
University of Manchester

School of Electrical and Electronic Engineering

Project Report May 2016

GPGPU: Acceleration of output of data

Author: Loukas Xanthos

University ID of Author: 9408845

Supervisor: Dr. Fumie Costen

Abstract

GPGPU: Acceleration of output of data

Author: Loukas Xanthos

The aim of this project is to speed up the GPGPU accelerated FD-FDTD computation

from the perspective of the output of data.

The data output stage of a piece of software which performs the FD-FDTD computation

on a NVIDIA Kepler GPGPU accelerator was optimised for the output of the field data

at points on a single line parallel to one side of the 3D cubic FDTD simulation space, for

the output of the field data at points on more than one non-consecutive such lines, for the

output of the field data at points on a single plane parallel to one of the faces of the 3D

cubic FDTD simulation space, for the output of the field data at points on more than one

non-consecutive such planes, and for the output of field data at selected non-consecutive

discrete points in the 3D cubic FDTD simulation space. The performance improvement

for each case is presented quantitatively and qualitatively and discussed.

The introduction of one buffer array into the device memory is proven to be beneficial for

all the aforementioned cases, increasing the speed of the output stage of the FD-FDTD

software. Also, the introduction of one buffer array into the host main memory further

improves the speed of the output stage. These two techniques exploit the performance

boost provided by device memory coalescence, elimination of strided host memory access

and modern compiler optimisations.

In the conclusions, possible future work for computationally similar projects adopting

the methodologies presented throughout this report is outlined.

Supervisor: Dr. Fumie Costen

Acknowledgements

I would like to thank my supervisor, Dr. Fumie Costen for her perpetual

support of my academic efforts and encouragement. I consider myself very

lucky to have been her tutee and I owe her my sincere gratitude. Also, I would

like to thank RIKEN in Saitama, Japan, for providing me with the compu-

tational environment which was necessary for my project. Furthermore, I

would like to thank our systems administrator Mr. Keith Williams for build-

ing and maintaining a robust and safe computer environment that facilitates

the secure connection to the RIKEN Login nodes via the servers in Dr. Fumie

Costen’s office at the University of Manchester. Finally, I would like to thank

my family: my mother Amalia, my father Pavlos, and my beloved brother

Nikolaos–Georgios for supporting my studies at the United Kingdom and for

always being there when I need them.

1

Contents

1 Introduction 8

1.1 Introduction . 8

1.2 Motivation . 8

1.3 The Aims and Objectives of this project 9

1.3.1 Aims . 9

1.3.2 Objectives . 9

2 Background 10

2.1 GPGPU . 10

2.1.1 NVIDIA Kepler K20X - Architecture 11

2.1.2 NVIDIA Kepler K20X - Device memories 11

2.1.3 NVIDIA CUDA . 13

2.2 Factors that delay device-to-host transfers: The PCI bottleneck and strided

access of multidimensional arrays . 13

2.2.1 Related work . 14

2.3 The (FD)FDTD software . 14

2.3.1 The (FD)FDTD agorithm . 14

2.3.2 Software components . 16

2.4 The computational environment of this project 18

2.4.1 RIKEN GreatWAVE computer 18

2.4.2 Shell script development for batch job execution and final results

production . 21

3 The transfer of single lines of the (FD)FDTD space between the host

and device memory 23

3.1 Device-to-host transfer of the whole 3D space: The NB33 method 23

3.2 NB13: Non-buffered single line to 3D . 24

3.2.1 NB13X . 24

3.2.2 NB13Y . 24

3.2.3 NB13Z . 25

2

3.3 B13: Buffered single line to 3D, buffer in device memory 26

3.3.1 B13X . 27

3.3.2 B13Y, B13Z . 27

3.4 B11: Buffered single line to 3D, buffers in both host memory and device

memory . 27

3.4.1 B11X . 27

3.4.2 B11Y and B11Z . 28

3.5 Multiple line case . 28

3.6 Transfer of single lines – Results & Discussion 30

3.6.1 NB33: Device-to-host transfer of the whole 3D FDTD space . . . 30

3.6.2 Device-to-host transfers of one line 30

3.6.3 Device-to-host transfers of more than one lines 32

4 Approach for Plane transfer 35

4.1 NB23: Non-buffered plane transfer . 35

4.1.1 NB23Z . 35

4.1.2 NB23Y . 36

4.1.3 NB23X . 36

4.2 B23: Single buffered plane transfer, buffer in device memory 37

4.2.1 B23Y and B23X . 37

4.2.2 B23Z . 37

4.3 B22: Double buffered plane transfer, buffer in both device and host memory 38

4.3.1 B22Y and B22X . 38

4.3.2 B22Z . 38

4.4 Several planes case . 38

4.5 Transfer of discrete planes – Results & Discussion 39

4.5.1 Transfer of a single plane . 39

4.5.2 Transfer of several planes . 41

5 Approach for non-consecutive points 42

5.1 Pseudo-random 3D cartesian coordinates generator in C++11 43

5.2 Modification of the structure of the (FD)FDTD software 45

5.3 RND-DIRECT: Direct device-to-host transfers 45

5.4 RND-LST: Kernel invocation on a POI list, direct buffering, lookup in host 45

5.5 RND-MAP: Kernel invocation on a POI list, buffering, lookup in device . 46

5.6 Results & Discussion . 47

3

6 Conclusions 50

6.1 Achievements . 50

6.2 Self-reflection . 52

References 53

A The 1st semester Progress Report 56

B Pseudocode of algorithms described in this report 87

B.1 Pseudocode for method NB13X . 87

B.1.1 Application of the method on the output stage 87

B.2 Pseudocode for method NB13Y . 87

B.2.1 Application of the method on the output stage 87

B.3 Pseudocode for method NB13Z . 88

B.3.1 Application of the method on the output stage 88

B.4 Pseudocode for method B13X . 88

B.4.1 CUDA Kernel . 88

B.4.2 Application of the method on the output stage 88

B.5 Pseudocode for method B13Y . 89

B.5.1 CUDA Kernel . 89

B.5.2 Application of the method on the output stage 89

B.6 Pseudocode for method B13Z . 90

B.6.1 CUDA Kernel . 90

B.6.2 Application of the method on the output stage 90

B.7 Pseudocode for method B11X . 90

B.7.1 CUDA Kernel . 90

B.7.2 Application of the method on the output stage 91

B.8 Pseudocode for method B11Y . 91

B.8.1 CUDA Kernel . 91

B.8.2 Application of the method on the output stage 92

B.9 Pseudocode for method B11Z . 92

B.9.1 CUDA Kernel . 92

B.9.2 Application of the method on the output stage 93

B.10 Pseudocode for method NB23X . 93

B.10.1 Application of the method on the output stage 93

B.11 Pseudocode for method NB23Y . 93

B.11.1 Application of the method on the output stage 93

B.12 Pseudocode for method NB23Z . 94

B.12.1 Application of the method on the output stage 94

4

B.13 Pseudocode for method B23X . 94

B.13.1 CUDA Kernel . 94

B.13.2 Application of the method on the output stage 94

B.14 Pseudocode for method B23Y . 95

B.14.1 CUDA Kernel . 95

B.14.2 Application of the method on the output stage 95

B.15 Pseudocode for method B23Z . 96

B.15.1 CUDA Kernel . 96

B.15.2 Application of the method on the output stage 96

B.16 Pseudocode for method B22X . 97

B.16.1 CUDA Kernel . 97

B.16.2 Application of the method on the output stage 97

B.17 Pseudocode for method B22Y . 97

B.17.1 CUDA Kernel . 97

B.17.2 Application of the method on the output stage 98

B.18 Pseudocode for method B22Z . 98

B.18.1 CUDA Kernel . 98

B.18.2 Application of the method on the output stage 99

B.19 Pseudocode for method RND-DIRECT 99

B.19.1 Application of the method on the output stage 99

B.20 Pseudocode for method RND-MAP . 100

B.20.1 CUDA Kernel . 100

B.20.2 Application of the method on the output stage 100

B.21 Pseudocode for method RND-LST . 101

B.21.1 CUDA Kernel . 101

B.21.2 Application of the method on the output stage 102

C The source code of the pseudo-random 3D cartesian coordinates gen-

erator in C++11 103

D Technical risk analysis 106

E Risk Assessment 108

5

List of Figures

2.1 Flowchart of the optimised FD-FDTD method implemented by the (FD)FDTD soft-

ware. 15

3.1 Comparison of different line buffer methods, for the transfer of a single line. 31

3.2 Comparison of NB13X, B13X and B11X methods, for the transfer of mul-

tiple lines. 32

3.3 Comparison of B13Y and B11Y methods, for the transfer of multiple lines. 33

4.1 Comparison of different methods, for the output of a single plane in the

3D FDTD space. 40

5.1 Comparison of performance of methods RND-DIRECT, RND-MAP and

RND-LST. 49

List of Tables

2.1 Field arrays used in each of the three main loop parts of the (FD)FDTD soft-

ware. 16

2.2 Sample timing information output produced by the modified (FD)FDTD soft-

ware. 17

2.3 Specification of the ACSG cluster. 19

2.4 Configuration of the ACSG cluster used for the execution of the (FD)FDTD soft-

ware. 19

2.5 Specification of the RIKEN-GreatWAVE front end. 20

3.1 Selection of coordinates for the multiple line buffer tests. 29

6

3.2 Relative “output” timings for the single-line output methods described in

chapter 3. 31

3.3 Relative “output” timings for the single-line output methods described in

chapter 3. 34

4.1 Selection of plane coordinates, for case of several planes. 39

4.2 Relative “output” timings for the single-line output methods described in

Chapter 4. 42

5.1 Number of POI used for performance assessment of methods RND-DIRECT,

RND-MAP and RND-LST. 48

D.1 Technical Risks . 107

7

Chapter 1

Introduction

1.1 Introduction

Nowadays there is a growing need for efficient modelling and simulation software, given

the increasing complexity of engineering and scientific problems faced by the academia

and industry. Hence, modern simulation software attempts to exploit modern hardware

at the maximum degree possible, including the use of advanced features of modern Central

Processing Units (CPUs) and Graphics Processing Units (GPU). This tendency has made

General Purpose GPU processing (GPGPU) a popular solution for the parallel execution

of scientific and engineering computations.

This project examines the possible further optimisation of the parallelised version of

a piece of software, which implements a modified version of the Finite-Difference Time-

Domain (FDTD) [1] method for the solution of the Maxwell equations for the simulation

of propagation of electromagnetic (EM) waves in the 3D space. This piece of software is

adapted for execution on NVIDIA accelerators from its former version that only made

use of the CPU and message-passing interface technologies. Nevertheless, the current

implementation of this piece of software for execution on the GPU is found to be com-

putationally expensive at its data output stage and needs to be further optimised by the

introduction of ad-hoc data output algorithms.

1.2 Motivation

The main use of the FDTD method is the simulation of propagation of EM waves in

the 3D space [2]. However, this method is also employed for the production of computer

simulations of computationally similar phenomena, in the scientific fields of biomedical

engineering [3] and geophysics [4]. In addition, a computationally similar method is

employed for the modelling and solution of Computational Fluid Dynamics (CFD) prob-

8

lems [5]. Thus a comprehensive examination of the possibilities of speeding up the FDTD

computation can be beneficial for a big range of applications.

The author was provided with a parallelised and vectorised Frequency-Depended

FDTD ((FD)FDTD) software (hereinafter “the (FD)FDTD software”), which was de-

veloped by Dr. Fumie Costen’s research group at the University of Manchester, with

Dr. Costen’s group reporting that more than half the total execution time of the soft-

ware is spent on the data output stage. At the output stage of the (FD)FDTD software

the field data located in the memory of the accelerator device are transferred into the

system’s main memory. Moreover, there are cases where the (FD)FDTD software user

requires the simulation results for points located on just one line or just one plane of the

FDTD space, or on more lines or planes of the FDTD space, or merely on some selected

points. Therefore not all points in the FDTD space are always of importance to the

(FD)FDTD software user and hence, the output of the field data for the whole FDTD

space can be inefficient.

In addition, such use cases for GPU accelerated versions of the (FD)FDTD method

are not considered in the relevant literature. Hence, an examination of the solution of

the problem of accelerating the data output stage of the (FD)FDTD method, even for

specific use cases, can provide a speed up to the execution of the (FD)FDTD software

and also useful information for computationally similar (memory throughput – limited)

projects, not only from the electrical engineering sector.

1.3 The Aims and Objectives of this project

1.3.1 Aims

“The aim of this project is the acceleration of the FD-FDTD computation on the GPU

from the view point of the data output” [6].

1.3.2 Objectives

• Become familiar with Linux environments, with the RIKEN HOKUSAI GreatWAVE

cluster, with the awk, sed and gnuplot utilities, with Fortran 90 and CUDA Fortran

• Adaptation of the given FD-FDTD software to make it compatible with the RIKEN

HOKUSAI GreatWAVE platform

• Implementation of a wall-time measuring mechanism into the given software

• Development of benchmarking and performance data analysis software

9

• Identification of the main methods used for the acceleration of data transfers be-

tween accelerator hardware (GPU) and main memory (CPU)

• Development of algorithms for the acceleration of the output of FDTD field data

located on: a single line of the FDTD space, more than one lines of the FDTD

space, a single plane of the FDTD space, more than one planes of the FDTD space,

selected points of the FDTD space

• Comprehensive examination of the performance of the above algorithms

Chapter 2

Background

2.1 GPGPU

Nowadays, with GPU cards offering a high number of graphics processing cores, GPUs are

not only used for the output and processing of graphics; they are also used by scientists

and engineers for the acceleration of parallelised and vectorised software. Therefore

accelerator hardware accommodating General Purpose GPUs (GPGPUs) is produced by

major GPU ventors, which apart from its ability to process graphics data and to output

them to displays, it can also be programmed to perform scientific computations, including

floating-point arithmetic.

Accelerators are multi-core devices, commonly facilitating thousands of processing

cores, which are designed with a Single Instruction Multiple Data (SIMD) architecture.

The main difference of accelerators from CPUs lies in the ability of GPGPUs to opti-

mally and quickly process a simple operation performed on thousands of data elements

concurrently, whereas CPUs are mainly designed to quickly perform complex operations

on single data elements. Therefore, GPUs cannot compete with CPUs in the execution

of serial tasks or single-threaded operations, as modern CPUs perform these tasks much

faster. Moreover, the memory installed on GPGPU accelerator cards is often of smaller

data capacity than that of the main memory of a computer machine.

10

2.1.1 NVIDIA Kepler K20X - Architecture

This project employs an NVIDIA Kepler K20X accelerator device to run parallelised and

vectorised software. NVIDIA Kepler K20X accelerators make use of one NVIDIA Kepler

GK110 GPU device (which is referred to as “the device”). The NVIDIA Kepler GK110

GPU has been designed for fast double precision computing performance [7].

The GK110 GPU device which is installed on Kepler K20X accelerators consists of 15

streaming multiprocessors, called “SMX units” [8], and six 64-bit memory controllers [7].

Each of the SMX units has 192 single-precision “CUDA cores”, which are equipped

with fully pipelined integer arithmetic and IEEE 754-2008 compliant single- and double-

precision arithmetic floating-point logic units. An SMX schedules threads waiting for

execution in groups of 32 parallel threads. These groups of 32 parallel threads must

all execute one common instruction, and form a “warp” [9, pp. 69-70]. For example,

a warp could perform the numerical instruction of addition of a constant number to

32 consecutive or non-consecutive GPU memory locations. Warps are scheduled for

execution by four warp schedulers residing on the SMX unit, and eight “instruction

dispatch units” inside an SMX unit allow the issue and interleaved execution of four

warps. However, in GK110 there is a limit of maximum 64 warps per multiprocessor and

a limit of 2048 threads per multiprocessor [7].

2.1.2 NVIDIA Kepler K20X - Device memories

The memory of the accelerator hardware is unified. The addressable memory residing

on the accelerator hardware is called the “device memory”, whereas the main memory of

the computer system is called the “host memory”. The device memory is organised into

different memory units, the access of which is controlled by the device hardware, namely

“global memory”, “local memory”, “shared memory”, “constant memory” and “texture

and surface memory”. In addition, NVIDIA also provides a way of allocating and using a

part of the host memory by Direct Memory Access (DMA), called the “pinned” or “page-

locked” memory. The device memory can only be accessed only via 32-, 64- or 128-byte

memory transactions and these transactions must be physically aligned, i.e. only the

32-, 64- or 128-byte segments of device memory whose first address is a multiple of their

size can be accessed by device memory transactions (thus, the data segments need to

be “naturally aligned”) [9, p. 79]. The device memory of the NVIDIA Kepler K20X

accelerator has a total capacity of 6GB [10]. The GPU chip also provides a two-level

instruction and memory cache hierarchy.

“Global memory” (also referred to as the “device memory” in CUDA programming

context) is the largest memory which is visible to the host and can be accessed by it;

it resides off the GPU chip and it is cached in L2 cache [11]. The accelerator NVIDIA

11

Kepler K20X offers up to 6GB of global memory. Every time an instruction that accesses

global memory is executed in a warp, the warp coalesces the memory access of the threads

within the warp into an optimal number of memory transactions, based on the size of

the word accessed by each thread and “the distribution of these memory addresses across

each thread” [9, p. 79]. Evidently, the programmer must ensure that instructions which

need to access the global memory perform the optimum (smallest) number of coalesced

memory transactions. For example, the device may issue a 32-byte transaction (it cannot

be of less capacity) for each thread in a warp, if each thread needs to access 8 bytes of

global memory; thus, the instruction throughput is divided by 8
32

= 4, as the execution

of the instruction shall last 4 times longer than necessary due to the time needed for

the completion of the data transactions, which are 4 times bigger than needed by each

thread.

In addition, global memory instructions can only read or write words of size 1, 2, 4, 8

or 16 bytes [9, p. 80]. For any command that accesses data residing in global memory to

compile to a single data transaction instruction, their data type needs to be 1-, 2-, 4-, 8-

or 16-bytes long and “naturally aligned”. Otherwise, the command compiles to multiple

instructions that perform non-coalesced overlapped data access patterns. The built-in

Fortran data types employed in the (FD)FDTD software are at most 8 bytes long, and

therefore the access of such data fulfils this alignment requirement.

The maximisation of global memory throughput is a main point of concern of this

project, as the 3D arrays which accommodate the data of the electromagnetic fields in the

(FD)FDTD software and which are desired to be outputted, reside in the accelerator’s

global memory. For the maximisation of global memory throughput, the maximisation

of the coalescing is important [9, p. 79], which can be achieved by using data types that

conform to the alignment requirements, by data padding and/or by patterned (aligned)

memory access.

Page-locked memory (also called “pinned host memory”) is an allocated memory

segment of host memory, which is isolated from the operating system’s paging mechanism.

This kind of memory achieves the highest theoretical bandwidth between the host and

the device. However, pinned host memory is a “scarce resource” [12, p. 72], it is not

always available [13, p. 24] and is highly depended on the operating system and the

specific application under development [12, p. 72]. As this project tries to achieve its

aims using methods that can be employed by similar projects, independently of specific

operating system behaviour, the use of this kind of memory is not considered in this

project.

12

2.1.3 NVIDIA CUDA

Compute Unified Device Architecture (CUDA) is an architectural model and framework

for general-purpose GPU development which was released by NVIDIA in 2007[14]. The

(FD)FDTD software of this project is developed in the CUDA Fortran programming

interface, but CUDA also supports other programming interfaces and languages such as

C, C++, DirectCompute and OpenACC [9, p. 4].

CUDA introduces the concept of the CUDA “kernel”. Kernels are source code seg-

ments that accept parameters and behave like C functions. However, a kernel is executed

N times concurrently, by N CUDA threads, conversely to C functions that execute in a

serial manner [9, p. 9].

In addition, CUDA provides a mechanism of abstractions to CUDA developers. A

key abstraction is the hierarchy of thread groups. A multithreaded CUDA program is

partitioned into blocks of threads. CUDA threads can be identified by their “thread

index”, which can be 1D, 2D or 3D. Thus, they can form a 1D, 2D or 3D block of

threads, called a “thread block” [9, p. 10]. Blocks are organised into one 1D, 2D or 3D

“grid” of thread blocks. The number of thread blocks in a grid can exceed the number of

thread processors. The dimensions of thread blocks and of the grid of blocks are specified

on each kernel invocation statement of CUDA applications.

Threads within a block can share data through “shared memory” (which is not acces-

sible by the host) and their execution is scheduled for optimal execution by the hardware,

according to the memory accesses the threads perform. The execution of threads can also

be explicitly synchronised by software, via API calls [9, p. 12]. Conversely, thread blocks

do not share access to memory segments and must must be able to execute indepen-

dently [9, p. 12], i.e. no assumption must be made about the order of their execution.

2.2 Factors that delay device-to-host transfers: The

PCI bottleneck and strided access of multidi-

mensional arrays

Modern GPU accelerators are attached to hosts using the PCI-Express (PCIe) interface.

The PCIe interface features a raw bit rate of 8GT/s and 8Gb/s/lane/link [15]. Therefore,

the low PCIe bandwidth becomes a bottleneck in cases of frequent device-to-host or host-

to-device data transactions, as threads performing such data transfers suspend until these

transfers are completed. Evidently, programmers need to achieve a high device occupancy,

i.e. to execute a big number of threads, so that the memory transfer operations performed

by the device are much fewer than any other kind of processing operations that take place

13

in the device cores at any moment in time [16][17][18].

In addition, device-to-host and host-to-device transactions can benefit from the CPU

cache. In such transactions, data must be transferred to or from the host main memory,

with the intervention of the CPU (with the exception of pinned memory transactions,

which are outside the scope of this report). The transactions of adjacent main memory

addresses result in more cache hits, which means that a higher percentage of the requested

data can be found in a CPU cache, and thus they can be fetched into an instruction or

be updated by an instruction, with a smaller latency than the corresponding operations

on the main memory would require. Then, the contents of the main memory can be

updated accordingly without any noticeable latency, due to processor pipelining. The

transactions of non adjacent main memory addresses result to a higher cache miss rate,

i.e. fewer cache hits per transaction and thus, result in a latency equal to the cache miss

penalty per transaction that misses the cache. A common example of such transactions

is strided array traversal.

The (FD)FDTD software is proven in this report to be a memory throughput–limited

piece of software. The same holds for computationally similar software such as other

Maxwell equation solvers that use the FDTD method and CFD software [5]. Therefore

the two main problems this project faces is the PCI bottleneck in device-to-host trans-

actions and the latency introduced by the output of the 3D FDTD field arrays of the

(FD)FDTD software, from the device memory to the host memory.

2.2.1 Related work

There seems to be no published scientific article or treatise focused on the problem

of the output of FDTD field data from the device memory to the host memory, or

other computationally similar problems. Often, the acceleration of merely the main

computation algorithm (FDTD) is considered using GPGPU, rather than the acceleration

of the output stage of such applications, such as in [19] and [20], in which nothing is

mentioned about the data output to the host memory, and [21], in which the output

of data to the host memory is mentioned without details. However, publications [19]

and [21] agree with [9], [12] and [13] on the importance of memory coalescing for the

minimisation of the latency induced by instructions that perform memory access.

2.3 The (FD)FDTD software

2.3.1 The (FD)FDTD agorithm

The (FD)FDTD software given to the author for the purposes of this project, implements

the (FD)FDTD method for the simulation of the propagation of EM waves in the 3D

14

Start

End

set time step n = 1

Initialise all fields with 0, initialise the
boundary conditions and the sources,

initialise the 3D space

Update H-field from E-field for sub-
step 1

Update D-field from H-field for sub-
step 1

Update E-field from D-field for sub-
step 1

Source Excitation in the D-field for
sub-step 1

set time step n = n+1

n ≥ n_max

Update the boundary conditions for
sub-step 1No

Output of
field data for
sub-step 1Yes

Update H-field from E-field for sub-
step 2

Update D-field from H-field for sub-
step 2

Update E-field from D-field for sub-
step 2

Source Excitation in the D-field for
sub-step 2

Update the boundary conditions for
sub-step 2

Output of
field data for
sub-step 2

Update H-field from E-field for sub-
step 3

Update D-field from H-field for sub-
step 3

Update E-field from D-field for sub-
step 3

Source Excitation in the D-field for
sub-step 3

Update the boundary conditions for
sub-step 3

Output of
field data for
sub-step 3

Figure 2.1: Flowchart of the optimised FD-FDTD method implemented by the
(FD)FDTD software.

space, and through frequency-depended materials of known electrical properties (Debye

parameters). A mathematical description of this method can be found in Section 2.1 of

the Progress Report of this project attached in Appendix A of this report.

A flowchart of an abstraction of the (FD)FDTD method is illustrated in Figure 2.1

Specifically, the (FD)FDTD software is optimised by dividing each discrete FDTD time

step in three discrete time sub-steps, as described mathematically in Appendix B of the

Progress Report (attached in Appendix A of this report). This optimisation provides

the compiler the ability to pipeline the processing of some of the processing stages of the

(FD)FDTD algorithm in the final executable file.

In addition, the software implements the E, H and D fields by using three 3D

arrays for each field component, where it stores the scalar value of each of the x, y and

z components of each EM field, for every FDTD time sub-step. Thus, the loop depicted

in Figure 2.1 is implemented which operates on the field component arrays shown in

Table 2.1. These three sub-step stages of the main loop are called the three “main loop

parts” of the (FD)FDTD software.

Therefore, the (FD)FDTD software employs 21 different arrays in total, of size (Nx, Ny, Nz)

each, for the description of the values of the x, y and z components at each point in the

3D FDTD space, for each discrete FDTD time-step. The (FD)FDTD software initialises

these arrays in both the host and device memory, copies any input data from the host

memory onto the device memory and begins the FD-FDTD computation in the GPU

15

Field component
arrays updated by
main loop part #1

Field component
arrays updated by
main loop part #2

Field component
arrays updated by
main loop part #3

E
[1]
x (Nx, Ny, Nz)

E
[1]
y (Nx, Ny, Nz)

E
[1]
z (Nx, Ny, Nz)

Hx(Nx, Ny, Nz)
Hy(Nx, Ny, Nz)
Hz(Nx, Ny, Nz)

D
[1]
x (Nx, Ny, Nz)

D
[1]
y (Nx, Ny, Nz)

D
[1]
z (Nx, Ny, Nz)

E
[3]
x (Nx, Ny, Nz)

E
[3]
y (Nx, Ny, Nz)

E
[3]
z (Nx, Ny, Nz)

Hx(Nx, Ny, Nz)
Hy(Nx, Ny, Nz)
Hz(Nx, Ny, Nz)

D
[3]
x (Nx, Ny, Nz)

D
[3]
y (Nx, Ny, Nz)

D
[3]
z (Nx, Ny, Nz)

E
[2]
x (Nx, Ny, Nz)

E
[2]
y (Nx, Ny, Nz)

E
[2]
z (Nx, Ny, Nz)

Hx(Nx, Ny, Nz)
Hy(Nx, Ny, Nz)
Hz(Nx, Ny, Nz)

D
[2]
x (Nx, Ny, Nz)

D
[2]
y (Nx, Ny, Nz)

D
[2]
z (Nx, Ny, Nz)

Table 2.1: Field arrays used in each of the three main loop parts of the (FD)FDTD soft-
ware.

device. No data transaction between the device memory and the host memory takes

place before the output stage of each main loop part. At each output stage, the field

component arrays shown in Table 2.1 are copied from the device memory into the host

main memory, for the purposes of further processing and/or storage to a file or printing

to the standard output; because, if the data of the final results are not copied into the

host main memory, they cannot be stored or printed.

The parallelised field update routines run in linear time with respect to max(Nx, Ny, Nz)

for each time step, thus they have a computational complexity of O(nmax×max(Nx, Ny, Nz))

each (nmax being the number of time steps of the FDTD simulation), but the software

needs to output at least 21 arrays of size (Nx, Ny, Nz), thus having memory complexity

O(Nx×Ny×Nz) and the corresponding computational complexity Θ(nmax×Nx×Ny×Nz)

for the transfer of each field component array, which is proven in Section 3.1 to have a

big impact on the total execution time of the (FD)FDTD software, compared to the time

needed for the execution of the routines for the calculation of the field values at any time

step. Hence, the (FD)FDTD software is memory-throughput limited, and thus the need

for the optimisation of the performance of its output stage emerges.

2.3.2 Software components

The (FD)FDTD software receives input from file “input_params”, located in the same

directory. File “input_params” is a text file that has the structure “description: value”

per line. This file contains the desired duration of the (FD)FDTD simulation (number

16

of time steps), the number of EM oscillation sources and their locations, their frequency,

the size of the simulation space and other information.

From Figure 2.1 it becomes transparent that the (FD)FDTD software can be perceived

as consisting of three main components or stages:

1. src: The component which consists of the sub-routines of the main loop that

perform source excitation in D field,

2. fdtd: The component which consists of the sub-routines of the main loop that

perform field updates (excluding any source excitation routines),

3. output: The component which consists of the sub-routines of the main loop that

perform data output operations).

Thus, for the purposes of this project, time-measuring source code was developed

and introduced in the source code of the (FD)FDTD software. The time-measuring

source code employs the Fortran function system_clock for the measurement of the

total execution time (wall-time) [22] of each main software component for each FDTD

time sub-step. Attention was also given on handling possible timer wrap-arounds (i.e.

the overflow of integer variables holding timing information). Hence, output similar to

that in Table 2.2 is produced in the standard output stream, at the end of the execution

of the (FD)FDTD software:

Timings by loukas (wall time)

prog 42279568 or 42.27957 s

src 13288758 or 13.28876 s

fdtd 9320457 or 9.320457 s

output 19668385 or 19.66838 s

Table 2.2: Sample timing informa-

tion output produced by the modified

(FD)FDTD software.

The first column of this information indi-

cates what part of the software the timing mea-

surements in the rest of the line correspond to.

The string “prog” means that information for

the elapsed wall-time for the execution of the

whole software, excluding the time needed for

the allocation and deallocation of arrays, follows

in the same line. The string “src” means that

information for the accumulated elapsed wall-

time for the execution of the src component of

the software follows in the same line. The string

“fdtd” means that information for the accumulated elapsed wall-time for the execution

of the fdtd stage of the software follows in the same line, and the string “output” means

that information for the accumulated elapsed wall-time for the execution of the output

stage follows in the same line.

The second column of this timing information output is a positive number indicating

the accumulated elapsed CPU clock ticks for the stage stated in the first column. The

fourth column of this timing information output is the overall elapsed time in seconds, for

17

the software component mentioned in the first column. Hence, the example in Table 2.2

indicates that the corresponding instant of the (FD)FDTD software needed 42.28 seconds

to run - excluding the time needed for the allocation or the deallocation of its arrays, the

source update routines needed a total of 13.29 seconds to run, the (FD)FDTD update

routines took 9.32 seconds to run, whereas 19.67 seconds elapsed for the output of the

fields arrays from the device memory to the host memory, for all FDTD time steps.

For the purposes of this project, only the output stage of the (FD)FDTD soft-

ware is further modified. However, each execution attempt of a specific instant of the

(FD)FDTD software results in different timing information being outputted, due to ran-

dom factors such as the system load at the time of software execution. Nevertheless,

it can be safely assumed that the relative time difference of the output time (and the

elapsed time of any other software stage) to the prog time due random factors is negli-

gible. Hence, a useful indicator of how the elapsed total time of the output stage varies

due to software modifications, can be the ratio of the output time to the total elapsed

prog time, which excludes the time needed for main memory and device memory allo-

cation and deallocation (as the time for memory allocation/deallocation can be affected

by random factors too). Thus, this report uses the relative output time, i.e. the ratio ξ

described by Eq. 2.1 for the assessment of the performance of each ad-hoc algorithm.

Relative output time ξ =
“output” time in seconds

“prog” time in seconds
(2.1)

For example, the (FD)FDTD execution instant corresponding to Table 2.2 has a relative

output time ξ = 19.66838
42.27957

≈ 0.465198203.

2.4 The computational environment of this project

2.4.1 RIKEN GreatWAVE computer

The supercomputer system HOKUSAI-GreatWAVE in RIKEN, Saitama, Japan was used

for the development, debugging and execution of the source codes of this project. RIKEN

is Japan’s largest pioneering research institution for basic and applied science [23]. In

particular, the “Application Computing Server with GPU” (ACSG) [24, pp.2-3] was used

for the purposes of this project. Table 2.3 ([24, pp. 2, 3, 5, 6]) contains the specification of

the ACSG cluster. The specific configuration of the ACSG cluster used for the execution

of the (FD)FDTD software is listed in Table 2.4.

The RIKEN-GreatWAVE system and its subsystems, including the ACSG cluster,

are shared between many users. However, the users do not have direct access to the

supercomputer clusters. The RIKEN GreatWAVE system employs a back end – front

18

Nodes 30 nodes of SGI C2108-GP5

CPU
Intel Xeon E5-2670 v3 (2.30GHZ)
x 30 units (60CPUs, 720 Cores)

Theoretical peak
performance

26.4 TFLOPS (2.3 GHz x 16
floating-point operations x 12
cores x 60 CPUs)

Theoretical peak
performance per
node

883.2 GFLOPS

Memory capacity 1.8 TB (64GB x 30 units)

Memory band-
width 68.2 GB/s/CPU and 0.15 Byte/FLOP

Accelerators in-
stalled per node

(4 devices/node) x NVIDIA Tesla
K20X

Node interconnect
interface InfiniBand FDR

Node link band-
width 6.8 GB/s x 2 (bidirectional)

Local disk capacity
18 TB ((300GB x 2) x 30 units)

Operating System Red Hat Enterprise Linux 6 (kernel version 2.6) 64-bit

Table 2.3: Specification of the ACSG cluster.

Nodes 1
Number of CPU cores 8

Number of GPUs 1
Maximum elapsed time 2 hours

Table 2.4: Configuration of the ACSG cluster used for the execution of the
(FD)FDTD software.

19

Operating System
Red Hat Enterprise Linux 6
(Linux kernel version 2.6) 64-bit

CUDA Fortran
Compiler

The Portland Group Fortran
90/95 compiler (PGI F90 com-
piler) v. 15.5-0 64-bit target on
x86-64 Linux -tp sandybridge

Native C++ com-
piler for ACSG

Intel(R) C++ Compiler [ICC]
v.16.0.2

Assembler & Bi-
nary utilities

GNU Assembler version
2.20.51.0.2-5.36.el6 20100205
configured for target x86 64-
redhat-linux and GNU binutils
v2.20.51

Table 2.5: Specification of the RIKEN-GreatWAVE front end.

end structure; it provides four login nodes, called the “front end” [24], whereas the su-

percomputer clusters such as ACSG form the “back end”. Users may access the front

end servers via a Secure-Shell (SSH) connection for the purposes of software develop-

ment, tuning, compilation and linking [24]. Users may also use the front end servers for

submitting executable software (called “jobs”) on to a queue for execution on the back

end. Specifically, for each job the users desire to submit for execution on the back end,

they have to submit a job shell script, which contains information about the location

of the executable which they want to have executed, the cluster they want the job to

be executed on, the maximum number of nodes and processes (threads) they want their

software to occupy, and the maximum elapsed time for the job execution. If a job exceeds

the specified elapsed time, it is “killed” and the user is notified by an e-mail message.

If the executable programme of the job produces any output to the standard output or

the standard error, this output is stored in a text file in the same directory. The amount

of waiting time for a job to be executed on a specific back end varies depending on the

total number of jobs submitted to the specific supercomputer, their maximum elapsed

time and other factors. Thus, the amount of waiting time for a job to be submitted to

the back end can vary from zero seconds (job is processed by the back end immediately)

to five days or more.

The software development environment provided in the front end is shown in Ta-

ble 2.5 ([24]). The provided PGI F90 compiler pgf90 had to be used for the compi-

lation of CUDA Fortran applications, as currently it is the only CUDA Fortran com-

piler. The compilation of all CUDA Fortran applications of this project was done using

20

the pgf90 compiler arguments ta=tesla:cc35 -tp=haswell-64 -Mpreprocess -Minfo

-Mcuda=kepler+ -fast. As the RIKEN-GreatWAVE system was built just a few months

before the beginning of this project and the GPU development hardware and software

equipment was ready just weeks before the project started, the development environ-

ment did not work as provided without problems. For example, the compilation of

CUDA Fortran source codes first resulted in error messages, which originated due to the

GNU Assembler (and thus the gnu-binutils package) being of an older version than

the compiler required. For this reason, the administrators of RIKEN-GreatWAVE were

contacted via e-mail. They suggested the manual installation of a newer version of the

package gnu-binutils package inside the home directory of our user (the author and

postgraduate students in Dr. Fumie Costen’s research group share access to the RIKEN-

GreatWAVE supercomputer by using the same username to connect to the front end).

Hence, the version 2.25.1 of the GNU Binutils package (which includes the GNU Assem-

bler of the same version) was installed in the corresponding home directory on the front

end by the author of this report. Also, another problem that arose during the progression

of this report was that the version 15.5-0 of the PGI F90 compiler is lagging behind the

CUDA Fortran specification. For example, while a device=device variable assignment

is valid syntax in CUDA Fortran [13, p.30], the PGI F90 compiler stops compilation and

outputs an error message when encounters such an assignment statement outside of a

CUDA kernel. For such data transfers that take place outside of a CUDA kernel, the

corresponding explicit function call method has to be used instead.

2.4.2 Shell script development for batch job execution and final

results production

As the RIKEN-GreatWAVE system is shared amongst its users, the the overall execution

time (wall-time) of running applications can be affected by the system load. Therefore,

for the purposes of this project, each performance test was run three times and the

resulting timing counts were averaged, to eliminate the effects of random system load

bursts to the performance tests while they were executed. These averaged results are the

final results used throughout this report.

For the facilitation of the production process of such results, a number of bash shell

scripts and awk scripts were developed. Namely, script rawdata2relative.awk was de-

veloped in the awk language; this script calculates the relative output time ξ from the

standard output of one performance test or from the aggregated standard output of more

performance tests. Script gettestcasenames.sed was coded in the sed stream ma-

nipulation language; script gettestcasenames.sed extracts the name of a performance

test out of its filename. The awk script “getdataoutput.awk” extracts and outputs

21

one line per performance test (after the output of these tests is processed by script

gettestcasenames.sed), which contains the name of the performance test, and the cor-

responding relative output time ξ, separated by a single space. Script grabdata.sh au-

tomatically aggregates in one file the standard output produced by all performance tests

inside the current working directory, has the relative output time ξ of each performance

test calculated by calling the awk script “rawdata2relative.awk” from the correspond-

ing wall-time information (in seconds), and employs scripts gettestcasenames.sed and

getdataoutput.awk to automatically produce results ready to-be-plotted for every per-

formed performance test.

There have been occasions during the project’s progression, where the submission of

more than 100 jobs for execution on the back end was required (such as the performance

tests of the multiple lines case – Section 3.5, and of the several planes case – Section 4.4).

However, cluster ACSG has a limitation on the number of concurrent submitted jobs;

only 100 jobs are allowed to be queued at the same time [24, p. 66]. For this reason a bash

shell script, named “run_diagonal.sh”, was developed allowing the mass submission of

many jobs to the ACSG back end. Script ‘run_diagonal.sh finds all performance tests

that reside within a common directory and have the same suffix in their filename and

pushes them into a stack structure. Then, while the stack contains at least one element,

it checks the number of jobs that are queued for execution by filtering the output of the

pjstat command; While this number is greater than 80 jobs, the script suspends its

execution for 10 minutes, and then the check of the number of queued jobs is repeated. If

less than 80 jobs are queued up for execution on the back end, the script pops one element

out of the stack and submits it for execution on the back end using the pjsub command.

The contents of the stack at any time and the output of the pjsub command are saved

in two files, “TMPJOBSLEFT” and “jobsubd.log” respectively, to make the processes of

logging and job deletion (in case of accidental execution) easier. For the case of accidental

mass job submission, the bash script “deletejobs.sh” was developed, which requests

the immediate deletion of the submitted jobs listed in file “jobsubd.log” in the current

working directory.

22

Chapter 3

The transfer of single lines of the

(FD)FDTD space between the host

and device memory

3.1 Device-to-host transfer of the whole 3D space:

The NB33 method

The first step of practical progress of this project was the measurement of the time needed

for the transfer of the field data for the whole 3D simulation space (or, for a non–buffered

‘3D array to 3D array’ transfer, which is named as ‘NB33’ transfer, according to the

naming convention used in this report), for each (FD)FDTD time step and for each of

the E, H and D fields, via a direct host=device assignment. This is the trivial

solution to the data transfer problem in the case of simulating the propagation of EM

waves within a cubic 3D space using the (FD)FDTD software. However, this execution

time percentage ξNB33 forms the basic term of comparison for assessing the performance

of other data transfer methods/algorithms, in case the user of the (FD)FDTD software

is interested in a proper subset of the points of the 3D simulation space.

As highlighted in Section 2.3.1, the (FD)FDTD software employs 21 arrays to describe

the cartesian components of each of the E, H and D fields, at each discrete point in the

3D space, at the current FDTD time step. Each of these arrays is a 3D array of size equal

to the (FD)FDTD simulation space, which throughout this project is kept constant and

equal to (Nx, Ny, Nz) = (374, 374, 374), as with this size a big amount of global memory

is occupied (≈ 5340 MB) and thus there are 699MB free for the introduction of any

auxiliary arrays. Also, the number of FDTD time steps used throughout this project

was set to 102, to be large enough to allow the assessment of a general behaviour of a

specific data transfer method, and small enough for the (FD)FDTD simulation not to

23

require a large amount execution time.

3.2 NB13: Non-buffered single line to 3D

Sections 3.2, 3.3 and 3.4 examine the case where the Points Of Interest (POI) 1 are

located on one or more single lines of the (FD)FDTD space which are parallel to one of

the edges of the (FD)FDTD cube (and thus, parallel to the x, y or z axis).

The trivial solution to the single-line POI problem is to pass the data from the acceler-

ator’s (“device”) memory to the system’s main memory with a host=device assignment

statement. The implementation of this method is straightforward and effortless.

3.2.1 NB13X

The transfer of field data at points in the FDTD space which are parallel to the x axis

is considered. These are all the discrete points that are located at coordinates / array

indices (x, y, z) = (i, cy, cz), 1 ≤ i ≤ 374, where cy, cz = constant between 1 and 374

inclusive. The resulting execution time was found to remain invariable with changes in

cy, cz.

On code level, each data transfer is described as a host=device assignment for the

transfer of the span of the x dimension of a field array, for each of the E, H and D fields

(nine 3D arrays in total). Thus, Nx× 9 = 374× 9 = 3366 array cells are transferred from

the device to host, or 3366× 4 bytes = 13464 bytes, as each field component array is of

type real*4. A pseudocode description of method NB13X can be found in Appendix B.

This method of data output is the trivial solution for the case where the POI lie on a

single line which is parallel to the x axis. Thus, this method would be preferred over the

non-buffered transfer of the whole FDTD space (the “NB33” method), as it performs a

memory transaction with less data (a single line of the 3D space, which forms 1
3742

of the

data transferred by the “NB33” method), which also happens to be read from consecutive

device memory addresses, since FORTRAN is a column-major language [25], thus it is a

coalesced memory transaction. Hence, in theory this data transfer method (“NB13X”)

outperforms the non-buffered transfer of the whole 3D (FD)FDTD space (“NB33”).

3.2.2 NB13Y

A modification of the above method (“NB13X”) concerns the case where the POI are

located on a single line parallel to the y axis. These are all the points which are located

1Points Of Interest (POI): The points which are desired to be transferred into the host’s main memory
for the purpose of further data processing and/or storage

24

at coordinates / array indices (x, y, z) = (cx, j, cz), 1 ≤ j ≤ 374, where cx, cz = constant

between 1 and 374 inclusive.

On code level, each data transfer is described as a host=device assignment for the

span of a y dimension of each of the E , H and D fields (thus, from nine 3D arrays in

total). This method of data output is the trivial solution for the case where the POI are

lying on a single line which is parallel to the y axis. A pseudocode description of method

NB13Y can be found in Appendix B.

Although this transfer method is very similar to the one above (“NB13X”), it is ex-

pected to perform worse. This method requires strided memory access, with a stride of

Nx = 374 array cells, due to FORTRAN being a column-major language. As each of the

arrays representing the electric or magnetic fields is of type real*4, the stride length is

Nx×(4 bytes) = 374×(4 bytes) = 1496 bytes. Nevertheless, the amount of data trans-

ferred from the device to host is still Ny = 374 array cells, or 374×4 bytes = 1496 bytes

(for each of the E , H and D fields), which is significantly less than transferring the

whole 3D FDTD space ([Nx × Ny × Nz × 4 = 3743 × 4] bytes = 209.25 MB per field

component array). Therefore, this difference in the amount of data to be transferred

could result in faster execution than the “NB33” method, when the POI are located on

just one line oriented in the y direction. Nevertheless, there are no officially published

thorough performance characteristics related to the stride of global memory access by

NVIDIA. Hence, a slowdown relative to NB13X could happen with the NB13Y method

instead of a speedup. The performance tests of the implementation of this method shall

reveal whether or not this method leads to faster execution than method NB33.

3.2.3 NB13Z

This method is the trivial solution of the problem where the POI are located on a sin-

gle line that is parallel to the z axis. Again, this method is similar to “NB13X” and

“NB13Y”, but it has a drawback, which is the length of the stride for the z direction.

Since FORTRAN is a column-major language, the access of an array in the z direction

has a stride length of Nx ×Ny = 374× 374 = 139, 876 array cells. However, the amount

of data on a single line in the z direction is Nz = 374 array cells, or 1496 bytes (as

indicated in the above sections), therefore a faster execution than the “NB33” method

could be expected, in the case where the POI are located on a single line oriented in

the z direction. Again, as there is no officially published treatise of the device memory

access characteristics, a slower execution than method NB33 can also be expected. A

pseudocode description of method NB13Z can be found in Appendix B.

25

3.3 B13: Buffered single line to 3D, buffer in device

memory

Methods “NB13Y” and “NB13Z”, presented above, access the field arrays in the host

system in a strided manner. Because of the stride, device-to-host transfers are not co-

alesced, thus a decrease in data transfer throughput is expected. Also, strided access

increases the host processor’s cache miss ratio, resulting in larger execution time of ev-

ery device-to-host transfer operation for which a cache miss occurs. At the same time,

the (FD)FDTD software cannot make any progress with updating the H field again,

since the operations of the corresponding CUDA kernel have to wait for the data transfer

happening in the default stream to finish its execution[13, ch. 2.10.2, p. 11]. Assigning

a different CUDA stream number to either the field update CUDA kernels or the data

transfer operations is not a solution, since the field update routines could replace the field

data intended to be transferred, before the desired data move takes place. A potential

optimisation could be the introduction of line buffers between the device memory and

the host memory, as a device-to-device transfer is expected to be completed faster than a

device-to-host transfer [26]. There seems to be no quantitative information on how much

faster a device-to-device transfer is, as the throughput achieved in any case is application

and implementation specific.

The “B13” transfer methods aim to exploit this possible throughput difference, intro-

ducing a 1D array in the device memory, eliminating the strided device memory access

and its effects during device-to-host transfers, and increasing the coalescence of the data

transfer operation between the device and the host memory. Then, a buffering-perfoming

kernel is spawn during each transfer, with a grid that contains one block. The block con-

sists of 512 threads. This number of threads per block was chosen empirically, as kernels

with 512 threads per block performed better for the following tasks (B13X, B13Y and

B13Z) than other multiples of 32 (i.e. multiples of the warp size).

The kernel code checks whether or not the id of the current thread is between 1 and

Nx = Ny = Nz = 374 inclusive. If it is not, the corresponding thread terminates, thus

avoiding any out-of-bounds array access. Threads that have an id number between 1

and 374 inclusive copy a value from a cell of a 3D field array which resides in the device

memory, into a cell of a 1D array (buffer) also in the device memory. When all the

threads of the kernel terminate, the 1D buffer array contains the values of each POI in

a line of a 3D field array. A pseudocode description of methods B13X, B13Y and B13Z

can be found in Appendix B.

26

3.3.1 B13X

The B13X method implements a 1D buffer residing in device memory. A kernel is

launched before each data transfer, which copies a line parallel to the x axis of the

(FD)FDTD space to the 1D buffer, as described in Section 3.3. When the kernel finishes

its execution, a host=device statement is used to copy the 1D buffer from the device

global memory into a field array in the main memory of the host. This procedure is

followed for each of the nine field component arrays.

Although a performance improvement of the NB13X method is not supported by the

theory using the B13X method, the B13X method is implemented and tested, as there

is no proof it may perform worse than the NB33 method, given the high GPU device

complexity and its possible undocumented performance characteristics.

3.3.2 B13Y, B13Z

Methods B13Y and B13Z follow the methodology described in 3.3, which is also followed

by the B13X method. The B13Y method stores a line parallel to the y axis of the

(FD)FDTD space into the 1D buffer, whereas the B13Z method stores a line parallel

to the z axis of the (FD)FDTD space into the 1D buffer. Then, both methods copy

the buffered line into the 3D field array. A performance improvement is expected with

these methods compared to the NB13Y and NB13Z methods respectively, as CUDA

FORTRAN is a column-major language and the access of a line in the y or z direction

results in strided array accesses, which is eliminated from accelerator’s side using the

B13Y and B13Z methods.

3.4 B11: Buffered single line to 3D, buffers in both

host memory and device memory

Another optimisation of the NB13Y and NB13Z methods, could be the introduction of

a buffer in the host memory. Specifically, a 1D array can be placed into the host main

memory, eliminating the stride of access of the host=device assignment operations.

Pseudocode descriptions of the B11 methods (B11X, B11Y and B11Z) can be found in

Appendix B.

3.4.1 B11X

The B11X method copies the field component data on a single line of the (FD)FDTD space

parallel to its x axis into a 1D buffer in the device memory. he contents of the 1D buffer

in the device memory are copied into a 1D buffer in the host main memory. The contents

27

of the 1D buffer in the host memory can then be further processed and/or stored on

user’s demand.

Like with the B13X method, a performance improvement of the NB13X method is

not supported by the theory using the B11X method. Nevertheless the B11X method

is implemented and tested, as there is no proof it will perform worse, given the high

GPU and CPU complexity and their possible undocumented performance characteristics,

combined with the the complexity of possible compiler optimisations.

3.4.2 B11Y and B11Z

Methods B11Y and B11Z perform the method described in 3.4. Method B11Y stores a

line of the (FD)FDTD space, parallel to its y axis into the 1D buffers, whereas the B11Z

method stores a line of the (FD)FDTD space that is parallel to its z axis, into the 1D

buffers. A performance improvement is expected with these methods compared to meth-

ods B13Y and B13Z respectively, as well as NB13Y and NB13Z, as CUDA FORTRAN is

a column-major language and the access of a line in the y or z direction results in strided

array accesses, which is eliminated from the side of the host, using methods B11Y and

B11Z.

3.5 Multiple line case

Section 3.5 concerns the case where the POI lie on multiple lines of the (FD)FDTD space.

This case involves multiple lines parallel to just the x, just the y or just the z axis. The

investigation of how many single such lines can be transferred from the device memory

to the host memory in less time than it takes for the field data of the whole 3D FDTD

space to be copied from the device to the host (the NB33 method), would constitute a

useful piece of information for the further development of the (FD)FDTD software and

computationally similar projects. Methods NB13, B13 and B11 will be used in tests for

this purpose.

For the assessment of the performance of these algorithms on the multiple line case,

the location of the lines used in the test cases must be taken into consideration. If

consecutive lines with respect to one coordinate are selected for a test, e.g. all the lines

parallel to the x axis, at y = i, 1 ≤ i ≤ 374, then such tests would be pointless, since

the lines could be aggregated using one of the plane-transfer algorithms described in

Chapter 4, therefore the transfer could be coalesced and be executed more efficiently.

Hence, the selection of lines shown in Table 3.1 was made, with Nb, 1 ≤ Nb ≤ 374 being

the number of lines to-be-transferred from the device memory to the host main memory.

This selection of coordinates aims to eliminate the appearance of multiple lines on a same

28

plane of the 3D simulation space and at the same time to access the 3D arrays of the

field components with big strides in both y and z, or x and z, either x and y, directions

(strides of length b374/Nbc array elements).

Line buffer methods Coordinates chosen

NB13X, B13X, B11X

y = bi×Ny/Nbc = bi× 374/Nbc
z = bi×Nz/Nbc = bi× 374/Nbc = y
i ∈ N, 1 ≤ i ≤ Nb

NB13Y, B13Y, B11Y

x = bi×Nx/Nbc = bi× 374/Nbc
z = bi×Nz/Nbc = bi× 374/Nbc = x
i ∈ N, 1 ≤ i ≤ Nb

NB13Z, B13Z, B11Z

x = bi×Nx/Nbc = bi× 374/Nbc
y = bi×Ny/Nbc = bi× 374/Nbc = x
i ∈ N, 1 ≤ i ≤ Nb

Table 3.1: Selection of coordinates for the multiple line buffer tests.

So far, three possible methods were considered (NB13, B13, B11), for three line cases

(the line with the POI being parallel to the x, y and z axis), and the maximum number of

tests per line direction is Nx = Ny = Nz = 374. Hence, a need emerges for 3 methods×
3 directions×374 = 3, 366 tests to be produced. Consequently, the process of the test case

development and execution had to become automated, to meet the projects’ deadlines.

For this purpose, the workaround of utilising the (FD)FDTD software’s main input text

file “input_params” was decided, as it was a solution which was quick to implement and

it would not make the (FD)FDTD software require more input files to run, thus keeping

the inode count of the RIKEN GreatWAVE front-end “user” as low as possible. More

specifically, a line is inserted after the existing second line of file “input_params”, with

the string “nbuff: ” followed by the number of lines to be transferred on the current test-

case. Next, a bash shell script was developed, which produces all 3,366 tests mentioned

above, placing each one in an appropriately named subdirectory that starts with the

prefix “DIAG-”; for example a sub-directory with name “DIAG-B11Z-32” indicates that

it contains a B11Z test with 32 lines parallel to the z axis of the FDTD space. Finally,

the batch-run and results-grabbing shell script described in Section 2.4.2 were employed

to run all 3,366 tests and to retrieve the results in a single file. In addition, a script was

produced in the Ruby programming language, which compares the relative output time

of each test with the output time of the NB33 method, and decides, for each line-transfer

method, the maximum number of lines which guarantees faster execution than the NB33

method.

29

3.6 Transfer of single lines – Results & Discussion

3.6.1 NB33: Device-to-host transfer of the whole 3D FDTD

space

The relative ‘output’ time for the NB33 transfer method was found to be 0.754213. This

means that transferring the data for the whole 3D space (which contains 3743 discrete

points) from the global memory of the NVIDIA accelerator to the main memory of the

host computer system, for each of the 102 time steps and for each of the E, H and

D fields, uses the 75.4213% of the total execution time of the (FD)FDTD simulation.

This verifies the claim of Dr. Fumie Costen’s research group, that more than half of the

execution time of their vectorised and parallelised FDTD software is spent on the output

of data.

Here it is noteworthy that if the number of time steps is increased, the overall simu-

lation time also increases, but the ‘output’ time percentage remains virtually constant,

as about 0.75% of the total run time is spent on the ‘output’ stage. However, if the size

of each edge of the cubic (FD)FDTD space increases, this percentage increases, as more

data need to be read from the device memory and be transferred through the PCI-E bus,

thus a bigger time delay is introduced at the ‘output’ stage. Nevertheless, the number

of 102 time steps was chosen for this project, for the reasons highlighted in Section 3.1.

3.6.2 Device-to-host transfers of one line

The resulting average relative output times ξ̄ of each of the methods NB13X, NB13Y,

NB13Z, B13X, B13Y, B13Z, B11X, B11Y, B11Z are shown in Table 3.2 and Figure 3.1.

Method NB13X executes faster than method NB33, with a speedup of 0.754213
0.672170

= 1.12

gained. This happens because method NB13X makes a single coalesced device-to-host

transfer of less data than NB33, as highlighted in subsection 3.2.1. Therefore, in theory

there is no delay factor acting upon the device-to-host transfer, as no misaligned access

happens, and since the data to-be-transferred is of smaller aggregated size in comparison

to method NB33, the NB13X transfer happens faster than NB33. The relative output

time of method NB13Y approaches the relative output time of method NB33. It is

marginally faster than NB33, but since a stride of 374 array elements is introduced, which

corresponds to 1, 496 bytes (as explained in subsection 3.2.2), the memory transactions

happen with low coalescence. This leads to a low device multiprocessor occupancy, which

results to low effective bandwidth. This effect is more intense in method NB13Z, where

the stride of memory access is 139,876 array cells or 559,504 bytes (as explained in

subsection 3.2.3), making method NB13Z slower than method NB33 by 0.02%.

30

 0.66

 0.68

 0.7

 0.72

 0.74

 0.76

NB33 NB13X NB13Y NB13Z B13X B13Y B13Z B11X B11Y B11Z

R
e
la

ti
v
e
 o

u
tp

u
t
T

im
e

Method used for output

Comparison of relative output time achieved with different line transfer methods

Relative output time
relative output time of method NB33

Figure 3.1: Comparison of different line buffer methods, for the transfer of a single line.

Line transfer method Relative output time
NB33 0.754213

NB13X 0.672170
NB13Y 0.750759
NB13Z 0.754362
B13X 0.668951
B13Y 0.670431
B13Z 0.668215
B11X 0.663475
B11Y 0.664764
B11Z 0.664784

Table 3.2: Relative “output” timings for the single-line output methods described in
chapter 3.

31

3.6.3 Device-to-host transfers of more than one lines

The process which is described in Section 3.5 was followed. The results of the Ruby

script are shown in Table 3.3. All methods that concern lines parallel to the x axis, i.e.

NB13X, B13X, B11X, executed faster than a NB33 transfer. This is due to the fact that

iterating over the x dimension of the field arrays does not lead to strided array access in

the Fortran programming language (as it is column-major) and thus no delay factors due

to non-coalesced device memory access or CPU cache misses are introduced. However,

Figure 3.2 reveals that no statement can be made about which of these methods is the

fastest for the transfer of multiple non-adjacent lines which are parallel to the x axis of

the FDTD space, as the comparative performance of each method depends on the number

of non-adjacent lines to-be-transferred from the device memory to the host memory.

 0.65

 0.66

 0.67

 0.68

 0.69

 0.7

 0.71

 0.72

 0.73

 0.74

 0 50 100 150 200 250 300 350

re
la

ti
v
e
 o

u
tp

u
t
ti
m

e

number of POI

Comparison of methods NB13X, B13X and B11X

NB13X
B13X
B11X

Figure 3.2: Comparison of NB13X, B13X and B11X methods, for the transfer of multiple
lines.

Amongst the methods that concern lines which are parallel to the y or the z axis of the

FDTD space, by using the double-buffered methods, i.e. methods B11Y and B11Z, faster

execution than the NB33 method, for 374 non-adjacent lines or fewer, is guaranteed. By

the accumulation of the data to-be-transferred in the device-side buffer, the effects of

strided device memory access on the data transfer bandwidth are eliminated. Also, by

using a host-side line buffer, the effects of strided RAM access are eliminated leading to

an increased data transfer bandwidth at the host side.

On the other hand, the faster execution of method NB13Y in comparison to NB33,

for more than one line, is not guaranteed. With methods NB13Y and NB13Z, the latency

caused by misaligned global memory and RAM access exceeds the latency due to the big

volume of data to-be-transferred in the NB33 case. The rate of transfer of lines which are

32

parallel to the z axis of the FDTD space is improved if a device-side buffer is used, as up

to 142 non-adjacent lines can be transferred using the B13Z method, quicker than using

the NB33 method. Table 3.3 reveals that method B11Z is the fastest for transferring lines

which are parallel to the z axis of the FDTD space, in comparison with methods NB13Z

and B13Z, as with method B11Z the faster execution of the output stage than method

NB33 is guaranteed for up to 374 non-adjacent lines. For the transfer of lines which are

parallel to the y axis, methods B13Y and B11Y guarantee faster execution than method

NB33 for 374 non-adjacent lines or fewer. Figure 3.3 reveals that the introduction of

the host-side buffer (method B11Y) does not always perform faster memory transactions

than method B13Y, as the relative performance of these two methods is depended on the

number of POI.

 0.65

 0.66

 0.67

 0.68

 0.69

 0.7

 0.71

 0.72

 0.73

 0.74

 0 50 100 150 200 250 300 350

re
la

ti
v
e
 o

u
tp

u
t
ti
m

e

number of POI

Comparison of methods B13Y and B11Y

B11Y
B13Y

Figure 3.3: Comparison of B13Y and B11Y methods, for the transfer of multiple lines.

33

Line transfer method

Number of lines
which guarantees
faster performance
than NB33

NB13X 374
NB13Y 1
NB13Z 0
B13X 374
B13Y 374
B13Z 142
B11X 374
B11Y 374
B11Z 374

Table 3.3: Relative “output” timings for the single-line output methods described in
chapter 3.

34

Chapter 4

Approach for Plane transfer

Nine methods were considered for transferring a plane of the 3D FDTD space from the

accelerator’s global memory into the main memory of the host. The approach to the

plane-transfer problem is similar to that followed for the transfer of lines in the FDTD

space, and thus, the naming convention used for naming the plane transfer methods

is congruous with the one used for naming the line transfer methods. The problem of

the plane transfer is solved using non-buffered transfer methods (NB23), single-buffered

transfer methods (B23, with a device-side buffer) and double-buffered transfer methods

(B22, with a device-side and a host-side buffer). These methodologies are applied for

planes parallel to the x-y plane, parallel to the y-z plane and parallel to the x-z plane. A

pseudocode description of all methods described in Chapter 4 can be found in Appendix

B.

4.1 NB23: Non-buffered plane transfer

4.1.1 NB23Z

Method NB23Z concerns the device-to-host transfer of a single plane parallel to the x-y

plane of the FDTD space. On code level, these planes, which are named as “X-planes”

according to the naming convention used in this report, are defined by the coordinates /

array indices (x, y, z) = (i, j, c) with 1 ≤ i, j ≤ Ny = Nz = 374, i, j ∈ N and c = const

with c ∈ N, 1 ≤ c ≤ Nz = 374. Method NB23Z makes a non-buffered X-plane transfer

from the device memory to the host memory. The data for the Nx ×Ny = 374× 374 =

139, 876 points transferred with this method are located in adjacent memory addresses

(because Fortran is column-major). Therefore, a high hit ratio is expected from the CPU

cache, and the device-to-host data transfers performed by this method are coalesced.

Hence, this method is expected to perform faster than the NB33 method.

35

4.1.2 NB23Y

Method NB23Y concerns the device-to-host transfer of a single plane parallel to the x-z

plane of the FDTD space. On code level, these planes, which are named as “Y -planes”

according to the naming convention used in this report, are defined by the coordinates /

array indices (x, y, z) = (i, c, j) with 1 ≤ i, j ≤ Nx = Nz = 374, i, j ∈ N and c = const

with c ∈ N, 1 ≤ c ≤ Ny = 374. Method NB23Y makes a non-buffered Y -plane transfer

of the data of Nx × Nz = 374 × 374 = 139, 876 points from the device memory to the

host memory. As Fortran is a column-major language, this method performs, for each

field array, Nx = 374 coalesced transfers, followed by a strided memory read and write,

which has a stride length of Nx × (Ny − 1) = 374× (374− 1) = 139, 502 array elements,

which is ensued from Nx = 374 coalesced transfers. This pattern is followed foreach field

array (for the 21 field arrays described in Section 2.3.1), and Nz = 374 times in total, i.e.

until the transfer of the Nx × Nz = 374 × 374 = 139, 876 array elements is completed.

Hence, it is not clear whether or not this method will perform worse than method NB33;

performance tests shall reveal which method runs faster.

4.1.3 NB23X

Method NB23X concerns the device-to-host transfer of a single plane parallel to the y-z

plane of the FDTD space. On code level, these planes, which are named as “X-planes”

according to the naming convention used in this report, are defined by the coordinates /

array indices (x, y, z) = (c, i, j) with 1 ≤ i, j ≤ Ny = Nz = 374, i, j ∈ N and c = const

with c ∈ N, 1 ≤ c ≤ Nx = 374. Method NB23X makes a non-buffered X-plane transfer

of the data of Ny × Nz = 374 × 374 = 139, 876 points from the device memory to the

host memory, As Fortran is a column-major language, this method performs, for each 3D

field array, Ny = 374 data transfers with a stride of Nx = 374 array elements, followed

by a strided memory read and write, which has a stride length of Nx× (Ny − 1) = 374×
(374− 1) = 139, 502 array elements, which is ensued from Nx = 374 coalesced transfers.

This pattern is followed foreach field array, and Nz = 374 times in total, i.e. until the

transfer of the Nx × Nz = 374 × 374 = 139, 876 array elements is completed. Hence,

a poorer performance than method NB33 is expected with this method. Nevertheless,

as there is no officially published documentation of the memory access characteristics of

the accelerator device, this method was also examined, as it consists the trivial, most

straightforward method for transferring an “X-plane”.

36

4.2 B23: Single buffered plane transfer, buffer in de-

vice memory

4.2.1 B23Y and B23X

Methods B23Y and B23X are optimisations of methods NB23Y and NB23X respectively,

with the introduction of a device-side buffer. More specifically, with methods B23Y and

B23X, a 2D buffer (with dimensions equal to a “Y -plane” or a “X-plane” respectively)

is placed into the device memory. On demand for a field data transfer, a buffering-

performing kernel is launched; the kernel is spawn for each field, with a 1D grid which

contains one 2D block. The block has size (x, y) = (Nx, Nz) = (374, 374), for method

B23Y, and size (x, y) = (Ny, Nz) = (374, 374) for method B23X. This dimensions were

chosen empirically. The kernel employs a device=device statement to copy the con-

tents of a “Y -plane” or an “X-plane” of a 3D field array into the 2D buffer. After the

device=device statement finishes executing, methods B23Y and B23X copy the contents

of the 2D buffer into a plane of the corresponding 3D electromagnetic field array. A faster

device-to-host field data output is expected using methods B23Y and B23X instead of

NB23Y and NB23X respectively, as the time-consuming misaligned device-to-host data

moves are replaced by a sequential and aligned device memory access.

4.2.2 B23Z

With method B23Z, a 2D buffer (with dimensions equal to a “Z-plane”) is placed into

the device memory. On demand for a field data transfer, a buffering-performing kernel

is launched; the kernel is spawn for each field, with a 1D grid which contains one 2D

block. The block has size (x, y) = (Nx, Ny) = (374, 374). This dimensions were chosen

empirically. The kernel employs a device=device statement to copy the contents of

a “Z-plane” of a 3D field array into a 2D buffer.After the device=device statement

finishes executing, method B23Z copies the contents of the 2D buffer into a plane of

the corresponding 3D electromagnetic field array. The NB23Z method performs aligned

and sequential data transfers, therefore a performance improvement by using method

B23Z is not supported by the theory. However, this method was implemented and its

computational behaviour was explored, given the undocumented characteristics of the

accelerator and CPU devices, in combination with compiler optimisations.

37

4.3 B22: Double buffered plane transfer, buffer in

both device and host memory

4.3.1 B22Y and B22X

A further optimisation of methods B23Y and B23X was considered, which concerns the

introduction of a 2D buffer in the host memory. With methods B22Y and B22X, a 2D

buffer is placed into the device memory, and a kernel is spawn, exactly as in methods

B23Y and B23X respectively. Methods B22Y and B22X further introduce a 2D array in

the host memory, acting as a host-side buffer for the device-to-host memory transactions.

The introduction of a 2D buffer which constitutes the end-point of field data transfers

can eliminate the time delay happening due to strided host memory access, and thus

increase the efficiency of the ‘output stage of the (FD)FDTD software for the output of

a “Y -plane” or a “X-plane”, for methods B22Y and B22X respectively.

4.3.2 B22Z

Method B22Z also employs a 2D buffer in the host memory. The field data are moved

from the buffer in the device memory into the buffer in the host memory. Although a

speedup of the output stage is not supported by the theory, this method was implemented

and its computational behaviour was examined, given the lack of official documentation

on performance characteristics of memory transfer operations of the CPU or GPU devices

and given the complex nature of modern compiler optimisations.

4.4 Several planes case

The multiple planes case concerns the investigation of the transfer of “Z-planes”, “Y -

planes” and “X-planes”. Specifically, the multiple planes performance tests examine how

many planes in the FDTD space can be transferred from the device to the host memory,

in shorter time than using the method NB33, by using methods NB23X, NB23Y, NB23Z,

B23X, B23Y, B23Z, B22X, B22Y, B22Z.

Similarly to Section 3.5, non-adjacent discrete planes were used for the assessment

of the performance of these algorithms, because should adjacent discrete planes were

chosen for these performance tests, their transfer could be coalesced in a single trans-

fer, and thus be executed more efficiently. Hence, the selection of planes illustrated

in Table 4.1 was made, with Nb, 1 ≤ Nb ≤ 374 being the number of planes to-be-

transferred from the device memory to the host main memory. This selection of plane

coordinates leads to strided memory accesses taking place between plane reads/writes,

38

Line buffer methods Coordinates of planes chosen

NB23X, B23X, B22X
x = bi×Nx/Nbc = bi× 374/Nbc
i ∈ N, 1 ≤ i ≤ Nb

NB23Y, B23Y, B22Y
y = bi×Ny/Nbc = bi× 374/Nbc
i ∈ N, 1 ≤ i ≤ Nb

NB23Z, B23Z, B22Z
z = bi×Nz/Nbc = bi× 374/Nbc
i ∈ N, 1 ≤ i ≤ Nb

Table 4.1: Selection of plane coordinates, for case of several planes.

with stride length equal to b374/Nbc array elements, per field array. Thus, a number of

3 tests × 3 discrete plane types × 374 different cases = 3, 366 tests had to be produced.

Hence, the process was automated using the same software infrastructure as in Section 3.5.

Specifically, the modified structure of file “input_params”, with the introduction of the

“nbuff: ” line was used for specifying the number Nb. A bash shell script was pro-

duced, which produces all 3, 366 different cases for testing, placing each one inside a

subdirectory that starts with the prefix “DIAG-”; for example, a subdirectory with name

“DIAG-B23Y-101” indicates that it contains a B23Y test-case with 101 discrete planes

parallel to the x-z plane. Also, the script in the Ruby programming language, which was

produced for the multiple line tests (described in Section 3.5) was used to investigate,

for each plane-transfer method, the maximum number of planes which guarantees faster

execution of the output than the NB33 method.

4.5 Transfer of discrete planes – Results & Discus-

sion

4.5.1 Transfer of a single plane

The average relative output times ξ̄ of each of the methods NB23X, NB23Y, NB23Z,

B23X, B23Y, B23Z, B22X, B22Y, B22Z are presented in Figure ??.

Method NB23Z executes faster than method NB33, with a speedup of 0.754213
0.753033

≈ 1.0016

gained. According to the theory, the speedup should have been greater, as method NB23Z

theoretically makes a single coalesced device-to-host transfer of less data than NB33, as

highlighted in Section 4.1.1. However, a speedup of 0.754213
0.668391

≈ 1.1284 is achieved – in

comparison to method NB33 – with the single-buffered method B13Z, and a speedup of
0.754213
0.665379

≈ 1.1335 is achieved with the double-buffered method B11Z. According to the

theory, a major speed up of method NB13Z was not anticipated using the buffered versions

39

 0.66

 0.68

 0.7

 0.72

 0.74

 0.76

NB33 NB23Z NB23Y NB23X B23Z B23Y B23X B22Z B22Y B22X

R
e
la

ti
v
e
 o

u
tp

u
t
T

im
e

Method used for output

Comparison of relative output time achieved with different plane transfer methods

Relative output time
relative output time of method NB33

Figure 4.1: Comparison of different methods, for the output of a single plane in the 3D
FDTD space.

for “Z-planes”, as these methods were expected to perform coalesced and continuous

memory transactions, for which a buffer would not be beneficial. Therefore, this low

performance gain of method NB23Z relative to method NB33 and the high performance

gain of methods B23Z and B22Z could be explained as undocumented device (GPU and

CPU) performance behaviour, in combination with the PGI F90 compiler optimisations

enabled by the -fast compiler argument.

The use of method NB23Y leads to a speedup of 0.754213
0.753283

≈ 1.0012 in comparison

to method NB33. The relative output time of 0.753283 achieved by method NB23Y

suggests the strided data access taking place with this method affects much its execution

time, yet not as much as to constitute method NB23Y slower than method NB33 for

the transfer of a “Y -plane”. A speedup of 0.754213
0.670004

≈ 1.1257 is achieved by using method

B23Y in relation to method NB33, and thus 0.753283
0.670004

≈ 1.1243 relative to method NB23Y.

Hence, the device-side buffer provided a greater speed boost to the output stage of the

(FD)FDTD software, by coalescing the data transfers into one single transfer. Method

B22Y runs faster than method B23Y, with relative output time ξ = 0.665822, thus

achieving a speedup of 0.754213
0.665822

≈ 1.1328 relative to method NB33 and of 0.753283
0.665822

≈ 1.1314

relative to method NB23Y. Hence, the elimination of strided array access patterns in the

host main memory by the introduction of the 2D buffer in the host-side memory, resulted

in faster memory-transfer operations, as expected by the theory (Section 4.2.1).

Method NB23X has relative output time ξ = 0.758424, thus it is slower than method

NB33 by a factor of 0.758424
0.754213

≈ 1.0066 . Therefore the strided access pattern described

in Section 4.1.3 in addition to the misaligned device memory access constitutes method

NB23X inefficient for a transferring the field data corresponding a plane in the FDTD

40

space from the device memory into the host memory. However, method B23X is of

increased efficiency in comparison to method NB23X, as it achieves a relative output

time ξ = 0.674913, and thus a speedup of 0.754213
0.674913

≈ 1.1175 relative to method NB33, due

to the elimination of misaligned device memory access by the introduction of the device-

side 2D buffer array. The double buffered method B22X achieves a relative output

time ξ = 0.6678, and therefore a speedup of 0.754213
0.6678

≈ 1.1294 relative to method NB33

and a speedup of 0.674913
0.6678

≈ 1.011 relative to method NB23X. This figure means that

the elimination of strided host memory access due to the introduction of the 2D host-

side buffer decreases the relative output time – as suggested in Section 4.3.1, and thus

decreases the overall execution time of the (FD)FDTD software.

4.5.2 Transfer of several planes

The algorithms described in Section 4.4 were implemented and their performance was

assessed. The results of the Ruby script are shown in Table 4.2. Evidently, since method

NB23X is slower than method NB33, the number of discrete “X-planes” that can be

transferred from the device memory into the host memory using method NB23X, in a

shorter time than if method NB33 is used, is zero. The relative “output” time ξ of

methods NB23Y and NB23Z does not differ much from the time ξ of method NB33,

therefore only one discrete plane can be transferred from the device memory to the host

memory using methods NB23Y and NB23Z quicker than if method NB33 is used.

The introduction of a buffer in the device memory is beneficial for methods NB23X

and NB23Y, yet for method NB23Z, as it increases the number of planes that can be

transferred from the device memory to the host memory quicker than if method NB33 is

used, from 1 (method NB23Z) to 71 (method B23Z). Also, method B23Y can transfer 37

more planes than method NB23Y, and method B23X can transfer 44 more planes than

method NB23X, faster than method NB33 can.

The most efficient methods for transferring planes from the device memory to the host

memory is the doubled-buffered methods. Doubled-buffered method B22X can transfer

49 planes in shorter time than method NB33 needs, which is 4 more planes than the

corresponding single-buffered method B23X. Method B22Y can transfer 41 more planes

than the corresponding single-buffered version B23Y. The host-side buffer is beneficial

yet for method B22Z, as compiler optimisations make possible the quicker transfer of 114

planes than if method NB33 is used, which is 43 more planes than the corresponding

single-buffered method, the NB23Z method, can transfer in the same time interval.

41

Plane transfer method

Number of planes
which guarantees
faster performance
than NB33

NB23X 0
NB23Y 1
NB23Z 1
B23X 45
B23Y 38
B23Z 71
B22X 49
B22Y 79
B22Z 114

Table 4.2: Relative “output” timings for the single-line output methods described in
Chapter 4.

Chapter 5

Approach for non-consecutive points

Another use case for the output of the (FD)FDTD software is the case where the POI are

discrete points at various locations in the FDTD space, which are not necessarily consecu-

tive in the x, y or z direction. Hence, this report examines the performance and efficiency

of three ways of copying the data of such POI from the device memory to the host memory,

namely: “RND-DIRECT”, “RND-MAP” and “RND-LST” (the names of these methods

originated during the development of this project). A pseudocode description of methods

RND-DIRECT, RND-MAP and RND-LST can be found in Appendix B. For the assess-

ment of the performance of methods ‘RND-DIRECT”, “RND-MAP” and “RND-LST”,

the location of each point amongst the POI must be specified into the (FD)FDTD software

and each of these methods must be executed for an increasing number of POI. Trivially,

the condition 1 ≤ [Number of POI] ≤ Nx ×Ny ×Nz = 374 × 374 × 374 = 52, 313, 624

must hold. Evidently, the process of the performance assessment of methods ‘RND-

42

DIRECT”, “RND-MAP” and “RND-LST” must be automated – at least to the extend

of the specification of the locations of the POI.

The selection of unique pseudo-random 3D Cartesian coordinates for the POI is

sufficient for the purposes of the investigation of the performance of methods “RND-

DIRECT”, “RND-MAP” and “RND-LST”. Thus, a piece of software was developed for

the generation of a specified number of such coordinates, and is described in Section 5.1.

In addition, the assessment of the performance of methods “RND-DIRECT”, “RND-

MAP” and “RND-LST” could be quicker if the test-cases of different numbers of POI

can be quickly –and therefore, automatically– produced. Hence, shell scripts were devel-

oped and used for the production of the test-cases. The pseudo-random 3D Cartesian

coordinates generator can accept an argument indicating the number of POI to output,

for the test-case producing shell script to be developed faster and to communicate easily

with the pseudo-random 3D Cartesian coordinates generator software; thus, the produc-

tion of test cases can take place inside a “for” loop of the shell script and the counter of

the loop can be passed to the coordinates generator software as an argument in one line

of code.

5.1 Pseudo-random 3D cartesian coordinates gener-

ator in C++11

For the automated selection of the POI, a pseudo-random 3D Cartesian coordinates

generator was developed in C++. Its source code can be found in Appendix C. This piece

of software receives an argument from the command line, namely “M_poi”, which defines

the number of 3D Cartesian coordinates that this software shall generate. Therefore,

the condition 1 ≤ M_poi ≤ Nx × Ny × Nz = 374 × 374 × 374 = 52, 313, 624 must

hold for the argument M_poi. Hence, M_poi must be of type unsigned long long int.

The Standard Templates Library (STL) [27, p. 3] of the C++11 version of the C++

standard provides a way of converting a string (the command line arguments are passed

into C++ programmes as strings of type char*) to type unsigned long long int in

one line of code: the std::stoull function template [27, p. 713], which this piece of

software employs for this type conversion, as it saves time from the development of the

programme.

The source code of the pseudo-random 3D cartesian coordinates generator software

defines a class named “Coordinate”, which has three public members of type integer (int),

variables x, y and z, representing Cartesian coordinate components. The class overloads

the “less than” operator < to compare two objects of type “Coordinate”. The comparison

returns true if the x component of the left operand is less than the x component of the

43

right operand, and false in the opposite case. If the x components of the two operands are

equal, the comparison returns true if the y component of the left operand is less than the

y component of the right operand, and false in the opposite case. If the x components of

the operands are equal and the y components of the operands are equal, the comparison

returns true if the z component of the left operand is less than the z component of the

right operand and false otherwise.

Having defined the order of objects of type “Coordinate” by overloading the “<”

operator, the software also declares and instantiates a set container (C++ STL std::set

template) of element type “Coordinate”. C++ STL sets are containers that hold objects

of a specified type by the programmer [27, p. 314], and can have objects of that type

inserted into them in logarithmic time [27, p. 324], remove objects and they allow

their search for objects in logarithmic time [27, p. 315]. In addition, C++ STL sets

automatically keep their elements in a sorted order [27, p.314] (and hence the need to

define the overloaded version of operator < with objects of type “Coordinate”) and do

not allow duplicate objects to be inserted. Their property of rejection of duplicates

is utilised in the pseudo-random 3D Cartesian coordinates generator software as the

infrastructure for omitting duplicate coordinates, should such be generated by the pseudo-

random coordinates generator software.

The coordinates generator software begins its execution with converting the first ar-

gument passed on to its main function (i.e. the first command line argument) from type

char* to type std::string and then from type std::string to type unsinged long

long int by using the std::stoull function template, and its value is stored in variable

M_poi. Next, a seed is initialised from the system clock and it enters a “for” loop, with

its loop counter variable set to zero. In each iteration of the loop, three random numbers

are generated, by invoking the pseudo-random number generator function rand() of the

C standard library three times and storing its results to variables rndx, rndy and rndz.

The modulo operation is performed on the results of the rand() and the number one is

added to them, to keep its results bounded between 1 and Nx = Ny = Nz = 374. Then,

an object of type Coordinate is instantiated, with x= rndx, y= rndy, and y= rndy, and

a search operation is carried out on the set, to see if this ordered triple already exists in

the set. If it exists, the current iteration of the “for”-loop is repeated, with the generation

of a new pseudo-random ordered triple. Else, the ordered triple is inserted in the set and

the “for”-loop proceeds to its next iteration, until its counter reaches the value M_poi.

The exact performance of the execution of this piece of software cannot be predicted,

as it depends on the seed value for the pseudo-random number generator function. How-

ever, it was run eleven times (compiled with -O3 compiler optimisations) for the purposes

of this project and each time it could generate 10,000,000 unique 3D Cartesian coordi-

nates within 2 hours on the RIKEN GreatWAVE front-end, and the same amount of

44

unique coordinates in less than 8 seconds on the RIKEN GreatWAVE “ACSG” cluster

back-end, using the same configuration as the (FD)FDTD software.

5.2 Modification of the structure of the (FD)FDTD soft-

ware

For the assessment of methods “RND-DIRECT”, “RND-MAP” and “RND-LST”, the

input stage of the (FD)FDTD software was extended. An additional input file with file-

name “output_points” is read by the (FD)FDTD software, before file “input_params”

is read. The first line of file “output_points” contains a number M_poi, with 1 ≤ M_poi

≤ Nx×Ny×Nz = 374× 374× 374 = 52, 313, 624. The first line of file “output_points”

is followed by M_poi lines containing the 3D Cartesian coordinates of the POI as integers

separated by single spaces. In addition, a 3D array, named poi_lst is declared, which

contains the M_poi coordinates of the POI read from file “output_points”.

5.3 RND-DIRECT: Direct device-to-host transfers

Method RND-DIRECT is the trivial solution to the non-consecutive points problem.

With this method, for each 3D field array, the output stage of the (FD)FDTD software

executes a do-loop, for M_poi total iterations, i.e. for each point amongst the POI. The

body of each do-loop, makes a direct device-to-host memory transfer of the field values

of the point, with a host=device assignment statement.

This method is expected to result in poor device occupancy and in strided host mem-

ory access. Therefore, this method is expected to perform worse than methods RND-LST

and RND-MAP even for few POI and worse than method NB33 for many POI. Compiler

optimisations might be beneficial to some extend, which the performance tests of the

implementation of this method shall reveal.

5.4 RND-LST: Kernel invocation on a POI list, di-

rect buffering, lookup in host

The concept behind method RND-LST is that a copy of the sorted list of POI is kept

inside the device memory. For each field array, a CUDA kernel is launched across each

POI. Thus, each thread should correspond to a specific point in the list of POI. Each

thread copies the field value of the corresponding POI for the corresponding field array

from the 3D array in device memory, into a 1D buffer array of length M_poi also in

45

the device memory. Then, the (FD)FDTD software performs a device-to-host transfer

of the 1D buffer from the device memory, into a 1D buffer in the host main memory,

by a host=device assignment statement. The data from the host-side buffer are then

associated to the corresponding 3D Cartesian coordinates on the host side, and can be

saved and/or be further processed at programmer’s will, which is outside the scope of

this project.

The CUDA kernel is launched with a grid containing one 2D block. The block has

size (x, y) = (bM poi
1024
c+ 1, 1024). The value 1024 was chosen because it allows the biggest

number of M_poi, i.e. number of points for output, which is equal to Nx × Ny × Nz =

374× 374× 374 = 52, 313, 624. Therefore, the id of each thread and block can designate

which point in the POI list must be transferred from the device memory to the host

memory. If the id of a thread and block does not correspond to a point in the POI

list, the thread terminates immediately, before it attempts to perform any data transfer

operations.

The introduction of a device-side buffer is expected to increase the coalescence of the

device-to-host data copy operation, and thus increase the data copy bandwidth. Also,

the introduction of the host-side buffer and the elimination of strided host memory access

is expected to increase the efficiency of the data copy operation. Hence, method RND-

LST is expected to perform faster than method NB33 for up to a few tens of thousands

of POI. It is also expected to be faster than method RND-DIRECT for several POI

(from hundreds to tens of thousands of points) when the CUDA kernel can achieve high

occupancy, but a worse performance than method RND-DIRECT is expected for a few

tens of points, as the occupancy achieved by the CUDA kernel would be too low, due to

most threads in a block being inactive.

5.5 RND-MAP: Kernel invocation on a POI list, buffer-

ing, lookup in device

Method RND-MAP also performs double-buffered device-to-host data transfers, as it

places a buffer in both the device memory and in the host main memory, which provide

the same benefits as for method RND-LST. Method RND-MAP introduces a 3D array

of dimensions (x, y, z) = Nx × Ny × Nz = 374 × 374 × 374 (named as “the map”),

which associates each point in the 3D FDTD space to a specific location (array index) in

the POI buffer arrays (location i in the device-side buffer corresponds only to the same

location i in the host-side buffer). If point (x, y, z) = (i0, j0, k0) in the FDTD space does

not constitute a Point Of Interest, then the map associates this location to the value

zero, i.e. map(i0, j0, k0) = 0. For this reason, the host and device buffers have indices

46

starting from 0, instead of 1, and thus both buffers have length (M_poi + 1) each. Thus, a

CUDA kernel is spawn across all points in the FDTD space, with a 2D grid of dimensions

(x, y) = (Ny, Nz) = (374, 374), which contains a 1D block of dimension x = Nx. These

sizes were chosen empirically. Therefore the id of a thread designate a unique point in

the 3D FDTD space. Each thread in the CUDA kernel translates the combination of its

id number (i) and the id numbers (j, k) of its block, to a point (x, y, z) = (i, j, k) in the

FDTD space; if it corresponds to a point located out of the bounds of the FDTD space,

it terminates immediately. Otherwise, the following operation takes place:

device_POI_buffer(device_POI_map(i,j,k)) = device_3D_field_array(i, j, k)

and the thread terminates. Thus, the map is used to look-up, on the device-side, which

index in the device POI buffer the data of each point in the FDTD space must be copied

into. Then, the corresponding device=device assignment operation takes place, and

finally, when the CUDA kernel terminates, the contents of the device-side buffer are

copied into the host-side buffer via a host=device assignment. Then, the data from the

host-side buffer are associated to the corresponding 3D Cartesian coordinates on the host

side, and can be saved and/or be further processed.

The introduction of the two buffers should provide the same benefits mentioned in

Section 5.4. High occupancy is also expected with this selection of grid and block dimen-

sions for the CUDA kernel employed by method RND-MAP, thus this method is expected

to perform well - better than method NB33 for up to hundreds of thousands of points

and better for method RND-DIRECT for more than a few tens of points, for the same

reasons mentioned in Section 5.4. A comparison of methods RND-MAP and RND-LST

reveals that warps in method RND-MAP must be executed in two steps, which are the

extraction of the value of device_POI_map(i,j,k) and the device=device assignment

of the field value into the device-side buffer; whereas warps of CUDA kernel of method

RND-LST perform the copy to the device-side buffer in one move. This might lead to a

slower performance of method RND-MAP relative to method RND-LST.

5.6 Results & Discussion

Performance tests for methods RND-DIRECT, RND-MAP and RND-LST were created

and run using shell scripts and the pseudo-random coordinates generator software which is

described in Section 5.1 was utilised in the shell scripts for the automation of the test-case

creation process. Table 5.1 illustrates the number of POI used for the performance test

of each non-consecutive points method. The relative output times ξ for every number of

POI of each method were aggregated, and were stored in three files, one for each method.

The results were plotted using the GNU tool gnuplot, and are presented in Figure 5.1.

47

The curves shown in Figure 5.1 are Bezier curves formed by the data points, of degree

23 for method RND-DIRECT, of degree 31 for method RND-MAP and of degree 31 for

method RND-LST. This method was chosen because it produces smooth curves which

clearly indicate the trends followed by methods RND-DIRECT, RND-MAP and RND-

LST for increasing numbers of POI.

Non-consecutive points method Number of POI used for performance assessment

RND-DIRECT

1, 2, 5, 10, 20, 50, 100, 200, 500,
1000, 2000, 2500, 3000, 3500, 4000,
4500, 5000, 10E3, 20E3, 50E3, 100E3,
200E3, 500E3

RND-MAP

1, 2, 5, 10, 20, 50, 100, 200, 500, 1000,
2000, 5000, 10E3, 20E3, 50E3, 100E3,
200E3, 500E3, 1E6, 1.1E6, 1.2E6,
1.3E6, 1.4E6, 1.5E6, 1.6E6, 1.7E6,
1.8E6, 1.9E6, 2E6, 5E6, 10E6

RND-LST

1, 2, 5, 10, 20, 50, 100, 200, 500, 1000,
2000, 5000, 10E3, 20E3, 50E3, 100E3,
200E3, 500E3, 1E6, 1.1E6, 1.2E6,
1.3E6, 1.4E6, 1.5E6, 1.6E6, 1.7E6,
1.8E6, 1.9E6, 2E6, 5E6 , 10E6

Table 5.1: Number of POI used for performance assessment of methods RND-DIRECT,
RND-MAP and RND-LST.

Figure 5.1 reveals that methods RND-LST and RND-DIRECT perform equally fast

for up to 100 POI, and they are both faster than methods RND-MAP and NB33. This

suggests that the time for the initialisation and set up of the CUDA kernel of method

RND-LST acts as a bandwidth bottleneck, limiting its effectiveness for the transfer of

fewer than 100 POI. Method RND-DIRECT remains faster than method NB33 for the

transfer of 2500 POI or fewer. Method RND-DIRECT achieves this by transferring a

smaller overall data size in the expense of performing misaligned memory access in both

device and host memory. This misaligned memory access becomes more computationally

expensive than they aligned copy of the field data of the whole FDTD space when the

method attempts to transfer the field data of more than 2500 POI from the device

memory to the host memory. Here it is noteworthy that method RND-DIRECT reaches

the relative output time ξ ≈ 1 for the transfer of more than 5, 000, 000 POI, which means

that almost the whole of the software execution time is spent on the data output stage.

This is a clear indication of the throughput limitations induced by misaligned device

memory read operations and strided host memory access.

48

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1 10 100 1000 10000 100000 1e+06 1e+07

R
e

la
ti
v
e

 o
u

tp
u

t
T

im
e

Number of POI

Comparison of performance of methods RND-DIRECT, RND-MAP, RND-LST

RND-LST
RND-LST

RND-MAP
RND-MAP

RND-DIRECT

RND-DIRECT

relative output time of method NB33

Figure 5.1: Comparison of performance of methods RND-DIRECT, RND-MAP and
RND-LST.

Method RND-MAP results in faster execution than method RND-DIRECT for more

than 100 POI and it remains faster than method NB33 for the transfer of up to 1, 900, 000

POI. This suggests that the invocation of the CUDA kernel of method RND-MAP for

the buffering of the value of electromagnetic fields at the POI and the introduction of

two buffers has resulted in coalesced, aligned data transfers of fewer data and in the

elimination of strided host memory access, thus significantly improving the performance

of the output stage. Therefore method RND-MAP provides the ability to transfer 750

times the number of points method NB33 can transfer in the same amount of time.

The fastest method for data output of non-consecutive POI, amongst methods RND-

DIRECT, RND-MAP and RND-LST, is proven to be RND-LST. Method RND-LST

remains faster than methods RND-DIRECT, RND-MAP, RND-LST and NB33 for the

transfer of up to 2, 000, 000 from the device memory to the host memory. This is half

a time more POI than method RND-MAP can transfer in the same amount of time.

Hence, the additional implicit device memory read performed by method RND-MAP

and described in Section 5.5 results in a significant latency for the transfer of up to

5, 000, 000 POI.

49

Chapter 6

Conclusions

6.1 Achievements

The objectives of this project were completed and the aim of this project was successfully

fulfilled.

Three use cases for the device-to-host transfer of a single line in the FDTD space

were considered. For these use-cases, methods NB13X, NB13Y, NB13Z, B13X, B13Y,

B13Z, B11X, B11Y, B11Z were developed. All these methods apart from method NB13Z

are faster than method NB33 which the (FD)FDTD employed prior to the development

of this project, and which is the method implied to be used in the relevant literature.

Method NB13Z performs slower than method NB33 by 0.02%, whereas method NB13Y

offers the smallest possible speed up of 1.0047 . Method NB13X offers a speedup of 1.12.

Methods B13X and B13Z perform similarly, by speeding up the output stage by a factor

of 0.75/0.67 = 1.12. However methods B11X, B11Y, B11Z were proven to be the fastest

methods for transferring the data of a single line in the FDTD space from the device

memory to the host memory as they offer an approximate speedup of 0.75/0.66 = 1.14

relative to method NB33.

The use case of the POI being laid on more than one, consecutive lines was also

considered. The performance of methods NB13X, NB13Y, NB13Z, B13X, B13Y, B13Z,

B11X, B11Y, B11Z was tested for this use case. The non-buffered method NB13X, single-

buffered methods B13X, B13Y, and double-buffered methods B11X, B11Y and B11Z can

transfer 374 non-consecutive lines in shorter time than method NB33 requires. Their

comparative performance varies for different numbers of POI.

Three use cases for the device-to-host transfer of a single X-plane, Y -plane and Z-

plane in the FDTD space were considered. For these cases, non-buffered methods NB23X,

NB23Y, NB23Z; single-buffered methods B23X, B23Y, B23Z; and double-buffered meth-

ods B22X, B22Y, B22Z were developed. Methods NB23Z and NB23Y had a better

performance than method NB33, featuring speedups of factors 1.0016 and 0.10012 cor-

50

respondingly. Non-buffered method NB23X was proven to be slower than method NB33

by a factor of 1.0066, due to the latency introduced by non-coalesced device memory

transactions and strided host memory access. Single-buffered methods B23Z, B23Y and

B23X are faster than method NB33 and also faster than the corresponding non-buffered

versions, by offering speedups of factors 1.1266, 0.1243 and 1.1237 relative to the NB23Z,

NB23Y and NB23X correspondingly. In particular, method B23X is faster than NB33

by a factor of 1.1175 . Double-buffered methods offer the biggest speed-ups relative to

method NB33, with B22Z, B22Y and B22X being faster by a factor of 1.0045, 1.0063 and

1.0107 relative to methods B23Z, B23Y and B23Z.

Methods NB23X, NB23Y, NB23Z, B23X, B23Y, B23Z, B22X, B22Y, B22Z were

assessed for the device-to-host transfer of several non-consecutive X- Y - or Z-planes.

Method NB23X cannot move any planes faster than method NB33. Single-buffered

method NB23X achieves the transfer of up to 45 non-consecutive X-planes and double-

buffered method B22X achieves the transfer of a further four planes from the device

memory to the host memory. As Y -planes are concerned, non-buffered method NB23Y

can transfer one Y -plane from the device memory to the host memory in shorter time than

method NB33 needs. The single-buffered method NB23Y can transfer 38 non-consecutive

planes, whereas the double-buffered method B22Y can transfer 79 non-consecutive planes

from the device memory to the host memory. For the transfer of Z-planes, method NB23Z

can transfer only one plane in a shorter amount of time than method NB33. The single-

buffered method B23Z achieves the transfer of 71 non-consecutive X-planes, whereas the

double-buffered method B22Z can transfer up to 114 non-consecutive X-planes from the

device memory to the host main memory in a shorter amount of time than method NB33.

Finally the use case where the POI are selected non-consecutive points was tackled by

the development of methods RND-DIRECT, RND-MAP and RND-LST. Method RND-

DIRECT was found to perform equally well with method RND-LST for fewer than 100

POI. For up to 2500 POI, method RND-DIRECT achieves a faster performance than

method NB33, but slower performance than method RND-LST. For more than 100 POI,

method RND-DIRECT performs worse than both method RND-MAP and method RND-

LST. Method RND-MAP was found to perform worse than method RND-LST at all

times. Method RND-MAP can transfer up to 1, 900, 000 POI from the device memory to

the host memory in a shorter amount of time than method NB33. Method RND-LST is

the most effective method in comparison to RND-DIRECT and RND-MAP for this use

case, as it can transfer up to 2, 000, 000, quicker than method NB33.

From the above results it is evident that the introduction of a buffer in both the device

and host memory and its exploitation, when possible, for the creation of aligned and coa-

lesced device-to-host data transfers is much beneficial for parallelised and vectorised mem-

ory throughput–limited applications, such as those implementing the (FD)FDTD method,

51

and can fairly increase their performance. The above results depend on the compute ca-

pability of the NVIDIA accelerator device used (compute capability 3.5), and might

produce different results if they are directly applied to older devices (with compute ca-

pability ≤ 3.5) without adjustments. However, equal or better performance advantages

achieved with these methods are expected on all current and future devices with the same

or bigger memory capacity.

Little future work is left for computationally similar projects which may implement

the aforementioned methods. This may involve experimentation with the block and grid

sizes of the buffering kernels, for the achievement of optimum performance in a specific

computational environment, and/or the exploration of the performance of pinned memory

in a specific computation environment. However, these activities can be completed within

a few days or weeks, using the official NVIDIA profiling software nvprof. Finally, the

possibility of exploitation of more than one GPGPU accelerators can be examined.

6.2 Self-reflection

The author has found this project to be a fair challenge. As the time management is con-

cerned, the Gantt Chart which was produced in the first semester, was closely followed

without much deviation. However, the author could had used the time of holidays more

efficiently for even quicker completion of the final report. From the technical point of view,

the author, for the purposes of this project, had to get familiar with concepts of concurrent

GPGPU programming in time shorter than one academic semester. In the same amount

of time, he also had to learn the programming languages Fortran 90 and CUDA Fortran to

a usable level, and to get acquainted with the Linux supercomputer cluster environment

of the RIKEN GreatWAVE supercomputer cluster. The author indeed succeeded to learn

many programming languages of different programming paradigms such as Fortran 90,

CUDA Fortran, Ruby, bash shell, awk and sed to a level that allowed the use of these lan-

guages by him for the purposes of the completion of this project, and familiarised himself

with fundamental and advanced elements of GPGPU programming and computer archi-

tecture theory in a short amount of time. In addition, the author managed to comprehend

the basic mathematical background of the (FD)FDTD method and to understand the

long (FD)FDTD software he was provided with, which was written in Fortran 90 – a lan-

guage he was not familiar with by that time– in a week. He also learnt how to operate the

provided shared supercomputer cluster efficiently and used it in a professional manner.

Despite the demanding nature of this project, the author managed to achieve the objec-

tives and the aims of this project in the specified amount of time. Ultimately, the author

enjoyed this project much and this project has increased the author’s interest in the field

of computational electromagnetics, a field which he would like to explore further.

52

References

[1] A. Taflove, “Application of the finite-difference time-domain method to sinusoidal

steady-state electromagnetic-penetration problems,” Electromagnetic Compatibility,

IEEE Transactions on, no. 3, pp. 191–202, 1980.

[2] A. Taflove, “Advances in computational electrodynamics: the finite-difference time-

domain method,” 1998.

[3] M. I. Hallaj and O. R. Cleveland, “FDTD simulation of finite-amplitude pressure

and temperature fields for biomedical ultrasound,” The Journal of the Acoustical

Society of America, vol. 105, no. 5, 1999.

[4] J. J. Simpson, “An established numerical method applied to geophysics,” Eos, Trans-

actions American Geophysical Union, vol. 93, no. 29, pp. 265–266, 2012.

[5] J. Beggs and W. Briley, “An implicit LU/AF FDTD method,” 2001. NASA Langley

Technical Report Server.

[6] L. Xanthos, “Progress Report of 3rd year Individal Project,” The University of

Manchester, February 2016.

[7] NVIDIA R© Corporation, “NVIDIA’s Next Generation CUDA Com-

pute Architecture: KeplerTM GK110/210,” tech. rep., 2014. Acces-

sible at http://international.download.nvidia.com/pdf/kepler/

NVIDIA-Kepler-GK110-GK210-Architecture-Whitepaper.pdf [Online; accessed

1 February 2016].

[8] A. Ruiz and M. Ujaldon, “Exploiting kepler capabilities on zernike moments,” Annals

of Multicore and GPU Programming, vol. 1, no. 1, pp. 27–37, 2014.

[9] NVIDIA R©, “CUDA C Programming Guide,” tech. rep., v.7.5, September 2015.

[10] NVIDIA R© Corporation, “NVIDIA R© Kepler R© K Series Datasheet,” tech. rep., Octo-

ber 2013.

53

[11] NVIDIA R© Corporation, “Tuning CUDA Applications for Kepler,” tech. rep., Octo-

ber 2013.

[12] NVIDIA R©, “CUDA C Best Practices Guide,” tech. rep., September 2015.

[13] The Portland Group – PGI R©, “CUDA Fortran Programming Guide and Reference,”

tech. rep., 2014.

[14] A. Gregerson, “Implementing Fast MRI Gridding on GPUs via CUDA,”

NVIDIA R© Corporation, 2013. Accessible at http://www.nvidia.com/docs/IO/

47905/ECE757_Project_Report_Gregerson.pdf [Online; accessed 06 March 2015].

[15] PCI Express R© , “PCI Express R© base specification revision 3.0,” tech. rep., November

2010, pp. 2,40.

[16] G. C. de Verdière, “Introduction to gpgpu, a hardware and software background,”

Comptes Rendus Mécanique, vol. 339, no. 23, pp. 78 – 89, 2011. High Performance

Computing / Le Calcul Intensif.

[17] C. Wooley, “GPU Optimization Fundamentals,” NVIDIA R© Corporation, 2013.

Accessible at https://www.olcf.ornl.gov/wp-content/uploads/2013/02/GPU_

Opt_Fund-CW1.pdf [Online; accessed 06 October 2015].

[18] A. Magni, C. Dubach, and M. O’Boyle, Exploiting GPU Hardware Saturation for

Fast Compiler Optimization, pp. 99–106. ACM, 2014.

[19] M. Livesey and F. Costen and T. Nanri and N. Nakashima and S. Fujino and oth-

ers, “Development of a CUDA Implementation of the 3D FDTD Method,” IEEE

Antennas & Propagation Magazine, vol. 54, no. 5, pp. 186–195, 2012.

[20] Y. Inoue and M. Unno and S. Aono and H. Asai, “GPGPU-based ADE-FDTD

method for fast electromagnetic field simulation and its estimation,” in Asia-Pacific

Microwave Conference 2011, pp. 733–736, Dec 2011.

[21] J. Sheaffer and M. van Walstijn and F. Bruno, “Physical and numerical constraints

in source modeling for finite difference simulation of room acoustics,” Journal of the

Acoustical Society of America, vol. 135, pp. 251–261, 1 2014.

[22] ISO/IEC, ISO/IEC 1539:1991. Information technology – Programming languages –

FORTRAN. ISO/IEC, 1991.

[23] RIKEN, “Official Website of RIKEN.” http://www.riken.jp/en/about/intro.

[Online; accessed 10 February 2016].

54

[24] Advanced Center for Computing and Communication, RIKEN, HOKUSAI-

GreatWave User’s Guide, 3 ed., September 2015.

[25] D. B. Loveman, “High performance fortran,” Parallel & Distributed Technology:

Systems & Applications, IEEE, vol. 1, no. 1.

[26] “Advanced CUDA Webinar – Memory Optimizations,” NVIDIA R© Corporation, p.

14, 2009. Accessible at http://on-demand.gputechconf.com/gtc-express/2011/

presentations/NVIDIA_GPU_Computing_Webinars_CUDA_Memory_Optimization.

pdf [Online; accessed 15 February 2016].

[27] N. Josuttis, The C++ Standard Library: A Tutorial and Reference. Addison-Wesley,

2 ed., 2012.

55

Appendix A

The 1st semester Progress Report

56

Third Year Individual Project 2015/16

SCHOOL OF ELECTRICAL AND ELECTRONIC
ENGINEERING

Progress Report

GPGPU: Acceleration of output of data

Loukas Xanthos
9408845

Supervised by:
Dr. Fumie Costen

Appendix A of Project Report: The 1st semester Progress Report

57

Contents

1 Introduction 4
1.1 Introduction . 4
1.2 Motivation . 4
1.3 The aims and objectives of this project 5

1.3.1 Aims . 5
1.3.2 Objectives . 5

2 Supporting Theory 6
2.1 Analysis of the Finite-Difference Time-Domain Method 6

2.1.1 The Maxwell equations . 6
2.1.2 Frequency dependency of material parameters 7
2.1.3 Kane Yee’s algorithm . 7
2.1.4 Frequency Depended (FD-)FDTD 8

2.2 General Purpose GPU computing – merits and demerits 8
2.3 The computational environment of this project 9

3 Practical progress so far 9
3.1 Source code modifications for compatibility 9
3.2 Set-up of the computational and developmental environment at the front-end 10
3.3 Identification of main performance indicators 10
3.4 Procedure currently followed for the measurement of programme execution

time . 11
3.5 The current data analysis process . 12

4 Future work and conclusions 12
4.1 Planned future work – possible technical risks 12
4.2 Conclusions . 13

References 14

A Variables declared for the purpose of wall-time measurements 16

B Finite Difference (FD) Equations used in the FDTD method 17
B.1 Obtention of the Hn-field from the En-field 17
B.2 Obtention of the En+1-field from the Hn-field 18
B.3 Obtention of the En-field components from the Dn-field components . . . 18

2

Appendix A of Project Report: The 1st semester Progress Report

58

C HOKUSAI GreatWAVE system diagram &
connection from Manchester 20

D Project Plan 22
D.1 Milestones . 22
D.2 ‘Float’ period . 22
D.3 Notes . 22
D.4 The list of tasks and

the Gantt chart . 23

E Technical risk analysis 26

F Risk Assessment 28

3

Appendix A of Project Report: The 1st semester Progress Report

59

Chapter 1

Introduction

1.1 Introduction

As engineering problems get more complex, the need for their modelling and simulation
becomes intense. The academia and industry are putting effort in developing and de-
ploying mathematical models and computer software able to simulate and model real
phenomena and their interactions accurately. Nevertheless, the increased problem size
and model accuracy cannot be completely handled even with the modern processors.

Hence, software engineers try to find techniques and tools that help accelerating the
execution of their software. There is a number of optimisations which are carried out in
execution thread level, to ensure no wasting of computational resources. Also, developers
achieve utilising modern hardware by parallelising their software, as this can boost the
execution performance (execution can become tens of times faster). Nowadays, available
Central Processing Units (CPUs) may have clock rates of less than 10 GHz and as many
as tens of processing cores, whereas a single modern Graphics Processing Unit (GPU)
can provide thousands of cores, which can be used by software and support floating point
arithmetic. This ability for high parallelisation GPUs provide has made General Purpose
GPU processing (GPGPU) popular. Graphic card manufacturers now promote GPU
accelerated computing and they design accelerator products that target scientists and
engineers.

This project investigates the improvement of the parallelisation of a software that
performs Finite-Difference Time-Domain (FDTD) [1] simulation of propagation of elec-
tromagnetic waves in the 3D space. This piece of software is ported to run on NVIDIA
accelerators from its former CPU version. However, its current GPGPU implementation
is found to be inefficient and needs to be improved by introducing ad-hoc algorithms and
extending its design with other software design techniques.

1.2 Motivation

In addition to the usage of the FDTD method for simulations of propagation of Electro-
Magnetic (EM) waves and their interactions in the electrical and electronic sectors, the
FDTD method is used to model computationally similar phenomena to the propagation
of the EM waves in the biomedical [2] and geophysics [3] sectors. Besides, the same
FDTD method, with minor modifications, is used to model and solve Computational
Fluid Dynamics (CFD) problems [4]. Thus, a thorough investigation of the possibilities
of accelerating the major components of FDTD software can benefit all these sectors.

A parallelised and vectorised Frequency-Depended FDTD (FD-FDTD) software has
been developed by Dr. Fumie Costen’s research group at the University of Manchester.
Nevertheless, the group’s findings indicate that more than half the total run time is spent
on the data output stage. At this stage, field data located in the accelerator memory
must be moved into the system’s main memory. Moreover, there are cases when the

4

Appendix A of Project Report: The 1st semester Progress Report

60

FDTD software user is interested on the field values of points located on just one line of
the FDTD space, or on just one plane. They could also be interested in two or more lines
or planes, or merely on a few selected points. In the group’s current implementation of
the FDTD EM simulation software this is not possible; the user has to wait until they
get all the field data for the whole 3D space instead.

The implementation described above is inefficient, as computational power is not
utilised at all while the software user has to wait until they get the results and no
calculations of field values are being done. This project investigates how this issue can
be solved. This investigation will be performed in two stages:

• First, techniques for speeding up the output stage will be considered.

• Next, the output stage will be attempted to become concurrent with the other main
software components.

1.3 The aims and objectives of this project

1.3.1 Aims

The aim of this project is the acceleration of FD-FDTD computation on the GPU from
the view point of the data output.

1.3.2 Objectives

• Become familiar with Linux environments, with the RIKEN HOKUSAI Great-
WAVE cluster, with the awk, sed and gnuplot utilities, with Fortran 90 and CUDA
Fortran

• Modifications of the given FD-FDTD software to make it compatible with the
RIKEN HOKUSAI GreatWAVE platform

• Implementation of time measuring source code into the given software

• Development of benchmarking and performance data analysis scripts

• Identification of main techniques currently used for speeding up data transfers be-
tween accelerators (GPU) and main memory (CPU)

• Design of algorithms for speeding up the output of FDTD field data located on:
a single line of the FDTD space, more than one line of the FDTD space, a single
plane of the FDTD space, more than one planes of the FDTD space, selected points
of the FDTD space

• Thorough investigation of the performance of the above algorithms

5

Appendix A of Project Report: The 1st semester Progress Report

61

Chapter 2

Supporting Theory

2.1 Analysis of the Finite-Difference Time-Domain

Method

2.1.1 The Maxwell equations

The time-domain Maxwell equations are:

∇×H =
∂D

∂t
+ J Ampere’s Law (2.1)

∇× E = −∂B

∂t
Faraday’s Law (2.2)

∇ ·D = ρv Gauss’ Law for the electric field (2.3)

∇ ·B = 0 Gauss’ Law for the magnetic field (2.4)

, in MKS units, where E is the electric field intensity (in Volt
Metre

), D is the electric displace-

ment field (in Coulomb
Metre2

), B is the magnetic flux density (in Tesla), H is the magnetic field

strength (in Ampere
Metre

), J is the conduction current density (in Ampere
Metre2

), ρv is the electric

charge density (in Coulomb
Metre3

) .
And using the microscopic form of Ohm’s Law (J = σE), eq. (2.1) becomes:

∇×H =
∂D

∂t
+ σE (2.5)

For a homogeneous medium, which has material depended permittivity ε (in Farad
Metre

)

and permeability µ (in Henry
Metre

), ε0 (F
m

) is the permittivity of free space, εr (F
m

) is the

relative permittivity of the material, µ0 (= 4π/107 H
m

) is the permeability of free space

and µr (F
m

) is the permeability of free space and the flux densities are linked to the field
intensities with eq. (2.6) and (2.7):

D = εE = εrε0E (2.6)

B = µH = µrµ0H (2.7)

6

Appendix A of Project Report: The 1st semester Progress Report

62

2.1.2 Frequency dependency of material parameters

For fields varying with frequency f = ω
2π

, equations (2.5) and (2.6) combine to [5]:

∇×H =
∂D

∂t
+ σE =

∂εE

∂t
+ σE =

(
σ + ε

∂

∂t

)
E (2.8)

= (σ + ωε0εr)E = ωε0

(
εr +

σ

ωε0

)
E =

∂εE

∂t
=
∂D

∂t

where

ε = εrε0 −
σ

ω
= ε0

(
εr −

σ

ωε0

)
. (2.9)

The first-order Debye model can be used to model dispersive materials. Thus, the
relative permittivity can be expressed as [5]:

εr = ε∞ +
εS − ε∞
ωτD + 1

(2.10)

, where ε∞ is the infinite relative dielectric constant (optical permittivity), εS is the
relative dielectric constant at lower frequencies (much lower than 4 × 1014 Hz), ω is the
angular frequency of the varying fields and τD is the characteristic relaxation time of the
medium.

The E-field is now related to the D-field using (2.6) and (2.10) [5]:

D = (ε0ε∞ +
ε0εS − ε0ε∞
ωτD + 1

− σ
ω

)E (2.11)

= (ε0ε∞ +
ε0εS − ε0ε∞
ωτD + 1

+
σ

ω
)E

=
(ω)2ε0ε∞τD + ω(ε0εS + στD) + σ

ω(ωτD + 1)
E.

2.1.3 Kane Yee’s algorithm

The FDTD algorithm was first proposed by Kane Yee in 1966 [6][1]. His method solves
Maxwell’s curl equations using a “leapfrog time-stepping process”. The method works as
follows:

First, the 3D space is discretised in 3D cells. Each cell edge has the size of a unit of
distance and contains values of the electric or magnetic field inside it. Cells that represent
the magnetic field are placed 1

2
unit of distance apart. This is called the Yee Grid. The

Yee Grid is the basis for FDTD method’s simplicity, as Maxwell’s divergence equations
become:

∇ ·D = 0 (2.12)

∇ ·B = 0 (2.13)

Hence, equations (2.12) and (2.13) do not need to participate in the solution process.
Yee’s algorithm is the following:

1. Discretise Maxwell’s curl equations (i.e. Ampere’s Law and Faraday’s Law) in
space and time. All derivatives should employ central differences. Solving these

7

Appendix A of Project Report: The 1st semester Progress Report

63

finite difference equations yields the “update equations”, which describe the field
values of future time steps based on the field values of past time-steps.

2. Calculate the value of H-field of the next time-step from the present E-field values.

3. Calculate the value of E-field of the next time-step from the present H-field values.

4. Repeat from step 2, until the specified time-step limit by the user is exhausted.

The equations used for the calculation of the field values are presented in Appendix B

2.1.4 Frequency Depended (FD-)FDTD

Equation 2.11 yields a relation between the D-field, the E-field and the frequency-
depended parameters of the media. Hence, this relation is exploited when dispersive
media are present in the simulation. With the assumption that the environment is source-
free, the scalar value of the x,y and z components of the D-field of the next iteration
(n + 1) can be obtained using the E-field data from the current iteration (n) [5]. Equa-
tions for obtention of the values of the D-field components can be found in Appendix B
(equations B.7, B.8, B.9). The FD-FDTD algorithm is summarised with a flow-chart in
figure 2.1.

2.2 General Purpose GPU computing – merits and

demerits

Start

End

set time step n = 1

Initialise all fields with 0, initialise the
boundary conditions and the sources,

initialise the 3D space

Update H-field from E-field

Update D-field from H-field

Update E-field from D-field

Source Excitation in the D-field

set time step n = n+1

n ≥ n_max

Update the boundary conditionsNo

Output of
field dataYes

Figure 2.1: Flowchart of the FD-FDTD method

Nowadays, GPU vendors sell
programmable graphic cards ac-
commodating General Purpose
GPUs (GPGPUs). GPGPUs,
besides their standard use as
graphics processors and for out-
putting graphics to displays,
can also be programmed to ac-
celerate scientific computations.
They are multi-core devices fea-
turing a single instruction multi-
ple data (SIMD) architecture.

Modern processors like the
Intel Xeon E5 v3 family have
tens of cores and can offer a
performance class of 1010 Gi-
gaFLOPS [7] , whereas acceler-
ators such as the NVIDIA Ke-
pler K20X have thousands of
cores and can deliver over 1 Ter-
aFLOPS [8]. This difference is
merely due to the number of
processing cores each device has,

and thus due to the number of threads each device can execute concurrently.
However, GPUs are not as good as CPUs in executing single-threaded tasks, as GPUs

are highly optimised mainly for parallel execution of thousands of simple tasks and for
performance per watt [9], while CPUs are mainly optimised for executing serial tasks.
Multi-core CPUs are also optimised for parallel execution and feature some SIMD in-
structions, but they are not as energy efficient as GPUs and cannot compete with them
in executing thousands of parallel tasks. Therefore, given an algorithm that can be fully
parallelised and vectorised, GPUs are more efficient, since the increased number of cores

8

Appendix A of Project Report: The 1st semester Progress Report

64

can lead to a very small execution time and CPUs might require ten times the amount
of the energy GPUs use to achieve the same results [9].

Moreover, the memory on a GPU accelerator card often has less capacity than the
system’s main memory. In addition, GPU accelerators (called “devices”) are attached to
systems (called “hosts”) using the PCI-Express (PCIe) interface. PCIe has a raw bit rate
of 8 GT/s [10], and 8Gb/s per lane per link [10]. Thus, the low PCIe data rates become
a bottleneck when frequent data transfers between the device and host memory are re-
quired. To achieve satisfying performance, programmes need to “saturate” the hardware,
i.e. to execute enough threads to fully use all of the device’s resources, so that memory
operations are fewer than any other processing happening on the device [11][12][13].

2.3 The computational environment of this project

This project is going to be developed, debugged and run on the HOKUSAI GreatWAVE
supercomputer[14] of the Advanced Centre for Computing and Communication, RIKEN,
located in Saitama, Japan.

More specifically, the Application Computing Server with GPUs (ACSG) cluster will
be used, which is equipped with 20 Intel Xeon E5–2670 v3 CPUs, which are clocked at
2.3 GHz, providing a theoretical peak performance of 36.8 GFLOPS per core per CPU.
In the ASCG cluster, there are 64GB of main memory installed per unit (or “node”).
The memory bandwidth is 68.2 GB/s/CPU and 0.15 Byte/FLOP.

The ASCG cluster is also equipped with Kepler 4 K20Xm accelerators. The GPU
clock of these accelerator has an operating frequency of 732 MHz. Every device has 6GB
of global memory, and a bandwidth of 250 GB/s. The peak performance of the GPGPU
in single precision is 3950 GFLOPS, and 1310 GFLOPS in double precision [15].

This project will use 8 CPU cores and 1 accelerator, thus 6GB of accelerator memory.
All clusters of the HOKUSAI GreatWAVE supercomputer run on a Linux operating

system that is supplied with the GNU C compiler, the PGI Fortran compiler, bash shell,
and popular linux tools such as grep, sed and awk.

The RIKEN HOKUSAI GreatWAVE supercomputer cluster operates on a Linux plat-
form (Linux kernel version 2.6) and features a front-end — back-end system [14]. Great-
WAVE users are expected to connect to the front-end and use it for software development
(source code editing, compilation and link procedures), file transfers between the RIKEN
cluster and their own computers, basic software debugging and tuning and job manage-
ment. Jobs run on the back-end [14]. A diagram of the sub-systems of the HOKUSAI
GreatWAVE supercomputer and their connections can be found in Appendix C.

Chapter 3

Practical progress so far

3.1 Source code modifications for compatibility

The group’s FD-FDTD software was examined and its various components were identi-
fied. However, the software was intended to run on an older platform and to be compiled
using an older version of the PGI Fortran compiler. Hence, the source code given to be

9

Appendix A of Project Report: The 1st semester Progress Report

65

modified was found to be incompatible with the new platform (i.e. the RIKEN HOKU-
SAI GreatWAVE system), and major modifications were applied to make it compatible.
These modifications included the change of the name of a variable (from ‘sum’ to ‘sum2’),
because the old name is a Fortran 90 intrinsic function and that function is overloaded
by the ‘cudafor’ module. Also, the PGI Fortran compiler required that the extension of
all CUDA Fortran source filenames to be changed from .f90 to .cuf. As a consequence,
any ‘include’ statements in the Fortran source code raise compilation errors because the
referenced .f90 files cannot be found. Thus, they need to be updated to reference the
corresponding .cuf files. The use of sed scripts for text filtering helped the author save
time and make no mistakes during the process of fixing all the ‘include’ statements in all
the affected Fortran source code files.

3.2 Set-up of the computational and developmental

environment at the front-end

The group’s FD-FDTD programme is executed on the Application Computer Server
(ACS) with GPU (“ACSG”) cluster, where NVIDIA Kepler K20Xm accelerators and In-
tel Xeon E5–2670 v3 CPUs are installed. Thus, the compilation process must target the
64-bit Intel Haswell architecture and NVIDIA Kepler accelerators with 3.5 compute ca-
pability. The first try for compiling the given FDTD software (on the front-end) targeted
to the 64-bit Intel Haswell architecture with -O2 level compiler optimisations resulted
in error messages from the GNU assembler, which indicated that the assembler could
not understand the mnemonics of some instructions used by modern 64-bit Haswell Intel
Xeon processors [14]. The HOKUSAI GreatWAVE administrators were contacted via
email about the issue. They suggested that the newest version of GNU binutils (and
hence, the GNU assembler) should be installed into our Linux user’s ‘home’ directory, as
our research group has not got global system access permissions. The author undertook
the work of downloading and installing the newest version of GNU binutils on a local
directory. This indeed solved the issue.

However, to bypass the system-wide installed version of GNU binutils and to build
the software using the newest version of the assembler located in our ‘home’ directory,
required updating the $PATH variable after logging in to the front-end. To eliminate
this time-consuming requirement, ‘export’ statement was added in the .bashrc file , on
the HOKUSAI GreatWAVE front-end. Now, the update of the $PATH variable occurs
any time we connect to the HOKUSAI GreatWAVE front-end, allowing anyone in our
research group to use the newest version of GNU binutils without having to manually
update the value of the $PATH variable.

3.3 Identification of main performance indicators

Numerous changes are being applied to the given software, to find the optimum way to
accelerate the transfer of data from the accelerator memory to the host memory. After
any changes are applied, two main parameters must be measured, to indicate

• how much faster the new version is and

• to make the processes of debugging and further development easier.

These are the time to execute each discrete software component, and the size of any data
transfers between the host and the accelerator – as the execution of the same operations
on different data sizes might result in bigger or smaller execution times. The measurement
of the size of data transfer between the GPU and the host memory can be achieved using
NVIDIA’s profiler, nvprof, with the ‘memtransfersize’ argument.

The given GPGPU FD-FDTD software used consists of the following main compo-
nents:

10

Appendix A of Project Report: The 1st semester Progress Report

66

1. src: The component that performs the update of the field values of the points
where the sources reside

2. fdtd: the calculation of the field values in each cell of the Yee Grid.

3. output: the output of the field data to the standard output.

As this project is concerned with the speed up of the output of data of a pre-existing
FD-FDTD implementation, the execution time of the pre-existing components must be
measured. The main point of concern is the total amount of time the FD-FDTD software
user has to wait until they get the results, hence wall-clock time is measured; not cpu time
or user time. This is the time needed for the various FD-FDTD software components to
finish, including any system calls, memory allocation/deallocation or waiting for system
or input/output resources to become available.

Thus, the wall-time of the execution of these components is measured individually, as
well as the execution time of the application from start to finish, without including the
time needed for memory allocation in the beginning of the execution, and without includ-
ing the time needed at the end of the programme’s execution for memory deallocation.
For the purposes of this project, this is referred to as the ‘prog’ time.

By performing these measurements, various optimisations can be applied to the soft-
ware given. As this project focuses on the data output stage, any optimisations attempted
must focus on making the time of the ‘output’ stage shorter, i.e. making the ‘output’
wall-time to be the shortest possible percentage of the ‘prog’ wall-time.

After verifying that the algorithm, which is considered to be the optimum, performs
better than any previous ideas, an attempt to overlap its execution with other software
components will be made, thus to “hide” the execution time of the ‘output’ component
using a pipeline. At this development stage, the total wall-time of the ‘output’ stage
ceases to be an significant measure for further development. Instead, the time required
for the part of the ‘output’ stage that cannot be hidden (i.e. cannot be interleaved with
other software components) must be measured.

3.4 Procedure currently followed for the measure-

ment of programme execution time

Currently, all software components have been parallelised and vectorised, but the ex-
ecution of each discrete component does not concur with the execution of any other
component. The execution wall-time of the various FD-FDTD software components de-
scribed in section 3.3 is measured by taking the difference between two clock times, one
at the beginning of the component execution and one at the end. Clock time is obtained
by calling the Fortran 90 system_clock function [16].

Two variables are needed for each component: One for the beginning of the wall-time
measurement, and one for the end. Both obtain a value by calling the system_clock
function. In addition, the given FD-FDTD software implements an “unrolled” version of
the FD-FDTD algorithm, in which all software components occur three times per time
step. Thus, three source code instances correspond to each component. This results
in the need of having six variables for each component, three for storing the beginning
time of the component execution and three for their end of execution. Moreover, one
variable for each component is used, to hold the total execution time, by accumulating
the execution time of each of the three loops. A list of all the variables used for the
purpose of wall-time measurements can be found in Appendix A.

However, the system_clock function returns the number of CPU clock counts passed
since an undefined time. Therefore, it is possible that it will ‘roll-over’ at an undefined
time. To resolve this situation, if-else statements are used as a sanity check (a compo-
nent’s execution cannot terminate before this component begins its execution) and the
returned value from the system_clock function is adjusted accordingly.

11

Appendix A of Project Report: The 1st semester Progress Report

67

The output of the FD-FDTD software after the completion of its execution generates
timing information similar to the following:

Timings by loukas (wall time)
prog 42279568 or 42.27957 s
src 13288758 or 13.28876 s
fdtd 9320457 or 9.320457 s
output 19668385 or 19.66838 s

The first column describes the component for which measurements will follow on the
same line. Next, the total number of CPU clock counts is shown, and after two columns
the total number of seconds elapsed on this component is printed.

Since many instances of the same source code will be generated for the intents of this
project, a shell script that appends the time-measuring source code to the FD-FDTD
software source code given was also produced. The execution time of individual CUDA
Kernels, can be observed using NVIDIA’s profiler (nvprof) via the command line.

3.5 The current data analysis process

Many possible solutions are being considered for speeding up the output of field data
from the accelerator memory to the system’s main memory. When a new concept is
implemented into the source code of the FD-FDTD software, the experiment is run
at least three times, to eliminate the effect the system’s state might have on the final
results. Then, the average of the resulting wall-time measurements is calculated. The
maximum absolute deviation of each arithmetic mean time (i.e. for ‘prog’, ‘src’, ‘fdtd’
or ‘output’) from the corresponding individual measurements is also calculated, as a
confirmation that the experiment results do not change dramatically (i.e. the absolute
deviation of any percentage time should not be more than two percentage points higher
or lower the corresponding mean percentage time). In addition, awk scripts have been
developed for the purposes of automatic calculation of the information described above,
and for generating experiment result data which are ready to be plotted using the gnuplot
plotting utility.

Chapter 4

Future work and conclusions

4.1 Planned future work – possible technical risks

The author has already begun to design an algorithm for accelerating the given FD-
FDTD software’s output for points located on a single line of the 3D space, following
his time plan1 without deviations so far. Future work includes the design and testing of
algorithms for accelerating the output of data located on specific locations of the 3D space.
As explained in the introduction of this report, three cases for the location of these points

1The project’s plan can be found in Appendix D

12

Appendix A of Project Report: The 1st semester Progress Report

68

will be considered. Two weeks are assigned for the development of each algorithm and
one week is assigned for performance measurements, thus enough time margin is provided
for algorithm re-considerations. No work is assigned during the Christmas holidays, and
no practical work is assigned during the Easter holidays, so that any deviations from the
time plan can be compensated during those days.

An effort for analysing this project technical risks2 has been made. Hard disk failures
leading to loss of source code or experimental results may be catastrophic for the this
project’s development, as it is based entirely on these. For this reason, daily backups
are kept in the group’s computer cluster and any important documents are uploaded
on online cloud storage services (including the University’s online file storage service for
students). Also, valuable time will be lost in case the ACSG cluster is busy or goes
through unplanned maintenance, or for any other reason it cannot execute any requested
experiments. As these situations are beyond the author’s control, any practical project
work is carried out before any documentation work and experimental versions of the
software are submitted in ACSG’s execution queue as early as possible, to leave ample
time in case of mishaps. Ultimately, the design of algorithms for the speed up of the
data output stage of the given FD-FDTD software might turn out to be impossible, or
at least, the author’s knowledge and experience might not suffice to achieve it by the
time this project must be completed, even if more literature is reviewed. In that case, a
meticulous analysis of the steps followed and the reasons for their failure will be carried
out.

4.2 Conclusions

In conclusion, this project investigates the acceleration of the output of data of a pre-
existing FD-FDTD electromagnetic wave propagation simulation software, which uses
general-purpose GPUs to accelerate its major components. However, because the lim-
ited bandwidth of the PCI-Express interface, used to connect the accelerators to the
main system, is not taken into consideration in the current implementation of the soft-
ware, the software does not utilise the GPU accelerator in its full potential. The system
where all software experiments will be attempted is the ACSG cluster of the RIKEN’s
HOKUSAI-GreatWAVE supercomputer, which is equipped with NVIDIA Kepler K20Xm
accelerators. The environment of this system was modified to support the objectives of
this project. In addition, as the author gained experience with the GNU/Linux Op-
erating System and the Fortran 90 programming language, the FDTD software under
examination was modified to output timing information of its main components. This
is going to be useful for any further modification work targeting to reduce the execution
time of the ‘output’ stage. Also, several scripts were coded, to render the development
and testing phases partially automated, thus easier and quicker. A health and safety risk
assessment can be found in Appendix F.

2A table containing possible technical risks and any precautions taken can be found in Appendix E.

13

Appendix A of Project Report: The 1st semester Progress Report

69

References

[1] A. Taflove, “Application of the finite-difference time-domain method to sinusoidal
steady-state electromagnetic-penetration problems,” Electromagnetic Compatibility,
IEEE Transactions on, no. 3, pp. 191–202, 1980.

[2] M. I. Hallaj and O. R. Cleveland, “FDTD simulation of finite-amplitude pressure
and temperature fields for biomedical ultrasound,” The Journal of the Acoustical
Society of America, vol. 105, no. 5, 1999.

[3] J. J. Simpson, “An established numerical method applied to geophysics,” Eos, Trans-
actions American Geophysical Union, vol. 93, no. 29, pp. 265–266, 2012.

[4] J. Beggs and W. Briley, “An implicit LU/AF FDTD method,” 2001. NASA Langley
Technical Report Server.

[5] F. Costen, High Speed Computational Modeling in the Applicaton of UWB Signals.
PhD thesis, PhD thesis, University of Manchester, 2005.

[6] K. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s
equations in isotropic media,” IEEE Trans. Antennas Propagat., 1966.

[7] G. Lento, “Intel R© advanced vector extensions,” tech. rep., Intel R© Corporation,
September 2014.

[8] NVIDIA R© Corporation, “NVIDIA R© Tesla R© K Series Datasheet,” tech. rep., October
2013.

[9] NVIDIA R© Corporation, “Doing more with less of a scarce resource.” http://www.
nvidia.com/object/gcr-energy-efficiency.html. [Online; accessed 01 October
2015].

[10] PCI Express R© , “PCI Express R© base specification revision 3.0,” tech. rep., November
2010, pp. 2,40.

[11] G. C. de Verdière, “Introduction to gpgpu, a hardware and software background,”
Comptes Rendus Mécanique, vol. 339, no. 23, pp. 78 – 89, 2011. High Performance
Computing / Le Calcul Intensif.

[12] C. Wooley, “GPU Optimization Fundamentals,” NVIDIA R© Corporation, 2013.
Accessible at https://www.olcf.ornl.gov/wp-content/uploads/2013/02/GPU_
Opt_Fund-CW1.pdf [Online; accessed 06 October 2015].

[13] A. Magni, C. Dubach, and M. O’Boyle, Exploiting GPU Hardware Saturation for
Fast Compiler Optimization, pp. 99–106. ACM, 2014.

[14] Advanced Center for Computing and Communication, RIKEN, HOKUSAI-
GreatWave User’s Guide, 3 ed., September 2015.

14

Appendix A of Project Report: The 1st semester Progress Report

70

[15] NVIDIA R© Corporation, “NVIDIA Tesla R©K20-K20X GPU Accelerators Bench-
marks,” tech. rep., November 2012. Accessible at http://www.nvidia.com/docs/
IO/122874/K20-and-K20X-application-performance-technical-brief.pdf
[Online; accessed 06 October 2015].

[16] ISO/IEC, ISO/IEC 1539:1991. Information technology – Programming languages –
FORTRAN. ISO/IEC, 1991.

15

Appendix A of Project Report: The 1st semester Progress Report

71

Appendix A

Variables declared for the purpose of
wall-time measurements

The following variables have been declared and used for the purpose of wall-time mea-
surement:

!--
! Variables for timing
!--

integer :: count_startprog, count_endprog, count_prog
integer :: count_startsource1, count_startsource2, count_startsource3
integer :: count_startfdtd1, count_startfdtd2, count_startfdtd3
integer :: count_endsource1, count_endsource2, count_endsource3
integer :: count_endfdtd1, count_endfdtd2, count_endfdtd3
integer :: count_startoutput1, count_startoutput2, count_startoutput3
integer :: count_endoutput1, count_endoutput2, count_endoutput3
integer :: count_source, count_fdtd, count_output

16

Appendix A of Project Report: The 1st semester Progress Report

72

Appendix B

Finite Difference (FD) Equations
used in the FDTD method

B.1 Obtention of the Hn-field from the En-field
1 From Equation 2.2 and Equation 2.7, the values of the xyz components of the H-
field can be obtained using central finite differences of the components of the E-field:
(Equations from [5])

For the x component:

Hn
x (i,j,k) =

µn−1(i,j,k)Hn−1
x (i,j,k)

µn(i,j,k)
(B.1)

− ∆t

µn(i,j,k)

[
En
z (i,j,k)− En

z (i,j−1,k)

∆y
− En

y (i,j,k)− En
y (i,j,k−1)

∆z

]

[imin + 1 ≤ i ≤ imax − 1, jmin + 1 ≤ j ≤ jmax, kmin + 1 ≤ k ≤ kmax].

For the y component:

Hn
y (i,j,k) =

µn−1(i,j,k)Hn−1
y (i,j,k)

µn(i,j,k)
(B.2)

− ∆t

µn(i,j,k)

[
En
x (i,j,k)− En

x (i,j,k−1)

∆z
− En

z (i,j,k)− En
z (i−1,j,k)

∆x

]

[imin + 1 ≤ i ≤ imax, jmin + 1 ≤ j ≤ jmax − 1, kmin + 1 ≤ k ≤ kmax].

For the z component:

Hn
z (i,j,k) =

µn−1(i,j,k)Hn−1
z (i,j,k)

µn(i,j,k)
(B.3)

− ∆t

µn(i,j,k)

[
En
y (i,j,k)− En

y (i−1,j,k)

∆x
− En

x (i,j,k)− En
x (i,j−1,k)

∆y

]

[imin + 1 ≤ i ≤ imax, jmin + 1 ≤ j ≤ jmax, kmin + 1 ≤ k ≤ kmax − 1].

1The exponent n means that the field values refer to the current time step.
The exponent n + 1 means that the field values refer to the next time step.

17

Appendix A of Project Report: The 1st semester Progress Report

73

B.2 Obtention of the En+1-field from the Hn-field

From Equation 2.8 using central differences, the values of the xyz components of the
E-field in the next time step can be obtained from the values of the xyz components of
the H-field in the current time step. (Equations from [5])

For the x component:

En+1
x (i,j,k) =

εn(i,j,k)En
x (i,j,k)

εn+1
(i,j,k)

(B.4)

+
∆t

εn+1
(i,j,k)

[
Hn
z (i,j+1,k)−Hn

z (i,j,k)

∆y
− Hn

y (i,j,k+1)−Hn
y (i,j,k)

∆z

]

[imin + 1 ≤ i ≤ imax, jmin ≤ j ≤ jmax, kmin ≤ k ≤ kmax].

For the y component:

En+1
y (i,j,k) =

εn(i,j,k)En
y (i,j,k)

εn+1
(i,j,k)

(B.5)

+
∆t

εn+1
(i,j,k)

[
Hn
x (i,j,k+1)−Hn

x (i,j,k)

∆z
− Hn

z (i+1,j,k)−Hn
z (i,j,k)

∆x

]

[imin ≤ i ≤ imax, jmin + 1 ≤ j ≤ jmax, kmin ≤ k ≤ kmax].

For the z component:

En+1
z (i,j,k) =

εn(i,j,k)En
z (i,j,k)

εn+1
(i,j,k)

(B.6)

+
∆t

εn+1
(i,j,k)

[
Hn
y (i+1,j,k)−Hn

y (i,j,k)

∆x
− Hn

x (i,j+1,k)−Hn
x (i,j,k)

∆y

]

[imin ≤ i ≤ imax, jmin ≤ j ≤ jmax, kmin + 1 ≤ k ≤ kmax]

B.3 Obtention of the En-field components from the

Dn-field components

The D-field is used in the computational procedure of the FD-FDTD. With the assump-
tion that the environment is source-free, the scalar value of the x,y and z components of
the D-field of the next iteration (n + 1) can be described with eq. B.7, B.8, B.9 using
the data from the current iteration (n) (equations from [5]):

Dn+1
x (i,j,k) = (B.7)

∆t

[
Hn
z (i,j+1,k)−Hn

z (i,j,k)

∆y
− Hn

y (i,j,k+1)−Hn
y (i,j,k)

∆z

]
+Dn

x (i,j,k)

[imin + 1 ≤ i ≤ imax, jmin ≤ j ≤ jmax, kmin ≤ k ≤ kmax]

Dn+1
y (i,j,k) = (B.8)

∆t

[
Hn
x (i,j,k+1)−Hn

x (i,j,k)

∆z
− Hn

z (i+1,j,k)−Hn
z (i,j,k)

∆x

]
+Dn

y (i,j,k)

[imin ≤ i ≤ imax, jmin + 1 ≤ j ≤ jmax, kmin ≤ k ≤ kmax]

18

Appendix A of Project Report: The 1st semester Progress Report

74

Dn+1
z (i,j,k) = (B.9)

∆t

[
Hn
y (i+1,j,k)−Hn

y (i,j,k)

∆x
− Hn

x (i,j+1,k)−Hn
x (i,j,k)

∆y

]
+Dn

z (i,j,k)

[imin ≤ i ≤ imax, jmin ≤ j ≤ jmax, kmin + 1 ≤ k ≤ kmax]

19

Appendix A of Project Report: The 1st semester Progress Report

75

Appendix C

HOKUSAI GreatWAVE system
diagram &
connection from Manchester

20

Appendix A of Project Report: The 1st semester Progress Report

76

Developer at the
University of Manchester

The Internet

ssh protocol

Figure C.1: The RIKEN HOKUSAI GreatWave System diagram (from [14]) and connec-
tion from the UK

21

Appendix A of Project Report: The 1st semester Progress Report

77

Appendix D

Project Plan

D.1 Milestones

The major deadlines for this project are:

1. The hand-in of the Progress Report on Friday 6 November 2015, 12pm.

2. The hand-in of the Final Report on 29 April 2016, 12pm

3. The beginning of the oral examination period on 2 May 2016

This means that all practical project work must have finished well before 29 April 2016.
The final report shall be finished at least one week before the 29 April 2016, to allow
time for proof-reading. All preparation work for the “viva voce”, must be finished by 2
May 2016. All these deadlines are represented by a diamond symbol (“milestone”) on
the Gantt Chart.

D.2 ‘Float’ period

The period 18 December 2015 - 18 January 2016 is a float period. No work is assigned
during this period, which coincides with the school’s Christmas break. In case there
are deviations from the project’s plan on 18 December 2015, they can get compensated
during the float period that follows.

D.3 Notes

1D algorithm: The algorithm for the speed up of the output of field values of points
lying on a single line of the 3D FDTD space.

2D algorithm: The algorithm for the speed up of the output of field values of points
lying on a single plane of the 3D FDTD space.

Selected-points algorithm: The algorithm for the speed up of the output of field
values of selected points of the 3D FDTD space.

22

Appendix A of Project Report: The 1st semester Progress Report

78

D.4 The list of tasks and

the Gantt chart

The ‘duration’ is measured in days.

Name Begin date End date Duration
Blackboard Quizes 30/9/15 6/10/15 7
Literature Survey 30/9/15 13/10/15 14
Understanding (FD-)FDTD 11/10/15 17/10/15 7
Familiarising with Linux 29/9/15 19/10/15 21
Familiarising with F90 29/9/15 19/10/15 21
Understanding the group's FDTD software 20/10/15 26/10/15 7
Production of Progress Report 23/10/15 4/11/15 13
Progress Report Submission 5/11/15 5/11/15 0
Implement 1D algorithm 6/11/15 19/11/15 14
Performance measurements of 1D 20/11/15 26/11/15 7
Develop 2D algorithm 27/11/15 10/12/15 14
Performance measurements of 2D 11/12/15 17/12/15 7
Develop selected-points algorithm 1/2/16 14/2/16 14
Performance measurements of selected-points algorithm 15/2/16 21/2/16 7

Production of the Final Report 20/10/15 28/4/16 189
1st period 20/10/15 18/12/15 60
2nd period 1/2/16 18/3/16 47
3rd period 10/4/16 21/4/16 12
Proof-reading 22/4/16 28/4/16 7

Final Report Deliverable 29/4/16 29/4/16 0
Preparations for viva (&poster) 1/3/16 1/5/16 62
Viva voce 2/5/16 2/5/16 0

3rd Year Project Nov 5, 2015

Tasks 2

23

Appendix A of Project Report: The 1st semester Progress Report

79

3r
d

Y
ea

r
P

ro
je

ct
N

ov
 5

, 2
01

5

G
an

tt
C

ha
rt

3

N
am

e
N

am
e

B
eg

in
 d

at
e

B
eg

in
 d

at
e

E
nd

 d
at

e
E

nd
 d

at
e

D
u

ra
ti

o
n

D
u

ra
ti

o
n

B
la

ck
bo

ar
d

Q
ui

ze
s

3
0

/9
/1

5
6

/1
0

/1
5

7

Li
te

ra
tu

re
 S

ur
ve

y
3

0
/9

/1
5

1
3

/1
0

/1
5

1
4

U
nd

er
st

an
di

ng
 (

F
D

-)
F

D
T

D
1

1
/1

0
/1

5
1

7
/1

0
/1

5
7

F
a

m
ili

a
ri

si
n

g
 w

ith
 L

in
u

x
2

9
/9

/1
5

1
9

/1
0

/1
5

2
1

F
am

ili
ar

is
in

g
w

ith
 F

90
2

9
/9

/1
5

1
9

/1
0

/1
5

2
1

U
nd

er
st

an
di

ng
 t

he
 g

ro
up

's
 F

D
T

D
 s

of
tw

ar
e

2
0

/1
0

/1
5

2
6

/1
0

/1
5

7

P
ro

du
ct

io
n

of
 P

ro
gr

es
s

R
ep

or
t

2
3

/1
0

/1
5

4
/1

1
/1

5
1

3

P
ro

gr
es

s
R

ep
or

t
S

ub
m

is
si

on
5

/1
1

/1
5

5
/1

1
/1

5
0

Im
p

le
m

e
n

t
1

D
 a

lg
o

ri
th

m
6

/1
1

/1
5

1
9

/1
1

/1
5

1
4

P
er

fo
rm

an
ce

 m
ea

su
re

m
en

ts
 o

f
1D

2
0

/1
1

/1
5

2
6

/1
1

/1
5

7

D
e

ve
lo

p
 2

D
 a

lg
o

ri
th

m
2

7
/1

1
/1

5
1

0
/1

2
/1

5
1

4

P
er

fo
rm

an
ce

 m
ea

su
re

m
en

ts
 o

f
2D

1
1

/1
2

/1
5

1
7

/1
2

/1
5

7

D
e

ve
lo

p
 s

e
le

ct
e

d
-p

o
in

ts
 a

lg
o

ri
th

m
1

/2
/1

6
1

4
/2

/1
6

1
4

P
er

fo
rm

an
ce

 m
ea

su
re

m
en

ts
 o

f
se

le
ct

ed
-p

o.
..

1
5

/2
/1

6
2

1
/2

/1
6

7

P
ro

du
ct

io
n

of
 t

he
 F

in
al

 R
ep

or
t

2
0

/1
0

/1
5

2
8

/4
/1

6
1

8
9

1
st

 p
e

ri
o

d
2

0
/1

0
/1

5
1

8
/1

2
/1

5
6

0

2
n

d
 p

e
ri

o
d

1
/2

/1
6

1
8

/3
/1

6
4

7

3
rd

 p
e

ri
o

d
1

0
/4

/1
6

2
1

/4
/1

6
1

2

P
ro

o
f-

re
a

d
in

g
2

2
/4

/1
6

2
8

/4
/1

6
7

F
in

al
 R

ep
or

t
D

el
iv

er
ab

le
2

9
/4

/1
6

2
9

/4
/1

6
0

P
re

pa
ra

tio
ns

 f
or

 v
iv

a
(&

po
st

er
)

1
/3

/1
6

1
/5

/1
6

6
2

V
iv

a
vo

ce
2

/5
/1

6
2

/5
/1

6
0

2
0

1
5

W
ee

k
40

W
ee

k
41

W
ee

k
42

W
ee

k
43

W
ee

k
44

W
ee

k
45

W
ee

k
46

W
ee

k
47

W
ee

k
48

W
ee

k
49

W
ee

k
50

W
ee

k
51

W
ee

k
52

2
7

/9
/1

5
4

/1
0

/1
5

1
1

/1
0

/1
5

1
8

/1
0

/1
5

2
5

/1
0

/1
5

1
/1

1
/1

5
8

/1
1

/1
5

1
5

/1
1

/1
5

2
2

/1
1

/1
5

2
9

/1
1

/1
5

6
/1

2
/1

5
1

3
/1

2
/1

5
2

0
/1

2
/1

5V
iv

a
vo

ce
P

ro
gr

es
s

R
ep

or
t

S
ub

m
is

si
on

F
in

al
 R

ep
or

t
D

el
iv

er
ab

le

24

Appendix A of Project Report: The 1st semester Progress Report

80

3r
d

Y
ea

r
P

ro
je

ct
N

ov
 5

, 2
01

5

G
an

tt
C

ha
rt

3

N
am

e
N

am
e

B
eg

in
 d

at
e

B
eg

in
 d

at
e

E
nd

 d
at

e
E

nd
 d

at
e

D
u

ra
ti

o
n

D
u

ra
ti

o
n

B
la

ck
bo

ar
d

Q
ui

ze
s

3
0

/9
/1

5
6

/1
0

/1
5

7

Li
te

ra
tu

re
 S

ur
ve

y
3

0
/9

/1
5

1
3

/1
0

/1
5

1
4

U
nd

er
st

an
di

ng
 (

F
D

-)
F

D
T

D
1

1
/1

0
/1

5
1

7
/1

0
/1

5
7

F
a

m
ili

a
ri

si
n

g
 w

ith
 L

in
u

x
2

9
/9

/1
5

1
9

/1
0

/1
5

2
1

F
am

ili
ar

is
in

g
w

ith
 F

90
2

9
/9

/1
5

1
9

/1
0

/1
5

2
1

U
nd

er
st

an
di

ng
 t

he
 g

ro
up

's
 F

D
T

D
 s

of
tw

ar
e

2
0

/1
0

/1
5

2
6

/1
0

/1
5

7

P
ro

du
ct

io
n

of
 P

ro
gr

es
s

R
ep

or
t

2
3

/1
0

/1
5

4
/1

1
/1

5
1

3

P
ro

gr
es

s
R

ep
or

t
S

ub
m

is
si

on
5

/1
1

/1
5

5
/1

1
/1

5
0

Im
p

le
m

e
n

t
1

D
 a

lg
o

ri
th

m
6

/1
1

/1
5

1
9

/1
1

/1
5

1
4

P
er

fo
rm

an
ce

 m
ea

su
re

m
en

ts
 o

f
1D

2
0

/1
1

/1
5

2
6

/1
1

/1
5

7

D
e

ve
lo

p
 2

D
 a

lg
o

ri
th

m
2

7
/1

1
/1

5
1

0
/1

2
/1

5
1

4

P
er

fo
rm

an
ce

 m
ea

su
re

m
en

ts
 o

f
2D

1
1

/1
2

/1
5

1
7

/1
2

/1
5

7

D
e

ve
lo

p
 s

e
le

ct
e

d
-p

o
in

ts
 a

lg
o

ri
th

m
1

/2
/1

6
1

4
/2

/1
6

1
4

P
er

fo
rm

an
ce

 m
ea

su
re

m
en

ts
 o

f
se

le
ct

ed
-p

o.
..

1
5

/2
/1

6
2

1
/2

/1
6

7

P
ro

du
ct

io
n

of
 t

he
 F

in
al

 R
ep

or
t

2
0

/1
0

/1
5

2
8

/4
/1

6
1

8
9

1
st

 p
e

ri
o

d
2

0
/1

0
/1

5
1

8
/1

2
/1

5
6

0

2
n

d
 p

e
ri

o
d

1
/2

/1
6

1
8

/3
/1

6
4

7

3
rd

 p
e

ri
o

d
1

0
/4

/1
6

2
1

/4
/1

6
1

2

P
ro

o
f-

re
a

d
in

g
2

2
/4

/1
6

2
8

/4
/1

6
7

F
in

al
 R

ep
or

t
D

el
iv

er
ab

le
2

9
/4

/1
6

2
9

/4
/1

6
0

P
re

pa
ra

tio
ns

 f
or

 v
iv

a
(&

po
st

er
)

1
/3

/1
6

1
/5

/1
6

6
2

V
iv

a
vo

ce
2

/5
/1

6
2

/5
/1

6
0

2
0

1
6

W
ee

k
5

W
ee

k
6

W
ee

k
7

W
ee

k
8

W
ee

k
9

W
ee

k
10

W
ee

k
11

W
ee

k
12

W
ee

k
13

W
ee

k
14

W
ee

k
15

W
ee

k
16

W
ee

k
17

W
ee

k
18

W
ee

k
19

W
ee

k
20

2
4

/1
/1

6
3

1
/1

/1
6

7
/2

/1
6

1
4

/2
/1

6
2

1
/2

/1
6

2
8

/2
/1

6
6

/3
/1

6
1

3
/3

/1
6

2
0

/3
/1

6
2

7
/3

/1
6

3
/4

/1
6

1
0

/4
/1

6
1

7
/4

/1
6

2
4

/4
/1

6
1

/5
/1

6
8

/5
/1

6

V
iv

a
vo

ce
F

in
al

 R
ep

or
t

D
el

iv
er

ab
le

25

Appendix A of Project Report: The 1st semester Progress Report

81

Appendix E

Technical risk analysis

26

Appendix A of Project Report: The 1st semester Progress Report

82

Possible situation Possible effects Severity Solutions applied

Hard disk failure

Loss of data,
Loss of project time,
Loss of recorded
progress

Severe

Daily backups are kept in
the group’s cluster HDDs
and personal backups of
important documents are
kept on cloud services.

The HOKUSAI
GreatWAVE super-
computer cannot
accept a job soon
because of big job
queues

Loss of project time Moderate

Experimental versions of
the project’s software are
submitted for execution
as soon as possible. If
multiple ideas are under
consideration, all of them
are implemented and then
submitted even if a change
of mind happens after-
wards.

The HOKUSAI
GreatWAVE su-
percomputer goes
through unplanned
maintenance

Loss of project time Moderate

Any practical project work
is carried out before any
documentation work

The aims are impossi-
ble to achieve at all or
in the time available
for this project

The aims of the
project are never
achieved

Severe

In such a case, a thorough
analysis of all steps followed
and reasons of failure will
be carried out. A thorough
and meticulous literature
review has been carried out,
which suggest it is feasible
for the project aims to be
met in the given amount of
time.

Table E.1: Technical Risks

27

Appendix A of Project Report: The 1st semester Progress Report

83

Appendix F

Risk Assessment

28

Appendix A of Project Report: The 1st semester Progress Report

84

!
SC
H
O
O
L!
O
F!
E&
EE
!R
IS
K
!A
SS
ES
SM

EN
T!

! ! A
ct
iv
ity
!L
oc
at
io
n:
!B
ar
ne
s!
W
al
lis
!c
om

pu
te
r!c
lu
st
er
!o
r!H
om

e!
!

! M
A
N
A
G
ER
/S
U
PE
R
VI
SO
R
!!

N
A
M
E:
!D
r.!
Fu
m
ie
!C
os
te
n!

SI
G
N
ED
:!

D
A
TE
:!2
7/
10
/2
01
5!

ST
U
D
EN
T!

N
A
M
E:
!M
r.!
Lo
uk
as
!X
an
th
os
!!

SI
G
N
ED
:!

D
A
TE
:!2
7/
10
/2
01
5!

! ! !

!
W
O
R
K
!A
C
TI
VI
TY
/!

W
O
R
K
PL
A
C
E!

!
(W
H
A
T!
PA
R
T!
O
F!
TH
E!

A
C
TI
VI
TY
!P
O
SE
S!
R
IS
K
!O
F!

IN
JU
R
Y!
O
R
!IL
LN
ES
S)
!

!
H
A
ZA
R
D
!(S
)!

!
(S
O
M
ET
H
IN
G
!

TH
A
T!
C
O
U
LD
!

C
A
U
SE
!H
A
R
M
,!

IL
LN
ES
S!
O
R
!

IN
JU
R
Y)
!

! !

!
LI
K
EL
Y!

C
O
N
SE
Q
U
EN
C
ES
!

!
(W
H
A
T!
W
O
U
LD
!B
E!

TH
E!
R
ES
U
LT
!O
F!

TH
E!
H
A
ZA
R
D
)!

!

!
W
H
O
!O
R
!W
H
A
T!
IS
!

A
T!
!R
IS
K
!

!
(IN
C
LU
D
E!

N
U
M
B
ER
S!
A
N
D
!

G
R
O
U
PS
)!

!
EX
IS
TI
N
G
!C
O
N
TR
O
L!

M
EA
SU
R
ES
!

IN
!U
SE
!

(W
H
A
T!
PR
O
TE
C
TS
!

PE
O
PL
E!
FR
O
M
!T
H
ES
E!

H
A
ZA
R
D
S)
!

!

W
IT
H
!E
XI
ST
IN
G
!

C
O
N
TR
O
LS
!

!
M
EA
SU
R
E!

R
EQ
U
IR
ED
!T
O
!

PR
EV
EN
T!
O
R
!!

R
ED
U
C
E!
R
IS
K
!

!
(W
H
A
T!
N
EE
D
S!
TO
!B
E!

D
O
N
E!
TO
!M
A
K
E!
TH
E!

A
C
TI
VI
TY
!A
S!
SA
FE
!

A
S!
PO
SS
IB
LE
)!

!
PE
R
SO
N
!

R
ES
PO
N
SI

B
LE
!F
O
R
!

A
C
TI
O
N
S!

A
N
D
!

A
G
R
EE
D
!

TI
M
ES
C
A
L

ES
!T
O
!

A
C
H
IE
VE
!

TH
EM

!

W
IT
H
!N
EW

!
C
O
N
TR
O
LS
!

SEVERITY!

LIKELIHOOD

RISK!RATING!

RISK!!ACCEPTABLE!

SEVERITY!

LIKELIHOOD
RISK!RATING!

RISK!ACCEPTABLE!
!

Sp
en
d!
pr
ol
on
ge
d!
pe
rio
ds
!

si
tti
ng
!b
ef
or
e!

co
m
pu
te
r/l
ap
to
p!
an
d!

dr
ag
gi
ng
!a
!m
ou
se
!

R
ep
et
iti
ve
!

St
ra
in
!In
ju
ry
!

(R
SI
)!a
nd
!W
or
k!

R
el
at
ed
!U
pp
er
!

Li
m
b!
D
is
or
de
r!

(W
R
U
LD
)!

!

Pa
in
,!N
um

bn
es
s,
!

A
ch
in
g,
!T
ire
dn
es
s!

an
d!
Ti
ng
lin
g!
in
!!

m
us
cl
es
,!n
er
ve
s,
!

te
nd
on
s!
an
d!
ot
he
r!

so
ft!
bo
dy
!ti
ss
ue
s!

of
!th
e!
ha
nd
,!w
ris
t,!

ar
m
,!s
ho
ul
de
r!a
nd
!

sp
in
e!

St
ud
en
ts
!w
ho
!n
ee
d!

to
!!p
ro
gr
am
!a
nd
!!

us
e!
co
m
pu
te
r!a
nd
!

la
pt
op
!in
!th
e!
pr
oj
ec
t!

St
ud
en
ts
!a
re
!to
!b
e!

pr
ov
id
ed
!w
ith
!c
op
ie
s!

of
!th
e!
do
cu
m
en
ts

H
ea
lth
!a
nd
!S
af
et
y!

Ex
ec
ut
iv
e!
pu
bl
ic
at
io
n!

“I
N
D
G
36
!c!
W
or
ki
ng
!

w
ith
!V
D
U
s”
.!

!

2!
3!

6!
N
!

O
!

Ta
ke
!fr
eq
ue
nt
!b
re
ak
s!

fr
om

!th
e!
co
m
pu
te
r!

D
o!
si
m
pl
e!
st
re
tc
hi
ng
!

an
d!
sh
ak
in
g!

ex
er
ci
se
s!
w
hi
ls
t!

ta
ki
ng
!a
!b
re
ak
!fr
om

!
th
e!
co
m
pu
te
r.!

St
ud
en
ts
!

th
em
se
lv
e

s!
an
d!

su
pe
rv
is
or
!

2!
1!

2!
Y! E! S!

Fo
cu
si
ng
!th
e!
ey
es
!o
n!
a!

co
m
pu
te
r!d
is
pl
ay
!fo
r!

pr
ot
ra
ct
ed
,!u
ni
nt
er
ru
pt
ed
!

pe
rio
ds
!o
f!t
im
e!

C
om

pu
te
r!

vi
si
on
!

sy
nd
ro
m
e!

(C
VS
)!

H
ea
da
ch
es
,!

B
lu
rr
ed
!v
is
io
n,
!

N
ec
k!
pa
in
,!F
at
ig
ue
,!

ey
e!
st
ra
in
,!D
ry
,!

Irr
ita
te
d!
ey
es
,!

D
ou
bl
e!
vi
si
on
,!

Po
ly
op
ia
,!a
nd
!

D
iff
ic
ul
ty
!

re
fo
cu
si
ng
!th
e!

ey
es
!

St
ud
en
ts
!w
ho
!n
ee
d!

to
!!p
ro
gr
am
!a
nd
!!

us
e!
co
m
pu
te
r!a
nd
!

la
pt
op
!in
!th
e!
pr
oj
ec
t!

A
pp
ro
ve
d!
se
at
in
g,
!

de
sk
s!
an
d!
lig
ht
in
g!
ar
e!

pr
ov
id
ed
!in
!la
bo
ra
to
ry
!

SS
B
/A
!1
9!

St
ud
en
ts
!a
re
!to
!b
e!

pr
ov
id
ed
!w
ith
!c
op
ie
s!

of
!th
e!
fo
llo
w
in
g!

do
cu
m
en
ts
:!(
1)
!T
he
!

U
ni
ve
rs
ity
’s
!C
od
e!
of
!

Pr
ac
tic
e!
an
d!
G
ui
da
nc
e!

N
ot
e!
on
!“
U
se
!o
f!

D
is
pl
ay
!S
cr
ee
n!

Eq
ui
pm

en
t”
,!(
2)
!T
he
!

U
ni
ve
rs
ity
’s
!G
ui
da
nc
e!

N
ot
e!
“D
is
pl
ay
!S
cr
ee
n!

Eq
ui
pm

en
t!/
!

W
or
ks
ta
tio
n!
Se
t!U
p”
!

3!
3!

9!
N
!
O
!

Ta
ke
!fr
eq
ue
nt
!b
re
ak
s!

fr
om

!th
e!
co
m
pu
te
r!

B
lin
k!
th
e!
ey
es
!!

co
ns
ci
ou
sl
y!
!e
ve
ry
!

no
w
!a
nd
!th
en
!(t
hi
s!

he
lp
s!
re
pl
en
is
h!
th
e!

te
ar
!fi
lm
)!a
nd
!to
!lo
ok
!

ou
t!t
he
!w
in
do
w
!to
!a
!

di
st
an
t!o
bj
ec
t!o
r!t
o!

th
e!
sk
y!

St
ud
en
ts
!

th
em
se
lv
e

s!
an
d!

su
pe
rv
is
or
!

2!
1!

2!
Y! E! S!

Appendix A of Project Report: The 1st semester Progress Report

85

 S
C
H
O
O
L
O
F
E&
EE
 R
IS
K
 A
SS
ES
SM

EN
T

IF
 T
H
E
A
N
SW

ER
S
TO
 A
N
Y
O
F
TH
E
Q
U
ES
TI
O
N
S
B
EL
O
W
 IS
 Y
ES
 T
H
EN
 A
D
D
IT
IO
N
A
L
SP
EC
IF
IC
 R
IS
K
 A
SS
ES
SM

EN
TS
 M
A
Y
B
E
R
EQ
U
IR
ED
.

IS

 T
H

ER
E

A
 R

IS
K
 O

F
FI

R
E?

Y/
N

D

O
ES

 T
H

E
A
C

TI
V
IT

Y
R
EQ

U
IR

E
A
N

Y
H

O
M

E
W

O
R
K
IN

G
?

Y/
N

A
R
E

S
U

B
S
TA

N
C

ES
 T

H
A
T

A
R
E

H
A
Z
A
R
D

O
U

S
 T

O

H
EA

LT
H

 U
S
ED

?
Y/
N

A
R
E

TH
E

EM
PL

O
YE

ES
 R

EQ
U

IR
ED

 T
O

 W
O

R
K
 A

LO
N

E
Y/
N

IS
 T
H
ER
E
M
AN
U
AL
 H
AN
D
LI
N
G
 IN
VO
LV
ED
?

Y/
N

D
O
ES
 T
H
E
AC
TI
VI
TY
 IN
VO
LV
E
D
R
IV
IN
G

Y/
N

IS
 P
PE
 W
O
R
N
 O
R
 R
EQ
U
IR
ED
 T
O
 B
E
W
O
R
N
?

Y/
N

D
O
ES
 T
H
E
AC
TI
VI
TY
 R
EQ
U
IR
E
W
O
R
K
AT
 H
EI
G
H
T

Y/
N

AR
E
D
IS
PL
AY
 S
C
R
EE
N
S
U
SE
D
?

Y/
N

D
O
ES
 T
H
E
AC
TI
VI
TY
 IN
VO
LV
E
FO
R
EI
G
N
 T
R
AV
EL

Y/
N

IS
 T
H
ER
E
A
SI
G
N
IF
IC
AN
T
R
IS
K
TO
 Y
O
U
N
G
 P
ER
SO
N
S?

Y/
N

IS
 T
H
ER
E
A
SI
G
N
IF
IC
AN
T
R
IS
K
TO
 N
EW

 /
PR
EG
N
AN
T
M
O
TH
ER
S?

Y/
N

SE
VE
R
IT
Y

LIKELIHOOD

1

2
3

4
5

1
Lo
w

Lo
w

Lo
w

Lo
w

Lo
w

2
Lo
w

Lo
w

M
ed
iu
m

M
ed
iu
m

H
ig
h

3
Lo
w

M
ed
iu
m

M
ed
iu
m

H
ig
h

H
ig
h

4
Lo
w

M
ed
iu
m

H
ig
h

H
ig
h

H
ig
h

5
Lo
w

H
ig
h

H
ig
h

H
ig
h

H
ig
h

Se
ve
rit
y
va
lu
e
=
 p
ot
en
tia
l c
on
se
qu
en
ce
 o
f a
n
in
ci
de
nt
/i
nj
ur
y

 5

Ve
ry
 H
ig
h

De
at
h
/ p
er
m
an
en
t i
nc
ap
ac
ity
 /
w
id
es
pr
ea
d
lo
ss

4

Hi
gh

M
aj
or
 In
ju
ry
 (R
ep
or
ta
bl
e
Ca
te
go
ry
) /
 S
ev
er
e
In
ca
pa
cit
y
/ S
er
io
us
 L
os
s

3

M
od
er
at
e

In
ju
ry
 /
illn
es
s
of
 3
 d
ay
s
or
 m
or
e
ab
se
nc
e
(r
ep
or
ta
bl
e
ca
te
go
ry
) /
 M
od
er
at
e
lo
ss

2

Sl
ig
ht

M
in
or
 in
ju
ry
 /
illn
es
s
–
im
m
ed
ia
te
 F
irs
t A
id
 o
nl
y
/ s
lig
ht
 lo
ss

1

Ne
gl
ig
ib
le

No
 in
ju
ry
 o
r t
riv
ia
l i
nj
ur
y
/ i
lln
es
s
/ l
os
s

 Li
ke
lih
oo
d
va
lu
e
=
 w
ha
t i
s
th
e
po
te
nt
ia
l o
f a
n
in
ci
de
nt
 o
r i
nj
ur
y
oc
cu
rr
in
g

 5
Al
m
os
t c
er
ta
in
 to
 o
cc
ur

4

Li
ke
ly
 to
 o
cc
ur

3

Qu
ite
 p
os
sib
le
 to
 o
cc
ur

2

Po
ss
ib
le
 in
 c
ur
re
nt
 s
itu
at
io
n

1

No
t l
ik
el
y
to
 o
cc
ur

 Ri
sk
 ra
tin
g
=
 s
ev
er
ity
 v
al
ue
 ×
 li
ke
lih
oo
d
va
lu
e

 Ri
sk
 ra
tin
gs
 a
re
 c
la
ss
ifi
ed
 a
s
lo
w
 (
1
–
5)
, m
ed
iu
m
 (
6
–
9)
 a
nd
 h
ig
h
(1
0
–
25
)

Ri
sk
 C
la
ss
ifi
ca
tio
n
an
d
Ac
tio
ns
:

 Ra
tin
g

Cl
as
si
fic
at
io
n

Ac
tio
n

 1
–
5

Lo
w

To
le
ra
bl
e
ris
k
- M
on
ito
r a
nd
 M
an
ag
e

 6
–
9

M
ed
iu
m

Re
vi
ew
 a
nd
 in
tro
du
ce
 a
dd
iti
on
al
 c
on
tro
ls
to
 m
iti
ga
te
 to

“A
s
Lo
w
 A
s
Re
as
on
ab
ly
 P
ra
ct
ica
bl
e”
 (A
LA
RP
)

 10
 –
 2
5

Hi
gh

St
op
 w
or
k
im
m
ed
ia
te
ly
 a
nd
 in
tro
du
ce
 fu
rth
er
 c
on
tro
l m
ea
su
re
s

Appendix A of Project Report: The 1st semester Progress Report

86

Appendix B

Pseudocode of algorithms described

in this report

The code developed for the project is based on the long and complicated (FD)FDTD soft-

ware, therefore the author’s code work cannot be easily perceived when isolated from the

(FD)FDTD software.

Hence, this Appendix contains a pseudocode description of the main methods listed

in this report. The segments of pseudocode that concern the application of each method

on the output stage of the (FD)FDTD software, must be repeated for the transfer of

the data of each field array, at the end of every time sub-step of the main loop of the

FD-FDTD method.

B.1 Pseudocode for method NB13X

B.1.1 Application of the method on the output stage

h o s t 3 D f i e l d a r r a y (1 : nx , j0 , k0) = d e v i c e 3 D f e l d a r r a y (1 : nx , j0 ,

↪→ k0)

B.2 Pseudocode for method NB13Y

B.2.1 Application of the method on the output stage

h o s t 3 D f i e l d a r r a y (i0 , 1 : ny , k0) = d e v i c e 3 D f e l d a r r a y (i0 , 1 : ny ,

↪→ k0)

87

B.3 Pseudocode for method NB13Z

B.3.1 Application of the method on the output stage

h o s t 3 D f i e l d a r r a y (i0 , j0 , 1 : nz) = d e v i c e 3 D f e l d a r r a y (i0 , j0 ,

↪→ 1 : nz)

B.4 Pseudocode for method B13X

B.4.1 CUDA Kernel

KERNEL x b u f f e r i n g

PARAMETERS: [

INTEGERS: j0 , k0 , nx , ny , nz ,

REAL arrays in Device memory :

d e v i c e 3 D f i e l d (1 : nx , 1 : ny , 1 : nz) ,

d e v i c e 1D bu f f e r (1 : nx)]

BEGIN

I n t e g e r v a r i a b l e s i , j , k

i = i d o f t h r e a d . x + (i d o f b l o c k . x ∗ 512)

j = j0

k = k0

i f 1 <= i <= nx

de v i c e 1D bu f f e r (i) = d e v i c e 3 D f i e l d (i , j , k)

e n d i f

END

B.4.2 Application of the method on the output stage

launch ke rne l x b u f f e r i n g [j0 , k0 , nx , ny , nz , d e v i c e f i e l d a r r a y

↪→ , d ev i c e 1D buf f e r ,

b locks : nx/512+1 , threads per block : 512]

88

h o s t 3 D f i e l d a r r a y (1 : nx , j0 , k0) = dev i c e 1D bu f f e r (1 : nx)

B.5 Pseudocode for method B13Y

B.5.1 CUDA Kernel

KERNEL y b u f f e r i n g

PARAMETERS: [

INTEGERS: i0 , k0 , nx , ny , nz

REAL arrays in Device memory :

d e v i c e 3 D f i e l d (1 : nx , 1 : ny , 1 : nz) ,

d e v i c e 1D bu f f e r (1 : ny)]

BEGIN

I n t e g e r v a r i a b l e s i , j , k

i=i 0

j = i d o f t h r e a d . x + (i d o f b l o c k . x ∗ 512)

k = k0

i f 1 <= j <= ny

de v i c e 1D bu f f e r (j) = d e v i c e 3 D f i e l d (i , j , k)

e n d i f

END

B.5.2 Application of the method on the output stage

launch ke rne l y b u f f e r i n g [i0 , k0 , nx , ny , nz , d e v i c e f i e l d a r r a y

↪→ , d ev i c e 1D buf f e r ,

b locks : ny/512+1 , threads per block : 512]

h o s t 3 D f i e l d a r r a y (i0 , 1 : ny , k0) = dev i c e 1D bu f f e r (1 : ny)

89

B.6 Pseudocode for method B13Z

B.6.1 CUDA Kernel

KERNEL z b u f f e r i n g

PARAMETERS: [

INTEGERS: i0 , j0 , nx , ny , nz

REAL arrays in Device memory :

d e v i c e 3 D f i e l d (1 : nx , 1 : ny , 1 : nz) ,

d e v i c e 1D bu f f e r (1 : nz)]

BEGIN

I n t e g e r v a r i a b l e s i , j , k

i = i 0

j = j0

k = i d o f t h r e a d . x + (i d o f b l o c k . x ∗ 512)

i f 1 <= k <= nz

de v i c e 1D bu f f e r (k) = d e v i c e 3 D f i e l d (i , j , k)

e n d i f

END

B.6.2 Application of the method on the output stage

launch ke rne l z b u f f e r i n g [i0 , j0 , nx , ny , nz , d e v i c e f i e l d a r r a y

↪→ , d ev i c e 1D buf f e r ,

b locks : nz/512+1 , threads per block : 512]

h o s t 3 D f i e l d a r r a y (i0 , 1 : nz , k0) = d ev i c e 1D bu f f e r (1 : nz)

B.7 Pseudocode for method B11X

B.7.1 CUDA Kernel

90

KERNEL x b u f f e r i n g

PARAMETERS: [

INTEGERS: j0 , k0 , nx , ny , nz

REAL arrays in Device memory :

d e v i c e 3 D f i e l d (1 : nx , 1 : ny , 1 : nz) ,

d e v i c e 1D bu f f e r (1 : nx)]

BEGIN

I n t e g e r v a r i a b l e s i , j , k

i = i d o f t h r e a d . x + (i d o f b l o c k . x ∗ 512)

j = j0

k = k0

i f 1 <= i <= nx

de v i c e 1D bu f f e r (i) = d e v i c e 3 D f i e l d (i , j , k)

e n d i f

END

B.7.2 Application of the method on the output stage

launch ke rne l x b u f f e r i n g [j0 , k0 , nx , ny , nz , d e v i c e f i e l d a r r a y

↪→ , d ev i c e 1D buf f e r ,

b locks : nx/512+1 , threads per block : 512]

h o s t 1 D b u f f e r a r r a y (1 : nx) = d ev i c e 1D bu f f e r (1 : nx)

B.8 Pseudocode for method B11Y

B.8.1 CUDA Kernel

KERNEL y b u f f e r i n g

PARAMETERS: [

INTEGERS: i0 , k0 , nx , ny , nz

91

REAL arrays in Device memory :

d e v i c e 3 D f i e l d (1 : nx , 1 : ny , 1 : nz) ,

d e v i c e 1D bu f f e r (1 : ny)]

BEGIN

I n t e g e r v a r i a b l e s i , j , k

i = i 0

j = i d o f t h r e a d . x + (i d o f b l o c k . x ∗ 512)

k = k0

i f 1 <= j <= ny

de v i c e 1D bu f f e r (j) = d e v i c e 3 D f i e l d (i , j , k)

e n d i f

END

B.8.2 Application of the method on the output stage

launch ke rne l y b u f f e r i n g [i0 , k0 , nx , ny , nz , d e v i c e f i e l d a r r a y

↪→ , d ev i c e 1D buf f e r ,

b locks : ny/512+1 , threads per block : 512]

h o s t 1 D b u f f e r a r r a y (1 : ny) = d ev i c e 1D bu f f e r (1 : ny)

B.9 Pseudocode for method B11Z

B.9.1 CUDA Kernel

KERNEL z b u f f e r i n g

PARAMETERS: [

INTEGERS: i0 , j0 , nx , ny , nz

REAL arrays in Device memory :

d e v i c e 3 D f i e l d (1 : nx , 1 : ny , 1 : nz) ,

d e v i c e 1D bu f f e r (1 : nz)]

92

BEGIN

I n t e g e r v a r i a b l e s i , j , k

i=i 0

j=j0

k= i d o f t h r e a d . x + (i d o f b l o c k . x ∗ 512)

i f 1 <= k <= nz

de v i c e 1D bu f f e r (k) = d e v i c e 3 D f i e l d (i , j , k)

e n d i f

END

B.9.2 Application of the method on the output stage

launch ke rne l z b u f f e r i n g [i0 , j0 , nx , ny , nz , d e v i c e f i e l d a r r a y

↪→ , d ev i c e 1D buf f e r ,

b locks : nz/512+1 , threads per block : 512]

h o s t 1 D b u f f e r a r r a y (1 : nz) = dev i c e 1D bu f f e r (1 : nz) ;

B.10 Pseudocode for method NB23X

B.10.1 Application of the method on the output stage

h o s t 3 D f i e l d a r r a y (i0 , 1 : ny , 1 : nz) = d e v i c e 3 D f e l d a r r a y (i0 , 1 :

↪→ ny , 1 : nz)

B.11 Pseudocode for method NB23Y

B.11.1 Application of the method on the output stage

h o s t 3 D f i e l d a r r a y (1 : nx , j0 , 1 : nz) = d e v i c e 3 D f e l d a r r a y (1 : nx ,

↪→ j0 , 1 : nz)

93

B.12 Pseudocode for method NB23Z

B.12.1 Application of the method on the output stage

h o s t 3 D f i e l d a r r a y (1 : nx , 1 : ny , k0) = d e v i c e 3 D f e l d a r r a y (1 : nx ,

↪→ 1 : nz , k0)

B.13 Pseudocode for method B23X

B.13.1 CUDA Kernel

KERNEL Xplane bu f f e r ing [

PARAMETERS:

INTEGERS: i0 , nx , ny , nz

REAL arrays in Device memory :

d e v i c e 3 D f i e l d (1 : nx , 1 : ny , 1 : nz) ,

d e v i c e 2D bu f f e r (1 : nx , 1 : ny)]

BEGIN

I n t e g e r v a r i a b l e s i , j , k

i = i 0

j = i d o f t h r e a d . x

k = i d o f b l o c k . x

i f 1 <= j <= ny and 1 <= k <= nz

de v i c e 2D bu f f e r (i , j) = d e v i c e 3 D f i e l d (i , j , k)

e n d i f

END

B.13.2 Application of the method on the output stage

launch ke rne l Z p l a n e b u f f e r i n g [k0 , nx , ny , nz ,

↪→ d e v i c e f i e l d a r r a y , dev i c e 2D buf f e r ,

b lock dimension y : nz

94

block dimension x : ny]

h o s t 3 D f i e l d a r r a y (i0 , 1 : ny , 1 : nz) = d ev i c e 2D bu f f e r (1 : nx , 1 :

↪→ nz) ;

B.14 Pseudocode for method B23Y

B.14.1 CUDA Kernel

KERNEL Yplane bu f f e r ing [

PARAMETERS:

INTEGERS: j0 , nx , ny , nz

REAL arrays in Device memory :

d e v i c e 3 D f i e l d (1 : nx , 1 : ny , 1 : nz) ,

d e v i c e 2D bu f f e r (1 : nx , 1 : nz)]

BEGIN

I n t e g e r v a r i a b l e s i , j , k

i = i d o f t h r e a d . x

j = j0

k = i d o f b l o c k . x

i f 1 <= i <= nx and 1 <= j <= ny

de v i c e 2D bu f f e r (i , j) = d e v i c e 3 D f i e l d (i , j , k)

e n d i f

END

B.14.2 Application of the method on the output stage

launch ke rne l Yp lane bu f f e r ing [j0 , nx , ny , nz ,

↪→ d e v i c e f i e l d a r r a y , dev i c e 2D buf f e r ,

b lock dimension y : nz ,

b lock dimension x : nx]

95

h o s t 3 D f i e l d a r r a y (1 : nx , j0 , 1 : nz) = d ev i c e 2D bu f f e r (1 : nx , 1 :

↪→ nz) ;

B.15 Pseudocode for method B23Z

B.15.1 CUDA Kernel

KERNEL Z p l a n e b u f f e r i n g [

PARAMETERS:

INTEGERS: k0 , nx , ny , nz

REAL arrays in Device memory :

d e v i c e 3 D f i e l d (1 : nx , 1 : ny , 1 : nz) ,

d e v i c e 2D bu f f e r (1 : nx , 1 : ny)]

BEGIN

I n t e g e r v a r i a b l e s i , j , k

i = i d o f t h r e a d . x

j = i d o f b l o c k . x

k = k0

i f 1 <= i <= nx and 1 <= j <= ny

de v i c e 2D bu f f e r (i , j) = d e v i c e 3 D f i e l d (i , j , k)

e n d i f

END

B.15.2 Application of the method on the output stage

launch ke rne l Z p l a n e b u f f e r i n g [k0 , nx , ny , nz ,

↪→ d e v i c e f i e l d a r r a y , dev i c e 2D buf f e r ,

b lock dimension y : ny

block dimension x : nx]

h o s t 3 D f i e l d a r r a y (1 : nx , 1 : ny , k0) = de v i c e 2D bu f f e r (1 : nx , 1 :

↪→ ny) ;

96

B.16 Pseudocode for method B22X

B.16.1 CUDA Kernel

KERNEL Xplane bu f f e r ing [

PARAMETERS:

INTEGERS: i0 , nx , ny , nz

REAL arrays in Device memory :

d e v i c e 3 D f i e l d (1 : nx , 1 : ny , 1 : nz) ,

d e v i c e 2D bu f f e r (1 : nx , 1 : ny)]

BEGIN

I n t e g e r v a r i a b l e s i , j , k

i = i 0

j = i d o f t h r e a d . x

k = i d o f b l o c k . x

i f 1 <= j <= ny and 1 <= k <= nz

de v i c e 2D bu f f e r (i , j) = d e v i c e 3 D f i e l d (i , j , k)

e n d i f

END

B.16.2 Application of the method on the output stage

launch ke rne l Z p l a n e b u f f e r i n g [k0 , nx , ny , nz ,

↪→ d e v i c e f i e l d a r r a y , dev i c e 2D buf f e r ,

b lock dimension y : nz

block dimension x : ny]

h o s t 2 D b u f f e r a r r a y (1 : ny , 1 : nz) = dev i c e 2D bu f f e r (1 : nx , 1 : nz) ;

B.17 Pseudocode for method B22Y

B.17.1 CUDA Kernel

97

KERNEL Yplane bu f f e r ing [

PARAMETERS:

INTEGERS: j0 , nx , ny , nz

REAL arrays in Device memory :

d e v i c e 3 D f i e l d (1 : nx , 1 : ny , 1 : nz) ,

d e v i c e 2D bu f f e r (1 : nx , 1 : nz)]

BEGIN

I n t e g e r v a r i a b l e s i , j , k

i = i d o f t h r e a d . x

j = j0

k = i d o f b l o c k . x

i f 1 <= i <= nx and 1 <= j <= ny

de v i c e 2D bu f f e r (i , j) = d e v i c e 3 D f i e l d (i , j , k)

e n d i f

END

B.17.2 Application of the method on the output stage

launch ke rne l Yp lane bu f f e r ing [j0 , nx , ny , nz ,

↪→ d e v i c e f i e l d a r r a y , dev i c e 2D buf f e r ,

b lock dimension y : nz ,

b lock dimension x : nx]

h o s t 2 D b u f f e r a r r a y (1 : nx , 1 : nz) = dev i c e 2D bu f f e r (1 : nx , 1 : nz) ;

B.18 Pseudocode for method B22Z

B.18.1 CUDA Kernel

KERNEL Z p l a n e b u f f e r i n g [

PARAMETERS:

98

INTEGERS: k0 , nx , ny , nz

REAL arrays in Device memory :

d e v i c e 3 D f i e l d (1 : nx , 1 : ny , 1 : nz) ,

d e v i c e 2D bu f f e r (1 : nx , 1 : ny)]

BEGIN

I n t e g e r v a r i a b l e s i , j , k

i = i d o f t h r e a d . x

j = i d o f b l o c k . x

k = k0

i f 1 <= i <= nx and 1 <= j <= ny

d e v i c e 2 D b u f f e r a r r a y (i , j) = d e v i c e 3 D f i e l d (i , j , k)

e n d i f

END

B.18.2 Application of the method on the output stage

launch ke rne l Z p l a n e b u f f e r i n g [k0 , nx , ny , nz ,

↪→ d e v i c e f i e l d a r r a y , dev i c e 2D buf f e r ,

b lock dimension y : ny

block dimension x : nx]

h o s t 1 D b u f f e r a r r a y (1 : nx , 1 : ny) = dev i c e 2D bu f f e r (1 : nx , 1 : ny) ;

B.19 Pseudocode for method RND-DIRECT

B.19.1 Application of the method on the output stage

// I n t e g e r M poi

// I n t e g e r p o i l s t (1 : M poi , 1 : 3) r e s i d e s in host memory and

↪→ conta in s the l i s t o f c oo rd ina t e s o f POI

f o r i =1,M poi

99

t h i s x = p o i l s t (i , 1)

t h i s k = p o i l s t (i , 2)

t h i s z = p o i l s t (i , 3)

h o s t 3 D f i e l d a r r a y (th i s x , th i s y , t h i s z) =

↪→ d e v i c e 3 D f i e l d a r r a y (th i s x , th i s y , t h i s z)

end

B.20 Pseudocode for method RND-MAP

B.20.1 CUDA Kernel

ke rne l RNDMAP [

PARAMETERS:

INTEGER: M poi , nx , ny , nz ,

REAL ARRAYS in dev i c e : dev ice po i map (nx : ny : nz) ,

↪→ de v i c e 1D bu f f e r (0 : M poi) , d e v i c e 3 D f i e l d a r r a y (1 : nx , 1 : ny

↪→ , 1 : nz)]

BEGIN

INTEGER v a r i a b l e s : i , j , k

REAL arrays in dev i c e : d e v i c e p o i b u f f e r (0 : M poi)

i = i d o f t h r e a d . x

j = i d o f b l o c k . x

k = i d o f b l o c k . y

i f 1 <= k <= nz and 1 <= y <= ny and 1 <= x <= nx

then

d e v i c e p o i b u f f e r (d p o i b u f f e r (i , j , k)) =

↪→ d e v i c e 3 D f i e l d a r r a y (i , j , k)

e n d i f

END

B.20.2 Application of the method on the output stage

launch ke rne l RNDMAP [M poi , nx , ny , nz , device poi map ,

↪→ dev i c e 1D buf f e r , d e v i c e 3 D f i e l d a r r a y

100

g r id dimension : nx ,

bock dimension y : nz ,

b lock dimension x : nx]

ho s t 1D bu f f e r (0 : M poi) = dev i c e 1D bu f f e r (0 : M poi)

/∗
// t h i s commented−out segment o f pseudocode d e s c r i b e s

//how the b u f f e r can be used f o r the p r i n t i n g

// o f the f i e l d data . Evidently , b u f f e r a c c e s s i s performed with

// complexity O(M poi) .

f o r i =1, M poi

x ex t rac t ed = p o i l s t (i , 1)

y ex t rac t ed = p o i l s t (i , 2)

z e x t r a c t e d = p o i l s t (i , 3)

p r i n t ” Point at (” + x ext rac t ed + ” , ” + y ext ra c t ed + ” , ”

↪→ + z e x t r a c t e d + ”) has v a l u e + hos t 1D bu f f e r (i)

end

∗/

B.21 Pseudocode for method RND-LST

B.21.1 CUDA Kernel

ke rne l RNDLST [

PARAMETERS:

INTEGER: M poi , nx , ny , nz ,

REAL ARRAYS in dev i c e : d e v i c e p o i l i s t (1 : M poi) ,

↪→ de v i c e 1D bu f f e r (1 : M poi) ,

d e v i c e 3 D f i e l d a r r a y (1 : nx , 1 : ny , 1 : nz)]

BEGIN

INTEGER v a r i a b l e s : i , j , k

REAL arrays in dev i c e : d e v i c e p o i b u f f e r (0 : M poi)

i = (i d o f b l o c k . x−1)∗ d imens i on o f b l o ck . x + i d o f t h r e a d . x

i f 1 <= i <= M poi

101

then

x l = d e v i c e p o i l s t (i , 1)

y l = d e v i c e p o i l s t (i , 2)

z l = d e v i c e p o i l s t (i , 3)

d e v i c e p o i b u f f e r (i) = d e v i c e 3 D f i e l d a r r a y (x l , y l , z l)

e n d i f

END

B.21.2 Application of the method on the output stage

launch ke rne l LST [M poi , nx , ny , nz , d e v i c e p o i l i s t ,

↪→ dev i c e 1D buf f e r , d e v i c e 3 D f i e l d a r r a y

g r id dimension : nx ,

bock dimension y : nz ,

b lock dimension x : nx]

ho s t 1D bu f f e r (1 : M poi) = dev i c e 1D bu f f e r (1 : M poi)

/∗
// t h i s commented−out segment o f pseudocode d e s c r i b e s

//how the b u f f e r can be used f o r the p r i n t i n g

// o f the f i e l d data . Evidently , b u f f e r a c c e s s i s performed with

// complexity O(M poi) .

f o r i =1, M poi

x ex t rac t ed = p o i l s t (i , 1)

y ex t rac t ed = p o i l s t (i , 2)

z e x t r a c t e d = p o i l s t (i , 3)

p r i n t ” Point at (” + x ext rac t ed + ” , ” + y ext ra c t ed + ” , ”

↪→ + z e x t r a c t e d + ”) has v a l u e + hos t 1D bu f f e r (i)

end

∗/

102

Appendix C

The source code of the

pseudo-random 3D cartesian

coordinates generator in C++11

/∗ AUTHOR: Loukas Xanthos

∗ The U n i v e r s i t y o f Manchester

∗/

#include <iostream>

#include <s t d i o . h>

#include <s t d l i b . h>

#include <time . h>

#include <s t r i ng>

#include <set>

using namespace std ;

#define MAXN 374

typedef unsigned long long int u l l i n t ;

class Coordinate {
public :

Coordinate (int mx, int my, int mz) {
x=mx; y=my; z=mz ;

}

103

void get () { cout << x << ’ ’<< y << ’ ’ << z << ’\n ’ ; }
private :

int x , y , z ;

friend bool operator<(const Coordinate& c l e f t , const

↪→ Coordinate& c r i g h t) ;

} ;

bool operator<(const Coordinate& c l e f t , const Coordinate& c r i g h t

↪→) {
i f (c l e f t . x < c r i g h t . x) return true ;

i f (c l e f t . x > c r i g h t . x) return fa l se ;

i f (c l e f t . y < c r i g h t . y) return true ;

i f (c l e f t . y > c r i g h t . y) return fa l se ;

i f (c l e f t . z < c r i g h t . z) return true ;

return fa l se ;

}

typedef std : : set<Coordinate> setOfCoords ;

bool CheckForDuplicate (const Coordinate& t s t coo rd) {
stat ic setOfCoords usedsetOfCoords ;

// Found in the s e t ?

i f (usedsetOfCoords . f i n d (t s t coo rd) != usedsetOfCoords . end ())

↪→ {
return fa l se ; // yes− f a i l .

}

// no , i t i s unique

usedsetOfCoords . i n s e r t (coo rd inate) ;

return true ;

}

104

int main (int argc , char ∗argv [])

{
int rndx , rndy , rndz ;

std : : s t r i n g s t r ;

s td : : s t r i n g : : s i z e t y p e sz = 0 ;

u l l i n t M poi ;

i f (argc != 2) {// argc shou ld be 2 f o r c o r r e c t e x e c u t i o n

// We p r i n t argv [0] assuming i t i s the program name

cout<<” usage : ”<< argv [0] <<” <M poi>\n” ;

e x i t (0) ;

}
s t r = argv [1] ;

M poi = s t o u l l (s t r ,& sz) ;

/∗ i n i t i a l i z e random seed : ∗/
srand (time (NULL)) ;

for (u l l i n t i =0; i<M poi ; i++){
do{
rndx = rand () % MAXN + 1 ;

rndy = rand () % MAXN + 1 ;

rndz = rand () % MAXN + 1 ;

} while (! CheckForDuplicate (Coordinate (rndx , rndy , rndz))) ;

cout << rndx << ’ ’ << rndy << ’ ’ << rndz << ’\n ’ ;

}

return 0 ;

}

105

Appendix D

Technical risk analysis

106

Possible situation Possible effects Severity Solutions applied

Hard disk failure

Loss of data,
Loss of project time,
Loss of recorded
progress

Severe

Daily backups are kept in
the group’s cluster HDDs
and personal backups of
important documents are
kept on cloud services.

The HOKUSAI
GreatWAVE super-
computer cannot
accept a job soon
because of big job
queues

Loss of project time Moderate

Experimental versions of
the project’s software are
submitted for execution
as soon as possible. If
multiple ideas are under
consideration, all of them
are implemented and then
submitted even if a change
of mind happens after-
wards.

The HOKUSAI
GreatWAVE su-
percomputer goes
through unplanned
maintenance

Loss of project time Moderate

Any practical project work
is carried out before any
documentation work

The aims are impossi-
ble to achieve at all or
in the time available
for this project

The aims of the
project are never
achieved

Severe

In such a case, a thorough
analysis of all steps followed
and reasons of failure will
be carried out. A thorough
and meticulous literature
review has been carried out,
which suggest it is feasible
for the project aims to be
met in the given amount of
time.

Table D.1: Technical Risks

107

Appendix E

Risk Assessment

108

!
SC
H
O
O
L!
O
F!
E&
EE
!R
IS
K
!A
SS
ES
SM

EN
T!

! ! A
ct
iv
ity
!L
oc
at
io
n:
!B
ar
ne
s!
W
al
lis
!c
om

pu
te
r!c
lu
st
er
!o
r!H
om

e!
!

! M
A
N
A
G
ER
/S
U
PE
R
VI
SO
R
!!

N
A
M
E:
!D
r.!
Fu
m
ie
!C
os
te
n!

SI
G
N
ED
:!

D
A
TE
:!2
7/
10
/2
01
5!

ST
U
D
EN
T!

N
A
M
E:
!M
r.!
Lo
uk
as
!X
an
th
os
!!

SI
G
N
ED
:!

D
A
TE
:!2
7/
10
/2
01
5!

! ! !

!
W
O
R
K
!A
C
TI
VI
TY
/!

W
O
R
K
PL
A
C
E!

!
(W
H
A
T!
PA
R
T!
O
F!
TH
E!

A
C
TI
VI
TY
!P
O
SE
S!
R
IS
K
!O
F!

IN
JU
R
Y!
O
R
!IL
LN
ES
S)
!

!
H
A
ZA
R
D
!(S
)!

!
(S
O
M
ET
H
IN
G
!

TH
A
T!
C
O
U
LD
!

C
A
U
SE
!H
A
R
M
,!

IL
LN
ES
S!
O
R
!

IN
JU
R
Y)
!

! !

!
LI
K
EL
Y!

C
O
N
SE
Q
U
EN
C
ES
!

!
(W
H
A
T!
W
O
U
LD
!B
E!

TH
E!
R
ES
U
LT
!O
F!

TH
E!
H
A
ZA
R
D
)!

!

!
W
H
O
!O
R
!W
H
A
T!
IS
!

A
T!
!R
IS
K
!

!
(IN
C
LU
D
E!

N
U
M
B
ER
S!
A
N
D
!

G
R
O
U
PS
)!

!
EX
IS
TI
N
G
!C
O
N
TR
O
L!

M
EA
SU
R
ES
!

IN
!U
SE
!

(W
H
A
T!
PR
O
TE
C
TS
!

PE
O
PL
E!
FR
O
M
!T
H
ES
E!

H
A
ZA
R
D
S)
!

!

W
IT
H
!E
XI
ST
IN
G
!

C
O
N
TR
O
LS
!

!
M
EA
SU
R
E!

R
EQ
U
IR
ED
!T
O
!

PR
EV
EN
T!
O
R
!!

R
ED
U
C
E!
R
IS
K
!

!
(W
H
A
T!
N
EE
D
S!
TO
!B
E!

D
O
N
E!
TO
!M
A
K
E!
TH
E!

A
C
TI
VI
TY
!A
S!
SA
FE
!

A
S!
PO
SS
IB
LE
)!

!
PE
R
SO
N
!

R
ES
PO
N
SI

B
LE
!F
O
R
!

A
C
TI
O
N
S!

A
N
D
!

A
G
R
EE
D
!

TI
M
ES
C
A
L

ES
!T
O
!

A
C
H
IE
VE
!

TH
EM

!

W
IT
H
!N
EW

!
C
O
N
TR
O
LS
!

SEVERITY!

LIKELIHOOD

RISK!RATING!

RISK!!ACCEPTABLE!

SEVERITY!

LIKELIHOOD
RISK!RATING!

RISK!ACCEPTABLE!
!

Sp
en
d!
pr
ol
on
ge
d!
pe
rio
ds
!

si
tti
ng
!b
ef
or
e!

co
m
pu
te
r/l
ap
to
p!
an
d!

dr
ag
gi
ng
!a
!m
ou
se
!

R
ep
et
iti
ve
!

St
ra
in
!In
ju
ry
!

(R
SI
)!a
nd
!W
or
k!

R
el
at
ed
!U
pp
er
!

Li
m
b!
D
is
or
de
r!

(W
R
U
LD
)!

!

Pa
in
,!N
um

bn
es
s,
!

A
ch
in
g,
!T
ire
dn
es
s!

an
d!
Ti
ng
lin
g!
in
!!

m
us
cl
es
,!n
er
ve
s,
!

te
nd
on
s!
an
d!
ot
he
r!

so
ft!
bo
dy
!ti
ss
ue
s!

of
!th
e!
ha
nd
,!w
ris
t,!

ar
m
,!s
ho
ul
de
r!a
nd
!

sp
in
e!

St
ud
en
ts
!w
ho
!n
ee
d!

to
!!p
ro
gr
am
!a
nd
!!

us
e!
co
m
pu
te
r!a
nd
!

la
pt
op
!in
!th
e!
pr
oj
ec
t!

St
ud
en
ts
!a
re
!to
!b
e!

pr
ov
id
ed
!w
ith
!c
op
ie
s!

of
!th
e!
do
cu
m
en
ts

H
ea
lth
!a
nd
!S
af
et
y!

Ex
ec
ut
iv
e!
pu
bl
ic
at
io
n!

“I
N
D
G
36
!c!
W
or
ki
ng
!

w
ith
!V
D
U
s”
.!

!

2!
3!

6!
N
!

O
!

Ta
ke
!fr
eq
ue
nt
!b
re
ak
s!

fr
om

!th
e!
co
m
pu
te
r!

D
o!
si
m
pl
e!
st
re
tc
hi
ng
!

an
d!
sh
ak
in
g!

ex
er
ci
se
s!
w
hi
ls
t!

ta
ki
ng
!a
!b
re
ak
!fr
om

!
th
e!
co
m
pu
te
r.!

St
ud
en
ts
!

th
em
se
lv
e

s!
an
d!

su
pe
rv
is
or
!

2!
1!

2!
Y! E! S!

Fo
cu
si
ng
!th
e!
ey
es
!o
n!
a!

co
m
pu
te
r!d
is
pl
ay
!fo
r!

pr
ot
ra
ct
ed
,!u
ni
nt
er
ru
pt
ed
!

pe
rio
ds
!o
f!t
im
e!

C
om

pu
te
r!

vi
si
on
!

sy
nd
ro
m
e!

(C
VS
)!

H
ea
da
ch
es
,!

B
lu
rr
ed
!v
is
io
n,
!

N
ec
k!
pa
in
,!F
at
ig
ue
,!

ey
e!
st
ra
in
,!D
ry
,!

Irr
ita
te
d!
ey
es
,!

D
ou
bl
e!
vi
si
on
,!

Po
ly
op
ia
,!a
nd
!

D
iff
ic
ul
ty
!

re
fo
cu
si
ng
!th
e!

ey
es
!

St
ud
en
ts
!w
ho
!n
ee
d!

to
!!p
ro
gr
am
!a
nd
!!

us
e!
co
m
pu
te
r!a
nd
!

la
pt
op
!in
!th
e!
pr
oj
ec
t!

A
pp
ro
ve
d!
se
at
in
g,
!

de
sk
s!
an
d!
lig
ht
in
g!
ar
e!

pr
ov
id
ed
!in
!la
bo
ra
to
ry
!

SS
B
/A
!1
9!

St
ud
en
ts
!a
re
!to
!b
e!

pr
ov
id
ed
!w
ith
!c
op
ie
s!

of
!th
e!
fo
llo
w
in
g!

do
cu
m
en
ts
:!(
1)
!T
he
!

U
ni
ve
rs
ity
’s
!C
od
e!
of
!

Pr
ac
tic
e!
an
d!
G
ui
da
nc
e!

N
ot
e!
on
!“
U
se
!o
f!

D
is
pl
ay
!S
cr
ee
n!

Eq
ui
pm

en
t”
,!(
2)
!T
he
!

U
ni
ve
rs
ity
’s
!G
ui
da
nc
e!

N
ot
e!
“D
is
pl
ay
!S
cr
ee
n!

Eq
ui
pm

en
t!/
!

W
or
ks
ta
tio
n!
Se
t!U
p”
!

3!
3!

9!
N
!
O
!

Ta
ke
!fr
eq
ue
nt
!b
re
ak
s!

fr
om

!th
e!
co
m
pu
te
r!

B
lin
k!
th
e!
ey
es
!!

co
ns
ci
ou
sl
y!
!e
ve
ry
!

no
w
!a
nd
!th
en
!(t
hi
s!

he
lp
s!
re
pl
en
is
h!
th
e!

te
ar
!fi
lm
)!a
nd
!to
!lo
ok
!

ou
t!t
he
!w
in
do
w
!to
!a
!

di
st
an
t!o
bj
ec
t!o
r!t
o!

th
e!
sk
y!

St
ud
en
ts
!

th
em
se
lv
e

s!
an
d!

su
pe
rv
is
or
!

2!
1!

2!
Y! E! S!

 S
C
H
O
O
L
O
F
E&
EE
 R
IS
K
 A
SS
ES
SM

EN
T

IF
 T
H
E
A
N
SW

ER
S
TO
 A
N
Y
O
F
TH
E
Q
U
ES
TI
O
N
S
B
EL
O
W
 IS
 Y
ES
 T
H
EN
 A
D
D
IT
IO
N
A
L
SP
EC
IF
IC
 R
IS
K
 A
SS
ES
SM

EN
TS
 M
A
Y
B
E
R
EQ
U
IR
ED
.

IS

 T
H

ER
E

A
 R

IS
K
 O

F
FI

R
E?

Y/
N

D

O
ES

 T
H

E
A
C

TI
V
IT

Y
R
EQ

U
IR

E
A
N

Y
H

O
M

E
W

O
R
K
IN

G
?

Y/
N

A
R
E

S
U

B
S
TA

N
C

ES
 T

H
A
T

A
R
E

H
A
Z
A
R
D

O
U

S
 T

O

H
EA

LT
H

 U
S
ED

?
Y/
N

A
R
E

TH
E

EM
PL

O
YE

ES
 R

EQ
U

IR
ED

 T
O

 W
O

R
K
 A

LO
N

E
Y/
N

IS
 T
H
ER
E
M
AN
U
AL
 H
AN
D
LI
N
G
 IN
VO
LV
ED
?

Y/
N

D
O
ES
 T
H
E
AC
TI
VI
TY
 IN
VO
LV
E
D
R
IV
IN
G

Y/
N

IS
 P
PE
 W
O
R
N
 O
R
 R
EQ
U
IR
ED
 T
O
 B
E
W
O
R
N
?

Y/
N

D
O
ES
 T
H
E
AC
TI
VI
TY
 R
EQ
U
IR
E
W
O
R
K
AT
 H
EI
G
H
T

Y/
N

AR
E
D
IS
PL
AY
 S
C
R
EE
N
S
U
SE
D
?

Y/
N

D
O
ES
 T
H
E
AC
TI
VI
TY
 IN
VO
LV
E
FO
R
EI
G
N
 T
R
AV
EL

Y/
N

IS
 T
H
ER
E
A
SI
G
N
IF
IC
AN
T
R
IS
K
TO
 Y
O
U
N
G
 P
ER
SO
N
S?

Y/
N

IS
 T
H
ER
E
A
SI
G
N
IF
IC
AN
T
R
IS
K
TO
 N
EW

 /
PR
EG
N
AN
T
M
O
TH
ER
S?

Y/
N

SE
VE
R
IT
Y

LIKELIHOOD

1

2
3

4
5

1
Lo
w

Lo
w

Lo
w

Lo
w

Lo
w

2
Lo
w

Lo
w

M
ed
iu
m

M
ed
iu
m

H
ig
h

3
Lo
w

M
ed
iu
m

M
ed
iu
m

H
ig
h

H
ig
h

4
Lo
w

M
ed
iu
m

H
ig
h

H
ig
h

H
ig
h

5
Lo
w

H
ig
h

H
ig
h

H
ig
h

H
ig
h

Se
ve
rit
y
va
lu
e
=
 p
ot
en
tia
l c
on
se
qu
en
ce
 o
f a
n
in
ci
de
nt
/i
nj
ur
y

 5

Ve
ry
 H
ig
h

De
at
h
/ p
er
m
an
en
t i
nc
ap
ac
ity
 /
w
id
es
pr
ea
d
lo
ss

4

Hi
gh

M
aj
or
 In
ju
ry
 (R
ep
or
ta
bl
e
Ca
te
go
ry
) /
 S
ev
er
e
In
ca
pa
cit
y
/ S
er
io
us
 L
os
s

3

M
od
er
at
e

In
ju
ry
 /
illn
es
s
of
 3
 d
ay
s
or
 m
or
e
ab
se
nc
e
(r
ep
or
ta
bl
e
ca
te
go
ry
) /
 M
od
er
at
e
lo
ss

2

Sl
ig
ht

M
in
or
 in
ju
ry
 /
illn
es
s
–
im
m
ed
ia
te
 F
irs
t A
id
 o
nl
y
/ s
lig
ht
 lo
ss

1

Ne
gl
ig
ib
le

No
 in
ju
ry
 o
r t
riv
ia
l i
nj
ur
y
/ i
lln
es
s
/ l
os
s

 Li
ke
lih
oo
d
va
lu
e
=
 w
ha
t i
s
th
e
po
te
nt
ia
l o
f a
n
in
ci
de
nt
 o
r i
nj
ur
y
oc
cu
rr
in
g

 5
Al
m
os
t c
er
ta
in
 to
 o
cc
ur

4

Li
ke
ly
 to
 o
cc
ur

3

Qu
ite
 p
os
sib
le
 to
 o
cc
ur

2

Po
ss
ib
le
 in
 c
ur
re
nt
 s
itu
at
io
n

1

No
t l
ik
el
y
to
 o
cc
ur

 Ri
sk
 ra
tin
g
=
 s
ev
er
ity
 v
al
ue
 ×
 li
ke
lih
oo
d
va
lu
e

 Ri
sk
 ra
tin
gs
 a
re
 c
la
ss
ifi
ed
 a
s
lo
w
 (
1
–
5)
, m
ed
iu
m
 (
6
–
9)
 a
nd
 h
ig
h
(1
0
–
25
)

Ri
sk
 C
la
ss
ifi
ca
tio
n
an
d
Ac
tio
ns
:

 Ra
tin
g

Cl
as
si
fic
at
io
n

Ac
tio
n

 1
–
5

Lo
w

To
le
ra
bl
e
ris
k
- M
on
ito
r a
nd
 M
an
ag
e

 6
–
9

M
ed
iu
m

Re
vi
ew
 a
nd
 in
tro
du
ce
 a
dd
iti
on
al
 c
on
tro
ls
to
 m
iti
ga
te
 to

“A
s
Lo
w
 A
s
Re
as
on
ab
ly
 P
ra
ct
ica
bl
e”
 (A
LA
RP
)

 10
 –
 2
5

Hi
gh

St
op
 w
or
k
im
m
ed
ia
te
ly
 a
nd
 in
tro
du
ce
 fu
rth
er
 c
on
tro
l m
ea
su
re
s

