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a b s t r a c t

Magnetic resonance imaging (MRI) is effectively used for accurate diagnosis of acute ische-

mic stroke. This paper presents an automated method based on computer aided decision

system to detect the ischemic stroke using diffusion-weighted image (DWI) sequence of MR

images. The system consists of segmentation and classification of brain stroke into three

types according to The Oxfordshire Community Stroke Project (OCSP) scheme. The stroke is

mainly classified into partial anterior circulation syndrome (PACS), lacunar syndrome (LACS)

and total anterior circulation stroke (TACS). The affected part of the brain due to stroke was

segmented using expectation-maximization (EM) algorithm and the segmented region was

then processed further with fractional-order Darwinian particle swarm optimization

(FODPSO) technique in order to improve the detection accuracy. A total of 192 scan of

MRI were considered for the evaluation. Different morphological and statistical features

were extracted from the segmented lesions to form a feature set which was then classified

with support vector machine (SVM) and random forest (RF) classifiers. The proposed system

efficiently detected the stroke lesions with an accuracy of 93.4% using RF classifier, which

was better than the results of the SVM classifier. Hence the proposed method can be used in

decision-making process in the treatment of ischemic stroke.

© 2019 Published by Elsevier B.V. on behalf of Nalecz Institute of Biocybernetics and

Biomedical Engineering of the Polish Academy of Sciences.
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1. Introduction

In stroke, some part of the brain cells dies due to lack
of oxygen/nutrients by blockage of an artery to the brain.
Worldwide, stroke is third cause of death and main cause
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of disability. It commonly occurs in low- and middle-income
counts [1]. Efforts are required to improve the diagnosis
process for effective use of therapeutic applications. It is
necessary to identify the damage part of the brain using MRI,
therefore computer based diagnosis process can be used
effectively for predicting the occurrence of the disease [2]. Use
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of machine learning approach has advantage in automated
process for detecting the stroke lesion which is the main focus
of the research in present days [3]. The affected part in the
brain can be detected accurately using DWI modality which is
sensitive to change in water diffusion that happens in acute
stroke. Therefore DWI modality images are more suitable for
early detection of stroke lesions [4,5]. The objects from an
image can be segmented by using different algorithms based
on the thresholding and clustering approach [6–8]. The
affected part of the brain is segmented efficiently using Fuzzy
C-Mean (FCM) clustering methods. Zotin et al. [9] presented an
automated process to segment the brain lesion using DWI
modality of MR images based on Fuzzy C-Means. The method
precisely segmented the lesions and achieved good results
with Jacquard index of 0.547 and Dice indices of 0.687. In an
automated work, Seghier et al. [2] identified the lesion by
adopting fuzzy clustering using T1-weighted (T1w) MRI
datasets. The adaptive FCM algorithm also found to be
effective in lesion detection in brain MR data [8]. Maier et al.
[10] presented a new approach for automatic segmentation of
sub-acute ischemic stroke using brain T1-weighted MRI. The
features were extracted based on their intensity and classified
with extra tree forest classifier. The method achieved higher
segmentation accuracy with a Dice coefficient of 0.65. A fuzzy
segmentation method was presented which used the low
similarity of intensity for finding regions of lesions using a
single MRI based segmentation [11]. A computer-assisted
method was presented by Tsai et al. [12] based on empirical
threshold and atlas information for segmentation of cerebral
infarcts by using T1-weighted, and DWI modality. In this
approach achieved an average sensitivity of 84.154% and
specificity of 99.9% in detecting cerebral infarcts.

In segmentation process, the EM algorithm partially
assigns data points to different clusters based on highest
probability associates value [13]. The expectation-maximiza-
tion (EM) based on Gaussian mixture model (GMM) is
commonly used for object segmentation in brain MRI images
[14]. The maximum likelihood function of EM algorithm
estimates the optimized parameters using probabilistic
models. In EM algorithm, the highest probability associates
value is assigned into different clusters in the segmentation
process [15]. In the presence of multiple local maxima, it does
not guarantee convergence to the global maxima [16]. Niu et al.
[17] presented a report on the use of random swap EM (RSEM)
algorithm for color image segmentation. Huang and Liu
presented an unsupervised method based on the EM algorithm
to find the approximate parameters of the Gaussian mixtures
model (GMM) to classify the image [18]. The result with split
and merge approaches was compared with the characteristics
of the variants. It was found that RSEM performed better than
the other methods. Mahjoub and Kalti introduced image
segmentation based on Bayesian algorithm using finite
mixtures model [19]. An EM algorithm is used to estimate
parameters of the GMM to provide clusters in the field of
pattern recognition. They achieved significant improvement
compared to the standard version of EM algorithm.

Marroquin et al. [20] presented an efficient and automated
method for 3D segmentation of brain MR scans based on the
EM algorithm for a speedy and accurate optimal segmenta-
tions of the brain from the non-brain tissue. Tian et al. [21]
proposed a hybrid model based on genetic and variational EM
(GA-VEM) algorithm for segmentation of brain MR images. The
variational EM algorithm is used to estimate the GMM and the
genetic algorithm is used to initialize the hyper-parameters in
order to achieve global optimization. The hybrid algorithm
overcomes the drawbacks of traditional EM based methods
and improved the segmentation performance. In another
hybrid approach, the Fuzzy C-Means and EM algorithms are
combined and used successfully to segment the MR brain
images. The intensity non-uniformity and noise effect were
overcome using EM and FCM with spatial information and bias
correction [22]. Recently, Kwon et al. [23] used the clustering
approach based on watershed transformation and EM algo-
rithm for effective segmentation of MR brain images. Rouainia
et al. [24] successfully detected the lesions in brain MRIs using
EM algorithm by building a statistical model from the data
itself. However we did not find any article which uses the EM
algorithm for stroke lesion segmentation, therefore in this
paper we proposed an automated method to detect stroke
lesion based on EM approach that forms the clusters having
same intensity of pixels which is separated by selecting a
threshold generated by binary mask. The EM based segmented
region has been further enhanced by FODPSO approach to
improve accuracy of detection. The method was validated in
192 brain images of DWI sequences collected from stroke
patients. The important morphological and statistical features
were extracted from the segmented images and the
features set was then classified with SVM and RF classifier
to distinguish three types of stroke.

2. Methodology

In this work, the stroke lesion was segmented by EM algorithm
using brain MRIs. The block diagram of the proposed detection
approach of stroke lesion is shown in Fig. 1. Types of stroke
were classified according to The Oxford Community Stroke
Project classification (OCSP) and are also known as the
Bamford or Oxford classification [25]. In this classification
scheme, the patients with cerebral infarction were allocated to
one of three groups according to the presence of signs and
symptoms. Depending on the initial symptoms and its extent
of the symptoms, the stroke episode is classified as Total
Anterior Circulation Stroke syndrome (TACS); Partial Anterior
Circulation Stroke syndrome (PACS); Lacunar Stroke syndrome
(LACS). All the used 192 different slices MRI datasets of DWI
sequences are classified according to OCSP that includes PACS
122, LACS 36, and TACS 34 numbers. All brain images were
acquired with a Signa HDxT 1.5T Optima Edition (GE
Healthcare, Waukesha, WI), DWI sequence having slice
thickness of 5 mm with a gap of 1 mm and an ADC map with
b = 1000 s/mm2 are considered for testing.

2.1. Expectation-maximization process

The expectation-maximization (EM) algorithm uses the
probabilistic models to compute the maximum likelihood
estimates of unknown parameters [13]. The algorithm is an
iterative method, which solves the maximization problem.
The maximum-likelihood model is used to find the ‘‘best fit’’



Fig. 1 – Block diagram of the proposed EM based method for lesion detection.
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for a data set by choosing random values. The best fit is
estimated in an unsupervised manner by an iterative process
using the EM algorithm in an incomplete/missing data points
[26,27]. The ‘‘best fit’’ is calculated by maximum likelihood
estimation for a set of complete data with u = j as shown in
Fig. 2. For a missing data set, the complex EM algorithm is
efficient enough to catch the model parameters. The lost data
points are selected randomly by the EM process and these data
are used to predict the preceding set of data. The obtained
fresh values are again used to create improved prediction of
the initial set, and finally the algorithm converges to a fixed
point for getting the best fit. The value of u can be maximized
with the knowledge of wi. The process starts with a prediction
for u, then calculate z, then update u using this new value for z,
and it repeats till convergence.

The EM algorithm can be generalized as an estimation
problem having a training set {a(1),a(2). . ..,a(m)}, having m
independent samples. These set of training parameters are
required to fit with a model P(x, z), where the corresponding
likelihood is expressed as
Fig. 2 – The convergence of EM algorithm [23].
jðjÞ ¼
Xm
i¼1

logpðx; jÞ (1)

The maximum likelihood estimation of j is quite difficult
where the easy estimation is feasible if we can observe the
latent variable z(1). The EM algorithm can then be described as
a combination of two stages where in the first stage we
construct a lower bound on j called as E step. Further we
optimize the lower bound, which is referred as M step.

The EM algorithm has been used effectively for missing
values in a data set to find a likelihood function. The density of
the samples is expressed as

pðxjjÞ ¼
YN
i¼1

pðxijjÞ ¼ LðjjxÞ (2)

with x representing the sample data of size N, the function
LðjjxÞ is called the likelihood function. The objective of the
process is to estimate j that optimize the maximal value of L.

Assume that for a complete data set z = (x,y) and the
association between the missing and detected values
is represented by a joint density function given by

pðzjjÞ ¼ pðx; yjjÞ ¼ pðxjx; jÞpðxjjÞ (3)

We can define a new likelihood function with this new
density function,

LðjjzÞ ¼ Lðjjx; yÞ ¼ pðx; yjjÞ (4)

Initially, the algorithm finds the estimated value for the
entire-data set with log-likelihood of logp(x, y|j) with respect to
the unidentified data, detected data x, and the existing
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estimated parameter. The estimation of current parameter
is expressed as

Qðj; jði�1ÞÞ ¼ Eflogpðx; yjjÞjx; jði�1Þg (5)

where j(i�1) are the current estimated parameters used to
calculate the expectation value and j are the latest parameters
that is optimize to increase Q value.

To maximize the expectation, we need to find

jðiÞ ¼ argmax
j

Qðj; jði�1ÞÞ (6)

In this work, the image was segmented with EM algorithm
in a periodic means to converge with the result. The input
image is distributed into different groups with probability of
similar intensity of the pixels from normal and affected
tissues. By the iteration process, the center point of the cluster
is reformed, until to attain a center of a fixed cluster. The
details of EM process is defined in the following equations [24]:

� Initialize mi, si and ci as the mean, co-variance and mixing
co-efficient respectively to calculate

logIðjÞ ¼
XN
k¼1

log
XM
i¼1

clPðxkjml; slÞ
" #

(7)

where I(j) is described as the associated log-likelihood
function.

� Further we can approximate the expectation as

Tkl ¼ clPðxkjml; slÞPM
t¼1ctPðxkjmt; stÞ

; 1�l�M; 1�t�N (8)

� Perform maximization as

mnew
l ¼ 1

Nl

XN
k¼1

Tklxk; 1�l�M (9)

� The updated co-variance is given as

snew
l ¼ 1

Nl

XN
k¼1

Tklðxk�mnew
l Þðxk�mnew

l Þt; 1�l�M

where x is the characteristic vector, k represents
the probability density function.

The structure of the mixture model is given by

PðxjjÞ ¼
XM
i¼1

clPðxjml; slÞ (10)

2.2. Fractional-order Darwinian PSO (FODPSO)

The FODPSO is an advanced optimization method of Darwinian
PSO, which is having an advantage of controlling the conver-
gence rate of the process [28]. The numerical methods keep
properties of fractional differential equations (FDEs), with a is an
extension of ordinary differential equations with Euler scheme.
The signal x(t) the discrete time system is elaborated with the
concept of the fractional differential with a 2 C and described as
Da½xðtÞ� ¼ 1

T2

Xr

k¼0

ð�1ÞkG ða þ 1Þxðt�kTÞ
G ðk þ 1ÞG ða�k þ 1Þ (11)

where G is the gamma function, T is the sampling period and r
is the truncation order.

The proposed method of FODPSO is having an advantage
that while we obtain a finite series upon applying derivative to
an integer-order, whereas the fractional-order derivative
implies an infinite number of terms. We consider the local
operators are integer derivatives and memories of all past
events are fractional derivatives. The effect of past events
reduces with respect to time.

Considering w = 1 for a specific swarm

vsn½t þ 1� ¼ vsn½t� þ
X2
i¼1

ririðxsin½t��xsn½t�Þ (12)

Assuming T = 1 and based on Grunwald–Letnikov fractional
derivative, we have

Da½vsn½t þ 1�� ¼
X2
i¼1

ririðxsin½t��xsn½t�Þ (13)

Using fractional calculus the order of velocity derivative is
generalized with 1 < a < 1 that leads to smooth variation and
enhanced memory. If we remove the concept of memory from
FODPSO, i.e., with a = 1, then the process leads to DPSO.
Considering the Grunwald–Letnikov fractional difference of
the order of the generic discrete signal x(t) is described as

vsn½t þ 1� ¼ �
Xr

k¼1

ð�1ÞkG ða þ 1Þvsnðt þ 1�kTÞ
G ðk þ 1ÞG ða�k þ 1Þ

þ
X2
i¼1

ririðxsin½t��xsn½t�Þ (14)

In FODPSO particles strive to find the best solution for their
own ‘‘survival’’, with the perk of intrinsically having a memory
of past decisions which avoids the problem of convergence in
traditional optimization processes.

2.3. Texture features based on the GLCM algorithm

Extraction of important features which identifies the char-
acteristics of an object is a task to improve the classification
accuracy [29]. Haralick et al. [30] proposed the use of the Gray
Level Co-occurrence Matrix (GLCM) approach for extracting
features that consists of morphological and statistical infor-
mation. The feature set consists of textural feature and
statistical values to identify regions of interest. In this work,
we have used mean, standard deviation, contrast, entropy,
correlation, energy, inverse difference moment, variance and
sum average.

2.4. Classifiers

2.4.1. Random forest (RF) classifier
The RF algorithm is widely used for classification of diseases in
medical image analysis [31]. It was found to be effective in
classifying the brain stroke images [29]. The disadvantages of
overfitting of decision tree algorithm are reduced in RF



Fig. 3 – The functional diagram of random forest classifier.
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by combining multiple decision trees to obtain the accurate
final decision.

Decision trees: A decision tree is a predictive model
represented by graphically and used effectively to classify
the data set. The model determines the best decisions in the
analysis process by splitting the data set into smaller subsets.
During the learning phase, the model maximizes the informa-
tion gain I in a given node which is represented by
Fig. 4 – Example of segmentation output on a small lesion: (a) orig
(c) segmented lesion using EM-FODPSO in cyan color; (d) additio
I ¼ HðSÞ�
X

i 2 L;R

jSij
jSj HðS

iÞ (15)

where H is the entropy, input data is S that is splitted into two
subset nodes SL and SR.

Random forest classifier: The RF classifier is a supervised
method in which the multiple decision trees are used to create
a forest as shown in Fig. 3. The RF algorithm works better when
the large dataset. The forest is more robust when higher
inal image; (b) segmented lesion using FODPSO in blue color;
nal lesion detected using EM-FODPSO in red color.
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number of trees is used in decision making process [32].
Generally a leaf is considered for expansion in each step of the
construction of tree. The dataset is randomly divided into two
parts with similar structure.

The margin function of the algorithm is expressed as

mgðX; YÞ�avkIðhkðXÞ ¼ YÞ�max
j 6¼ YavkIðhkðXÞ ¼ jÞ (16)

where I (�) is the indicator function, h1(x), h2(x) ,..., hK(x) are the
ensemble of classifiers and Y, X are random vector.

The error is given by

PE� ¼ PX;YðmgðX; YÞ < 0Þ (17)

In RF, hk(X) = h(X, Qk)
The margin function for an RF is given by the equation

mrðX; YÞ ¼ PQðhðX; QÞ ¼ YÞ�max
j 6¼ YPQðhðX; QÞ ¼ jÞ (18)

and the strength of the classifier {h(x, Q)} is given by

s ¼ EX;YmrðX; YÞ (19)

The RF algorithm is an efficient model that builds the
multiple decision trees and merges them into a single tree
Fig. 5 – Example of segmentation output on a large lesion: (a) orig
(c) segmented lesion using EM-FODPSO in cyan color; (d) additio
to having highest prediction accuracy. The RF algorithm
is described in the following steps:

Step 1: To start with a given data set D1 having m � n matrix,
a new dataset D2 is created from the original data by sampling
and removing one-third of the row data.

Step 2: The model is trained to generate the new dataset
from the reduced samples and estimates the unbiased error.

Step 3: At each node point in the data set, n1 column
is selected from total n columns.

Step 4: In this algorithm, several trees grow simultaneously
and the final prediction is done with the collection of
individual decisions to obtain the best classification accuracy.

2.4.2. Support vector machine classifier
The SVM is a commonly used machine learning approach of
classification, which classifies the information with better
accuracy and with minimization principle from unseen
patterns [33]. It analyses a large amount of data and classify
them into different classes having identity data patterns.
A hyperplane is used in partitioning process and makes a
margin between the classes that represents the longest
distance between closest data points. We classify the input
data by selecting an appropriate hyperplane. It can be defined
the support vector as the co-ordinate of individual observation
or feature.

The SVM uses a set of a training dataset D which can be
mathematically expressed as
inal image; (b) segmented lesion using FODPSO in blue color;
nal lesion detected using EM-FODPSO in red color.



Fig. 6 – Example of segmentation process in a slice having multiple lesions: (a) original image; (b) segmented lesion using
FODPSO in blue color; (c) segmented lesion using EM-FODPSO in cyan color; (d) additional lesion detected using EM-FODPSO
in red color.
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D ¼ fðx1y1Þ; ðx2y2Þ; . . .. . .. . .ðxNyNÞg (20)

where xi is an n-dimensional real vector and yi is either �1 or +1
indicating the class to which x belongs.

We can express the SVM classification function as

FðxÞ ¼ w�x�b (21)

where w is the weight vector and b is the bias.

The classification function is expressed as

yiðw:xi�bÞ > 0; 8 ðxi; yiÞ 2 D (22)
Table 1 – The areas of segmented lesion for both the methods

Image No. FODPSO 

Area (pixels) Avg. intens

32 12,931 210.84 

62 2863 210.98 

20 399 197.25 
The points on D if correctly classified with the above
equation then it is called ad linearly separable system.

The hyperplane is used to maximize the margin which is
the distance from the hyperplane to the closest data point and
is written by

margin ¼ 1
kwk (23)

Maximizing the margin becomes minimizing ||w||. Thus
SVM can be observed as an optimization problem to

minimize : QðwÞ ¼ 1
2
kwk2 (24)

subject to : yiðw:xi�bÞ 	 1; 8 ðxi; yiÞ 2 D
 in randomly selected images.

EM-FODPSO

ity Area (pixels) Avg. intensity

26,834 188.09
4748 184.57
632 169.65



Table 2 – The confusion matrix and different measures of the classification.

3 fold PREDICTED Measures

PACS LACS TACS TP TN FP FN

TRUE PACS 32 1 0 33 32 30 1 1 PACS
LACS 0 17 2 19 17 44 1 2 LACS
TACS 1 0 11 12 11 50 2 1 TACS

33 18 13 64

Table 3 – The evaluated results of different parameters for 3-class of stoke.

Acc Sensitivity Specificity Jaccard Dice

PACS 0.96875 0.96969697 0.96774194 0.941176 0.969697
LACS 0.953125 0.89473684 0.97777778 0.85 0.918919
TACS 0.953125 0.91666667 0.96153846 0.785714 0.88
Weighted average 0.961182 0.9375 0.969558 0.884959 0.937804

Table 5 – The results of EM-FODPSO method obtained in SVM classifier.

Fold no. Sensitivity Specificity Accuracy Jaccard index DSI

2 0.95 0.96 0.96 0.90 0.95
3 0.91 0.95 0.93 0.83 0.91
4 0.92 0.95 0.94 0.85 0.92
5 0.95 0.96 0.96 0.90 0.95
6 0.91 0.95 0.93 0.83 0.91
7 0.89 0.94 0.93 0.80 0.89
8 0.92 0.95 0.94 0.85 0.92
9 0.80 0.89 0.87 0.68 0.80
10 0.89 0.97 0.93 0.82 0.90

Avg. 0.904 0.946 0.932 0.828 0.905

Table 4 – The results of FODPSO method obtained in SVM classifier.

Fold no. Sensitivity Specificity Accuracy Jaccard index DSI

2 0.93 0.94 0.95 0.87 0.93
3 0.89 0.94 0.93 0.81 0.89
4 0.88 0.93 0.91 0.78 0.88
5 0.92 0.95 0.95 0.86 0.92
6 0.91 0.93 0.93 0.83 0.91
7 0.85 0.95 0.91 0.76 0.86
8 0.88 0.91 0.91 0.78 0.88
9 0.85 0.87 0.88 0.74 0.85
10 0.84 0.92 0.89 0.74 0.84

Avg. 0.883 0.926 0.917 0.796 0.884
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Assume the training data have N pairs (x1y1), (x2y2),
. . .. . . . . . (xNyN) with xi 2 Rp and yi 2 {�1, 1}.

Let a hyperplane be {x : f(x) = xTb + b0 = 0}, where b is a unit
vector,

GðxÞ ¼ sign½xTb þ b0�C (25)

The function f(x) resulted from signed distance from a point
x.

3. Experimental results

The stroke lesion was segmented using EM based algorithm
in all the 192 brain MR images taken for evaluation. The
features set was obtained from the segmented regions and
classified with SVM, RF classifiers. The binary mask was used
to separate the healthy and affected tissue to form separate
clusters in order to obtain the feature set. The structure of
the lesion was reconstructed by the morphological opera-
tions like erosion and dilation. The output images of EM
method were then further enhanced by FODPSO algorithm to
achieve better accuracy results. The effectiveness of the
method was evaluated with different parameters, i.e.,
sensitivity (Se), specificity (Sp), accuracy (Acc), dice similari-
ty index (DSI), and Jaccard index (JI), from the confusion
matrix [34].

An example of original stroke affected image is shown in
Fig. 4, which is de-noised with a median filter, a binary mask
is generated by applying a threshold and finally the structure
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of the lesion is segmented with the morphological approach
(marked with color boundary). The segmented output using
EM-FODPSO method into three types of lesions randomly
selected from the collected images is shown in Figs. 4–6. From
the visual observation of the binary mask generated by the
automated method confirmed that the boundary of the stroke-
induced lesion was retrieved accurately in almost all the slices.
It is also observed that the proposed EM-FODPSO based
method was able to detect additional areas that are not
detected by the FODPSO method alone, as shown in red color in
the segmented images. These additional areas are generally
categorized by reduced image intensity that is fully or partially
affected by stroke in different types of lesion sizes and shapes.
Table 1 shows the value of pixels used to measure the areas of
the detected lesion. It has been observed that EM-FODPSO
based approach has large pixel size with lower intensities.
Tables 2 and 3 are shown as an example of confusion matrix
and classification into three types of stroke.

Finally, we have evaluated the efficiency of the method to
detect lesion structure on a large dataset. Thirty-five different
features were extracted to form a feature set and then
classified using SVM and RF classifiers in order to identify
the stroke types. The feature matrix is then used to train the
classier in the 10-fold cross-validation process. The validation
results are illustrated in Tables 4–7 using both the classifiers.
The better segmentation result is indicated with the higher
index value. The proposed approach achieved an average
accuracy of 0.94 in RF classifier which was better than the
results obtained in SVM classifier having accuracy of 0.92. Also
the values of all evaluated parameter was better in RF classifier
Table 6 – The results of FODPSO method obtained in RF classif

Fold no. Sensitivity Specificity 

2 0.94 0.96 

3 0.91 0.95 

4 0.92 0.94 

5 0.92 0.95 

6 0.84 0.90 

7 0.85 0.90 

8 0.92 0.95 

9 0.86 0.92 

10 0.89 0.97 

Avg. 0.894 0.937 

Table 7 – The results of EM-FODPSO method obtained in RF cla

Fold No. Sensitivity Specificity 

2 0.95 0.94 

3 0.94 0.97 

4 0.93 0.95 

5 0.91 0.95 

6 0.90 0.95 

7 0.94 0.94 

8 0.92 0.98 

9 0.95 0.98 

10 0.89 0.97 

Avg. 0.925 0.958 
as observed from the tables. The performance measures of
FODPSO and EM-FODPSO methods are plotted in Figs. 7–12 for
comparative analysis. Finally, all measured parameters are
presented in Fig. 13 for an effective comparison of results
in SVM and RF classifiers.

4. Discussion

The normal and affected tissue in the brain region can be
separated effectively by using EM based process. It is based on
clustering approach that allots the similar intensity value to a
particular cluster in order to separate two regions. The
evaluated measures JI and DSI indicate the quality of the
image segmentation done for the separation of affected
lesions. The comparison results with other published articles
are presented in Table 8. An automated method based on the
detection outlier voxels has been reported for lesion identifi-
cation from a single image of brain MRI [2]. The model
combines the process to segment the gray and white matter in
normalized images, and adopted a fuzzy clustering approach
for identification of outlier voxels in normalized. The lesion
boundaries were traced precisely with dice similarity of 0.64.
Muda et al. [35] presented a fully automated algorithm called
ATLAS which is a standard method that helps in decision-
making process to manage acute stroke patients. The ATLAS
based algorithm management able to delineate the core lesion
of stroke with dice co-efficient of 0.61 in DWI modality of MRI.
Griffs et al. [36] developed an automated segmentation
approach based on Naive Bayes classifier to detect stroke
ier.

Accuracy Jaccard index DSI

0.96 0.89 0.94
0.93 0.83 0.91
0.94 0.85 0.92
0.95 0.86 0.92
0.89 0.73 0.84
0.90 0.74 0.85
0.94 0.85 0.92
0.89 0.75 0.86
0.92 0.81 0.89

0.924 0.812 0.894

ssifier.

Accuracy Jaccard index DSI

0.96 0.90 0.94
0.93 0.88 0.94
0.95 0.84 0.92
0.92 0.84 0.93
0.93 0.85 0.91
0.90 0.75 0.89
0.95 0.86 0.92
0.93 0.91 0.95
0.94 0.82 0.90

0.934 0.85 0.922



Fig. 7 – Plots of sensitivity versus different folds obtained for two methods using SVM classifier.

Fig. 8 – Plots of accuracy versus different folds obtained for two methods using SVM classifier.

Fig. 9 – Plots of DSI versus different folds obtained for two methods using SVM classifier.
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Fig. 10 – Plot of sensitivity obtained in RF classifier using 10-fold validation process.

Fig. 11 – Plots of accuracy versus different folds obtained for two methods using RF classifier.

Fig. 12 – Plots of DSI versus different folds for two methods obtained using RF classifier.
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lesions with dice similarity index of 0.66. In 2014, Mitra et al.
[37] presented a Bayesian–Markov Random Field (MRF) model
to segment and classify the chronic stroke lesion using FLAIR
modality of MRI. They achieved a mean dice similarity
coefficient of 0.60 using RF classifier. Different examples of
affected images with small, large and multiple lesions of the
proposed method are presented. The method achieved good
classification results with a sensitivity of 0.92, an accuracy of



Fig. 13 – Comparison of results obtained by SVM and RF classifiers.

Table 8 – The comparison of obtained results with few published articles.

Authors Methods Classifier DSI

Seghier et al. [2] Generative model Fuzzy clustering 0.64
Tsai et al. [12] FCM clustering Unsupervised classification 0.89
Maier et al. [10] Intensity derived image features Extra tree forest framework 0.65
Maier et al. [40] Fuzzy clustering approach Random Decision Forest 0.72
Muda et al. [35] Fuzzy C-Means (FCM) algorithm Expert system 0.61
Griffs et al. [36] Probabilistic tissue segmentation Naive Bayes classifier 0.66
Mitra et al. [37] Bayesian–Markov Random Field (MRF) Random forest 0.60
Proposed method EM-FODPSO Random forest 0.93
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0.94 and DSI of 0.92 using RF classifier, which is little better
than the results of EM and fuzzy clustering approaches alone.
Therefore we can say that EM-FODPSO based approach has the
ability to detect lesion structure effectively. Our EM based
approach has produced better results in comparison to other
published work as shown in Table 6. In recent approach,
artificial intelligence model effectively applied in medical
signal and image analysis in object identification and
classification directly from images by eliminating the step to
extract the features, thus speed-up the process of classifica-
tion [38,39]. Therefore deep neural network can be applied for
effective analysis of ischemic stroke.

5. Conclusion

In this paper we have proposed an automated method to
detect chronic brain stroke based on expectation-maximiza-
tion clustering approach. The affected part of the brain was
segmented by the EM algorithm and from the segmented part
the features were extracted to make a set of features. The
dataset is then classified into three types of stroke using
random forest classifier. The affected lesion was clustered
based on intensity similarity of the pixels which was identified
with binary values. The lesion was segmented effectively with
dice similarity index of 0.94 in the extracted features from the
real-time images. The value of obtained results was better
compared to some of the published results, so the EM-FODPSO
based segmentation method can be an alternate way to detect
different sizes of stroke lesion using brain images. In future,
we explore the possibility of determining the 3D volumetric
value of the lesions.
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