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Consistency of Statistical Models
in the Stationary Case

GORAN PESKIR

Recently established asymptotic likelihood theory [6] concerns the study of the

asymptotic behavior of various maximum estimators with the maximum likelihood

estimator as the leading example. The main objective of this study is to perform the

estimation of the true parameter value for the unknown distribution. The estimation

is based on the observations that form a sequence of independent and identically

distributed random variables. The main purpose of this paper is to investigate the

case where the given observations form a stationary ergodic sequence of random

variables. The first step in this direction is devoted to the foundation of the problem

itself. Although dropping independence one causes some difficulties it turns out

that using the results and methods established in [6] and [18] we reach our primary

ambition in this direction by characterizing the sets of all accumulation and limit

points of maximum estimators under consideration. Then we pass to the problem

of consistency. We show that slightly stronger conditions than those established in

[6] imply consistency in the present case. Moreover by using the uniform law of

large numbers that is recently established in the stationary case in [19], as well as the

methods developed for this purpose, we deduce new conditions implying consistency.

These conditions are of eventual total boundedness in the mean type. In this way the

problem of consistency of the given statistical models is naturally connected with

the infinitely dimensional (uniform) law of large numbers. In particular all of the

derived results apply to the maximum likelihood estimator based on the stationary

ergodic observations.

1. Stationary ergodic observations

Let � = (�� j � 2 �0 ) be a statistical model with a sample space (S;A) , reference measure

� , and parameter set �0 . In other words (S;A; �) is a measure space and �� is a probability

measure on (S;A) satisfying �� << � for all � 2 �0 . Then the likelihood function and the

log-likelihood function for � are defined as follows:

(1) f(s; �) =
d��
d�

(s) and h(s; �) = log f(s; �)

for all (s; �) 2 S � �0 . Suppose a random phenomenon is considered that has the unknown

distribution � belonging to � . Then there exists �0 2 �0 such that � = ��0 and we may
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define the information function as follows:

(2) I(�) =

Z
S
f(s; �0) h(s; �) �(ds)

for all � 2 �0 for which the integral exists. Put � = sup �2�0
I(�) and denote M = f � 2

�0 j I(�) = � g . If the following condition is satisfied:

(3)

Z
S
f(s; �0) j log f(s; �0) j �(ds) <1

then by the information inequality, see [7], we may conclude:

(4) M = f � 2 �0 j �� = � g and I(�) < I(�0) = � for �� 6= � .

Hence we see that under condition (3) the problem of determining the unknown distribution � is

equivalent to the problem of determining the set M of all maximum points of the information

function I on �0 . It is easily verified that (3) is satisfied as soon as we have:

(5) f( � ; �0) 2 Lp(�) \ Lq(�)

for some 0 < p < 1 < q <1 . In order to approach the set M we may suppose that the

observations X1; X2; . . . of the random phenomenon under consideration are available. In other

words f Xj j j � 1 g is a sequence of identically distributed random variables defined on a

probability space (
;F ; P ) with values in (S;A) and the common distribution law � . If

X1; X2; . . . are independent, then by the law of large numbers we have:

(6)
1

n

nX
j=1

h(Xj; �) ! I(�) P -a.s.

as n ! 1 for all � 2 �0 for which the integral in (2) exists. Thus it may occur that under

possibly additional hypotheses certain maximum points �̂n of the map on the left side in (6) on

�0 approach the maximum points of the map on the right side in (6) on �0 , that is the set M .

This principle is, more or less explicitly, well-known and goes back to Fisher’s fundamental papers

[3] and [4]. A large number of studies have followed. We do not wish to review the history of this

development, but will point out classical works [1], [8], [9], [11], [13], [21] and [22], as well as

the surveys [15] and [16] where more detailed information with additional references can be found.

For some new developments see [6], [12], [14], [18] and [20]. Let us however emphasize here that

whenever (6) is valid, the sense of this problem as well as the interpretation of its solution do not

require any additional assumption on the sequence fXj j j � 1 g . Thus we may and do assume

that the likelihood function for general (possibly dependent) sequences fXj j j � 1g is the same

as in the independent case. In other words the function h(s; �) = log f(s; �) may be chosen as

the criterion function. We think that this fact is by itself of theoretical (and practical) interest.

In this paper we consider and investigate a new case of the same problem where X1; X2; . . . are

no longer independent. However we shall assume that the probabilistic structure of the observations

under consideration does not depend of the moment when we begin with the observation. In other
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words we shall assume that the sequence fXj j j � 1 g is stationary, that is:

(7) P f (X1; X2; . . . ) 2B g = P f (Xn; Xn+1; . . . ) 2B g

for all n � 1 and all B 2 AN . In addition we shall assume that the sequence fXj j j � 1 g
is ergodic. In other words whenever for some B 2 AN we have:

(8) f (X1; X2; . . . ) 2B g = f (Xn; Xn+1; . . . ) 2B g

being valid for all n � 1 , then we may conclude:

(9) P f (X1; X2; . . . ) 2B g 2 f0; 1g .

Under these hypotheses we may conclude by using Birkhoff’s pointwise ergodic theorem that (6)

is valid with degenerated I(�) for all � 2 �0 for which the integral in (2) exists and is

finite. It turns out that this fact is important for the proofs presented below, and moreover the

statistical nature lying behind justifies it well. To conclude this introduction it is worthwhile to

recall that every sequence of independent and identically distributed random variables is stationary

and ergodic. Thus all of the derived results apply to this case as well. The next section constitutes

the main body of the paper, while the section following it contains the main results. In the last

section we present some typical examples, which motivated the theory exposed below, as well as

indicate its applications.

2. Foundation of the problem of consistency

In this section we shall introduce and investigate the setting for the problem of consistency of

statistical models in the stationary case. For this we shall follow the course developed for the case

of independent and identically distributed random variables in the framework of the asymptotic

likelihood theory [6]. However it turns out that there exist some crucial differences that should

be emphasized and raised problems solved. It is instructive to observe that these problems are of

the same type as those that appeared in the general reversed submartingale case for establishing

consistency, see [18] with references. In spite of that we shall see that the assumptions of stationarity

and ergodicity in the present case can provide close relatives of the facts deduced in [6] that are

sufficient for establishing consistency under slightly stronger hypotheses than those used in [6].

Some more details in this direction will be presented later. Let us turn to the setting itself.

We consider a stationary ergodic sequence of random variables f Xj j j � 1 g defined on a

probability space (
;F ; P ) with values in a measurable space (S;A) and a common distribution

law � . The measurable space (S;A) is called the sample space, and the probability measure �
is called the true distribution. In addition we suppose that an analytic metric space �0 is given

and fixed, and by B0 = B(�0) we denote the Borel �-algebra on �0 . The space �0 is called

the parameter space. It may be embedded into a compact metric space (�; d) that will be called

the compactified parameter space. Any function f defined on �0 with values in �R will by

definition be extended on � putting f(�) = �1 for all � 2 � n �0 . Moreover we suppose

that an A� B0-measurable map h(s; �) from S � �0 into �R is given and fixed. It is called

the criterion function. According to the above rule we have h(s; �) = �1 for all s 2 S and all
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� 2 � n �0 . Moreover we shall assume that h( � ; �) belongs to L(�) for all � 2 � , where

L(�) denotes the set of all functions from S into �R for which the �-integral exists in �R .

Thus the information function may be defined as follows:

I(�) =

Z
S
h(s; �) �(ds)

for all � 2 � . Note that I(�) = �1 for all � 2 � n �0 . Let us introduce the set of all

maximum points of I on �0 , that is:

M = f � 2 � j I(�) = � g

where we define � = sup �2�0
I(�) . The problem under our consideration may be stated as

follows: Given f Xj j j � 1 g with unknown � estimate M ! The sense of this problem

as well as the interpretation of its solution rely upon the information inequality that appears in

the framework of the above setting where the criterion function h(s; �) equals the log-likelihood

function log f(s; �) for a statistical model � = ( �� j � 2 �0 ) , see section 1. We shall refer

the reader to [6] for more details and information in this direction. Let us however emphasize

once again that no assumption on the sequence f Xj j j � 1 g itself is used for this purpose.

Thus we may and do assume that the likelihood function for general (possibly dependent) stationary

sequences fXj j j � 1 g is the same as in the independent case. In order to perform the estimation

in our problem we shall follow [6] and define the empirical information function as follows:

hn(!; �) =
1

n

nX
j=1

h(Xj(!); �)

for all (!; �) 2 
�� and all n � 1 with the convention +1�1 = �1 . By using Birkoff’s

pointwise ergodic theorem we obtain:

(1) I(�) = lim
n!1hn( � ; �) P -a.s.

for all � 2 �0 for which h( � ; �) belongs to L1(�) . This fact is essential. It indicates that

maximum points �̂n(!) of hn(!; �) on �0 for ! 2 
 and n � 1 may under certain additional

hypotheses approach the set M of maximum points of I on �0 . Our further work strongly

relies upon this belief. In order to exploit the preceding conclusions on (1) we shall proceed by

introducing several auxiliary functions associated to the empirical information function:

(2) h�n(!;B) = sup
�2B

hn(!; �)

(3) H�
0 (!;B) = lim inf

n!1 h�n(!;B) ; H�(!;B) = lim sup
n!1

h�n(!;B)

(4) �H0(!;B) = inf
G2G(�);G�B

H�
0 (!;G) ; �H(!;B) = inf

G2G(�);G�B
H�(!;G)

(5) �H0(!; �) = inf
r>0

H�
0 (!; b(�; r)) ; �H(!; �) = inf

r>0
H�(!; b(�; r))

(6) �(�) = inf
n�1

E��hn(�) ; ��(B) = inf
n�1

E�h�n(B)
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whenever ! 2 
 ; � 2 � ; B � � and n � 1 . Here �hn(!; � ) = limr#0 h�n(!; b( � ; r)) denotes

the upper semicontinuous envelope of hn(!; �) on � for ! 2 
 and n � 1 , while E� denotes

the upper P -integral. Also G(�) denotes the family of all open sets in � . According to [6] the

functions �H0(!;B) and �H(!;B) are called the outer maximal functions, the functions �H0(!; �)
and �H(!; �) are called the upper information functions, and the functions �(�) and ��(B) are

called the mean value information functions. In order to transfer the results of interest from section

2 in [18] to the present case we shall put H = (f hn(!; �);SnX j n � 1 g j � 2 �0) , where SnX
denotes the permutation invariant �-algebra of order n based on X = (X1; X2; . . . ) , see [7].

Then each hn( � ; �) is SnX -measurable for n � 1 , and moreover by our hypotheses H is

measurable in the sense of [18], that is hn(!; �) is SnX �B0-measurable for n � 1 . Let A(�)
denote the family of all analytic sets in � . If B belongs to A(�) , then by the projection theorem,

see [6], the map ! 7! h�n(!;B) is (SnX)P -measurable. However under the present hypotheses

on X1; X2; . . . we can not conclude that the �-algebra S1X = \1n=1SnX is degenerated, that is

P (F ) 2 f0; 1g for all F 2 S1X , as it was possible by using the Hewitt-Savage 0-1 law in the case

where X1; X2; . . . are independent and identically distributed (exchangeable). Actually we have:

S�X � T1X � S1X
where T1X denotes the well-known tail �-algebra based on X = (X1; X2; . . . ) and S�X denotes

the �-algebra of all shift invariant sets based on X = (X1; X2; . . . ) , that is F 2 S�X if and only

if F = (Xn; Xn+1; . . . )
�1(B) for some fixed B 2 AN and all n � 1 . Here � denotes the

unilateral shift in SN , that is �(s1; s2; s3; . . . ) = (s2; s3; . . . ) for all (s1; s2; . . . ) 2 SN . Thus

we could say that H is degenerated relative to a given family C of subsets of � , if we have:

(7) H�( � ; B) = const. and H�
0 ( � ; B) = const. P -a.s.

for all B 2 C . Then it is easily verified that proposition 2.1, proposition 2.2, corollary 2.3 and

proposition 2.4 in [18] are valid in the present case, provided that in their hypotheses the words

“of reversed submartingales” and “measurable” are removed and that the word “degenerated” is

replaced by the words “degenerated relative to” a decent family of subsets of � in the sense

explained above. For instance, in order to formulate statement (6) in proposition 2.1 H should

be degenerated relative to [ �2��0
f b(�; r) j r � r�g with some r� > 0 . We shall leave the

strict formulation of these statements and all of the remaining details to the reader. It is instructive

to notice that the submartingale property of H in [18] is not used for this purpose. Moreover

exactly in the same way proposition 2.5, corollary 2.6 and remark 2.7 in [18] may be carried over

to the present case. Most of the details will be omitted. The final results that will be of use in the

next considerations may be stated as follows from (11) to (15) below. We consider the following

sequences of maximum functions:

(8) A sequence of functions f �̂n j n � 1 g from 
 into � is called a sequence of empirical

maximums, if there exist a function q : 
! N and a P -null set N 2 F satisfying:

(i) �̂n(!) 2 �0 ; 8n � q(!) ; 8! 2 
 n N
(ii) hn(!; �̂n(!)) = h�n(!;�0) ; 8n � q(!) ; 8! 2 
 n N
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(9) A sequence of functions f �̂n j n � 1 g from 
 into � is called a sequence of asymptotic

maximums, if there exist a function q : 
 ! N and a P -null set N 2 F satisfying:

(i) �̂n(!) 2 �0 ; 8n � q(!) ; 8! 2 
 n N
(ii) lim inf

n!1 hn(!; �̂n(!)) � H�0 (!;�0) ; 8! 2 
 nN

(10) A sequence of functions f �̂n j n � 1 g from 
 into � is called a sequence of

approximating maximums, if there exist a function q : 
 ! N and a P -null set N 2 F
satisfying:

(i) �̂n(!) 2 �0 ; 8n � q(!) ; 8! 2 
 n N
(ii) lim inf

n!1 hn(!; �̂n(!)) � � ; 8! 2 
 nN

where we recall that � = sup �2�0
I(�) .

It is easily verified that every sequence of empirical maximums is a sequence of asymptotic

maximums and that every sequence of asymptotic maximums is a sequence of approximating

maximums. Moreover sequences of approximating and asymptotic maximums always exist. For

more details see [6] and [18]. In addition we shall introduce the following sets:

M̂ = f � 2 ��0 j �H(!; �) � � P -a:s: g

L̂ = f � 2 ��0 j �H0(!; �) � � P -a:s: g

M� = f � 2 ��0 j �H(!; �) � H�(!;�) P -a:s: g

M�
0 = f � 2 ��0 j �H(!; �) � H�0 (!;�) P -a:s: g

L�0 = f � 2 ��0 j �H0(!; �) � H�0 (!;�) P -a:s: g .

Then we have:

(11) M̂ is exactly the set of all possible accumulation points of all possible sequences of

approximating maximums

(12) L̂ is exactly the set of all possible limit points of all possible sequences of approximating

maximums

(13) M�
0 is exactly the set of all possible accumulation points of all possible sequences of

asymptotic maximums

(14) L�0 is exactly the set of all possible limit points of all possible sequences of asymptotic

maximums

(15) If f �̂n j n � 1 g is a sequence of empirical maximums, then there exists a P -null set

N 2 F such that Cf�̂n(!)g �M�
0 , Cf�̂n(!)g \M� 6= ; and Lf�̂n(!)g � L�0 for

all ! 2 
 n N .
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Clarify that Cf�̂n(!)g and Lf�̂n(!)g denote the sets of all accumulation and all limit points

of the sequence f �̂n(!) j n � 1 g in � for ! 2 
 respectively. Let us emphasize that

statements (11)-(14) rely upon the existence of measurable approximating maximums theorem, see

[17]. Moreover the proof of (11) in the present case contains a small detail that deserves to be

mentioned. Namely in order to show that for any point � 2 M̂ there exists a sequence of

approximating maximums f �̂n j n � 1 g satisfying � 2 Cf�̂n(!)g for all ! 2 
 outside some

P -null set N 2 F we may strictly follow the proof of (1) in corollary 4.2 in [17] with �(!)
replaced by � . However in order to deduce the first inequality in this proof we may proceed as

follows. First assume that � <1 , then there exists a sequence f �m j m � 1 g in �0 such that

I(�m) � � � 2�m for all m � 1 . Moreover for each m � 1 there exists a P -null set Nm 2 F
such that hn(!; �m)! I(�m) for all ! =2 Nm as n!1 . Putting N = [1m=1Nm we find:

�H0(!; ��0) = lim inf
n!1 h�n(!;�0) � lim inf

n!1 h�n(!; f �k j k � 1 g) � I(�m) � � � 2�m

for all ! =2 N and all m � 1 . Letting m ! 1 we get:

�H0(!; ��0) � �

for all ! =2 N . The case � =1 may be handled in the same way. The rest of the proof of (1) in

corollary 4.2 in [17] is the very same in the present case, and we shall omit the details. Concerning

this remark it is instructive to notice that the constant � appears simultaneously in the definition

of a sequence of approximating maximums as well as in the definition of M̂ , see (11).

These facts finish the establishment of the setting. Summarizing, we may con-

clude that (7) remains the central preliminary question that should be answered.

Having this answer, all of the preceding results involving non-degenerated functions

H�0 (!;B) ; H�(!;B) ; �H0(!; �) ; �H(!; �) ; �H0(!;B) and �H(!;B) may be formulated in

the degenerated form under the additional hypothesis, that will be established in the next lemma.

We shall leave the details in this direction to the reader. Moreover we shall see in the next

section that the validity of (7) can be completely avoided in establishing consistency under

slightly stronger hypotheses than those used in [6] and [18]. This approach differs from that

one demonstrated in [6] and [18] where (7) is automatically satisfied for all analytic sets by the

Hewitt-Savage 0-1 law. However in order to follow [6] in the present case, we shall turn out an

answer to (7) in the next lemma. This process requires the following definitions.

Let f �j j j � 1 g be a stationary sequence of random variables defined on a probability space

(
;F ; P ) with values in a measurable space (S;A) , let (SN;AN) denote the countable product

of (S;A) , and let P� denote the distribution law of � = (�1; �2; . . . ) as a map from 
 into

SN . Let � denote the unilateral shift in SN , that is �(s1; s2; s3; . . . ) = (s2; s3; . . . ) for all

(s1; s2; . . . ) 2 SN . Let k � 1 be given and fixed, then f �j j j � 1 g is said to be k-ergodic, if

�k is ergodic in (SN;AN; P�) , that is P�(A) 2 f0; 1g whenever A 2 AN and ��k(A) = A .

Moreover f �j j j � 1 g is said to be completely ergodic, if it is k-ergodic for each k � 1 .

Note that f �j j j � 1 g is ergodic, if and only if it is 1-ergodic. Moreover if f �j j j � 1 g
is k � l-ergodic for some k; l � 1 , then it is obviously k-ergodic. For more information in this

direction we shall refer the reader to [19] (p.3-7). Now the lemma may be stated as follows.
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Lemma 1.

Under the hypotheses of the above setting let us suppose that for given B 2 A(�) there exists

k � 1 such that:

(1) sup
�2B

j hk( � ; �) j<1 P -a.s.

(2) fXj j j � 1 g is k-ergodic.

Then there exist numbers H�(B) and H�0 (B) in �R satisfying:

(3) lim sup
n!1

h�n( � ; B) = H�(B) P -a.s.

(4) lim inf
n!1 h�n( � ; B) = H�0 (B) P -a.s.

Proof. Let us consider the map gn : SN � � ! �R defined by:

gn(s; �) =
1

n

nX
j=1

h(sj; �)

for s = (s1; s2; . . . ) 2 SN , � 2 � and n � 1 . Let us denote:

g�n(s; B) = sup
�2B

gn(s; �)

for all s 2 SN with the given analytic set B 2 A(�) . Let (SN;AN) denote the countable

product of (S;A) , and let PX denote the distribution law of X = (X1; X2; . . . ) as a map

from 
 into SN . Then by our hypotheses we see that each gn(s; �) is AN � B-measurable

and thus by the projection theorem, see [6], we may conclude that the map s 7! g�n(s; B) is

PX -measurable for n � 1 . Let � denote the unilateral shift in SN , then by our hypotheses we

have that �k is ergodic in (SN;AN; PX) . Therefore in order to establish that a PX -measurable

map f from SN into �R is equal to a constant PX -a.s., it is enough to show that this map is

�k-invariant mod PX , that is f � �k = f PX -a.s., see [10] (p.5). Hence we may easily conclude

that (3) will be established as soon as we have:

(5) lim sup
n!1

g�n(�k( � ); B) = lim sup
n!1

g�n( � ; B) PX -a.s.

In order to deduce (5) let us note that we have:

gn(�
k(s) ; �) =

1

n

nX
j=1

h(sj+k; �) =
n+ k

n
� 1

n+ k

n+kX
j=1

h(sj ; �) � 1

n

kX
j=1

h(sj ; �)

for all s = (s1; s2 ; . . . ) 2 SN , all � 2 � and all n � 1 . Taking supremum over all � 2 B and

using (1) one can easily verify the validity of (5). This fact completes the proof of (3). Statement

(4) may be proved in exactly the same way, and the proof is complete.

Let us in addition remind that certain maximal inequalities were important to be established
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in the case of independent and identically distributed random variables in [6], as well as in the

reversed submartingale case in [18]. We shall proceed and conclude this section by investigating

these inequalities in the present case. It turns out that their close relatives may be established

in the stationary case under our consideration. Moreover we shall see in the next section that

these facts are sufficiently good for most of our purposes. Let us clarify that E� denotes the

P -upper integral. In particular if X : 
! �R is P -measurable, then we have E�X = EX for

X 2 L(P ) and E�X = +1 otherwise.

Lemma 2.

Under the hypotheses of the above setting let us suppose that B 2 A(�) is given and fixed.

Then for any given and fixed d � 1 we have:

(1) h�n(!;B) �
�n � d
n

� 1

�n

�nX
j=1

sup
�2B

n 1

d

dX
i=1

h(Xi+(j�1)�d(!) ; �)
o

+
1

n

X
�n�d<j�n

sup
�2B

h(Xj(!) ; �)

(2) E�h�n(B) � �n � d
n

E�h�d(B) +
n��n �d

n
E�h�1(B)

being valid for all ! 2 
 and all n � 1 , where �n = [n=d ] denotes the integer part of n=d .

In particular we may conclude:

(3) lim sup
n!1

Eh�n(B) = inf
n�1Eh

�
n(B) <1

whenever Eh�1(B) < 1 , as well as:

(4) E�h�n�d(B) � E�h�d(B)

for all n � 1 . Moreover we have:

(5) h�n+k(!;B) � n

n+k
sup
�2B

n 1

n

nX
j=1

h(Xj+k(!) ; �)
o

+
k

n+k
sup
�2B

n 1

k

kX
j=1

h(Xj(!) ; �)
o

(6) E�h�n+k(B) �
n

n+k
E�h�n(B) +

k

n+k
E�h�k(B)

being valid for all ! 2 
 and all n; k � 1 .

Proof. Since B is analytic, then by the projection theorem, see [6], the map ! 7!
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sup �2B hn(!; �) is P -measurable. Therefore E�h�n(B) = Eh�n(B) if h�n( � ; B) 2 L(P )
and E�h�n(B) = +1 otherwise. In order to establish (1) one may notice that we have:

(7) hn(!; �) =
1

n

nX
j=1

h(Xj(!) ; �) =
1

n

�n�dX
j=1

h(Xj(!) ; �) +
1

n

X
�n�d<j�n

h(Xj(!) ; �)

=
1

n

�nX
j=1

dX
i=1

h(Xi+(j�1)�d(!) ; �) +
1

n

X
�n�d<j�n

h(Xj(!) ; �)

=
�n � d
n

� 1

�n

�nX
j=1

n 1

d

dX
i=1

h(Xi+(j�1)�d(!) ; �)
o
+

1

n

X
�n�d<j�n

h(Xj(!) ; �)

being valid for all (!; �) 2 
 � � and all n � 1 . Hence (1) follows straightforward by taking

supremum over all � 2 B . Statements (2) and (4) follow by (1) and stationarity. Moreover

statement (5) is obvious and statement (6) follows straightforward by (5) and stationarity in the

same manner. Finally if Eh�1(B) <1 , then letting n!1 in (2) we may conclude:

lim sup
n!1

Eh�n(B) � Eh�d(B)

since (�n � d)=n! 1 as n ! 1 . Taking infimum over all d � 1 we get (3). These facts

complete the proof.

3. Consistency of statistical models in the stationary case

In this section we shall introduce and investigate the concept of consistency of statistical models

in the stationary case. Throughout the whole section we work within the setting that is introduced

in the preceding section. We begin by introducing the definition of consistency. The criterion

function h(s; �) is said to be �-consistent on a given subset � of � , if for every sequence

of approximating maximums f �̂n j n � 1 g there exists a P -null set N 2 F such that

Cf�̂n(!)g\� � M , for all ! 2 
nN . The criterion function h(s; �) is said to be �-consistent,

if it is �-consistent on � . Thus h(s; �) is �-consistent on � if and only if every accumulation

point of any sequence of approximating maximums that belongs to � is a maximum point of the

information function I on �0 . By (2.11) we see that the following statements are equivalent:

(1) h(s; �) is �-consistent on �

(2) h(s; �) is �-consistent on � \ (M̂ nM)

(3) � \ M̂ � M

(4) �H(!; �) < � for all ! 2 
 that belong to some F� 2 F satisfying P (F�) > 0
whenever � 2 � n M .

Moreover if f �̂n j n � 1 g is a �-tight sequence of approximating maximums, that is

Cf�̂n(!)g � � for all ! 2 
 outside some P -null set N 2 F , and h(s; �) is �-consistent
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on � , then we have:

(5) Cf�̂n(!)g �M

(6) lim
n!1 d(�̂n(!);M) = 0

for all ! 2 
 outside some P -null set N 2 F . Thus in this case any sequence of approximating

(empirical or asymptotic) maximums converges to the set of all maximum points of the information

function I on �0 . It is instructive to observe that we always have M � L̂ � M̂ . Therefore

if M̂ \ � � M , then M \ � = L̂ \ � . In other words if h is �-consistent on � , then every

point � 2 M \ � may be reached as the limit point of a sequence of approximating maximums.

Our next aim is to obtain conditions for �-consistency of the criterion function. Let us for this

introduce the set of all L1-dominated points of h(s; �) as follows:

�d =
n
� 2 �

�� 9r > 0 such that

Z
S

sup
�2b(�;r)

h(s; �) �(ds) <1
o

.

Note that �d is an open subset of � . Furthermore let us introduce the set of all upper

semicontinuity points of h(s; �) as follows:

�u =
n
� 2 �

�� 9k � 1 such that hn(!; � ) is P -a.s.

upper semicontinuous at � for all n � k
o

.

Note if the map h(s; � ) is �-a.s. upper semicontinuous at a given point � 2 � , then � belongs

to �u . Also note that the present definitions slightly differ of those given in [6]. Finally, let us

introduce the set of all non-trivial points of h(s; �) as follows:

�f =
n
� 2 �

�� sup
�2b(�;r)

I(�) > �1 for all r > 0
o

.

Note that �f � ��0 . The next theorem offers conditions for �-consistency of the criterion function.

Theorem 1. (Consistency in the stationary case)

Under the hypotheses of the setting of section 2 suppose that � is a subset of � . Then we have:

(1) If � = �1 , then h(s; �) is �-consistent on � if and only if � � �0 [ (� n ��0)

(2) If � > �1 , then h(s; �) is �-consistent on � if and only if � � M [ (� n M̂) [
(�u \�d \ �f )

(3) If h(s; �) is �-consistent on � and � \M = f�0g , then �̂n ! �0 P -a.s. as n!1
for every �-tight sequence of approximating maximums.

Proof. In the case of (1) we have M = �0 and M̂ = ��0 . Thus (1) follows by (3) above.

Statement (3) is a straightforward consequence of the definition of consistency. In order to complete

the proof it remains to establish (2). For this first suppose that h(s; �) is �-consistent on � .
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Then by (3) above we see that � �M [ (�n M̂) and the first part of (2) is complete. Conversely

suppose that � �M [ (� n M̂) [ (�u \�d \ �f ) . Then � \ M̂ �M [ (�u \�d \ �f ) and

therefore (� \ M̂) nM � �u \ �d \�f . Hence by (3) above we see that the proof of (2) will

be completed as soon as we have:

(4) ( (� \ M̂) nM ) \ (�u \�d \ �f ) = ; .

We shall establish this fact by showing that:

(5) �H( � ; �) = I(�) P -a.s.

for all � 2 �u \ �d \ �f . So let � 2 �u \ �d \ �f be a given point, then obviously
�H( � ; �) � I(�) P -a.s. In order to prove the converse inequality we may proceed as follows.

Since � belongs to �d , then there exists r > 0 such that:

(6)

Z
S

sup
�2b(�;r)

h(s; �) �(ds) <1 .

Hence by (4) in lemma 2.2 we easily find by using the monotone convergence theorem and the

fact that � belongs to �u that we have:

(7) �(�) = inf
n�1

E�hn(�) = inf
n�k

E�hn(�) = I(�)

being valid for all k � 1 . Let us in addition choose k� � 1 large enough to satisfy 2�k� � r ,

and let k � k� be given and fixed. Put Bk = b(�; 2�k) and h�(s; Bk) = sup �2Bk
h(s; �) for

all s 2 S . Then by (6) and the fact that � 2 �f we may conclude:

(8) �1 <

Z
S
h�(s ;Bk) �(ds) < +1 .

Let d � 1 be given and fixed, and let us define:

Y �
j (!) = sup

�2Bk

� 1

d

dX
i=1

h(Xi+(j�1)�d(!) ; �)
�

for all ! 2 
 and all j � 1 . Then by the projection theorem, see [6], each Y �
j is P -measurable

for j � 1 . Moreover by (2.3) and (2.4) in [19] we may easily conclude that the sequence

f Y �
j j j � 1 g is stationary and ergodic. By (1) in lemma 2.2 we have:

(9) h�n(!;Bk) � �n � d
n

� 1

�n

�nX
j=1

Y �
j (!) +

1

n

X
�n�d<j�n

h�(Xj(!) ; Bk)

for all ! 2 
 and all n � 1 , where �n = [n=d] denotes the integer part of n=d . By (8) we easily

find that Y �
1 2 L1(P ) , and therefore by Birkhoff’s pointwise ergodic theorem we may conclude:
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(10)
1

n

nX
j=1

Y �j ! EY �1 = Eh�d(Bk) P -a.s.

as n!1 . By the same argument and the fact that (�n �d)=n! 1 as n!1 we have:

(11)
1

n

X
�n�d<j�n

h�(Xj ; Bk) =

=
1

n

nX
j=1

h�(Xj ; Bk) � �n �d
n

� 1

�n �d
�n�dX
j=1

h�(Xj ; Bk)! 0 P -a.s.

as n ! 1 . Now by (9), (10) and (11) we may deduce:

(12) lim sup
n!1

h�n( � ; Bk) � Eh�d(Bk) P -a.s.

for all d � 1 . Taking infimum over all d � 1 we get:

lim sup
n!1

h�n( � ; Bk) � inf
d�1

Eh�d(Bk) P -a.s.

Letting k ! 1 and using the monotone convergence theorem we may conclude:

(13) �H( � ; �) � inf
k�1

inf
d�1

Eh�d(Bk) = inf
d�1

inf
k�1

Eh�d(Bk)

= inf
d�1

E�hd(�) = �(�) = I(�) P -a.s.

Thus (5) is proved and the proof is complete.

Remark 2.

In exactly the same way as for (12) in the preceding proof we may conclude:

(1) H�( � ; B) � inf
n�1

Eh�n(B) P -a.s.

whenever B 2 A(�) with sup �2B h( � ; �) 2 L1(�) . Moreover if sup �2B j h( � ; �) j 2 L1(�) ,

then by (3) in lemma 2.1, Fatou’s lemma, and (3) in lemma 2.2 we easily get:

(2) sup
�2B

I(�) � H�(B) = inf
n�1Eh

�
n(B) = lim sup

n!1
Eh�n(B) .

These facts and the method presented in the proof of theorem 1 may be used in an attempt to obtain

under additional hypotheses the results in the present case that correspond to those established in

proposition 3.1 and proposition 3.2 in [18] with the origin in [6]. However they are irrelevant for

our further purposes and we shall resist of doing it here. We shall turn to the question when the

first inequality in (2) becomes an equality.

The main applicability of theorem 1 may be in essence presented as follows. Suppose that
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under the hypotheses of the setting of section 2 we have a subset � of � satisfying:

(7) sup
�2b(�;r)

I(�) > �1 for all r > 0 and all � 2 �

(8)

Z
S

sup
�2b(�;r�)

h(s; �) �(ds) <1 for all � 2 � with some r� > 0

(9) h(s; � ) is upper semicontinuous at � for all s 2 S outside some �-null set N� 2 A ,

being valid for all � 2 � .

Then every accumulation point of any sequence of approximating (empirical or asymptotic)
maximums that belongs to � is a maximum point of I on �0 . This fact completes our

main purpose. Conditions (7)–(9) are in most cases easily verified.

A close look at the proof of theorem 1 enables one to verify that under (7)-(9) we have

I(�) = �(�) = �H(�) for all � 2 � , see (13) in this proof. Hence we easily find that I(�) = �I(�)
for all � 2 � , where �I denotes the upper semicontinuous envelope of I . In other words I is

upper semicontinuous on � . Thus in order to find some new conditions implying consistency it

is not very restrictive to assume that I is upper semicontinuous on the candidate subset of � .

Having this fact in mind we shall now present another way toward consistency that relies upon the

uniform law of large numbers recently established in the stationary case in [19]. This approach is

already applied in the reversed submartingale case, see [18]. In the present case we may proceed

as follows. By (2.11) we know that the set of all accumulation points of all possible sequences of

approximating maximums equals M̂ = f � 2 ��0 j �H( � ; �) � � P -a.s. g . Moreover we have:

�H(!; �) = inf
r>0

lim sup
n!1

h�n(!; b(�; r))

for all ! 2 
 and all � 2 � . Hence we see that conditions implying:

lim sup
n!1

h�n( � ; b(�; rm)) = sup
�2b(�;rm)

I(�) P -a.s.

for some sequence f rm j m � 1g satisfying rm # 0 as m!1 will have for a consequence:

�H(�) = �I(�)

where � 2 � is a given point. Since the set:

~M = f � 2 ��0 j �I(�) � � g

is closed and contains M , then we have �M � ~M . Conversely if � 2 ~M , then there exists a

sequence f �n j n � 1 g in � satisfying:

d(�n; �) � 2�n and I(�n) � � � 2�n

for all n � 1 . Thus if �n ! � with I(�n) ! � implies I(�) = � for every � 2 ~M ,

14



then we have ~M = M = �M . This will be for instance true if I has the closed graph

gr(I) = f (�; I(�)) j � 2 �0 g , or if I is upper semicontinuous on ~M . It is instructive to notice

that I is always upper semicontinuous on M , as well as that for every � 2 ~M we actually

have �I(�) = � . The next result relies upon this idea and the uniform law of large numbers in the

stationary case [19]. It requires the following definitions. Let T be a subset of � , then �(T )
denotes the family of all finite covers of T . Recall that a finite cover of T is any family of

non-empty subsets A1; . . . ; An of T satisfying [nj=1Aj = T . We shall in what follows say

that a finite cover 
 = f A1; . . . ; An g of T is analytic, if every Aj is analytic in � for

j = 1; . . . ; n . Note that in this case T must be also analytic in � . The criterion function h(s; �)
will be called eventually total bounded in �-mean on T , if the following condition is satisfied:

(10) For each " > 0 there exists an analytic cover 
" 2 �(T ) such that:

inf
n�1

Z



sup
�0;�002A

j hn(!; �0)� hn(!; �
00) j P (d!) < "

for all A 2 
" .

Note that the present definition of eventual total boundedness in the mean slightly differs from

the one used in [19] since we require that the elements of 
" in (10) are analytic sets. This is

done in order to avoid some technical difficulties that may appear if the integrand in (10) is not

measurable, see theorem 3.1, proposition 3.2 and remark 3.3 in [19]. Note that this can not happen

under our present hypothesis on 
" in (10) since by the projection theorem, see [6], we may easily

conclude that the integrand in (10) is P -measurable. Another possibility to avoid those difficulties

is to assume that the map X = (X1; X2; . . . ) is PX -perfect as a map from 
 into SN , see

[19]. This is for instance true for the canonical representation of X , see section 1 in [19]. We

shall leave the formulation and verification of the next results under this hypothesis instead of the

requirement that 
" in (10) is analytic to the reader. Also we shall refer the reader to theorem 3.7,

theorem 3.9 and theorem 3.10 in [19] for equivalent formulations of (10) and more information in

this direction. However let us emphasize here that condition (10) is in all decent cases equivalent

to the uniform law of large numbers being valid on T , see corollary 3.5 and corollary 3.8 in

[19]. We turn to the next result itself.

Theorem 3.

Under the hypotheses of the setting of section 2 suppose that � is a subset of � such that for

each � 2 � \ M̂ there exists r� > 0 satisfying:

(1)

Z
S

sup
�2b(�;r�)

j h(s; �) j �(ds) <1

(2) h is eventually total bounded in �-mean on b(�; r�) .

Then we have:

(3) sup
�2b(�;r�)

j hn( � ; �)� I(�) j ! 0 P -a.s. and in L1(P ) as n!1 , for all � 2 �\M̂
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(4) �H(�) = �I(�) for all � 2 � \ M̂

(5) � \ M̂ = f � 2 � j �I(�) = � g .

If, in addition, the function I satisfies any of the following two equivalent conditions:

(6) I is upper semicontinuous on � \ M̂

(7) cl(gr(I)) \ ((� \ M̂) � f�g) � gr(I) , or equivalently if �n ! � and I(�n) ! �
with � 2 � \ M̂ , then I(�) = �

then h(s; �) is �-consistent on � .

Proof. Let � 2 � \ M̂ be given and fixed and let r� > 0 be chosen in such a way that (1)

and (2) are satisfied. Then (3) follows straightforward by theorem 3.1, proposition 3.2 and remark

3.3 in [19]. In particular we get:

(8) sup
�2b(�;r)

hn( � ; �) ! sup
�2b(�;r)

I(�) P -a.s.

as n ! 1 for all 0 < r � r� . In other words we have:

(9) H�(b(�; r)) = sup
�2b(�;r)

I(�)

for all 0 < r � r� . Thus taking infimum over all 0 < r � r� we get (4). Statement (5) is

an easy consequence of (4). Moreover since � belongs to M̂ , then there exists a sequence

f �n j n � 1 g in � such that d(�n; �) � 2�n and I(�n) � � � 2�n for all n � 1 . Hence

we see that �n ! � and I(�n) ! � . Thus if (7) is satisfied, then we get I(�) = � . In this

way we may conclude that � \ M̂ � M and thus h(s; �) is �-consistent on � by (3) above.

Moreover it is easily verified that in the presence of (4) statement (6) is equivalent to statement

(7). These facts complete the proof.

The preceding result is in a way a straightforward consequence of the uniform law of large

numbers in the stationary case. However let us notice that in this way we have obtained even more

than it is needed. Namely we have established (8) in the proof of theorem 3 by using the validity

of (3) in the same theorem. Our next aim is to show that applying the methods used in the proof

of the uniform law of large numbers [5] and [19], a more direct approach to (8) could be done.

For that reason we shall relax the condition of eventual total boundedness in the mean as follows.

The criterion function h(s; �) will be called eventually total bounded in �-mean from above on a

given subset T of � , if the following condition is satisfied:

(11) For each " > 0 there exist an analytic cover 
" = f A1; . . . ; Am" g 2 �(T ) and

points �1 2 A1; . . . ; �m" 2 Am" such that:

(i) inf
n�1

Z



sup
�2Aj

(hn(!; �)� hn(!; �j) )
+ P (d!) < "
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(ii) sup
�2Aj

( I(�j)� I(�) )+< "

for all j = 1; . . . ; m" .

It is easily verified that (10) implies (11). Moreover it turns out that condition (1) in theorem 3

may be slightly weakened to the form that already appeared in theorem 1.

Theorem 4.

Under the hypotheses of the setting of section 2 suppose that � is a subset of � such that for

each � 2 � \ M̂ there exists r� > 0 satisfying:

(1)

Z
S

sup
�2b(�;r�)

h(s; �) �(ds) <1

(2) h is eventually total bounded in �-mean from above on b(�; r�) .

Then we have:

(3) sup
�2b(�;r�)

(hn( � ; �)� I(�) )+ ! 0 P -a.s. and in L1(P ) as n!1 , for all � 2 �\M̂

(4) �H(�) = �I(�) for all � 2 � \ M̂

(5) � \ M̂ = f � 2 � j �I(�) = � g .

If, in addition, the function I satisfies any of the following two equivalent conditions:

(6) I is upper semicontinuous on � \ M̂

(7) cl(gr(I)) \ ((� \ M̂) � f�g) � gr(I) , or equivalently if �n ! � and I(�n) ! �
with � 2 � \ M̂ , then I(�) = �

then h(s; �) is �-consistent on � .

Proof. Let � 2 � \ M̂ be given and fixed and let r� > 0 be chosen in such a way that

(1) and (2) are satisfied.

(3): Let us denote B = b(�; r�) and let " > 0 be given. Then by (2) there exist an analytic

cover 
" = fA1; . . . ; Am" g 2 �(B) and points �1 2 A1; . . . ; �m" 2 Am" such that:

(8) inf
n�1

Z



sup
�2Aj

( hn(!; �)� hn(!; �j) )
+ P (d!) < "

(9) sup
�2Aj

( I(�j)� I(�) )+< "

for all j = 1; . . . ; m" . Moreover we have:

sup
�2B

(hn(!; �)� I(�))+ = max
1�j�m"

sup
�2Aj

(hn(!; �)� I(�))+
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� max
1�j�m"

sup
�2Aj

(hn(!; �)� hn(!; �j))
+ + max

1�j�m"

(hn(!; �j)� I(�j))
+

+ max
1�j�m"

sup
�2Aj

(I(�j)� I(�))+

for all ! 2 
 . By Birkhoff’s pointwise ergodic theorem and (9) we easily get:

(10) lim sup
n!1

sup
�2B

(hn(!; �)� I(�))+ �

� max
1�j�m"

lim sup
n!1

sup
�2Aj

(hn(!; �)� hn(!; �j))
+ + " P -a.s.

Replacing h(s; �) by g(s; �) = h(s; �) � h(s; �j) for � 2 Aj with j = 1; . . . ; m" we get a

new criterion function satisfying (1) with h replaced by g . Thus by (8) and (10) we may easily

conclude that the proof of (3) will be completed as soon as we show that:

(11) lim sup
n!1

sup
�2A

(hn( � ; �))+ � inf
n�1

Z


sup
�2A

(hn(!; �))
+ P (d!) P -a.s.

for any analytic set A in � satisfying:

(12)

Z
S
sup
�2A

h(s; �) �(ds) <1 .

Let d � 1 be given and fixed. Then by (7) in the proof of lemma 2.2 we may easily conclude:

(13) sup
�2A

(hn(!; �))
+ � �n � d

n
� 1

�n

�nX
j=1

Y �j (!) +
1

n

X
�n�d<j�n

sup
�2A

(h(Xj(!) ; �))
+

being valid for all n � d and all ! 2 
 with �n = [ n=d ] , and where:

Y �j (!) = sup
�2A

� 1

d

dX
i=1

h(Xi+(j�1)�d(!) ; �)
�+

for ! 2 
 , � 2 A and j � 1 . In the same way as for (10) in the proof of theorem 1 we find:

(14)
1

n

nX
j=1

Y �j ! EY �1 =

Z



sup
�2A

(hd(!; �))
+P (d!) P -a.s.

as well as for (11) in the proof of theorem 1 by using (12) that we have:

(15)
1

n

X
�n�d<j�n

sup
�2A

(h(Xj ; �))
+ ! 0 P -a.s.

as n ! 1 . Thus letting n ! 1 in (13) and using (14) and (15) we get:

lim sup
n!1

sup
�2A

(hn( � ; �))+ �
Z


sup
�2A

(hd(!; �))
+ P (d!) P -a.s.

being valid for all d � 1 . Hence (11) follows straightforward by taking infimum over all d � 1 .
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(4): Since we obviously have:

sup
�2b(�;r)

(hn(!; �)� I(�))+ � sup
�2b(�;r)

hn(!; �) � sup
�2b(�;r)

I(�)

for all ! 2 
 , all n � 1 and all 0 < r � r� , from (3) we may conclude:

lim sup
n!1

sup
�2b(�;r)

hn(!; �) � sup
�2b(�;r)

I(�) P -a.s.

for all 0 < r � r� . Letting r # 0 we get:

(16) �H( � ; �) � �I(�) P -a.s.

Moreover since � belongs to M̂ , then �H( � ; �) � � P -a.s. However by definition of �I we

may easily conclude that �I(�) � � for all � 2 � . Thus (4) follows straightforward by (16).

The rest of the proof is exactly the same as the corresponding last part of the proof of theorem

3. These facts complete the proof.

4. Examples of application and concluding remarks

There are many examples of statistical models covered by the preceding results. We do not

wish to review them all here, but will point out examples in [6] (p.34,62,70) and [7] (chapters 12

and 13 with exercises) which can be easily modified to treat the stationary (ergodic) case under our

consideration. Other important examples may be found in the references. In all of these examples

we consider the setting introduced in section 1 (the criterion function h(s; �) is the log-likelihood

function) and apply results of theorem 1, theorem 3, and theorem 4 in section 3. In particular

we remind on conditions (7)-(9) in section 3 which are in most of the cases easily verified. We

may observe that condition (10) in section 3 (which is at the basis of theorems 3 and 4) involves

Blum-DeHardt’s condition (metric entropy with bracketing) as a particular case (by removing the

infimum and putting n = 1 ), see [2] (p.39-44). Blum-DeHardt’s condition is, so far, the best

known sufficient condition for the uniform law of large numbers. Condition (11) in section 3

might be viewed as its (asymptotic) refinement towards consistency. The task of verification of

the underlying conditions in the examples stated above is easy, and we shall leave the remaining

details to the reader. Of course there are examples which are not covered by these conditions, but

they require individual treatments and will be not considered here. Our main purpose was to unify

as many examples as possible, but under the common and simple conditions. We clarify that the

main novelty in the applications just described is the fact that we only assume stationarity (and

ergodicity) of the underlying sequence of observations. In this way we generalize and extend the

previous results that rely upon independence. We are unaware of a similar result and think that this

extension is by itself of theoretical and practical interest.

In order to illustrate the facts just described, we present two typical (statistical) examples which

in essence motivated the theory exposed above and indicate its application. It should be noted in

the first example that the criterion function h(s; �) is not necessarily the log-likelihood function for

the underlying statistical model. This fact indicates a broader scope of application of our approach

and results, and this will be additionally explained in the last part of this section (following the

second example below).
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Example 1. (Consistency of medians in the stationary case)

Let h(s; �) = �jt(s)��j for (s; �) 2 R2 , where t 2 L1(�) . Thus S = �0 = R , and we

shall set � = �R (with the usual topology). Let fXj j j � 1g be a stationary ergodic sequence of

real valued random variables which are defined on (
;F ; P ) and have the common distribution

law � . Then I(�) = �Ejt(X1)��j , and thus M = f � 2 R j � is a median of t(X1) g :

� 2 M () Pf t(X1) < � g � 1
2 � Pf t(X1) � � g .

Since hn(!; �) = � 1
n

Pn
j=1 jt(Xj)��j , we see that �̂n(!) maximizes hn(!; �) on �0 , if and

only if �̂n(!) is a sample median of t(X1(!)); . . . ; t(Xn(!)) :

1
n

�
card

�
1 � j � n j t(Xj(!)) < �̂n(!)

	� � 1
2 � 1

n

�
card

�
1 � j � n j t(Xj(!)) � �̂n(!)

	�
for ! 2 
 . In order to apply our results above, we shall verify the three conditions (7)-(9)

following remark 2 in section 3 with � = � = �R . First, since �1 < I(�) for all � 2 R ,

the condition (7) is evident. Second, since h(s; �) � 0 for all (s; �) 2 S � � , the condition

(8) is obviously satisfied. Finally, since � 7! h(s; �) is continuous on �0 , and moreover

limn!�1 h(s; �n) = h(s;�1) = �1 whenever �n ! �1 with s 2 S , we see that the

condition (9) is fulfilled as well. Thus by theorem 1 in section 3 we may conclude that h is

�-consistent ( on � ). In other words, every accumulation point of any sequence of approximating

maximums f �̂n j n � 1 g ( for instance, of any one which satisfies:

hn(!; �̂n(!)) � sup
�2�0

hn(!; �) � "n(!)

for some "n(!)! 0 with ! 2 
 ) belongs to the set M . As a particular case we obtain that every

accumulation point of any sample median of the sequence f (t(X1); . . . ; t(Xn)) j n � 1g belongs

to the set of all medians of t(X1) . In particular, if t(X1) has a unique median m
�
t(X1)

�
, then:

�̂n(!) ! m
�
t(X1)

�
for P -a.s. ! 2 


whenever f �̂n j n � 1 g is a sequence of sample medians of f (t(X1); . . . ; t(Xn)) j n � 1 g .

These facts are known to be valid if the sequence X1; X2; . . . is assumed to be independent and

identically distributed, see [6] p.34-35, but they are not accessible by those methods and results

without the assumption of independence. Thus, the results above generalize this and extend to the

stationary case, in a rather straightforward way, by applying our main results in section 3 above.

Example 2. (Consistency of the generalized inverse Gaussian distribution in the case of

stationary observations)

The generalized inverse Gaussian distribution is the distribution on S =]0;1[ having density:

(1) f(s; �) =
s��1

c(�)
exp

�
� 1

2

�
�

s
+  s

��
for s 2 ]0;1[ and � = (�; �;  ) 2 �0 , where �0 = �1 [ �2 [ �3 with:
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�1 =
�
(�; �;  ) j � 2 R ; � > 0 ;  > 0

	
�2 =

�
(�; �;  ) j � > 0 ; � = 0 ;  > 0

	
�3 =

�
(�; �;  ) j � < 0 ; � > 0 ;  = 0

	
and the map � 7! c(�) is defined by:

(2) c(�; �;  ) =

8><>:
2
�
�
 

��=2
K�

�p
� 
�
; (�; �;  ) 2 �1

2� ��� �(�) ; (�; �;  ) 2 �2

2�� �� �(��) ; (�; �;  ) 2 �3

where K� is the modified Bessel function (of the third kind) with index � :

(3) K�(x) =

Z 1
0

t���1 exp
�
� 1

2
x
�
t +

1

t

��
dt

for � 2 R and x > 0 . Special cases of (1) are the gamma distribution ( � > 0 ; � = 0 ), the

distribution of a reciprocal gamma variate ( � < 0 ;  = 0 ), the inverse Gaussian distribution

( � = �1
2 ), and the distribution of a reciprocal inverse Gausssian variate ( � = 1

2 ). Other important

cases are � = 0 ( the hyperbola distribution ) and � = 1 . To the best of our knowledge the

consistency of the generalized inverse Gaussian distribution in the case of independent observations

has been firstly recorded in [6] (see p.111-112). This has been obtained as a consequence of a

general result on the consistency of the exponential statistical models. The result and method

appear to be rather involved. Here we shall generalize this and extend to the case of stationary

observations, thus going beyond the scope of the result and method in [6]. Moreover, the proof of

consistency indicated below seems to be more direct and transparent, even in the case of independent

observations, thus serving nicely as an application of the theory presented above.

Suppose we are given a stationary ergodic sequence f Xj j j � 1 g of random variables

defined on (
;F ; P ) with values in ]0;1[ and common distribution law � which has the

density of the form (1). Then the log-likelihood function is given by:

h(s; �) = (��1) log s � �

2s
�  s

2
� log c(�)

for s 2 S and � = (�; �;  ) 2 �0 . In order to prove that h(s; �) is �-consistent on �0 , we

shall verify the three conditions (7)-(9) following remark 2 in section 3. First, note that evidently

� 7! h(s; �) is continuous on �1 for s 2 S . Moreover, it is rather straightforward by using

definition (2) and expression (3) to check that � 7! h(s; �) is continuous on �2 [ �3 . Thus (9)

above is fulfilled with � = �0 . Second, a similar elementary verification shows that (8) above

is fulfilled with � = �0 . Finally, condition (7) is evident (since by the essence of this condition

one has a freedom of taking the supremum over the whole ball around the points in � = �0 to

be examined). Thus, by the result of theorem 1 in section 3, we may conclude that h(s; �) is

�-consistent on �0 . In other words, every accumulation point of any sequence of approximating

maximums f �̂n j n � 1 g ( for instance, of any one which satisfies:
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1

n

nX
j=1

log f(Xj(!); �̂n(!)) � sup
�2�0

 
1

n

nX
j=1

log f(Xj(!); �)

!
� "n(!)

for some "n(!) ! 0 with ! 2 
 ) converges P -a.s. to the true parameter value (the point

�0 2 �0 for which � � f( � ; �0) ). In this context (3) and (4) from section 1 are to be recalled.

Thus, apart from the fact that we have extended the result of [6] to the stationary case, where

the method in [6] (relying upon independence) is not directly applicable, we have obtained a more

transparent proof of this result as well. (In this context, and in general as well, it is instructive to

observe that in essence the only extra-condition, which distinguishes the stationary case from the

independent case, is the condition (7) above.)

In the remainder we explain the role of the preceding results in the area of stochastic processes

and applications. Let us for this consider a sequence of stochastic processes f (Zn(t))t2T j n � 1g
defined on the probability space (
;F ; P ) and having the common time set T . Let t̂n(!) be

a maximum point of Zn(!; � ) on T , that is:

(4) Zn(!; t̂n(!)) = sup
t2T

Zn(!; t)

for ! 2 
 and n � 1 . Then the preceding results amounts to the study of the asymptotic

behavior of the maximum points t̂n(!) of Zn(!; � ) for n ! 1 . We think that this problem

appears worthy of consideration. Under the hypotheses in this paper we have:

(5) Zn( � ; t) �! L(t) P -a.s.

as n ! 1 . We consider the set M � T of all maximum points of the degenerated limiting

process L on T , and ask when does t̂n(!) approach M for n!1 and ! 2 
 . It may

happen that the supremum in (4) is not attained, and thus we relax condition (4) by requiring:

(6) Zn(!; t̂n(!)) �
�
sup
t2T

Zn(!; t) � "n(!)
�
^ n

for ! 2 
 and n � 1 with "n(!) ! 0 as n !1 . From (5) and (6) we could get:

(7) lim inf
n!1 Zn(!; t̂n(!)) � sup

t2T
L(t) P -a.s.

In this way a sequence of approximating maximums f t̂n gn�1 is obtained (recall (8)-(10) in section

2 and the sentence following it). In this paper we consider the process:

(8) nZn(!; t) =
nX

j=1


 (Xj(!); t)

where f Xj j j � 1 g is a stationary ergodic sequence of random variables, and 
(x; t) is a real

valued function. We recall that the case in [18] has been studied where fZn(t) gn�1 is assumed

to be a reversed submartingale for each fixed t 2 T . In the present case theorem 1, theorem

3, and theorem 4 in section 3 offer solutions for the problem just described. In order to indicate
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possible applications of these results, we give three examples which follow the same pattern and

can easily be modified to treat the new cases. The problem which motivates such considerations is

a problem of maximization (with a random noise), but of sums with a large number of summands

( corresponding to the large n below ), so that the exact computations fail. The results above

indicate how to overcome such a difficulty and find an approximative solution (which eventually

reaches the exact one). (The “good” rate of convergence, in the form of an asymptotic normality,

is conjectured to hold in these and similar cases as well, but this will be not considered here.) We

are in general unaware of similar results. Throughout fXj j j � 1g denotes a stationary ergodic

sequence of random variables.

Example 3.

Let X1 � N(0; 1) be from the standard Gaussian distribution with density function f(x) =
exp(�x2=2)=p2� for x 2 R . Let C denote the unique number from ]0; �=2[ that satisfies

tan(C) = C�1 , and let T be a compact set in R containing C . If t̂n(!) maximizes the process:

nZn(!; t) = (sin t)
nX

j=1

cos(tXj(!))

over t 2 T (in the sense of (6) or (7) above), then t̂n ! C P -a.s. as n ! 1 . This fact

readily follows from theorem 1 in section 3 by putting h(x; t) = (sin t) cos(tx) and using thatR1
�1 exp(�x2=2) cos(tx) dx =

p
2� exp(�t2=2) for t 2 R . It should be noted that the given C

is a unique maximum point of (sin t) exp(�t2=2) for t 2 R .

Example 4.

Let X1 � Exp(1) be from the exponential distribution with density function f(x) = exp(�x)
for x 2 R+ . Let T be a compact set in R+ containing 1 . If t̂n(!) maximizes the process:

nZn(!; t) =
nX

j=1

sin(tXj(!))

over t 2 T (in the sense of (6) or (7) above), then t̂n ! 1 P -a.s. as n ! 1 . This

fact readily follows from theorem 1 in section 3 by putting h(x; t) = sin(tx) and using thatR1
0 exp(�x) sin(tx) dx = t=(1+ t2) for t 2 R+ . It should be noted that 1 is a unique maximum

point of t=(1+ t2) for t 2 R+ .

Example 5.

Let X1 � C(1; 0) be from the Cauchy distribution with density function f(x) = 1=�(1+x2)
for x 2 R . Let T be a compact set in R+ . If t̂n(!) maximizes the process:

nZn(!; t) =
nX

j=1

Xj(!) sin(tXj(!))

over t 2 T (in the sense of (6) or (7) above), then t̂n ! min(T ) P -a.s. as n ! 1 . This

fact readily follows from theorem 1 in section 3 by putting h(x; t) = x sin(tx) and using thatR1
0 x sin(tx)=(1+ x2) dx = (�=2) exp(�t) for t 2 R+ . It should be noted that min(T ) is a

unique maximum point of exp(�t) for t 2 T .
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