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The Uniform Ergodic Theorem
for Dynamical Systems

GORAN PESKIR
� and MICHEL WEBER

Necessary and sufficient conditions are given for the uniform convergence over

an arbitrary index set in von Neumann’s mean and Birkhoff’s pointwise ergodic

theorem. Three different types of conditions already known from probability theory

are investigated. Firstly it is shown that the property of being eventually totally

bounded in the mean is necessary and sufficient. This condition involves as a

particular case Blum-DeHardt’s theorem which offers the best known sufficient

condition for the uniform law of large numbers in the independent case. Secondly

it is shown that eventual tightness is necessary and sufficient. In this way a link

with a weak convergence is obtained. Finally it is shown that the existence of some

particular totally bounded pseudo-metrics is necessary and sufficient. The conditions

derived are of Lipschitz type, while the method of proof relies upon a result of

independent interest, called the uniform ergodic lemma. This result considerably

extends Hopf-Yosida-Kakutani’s maximal ergodic lemma to a form more suitable

for examinations of the uniform convergence under consideration. From this lemma

an inequality is also derived which extends the classical (weak) maximal ergodic

inequality to the uniform case. In addition, a uniform approximation by means of

a dense family of maps satisfying the uniform ergodic theorem in a trivial way is

investigated, and a particular result of this type is established. This approach is in

the spirit of the classical Hilbert space method for the mean ergodic theorem of von

Neumann, and therefore from the ergodic theory point of view it could be seen as

the natural one. After this, a simple characterization is obtained for the uniform

convergence of moving averages. Finally, a counter-example is constructed for a

symmetrization inequality in the stationary ergodic case. This inequality is known to

be of vital importance to support the Vapnik-Chervonenkis random entropy approach

in the independent case. Further developments in this direction are indicated.

1. Introduction

What is nowadays called the uniform ergodic theorem goes back to 1941 when Yosida and

Kakutani published the study [52]. In this study they obtained conditions1 on a bounded linear

operator T in a Banach space B which are sufficient to provide that the averages n�1
Pn�1

j=0 T
j

converge in the uniform operator topology to an operator P in B :

(1.1)
 1

n

n�1X
j=0

T j � P
 �! 0

as n ! 1 . In this context it should be recalled that the operator T satisfying (1.1) is called
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uniformly ergodic (see [25] p.86). Their work generalizes previously established results of Fréchet

and Visser, and in particular of Krylov and Bogolioubov whose concept of compact operator is

shown to be of vital importance in this direction. Here we find it convenient to recall the words

of Yosida and Kakutani which describe how the uniform ergodic theorem has been discovered.

They wrote (see [52] p.195): “. . . This condition 1 was investigated by J: L: Doob 2 without being

noticed that the linear operation T becomes weakly completely continuous 3 under this condition.

We have once 4 treated this case of the condition of J: L: Doob as an application of the mean ergodic

theorem. But, on looking precisely into the detail of the fact, we have found that, in this case,

the linear operation T satisfies even the (in some sense stronger) condition 5 of N: Kryloff-N:
Bogolioùboff, and that the uniform ergodic theorem is true in this case. (Indeed, the condition of

N: Kryloff-N: Bogolioùboff follows from the condition 6 of W: Doeblin, which is weaker than that

of J: L: Doob.) . . .”
In the rest of the Yosida-Kakutani study the result has been well applied to some problems

in the theory of Markov processes. A number of studies have followed. Among those we point

out [1], [2], [4], [5], [14], [19], [23]7, [24], [30]8, [31], [32]9, [33], [34], [43], as well as the

presentation of the Yosida-Kakutani result in [13] (p.708-717) and [25] (p.86-94) where further

references can be found. Of the particular Banach spaces that were under consideration, it seems

that the case of the Banach spaces C(S) and L1(S;�; �) in the notation from [13] has been

studied in more detail (see [1], [2], [4], [13], [23], [34]). Less seems to be known in this context

about some of the other spaces.

On the other hand in probability theory nowadays, we have the fundamental Glivenko-Cantelli

theorem which goes back to 1933 when papers [6] and [18] were published. A large number of

studies were followed. As general references we point out [11], [15], [41] and [42] where additional

references can be found. In the recent years various extensions of the classical Glivenko-Cantelli

theorem have appeared. They could be commonly called uniform laws of large numbers. The main

problem under considerations in this context, roughly speaking, may be stated as follows. Given a

sequence of independent and identically distributed random variables f �j j j � 1 g with values

in a space S , and a map f from S � � into R , determine conditions under which the

uniform convergence is valid:

(1.2) sup
�2�

��� 1

n

nX
j=1

f(�j; �) �M(�)
��� �! 0

as n!1 , where M(�) is the average of f(�1; �) for � 2 � , and the convergence in (1.2)

is one of the standard probabilistic ones. It seems apparent at the present time that two distinct

1 A uniform integrability condition which characterizes weak compactness of the (integral) operator under consideration.
2 It has been done in [10].
3 It means weakly compact in today’s language.
4 It was in [50].
5 It is quasi-compactness (in today’s language) which was introduced in [26] and [27].
6 There exist d � 1 and " , � > 0 such that �(A) < � implies P (d)(t; A) � 1 � " for all t : ( Here P (t; A) is a

transition probability.) For more details see Doeblin’s paper [9].
7 If T is a conservative and ergodic positive contraction of L1 , then it is uniformly ergodic if and only if it is quasi-compact.
8 If kTnk=n! 0 , then T is uniformly ergodic if and only if (I�T )(B) is closed.
9 If T is a positive operator on a Banach lattice with kTnk=n! 0 , then T is quasi-compact if (and only if) the averages

of its iterates converge uniformly to a finite-dimensional projection.
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approaches towards solution for this problem have emerged. The first one offers Lipschitz type

conditions and relies upon Blum-DeHardt’s law of large numbers that is established in [3] and [7].

This law offers presently the best known sufficient condition for (1.2) to be valid. Subsequently,

a necessary and sufficient condition for (1.2), called eventually total boundedness in the mean, is

obtained in [20], and although not explicitly recorded there, this condition involves Blum-DeHardt’s

law of large numbers as a particular case. That result has been recently shown to be valid in the

stationary ergodic case as well (see [37]). This fact clearly indicates that further extensions of this

approach into ergodic theory might be possible. (For a related work we refer the reader to [21],

and in particular to [36] where it is shown that Hardy’s regular convergence of certain means is

necessary and sufficient for the most useful consequence of (1.2) in statistics.) The second approach

has been developed by Vapnik and Chervonenkis through the fundamental studies [45] and [46].

It offers combinatorial conditions in terms of random entropy numbers. In this direction we point

out papers [17] and [53] as well as the presentation in [29] (p.394-420). Let us also mention that

somewhat different necessary and sufficient conditions for (1.2) are obtained in [44].

It is the purpose of the present paper to point out the closeness of problems (1.1) and (1.2),

and to obtain their unification through a single approach. Let us for this reason look more closely

at (1.1) and (1.2) itself. First it should be noted that (1.1) does not provide any application to (1.2).

Moreover, if B = L1(�) and T is the composition with a measure-preserving transformation,

then T satisfies (1.1) if and only if T is periodic with bounded period. Similarly, it seems

that having any particular version of (1.2), the best we can deduce in the direction of (1.1) is the

mean ergodic theorem, that is the pointwise convergence on B of the averages from (1.1). This

should follow from uniform integrability of averages along the lines of [11] (p.42-43), at least for

T being the composition with a stationary ergodic shift in a countable product of copies of a

separable Banach space, and with � being a norming subset of the unit ball in the dual space

(see also [11] p.3). Therefore it seems to be of interest to reconsider the uniform ergodic theorem

(1.1) as follows. We suppose that T and P are maps on some space B (which is (are) to be

specified from the character of the objects being involved).

Prime problem. Determine conditions which are (necessary and) sufficient for the convergence

to be valid:

1

n

n�1X
j=0

T j(f�) � P (f�) �! 0 uniformly in � 2 �

as n ! 1 , where f� are with values in B for � 2 � .

Dual Problem. Determine conditions which are (necessary and) sufficient for the convergence

to be valid:

1

n

n�1X
j=0

f�(T
j) � f�(P ) �! 0 uniformly in � 2 �

as n ! 1 , where f� are with arguments in B for � 2 � .

These two problems seem to be of different nature, but each is interesting from its own

standpoint. For instance, taking for � in the prime problem the unit ball in a Banach space

B and norm convergence, we obtain the uniform ergodic theorem (1.1). Similarly, taking for �
in the dual problem the unit ball in its dual space B� and weak�-convergence, we obtain the
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mean ergodic theorem for T in B . It should be noted here that in the convergence statements

in the prime problem and in the dual problem we did not specify which convergence takes the

place. We take this liberty to clarify the main ideas of unification, and at the same time to leave

various possibilities open. For instance, if B is a function space, then the expression on the

left-hand side in the prime problem could define a function with values in a normed space. Thus

the question as to which convergence takes the place in the prime problem depends on the norm

we consider, due to the fact that in this case instead of the function norm we can consider a norm

in the range space of the function space as well. The same remark might be directed to the dual

problem. Moreover, replacing the unit ball of a Banach space B in the prime problem by a

smaller family of vectors (that may be of some interest) allows the uniform ergodic theorem (1.1)

to become weaker and at the same time more easily established (see Example 4.6). In this way

the anomaly with measure-preserving transformations stated above could be avoided. Finally, it is

obvious that these two problems become mutually equivalent in the case where the operator T is

induced by a measure-preserving transformation (at least when this transformation is invertible),

and therefore they involve (1.2) as a particular case. This is precisely the case which is mainly

considered and investigated in the paper.

We shall say just a few words about the organization of the paper, and rather concentrate to the

results in a straightforward way. In the next section we prove a result which is of a considerable

interest in itself. We call it the uniform ergodic lemma (for positive contractions), and to the best

of our knowledge this sort of result has not been studied or recorded previously. Using this result

in the third section we offer solutions for the prime problem and dual problem in the case where

the operator T is induced by a measure-preserving transformation. In this context it should be

recalled that the pointwise ergodic theorem of Birkhoff is proved by using the maximal ergodic

lemma, while now the uniform ergodic theorem for dynamical systems is proved by using the

uniform ergodic lemma. We think that this fact is by itself of theoretical interest. In the last section

we present another approach towards the uniform ergodic theorem for dynamical systems (which is

in the spirit of the classical Hilbert space method for the mean ergodic theorem of von Neumann)

and various examples.

2. The uniform ergodic lemma

The proof of the forthcoming uniform ergodic theorem in the next section relies upon a fact

of independent interest that is presented in Theorem 2.1 below. This result is instructive to be

compared with Hopf-Yosida-Kakutani’s maximal ergodic lemma (see [25] p.8). In Corollary 2.2

below we present its consequence which should be compared with the maximal ergodic inequality

(see [16] p: 24,29). We begin by introducing the notation and recalling some facts on the non-

measurable calculus needed in the sequel.

Given a linear operator T in Lp(�) and f 2 Lp(�) for some 1 � p <1 , we denote:

(2.1) Sn(f) =
Pn�1

j=0 T
jf

(2.2) Mn(f) = max1�j�n Sj(f)

(2.3) Rn(f) = max1�j�n Sj(f)=j

for n � 1 . We shall restrict our attention to the case where the underlying measure space (X;A; �)
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is �-finite, but we remark that further extensions are possible. The symbols �� and �� denote

theouter �-measure and the inner �-measure respectively. The upper �-integral of an arbitrary

function f from X into �R is defined as follows
R �
f d� = inf f R g d� j g 2L1(�) ; f � g g ,

with the convention inf ; = +1 . The lower �-integral of an arbitrary function f from X
into �R is defined as follows

R
� f d� = sup f R g d� j g 2L1(�) ; g � f g , with the convention

sup ; = �1 . We denote by f� the upper �-envelope of f . This means that f� is an

A-measurable function from X into �R satisfying f � f� , and if g is an another A-

measurable function from X into �R satisfying f � g �-a.e., then f�� g �-a.e. We denote

by f� the lower �-envelope of f . This means that f� is an A-measurable function from X
into �R satisfying f� � f , and if g is an another A-measurable function from X into �R
satisfying g � f �-a.e., then g � f� �-a.e. It should be noted that such envelopes exist under

the assumption that � is �-finite. It is well-known that we have
R �
f d� =

R
f� d� , whenever

the integral on the right-hand side exists in �R , and
R �
f d� = +1 otherwise. Similarly we haveR

� f d� =
R
f� d� , whenever the integral on the right-hand side exists in �R , and

R
� f d� = �1

otherwise. For more information in this direction we refer to [35]. To conclude the preliminary

part of the section, we clarify that
R �
A f d� stands for

R �
f �1A d� , whenever A � X is an

arbitrary set and f : X ! �R is an arbitrary function.

Theorem 2.1 (The uniform ergodic lemma)
Let T be a positive contraction in L1(�) , and let f f� j � 2 � g be a family of functions

from L1(�) . Let us denote An = f sup�2�Mn(f�) > 0g and Bn = f (sup�2�Mn(f�))
� > 0g

for all n � 1 . Then we have:

(2.4)

Z �

An

sup
�2�

f� d� � 0

(2.5)

Z �

Bn

sup
�2�

f� d� � 0

for all n � 1 .

Proof. We shall first assume that sup�2� f� � g for some g 2 L1(�) . In this case we have

(sup�2� f�)� 2 L1(�) . Let n � 1 be given and fixed. By monotonicity of T we get:

(2.6) Sj(f�) = f� + TSj�1(f�) � f� + T ((Mn(f�))
+)

for all j = 2; . . . ; n + 1 , and all � 2 � . Moreover, since T ((Mn(f�))
+) � 0 for all � 2 � ,

we see that (2.6) is valid for j = 1 as well. Hence we find:

Mn(f�) � f� + T ((Mn(f�))
+)

for all � 2 � . Taking supremum over all � 2 � we obtain:

(2.7) sup
�2�

Mn(f�) � sup
�2�

f� + sup
�2�

T ((Mn(f�))
+) .

Since f� � g for all � 2 � , then we have sup�2� (Mn(f�))
+ � (Mn(g))

+ . Hence we see that
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(sup�2� (Mn(f�))
+)� 2 L1(�) . Therefore by (2.7) and monotonicity of T we get:

(2.8) sup
�2�

Mn(f�) � sup
�2�

f� + T ((sup
�2�

(Mn(f�))
+)�) .

Multiplying both sides by 1An we obtain:

sup
�2�

(Mn(f�))
+ = (sup

�2�
Mn(f�))

+ = sup
�2�

Mn(f�) � 1An �

sup
�2�

f� � 1An + T ((sup
�2�

(Mn(f�))
+)�) � 1An �

sup
�2�

f� � 1An + T ((sup
�2�

(Mn(f�))
+)�) .

Integrating both sides we get:R �
sup�2� (Mn(f�))

+ d� �R �
An

sup�2� f� d� +
R
T ((sup�2� (Mn(f�))

+)�) d� .

Finally we may conclude:R �
sup�2� (Mn(f�))

+ d�� R
T ((sup�2� (Mn(f�))

+)�) d� � R �
An

sup�2� f� d�

and the proof of (2.4) follows from contractibility of T . In addition from (2.8) we get:

(sup
�2�

Mn(f�))
� � (sup

�2�
f�)

� + T ((sup
�2�

(Mn(f�))
+)�) .

Multiplying both sides by 1Bn we obtain:

(sup
�2�

(Mn(f�))
+)� = ((sup

�2�
Mn(f�))

+)� =

((sup
�2�

Mn(f�))
�)+ = (sup

�2�
Mn(f�))

� � 1Bn �

(sup
�2�

f�)
� � 1Bn + T ((sup

�2�
(Mn(f�))

+)�) � 1Bn �

(sup
�2�

f�)
� � 1Bn + T ((sup

�2�
(Mn(f�))

+)�) .

Integrating both sides we get:R �
sup�2� (Mn(f�))

+ d� �R �
Bn

sup�2� f� d� +
R
T ((sup�2� (Mn(f�))

+)�) d� .

Finally, as above, we may conclude:R �
sup�2� (Mn(f�))

+ d�� R
T ((sup�2� (Mn(f�))

+)�) d� � R �
Bn

sup�2� f� d�
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and the proof of (2.5) follows from contractibility of T .

Next suppose that there is no g 2 L1(�) satisfying sup�2� f� � g . In this case we haveR �
sup�2� f� d� = +1 . Let n � 1 be given and fixed, then by subadditivity we get:R �

sup�2� f� d� � R �
Cn

sup�2� f� d� +
R �
Cc
n
sup�2� f� d�

with Cn equal to either An or Bn . However on the set Cc
n in both cases we evidently

have sup�2� f� � sup�2�Mn(f�) � 0 . Therefore
R �
Cn

sup�2� f� d� = +1 , and the proof

of theorem is complete.

Corollary 2.2 (The uniform ergodic inequality)
Under the hypotheses of Theorem 2.1 suppose moreover that � is finite, and that T (1) = 1 .

Let us denote An;� = f sup�2�Rn(f�) > � g and Bn;� = f (sup�2�Rn(f�))
� > � g for all

n � 1 and all � > 0 . Then we have:

(2.9)

Z �

An;�

sup
�2�

(f� � �) d� � 0

(2.10) ��f sup
�2�

Rn(f�) > � g � 1

�

Z �

An;�

sup
�2�

f� d�

(2.11)

Z �

Bn;�

sup
�2�

(f� � �) d� � 0

(2.12) ��f sup
�2�

Rn(f�) > � g � 1

�

Z �

Bn;�

sup
�2�

f� d�

for all n � 1 and all � > 0 .

Proof. Let n � 1 and � > 0 be given and fixed. Consider g� = f� � � for � 2 � .

Since T (1) = 1 , then it is easily verified that An;� = f sup�2�Mn(g�) > 0 g and therefore

Bn;� = f (sup�2�Mn(g�))
� > 0 g. Hence by subadditivity and Theorem 2.1 we obtain:R �

Cn;�
sup�2� f� d� +

R �
Cn;�

(��) d� � R �
Cn;�

sup�2� g� d� � 0

with Cn;� equal to either An;� or Bn;� . Thus the proof follows straightforward from the facts

that
R �
An;�

(��) d� = �� � ��(An;�) and
R �
Bn;�

(��) d� = �� � �(Bn;�) .

Remark 2.3

Under the hypotheses of Theorem 2.1 and Corollary 2.2 respectively let us suppose that (�;B)
is a Blackwell space 1 (see [22]). We remark that any analytic space 2, and thus any polish space 3,

is a Blackwell space. Suppose moreover that the map (x; �) 7! f�(x) from X � � into �R is

measurable with respect to the product �-algebra A�B and Borel �-algebra B( �R) . Then by the

1 A measurable space (�;B) is called Blackwell, if f(�) is analytic (see below) for every measurable f : �! R .
2 An analytic space is a Hausdorff space which is a continuous image of a Polish space.
3 A Polish space is a separable topological space that can be metrized by means of a complete metric.
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projection theorem 4 (see [22]) we may conclude that the map x 7! sup�2� f�(x) is universally

A-measurable from X into �R ( �-measurable with respect to any measure � on A ). In this

way all upper �-integrals (outer and inner �-measures) in Theorem 2.1 and Corollary 2.2 become

the ordinary ones (without stars) . Moreover, then both Theorem 2.1 and Corollary 2.2 extend to

the case where supremum in the definitions of functions M and R is taken over all integers.

We leave the formulation of these facts and remaining details to the reader.

3. The uniform ergodic theorem for dynamical systems

The main object under our consideration in this section is a given ergodic dynamical system

(X;B; �; T ) . We clarify that (X;B; �) is supposed to be a probability space, and T is an

ergodic measure-preserving transformation of X . In addition, we assume that a parameterized

family F = f f� j � 2 � g of measurable maps from X into R is given, such that the

condition is satisfied:

(3.1)

Z �
sup
�2�

jf�j d� < 1 .

In particular, we see that f� belongs to L1(�) for all � 2 � , and therefore from Birkhoff’s

pointwise ergodic theorem (see [25] p: 9) we have:

(3.2)
1

n

n�1X
j=0

T j(f�) �! M(�) �-a.s.

as n ! 1 , for all � 2 � . The limit function M is called the �-mean function of F , and

we have M(�) =
R
f� d� for all � 2 � . Hence we see that M belongs to B(�) whenever

(3.1) is satisfied, where B(�) denotes the set of all bounded real valued functions on � . It

is the purpose of this section to present a solution for the prime and dual problem from Section

1 that now may be restated as follows. Determine conditions which are necessary and sufficient

for the uniform convergence to be valid:

(3.3) sup
�2�

��� 1
n

n�1X
j=0

T j(f�) �M(�)
��� �! 0

as n!1 . More precisely, we shall consider three kinds of convergence notions in (3.3), namely

(a:s:)�-convergence, (L1)�-convergence, and (��)-convergence. Given a sequence of arbitrary

maps f Zn j n � 1 g from X into R , we recall that Zn ! 0 (a:s:)� if jZnj� ! 0
�-a.s., that Zn ! 0 (L1)� if jZnj� ! 0 in �-mean, and that Zn ! 0 (��) if jZnj� ! 0
in �-measure. For more information in this direction we shall refer the reader to [36]. It should

be noted that if all maps under consideration are measurable, then the convergence notions stated

above coincide with the notion of �-a.s. convergence, convergence in �-mean, and convergence

in �-measure, respectively. This could be achieved in quite a general setting as it was already

described in Remark 2.3. In order to keep generality and be able to handle measurability problems

appearing in the sequel, we shall often assume that the transformation T is �-perfect. This means

4 Let (X;A) be a measurable space, and let (�;B) be a Blackwell space. If �X denotes the projection of X �� onto

X , then �X(C) is universally A-measurable for every C 2 A � B . (This is a version of the projection theorem that

suffices for our remark above. We remark that its further extensions and generalizations are available (see [22]).)
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that for every B 2 B there exists C 2 B satisfying C � T (B) and �(B n T�1(C)) = 0 .

We can require equivalently that ��(T�1(C)) = 1 whenever C is a subset of X satisfying

��(C) = 1 (see [35]). Under this assumption we have (see [35]):

(3.4) ( � T )� =  � � T
(3.5)

R �
 � T d� =

R �
 d�

whenever  : X ! �R is an arbitrary map. Dynamical system (X;B; �; T ) is said to be perfect,

if T is �-perfect. The best known sufficient condition for the �-perfectness of T could be:

(3.6) T (B) 2 B� for all B 2 B

where B� denotes the �-completion of B . This condition is by the image theorem satisfied

whenever (X;B) is a countably separated Blackwell space (see [22]). Moreover, if (X;B)
equals to the countable product (SN;AN) of copies of a measurable space (S;A) , then by

the projection theorem we see that condition (3.6) is satisfied whenever (S;A) is a Blackwell

space (see [22]). We remind again that any analytic space is a Blackwell space, and that any

analytic metric space, and thus any polish space, is a countably separated Blackwell space. To

conclude the preliminary part of this section we remark that from the point of view of two distinct

approaches towards solution for (3.3) described in Section 1, our approach below offers Lipschitz

type conditions. For the random entropy combinatorial approach we shall refer the reader to [39].

Finally, it should be mentioned that our conditions on the dynamical system (X;B; �; T ) and

family F = f f� j � 2 � g imposed above seem to be as optimal as possible from many points

of view. However, we shall not present the details in this direction here, and for more detailed

discussion on this point we refer the reader to [37]. We pass to the prime and dual problem (3.3)

itself. For this we shall say that the family F = f f� j � 2 � g is eventually totally bounded in

�-mean with respect to T , if the condition is satisfied (see [20] and [37]):

(3.7) For every " > 0 there exists " 2 �(�) such that:

inf
n�1

1

n

Z �
sup

�0;�002A

��� n�1X
j=0

T j(f�0�f�00)
��� d� < "

for all A 2 " .

Here and in the sequel �(�) denotes the family of all finite covers of � . We recall that a

finite cover of � is any family  = f A1; . . . ; An g of non-empty subsets of � satisfying

� = [n
j=1Aj with n � 1 . It is our next aim to show that under (3.1), condition (3.7) is equivalent

to the uniform convergence in (3.3), with respect to any of the convergence notions stated above.

It should be noted that our method below in essence relies upon the uniform ergodic lemma from

the previous section. The first result may be stated as follows.

Theorem 3.1

Let (X;B; �; T ) be a perfect ergodic dynamical system, and let F = f f� j � 2 � g be a

parameterized family of measurable maps from X into R satisfying (3.1). If F is eventually

totally bounded in �-mean with respect to T , then we have:
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(3.8) sup
�2�

��� 1
n

n�1X
j=0

T j(f�) �M(�)
��� �! 0 (a:s:)� & (L1)�

as n ! 1 , where M is the �-mean function of F .

Proof. Let " > 0 be given and fixed, then by our assumption there exists " 2 �(�) such that:

(3.9) inf
n�1

Z �
sup

�0;�002A

��� 1
n

n�1X
j=0

T j(f�0�f�00)
��� d� < "

for all A 2 " . Since M 2 B(�) , then there is no restriction to assume that we also have:

(3.10) sup
�0;�002A

jM(�0)�M(�00)j < "

for all A 2 " . In addition choose a point �A 2 A for every A 2 " . Then from (3.10) we get:

sup
�2�

��� 1
n

n�1X
j=0

T j(f�) �M(�)
��� = max

A2"
sup
�2A

��� 1
n

n�1X
j=0

T j(f�) �M(�)
��� �

max
A2"

�
sup

�0;�002A

��� 1
n

n�1X
j=0

T j(f�0�f�00)
��� + ��� 1

n

n�1X
j=0

T j(f�A)�M(�A)
���+

sup
�0;�002A

jM(�0)�M(�00)j
�
� max

A2"
sup

�0;�002A

��� 1
n

n�1X
j=0

T j(f�0�f�00)
���+

max
A2"

��� 1
n

n�1X
j=0

T j(f�A)�M(�A)
��� + " .

for all n � 1 . Hence by (3.2) we easily obtain:

lim sup
n!1

�
sup
�2�

��� 1
n

n�1X
j=0

T j(f�) �M(�)
��� �� �

max
A2"

lim sup
n!1

�
sup

�0;�002A

��� 1
n

n�1X
j=0

T j(f�0�f�00)
��� �� + " �-a.s.

From this inequality and (3.9) we see that (a:s:)�-convergence in (3.8) will be established as soon

as we obtain the inequality:

(3.11) lim sup
n!1

�
sup

�0;�002A

��� 1
n

n�1X
j=0

T j(f�0�f�00)
��� �� �

inf
n�1

Z �
sup

�0;�002A

��� 1
n

n�1X
j=0

T j(f�0�f�00)
��� d�

for all A � � . We leave this inequality to be established with some facts of independent interest

in the next proposition. We proceed with the (L1)�-convergence in (3.8). From (3.4) we get:
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�
sup
�2�

��� 1
n

n�1X
j=0

T j(f�) �M(�)
��� �� � 1

n

n�1X
j=0

�
sup
�2�

�� T j(f�)
�� ��+ sup

�2�
jM(�)j =

1

n

n�1X
j=0

T j
�
(sup
�2�

��f���)�� + sup
�2�

jM(�)j

for all n � 1 . Hence we see that the sequence on the left-hand side is uniformly integrable. Thus

(L1)�-convergence in (3.8) follows from (a:s:)�-convergence, and the proof is complete.

Proposition 3.2

Under the hypotheses of Theorem 3.1 we have:

(3.12) lim sup
n!1

�
sup

�0;�002A

��� 1
n

n�1X
j=0

T j(f�0�f�00)
��� �� = C �-a.s.

(3.13) C � inf
n�1

Z �
sup

�0;�002A

��� 1
n

n�1X
j=0

T j(f�0�f�00)
��� d�

(3.14) inf
n�1

Z �
sup

�0;�002A

��� 1
n

n�1X
j=0

T j(f�0�f�00)
��� d� = lim sup

n!1

Z �
sup

�0;�002A

��� 1
n

n�1X
j=0

T j(f�0�f�00)
��� d�

where A is an arbitrary subset of � , and C is a real number depending on A .

First Proof: We could notice that if T is �-perfect, then T j�1 is �-perfect for all j � 1 .

This fact easily implies that the map x 7! (T 0(x); T 1(x); . . . ) is �-perfect as a map from (X;B)
into (XN;BN) . Hence we see that if T is assumed to be �-perfect, then the hypotheses of

Theorem 1 and Proposition 2 from Section 3 in [37] are satisfied with �j = T j�1 for j � 1 .

The proof then could be carried out in exactly the same way as the proof of Proposition 2 from

Section 3 in [37]. This completes the first proof.

Second Proof: We could deduce the result of Proposition 3.2 by using the subadditive ergodic

theorem of Kingman (see [12] p.292-299). Indeed, let us in the notation of Proposition 3.2 put:

gn =
�

sup
�0;�002A

��� n�1X
j=0

T j(f�0�f�00)
��� ��

for all n � 1 , and let us assume that T is �-perfect. Then it is quite easily verified that

the sequence f gn j n � 1 g is subadditive in L1(�) . Therefore (3.12), (3.13) and (3.14) in

Proposition 3.2 follow from Kingman’s theorem in [12]. Moreover, even though it is irrelevant for

our purposes, it should be noted that in this way we obtain immediately a more precise information.

Namely, we have equality in (3.13) with the limit in (3.12) instead of the limit superior. (Since

this follows from either the first proof or the third proof given below, together with the result of

Theorem 3.1, we did not state the result of Proposition 3.2 in this stronger form. We have rather

chosen the form which appears to be essential in the process of proving Theorem 3.1 by the method

presented. For this one should recall (3.11) above.) Finally, it might be instructive in this context

to recall the classical fact that a subadditive sequence of real numbers f n j n � 1 g converges

to infn�1 n=n as n ! 1 . This completes the second proof.
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Third Proof: We now give a proof of Proposition 3.2, based on our uniform ergodic lemma

(see Theorem 2.1). Although this proof yields somewhat less (in comparison with the second

proof), we include it for the sake of keeping the analogy with Birkhoff’s theorem, with the hope

that this method will find other applications.

Let A � � be given and fixed. Let us denote:

	n(x) = sup
�0;�002A

�� 1
n

n�1X
j=0

T j(f�0�f�00)(x)
��

for all x 2 X and all n � 1 . Then the proof might be carried out as follows.

(3.12): Since T is ergodic, then it is enough to show that:

(3.15) lim sup
n!1

	�n � T = lim sup
n!1

	�n �-a.s.

For this it should be noted that we have:

	n � T = sup�0;�002A
�� n+1

n � 1
n+1

Pn
j=0 T

j(f�0�f�00) � 1
n (f�0�f�00)

��
for all n � 1 . Hence we easily find:

n+1
n 	n+1 � 2

n sup�2� jf�j � 	n � T � n+1
n 	n+1 +

2
n sup�2� jf�j

for all n � 1 . Taking upper �-envelopes on both sides we obtain:

n+1
n 	�n+1 � 2

n

�
sup�2� jf�j

�� � ( 	n � T
�� � n+1

n 	�n+1 +
2
n

�
sup�2� jf�j

��
for all n � 1 . Letting n ! 1 , and using (3.1)+(3.4) we obtain (3.15), and the proof of

(3.12) is complete.

(3.13): Here we essentially use the uniform ergodic lemma from the last section. For this we

denote Sn(f) =
Pn�1

j=0 T
jf and Mn(f) = max1�j�n Sj(f) , whenever f 2 L1(�) and n � 1 .

Let us for fixed N;m � 1 and " > 0 consider a set as follows:

BN;m;" =
n �

sup
�0;�002A

Mm

� jSN (f�0�f�00)=N j � (C�") ���> 0
o

.

Then by Theorem 2.1 we may conclude:Z �

BN;m;"

sup
�0;�002A

� jSN (f�0�f�00)=N j � (C�") � d� � 0 .

Hence by subadditivity of upper �-integral we obtain:Z �

BN;m;"

sup
�0;�002A

jSN (f�0�f�00)=N j d� � (C�") �(BN;m;") .

Therefore by monotone convergence theorem for upper �-integral (see [35]) in order to complete
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the proof of (3.13) it is enough to show that �(BN;m;") " 1 as m!1 with N � 1 and " > 0
being fixed. We shall establish this fact by proving the following inequality:

(3.16)
�

sup
�0;�002A

jSn(f�0�f�00)=nj
��
�
�

sup
�0;�002A

sup
m�1

Sm
� jSN (f�0�f�00)=N j � ��+�

1
n � sup�0;�002A

��P
N [n=N ]�j<n T j(f�0�f�00)

�� ��
being valid for all n � N . For this it should be noted that we have:

(3.17) jSn(f�0�f�00)=nj � jSN [n=N ](f�0�f�00)=nj + 1
n j

P
N [n=N ]�j<n T

j(f�0�f�00) j

being valid for all n � N and all �0; �00 2 A . Moreover, given n � N , taking m � 1
large enough we get:

Sm
� jSN (f�0�f�00)j) =

��PN�1
j=0 T j(f�0�f�00)

�� +
��PN

j=1 T
j(f�0�f�00)

�� + . . . +��P2N�1
j=N T j(f�0�f�00)

�� + . . . � ��PN�1
j=0 T j(f�0�f�00)

��+��P2N�1
j=N T j(f�0�f�00)

�� + . . . +
��PN [n=N ]�1

j=N([n=N ]�1)
T j(f�0�f�00)

�� �
jSN [n=N ](f�0�f�00)j

for all �0; �00 2 A . Hence we obtain:

(3.18) jSN [n=N ](f�0�f�00)=nj � Sm
� jSN (f�0�f�00)=nj) � Sm

� jSN (f�0�f�00)=N j)

with n;N;m � 1 as above. Thus (3.16) follows straightforward by (3.17) and (3.18). In addition,

for the last term in (3.16) we have:�
1
n � sup�0;�002A

��P
N [n=N ]�j<n T j(f�0�f�00)

�� �� �
2
n

P
N [n=N ]�j<n T

j
�
(sup�2A jf�j)�

�
=

2
�

1
nSn

�
(sup�2A jf�j)�

� � N [n=N ]
n � 1

N [n=N ] SN [n=N ]

�
(sup�2A jf�j)�

��
for all n � N . Since N [n=N ]=n ! 1 as n ! 1 , then by (3.1) and Birkhoff’s theorem, the

right-hand side tends to zero �-a.s. as n!1 . Letting n!1 in (3.16) therefore we obtain:

(3.19) lim sup
n!1

�
sup

�0;�002A
jSn(f�0�f�00)=nj

��
�
�

sup
�0;�002A

sup
m�1

Sm
� jSN (f�0�f�00)=N j � ��

for all N � 1 . Finally, from (3.12) and (3.19) we get:

lim
m!1�(BN;m;") = lim

m!1��
n

sup
�0;�002A

Mm

� jSN (f�0�f�00)=N j � > (C�")
o
=

��
n

sup
�0;�002A

sup
m�1

Sm
� jSN (f�0�f�00)=N j � > (C�")

o
=

�
n �

sup
�0;�002A

sup
m�1

Sm
� jSN (f�0�f�00)=N j � �� > (C�")

o
�
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�
n

lim sup
n!1

�
sup

�0;�002A
jSn(f�0�f�00)=nj

��
> (C�")

o
= 1

This fact completes the proof of (3.13).

(3.14): It should be noted that we have:�
sup

�0;�002A

��� 1
n

n�1X
j=0

T j(f�0�f�00)
��� �� � 2

n

n�1X
j=0

T j
�
(sup
�2A

jf�j)�
�

for all n � 1 . Therefore by (3.1) it follows that the sequence on the left-hand side is uniformly

integrable. Thus by Fatou’s lemma we can conclude:

lim sup
n!1

Z �
sup

�0;�002A

��� 1
n

n�1X
j=0

T j(f�0�f�00)
��� d� � C .

Hence (3.14) follows straightforward by (3.13). This fact completes the proof.

Remark 3.3

Under the hypotheses of Theorem 3.1 and Proposition 3.2 it is easily verified that in the case

where the map x 7! sup�0;�002A
��Pn�1

j=0 T
j(f�0�f�00)(x)

�� is �-measurable as a map from X into

R for all n � 1 and given A � � , the assumption of �-perfectness of T is not needed for

their conclusions remain valid.

Remark 3.4

It should be noted that putting n = 1 in the definition of eventual total boundedness in �-mean,

we obtain an extension of the Blum-DeHardt sufficient condition, which is the best known for the

uniform law of large numbers, at least in the independent case. There are examples showing that

a parameterized family could be eventually totally bounded in �-mean with respect to a measure

preserving transformation, though it does not satisfy the Blum-DeHardt condition (see [11] p.41). It

is not a surprise indeed, since we shall see in the next theorem that the eventual total boundedness

in �-mean property characterizes the uniform ergodic theorems, and thus the uniform laws of large

numbers as well. In this way we may conclude that we have obtained a characterization of the

uniform ergodic theorem which contains the best known sufficient condition as a particular case.

Finally, let us mention a well-known and interesting fact that Blum-DeHardt’s law of large numbers

contains the classical Mourier’s law of large numbers (see [11] p.43).

In order to state the next theorem we clarify that B(�) denotes the Banach space of all bounded

real valued functions on � with respect to the sup-norm. We denote by C(B(�)) the set of all

bounded continuous functions from B(�) into R , while by K(B(�)) we denote the family

of all compact subsets of B(�) . A pseudo-metric d on a set � is said to be totally bounded,

if � can be covered by finitely many d-balls of any given radius " > 0 . A pseudo-metric

d on a set � is said to be a ultra pseudo-metric, if it satisfies d(�1; �2) � d(�1; �3) _ d(�3; �2)
for all �1; �2; �3 2 � .

Theorem 3.5

Let (X;B; �; T ) be a perfect ergodic dynamical system, and let F = f f� j � 2 � g be a

parameterized family of measurable maps from X into R satisfying (3.1). Let M be the �-mean
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function of F , then the following eight statements are equivalent:

(3.20) The family F is eventually totally bounded in �-mean with respect to T

(3.21) sup
�2�

��� 1
n

n�1X
j=0

T j(f�) �M(�)
��� �! 0 (a:s:)�

(3.22) sup
�2�

��� 1
n

n�1X
j=0

T j(f�) �M(�)
��� �! 0 (L1)�

(3.23) sup
�2�

��� 1
n

n�1X
j=0

T j(f�) �M(�)
��� �! 0 (��)

(3.24)
1

n

n�1X
j=0

T j(f) ! M weakly in B(�) :

lim
n!1

Z �
F
� 1
n

n�1X
j=0

T j(f)
�
d� = F (M)

for all F 2 C(B(�))

(3.25) The sequence
n 1

n

n�1X
j=0

T j(f) j n � 1
o

is eventually tight in B(�) :

lim sup
n!1

Z �
F
� 1
n

n�1X
j=0

T j(f)
�
d� � "

for some K" 2 K(B(�)) , and for all F 2 C(B(�)) satisfying 0 � F � 1B(�)nK"
,

whenever " > 0

(3.26) There exists a totally bounded ultra pseudo-metric d on � such that the condition

is satisfied:

lim
r#0

inf
n�1

Z �
sup

d(�0;�00)<r

��� 1
n

n�1X
j=0

T j(f�0�f�00)
��� d� = 0

(3.27) For every " > 0 there exist a totally bounded pseudo-metric d" on � and r" > 0
such that:

inf
n�1 �

�
n

sup
d"(�;�0)<"

��� 1
n

n�1X
j=0

T j(f��f�0)
��� > "

o
< "

for all � 2 � .

Proof. Since T is �-perfect, then T j�1 is �-perfect for all j � 1 . This fact as before

easily implies that the map x 7! (T 0(x); T 1(x); . . . ) is �-perfect as a map from (X;B) into

(XN;BN) . Putting �j = T j�1 for j � 1 we see that the hypotheses of Theorem 4, Corollary 5,

Theorem 7, Corollary 8 and Theorem 10 from Section 3 in [37] are satisfied. The result therefore

follows from Corollary 5, Theorem 7, Corollary 8 and Theorem 10 from Section 3 in [37]. It

should be noted that a characterization of compact sets in the Banach space B(�) is used (see
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[13] p.260) for sufficiency of (3.25). It is also not difficult to verify (by using uniform integrability)

that (3.23) implies (3.20). These facts complete the proof.

4. Examples and complements

We continue as in the preceding section by considering a given dynamical system (X;B; �; T )
and a parameterized family F = f f� j � 2 � g of measurable maps from X into R . First

we discuss a necessary condition for the prime and dual problem as follows. Suppose that (3.3) is

satisfied with respect to (a:s:)�-convergence. We could then question does this fact imply validity

of condition (3.1). The answer is negative in general, and a more detailed discussion on this point

with references can be found in [37]. Here we show that a weaker condition still remains true.

The result may be stated as follows.

Proposition 4.1

Let (X;B; �; T ) be a perfect dynamical system, and let F = ff� j � 2 �g be a parameterized

family of measurable maps from X into R . Suppose that:

(4.1) lim sup
n!1

�
sup
�2�

��� 1
n

n�1X
j=0

T j(f�)
��� �� < 1 �-a.s.

Then we have:

(4.2)
�
sup
�2�

jf�j
��

< 1 �-a.s.

Proof. We show that under the primary hypotheses stated above we have:

(4.3) �
n
lim sup
n!1

�
sup
�2�

��� 1
n

n�1X
j=0

T j(f�)
��� ��< 1

o
� �

n �
sup
�2�

jf�j
��
< 1

o
.

For this it should be noted that we have:

T n(f�) = (n + 1) � 1
n+1

Pn
j=0 T

j(f�) � n � 1n
Pn�1

j=0 T
j(f�)

for all n � 1 and all � 2 � . Hence we get:�
sup�2� jT n(f�)j

��� (n + 1) �
�
sup�2�

�� 1
n+1

Pn
j=0 T

j(f�)
�� ��+

n �
�
sup�2�

�� 1
n

Pn�1
j=0 T

j(f�)
�� ��

for all n � 1 . From this and the �-perfectness of T we may easily conclude:

�
n

lim sup
n!1

�
sup
�2�

��� 1
n

n�1X
j=0

T j(f�)
��� �� < 1

o
=

�
� 1[

M=1

1[
N=1

1\
n=N

n�
sup
�2�

��� 1
n

n�1X
j=0

T j(f�)
��� �� � M

o �
�
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�
� 1[
M=1

1[
N=1

1\
n=N

n�
sup
�2�

�� T n(f�) �� ��� (2n+1)M
o �

�

�
� 1[
N=1

1\
n=N

n�
sup
�2�

�� T n(f�) �� ��< 1
o �

�

lim inf
n!1 �

n�
sup
�2�

�� T n(f�) �� ��< 1
o

= �
n �

sup
�2�

jf�j
��
< 1

o
.

Actually, in the last step we use the fact that T n is �-perfect for every n � 1 . Thus (4.3) is

satisfied, and (4.2) follows straightforward by (4.1). These facts complete the proof.

Corollary 4.2

Under the hypotheses of Proposition 4.1 suppose moreover that F � L1(�) and that (3.3)

is satisfied with respect to either (a:s:)�-convergence, (L1)�-convergence, or (��)-convergence,

where M is the �-mean function of F satisfying sup�2�jM(�)j <1 . Then (4.2) in Proposition

4.1 is satisfied.

Proof. It follows easily from Proposition 4.1 by using the inequality:

lim supn!1
�
sup�2�

�� 1
n

Pn�1
j=0 T

j(f�)
�� �� �

lim supn!1
�
sup�2�

�� 1
n

Pn�1
j=0 T

j(f�) �M(�)
�� ��+ sup�2�jM(�)j .

This completes the proof.

Next we investigate a uniform approximation in the L1-sense by means of a dense family from

L1(�) which satisfies the uniform ergodic theorem in a trivial way. This approach is in the spirit

of the classical Hilbert space method for the mean ergodic theorem of von Neumann, and therefore

from the ergodic theory point of view it could be seen as the natural one. We consider as before a

given ergodic dynamical system (X;B; �; T ) and a parameterized family F = f f� j � 2 � g of

measurable maps from X into R . We recall that L2(�) is a Hilbert space which is dense in

L1(�) , and for which by the general Hilbert space theory we have (see [25] p.4):

L2(�) = G � cl(H)

where G = fg 2 L2(�) j Tg = gg and H = fh�Th j h 2 L1(�)g . It is instructive to observe

in this context that G consists of constants, since T is assumed to be ergodic. In addition,

suppose that maps g� = h��Th� 2 H for � 2 � are given, such that
�
sup�2� jh�j

�� 2 L1(�) .

Then by Birkhoff’s pointwise ergodic theorem we have:

(4.4)
�
sup
�2�

�� 1
n

n�1X
j=0

T j(g�)
�� �� = �

sup
�2�

�� 1
n

�
h��T n(h�)

� �� ��
� 1

n

�
sup
�2�

jh�j
��

+
1

n
T n
��

sup
�2�

jh�j
��� ! 0 �-a.s.
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as n ! 1 . In this way we obtain a natural family of maps satisfying the uniform ergodic

theorem in a trivial way. Moreover, let us put �1(H) to denote the class of all families

Z = f h� � Th� j � 2 � g � H with
�
sup�2� jh�j

�� 2 L1(�) . Then every g� from

Z 2 �1(H) for � 2 � satisfies (4.4), and the class �1(H) could be enlarged to satisfy the

uniform ergodic theorem as follows.

Theorem 4.3

Let (X;B; �; T ) be a perfect ergodic dynamical system, and let F = f f� j � 2 � g be a

parameterized family of measurable maps from X into R satisfying
R
f� d� = 0 for all � 2 � .

Suppose that the following condition is satisfied:

(4.5) For every " > 0 , there exists Z" = f g�;" j � 2 �g 2 �1(H) satisfying:Z �
sup
�2�

jf��g�;"j d� < " .

Then we have:

(4.6) sup
�2�

�� 1
n

n�1X
j=0

T j(f�)
�� �! 0 (a:s:)� & (L1)�

as n ! 1 .

Proof. Let " > 0 be given, then there exists Z" = f g� ;" j � 2 � g 2 �1(H) satisfying the

inequality in (4.5). Hence by Birkhoff’s theorem and (4.4) we get:

lim supn!1
�
sup�2�

�� 1
n

Pn�1
j=0 T

j(f�)
�� �� �

lim supn!1
�
sup�2�

�� 1
n

Pn�1
j=0 T

j(f��g� ;")
�� ��+

lim supn!1
�
sup�2�

�� 1
n

Pn�1
j=0 T

j(g�;")
�� �� �

limn!1 1
n

Pn�1
j=0 T

j
�
(sup�2� jf��g�;"j)�

�
=
R �

sup�2� jf��g�;"j d� < " .

This fact establishes (a:s:)�-convergence in (4.6). Since
�
sup�2� jg�;1j

�� 2 L1(�) , then it is

easily seen from (4.5) ( with "=1 ) that condition (3.1) is fulfilled. Since we have:�
sup�2�

�� 1
n

Pn�1
j=0 T

j(f�)
�� ��� 1

n

Pn�1
j=0 T

j
�
(sup�2� jf�j)�

�
for all n � 1 , then by (3.1) we see that (L1)�-convergence in (4.6) follows from (4.5) and

(a:s:)�-convergence in (4.6) by uniform integrability. This fact completes the proof.

We pass to a question of independent interest. It concerns a uniform convergence of moving

averages, and its characterization obtained by means of Banach limits. We recall that a linear

functional L on l1 is called a Banach limit, if the following three conditions are satisfied:

(4.7) L(x) � 0 whenever x � 0 , meaning that all coordinates of x are non-negative
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(4.8) L(x1; x2; x3; . . . ) = L(x2; x3; . . . ) for all (x1; x2; x3; . . . ) 2 l1
(4.9) L(1) = 1 where 1 = (1; 1; 1; . . . ) .

It is well-known that Banach limits exist. Moreover if L is a Banach limit, then we have:

(4.10) kLk = 1

(4.11) lim inf
n!1 xn � L(x) � lim sup

n!1
xn .

In addition we have:

(4.12) sup fL(x) j L is a Banach limit g = limn!1 sup i�1 1
n

Pn�1
j=0 xj+i

for all x = (x1; x2; . . . ) 2 l1 . Finally, if x = (x1; x2; . . . ) 2 l1 and m 2 R , then L(x) = m
for every Banach limit L , if and only if we have:

(4.13) limn!1 sup i�1 j 1n
Pn�1

j=0 xj+i � m j = 0 .

For proof of all these facts we shall refer the reader to [25] (p.135-136). However, the last one

seems to be a weak characterization of (4.13), since there could be too many Banach limits for

verification. A more convenient characterization of (4.13) may be stated as follows.

Proposition 4.4

Let x = (x1; x2; . . . ) be an arbitrary element of l1 , and let m be a real number. Then

(4.13) is valid, if and only if the following two conditions are satisfied:

(4.14) limn!1 1
n

Pn
j=1 xj = m

(4.15) The set
� �

n�1
Pn�1

j=0 xj+i

�
n�1 j i � 1

	
is totally bounded in l1 .

Proof. It follows easily by definition that (4.13) implies (4.14) and (4.15). Conversely, it

should be noted that (4.14) is equivalent to:

(4.16) limn!1 1
n

Pn�1
j=0 xj+i = m

being valid for all i � 1 . In addition, let " > 0 be given and fixed. Then by (4.15) there

exist i1; . . . ; ip � 1 such that:

min1�k�p supn�1
�� 1
n

Pn�1
j=0 xj+i � 1

n

Pn�1
j=0 xj+ik

�� < "

for all i � 1 . Moreover, by (4.16) we can choose n � N" large enough to have:�� 1
n

Pn�1
j=0 xj+ik � m

�� < "

for all k = 1; . . . ; p . Hence by the triangle inequality we easily obtain:�� 1
n

Pn�1
j=0 xj+i � m

�� < 2"
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for all n � N" and all i � 1 . This fact completes the proof.

Remark 4.5

One could think that condition (4.15) in Proposition 4.4 may be replaced by the following

condition:

(4.15’) The set
�
(xn�1+i)n�1 j i � 1

	
is totally bounded in l1 .

However, this is not true. Indeed, even though (4.15’) implies (4.15), and therefore (4.14)+(4.15’)

implies (4.13), we could have (4.13) without (4.15’) being valid. For example, take x to be

(1;�1; 0; 1;�1; 0; 0; 1;�1; 0; 0; 0; 1;�1; . . . ) . Then (4.13) holds with m = 0 , but we have

k (xn�1+i1)n�1 � (xn�1+i2)n�1 k1 � 1 whenever i1 6= i2 .

In the next example we show that replacing the unit ball of a Banach space in the prime problem

from Section 1 by a smaller family of vectors allows the uniform ergodic theorem (1.1) to become

weaker and more easily established (but still of a considerable interest). Our emphasis is rather on

the interpretation of the result than on the generality in which it is stated.

Example 4.6 (A uniform ergodic theorem over the orbit)
Consider the d-dimensional torus X = [0; 1[d equipped with the d-dimensional Lebesgue

measure � = �d for some d � 1 . Then X is a compact group with respect to the coordinatewise

addition mod 1. Take a point � = (�1; . . . ; �d) in X such that �1; . . . ; �d and 1 are integrally

independent ( if
Pd

i=1 ki�i is an integer for some integers k1; . . . ; kd , then k1 = . . . = kd = 0 ).

Under this condition the translation T (x) = x+� is an ergodic measure-preserving transformation

of X , and the orbit O(x) = f T j(x) j j � 0 g is dense in X for every x 2 X (see [25]

p.12). Let f : X ! R be a continuous function, and let O(f) = f T j(f) j j � 0 g be the

orbit of f under T . Then the prime problem from Section 1 may be restated to a problem of

the uniform convergence as follows:

(4.17) sup
g2O(f)

��� 1
n

n�1X
j=0

T j(g) �
Z
f d�

��� �! 0

as n ! 1 . It is immediate that (4.17) is equivalent to the following statement:

(4.18) sup
i�0

��� 1
n

n�1X
j=0

T i+j(f) �
Z
f d�

��� �! 0

as n!1 . Finally, we obtain by the continuity of f and denseness of O(x) for every x 2 X ,

that (4.18) is equivalent to the following statement:

(4.19) sup
x2X

��� 1
n

n�1X
j=0

T j(f)(x) �
Z
f d�

��� �! 0

as n ! 1 . However, this is precisely the statement of Weyl’s theorem on uniform distribution

mod 1 (see [25] p.13). This establishes the uniform ergodic theorem (4.17).

In fact, the equivalence of (4.17)-(4.19) extends to any Markov operator T in C(X) with
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X being a compact Hausdorff space. For this, it should be noted that the pointwise convergence

in (4.18) with i = 0 means weak convergence in C(X) , and implies the strong convergence

(see [25] p.72) which is precisely (4.19). For more information in this direction see [25] (p.12)

and [40] (p.137).

So far we have considered a Blum-DeHardt approach towards solution for the prime and dual

problem by offering Lipschitz type conditions. The next lines concern the Vapnik-Chervonenkis

random entropy approach. We begin in this direction by displaying a cornerstone for this type

of results in the independent case. For this consider a sequence of independent and identically

distributed random variables f�j j j � 1g defined on a probability space (
;F ; P ) with values in

a measurable space (S;A) . Let f : S��! R be a given map, such that M(�) =
R
f(�1; �) dP

is well-defined. Let f "j j j � 1 g be a Bernoulli sequence independent of f �j j j � 1 g . Then

passing over measurability problems it is well-known that we have:

(4.20) E sup
�2�

��� 1
n

nX
j=1

f(�j; �) �M(�)
��� � 2 � E sup

�2�

��� 1
n

nX
j=1

"j �f(�j; �)
���

for all n � 1 . It turns out that this symmetrization inequality plays a vitally important role in the

Vapnik-Chervonenkis random entropy approach. Moreover, it might be easily verified that having

this inequality in the case where the sequence f �j j j � 1 g is only assumed to be stationary

and ergodic, the basic random entropy result of Vapnik and Chervonenkis could be established in

exactly the same way as in the independent case (see for instance the proof in [53]). However, our

next example shows that this is not possible in general.

Example 4.7

We show that inequality (4.20) may fail if the sequence f �j j j � 1 g is only assumed to

be stationary and ergodic. For this we shall consider a simple case where � consists of a single

point, and where f equals to the identity map on the real line. The sequence f �j j j � 1 g
itself is for a moment only assumed to be stationary and Gaussian. Thus our question reduces to

verify the following inequality:

(4.21) E
��� 1
n

nX
j=1

�j

��� � C �E
��� 1
n

nX
j=1

"j ��j
���

for all n � 1 with some constant C > 0 , where f "j j j � 1 g is a Bernoulli sequence

independent of f �j j j � 1 g . Let us first consider the right-hand side of this inequality. For this

denote by k � k	2
the Orlicz norm induced by the function 	2(x) = exp(x2)� 1 for x 2 R .

Then it is easily verified that we have kXk1 � 6=5 kXk	2
whenever X is a random variable.

Hence by Kahane-Khintchine’s inequality for k � k	2
and Jensen’s inequality we get (see [38]):

(4.22) E
��� 1
n

nX
j=1

"j ��j
��� = E� E"

��� 1
n

nX
j=1

"j ��j
��� � 6

5
� 1
n
� E�

 nX
j=1

"j ��j

 2;"

�

6

5
�
r

8

3
� 1
n
� E�

� nX
j=1

j�j j2
�1=2

� 2 � 1
n

q
nEj�1j2 =

2p
n
�
q
Ej�1j2
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for all n � 1 . On the other hand since n�1
Pn

j=1 �j is Gaussian, then we have:

(4.23)
�
E
��� 1
n

nX
j=1

�j

���2 �1=2 � D �E
��� 1
n

nX
j=1

�j

���
for some constant D > 0 and all n � 1 . Inserting (4.22) and (4.23) into (4.21) we obtain:

(4.24) E
��� nX
j=1

�j

���2 � G � n � Ej�1j2

for all n � 1 with G =
p
2CD . Thus it is enough to show that (4.24) may fail in general. Since

f �j j j � 1 g is stationary, then we have E(�i�j) = R(i�j) for all i; j � 1 . Moreover, it is

easily verified that the left-hand side in (4.24) may be written as follows:

(4.25) E
��� nX
j=1

�j

���2= nX
i=1

nX
j=1

E(�i�j) =
nX

i=1

nX
j=1

R(i�j) = nR(0) +
n�1X
k=1

2 (n�k)R(k)

for all n � 1 . Let us in addition consider a particular case by putting R(k) = 1=(k+1) for

all k � 0 . Then R is a decreasing convex function, and therefore by Polya’s theorem it could

be the covariance function of a centered stationary Gaussian sequence f �j j j � 1 g . Moreover,

by Maruyama’s theorem this sequence is strongly mixing, and thus ergodic as well. Finally, from

(4.25) we may easily obtain:

E
��� nX
j=1

�j

���2= n + 2
n�1X
k=1

n�k
k+1

= 2 (n+1)
n�1X
k=1

1

k+1
� n + 2 �

2 (n+1)

Z n

1

1

x + 1
dx � n + 2 =

2 (n+1) log (n+1) � (1 + log 4) (n+1) + 3 � n logn

for all n � 1 . This inequality contradicts (4.24), and therefore (4.21) is false in this case as well.

Remark 4.8

It could be instructive to observe that in order that inequality (4.24) from Example 4.7 holds we

should have kPn
j=1 �j k2 = O(

p
n) as n!1 . This fact is known to be valid if the sequence

f �j j j � 1 g is mixing enough (see for instance [8]). It could indicate that the symmetrization

method is intimately related with a mixing property. Moreover, even though Example 4.7 shows

that the symmetrization inequality (4.20) does not extend to the stationary ergodic case, it does not

contradict the most useful consequence of (4.20) in this context. Namely, for Vapnik-Chervonenkis

type results in the notation of (4.20), it seems quite enough to have “an asymptotic symmetrization

inequality” as follows:

(4.26) E sup
�2�

��� 1
n

nX
j=1

"j �f(�j; �)
��� ! 0 ) E sup

�2�

��� 1
n

nX
j=1

f(�j; �)�M(�)
��� ! 0

as n!1 . Our Example 4.7 shows that these convergencies could have different speeds. These

observations may leave some open space for further developments (see [39]).
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