Lemma 3.1) states that

(1.3) P
n

max
1�k�n

jSkj � t
o
� 2 P

�jSnj � t
	

for all t � 0 , where we denote Sk =
Pk

i=1 �i for all 1 � k � n . This inequality is a simple

consequence of the reflection principle (see [9]).

Integration by parts, upon using (1.3) with �i = ai"i and applying (1.1), then yields:

(1.4) A�
p

� nX
i=1

jaij2
�1=2

�
�
E

�
max
1�k�n

�� kX
i=1

ai"i
��p��1=p� B�p� nX

i=1

jaij2
�1=2

for all a1; . . . ; an 2 R , where A�p and B�p are universal constants and 0 < p < 1 . These

inequalities are usually referred to as the maximal Khintchine inequalities. In this paper we call

them the Lévy-Khintchine inequalities.

3. The best constants A�p and B�p in (1.4) are not known. The only known but trivial fact

is that A�p = 1 when p�2 . We may note from (1.3) that the following bound holds:

(1.5) B�p � 21=p Bp

for all 0 < p <1 . In view of a functional central limit theorem (Donsker’s invariance principle)

it was conjectured in [5] that the best value for B�p equals

(1.6) B�p =

�
E

�
max
0�t�1

jBtjp
��1=p

where (Bt)t�0 is standard Brownian motion.

4. It turns out however that this conjecture fails for p in a neighborhood of 1 . The method

of disproval relies upon a multiple reflection argument which also enables one to establish a more

informative connection between (1.3) and (1.4). The main aim of the paper is to present some basic

facts and formulas arising in this study with a special emphasis on unresolved issues.

We begin our exposition with an analysis of the method of proof which would follow the line

of arguments leading to the best constant (1.2) in the single-partial-sum inequality (1.1).

2. Successive integration arguments

Let "1; . . . ; "n be independent (Rademacher) random variables taking values �1 with

probability 1=2 , and let a1; . . . ; an be real numbers.

1. We begin by recalling some known facts about the right-hand side inequality in (1.1). This

inequality with Bp from (1.2) is equivalently rewritten as follows:

(2.1) E
�� nX
i=1

ai"i
��p � E

�� nX
i=1

aigi
��p
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where g1; . . . ; gn are independent random variables identically distributed as N(0; 1) .

To establish (2.1) we see by independence (Fubini’s theorem) that it is sufficient to prove:

(2.2) Ejx+a"jp � Ejx+agjp

for all x 2 IR where "� "1 and g � g1 . Clearly, we may assume in (2.2) that a= 1 , and

therefore the problem reduces to verify the following inequality:

(2.3) jx+1jp + jx�1jp � 2p
2�

Z 1

�1
jx+tjp e�t2=2 dt

for all x � 0 .

If p � 3 (or p = 2 ) then the map

(2.4) s 7! Ejx+"
p
sjp

is convex on IR+ , and thus (2.3) follows by Jensen’s inequality:

(2.5) E
��x+"

q
E(g2)

��p � E
��x+"jgj��p

where we use that E(g2) = 1 and "jgj � g upon independence (cf. [10] and [3]).

If 2< p < 3 then it can be verified that the inequality (2.3) fails for x > 0 large enough,

and thus cannot be established by analytic methods either. This indicates that the method of proof

cannot rely upon the same successive integration argument. The only known proof of (2.1) in this

case is much more technically involved (see [6]).

2. Motivated by these facts we now consider the right-hand side inequality in (1.4) with B�p
from (1.6). This inequality reads as follows:

(2.6) E

�
max
1�k�n

�� kX
i=1

ai"i
��p� � E

�
max
0�t�1 jBtjp

�� nX
i=1

jaij2
�p=2

:= Rn

where B = (Bt)t�0 is a standard Brownian motion.

Set tk =
Pk

i=1 jaij2 for 1 � k � n and observe by Brownian scaling that the right-hand

side in (2.6) can be written as follows:

(2.7) Rn = E

�
max
0�t�tn

jBtjp
�

= E

�
max
0�t�t1

��B(1)
t

��p_ max
t1�t�t2

��B(1)
t1 +B

(2)
t

��p _ . . ._ max
tn�1�t�tn

��Pn�1
i=1 B

(i)
ti +B

(n)
t

��p�
where B

(i)
t =Bt�Bti�1 with t0 = 0 , and (B

(i)
t )t�ti�1 is a standard Brownian motion independent

from FB
ti�1 := �(Bs j 0� s� ti�1) when 1� i� n .

By stationary independent increments of B , we find that the random variables

(2.8) B
(i)
ti := aigi � N(0; jaij2)

are independent for 1� i�n . Thus (2.7) can be further rewritten as follows:
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(2.9) Rn = E

�
max
0�t�t1

��B(1)
t

��p _ max
t1�t�t2

��a1g1+B(2)
t

��p _ . . . _ max
tn�1�t�tn

��Pn�1
i=1 aigi+B

(n)
t

��p�
where the Brownian motion (B

(i)
t )ti�1�t�ti is independent from the entire past FB

ti�1 for 1� i�n .

If we neglect Brownian motions in (2.9), then for (2.6) it is enough to prove:

(2.10) E

�
max
1�k�n

�� kX
i=1

ai"i
��p� � E

�
max
1�k�n

�� kX
i=1

aigi
��p�

where g1; . . . ; gn are independent random variables identically distributed as N(0; 1) .

To establish (2.10) we see by independence (Fubini’s theorem) that it is sufficient to derive:

(2.11) E
�
z _ ��x1+a"

��p _ . . . _ ��xn+a"
��p� � E

�
z _ ��x1+ag

��p _ . . . _ ��xn+ag
��p�

for all z; x1; . . . ; xn 2 IR where "� "1 and g� g1 . Clearly, we may assume that a=1 in

(2.11). As " can take only two values, the problem of (2.11) therefore reduces to verify:

(2.12) E
�
z _ ��x+"

��p _ ��y+"
��p� � E

�
z _ ��x+g

��p _ ��y+g
��p�

for all z; x; y 2 IR . This inequality should be compared with the inequality (2.2) in the context

of the single-partial-sum inequality (2.1).

It can be shown that (2.12) fails to hold at least for all p � 5 or larger. This indicates that the

question of proving (2.6) goes beyond a successive integration argument (based upon conditioning).

It makes the case of maximal inequalities (2.6) similar to the case 2<p<3 of the single-partial-

sum inequality (2.1) that is known to be difficult. A multiple reflection approach is presented in

the next section as a possible alternative to this drawback.

If Brownian motions in (2.9) are not neglected, then the following weaker version of (2.11):

(2.11’) E
�
z _ ��x1+a"

��p _ ��x2+a"
��p _ . . . _ ��xn+a"

��p�
� E

�
z _ max

0�t�1
��x1+aBt

��p _ ��x2+aB1

��p _ . . . _ ��xn+aB1

��p�
would be sufficient for (2.6), if valid for all z; x1; . . . ; xn 2 IR , where "�"1 and (Bt)t�0 is a

standard Brownian motion. However, it can be shown too that this inequality fails in some cases,

but we present no formal argument and leave it worthy of further consideration.

3. A main reason that (2.12) fails is that Ejgj<1 . Motivated by this fact we now show how

the preceding idea can be applied to random variables having the first moment equal to one.

Let �1; . . . ; �n be independent random variables that are symmetrically distributed around

zero, and let us assume that Ej�ij = 1 for all 1� i�n . Then Jensen’s inequality implies:

(2.13) E
�
z _ ��x+"

��p _ ��y+"
��p� = E

�
z _ ��x+"Ej�ij

��p _ ��y+"Ej�ij
��p�

� E
�
z _ E

��x+"j�ij
��p _ E

��y+"j�ij
��p� � �

z _ E
��x+�i

��p _ ��y+�i
��p�

for all z; x; y 2 IR due to the fact that "j�ij � �i for all 1� i�n . Thus, the analogue of (2.12)
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holds, and by the independence argument above this yields the following inequality:

(2.14) E

�
max
1�k�n

�� kX
i=1

ai"i
��p� � E

�
max
1�k�n

�� kX
i=1

ai�i
��p�

for all a1; . . . ; an 2 IR and p� 1 . This inequality is sharp when p=1 .

Applying this inequality to �i =
p
�=2 gi for 1� i�n and p=1 , we obtain:

(2.15) E

�
max
1�k�n

�� kX
i=1

ai"i
��� � r�

2
E

�
max
1�k�n

�� kX
i=1

aigi
���

for all a1; . . . ; an 2 IR . The constant
p
�=2 is best possible in this inequality.

On the other hand, from (2.9) with (2.6) upon using that E(max0�t�1 jBtj) =
p
�=2 , we get:

(2.16) E

�
max
1�k�n

�� kX
i=1

aigi
��� �

r
�

2

� nX
i=1

jaij2
�1=2

for all a1; . . . ; an 2 IR . The constant
p
�=2 is best possible in this inequality.

4. The only property of the map x 7! jxjp that matters in the proof above is its convexity.

Thus the same argument implies that the following inequality holds:

(2.17) E

�
max
1�k�n

G

� kX
i=1

ai"i

��
� E

�
max
1�k�n

G

� kX
i=1

ai�i

��
for all a1; . . . ; an 2 IR whenever G : IR! IR is convex. Extracting the crucial properties even

more, the following general result of Hunt [7] can be established with a simpler proof.

Lemma 2.1 (Hunt)

Let �1; . . . ; �n be independent random variables satisfying j�ij � 1 and E(�i) = 0 for all

1� i�n , and let �1; . . . ; �n be independent random variables that are symmetrically distributed

around zero and satisfy Ej�ij � 1 for all 1� i � n .

If F : IRn ! IR is convex (in each argument) then:

(2.18) EF (�1; . . . ; �n) � EF (�1; . . . ; �n) .

Proof. Since the random variables are independent, a successive integration argument based

upon Fubini’s theorem reduces the proof to the case n=1 . Set � = �1 and � = �1 .

By convexity of F and the fact that j�j � 1 , we find:

(2.19) F (�) � 1��

2
F (�1) + 1+�

2
F (1) .

Taking the expectation on both sides in (2.19) and using that E(�) = 0 , we get:

(2.20) EF (�) � EF (")

where " is a Bernoulli random variable taking values �1 with probability 1=2 .

Set �=Ej�j and note that � � 1 . Thus F (�1) + F (1) � F (��) + F (�) since F is

convex. Hence by Jensen’s inequality we may conclude:
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(2.21) EF (") � EF ("�) = EF ("Ej�j) � EF ("j�j) = EF (�)

due to "j�j � � . This completes the proof.

Since the supremum of a family of convex functions defines a convex function, it follows that

for any given a1; . . . ; an 2 IR the function

(2.22) F (x1; . . . ; xn) = G(a1x1) _G(a1x1 + a2x2) _ . . . _G(a1x1 + a2x2 + . . . + anxn)

is convex whenever G is so. Thus (2.17) is a direct consequence of (2.18).

It should be noted that under the hypotheses of Lemma 2.1 we can deduce in exactly the same

way that the following "mixing" inequality is satisfied:

(2.23) EF (�1; . . . ; �n) � EF (�1; . . . ; �n)

where each �i is either �i , "i or �i for all 1� i�n . To a large extent this mixing property

characterises the successive integration approach presented. For example, such mixing inequalities

will not be valid when 2<p< 3 in the case of a single partial sum (2.1).

Corollary 2.2

Under the same hypotheses as in Lemma 2.1 assume that F : IRn ! IR is convex (in each

argument) and that satisfies the following identity:

(2.24) F (�x1; . . . ; �xn) = �pF (x1; . . . ; xn)

for all � > 0 and all x1; . . . ; xn 2 IR with some p > 0 .

If Ej�ij = � > 0 for all 1 � i � n , then:

(2.25) EF (�1; . . . ; �n) � 1

�p
EF (�1; . . . ; �n) .

A typical example of such a function F is given by (2.22) above with G(x) = jxjp or

G(x) = xp for p� 1 , but there are also plenty other possibilities.

It should be observed that (2.25) improves upon (2.18) when �>1 , as well as that it extends

it to the case when � < 1 .

5. We shall now describe a simple connection between inequalities derived and some known

inequalities for Brownian motion. The central role in this description is played by Skorokhod’s

embedding. Below we assume that a1; . . . ; an 2 IR are given and fixed.

Applying (2.17) with �i = gi=Ejgij =
p
�=2 gi and G(x) = x , we get:

(2.26) E

�
max
1�k�n

� kX
i=1

ai"i

��
�
r
�

2
E

�
max
1�k�n

� kX
i=1

aigi

��
�
r
�

2
E

�
max
0�t�tn

Bt

�

=

r
�

2
E

�
max
0�t�1Bt

�� nX
i=1

jaij2
�1=2
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by means of Brownian scaling. Using further that E(max0�t�1Bt) =
p

2=� , we obtain:

(2.27) E

�
max
1�k�n

� kX
i=1

ai"i
��

�
� nX

i=1

jaij2
�1=2

.

This inequality can be related to the following inequality (see [2]):

(2.28) E

�
max
0�t��

Bt

�
�
p
E(�)

which is valid for all stopping times � of the standard Brownian motion B = (Bt)t�0 . It can

be established by Skorokhod’s embedding. Consider the hitting times:

(2.29) �1 = inf f t > 0 : jBtj = ja1j g
�2 = inf f t > 0 : jB�1+t �B�1 j= ja2j g
...

�n = inf f t> 0 : jB�1+...+�n�1+t �B�1+...+�n�1 j= janj g .

Then �1; . . . ; �n are independent random variables satisfying E(�k) = jakj2 , and Tk =
Pk

i=1 �i
is a stopping time of B for all 1�k�n . Moreover, the following identity in law holds:

(2.30) (a1"1; a2"2; . . . ; an"n) � (BT1; BT2�BT1 . . . ; BTn�BTn�1) .

In particular, from (2.30) we see that

(2.31) max
1�k�n

Sk � max
1�k�n

BTk

where we set Sk =
Pk

i=1 ai"i for all 1�k�n . It remains to apply (2.28) to the stopping time

Tn upon noting that max1�k�nBTk is dominated by max0�t�Tn Bt . This yields (2.27).

The inequality (2.28) is known to be sharp as the equality is attained at the stopping time

(2.32) �� = inf f t > 0 : St�Bt = a g

for all a � 0 , where St = max0�r�tBr . Recalling that (St�Bt)t�0 � (jBtj)t�0 , we see that

�� is equally distributed as the stopping time

(2.33) �� = inf f t > 0 : jBtj= a g .

It may be interesting to observe that each Tk appearing above is equally distributed as

(
Pk

i=1 jaij2) �� for all 1 � k � n .

We shall see in the next section that (2.27) can also be obtained by a much less sophisticated

argument that relies upon a simple reflection of S1; . . . ; Sn .

Similarly, from (1.4) and (1.5) when p=2 we see by Jensen’s inequality that the following

"reflected" analogue of (2.27) is valid:

(2.34) E

�
max
1�k�n

�� kX
i=1

ai"i
��� �

p
2

� nX
i=1

jaij2
�1=2

.
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This inequality can be deduced from the following inequality (see [2]):

(2.35) E

�
max
0�t��

jBtj
�
�
p
2
p
E(� )

which is valid for all stopping times � of the standard Brownian motion (Bt)t�0 . It can also be

established by Skorokhod’s embedding in exactly the same way as above.

The inequality (2.35) is known to be sharp as the equality is attained at the stopping time

(2.36) e�� = inf f t > 0 : eSt�Bt = a g

for all a � 0 , where eSt = max0�r�t jBrj . The stopping time e�� is equally distributed as the

convolution of two independent copies of �� from (2.33) above.

6. We conclude this section by pointing out a few easy facts for comparison with (1.4).

Throughout we assume that a1; . . . ; an 2 IR and p> 0 are given and fixed.

From (2.9) we see by Brownian scaling that

(2.37) E

�
max
1�k�n

�� kX
i=1

aigi
��p� � E

�
max
0�t�tn

jBtjp
�

= E

�
max
0�t�1 jBtjp

�� nX
i=1

jaij2
�p=2

.

On the other hand, by a Gaussian property we have:

(2.38) E

�
max
1�k�n

�� kX
i=1

aigi
��p� � E

��� nX
i=1

aigi
��p� = Ejg1jp

� nX
i=1

jaij2
�p=2

.

Taking (2.37) and (2.38) together, we obtain:

(2.39)
�
EjB1jp

�1=p� nX
i=1

jaij2
�1=2

�
�
E

�
max
1�k�n

�� kX
i=1

aigi
��p��1=p�

�
�
E

�
max
0�t�1

jBtjp
��1=p� nX

i=1

jaij2
�1=2

.

Both constants appearing in (2.39) are best possible.

3. Single and multiple reflection arguments

Our main aim in this section is to enter into a deeper analysis of the problem (1.4) with (1.6)

that is motivated by induction arguments given below.

1. We shall begin by recalling Lévy inequalities which are obtained by a single reflection

argument. These considerations will be complemented later by a multiple reflection argument.

Lemma 3.1 (Single reflection)

Let �1; . . . ; �n be independent random variables that are symmetrically distributed around zero,

and let Sk =
Pk

i=1 �i for all 1�k�n with S0=0 . Then for all t � 0 we have:

(3.1) P
n

max
0�k�n

Sk � t
o
� 2P

�
Sn � t

	�P
�
Sn = t
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(3.2) P
n

max
0�k�n

jSkj � t
o
� 2P

�jSnj � t
	�P

�jSnj= t
	

.

Moreover, if �i = a"i for all 1� i�n with some a2IR where "1; . . . ; "n are independent

random variables taking values �1 with probability 1=2 , then equality holds in (3.1) when t = ja
for some non-negative integer j .

Proof. We begin by proving (3.1). By a single reflection argument we find:

(3.3) P
n

max
0�k�n

Sk � t
o
= P

n
max
0�k�n

Sk � t ; Sn� t
o
+ P

n
max
0�k�n

Sk � t ; Sn<t
o

= P
�
Sn� t

	
+ P

n
max
0�k�n

Sk � t ; Sn < t
o

� P
�
Sn� t

	
+ P

n
max
0�k�n

Sk � t ; Sn> t
o

= P
�
Sn� t

	
+ P

�
Sn>t

	
= 2P

�
Sn� t

	�P
�
Sn= t

	
.

Observe that the inequality follows since for the stopping time

(3.4) � = inf
�
0� k � n j Sk � t

	
the following identity in law holds:

(3.5) (�1; . . . ; �� ; ��+1; . . . ; �n) � (�1; . . . ; �� ;���+1; . . . ;��n)
with obvious extensions if � equals either 0 or n .

Moreover, if the final hypothesis is fulfilled and t = ja for some j � 0 , then clearly S� = t
and thus the reverse inequality in (3.3) holds too. This establishes the final claim about (3.1).

To prove (3.2) we can use (3.1). In this way for t > 0 we get:

(3.6) P
n

max
0�k�n

jSkj � t
o
� P

n
max
0�k�n

Sk � t
o
+ P

n
min
0�k�n

Sk � �t
o

= 2P
n

max
0�k�n

Sk � t
o
� 2

�
2P

�
Sn� t

	�P
�
Sn= t

	�
= 2 P

�jSnj � t
	�P

�jSnj= t
	

due to the fact that (�S1; . . . ;�Sn) � (S1; . . . ; Sn) and �Sn � Sn . The proof is complete.

It should be observed in the proof above that we cannot repair the inequality in (3.6) under

the final hypothesis of the lemma. This is exactly the place where a multiple reflection argument

should enter in order to obtain a higher precision.

In accordance with this general remark we shall now show how the simple inequality (3.1) still

can be used to find the best constant in a version of (1.4) where the absolute value is replaced by

a maximal positive value. Below for notational convenience we denote x _ 0 by x+ .

Theorem 3.2

Let "1; . . . ; "n be independent random variables taking values �1 with probability 1=2 , and
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let a1; . . . ; an be real numbers. Then the following inequality is satisfied:

(3.7)

�
E

�
max
1�k�n

� kX
i=1

ai"i

�p
+

��1=p
�
�
E
�
max
0�t�1Bt

�p
+

�1=p� nX
i=1

jaij2
�1=2

for all p� 2 . The constant appearing on the right-hand side is best possible.

Proof. Set Sk =
Pk

i=1 ai"i for 1� k � n . Since �Sn � Sn we have 2PfSn � tg =
PfjSnj � tg for all t � 0 , and upon integrating by parts in (3.1) , we get:

(3.8) E
�

max
1�k�n

Sk

�p
+
� EjSnjp � (Bp)

p

� nX
i=1

jaij2
�1=2

where the second inequality follows by (1.1) with Bp in (1.2). Since max0�t�1Bt � jB1j , we

see that Bp equals the constant appearing in (3.7), and thus (3.7) is established.

To show that the constant Bp is best possible in (3.7), take a1 = . . . = an =
p
1=n . Then

by a functional central limit theorem (see e.g. [1]) it follows that

(3.9) E

�
1p
n

max
1�k�n

� kX
i=1

"i

�
+

�p
�! E

�
max
0�t�1Bt

�p
(n ! 1)

and as max0�t�1Bt � jB1j , the right-hand side in (3.9) equals EjB1jp = (Bp)
p . This shows

that equality in (3.8) is attained in the limit, and thus Bp is best possible.

Remark 3.3

Observe that the argument used in the proof above shows that

(3.10) E
�

max
1�k�n

Sk

�p
+
� EjSnjp

for all p> 0 , and that the constant 1 is best possible in this inequality.

In the case 0< p < 2 this yields by Jensen’s inequality:

(3.11)

�
E
�

max
1�k�n

Sk

�p
+

�1=p
� Bp

� nX
i=1

jaij2
�1=2

with Bp = 1 . It is however unclear what the best value for Bp is in this case.

In view of a result presented in Corollary 3.8 below, the following fact seems interesting in

this context. The choice of a1 = x and a2 = . . . = an+1 = 1=
p
n in (3.11) with p=1 does not

disprove (in the limit) that the best value for B1 is smaller than or equal to EjB1j =
p
2=� .

For this set eSk =
Pk+1

i=2 ai"i for 1�k� n with eS0 = 0 and note that by Fubini’s theorem

and a functional central limit theorem (see e.g. [1]) we obtain:

(3.12) E
�
max
1�k�n

�
x"1+Sk

��+
=
1

2
E
�
max
1�k�n

�
x+Sk

��+
+
1

2
E
�
max
1�k�n

��x+Sk

��+ �!
1

2
E
�
max
0�t�1

�
x+Bt

��+
+
1

2
E
�
max
0�t�1

��x+Bt

��+
=
1

2
E
�
x+jB1j

�+
+
1

2
E
�
�x+jB1j

�+
as n ! 1 since max0�t�1Bt � jB1j . Thus the problem reduces to show that

10



(3.13) E
�
x+jB1j

�+
+ E

�
�x+jB1j

�+
� 2EjB1j

p
1+x2

fails for some x 2 IR . By standard means, however, it is possible to verify that (3.11) is valid

for all x 2 IR , and this proves the claim.

2. We turn to multiple reflection arguments. Consider the problem (1.4)+(1.6) where "1; . . . ; "n
are independent (Rademacher) random variables taking values �1 with probability 1=2 , and

a1; . . . ; an are real numbers. By Brownian scaling the problem can be rewritten as:

(3.14) E
�

max
1�k�n

jSkjp
�
� E

�
max
0�t�tn

jBtjp
�

where Sk =
Pk

i=1 ai"i for 1� k� n and tn =
Pn

i=1 jaij2 .

A natural attempt (suggested by I. Pinelis) to establish (3.14) would be by induction in n . It

is then easily seen that this approach requires (3.14) to be extended to the following stronger form:

(3.15) E
�
z _ max

0�k�n
jx+Skjp

�
� E

�
z _ max

0�t�tn
jx+Btjp

�
where z � xp with x � 0 and we put S0 = 0 . Setting

(3.16) fp(z; x; T ) = E
�
z _ max

0�t�T
jx+Btjp

�
we see by Fubini’s theorem that for (3.15) it suffices to show:

(3.17) fp(z; x+a; T ) + fp(z; x�a; T ) � 2 fp(z; x; T +a2)

for all z � xp , x > 0 , a > 0 and T > 0 . (It is no restriction to assume T =1 .)

In this way the initial problem (3.14) is completely translated to a problem about the function

fp in (3.16). We thus proceed by establishing a formula for this function that is convenient for

computation. The main ingredient in the verification below is contained in the following well-known

lemma on multiple reflection (see e.g. [4] pp. 286-288).

Lemma 3.4 (Multiple reflection)

Let (Bt)0�t�T be a standard Brownian motion, let I = ]a�; a+[ for some a� < 0 < a+ , let

I0 � I be a Borel set, and let Ik+1 be the reflection of Ik over a+ + k(a+�a�) for k 2 Z .

Then the following identity is satisfied:

(3.18) P
�
Bt 2 I for all t2 [0; T ] and BT 2 I0

	
=

+1X
k=�1

(�1)k PfBT 2 Ikg .

Proof. We sketch the well-known argument. Consider the following events:

(3.19) A0 =
�
(Bt)0�t�T hits neither a� nor a+ and BT 2 I0

	
(3.20) C�n =

�
(Bt)0�t�T first hits a� , then crosses I at least n times, and BT 2 I0

	
for all n 2 f0; 1; . . . g , and observe that the left-hand side in (3.18) equals P (A0) . Then (3.18)

11



follows by induction upon using the following identities:

(3.21) P (A0) = PfBT 2 I0g � P (C+
0 [ C�0 )

(3.22) P (C+
n [ C�n ) = P (C+

n ) + P (C�n ) � P (C+
n \ C�n ) (n2N0)

(3.23) C+
n \ C�n = C+

n+1 [ C�n+1 (n 2N0)

(3.24) P (C�n ) = PfBT 2 I�(n+1)g

where (3.24) follows by the reflection property of Brownian motion. The proof is complete.

In the next proposition we shall make use of the following general fact on alternating series. If

(fk)k�1 is a decreasing sequence of non-negative �-measurable functions converging to zero as

k !1 and satisfying
R
X f1 d� <1 , then

R
(
P1

k=1(�1)k�1fk) d� =
P1

k=1(�1)k�1
R
fk d� .

This can be easily obtained by the Leibnitz theorem on alternating series which states that, if (ck)k�1
is a decreasing sequence of non-negative real numbers converging to zero, then

P
(�1)k�1ck is

convergent. In particular, the preceding general fact shows that the sum and expectation sign in

(3.25) below can be interchanged under the hypotheses of the proposition.

Proposition 3.5

Let (Bt)t�0 be a standard Brownian motion, let g : IR+ ! IR+ be an increasing function

that is continuous at zero, and let T > 0 be given and fixed. Then we have:

(3.25) E

�
g
�
z _ max

0�t�T
jx+Btj

��
= g(z) + 2

1X
k=1

(�1)k�1E
 
g

� jx+BT j
2k�1

�
� g(z)

!+
for all z � x and all x � 0 such that E

�
g
�jx+BT j

��
<1 .

Proof. Set Mx;T = max0�t�T jx+Btj . Then the left-hand side in (3.25) equals

(3.26) E
�
g(z) _ g(Mx;T )

�
= g(z) +

Z 1
g(z)

Pf g(Mx;T ) � u g du

and the right-hand side reads

(3.27) g(z) + 2
1X
k=1

(�1)k�1
Z 1
g(z)

P
n
g
� jx+BT j

2k�1

�
� u

o
du

where the series and integral sign can be interchanged (due to the remark stated above).

Moreover, since g is increasing we see that g�1([u;1[) equals either [v;1[ or ]v;1[
for some v . Thus, it is sufficient to prove that

(3.28) PfMx;T � v g = 2
1X
k=1

(�1)k�1P
n jx+BT j

2k�1
� v

o
for all v > x .

To prove (3.28) we shall use Lemma 3.4 with I0 = I = ]�v�x; v�x[ . This yields:

12



(3.29) PfMx;T � v g = 1�
X
k2Z

(�1)kPfBT 2 Ikg = 2
X
k2Z

PfBT 2 I2k�1g

due to the fact that Ik = ](2k�1)v�x ; (2k+1)v�x[ forms a partition of IR (up to a countable

set that BT hits with probability zero) when k 2 Z .

Introduce sets Dk = ]�1 ;�(2k�1)v�x] [ [(2k�1)v�x ; +1[ for k�1 , and note that

the right-hand side in (3.28) equals

(3.30) 2
1X
k=1

(�1)k�1P
n jx+BT j

2k�1
� v
o

= 2

1X
k=1

(�1)k�1PfBT 2Dkg .

As it is easily seen that

(3.31)
X
k2Z

1I2k�1 =
X
k2N

(�1)k�1 1Dk

(on the complement of a countable set that BT hits with probability zero), the identity (3.28)

follows by (3.29) and (3.30), and the proof is complete.

Corollary 3.6

Let (Bt)t�0 be a standard Brownian motion, and let T >0 be given and fixed. Then:

(3.32) E

�
z _ max

0�t�T
jx+Btjp

�
= z + 2

1X
k=1

(�1)k�1E
 � jx+BT j

2k�1
�p
� z

!+
for all z�xp , x� 0 and p> 0 . In particular, the following identities are valid:

(3.33) E

�
max
0�t�T

jBtjp
�
= 2�pEjBT jp = 2�p

r
2p

�
�

�
p+1

2

�
T p=2

for all p > 0 , where the constant �p is given by

(3.34) �p =
1X
k=1

(�1)k�1
(2k�1)p .

Proof. It follows directly from (3.25) upon Brownian scaling and a well-known formula for

EjB1jp when p > 0 . This completes the proof.

It can be verified that

(3.35) �1 =
�

4
, �2 = Catalan’s constant = 0:91 . . . , �3 =

�3

32
etc.

(3.36) lim
p#0

(2�p) = 1 and lim
p"1

(2�p) = 2

for all p>0 . The function p 7! �p is known to be related to the Riemann zeta function.

Remark 3.7

It is possible to compute the expectation in (3.33) by a different method which uses known
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properties of the stopping time:

(3.37) �1 = inf f t > 0 : jBtj = 1 g .

For this first note that Brownian scaling easily implies:

(3.38) max
0�t�1

jBtj � 1p
�1

.

Using further that (e�Bt��2t=2)t�0 is a martingale for each � > 0 , by the optional sampling

theorem we obtain the well-known identity:

(3.39) E
�
e���1

�
=

1

cosh (
p
2�)

for all � > 0 . Recalling the well-known formula:

(3.40)

Z 1

0
�q�1e��t d� =

�(q)

tq
(q > 0 ; t > 0)

we find by (3.38) and (3.39) the following integral formula:

(3.41) E

�
max
0�t�1 jBtjp

�
= E

�
(�1)

�p=2
�
=

1

�(p=2)

Z 1

0

�(p=2)�1

cosh (
p
2�)

d�

for the right-hand side of (3.33) when p > 0 .

The preceding method cannot be applied to compute the expectation in (3.32) as the scaling

property breaks down in this case.

3. The formula (3.32) offers an explicit expression for the function fp in (3.16) and in this

way provides a tool to attack the problem (3.17). It turns out however that the inequality (3.17)

fails in many cases we considered, and we were not able to find p > 0 for which it would be

satisfied. Nonetheless, the formula (3.32) can be used to disprove the conjecture (1.6) in the case

p=1 . (One should observe that this fact is equivalent to the fact that (3.17) fails when z=x=0
and p=T =1 .) The following fact (with proof) was observed by I. Pinelis.

Corollary 3.8

The best constant B�1 in the inequality (1.4) is strictly larger than E(max0�t�1 jBtj) =
p
�=2 .

Proof. In the setting of (1.4) take a1 = x and a2 = . . . = an+1 = 1=
p
n , apply Fubini’s

theorem, and then use a functional central limit theorem (see e.g. [1]) upon letting n ! 1 just

like in (3.9) above. In this way (1.4) with B�1 from (1.6) implies:

(3.42) E

�
max
0�t�1 jx+Btj

�
� E

�
max
0�t�1 jBtj

�p
1+x2 .

Thus, if we can show that (3.42) fails for some x , the proof will be complete.

To do so recall that (3.32) states that for all x� 0 we have:

(3.43) E

�
max
0�t�T

jx+Btj
�
= x + 2

1X
k=1

(�1)k�1E
� jx+BT j

2k�1 � x

�+
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and note that the expectation term in the series above is decreasing in k . Thus the partial sums

fluctuate up and down from the limiting value. Therefore to disprove (3.42) it is enough to show that

(3.44) x + 2

�
E
�
jx+B1j�x

�+
� E

� jx+B1j
3

�x
�+�

>

r
�

2

p
1+x2

for some x> 0 , where we recall from (3.33) that E(max0�t�1 jBtj) =
p
�=2 .

For this, we note that

(3.45) E
�
jx+B1j�y

�+
=

Z 1
y

�
�(�t+x) + �(�t�x)

�
dt := G(x; y)

for all x ; y 2 IR , where �(z) = (1=
p
2�)

R z
�1 e�t2=2dt is the distribution function of B1 .

Thus, the problem reduces to show that

(3.46) L(x) := x + 2G(x; x) � 2

3
G(x; 3x) >

r
�

2

p
1+x2 =: R(x)

for some x>0 . Numerical calculations show that G(1; 1) = 0:407 . . . and G(1; 3) = 0:008 . . .
Hence L(1) = 1:80 . . . and R(1) = 1:77 . . . showing that (3.46) holds when x=1 . Thus (3.42)

fails for x = 1 , and the proof is complete.

The preceding considerations naturally raise the question as to determine those p > 0 for

which the following inequality is valid:

(3.47) E

�
max
0�t�1 jx+Btjp

�
� �

1+x2
�p=2

E

�
max
0�t�1 jBtjp

�
for all x 2 IR . The proof above shows that this inequality fails for p=1 , and similar calculations

suggest that (3.47) (and possibly the conjecture (1.6) itself) fails for 0<p<2 and holds for p�2 .

We make no attempt here to prove this formally but leave it worthy of further consideration.

Observe by Brownian scaling that (3.47) is equivalent to

(3.47’) E

�
max
0�t�T

jx+Btjp
�
� �

T+x2
�p=2

E

�
max
0�t�1

jBtjp
�

where x 2 IR and T > 0 . Note also that the inequality (3.47) is an immediate consequence

of the conjecture (1.6) if taking a1 = x and a2 = . . . = an+1 = 1=
p
n and letting n ! 1

as in the proof above.

4. The following consequence of Lemma 3.4 was communicated to me by I. Pinelis. Although

it might appear somewhat unexpected, it should be noted that this identity in law does not extend

to the stochastic processes. This fact can be verified e.g. by considering hitting times.

Proposition 3.9

Let (Bt)0�t�T be a standard Brownian motion, and let x 2 IR be given and fixed. Then

the following identity in law holds:

(3.48)

�
max
0�t�T

jx+Btj
�
�
�

max
0�t�T

jBtj
�
_
�
jxj+jBT j

�
.
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Proof. By Brownian scaling and the fact that (�Bt)t�0 is a standard Brownian motion, there

is no restriction to assume that T = 1 and x > 0 .

Let u > x be given and fixed. Then by (3.18) we find:

(3.49) P
n

max
0�t�1

jx+Btj < u
o
= P

� �u�x < Bt < u�x ; 8t 2 [0; 1]
	

=
X
k2Z

(�1)kPfB1 2 Ikg

where Ik = ](2k�1)u�x ; (2k+1)u�x[ for k 2 Z .

On the other hand, by (3.18) we also find:

(3.50) P
n

max
0�t�1

jBtj _ (x+ jB1j) < u
o

= P
��u < Bt < u ; 8t 2 [0; 1] & �u+x < B1 < u�x	

=
X
k2Z

(�1)kPfB1 2 Jkg

where Jk = ](2k�1)u+x ; (2k+1)u�x[ for k 2 Z .

Now note that Ik = Jk [ Lk where Lk =](2k�1)u�x ; (2k�1)u+x] for all k 2 Z . Thus,

from (3.49) and (3.50) we see that it is enough to show that

(3.51)
X
k2Z

(�1)kPfB1 2 Lkg = 0 .

For this, note that for all k � 1 we have:

(3.52) PfB1 2Lkg = �
�
(2k�1)u+x

�
� �
�
(2k�1)u�x

�
(3.53) PfB12L�(k�1)g = �

�
(�2k+1)u+x

�
� �
�
(�2k+1)u�x

�
where � is the distribution function of a standard normal random variable. Since �(t)+�(�t) = 1
for all t 2 IR , we see that

(3.54) PfB1 2 Lkg = PfB1 2 L�(k�1)g

for all k � 1 . Hence we find that (3.51) holds, and the proof is complete.

5. If instead of Brownian motion in Lemma 3.4 one deals with a random walk, then the

analogue of the multiple reflection formula (3.18) becomes messy. This is not the case if the

random walk has equidistant steps. We demonstrate this fact in the proof of the following result.

Proposition 3.10

The inequality (1.4) holds with B�
p from (1.6) for p�2 if all a1; . . . ; an are equal.

Proof. Denote Mn = max1�k�n jSkj where Sk =
Pk

i=1 "i for 1�k�n . Then in exactly

the same way as in the proof of (3.18) by the reflection property we find:
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(3.55) PfMn<mg =
X
k2Z

(�1)k PfSn2 Ikg =
X
k2Z

(�1)k P
� jSn�2kmj<m 	

for all m 2 N , where Ik = ](2k�1)m; (2k+1)m[ .

From the preceding formula we obtain:

(3.56) PfMn�mg = 2
X
k2Z

PfSn 2 I2k�1g +
X
k2Z

PfSn=2k�1g

= 2
X
k2N

PfjSnj2 I2k�1g+
X
k2N

PfjSnj=2k�1g := G(jSnj)

where the map G satisfies:

(3.57) G(s) = 2
X
k2N

1I2k�1(s) +
X
k2N

1f2k�1g(s)

=
X
k2N

(�1)(k�1)
�
1[ (2k�1)m;1 [ (s) + 1[ (2k�1)m+1 ;1 [ (s)

�
.

From (3.56) and (3.57) we get:

(3.58) PfMn�mg =
X
k2N

(�1)(k�1)
�
P
�jSnj � (2k�1)m

	
+ P

�jSnj � (2k�1)m + 1
	�

=
X
k2N

(�1)(k�1)
�
P
��jSnj=(2k�1)� � m

	
+P

��
(jSnj�1)=(2k�1)

� � m
	�

where [x] denotes the integer part of x . By linearity we can conclude:

(3.59) Eg(Mn) = EHg(jSnj)

for all functions g : IR+ 7! IR+ such that g(0) = 0 , where the map Hg is given by

(3.60) Hg(s) =
X
k2N

(�1)(k�1)

�
g

��
s

2k�1
��

+ g

��
s�1
2k�1

���
for all s � 0 .

Taking g(x) = xp for x � 0 , and letting Hp denote Hg , it is possible to verify that

(3.61) Hp(s) � 2 �p s
p

for all p� 2 where �p is given by (3.34). From (3.59)-(3.61) we find:

(3.62) E

�
max
1�k�n

�� kX
i=1

"i
��p� � 2�pEjSnjp � 2�pEjB1jp

� nX
i=1

jaij2
�p=2

= (B�p)
p

� nX
i=1

jaij2
�p=2

for all p� 2 by means of (1.1)+(1.2) and (3.33). The proof is complete.
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