Affine equivalence of triangles

Problem: Find an affine map Φ that maps the triangle Δ_{1} with vertices $(1,1)$, $(1,3),(0,2)$ to the triangle Δ_{2} with vertices $(4,3),(3,3),(2,1)$.

Solution: Let Φ_{1} be the affine tranformation that maps the triangle Δ_{0} with vertices $(1,0),(0,1)$ and $(0,0)$ to Δ_{1} and let Φ_{2} be the affine tranformation that maps Δ_{0} to Δ_{2}. The affine map we want is $\Phi_{2} \circ \Phi_{1}^{-1}$.

To find Φ_{1}, we translate Δ_{1} by $(0,-2)$ so that the vertex $(0,2)$ goes to the origin. The other vertices of the translated triangle are $(1,-1)$ and $(1,1)$. If we form a matrix $\left(\begin{array}{cc}1 & 1 \\ -1 & 1\end{array}\right)$, whose column vectors are the co-ordinates of these
vertices, then the linear transformation represented by this matrix maps Δ_{0} to the translated copy of Δ_{1}, by adding back $(0,2)$ we obtain Φ_{1}. Therefore

$$
\Phi_{1}\binom{x}{y}=\left(\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right)\binom{x}{y}+\binom{0}{2} .
$$

By solving $\Phi_{1}\binom{x}{y}=\binom{u}{v}$ for x and y in terms of u and v, we get $x=\frac{u-v}{2}+1$, $y=\frac{u+v}{2}-1$, Therefore

$$
\Phi_{1}^{-1}\binom{u}{v}=\left(\begin{array}{cc}
\frac{1}{2} & -\frac{1}{2} \\
\frac{1}{2} & \frac{1}{2}
\end{array}\right)\binom{u}{v}+\binom{1}{-1} .
$$

It is clear from this form that Φ_{1}^{-1} is also an affine map.

Similarly, to find Φ_{2}, we translate Δ_{2} by $(-2,-1)$ so that the vertex $(2,1)$ goes to the origin. The other vertices of the translated triangle are $(2,2)$ and $(1,2)$. Hence

$$
\Phi_{2}\binom{x}{y}=\left(\begin{array}{ll}
2 & 1 \\
2 & 2
\end{array}\right)\binom{x}{y}+\binom{2}{1} .
$$

Therefore the affine transformation that maps Δ_{1} to Δ_{2} is

$$
\Phi\binom{x}{y}=\left(\Phi_{2} \circ \Phi_{1}^{-1}\right)\binom{x}{y}=\left(\begin{array}{cc}
\frac{3}{2} & -\frac{1}{2} \\
2 & 0
\end{array}\right)\binom{x}{y}+\binom{3}{1} .
$$

