
Introduction Estimating functions Application to rainfall models Summary

Inference without likelihoods

Richard E. Chandler

Department of Statistical Science, University College London
(r.chandler@.ucl.ac.uk)
Joint work with Joao Jesus

Maurice Priestley commemoration day, 18th December 2013



Introduction Estimating functions Application to rainfall models Summary

Motivation

Motivation

Likelihood function fundamental to most statistical inference
Measures relative fidelity of model to data under different
parameter values

But may be unable or unwilling to formulate likelihood in some
settings, e.g.:

Dependent non-Gaussian processes: relative scarcity of tractable
multivariate distributions
Where data do not correspond directly to model structure (e.g.
models in continuous time, data aggregated or sampled at
discrete time points)
Where likelihood would encourage fidelity to features of the data
that (simplified) models were not designed to reproduce
Where models are non-probabilistic
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Example: point process models for rainfall

Example: point process models for rainfall

Hydrologists need models to simulate rainfall time series for use
when designing dams, reservoirs, sewage systems etc.
Popular class of models based on point processes

Used in ‘weather generator’ provided in official UK climate
projections (http://ukclimateprojections.defra.gov.uk)

Simplified representation of rainfall
mechanism: superposition of rain
cells, each attached to event of a
point process

Each cell has random duration &
constant random intensity.

Rainfall intensity at any time is sum
of intensities over all active cells. Time

Rainfall intensity

Rain cells

Point process

http://ukclimateprojections.defra.gov.uk
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Example: point process models for rainfall

Inference for point process rainfall models

Model parameters are (e.g.) cell arrival rate, mean cell duration,
mean cell intensity etc.

Rainfall data typically totals over (e.g.) hourly intervals

Likelihood-based inference infeasible: joint density of data
unavailable
Likelihood-based inference also undesirable because of
rectangular temporal profiles of cells:

Observed rainfall series rarely contain same value in successive
wet intervals, need new cell at each time point to achieve this
using model (‘fidelity to data’)

Models usually fitted using generalised method of moments:
match observed and modelled values of selected properties for
which analytical expressions are available
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Estimating functions

Beyond likelihood: estimating functions

Many problem-specific techniques available to overcome
difficulties with likelihood-based inference (EM algorithm,
Bayesian methods, composite likelihood, . . .)

Focus here on estimating functions (EFs) as unifying theory

EFs widely known as ‘folklore’ in statistical community — but
most literature focused on optimality in specific settings

Aim here to summarise theory in accessible & generally
applicable terms, & look at some applications

Reference
Jesus, J. and R.E. Chandler (2011). Estimating functions and the gen-
eralized method of moments. Interface Focus, 1(6), 871-885.
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Outline of talk

Remainder of talk

1 Review of EF theory
(a) Main definitions & properties
(b) Example 1: the generalised method of moments
(c) Example 2: Whittle likelihood

2 Application to rainfall models
3 Summary
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Review of estimating function theory

Estimating functions: overview of theory

Definition (estimating function / equation)

Given a model with p× 1 parameter vector θ, and a n× 1 vector y of
data values, suppose that θ is estimated by solving an equation of the
form

g(θ;y) = 0 (1)

where g(·; ·) is a vector-valued function containing p elements. Such
a function g(·; ·) is an estimating function (EF), and an equation of the
form (1) is an estimating equation.

Often g(θ; ·) is gradient vector (e.g. of log-likelihood or error sum
of squares) — but framework doesn’t require this
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Review of estimating function theory

Asymptotics: target of estimation

Extend notation: let Yn be n×1 vector of random variables;
gn(·; ·) be corresponding EF; θ̂n be root of equation

gn(θ;Yn) = 0 . (2)

Implicit assumption: (2) has at least one root.

Definition (target of estimation)

Assume existence of sequence (ηn) of p×p matrices, independent of θ

and such that as n→∞, ηngn(θ;Yn) converges uniformly in probability
to a non-random function, g` (θ) say, with the following properties:

1 The equation g` (θ) = 0 has a unique root at θ = θ0.
2 g`(·) is bounded away from zero except in neighbourhood of θ0.

Then θ0 is target of estimation or object of inference.
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Review of estimating function theory

Asymptotics: convergence of the estimator

Result
Under conditions given above, as n→ ∞ the EF defines a unique esti-
mator θ̂n that converges in probability to θ0.

Comments on conditions:
Often easy to establish pointwise convergence of ηngn(θ;Yn) but
uniform convergence can be technically challenging
Some approaches to ensure uniform convergence:

Assume parameter space is compact.
Impose conditions of smoothness on EFs {gn (θ; ·)}.
Write EF as continuous function of finite vector Tn(Yn) of statistics,
which itself converges in probability to some limiting value.

More details: van der Vaart (1998) Asymptotic statistics, Ch. 5.
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Review of estimating function theory

Asymptotics: limiting distribution

Result

Assume existence of sequences (γn) and (δn) of invertible p×p
matrices that do not depend on θ and are such that:

1 limn→∞ Var(g̃n (θ0;Yn)) = Σ̃ where g̃n (θ;Yn) = γngn (θ;Yn) and
Σ̃ is a positive definite matrix.

2 Defining G̃n(θ) = ∂g̃n/∂θ, within a neighbourhood of θ0 the matrix
G̃n(θ)δn converges uniformly in probability to an invertible matrix
M(θ) with elements that are continuous functions of θ.

Then limn→∞ E
(

θ̂n

)
= θ0 & limn→∞ Var

(
δ
−1
n θ̂n

)
= M−1

0 Σ̃
(
M−1

0

)′
where M0 = M(θ0).

If, in addition, g̃n (θ;Yn) has limiting multivariate normal (MVN)
distribution then so does δ

−1
n θ̂n.
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Review of estimating function theory

Comments on limiting distribution

Conditions are easy to check & hold in wide variety of settings

Can often set ηn = n−1Ip×p, γn = δn = n−1/2Ip×p but different
choices needed for (e.g.) long-memory processes, combinations
of stationary and non-stationary elements of gn (·; ·) etc.

Limiting result more usefully restated for operational use:

Operational statement of limiting result

Let Σn denote covariance matrix of gn (θ0;Yn). Then under pre-

vious assumptions, and if G0 = E
[

∂gn/∂θ|
θ=θ0

]
exists, θ̂n ∼

MVN
(

θ0,G−1
0 Σn

[
G−1

0

]′)
approximately in large samples.
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Review of estimating function theory

Extensions of result

Generalisation available without requiring existence of
expectations or covariance matrices (Sweeting, 1980, Ann. Stat.
8, 1375-1381).
Extension to processes for which sequence

(
G̃n(θ)δn

)
converges in distribution to random matrix M0; then inference
about θ0 is conditional upon realised value of M0 (Sweeting,
1992, Ann. Stat., 20, 580-589).

Needed, e.g., when regressing time series upon random walk
covariate
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Review of estimating function theory

Model comparison

Limiting result forms basis for testing hypotheses of form
H0 : Ξθ = ξ0 where Ξ is q×p matrix of rank q.

Let Γn = G−1
0 Σn

[
G−1

0

]′
be approximate covariance matrix of θ̂

from operational version of limiting result; then

ξ̂n = Ξθ̂n ∼MVN
(
Ξθ0,ΞΓnΞ′

)
(3)

Suggests quasi-Wald test statistic(
ξ̂n−ξ0

)[
ΞΓnΞ′

]−1
(

ξ̂n−ξ0

)′
(4)

with approximate χ2
q distribution under H0.

Alternative: quasi-score test based on value of EF itself (easiest
when EF is gradient vector so that value under H0 is defined)
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Review of estimating function theory

Model comparison continued

Final option when EF is gradient vector: gn (θ;Yn) = ∂Qn/∂θ say

Let θ̃n be optimiser of Qn under restriction Ξθ = ξ0; then test can
be based on statistic

2
∣∣∣Qn

(
θ̃n;Yn

)
−Qn

(
θ̂n;Yn

)∣∣∣ (5)

Null distribution is that of Z′A−1Z where Z∼MVN (0, Iq×q) and
A = ΞG−1

0 Ξ — can approximate with scaled and shifted χ2 dbn.

NB results yield standard χ2 asymptotics when g(·; ·) is gradient
of log-likelihood.

Some practical and theoretical benefits from adjusting Qn(·; ·)
before calculating (5) — see Chandler & Bate, 2007, Biometrika,
94, 167-183 in context of mis-specified log-likelihoods.
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Review of estimating function theory

Practical issues

Recap: limiting result

θ̂n ∼MVN
(

θ0,G−1
0 Σn

[
G−1

0

]′)
approx., where Σn = Var [gn (θ0;Yn)]

& G0 = E
[

∂gn/∂θ|
θ=θ0

]
.

Need consistent estimators of Σn & G0

Can use any estimator for which estimation error is asymptotically
negligible compared with quantity being estimated.

Some options:
Plug estimate θ̂n into expressions for G0 and Σn, if available.
For M0, numerical differentiation of gn (·; ·) at θ̂n.
Use empirical estimator for Σn — needs replication e.g. by
splitting data into (quasi-)independent subsets
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The generalised method of moments (GMM)

Example 1: the generalised method of moments (GMM)

Consider vector Tn = Tn (Yn) of k ≥ p summary statistics with:
E [Tn] = τ(θ)
limn→∞ Var [γnhn (θ;Yn)] = S for some sequence (γn) of k× k
matrices that do not depend on θ, where hn (θ;Yn) = Tn− τ(θ).

Estimate θ by minimising

Qn (θ;Yn) =
[
h̃n (θ;Yn)

]′
Wnh̃n (θ;Yn) . (6)

where
h̃n (θ;Yn) = γnhn (θ;Yn)
Wn is k× k matrix with p limn→∞ Wn = W (+ve definite)

Resulting EF is

gn (θ;Yn) = H̃
′
n (θ)Wnh̃n (θ;Yn) (7)

where H̃n (θ) = ∂h̃n/∂θ =−γn∂τ/∂θ.
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The generalised method of moments (GMM)

GMM: comments

Requirements for EF asymptotics translate into convergence and
continuity requirements for Tn and τ(θ), their properties &
derivatives
Large-sample covariance matrix suggests optimal choice of W is
W = S−1

Recap: S is limiting covariance matrix of normalised summary
statistics
NB however: S must be estimated — sampling errors here can
affect inference particularly if k2� p & elements of S are
estimated separately
Alternative (‘2-step procedure’): use preliminary estimate of θ to
obtain improved estimate of S, then re-estimate θ
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Whittle likelihood

Example 2: the Whittle likelihood

Often want to study stationary processes for which likelihood
function is analytically / computationally intractable

1950s: Whittle formulated frequency-domain approximation to full
likelihood for zero-mean Gaussian processes

Subsequent work extended approach to linear, long-memory,
ARCH, locally stationary . . . processes
Alternative justification (REC & TSR, Athens Conference, 1996):
treat sample Fourier coefficients as observations and use
standard large-sample properties (approx. independent & normal
with variance proportional to spectral density):

Justifies use of Whittle estimator in non-Gaussian settings
Accommodates processes with non-zero mean by incorporating
Fourier coefficient at zero frequency
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Whittle likelihood

Whittle likelihood from Fourier coefficients

Definition (Whittle log-likelihood for a stationary process)

logL(θ) = −
bn/2c

∑
j=0

(
1− 1

2
δj,n/2

)[
I(ωj)

h(ωj ;θ)
+ logh(ωj ;θ)

]

− 1
2

[
logh(0;θ) +

(A0−nµ(θ))2

h(0;θ)

]
, where (8)

δ·,· is Kronecker delta

I(ωj) is periodogram at frequency ωj = 2πj/n

h(ω;θ) is theoretical spectral density at frequency ω

A0 = ∑
n
t=1 Yt is sample Fourier coefficient at zero frequency

µ(θ) is theoretical mean of process
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Whittle likelihood

Inference using the Whittle likelihood

Usual approach to inference / uncertainty of Whittle estimator
requires fourth-order spectral density — limits practical
application
EF treatment with empirical covariance matrix estimation
circumvents this:

First noted for zero-mean processes in Heyde, 1997,
Quasi-Likelihood and its applications.

Inclusion of zero-frequency term requires careful treatment (&
many results from Priestley, Robinson etc.)
EF treatment with previous assumptions also requires
0 < h(ω;θ) < ∞; first & second θ-derivatives of h(ω;θ) finite &
continuous; first & second ω-derivatives of h(ω;θ) finite.

Finite spectral density rules out long-memory processes for this
treatment
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Neyman-Scott model

Application to rainfall models

The Neyman-Scott rectangular pulses model

‘Storm origins’: homogeneous
Poisson process, rate λ

Each storm has random number of
cells, C ∼ Poi(µC)

Within storm, cell origins displaced
from storm origin independently
according to Exp(β)

Cell durations: independent Exp(η) Time

Rainfall intensity

Rain cells

Point process

Cell intensities: independent with mean µX and variance σ2
X

This is model used in official UK climate projections
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GMM

GMM for Neyman-Scott model

Simulation study to assess performance

Work with θ = (logλ logµX log(σX/µX ) logµC logβ logη)′

(more computationally stable than original parameterisation)
Generate 1000 simulated datasets

Each represents 20 years’ worth of hourly data for one calendar
month (30 days) — typical of availability in applications
Parameters representative of UK winter rainfall

GMM properties Tn: mean; variance of 1-, 6- & 24-hour totals;
ACF(1) for 1- & 24-hour totals; proportion of dry hours & days

Typical of hydrological practice
Calculated separately for each month — 20 replicates per
simulation allows empirical covariance matrix estimation
Quenouille estimator used for ACF to ensure E(Tn) = τ
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GMM

GMM simulation study continued

Recap: GMM estimator minimises [Tn− τ(θ)]′Wn [Tn− τ(θ)].
Different options for Wn compared:

W1: diagonal, equal weights
W2: diagonal, increased weight to 1-hour mean, variance &
proportion dry (common hydrological practice)
W3: diagonal, inverses of variances of elements of Tn, obtained by
simulation from initial fit using inverses of empirical variances.
W0: inverse of covariance matrix of Tn, obtained by simulation
from initial fits used for W3.

NB W3 & W0 yield two-step estimators
Performance assessment:

Bias & variability of estimators
Coverages of quasi-Wald confidence intervals for each parameter
Coverages of confidence regions for θ based on values of GMM
objective function
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GMM

GMM simulations: bias & variability

Simulated distributions of estimation errors

All weighting
schemes deliver
approx. unbiased
estimators

W1 & W2 prone to
outliers

Distributions ≈
normal for W3 & W0

W0 most efficient as expected

W3 close to W0 (& to first stage in two-step estimator)
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GMM

GMM simulations: coverages

Level logλ logµX logσX/µX logµC logβ logη θ

95% W1 0.94 0.97 0.99 0.99 0.98 0.97 0.89
W2 0.92 0.90 0.90 0.95 0.93 0.98 0.89
W3 0.92 0.95 0.93 0.96 0.94 0.96 0.92
W0 0.94 0.94 0.92 0.94 0.92 0.94 0.94

99% W1 0.98 0.99 0.99 0.99 1.00 0.98 0.96
W2 0.98 0.97 0.96 0.99 0.97 0.99 0.96
W3 0.98 0.98 0.98 0.99 0.98 0.99 0.97
W0 0.99 0.98 0.97 0.99 0.97 0.99 0.98

Coverages reasonable for W3 & W0; less accurate for W1 & W2

Slight undercoverage of all confidence regions for θ based on
values of objective function
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Whittle likelihood

Whittle likelihood for Neyman-Scott model

Similar simulation experiment carried out

For this model, derivative matrix G0 = ∂g/∂θ ill-conditioned for
Whittle EFs: simplify so that cell intensities ∼ Exp(1/µX ) &
σX = µX .
Results indicate that estimators are approx. unbiased but
asymptotic theory can overestimate sampling variability

Possibly due to use of empirical covariance matrix of Whittle EFs
But Wald-based confidence intervals have reasonable coverage

Poor coverage of confidence regions for θ based on values of
log-likelihood itself (e.g. 77% instead of 95%)

Whittle estimates more variable than GMM ones for this model
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Summary

Estimating functions provide general framework for studying
many inference methods

Consistency, asymptotic distributions etc. verified using (fairly)
easy-to-check conditions

Empirical / two-step covariance matrix estimation is useful
alternative to (e.g.) use of fourth-order properties in spectral
estimation

Optimal GMM estimation preferable to spectral likelihoods in
inference for (challenging) stochastic rainfall models
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