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Bounding the Maximal Height of
a Diffusion by the Time Elapsed

GORAN PESKIR*

Let X = (X;)i>0 be a one-dimensional time-homogeneous diffusion process
associated with the infinitesimal generator
9  oix) 92
o T2 a2
where 2z — p(z) and = — o(z) >0 are continuous. We show how the question
of finding a function z — H(x) such that

Lx = p(x)

ClE(H(T)) < E(OIEtaz(T |Xt|) < CQE(H(T))

holds for all stopping times 7 of X relates to solutions of the equation:
Lx(F)y=1.

Explicit expressions for H are derived in terms of g and o . The method of
proof relies upon a domination principle established by Lenglart and Itd calculus.

1. Introduction

If B=(B¢)i>0 is a standard Brownian motion, then the famous Burkholder-Gundy inequality
[1] states that there exist universal constants «; >0 and a2 >0 such that

(L.1) mE(V7) < E<0r§g§>g |Bt|> < aB(y/7)
for all stopping times 7 of B . It is well-known that this results extends to a large class of
martingales or submartingales (see e.g. [6] pp.153-163) sometimes creating a false picture that the
martingale property of the process is indispensable.

Recently it was shown in [2] that if V =(V;);>0 is the Ornstein-Uhlenbeck velocity process
solving the Langevin stochastic differential equation

(1.2) dV; = —BV, dt + dB,

where >0 and V3 = 0, then there exist universal constants b; >0 and b9 >0 such that
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(1.3) %E( 10g(1+57)> < E((@éyw) < %E( log(H—ﬂT))
for all stopping times 7 of V . While the inequality (1.1) can be obtained from (1.3) by passing
to the limit when [ | 0, the process V is far removed from a martingale.

Our main aim in this paper is to show that the preceding result about the Ornstein-Uhlenbeck
velocity process is not just an isolated example but admits extensions to quite general diffusions.
More specifically, assuming that X = (X;)¢>0 is a diffusion process solving the stochastic
differential equation (2.1) driven by a standard Brownian motion, we explain how the problem
of finding a function 2 — H(x) such that

(1.4) aE(H(r)) < E<OI£?SXT\th> < E(H(71))
holds for all stopping times 7 of X with some universal constants c¢; >0 and c3 >0, can
be naturally related to solutions of the equation

(1.5) Ly(F) =1

where ILx is the infinitesimal generator of X given in (2.2).
The main result of the paper is contained in Theorems 2.3-2.5. The list of examples started
with Example 2.6 and 2.7 is easily continued (see also [5]).

2. The results and proof

Let X = (Xy);>0 be a one-dimensional time-homogeneous diffusion process solving the
stochastic differential equation

@.1) dX; = u(Xy) dt + o(Xy) dBy

where B=(DB;);>0 is a standard Brownian motion (see e.g. [3] or [6]). We will assume that the
drift coefficient  +— p(x) and diffusion coefficient x — o(x) > 0 are continuous.
For further reference we recall that the infinitesimal generator of X 1is given by

o o*(x) 9?

The scale function of X is given by

2.3) S(a) = /0 Cexp (— /0 ’ ig‘gj; dz> dy

The speed measure of X is given by

2dx
S'(x)o?(x)

(2.4) m(dx) =

For more information on these characteristics of a diffusion see e.g. [6].



1. The proof of the theorems below is based upon the following domination principle which
was initially proved in [4] when H(z) = 2P for 0 < p < 1. The extension to more general
functions z +— H(x) given in the next lemma follows along the same lines and can be found in
[6] (p.155-156). We present the proof for completeness.

Lemma 2.1 (Lenglart)

Let (Q,F,(Fi)e>0, P) be a filtered probability space, let Z = (Z;)i>0 be an (Fi)-adapted
non-negative continuous process, let A = (Ai)i>0 be an (F;)-adapted increasing continuous
process satisfying Ag =0, andlet H : Ry — R be an increasing continuous function satisfying
H(0) =0 . Suppose that it is known that

(2.5) E(Z;) < E(Ar)

for all bounded (F;)-stopping times T such that (ZMT) >0 18 bounded. Then we have:

(2.6) E( sup H(Zt)> < E(}NI(AT)>

0<t<r

for all (F;)-stopping times T , where

2.7) H(x) = x/mé dH(s) + 2H(x)
for all x> 0.

Proof. By Fubini’s theorem we find:

(2.8) E<Os§1£)TH(Zt)> = E(H(Os;tlgTZt>> = E(/O 1{ pocies 7t > s} dH(3)>
< /OO<P{ sup Z; > s, A, < s} +P{AT>3}> dH(s)
0 0<t<r

since s +— H(s) is increasing and continuous. Consider the stopping times
(2.9 n=inf{t>0| 2, >s}
o =inf{t>0] A >s}.
Then Markov’s inequality and (2.5) imply:
(2.10) P{ sup Z; > s, Ar < 8} < P{ﬁ <7, 7> T} < P{Zﬁmm > 8}

0<t<r

1
S g E<AT1/\T2/\T>

whenever 7 is bounded. From (2.8) and (2.10) we conclude:

@.11) E( sup H(Zt)> < /OOOGE(A”{ATSS}) +2P{AT>S}> dH (s)

0<t<r



oo 1 ~
- E(AT/ - dH(s)> + 2E<H(AT)> - E(H(AT)>

A, S
for all bounded 7 . Finally, observe that = — H (x) 1is increasing, and pass to the limit when
k — oo to reach any 7 through bounded ones 7 A k. This completes the proof. O

Remark 2.2 B
_If H(z) =a2P with 0<p<1,then H(x)= ((2—p)/(1—p))aP ;if H(x) =z, then
H(z) = +o0o , and the bound on the right-hand side in (2.6) is non-interesting. Generally, the
right-hand side in (2.6) gives a non-trivial bound if H(z) tends to infinity as slow as 2P for some
0<p<1 ; the bound is better (asymptotically optimal) if the error in (2.5) is smaller (negligible).

2. We first treat a symmetric case when the drift coefficient 2 +— p(r) is odd and the
diffusion coefficient = — o(z) is even.

Theorem 2.3
Let X = (Xy)i>0 be a one-dimensional time-homogeneous diffusion process solving (2.1) with
Xo =0 under P, where x +— p(x) and x v+ o(x) > 0 are continuous and satisfy:

(2.12) p(—z) = —p(x) and o(—x) = o(x)
for all © > 0. Let the map F be defined by
(2.13) F(z) = /mm<(0,z]) S'(z) dz

0

for x>0, where S = S(x) is the scale function of X given in (2.3), and m = m(dx) is the
speed measure of X given in (2.4).
Suppose that the following condition is satisfied:

F(z) [ dz
(2.14) sup( / > < 0
x>0 x x F(Z>
and let H(x) = F~Y(z) denote the inverse of F for x> 0 (both being strictly increasing).
Then there exist universal constants ¢1 > 0 and co > 0 such that

0<t<r

.15 W E(H(r) < E( max \Xtr) < B (H()

for all stopping times T of X .

Proof. If x+ G(x) is C? everywhere on IR but at 0 where itis C' , then It6 formula
(see e.g. [6]) can be applied to G(X;) and this yields:

(2.16) G(Xy) :G(Xo)+/0 (]LXG)(XS)der/O G'(Xs) 0(X5) dBs

where [Lx is given in (2.2). Setting in this representation:
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(2.17) M; = / G'(X,) 0(X,) dBs
0

for t > 0, it is well-known that M = (M;);>o is a continuous local martingale (see e.g. [6]).
Motivated by these facts consider the initial value problem:

(2.18) Lx(G)=1

(2.19) G(0) =G'(0)=0.

The general solution of (2.18) is given by
(2.20) G(z) = / e~A0 (01+ / b(v) eA) dv)du+02
0 0

for € R where A(z)= [} a(t)dt with a(z)=2u(z)/c*(z) and b(z) = 2/c*(x) . The
initial conditions (2.19) imply that C'; = Cy = 0 . Using (2.3) and (2.4) it is then easily verified
that the unique solution G = G(x) of the problem (2.18)-(2.19) is given by (2.13) for = > 0,
and due to (2.12) we have G(x) = G(—x) for x < 0. Thus G is even on IR, and therefore

2.21) G(Xy) = F(|1X:])

for all ¢t > 0 where F' is given in (2.13). Observe also that G is strictly increasing on R, .
Let 7 be a bounded stopping time of X such that (G(XMT)) +>¢ 1s bounded. Passing to a
localising sequence of stopping times for M if needed, we find from (2.16)-(2.19) that

(2.22) E(G(X:)) = BE(r)

by means of the optional sampling theorem (see e.g. [6]).
Recalling that /1 denotes the inverse of F' on IR, , it is a matter of routine to verify that
under (2.14) we can find a constant ¢ > 0 such that

(2.23) © / h dHS(S) < ¢ H(z)

for all x > 0. This fact taken together with (2.7) implies:
(2.24) H(z) < d H(x)

for all x > 0 where d = (c+2) .
Setting 7; = G(X;) and A; =t we see by (2.22) that all hypotheses in Lemma 2.1 are
satisfied, and thus by (2.6) we find:

(2.25) E<OI£?SXT\th> - E(JgﬁgH(Zﬂ) < E(f[(AT)) < dE(H(AT)> - dE(H(T))

by means of (2.21) and (2.24). This establishes the right-hand side inequality in (2.15).
On the other hand, setting Z; = ¢ and A; = maxg<s<: G(X;s) we see by (2.22) that all
hypotheses in Lemma 2.1 are satisfied, and thus by (2.6) we find:



(2.26) E(H(T)) - E<012?§><TH(Zt)> < E(f[(AT)> < dE(H(AT)> - dE<0I£1ta§XT’Xt’>

by means of (2.24) and (2.21). This establishes the left-hand side inequality in (2.15), and the
proof is complete. O

3. If the symmetry condition (2.12) is not present, then the analogue of the preceding result
can be established but the method does not produce the same function / on both sides in (2.15).
This is due to the fact that the solution of the initial value problem (2.18)-(2.19) is no longer even.

Theorem 2.4

Let X = (Xy)i>0 be a one-dimensional time-homogeneous diffusion process solving (2.1) with
Xo =0 under P, where x+— u(x) and x — o(x) > 0 are continuous.

Let the map F be defined by

2.27) Fla) = /0 " ((0,2]) §'(2) d=

for x € IR, where S = S(x) is the scale function of X given in (2.3), and m = m(dx) is the
speed measure of X given in (2.4). Define the maps Fy and F5 as follows:

(2.28) Fi(z) = F(—z) V F(x)
(2.29) Fy(z) = F(—z) A F(x)

for x>0, and let H;(x) = Fi_l(x) denote the inverse of F; for * >0 with i =1,2.
Suppose that the following condition is satisfied:

Fi(z) [ dz
(2.30) sup( / > < o0
>0\ 7 S, Fi(2)
for i = 1,2 . Then there exist universal constants ci > 0 and co > 0 such that
< <
(2.31) i E(Hi(r)) < E(Orgtaé\)(to < o E(Hy(7))

for all stopping times T of X .

Proof. Consider the initial value problem (2.18)-(2.19). Then in exactly the same way as in
the proof of Theorem 2.3 we find that the unique solution G = G(z) of this problem is given by
(2.27) for x € IR . Observe that the map is strictly decreasing on IR_ and strictly increasing
on IRy . Thus both maps [} and F> given in (2.28)-(2.29) are strictly increasing on IR, ,
and the same is true for their inverses H; and Hs .

In exactly the same way as in the proof of Theorem 2.3 we then find that (2.22) holds. Similarly,
the condition (2.30) implies that (2.23) and (2.24) are valid with A being replaced by H; and
Hj respectively. Noting further that Hy(G(x)) < |x| < Ha(G(z)) for all x € IR, we find:

(2.32) E(Oxgtaé Hl(G(Xt))> < E<OI£1?§XT‘Xt’> < E<OI£%XT HQ(G(Xt))>



for all 7 . The proof is then easily completed by establishing the following two inequalities:

(2.33) E<0r£3§xT H, (G(Xt))> < dE(HQ(T))
(2.34) E(Hl(T)) < dE(J%?é Hy (G(Xt)>>

that can be done using the same arguments as in (2.25) and (2.26) respectively.
0

4. If the diffusion X from the preceding theorem starts at a point xg different from zero, the
result is still valid if one replaces the infinitesimal characteristics ;1 = p(x) and o = o(x) in the
statement by the new ones ji(x) = p(x 4+ x9) and o(x) = o(x + xp) respectively. Moreover, in
this case a simplification can be achieved both in the statement and proof if one is only interested
in giving the upper bound. The result is especially applicable to non-negative diffusions when there
is also no restriction to allow that the diffusion coefficient takes value 0 at O .

Theorem 2.5
Let X = (Xy)i>0 be a one-dimensional time-homogeneous diffusion process solving (2.1) with

Xo = xo under P, where x — p(x) and x +— o(x) > 0 are continuous.
Let the map F be defined by

(2.35) F(z) = /33 m((zo, z]) S'(2) dz

0
for x> xg, where S = S(x) is the scale function of X given by (2.3) with xg instead of 0 in
the two integrals, and m = m(dx) is the speed measure of X given in (2.4).
Suppose that the following condition is satisfied:

F(z) [~ dz
(2.36) 5;101;)0< . /m F(z)) < o0

and let H(x) = F~Y(x) denote the inverse of F for x > xo (both being strictly increasing).
Then there exists a universal constant ¢ > O such that

(2.37) E ( nax Xt> < cE(H(r))

for all stopping times T of X .

Proof. Motivated by (2.16) consider the initial value problem:
(2.38) Lx(G)=1
(239) G(Io) == G/(Io) =0.

Then in exactly the same way as in the proof of Theorem 2.3 we find that the unique solution
G = G(x) of this problem is given by (2.35) for x > xy . Extend this solution to points smaller
than xg by setting G(x) =0 for = < xg . Then from (2.16) we see that



(2.40) G(Xy) < t+ M,

for all ¢ > 0, where M = (M;);>p is a continuous local martingale given in (2.17).
In exactly the same way as in (2.22) we then find that

(2.41) E(G(X;)) < E(1)

for all bounded stopping times 7 of X such that (G(Xiar))
that © < H(G(z)) for all = € IR, we find that

£>0 is bounded. Noting further

(2.42) E< max Xt> < E< max H(G(Xt))>
0<t<T 0<t<r
for all 7 . The proof is then easily completed by establishing the following inequality:
<
(2.43) E < OrgtaéH(G(Xt))) <d E(H(T))

that can be done using the same arguments as in (2.25).
0

5. A real scope of the preceding results can be better understood by considering a few examples.
We shall begin by noting that Theorem 2.3 applies in the setting of (1.1) and (1.3) respectively.
In the case of (1.1) the diffusion X equals B, and from (2.13) we find that

(2.44) F(z) = a?

for x > 0 . The condition (2.14) is verified straightforwardly, and therefore (1.1) follows from
(2.15) upon noting that H(x) = F~Y(x) = /z for > 0.
Similarly, in the case of (1.2) the diffusion X equals V' , and from (2.13) we find that

€T . Yy .
(2.45) Flz) = 2 / e / ez dy
0 0

for = > 0. A successive application of L’Hospital’s rule then shows that the condition (2.14)
holds, and (1.3) follows from (2.15) upon estimating the inverse H = F -

Example 2.6 (Extending (1.1) to a Brownian motion with drift)
Let Xy = B;—pt for t >0 where p >0 is given and fixed. Then dX; = —pdt + dB;
and from (2.35) with 29 = 0 we find that
e — 2ux — 1
22
for = > 0 . The condition (2.36) is then easily verified, and thus (2.37) implies:

(2.46) Fu(z) =

0<t<

(2.47) E< maxT(Bt — ut)) < c E(Hy(1))

for all stopping times 7 of B, where H,(z)=F, L(2) denotes the inverse of F,, for x> 0.



Observe that F,(z) — 2? and H,(x) — /x as p |0 (cf. (2.44) above). Note also that (2.37)
fails if p < 0 . This indicates a typical limitation of this condition.

Example 2.7 (Branching diffusion)
Consider a simple branching diffusion solving

(2.48) dXy = pXp dt + o/ Xy dBy

with Xg =29 > 0 under P , where € IR and o > 0. From (2.35) we find that

T Y e—/\z
(2.49) F(z) = l{/ eAy/ — dz dy
Xo xo z

for @ > xg , where k =2/0% and A = —2u/0? . Applying successively L’Hospital’s rule it is
then possible to verify that (2.36) holds if and only if p < 0 . In this case (2.37) implies:

(2.37) E(()Iél?SXTXt) < cE(H(r))

for all stopping times 7 of X , where H(z) = F~'(z) denotes the inverse of [ for = > xq .
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