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We consider the initial boundary value problem

ut = µux + 1
2 uxx (t > 0, x ≥ 0)

u(0, x) = f(x) (x ≥ 0)
ut(t, 0) = ν ux(t, 0) (t > 0)

of Stroock and Williams [12] where µ, ν ∈ IR and the boundary condition is not of
Feller’s type when ν < 0 . We show that when f belongs to C1

b with f(∞) = 0
then the following probabilistic representation of the solution is valid

u(t, x) = Ex

[
f(Xt)

]− Ex

[
f ′(Xt)

∫ `0t (X)

0
e−2(ν−µ)s ds

]

where X is a reflecting Brownian motion with drift µ and `0(X) is the local
time of X at 0 . The solution can be interpreted in terms of X and its creation
in 0 at rate proportional to `0(X) . Invoking the law of (Xt, `

0
t (X)) this also

yields a closed integral formula for u expressed in terms of µ , ν and f .

1. Introduction

In this paper we consider the initial boundary value problem

ut = µux + 1
2
uxx (t > 0, x ≥ 0)(1.1)

u(0, x) = f(x) (x ≥ 0)(1.2)

ut(t, 0) = ν ux(t, 0) (t > 0)(1.3)

of Stroock and Williams [12] (see also [13], [14], [8], [9]) where µ, ν ∈ IR and the boundary
condition is not of Feller’s type when ν < 0 (cf. [2], [3], [4]). If ν > 0 then it is known that
the solution to (1.1)-(1.3) with f ∈ Cb([0,∞)) can be represented as

(1.4) u(t, x) = Ex

[
f(X̃t)

]

where X̃ starts at x under Px , behaves like Brownian motion with drift µ when in (0,∞) ,
and exhibits a sticky boundary behaviour at 0 . The process X̃ can be constructed by a
familiar time change of the reflecting Brownian motion X with drift µ (the inverse of the
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running time plus the local time of X at 0 divided by ν ) forcing it to spend more time at 0
(cf. [6, p. 186]). If ν = 0 then (1.4) remains valid with X̃ being absorbed at 0 (corresponding
to the limiting case of infinite stickiness). If ν < 0 then Feller’s semigroup approach (cf. [5],
[15], [2], [3], [4]) is no longer applicable since the speed measure of X̃ cannot be negative.
Stroock and Williams [12] show that the minimum principle breaks down in this case (non-
negative f can produce negative u ) so that the solution to (1.1)-(1.3) cannot be represented
by (1.4) where X̃ is a strong Markov process which behaves like Brownian motion with drift
µ when in (0,∞) (for connections with Feller’s Brownian motions see [7, Section 5.7]).

Motivated by this peculiarity Stroock and Williams [12] show that the solution to (1.1)-(1.3)
is still generated by a semigroup of operators when ν < 0 and they characterise non-negative
solutions by means of the Riccati equation. This leads to subspaces of functions f for which
(1.4) remains valid with the same time-changed Brownian motion X with drift µ that now
jumps into (0,∞) or possibly to a coffin state just before hitting 0 . This representation of
the solution is applicable when f(0) =

∫∞
0

f(y)g(y) dy where g is the minimal non-negative
solution to the Riccati equation. For more details and further fascinating developments along
these lines see [12], [13], [14], [8], [9].

Inspired by these insights in this paper we develop an entirely different approach to solving
(1.1)-(1.3) probabilistically that applies to smooth initial data f vanishing at ∞ with no
further requirement on its shape. Firstly, exploiting higher degrees of smoothness of the solution
u in the interior of the domain (which is a well-known fact from the theory of parabolic PDEs)
we reduce the sticky boundary behaviour at 0 to (i) a reflecting boundary behaviour when
ν = µ and (ii) an elastic boundary behaviour when ν 6= µ . Secondly, writing down the
probabilistic representations of the solutions to the resulting initial boundary value problems
expressed in terms of the reflecting Brownian motion with drift µ and its local time at 0 ,
choosing joint realisations of these processes where the initial point is given explicitly so that the
needed algebraic manipulations are possible (making use of the extended Lévy’s distributional
theorem), we find that the following probabilistic representation of the solution is valid

(1.5) u(t, x) = Ex

[
F (Xt, `

0
t (X))

]

where X is a reflecting Brownian motion with drift µ starting at x under Px , and `0(X)
is the local time of X at 0 . The function F is explicitly given by

(1.6) F (x, `) = f(x)− f ′(x)

∫ `

0

e−2(ν−µ)s ds

for x ≥ 0 and ` ≥ 0 . The derivation applies simultaneously to all µ and ν with no
restriction on the sign of ν , and the process X (with its local time) plays the role of a
fundamental solution in this context (a building block for all other solutions).

Since (X, `0(X)) is a Markov process we see that the solution u is generated by the
semigroup of transition operators (Pt)t≥0 acting on f by means of (1.5) and (1.6) (in the
reverse order). Moreover, it is clear from (1.5) and (1.6) that the solution can be interpreted
in terms of X and its creation in 0 at rate proportional to `0(X) . Note that this also
holds when ν < 0 in which case the Feller’s semigroup approach based on the probabilistic
representation (1.4) is not applicable. Finally, invoking the law of (Xt, `

0
t (X)) we derive a

closed integral formula for u expressed in terms of µ , ν and f . Integrating further by parts
yields a closed formula for u where smoothness of f is no longer needed.
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2. Result and proof

Consider the initial boundary value problem (1.1)-(1.3) and recall that C1
b ([0,∞)) denotes

the family of C1 functions f on [0,∞) such that f and f ′ are bounded on [0,∞) . Recall
also that the standard normal density and tail distribution functions are given by ϕ(x) =
(1/
√

2π) e−x2/2 and Ψ(x) = 1−Φ(x) =
∫∞

x
ϕ(y) dy for x ∈ IR respectively. The main result

of the paper may be stated as follows.

Theorem 1. (i) If f ∈ C1
b ([0,∞)) with f(∞) = 0 then there exists a unique solution u

to (1.1)-(1.3) satisfying u ∈ C∞((0,∞)× [0,∞)) with u, ux ∈ Cb([0, T ]× [0,∞)) for T > 0
and u(t,∞) = 0 for t > 0 .

(ii) The solution u admits the following probabilistic representation

(2.1) u(t, x) = Ex

[
f(Xt)

]− Ex

[
f ′(Xt)

∫ `0t (X)

0
e−2(ν−µ)s ds

]

where X is a reflecting Brownian motion with drift µ starting at x under Px , and `0(X)
is the local time of X at 0 .

(iii) The solution u admits the following integral representation

(2.2) u(t, x) =

∫ ∞

0

f(y)G(t; x, y) dy −
∫ ∞

0

f ′(y)H(t; x, y) dy

where the kernels G and H are given by

G(t; x, y) =
1√
t

[
e2µy ϕ

(x+y+µt√
t

)
+ ϕ

(x−y+µt√
t

)
− 2µ e2µy Ψ

(x+y+µt√
t

)]
(2.3)

H(t; x, y) =
e2µy

ν−µ

[
(2ν−µ) e2(ν−µ)(x+y+νt) Ψ

(x+y+(2ν−µ)t√
t

)
(2.4)

− µΨ
(x+y+µt√

t

)]
if ν 6= µ

= 2e2µy
[(

1+µ(x+y+µt)
)
Ψ

(x+y+µt√
t

)
− µ

√
t ϕ

(x+y+µt√
t

)]
if ν = µ

for t > 0 and x, y ≥ 0 .

Proof. Let f ∈ C1
b ([0,∞)) with f(∞) = 0 be given and fixed. We first show that any

solution u to (1.1)-(1.3) satisfying u ∈ C∞((0,∞)× [0,∞)) with u, ux ∈ Cb([0, T ]× [0,∞))
for T > 0 and u(t,∞) = 0 for t > 0 admits the probabilistic representation (2.1).

1. Setting v = ux and differentiating both sides in (1.1) with respect to x we see that v
solves the same equation

(2.5) vt = µvx + 1
2
vxx (t > 0, x ≥ 0) .

Moreover, differentiating both sides in (1.2) with respect to x we find that

(2.6) v(0, x) = f ′(x) (x ≥ 0) .
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Finally, combining (1.3) with (1.1) we see that (1.3) reads as follows

(2.7) vx(t, 0) = λv(t, 0) (t > 0)

where we set λ = 2(ν−µ) . In this way we have obtained the initial boundary value prob-
lem (2.5)-(2.7) for v . Note that the boundary condition (2.7) corresponds to (i) a reflecting
boundary behaviour when λ = 0 and (ii) an elastic boundary behaviour when λ 6= 0 . Setting

(2.8) B−µ
t = Bt−µt & S−µ

t = sup
0≤s≤t

B−µ
s

for t ≥ 0 where B is a standard Brownian motion, and denoting by Rµ,x a reflecting
Brownian motion with drift µ starting at x in [0,∞) , it is known that the classic Lévy’s
distributional theorem (see [11, p. 240]) extends as follows

(2.9) (x∨S−µ−B−µ, x∨S−µ−x)
law
= (Rµ,x, `0(Rµ,x))

where `0(Rµ,x) is the local time of Rµ,x at 0 (for a formal verification based on Skorokhod’s
lemma see the proof of Theorem 3.1 in [10]). Identifying

(2.10) Xx
t := x∨S−µ

t −B−µ
t & `0

t (X
x) = x ∨ S−µ

t − x

in accordance with (2.9) above, we claim (cf. [6, pp. 183–184]) that the solution v to the
problem (2.5)-(2.7) admits the probabilistic representation

(2.11) v(t, x) = E
[
e−λ`0t (Xx)f ′(Xx

t )
]

for t ≥ 0 and x ≥ 0 (for multi-dimensional extensions see [1, Section 2]).

2. To verify (2.11) we can make use of standard arguments by letting time run backwards
and applying Itô’s formula to v composed with (t−s,Xx

s ) and multiplied by e−λ`0s(Xx) for
s ∈ [0, t) where t > 0 and x ≥ 0 are given and fixed. This yields

e−λ`0s(Xx)v(t−s, Xx
s ) = v(t, x) +

∫ s

0

(−λ)e−λ`0r(Xx)v(t−r,Xx
r ) d`0

r(X
x)(2.12)

+

∫ s

0

e−λ`0r(Xx)(−vt)(t−r,Xx
r ) dr

+

∫ s

0

e−λ`0r(Xx)vx(t−r,Xx
r ) d(x∨S−µ

r −B−µ
r )

+
1

2

∫ s

0

e−λ`0r(Xx)vxx(t−r,Xx
r ) d

〈
Xx, Xx

〉
r

= v(t, x) +

∫ s

0

e−λ`0r(Xx)(−λv + vx)(t−r,Xx
r ) d(x∨S−µ

r )

+

∫ s

0

e−λ`0r(Xx)(−vt + µvx + 1
2
vxx)(t−r,Xx

r ) dr

−
∫ s

0

e−λ`0r(Xx)vx(t−r,Xx
r ) dBr
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= v(t, x)−
∫ s

0

e−λ`0r(Xx)vx(t−r,Xx
r ) dBr

since d(x∨S−µ
r ) is zero off the set of all r at which Xx

r 6= 0 , while (−λv+vx)(t−r,Xx
r ) = 0

for Xx
r = 0 by (2.7) above, so that the integral with respect to d(x∨S−µ

r ) is equal to zero.
Note also that d

〈
Xx, Xx

〉
r

= dr since r 7→ x∨S−µ
r is increasing and thus of bounded vari-

ation while in the final equality we also use (2.5). From (2.12) we see that

(2.13) v(t, x) = e−λ`0s(Xx)v(t−s,Xx
s ) + Ms

where Ms =
∫ s

0
e−λ`0r(Xx)vx(t−r,Xx

r )dBr is a continuous local martingale for s ∈ [0, t) . Choose
a localisation sequence of stopping times (σn)n≥1 for M (meaning that M stopped at σn is
a martingale for each n ≥ 1 and σn ↑ ∞ as n →∞ ), take any sequence sn ↑ t as n →∞ ,
and set τn := σn ∧ sn for n ≥ 1 . Then the optional sampling theorem yields

v(t, x) = E
[
e−λ`0τn (Xx)v(t−τn, Xx

τn
)
]
+ EMτn(2.14)

= E
[
e−λ`0τn (Xx)v(t−τn, Xx

τn
)
] → E

[
e−λ`0t (Xx)v(0, Xx

t )
]

= E
[
e−λ`0t (Xx)f ′(Xx

t )
]

as n → ∞ by the dominated convergence theorem and (2.6) above where we use that v ∈
Cb([0, T ]× [0,∞)) for T ≥ t and Ee|λ|`

0
t (Xx) < ∞ for t > 0 in view of (2.10) above. This

establishes (2.11) as claimed.

3. Recalling that v = ux and u(t,∞) = 0 we find using (2.10) and (2.11) that

u(t, x) = −
∫ ∞

x

ux(t, y) dy + u(t,∞)(2.15)

= −
∫ ∞

x

v(t, y) dy = −
∫ ∞

x

E
[
e−λ(y∨S−µ

t −y)f ′(y∨S−µ
t −B−µ

t )
]
dy

= −
∫ ∞

x

E
[
f ′(y−B−µ

t ) I(S−µ
t ≤ y) + e−λ(S−µ

t −y)f ′(S−µ
t −B−µ

t ) I(S−µ
t > y)

]
dy

= −E
[ ∫ ∞

x∨S−µ
t

f ′(y−B−µ
t ) dy

]
− E

[ ∫ x∨S−µ
t

x

e−λ(S−µ
t −y)f ′(S−µ

t −B−µ
t ) dy

]

= −E
[ ∫ ∞

x∨S−µ
t −B−µ

t

f ′(z) dz
]
− E

[
f ′(x∨S−µ

t −B−µ
t )

∫ x∨S−µ
t

x

e−λ(x∨S−µ
t −y) dy

]

= E
[
f(x∨S−µ

t −B−µ
t )

]
− E

[
f ′(x∨S−µ

t −B−µ
t )

∫ x∨S−µ
t −x

0

e−λs ds
]

for t ≥ 0 and x ≥ 0 , where in the second last equality we use that S−µ
t = x∨S−µ

t since
otherwise the integral from x to x∨S−µ

t equals zero, and in the last equality we use that
f(∞) = 0 . Making use of (2.9) in (2.15) establishes the probabilistic representation (2.1) as
claimed in the beginning of the proof.

4. Focusing on (2.1) and recalling (2.10) we see that an explicit calculation of the right-hand
side in (2.1) is possible since the probability density function g of (B−µ

t , S−µ
t ) is known and

can be readily derived from the known probability density function of (Bt, St) when µ is zero
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Figure 1. The solution u to the initial boundary value problem (1.1)-(1.3) when
µ = 1 , ν = −1/2 and f(x) = e−(x−5/2)2 for x ≥ 0 . Note that u takes negative
values even though f is positive so that the classic semigroup representation (1.4)
of u is not possible in this case. The probabilistic representation (2.1) is valid and
this also yields the integral representation (2.2). The solution can be interpreted
in terms of a reflecting Brownian motion X with drift µ and its creation in 0
at rate proportional to `0(X) .

(see e.g. [7, p. 27] or [11, p. 110]) using a standard change-of-measure argument. This yields
the following closed form expression

(2.16) g(t; b, s) =

√
2

π

1

t3/2
(2s−b) exp

[
− (2s−b)2

2t
− µ

(
b+

µt

2

)]

for t > 0 and b ≤ s with s ≥ 0 . It follows that the functions on the right-hand side of (2.1)
can be given the following integral representations

u1(t, x) := Ex

[
f(Xt)

]
= E

[
f(x∨S−µ

t −B−µ
t )

]
(2.17)

=

∫ ∞

0

∫ s

−∞
f(x∨s−b) g(t; b, s) db ds

u2(t, x) := Ex

[
f ′(Xt)

∫ `0t (X)

0
e−λr dr

]
(2.18)

= Ex

[
f ′(x∨S−µ

t −B−µ
t )

∫ x∨S−µ
t −x

0
e−λr dr

]

=

∫ ∞

0

∫ s

−∞

(
f ′(x∨s−b)

∫ x∨s−x

0
e−λr dr

)
g(t; b, s) db ds

for t > 0 and x ≥ 0 where λ = 2(ν−µ) . A lengthy elementary calculation then shows that

u1(t, x) =

∫ ∞

0

f(y) G(t; x, y) dy(2.19)
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u2(t, x) =

∫ ∞

0

f ′(y) H(t; x, y) dy(2.20)

for t > 0 and x ≥ 0 where G and H are given in (2.3) and (2.4) above. Noting that

(2.21) u(t, x) = u1(t, x)− u2(t, x)

we see that this establishes the integral representation (2.2) as claimed.

5. A direct analysis of the integral representations (2.19) and (2.20) with G and H from
(2.3) and (2.4) then shows that u from (2.21) belongs to both C∞((0,∞)× [0,∞)) and
Cb([0, T ]×[0,∞)) for T > 0 and u(t,∞) = 0 for t > 0 . A similar analysis also shows that
both u1

x and u2
x belong to Cb(([0, T ]× [0,∞))\{(0, 0)}) for T > 0 . Moreover, it can be

directly verified that (i) u1
x(t, x) → f ′(x) as t ↓ 0 for all x > 0 but u1

x(t, 0) = 0 for all
t > 0 so that u1

x is not continuous at (0, 0) unless f ′(0) = 0 ; and (ii) u2
x(t, x) → 0 as

t ↓ 0 for all x > 0 but u2
x(t, 0) → −f ′(0) as t ↓ 0 so that u2

x is not continuous at (0, 0)
either unless f ′(0) = 0 . Despite the possibility that both u1

x and u2
x are discontinuous at

(0, 0) it turns out that when acting in cohort to form ux = u1
x−u2

x the resulting function
ux is continuous at (0, 0) so that ux belongs to Cb([0, T ]× [0,∞)) for T > 0 . It follows
therefore from the construction and these arguments that the function u defined by (2.2) with
G and H from (2.3) and (2.4) solves the initial boundary problem (1.1)-(1.3) and satisfies
u ∈ C∞((0,∞)×[0,∞)) with u, ux ∈ Cb([0, T ]×[0,∞)) for T > 0 and u(t,∞) = 0 for t > 0 .
Placing then any such u at the beginning of the proof and repeating the same arguments as
above we can conclude that u admits the probabilistic representation (2.1). These arguments
therefore establish both the existence and uniqueness of the solution u to the initial boundary
problem (1.1)-(1.3) satisfying the specified conditions and the proof is complete. ¤

Remark 1 (Non-smooth initial data). The integral representation (2.2) requires that f is
differentiable. Integrating by parts we find that

(2.22)

∫ ∞

0

f ′(y)H(t; x, y) dy = −f(0)H(t; x, 0)−
∫ ∞

0

f(y)Hy(t; x, y) dy .

Inserting this back into (2.2) we find that u admits the following integral representation

(2.23) u(t, x) =

∫ ∞

0

f(y)(G+Hy)(t; x, y) dy + f(0)H(t; x, 0)

where the first function is given by

(G+Hy)(t; x, y) =
1√
t

[
ϕ
(x−y+µt√

t

)
− e2µy ϕ

(x+y+µt√
t

)]
(2.24)

− 2ν e2µy

ν−µ

[
µΨ

(x+y+µt√
t

)
+ (µ−2ν) e2(ν−µ)(x+y+νt)

×Ψ
(x+y+(2ν−µ)t√

t

)]
if ν 6= µ

=
1√
t
ϕ
(x−y+µt√

t

)
− e2µy

√
t

[
(1+4µ2t) ϕ

(x+y+µt√
t

)
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− 4µ(1+µ(x+y)+µ2t)
√

t Ψ
(x+y+µt√

t

)]
if ν = µ

and the second function is given by

H(t; x, 0) =
1

ν−µ

[
(2ν−µ) e2(ν−µ)(x+νt) Ψ

(x+(2ν−µ)t√
t

)
− µΨ

(x+µt√
t

)]
if ν 6= µ(2.25)

= 2
[(

1+µ(x+µt)
)
Ψ

(x+µt√
t

)
− µ

√
t ϕ

(x+µt√
t

)]
if ν = µ

for t > 0 and x, y ≥ 0 . Note that smoothness of f is no longer needed in the integral
representation (2.23) and this formula for u can be used when f ∈ Cb([0,∞)) for instance.
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