
3218 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 24, NO. 10, OCTOBER 2015

No-Reference Image Sharpness Assessment in
Autoregressive Parameter Space

Ke Gu, Student Member, IEEE, Guangtao Zhai, Member, IEEE, Weisi Lin, Senior Member, IEEE,
Xiaokang Yang, Senior Member, IEEE, and Wenjun Zhang, Fellow, IEEE

Abstract— In this paper, we propose a new no-reference (NR)/
blind sharpness metric in the autoregressive (AR) parameter
space. Our model is established via the analysis of AR model
parameters, first calculating the energy- and contrast-differences
in the locally estimated AR coefficients in a pointwise way, and
then quantifying the image sharpness with percentile pooling to
predict the overall score. In addition to the luminance domain,
we further consider the inevitable effect of color information
on visual perception to sharpness and thereby extend the above
model to the widely used YIQ color space. Validation of our
technique is conducted on the subsets with blurring artifacts
from four large-scale image databases (LIVE, TID2008, CSIQ,
and TID2013). Experimental results confirm the superiority and
efficiency of our method over existing NR algorithms, the state-
of-the-art blind sharpness/blurriness estimators, and classical
full-reference quality evaluators. Furthermore, the proposed
metric can be also extended to stereoscopic images based on
binocular rivalry, and attains remarkably high performance on
LIVE3D-I and LIVE3D-II databases.

Index Terms— Image sharpness/blurriness, image quality
assessment (IQA), no-reference (NR)/blind, autoregressive (AR)
parameters, YIQ color space, stereoscopic image, binocular
rivalry.

I. INTRODUCTION

NOWADAYS, the expectation of human consumers toward
enjoyment of high-quality images is constantly rising.

Owing to the limitations of bandwidth and storage media,
images however very possibly suffer some typical types of
distortions, e.g. white noise and Gaussian blur, before finally
reaching to human consumers. Classical full-reference (FR)
image quality assessment (IQA), supposing that the original
and distorted images are both entirely known, can assess
those degradation levels [1]– [6]. But the pristine image is
not available in most cases, and thus blind/no-reference (NR)
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IQA metrics without access to original references are highly
desirable. For noise estimation, these years have witnessed
the emergence of quite a few blind algorithms [7], [8].
Though a large set of sharpness/blurriness measures have been
developed, their performance indices are far less than the ideal
results. Furthermore, this type of approaches are of many
valuable applications in image processing, such as automatic
contrast enhancement [9], [10], super-resolution [11] and
denoising [12]. Therefore, in this work we devote to inducing
a high-accuracy blind image sharpness metric.

Early attempts of sharpness/blurriness estimations mainly
concentrated on image edges. In [13], a perceptual model was
developed based on a pair of edge detectors for vertical and
horizontal directions. In [14], Wu et al. proposed a blind blur
evaluator by computing the point spread function (PSF) from
the line spread function (LSF) that is extracted from edges in
a blurred image. In [15], the authors computed the edge width
in 8×8 blocks before a measure of just-noticeable blur (JNB)
factor. Inspired by the successfulness of JNB, the cumulative
probability of detecting blur (CPDB) algorithm [16] predicts
the image sharpness by calculating the probability of blurriness
at each edge.

Over the last few years, there have also existed some blind
techniques with some level of success in assessing perceptual
sharpness. In [17], the authors combined spatial and transform-
based features to induce a hybrid approach, dubbed as spectral
and spatial sharpness (S3). Specifically, the slope of the local
magnitude spectrum and total variation is first used to create
a sharpness map, and then the scalar index of S3 is computed
as the average of the 1% highest values in that sharpness map.
Thereafter, a transform-inspired fast image sharpness (FISH)
model [18] was explored with the evaluation of log-energies in
high-frequency DWT subbands followed by a weighted mean
of the log-energies.

Very recently, Feichtenhofer et al. developed a perceptual
sharpness index (PSI) [19] by analyzing the edge slopes before
integrating an acutance measure to model the influence of local
contrast information on the perception to image sharpness.
In [20], Wang and Simoncelli analyzed the local phase
coherence (LPC) and pointed out that the phases of complex
wavelet coefficients constitute a highly predictable pattern in
the scale space in the vicinity of sharp image features, and
furthermore, the LPC structure was found to be disrupted
by image blur. With this concern, Hassen et al. designed the
valid LPC-based sharpness index (LPC-SI) [21].

Besides, several NR IQA metrics were proved effectively
in assessing image blur. The authors in [22] made use of the
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recent free energy based brain theory [23] to simulate the
internal generative mechanism of the brain, and introduced
the NR free energy based quality metric (NFEQM).
Distortion Identification-based Image Verity and INtegrity
Evaluation (DIIVINE) [24], BLind Image Integrity Notator
using DCT Statistics (BLIINDS-II) [25] and Blind/Referen-
celess Image Spatial Quality Evaluator (BRISQUE) [26] came
from the natural scene statistics (NSS) model [27], working
with the feature extraction and the training of a regression
module via the support vector machine (SVM) [28]. Along
this research line, we lately designed the NFSDM [29] and
NFERM [30] by systematically integrating two effective
reduced-reference (RR)1 quality metrics in [22] and [31] to
eliminate the demand of references.

Differing from previous methods, in this paper we come
up with a new blind sharpness measure based on the analysis
of autoregressive (AR) model parameters, dubbed as
AR-based Image Sharpness Metric (ARISM). Our technique
is inspired by the free energy principle and the NFEQM model,
built upon the underlying hypothesis that image blurring
increases the resemblance of locally estimated AR parameters.
Particularly, the proposed ARISM works to separately
measure the energy- and contrast-difference of AR model
coefficients at each pixel, and then compute the image
sharpness with percentile pooling to deduce the overall quality
score.

Currently, since three-dimensional (3D) imaging technology
works actively from entertainment (e.g. videos and games) to
specialized domains (e.g. education and medicine), a growing
number of image processing operations have been specifically
explored for stereoscopic images, and thereby the necessity of
stereoscopic IQA methods shows strongly evident, especially
under the NR condition. There have been many related studies
extending 2D IQA models to 3D images. In [32], the fusion of
2D quality scores of the left- and right-eye images is used to
infer the stereoscopic image quality. In [33], the degradation
of edges in the depth map is used as the 3D image quality.
In [34]–[36], the authors fused the quality measure of the
disparity map with those of left- and right-views to infer the
visual quality of stereoscopic images.

Following this research line, we further endeavor to modify
the proposed ARISM for the sharpness assessment of
stereoscopic images, based on existing studies on binocular
rivalry [37]–[39], where it was found that for simple ideal
stimuli, a rising contrast advances the predominance of one
view against the other. We reasonably suppose that the
contrast increases with the difference of AR parameters.
Thus, a 3D sharpness measure can be established using the
weighted sum of energy- and contrast-differences to weight
the ARISM model.

The remainder of this paper proceeds as follows: Section II
first reviews our previous related work. Section III introduces
the motivation of our approach and describes its framework
in detail. A comparison of ARISM with state-of-the-art
metrics using blur data sets obtained from four monoscopic

1RR IQA works under the situation that the partial original image or some
extracted features are available as auxiliary information for quality evaluation.

image databases (LIVE [40], TID2008 [41], CSIQ [42],
and TID2013 [43]) is given in Section IV. In Section V,
the proposed model is extended to a stereoscopic sharpness
measure and is verified on LIVE3D-I [44] and LIVE3D-II [45]
databases. We finally conclude this paper in Section VI.

II. RELATED WORK

In a recent work [22], the simple yet valid NFEQM method
was proposed based on the concept of the free energy theory,
which was lately revealed in [23] and it succeeds in explaining
and unifying several existing brain theories in biological and
physical sciences about human action, perception and learning.
The fundamental assumption of the free energy principle
is that the cognitive process is controlled by an internal
generative model in the brain, similar to the Bayesian brain
hypothesis [46]. Depending on this model, the brain is able
to use a constructive way to actively infer predictions of the
meaningful information from input visual signals and reduce
the residual uncertainty.

The aforesaid constructive manner can be approximated
by a probabilistic model, which can be separated into a
likelihood term and a prior term. For a given scene, the
human visual system can deduce its posterior possibilities by
inverting the likelihood term. It is natural that there always
exists a gap between the real external scene and the brain’s
prediction, for the reason that the internal generative model
cannot be universal everywhere. We believe that this gap
between the external input signal and its generative-model-
explainable part is highly connected to the quality of visual
sensations, and is applicable to the measurement of image
sharpness.

Specifically, we postulate that the internal generative
model g is parametric for visual sensation, and the perceived
scenes can be explained by adjusting the parameter vector φφφ.
Given a visual signal s, its “surprise” (measured by entropy)
can be obtained by integrating the joint distribution p(s,φφφ|g)
over the space of model parameters φφφ

− log p(s|g) = − log
∫

p(s,φφφ|g)dφφφ. (1)

We bring an auxiliary term q(φφφ|s) into both the denominator
and numerator in Eq. (1) and derive:

− log p(s|g) = − log
∫

q(φφφ|s) p(s,φφφ|g)

q(φφφ|s) dφφφ. (2)

Here q(φφφ|s) is an auxiliary posterior distribution of the model
parameters given the input image signal s. It can be thought of
as an approximate posterior to the true posterior of the model
parameters p(φφφ|s, g) given by the brain. When perceiving the
image signal s or when adjusting the parameters φφφ in q(φφφ|s) to
search for the optimal explanation of s, the brain will minimize
the discrepancy between the approximate posterior q(φφφ|s) and
the true posterior p(φφφ|s, g).

Next, the dependence on the model g will be dropped for
simplicity. Using the Jensen’s inequality, we can easily get the
following relationship from Eq. (2):

− log p(s) ≤ −
∫

q(φφφ|s) log
p(s,φφφ)

q(φφφ|s) dφφφ. (3)
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Fig. 1. Comparison of local sharpness maps of ground truth, S3, FISHbb
and NFEQM using representative images in [17].

The right hand side of Eq. (3) is the upper bound by a term
called “free energy”, which is defined as

f (φφφ) = −
∫

q(φφφ|s) log
p(s,φφφ)

q(φφφ|s) dφφφ. (4)

The free energy measures the discrepancy between the input
visual signal and its best explanation given by the internal
generative model, and thus it can be considered as a natural
proxy for psychovisual quality of images. This motivates the
use of free energy for the design of NFEQM in the image
sharpness/blurriness measure:

NFEQM(s) = f (φ̂φφ) with φ̂φφ = arg min
φφφ

f (φφφ|g, s). (5)

The linear autoregressive (AR) model is used for approxi-
mating g, because this model is easy to construct and has a
good ability to characterize a wide range of natural scenes by
varying its parameters [47]–[49]. For an input visual signal s,
we define the AR model as

sn = V t (sn)υυυ + εn (6)

where sn is a pixel in question. V t (sn) is a vector of t nearest
neighbors of sn . υυυ = (υ1, υ2, ..., υt )

T is a vector of AR model
coefficients. The superscript “T ” means transpose. εn is the
error term. To determine υυυ, the linear system can be written
in matrix form as

υ̂υυ = arg min
υυυ

‖s − Vυυυ‖2 (7)

where s = (s1, s2, ..., st )
T and V(i, :) = V t (si ). This linear

system was solved with the least square method, leading to
υ̂υυ = (VT V)−1VT V. Next, we estimated ŝ to be

ŝn = V t (sn) υ̂υυ. (8)

Referring to the analysis in [22], the process of free-energy
minimization is closely related to predictive coding, and it
can be finally approximated as the entropy of the prediction
residuals between s and ŝ for a given AR model of fixed orders.
Thus, the free energy of the input image signal is quantified by

NFEQM(s) = −
∑

i
pi(s�) log pi (s�) (9)

where s� is the prediction error between the input visual signal
and its predicted version. pi (s�) is the probability density of
grayscale i in s�.

Fig. 2. Comparison of NFEQM and ARISM frameworks.

III. IMAGE SHARPNESS MEASURE

A. Motivation

The successfulness of NFEQM implies the effectiveness of
AR model in measuring image sharpness. Fig. 1 exhibits the
maps from ground truth and three sharpness metrics on three
images “dragon”, “monkey”, and “peak” [17]. As compared to
S3 and FISHbb, NFEQM shows fairly good estimation toward
the ground truth maps. We can summary the whole process of
NFEQM to be a three-step model: AR parameter estimation,
image prediction by free energy, and sharpness measure in
entropy, as presented in Fig. 2 (a).

However, it can be found that the core of free energy is
that the parameters φφφ in q(φφφ|s) is adjusted to search for the
optimal explanation of the visual signal s, thus to minimize the
discrepancy of the approximate posterior q(φφφ|s) and the true
posterior p(φφφ|s, g). So it is reasonable that the distribution of
the parameters φφφ is more closely related to the working of the
brain’s perception to image sharpness. Here the distribution of
q(φφφ|s) is represented by that of the estimated AR parameters,
which exhibits a center-peaked appearance. In order to illus-
trate this, an image and its auxiliary posterior distribution of
the model parameters q(φφφ|s) computed using the first-order
AR model are shown in Fig. 3.

Accordingly, we consider the use of AR model parameters,
which were shown to invariant to object transformations
(e.g. translation, rotation and scaling) and widely applied in the
literature [50], [51], and thus concentrate on the analysis and
adoption of AR coefficients in the proposed ARISM method.
This is a distinguished difference between our technique and
the previous NFEQM metric, which improves the performance
in the sharpness measure to a sizable margin. We display
this primary framework in Fig. 2 (b), which is composed
of AR parameters estimation, local sharpness computation,
percentile pooling stage and extension to color metric.

From another point of view, after the estimation of AR
coefficients, the aforementioned two models utilize different
dimensionality reduction strategies. NFEQM exploits pixels
in the input and predicted images for blurriness measure,
and thereby works in the spatial domain. In comparison,
ARISM estimates the sharpness in the parameter space by
analyzing the difference of locally estimated AR parameters
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Fig. 3. Illustration of the posterior distribution of the model parameters q(φφφ|s)
by: (a) a natural image; (b) the associated distribution of q(φφφ|s) computed
using the first-order AR model.

in a point-wise way, which will be explicitly explained later.
Another distinguishment between our model and existing

related methods (including NFEQM) is that ARISM considers
the inevitable influence of color information on the sharpness
assessment. Most approaches operate on the gray luminance
image that is converted from the input color image signal s
by the “rgb2gray” transform matrix:

sgray = [r g b] [cr cg cb]T (10)

where r, g and b indicate the vectors in s. cr , cg and cb are
fixed as 0.299, 0.587 and 0.114. Only using gray information
is not reasonable, because some edges might be removed by
this transformation, which may result in the disappearance of
sharpness in the color image after the above transformation.
Thus our technique exploits the simple and widely used
YIQ color space [52] for boosting the performance.

B. AR Parameters Estimation

As mentioned in the introduction, higher resemblance of
AR parameters corresponding to one particular pixel indicates
poorer sharpness of that location. The first step is to estimate
the AR model coefficients for each pixel. Instead of using
the AR parameters estimation in NFEQM, we employ another
easier way to address this problem, which has been efficiently
and effectively used for dimensionality reduction [53]. In our
ARISM, an 8-th order AR model is trained for each image
pixel and its 8-connected neighborhood to derive the optimal
AR parameters.

C. Local Sharpness Computation

It is easy to imagine that eight AR model parameters of
a pixel will be very close to each other when this pixel is
in a comparatively smooth region, and on the other hand,
these parameters tend to be obviously distinct when the current
pixel belongs to a sharp zone. We pick two classical measures
for this. The first one is defined as the difference between the
maximum and minimum values of those AR parameters at the
location of (i, j) in the input image S:2

Ei, j = |Wmax − Wmin|n (11)

2For convenience, we use the image matrix S to represent the image signal s
in the following pages. Similarly, the images or maps will be written in the
form of matrixes.

where Wmax and Wmin are computed from the AR parameters
as follows:

Wmax = max
(s,t)∈�i, j

(Ws,t )

Wmin = min
(s,t)∈�i, j

(Ws,t ).

where the location pair (s, t) satisfies

�i, j ={(s, t) | s ∈[i −1, i +1], t ∈[ j −1, j +1], (s, t) �=(i, j)}.
The max and min operators are independently used to mark
the maximum and minimum values from the locally estimated
parameters at each pixel location. The exponent n is used to
adjust the significance of the difference Ei, j . In this stage,
we select n = 2 to measure the energy difference (i.e. the
mean-squared error) across the parameters.

Inspired by the definition of the famous Michelson
contrast [54], we define a second contrast-based measure at
the location of Si, j :

Ci, j = (Wmax − Wmin)
2

W 2
max + W 2

min

. (12)

It has been found in [18] that the block-based pooling
is an effective way for sharpness evaluation. We further
modify E and C into a block-based version:

Ebb
u,v = 1

M

√ ∑
(i, j )∈�u,v

Ei, j (13)

Cbb
u,v = 1

M

√ ∑
(i, j )∈�u,v

Ci, j (14)

where M is the length of the selected square patches. Each of
chosen patches �u,v is designated as

�u,v = {(i, j) | i ∈ [(u − 1)M + 1, uM],
j ∈ [(v − 1)M + 1, vM]}

where 1 ≤ u ≤ �H/M�, 1 ≤ v ≤ �W/M�, and W and H are
the width and height of the image S, respectively.

It is worthy to stress that using the max and min operators
before computing the energy- and contrast-differences is a
simple tactic to reduce the dimensionality of AR parameters.
Other complicated strategies, such as variance and entropy, are
likely to be more effective.

D. Percentile Pooling Stage

In the final, a percentile pooling is taken to calculate the
sharpness score. Percentile pooling methods have succeeded
in improving the performance accuracy, such as [3] and [17].
As a result, we average the largest Qk% values in the k
(k ∈ {E, C, Ebb, Cbb}) map to compute the sharpness
score ρk . We then derive the overall quality index with a linear
weighted pooling of those four scores:

ρ =
∑
k∈�

	k · ρk (15)

where � = {E, C, Ebb, Cbb}. 	k are positive constants used
to adjust the relative importance of each component.
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Fig. 4. The selected ten high-quality images from the CUHKPQ image
database [55].

E. Determination of Parameters

To determine those parameters applied in ARISM, we first
selected ten high-quality images, which are of a broad range
of scenes (e.g. animals and architectures) from the CUHKPQ
database [55] as shown in Fig. 4, and then created 150 blurred
images using Gaussian kernels with standard deviation σG

(from 1 to 5) with Matlab f special and im f ilter commands.
Each of R, G and B image planes was blurred with the same
kernel. The CUHKPQ database was chosen for validating the
generality and database-independency of our technique, since
existing IQA databases [40]–[43] will be used for performance
test and comparison in later experiments.

Next, we utilized the visual information fidelity (VIF) [2],
which is quantified to be the ratio of the mutual information
between the original and distorted images to the information
content of the original one itself, owing to its superior
performance in the image sharpness measure, to assess
the aforesaid 150 images, and then use those objective
quality scores to optimize the parameters adopted in ARISM.
Spearman rank-order correlation coefficient (SRCC), one of
the most popular performance metrics and has been used to
find the suitable parameters in quite a few IQA approaches
such as [9] and [10], is employed for optimization in this
implementation.3 As given in Fig. 5, we can see from the
scatter plot of VIF versus our ARISM model that the sample
points are quite clustered to the red fitted curve, with the
SRCC value higher than 0.97 (1 is the best).

F. Extension to Color Metric

We further take chrominance information into consideration,
as used in the literature [3], [4]. Before the calculation
of AR parameters, the simple and widely used YIQ color
space [52] is used to transfer an input RGB color image:

⎡
⎣ Y

I
Q

⎤
⎦ =

⎡
⎣ 0.299 0.587 0.114

0.596 − 0.274 − 0.322
0.211 − 0.523 0.312

⎤
⎦

⎡
⎣ R

G
B

⎤
⎦ (16)

where Y conveys the luminance information, and I and Q
contain the chrominance information. We thereby propose the

3Our ARISM model only applies E, C, and Cbb maps (i.e. 	Ebb = 0)
since the use of Ebb map cannot introduce the performance improvement.
The Matlab code of the proposed sharpness metric will be available online at
http://sites.google.com/site/guke198701/home.

Fig. 5. The scatter plot of VIF versus ARISM on the 150 blurred images.
The red curve is fitted with the logistic function of Eq. (18).

ARISMc by extending ARISM to the YIQ space:

ρc =
∑

l∈{Y,I,Q}
�l · ρl (17)

where �l are fixed positive numbers for altering the relative
importance of each component, which are optimized with the
same method in Section III-E.

IV. EXPERIMENTAL RESULT

In this section we first provide an example of the application
of our algorithm using an original natural image “monument”
in Fig. 6. We first chose different Gaussian kernels G(x, y, σ )
with eleven standard deviations σ from 0.5 to 1.5 with an
interval of 0.1. Then, eleven blurred images were generated
by convolving the original version with each of the selected
Gaussian kernels above. Based on the proposed ARISM, we
evaluated the sharpness of these eleven blurred images and
obtained their quality scores. The sample points of eleven
standard deviations versus their corresponding ARISM scores
are shown to be very convergent to the red fitted curve in the
rightmost scatter plot.

We then calculate and compare the performance of our
ARISM model with a large set of relevant methods on blur
data sets. First, we used blur image subsets from four large-
size LIVE, TID2008, CSIQ and TID2013 databases as testing
beds. The most popular LIVE database [40] was developed
at the University of Texas at Austin, including 779 lossy
images created from 29 pristine ones by corrupting them with
five types of distortions. We adopted 145 blurred images and
their realigned DMOS (the differential version of MOS) values
because realigned DMOSs are more reasonable than original
ones [56]. The TID2008 database [41] was provided with a
joint international effort between Finland, Italy and Ukraine,
which consists of 1,700 images. These images were produced
by corrupting 25 original versions with 17 distortion types at
4 different levels. A total of 100 blurred images were applied
here. The CSIQ database [42] was released at Oklahoma State
University, where 866 images were derived from 30 original
counterparts. Six distortion types were considered in CSIQ:
white noise, JPEG, JP2K, pink noise, blur, and global contrast
decrements. We picked 150 blurred images from this database
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Fig. 6. A simple example of our ARISM model for an original image “monument”. We first chose different Gaussian kernels G(x, y, σ ) with eleven standard
deviations σ from 0.5 to 1.5 with an interval of 0.1. By convolving the original image with each of the selected Gaussian kernels above, eleven blurred images
were generated. We then estimated the sharpness of these eleven blurred images with our sharpness measure, so as to acquire eleven quality scores. Finally,
the rightmost scatter plot shows the well correlation of the eleven standard deviations versus their corresponding ARISM scores.

for testing. The TID2013 [43] contains totally 3,000 images,
created by corrupting 25 original ones with 24 categories
of distortions at 5 distinct levels. A number of 125 blurred
images were used in this study.

Second, we choose fifteen classical FR IQA and
state-of-the-art NR/blind algorithms for comparison. They are:
1) Three FR IQA models, peak signal-to-noise ratio (PSNR)
that computes the signal energy preservation, structural sim-
ilarity index (SSIM) that compares luminance, contrast and
structural similarities [1], and VIF [2]; 2) Six NR IQA
models, NFEQM [22], DIIVINE [24], BLIINDS-II [25],
BRISQUE [26], NFSDM [29] and NFERM [30]; 3) Six
blind sharpness/blurriness estimators, JNB [15], CPBD [16],
S3 [17], FISH [18], FISHbb [18], and LPC-SI [21]. Notice
that the second type of general-purpose NR IQA models are
trained on the LIVE database via the SVM, not only for the
sharpness assessment.

Third, we refer to the suggestion given by the video quality
experts group (VQEG) [57], and adopt a nonlinear mapping
of the prediction results x to the subjective scores using the
four-parameter logistic function:

f (x) = ξ1 − ξ2

1 + exp(− x−ξ3
ξ4

)
+ ξ2 (18)

where x and f (x) stand for the input score and the mapped
score. The free parameters ξ j ( j = 1, 2, 3, 4) are determined
during the curve fitting process. Next, four commonly used
measures are employed to quantify the performance of those
above metrics: 1) SRCC, which computes the monotonicity
by ignoring the relative distance between the data:

SRCC = 1 − 6
∑F

i=1 d2
i

F(F2 − 1)
(19)

where di is the difference between the i -th image’s ranks
in subjective and objective evaluations, and F represents
the number of images in the testing database; 2) Kendall’s
rank-order correlation coefficient (KRCC), another monotonic-

ity metric used to measure the association between the inputs:

KRCC = Fc − Fd
1
2 F(F − 1)

(20)

where Fc and Fd separately indicate the numbers of concor-
dant and discordant pairs in the testing data set; 3) Pearson
linear correlation coefficient (PLCC), meaning the prediction
accuracy:

PLCC =
∑

i f̃i · õi√∑
i f̃ 2

i · ∑i õ2
i

(21)

where õi = oi − ō with oi and ō being the subjective scores
of the i -th image and the mean of all oi , and f̃i = fi − f̄
with fi and f̄ being the converted objective scores after the
nonlinear regression and the mean of all fi ; 4) root-mean-
squared error (RMSE), quantifying the difference between
fi and oi :

RMSE =
√

1

F

∑
( fi − oi )2. (22)

A good measure is expected to attain high values in SRCC,
KRCC and PLCC, as well as low values in RMSE. In entire
experiments, we merely include blurred images (i.e. original
images are excluded).

Table I tabulates the performance measures on those four
databases. For each evaluation criterion, we emphasize the top
two performed NR/blind metrics with boldface. To provide a
straightforward and overall comparison, Table I also computes
the average SRCC, KRCC, PLCC and RMSE4 results for
each objective measure over all four databases. Two averages
are used: 1) the direct average; 2) the database size-weighted
average that computes the mean values based on the size of
each data set (145 for LIVE, 100 for TID2008, 150 for CSIQ,
and 125 for TID2013). The results of DIIVINE, BLIINDS-II,
BRISQUE and NFSDM are not included for the LIVE

4RMSE is a measure highly related to the range of subjective ratings. Those
four databases have different ranges, so the comparison on average should be
conducted using all four databases and we do not include the RMSE values
of the four training-based NR IQA metrics.
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TABLE I

PERFORMANCE EVALUATIONS ON FOUR DATABASES AND TWO AVERAGES. WE BOLD THE TOP TWO PERFORMED NR/BLIND METRICS

database because all of them use that database for training.
As a consequence, their average results are calculated over
the other three databases only.

We can observe that the proposed ARISM model correlates
highly with human visual perception to image sharpness, and
it is remarkably superior to those testing NR/blind techniques
on average. In general, FR IQA metrics are considered hardly
matchable with NR/blind approaches owing to the existence

of original references. Although this comparison is unfair to
ARISM, our metric is still better than the FR PSNR, while is
a little inferior to the FR SSIM on average.

Moreover, we should mention that the average performance
improvement (using SRCC) of the proposed ARISM is larger
than 1.9% relative to the second best LPC-SI algorithm.
As compared to the previous NFEQM method, our technique
has achieved noticeable performance gain, about 8.1% on
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Fig. 7. Scatter plots of FR VIF versus our ARISM/ARISMc on LIVE, TID2008, CSIQ and TID2013 blur subsets.

TABLE II

SRCC AND PLCC COMPARISON BETWEEN FR VIF AND THE PROPOSED ARISM/ARISMc ON FOUR BLUR SUBSETS

TABLE III

PERFORMANCE MEASURES OF OUR ARISM, ARISM-S, ARISMc, AND ARISMc-S MODELS ON FOUR BLUR SUBSETS

LIVE, 21.9% on TID2008, 4.2% on CSIQ, 16.0% on
TID2013, 11.9% on the direct average, and 10.9% on the
database size-weighted average. This also demonstrates the
superiority of the proposed scheme used in ARISM over that
used in NFEQM for the sharpness measure.

To confirm the proposed ARISM/ARISMc, we also test
how well it predicts FR VIF, which is of substantially high
accuracy in assessing blurred images. We in Fig. 7 illustrate
the scatter plots acquired using all four data sets, where each
sample point indicates one test image and the vertical and
horizontal axes correspond to FR VIF and ARISM/ARISMc,
respectively. The points lie on the black diagonal dash line for
the perfect prediction. To provide a quantitative comparison,
Table II lists SRCC and PLCC values between VIF and our
metric on each data set. It can be viewed that the points are
scattered fairly close to the black diagonal lines in Fig. 7 and
correlation performance results are almost above 0.9, meaning
the good prediction performance of our technique. It should
be noted that high correlation between the proposed model
and FR VIF or subjective opinion scores strongly suggests the
effectiveness of our hypothesis that image blurring increases
the resemblance of locally estimated AR parameters.

We further notice that using max and min operators and
two classical energy and contrast measures, or in other words
a simple dimensionality reduction method, is just an easy and

empirical tactic to analyze the AR parameters. It is obvious
that other measures (e.g. variance and entropy) or machine
learning-based technologies (e.g. principal component analysis
and popular deep learning network) might be of more superior
performance in the image sharpness estimation.

In addition, we also employ the DMOSs of blurry images
in the LIVE database to optimize the parameters used in the
proposed method, dubbed as ARISM-S and ARISMc-S, since
the objective quality metric leans to the mean human scores.
The performance results of the proposed ARISM, ARISM-S,
ARISMc, and ARISMc-S models are compared using LIVE,
TID2008, CSIQ, TID2013 databases and the two means, as
reported in Table III. In contrast to ARISM and ARISMc
that are optimized using the high-accuracy VIF metric,
ARISM-S and ARISMc-S built upon subjective scores perform
better on most of testing databases and two averages.

Statistical significance analysis based on the variance-based
hypothesis testing shows additional information regarding the
relative performance of different quality algorithms [56]. The
hypothesis behind such analysis is that the residual difference
between the subjective score and its objective prediction is
Gaussian distributed. In reality, this assumption is not always
met perfectly, whereas is somewhat reasonable because the
Central Limit Theorem comes into play and the distribution
of the residual difference approximates the Gaussian distri-
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TABLE IV

STATISTICAL SIGNIFICANCE COMPARISON OF ARISM/ARISMc/ARISM-3 AND TESTING MODELS WITH F-TEST

TABLE V

PERFORMANCE AND TIME COMPARISON OF ARISM-si AS WELL AS LPC-SI AND S3 APPROACHES

Fig. 8. Plots of performance and computational time (second/image) of our ARISM-si and LPC-SI approaches.

bution with the large number of sample points. For a given
image database, the F-test is applied to compare the variances
of two sets of prediction residuals by two objective methods,
in order to determine whether the two sample sets are of
the same distribution. As such, we can make a statistically
sound judgment regarding superiority or inferiority of one
objective method against another. Results of statistical sig-
nificance are listed in Table IV. A symbol “0” denotes that
the two objective methods are statistically indistinguishable,
“+1” denotes our method is statistically better than that of
the column, and “−1” denotes that our method is statistically
worse than that of the column. A symbol “-” denotes the unfea-
sible analysis since learning-based DIIVINE, BLIINDS-II,
BRISQUE and NFSDM are trained on LIVE. It is found
that our model is statistically indistinguishable from S3 for
LIVE and TID2008, from FISHbb for TID2008, from LPC-SI
for TID2008 and TID2013, and better than all other blind
algorithms.

Furthermore, we compare the effectiveness and efficiency
with the top two blind sharpness metrics (LPC-SI and S3).
Clearly, it requires much computational cost in the estimation
of AR parameters, and thus the proposed ARISM model
needs a great amount of time5 that is the average value using

5Due to the limited performance gain yet much extra computational load of
the color information, we hereinafter do not consider the use of color space.

100 blurred images of the same size 512×384 in the TID2008
database with a computer of Intel Core i7 CPU at 3.40 GHz,
as provided in Table V. But we notice that the neighboring
AR coefficients are highly similar, and hence we choose the
sampling method for computational time reduction. That is to
say, the AR model parameters are evaluated once every a few
pixels in both horizontal and vertical directions. In this way,
the computational quantity can be largely reduced to about 1

si2 ,
where si means the value of the sampling interval. Here we
calculate the database size-weighted average performance on
all four databases (using SRCC, PLCC) and the computational
cost of five ARISM-si (si = 1, 2, 3, 4, 5), and report those
results in Table V. A better metric is expected to take less time.
It can be readily viewed that the high efficiency is attained
via a bit of loss in the prediction accuracy. Therefore we can
flexibly select a proper ARISM-si model for the effectiveness-
or efficiency-dominant environment.

Apart from the self-comparison, we find a good
compromise (ARISM-3) between effectiveness and efficiency,
in contrast to the top two performed LPC-SI and S3 metrics,
whose results are reported in Table V. Because the ARISM-3
is an effective and efficient metric, we compute the F-test
of ARISM-3 with other NR/blind algorithms, as tabulated
in Table IV. Results tell that ARISM-3 is statistically
indistinguishable from S3 and FISHbb for LIVE and TID2008,
from LPC-SI for TID2008 and TID2013, and superior to
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Fig. 9. Scatter plots of MOS/DMOS versus FR PSNR, NR/blind NFEQM and S3, as well as our ARISM and ARISMc models (after the nonlinear regression)
on four blur image’s subsets from LIVE, TID2008, CSIQ and TID2013 databases.

all other models for all databases. For a clear show, Fig. 8
exhibits two plots of performance and computational time of
those five ARISM-si models and the LPC-SI metric.

Finally, we show the scatter plots of MOS/DMOS versus
objective quality predictions of representative FR PSNR,
NR/blind NFEQM, S3, and the proposed ARISM, ARISMc
metrics (after the nonlinear mapping) on all four databases
in Fig. 9. Our technique generally provides reasonable quality
measures, where the sample points tend to be clustered closer
to the black diagonal lines (meaning perfect prediction) than
other testing methods under comparison.

V. EXTENSION TO SHARPNESS ASSESSMENT OF

STEREOSCOPIC IMAGES

The 3D imaging technology is nowadays greatly important,
because the number of digital 3D pictures and movies for
human consumption has dramatically increased over the
recent years. Therefore, how to validly monitor, control and
improve the visual quality of stereoscopic images become an
urgent problem and thus accurate stereoscopic IQA methods
are highly desirable. One type of classical schemes is to
integrate the 2D IQA measures of the left- and right-views
with/without the quality of the disparity map to yield the final
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TABLE VI

COMPARISON ON LIVE3D-I AND LIVE3D-II. THE TOP TWO ALGORITHMS ARE HIGHLIGHTED BY BOLD FONT

TABLE VII

STATISTICAL SIGNIFICANCE COMPARISON BETWEEN OUR SARISM AND TESTING STEREOSCOPIC IQA METRICS

quality prediction of the 3D image [32]–[36]. Using a similar
yet more reasonable and effective strategy, in this paper we
further extend the proposed model to the sharpness assessment
of stereoscopic images with a few small modifications.

Early researches presented somewhat conflict observations
and opinions concerning the effect of asymmetric distortions.
In [58], evidence shows that the quality of asymmetric blurred
images is heavily dominated by the higher-quality view.
So the key point is how to well fuse the quality scores of the
left- and right-eye images. Several existing studies on
binocular rivalry [37]–[39] tell that for simple ideal stimuli,
a growing contrast increases the predominance of one view
against the other. In general, the contrast of a visual stimulus
having complicated scenes increases with the difference of
AR parameters, which motivates a sound hypothesis that the
level of view dominance in binocular rivalry of 3D images
is rising with the difference of AR model coefficients in
two views.

To specify, given an input blurry image pair SL and SR ,
the energy- and contrast-based maps E and C as well as the
associated block-based versions Ebb and Cbb are computed
by using Eqs. (11)-(14). We can obtain their quality scores
YL and YR in the luminance component with the proposed
percentile pooling stage in Eq. (15). Notice that the higher
values of E and C , the larger difference of AR parameters.
Based on the assumption that the view dominance of stereo-
scopic images improves with the difference of AR coefficients
and thus with the energy- and contrast-differences, a straight-
forward method is to integrate E and C to compute the weights
of the view dominance as follows:

VYL = MαY
YL ,E + MβY

YL ,C (23)

VYR = MαY
YR ,E + MβY

YR ,C (24)

where MYL ,E and MYL ,C are the mean of E and C of the
left-eye image, while MYR ,E and MYR ,C are the mean of
E and C of the right-eye one; αY and βY are positive weights
for adjusting the relative importance of energy- and contrast-
measures. Then the 3D image quality score in the luminance

component can be expressed by

QY = VYL · YL + VYR · YR . (25)

Using Eqs. (16)-(17), we similarly compute the scores in
two chrominance components, and finally infer the overall
quality of the stereoscopic image to be

QS =
∑

l∈{Y,I,Q}
�l · Ql (26)

where �l are fixed positive weights. It needs to emphasize
that, except the newly introduced parameters αl and βl , other
parameters are the same with those used in our proposed
2D image sharpness metric.

Two popular stereoscopic image databases (LIVE3D-I [44]
and LIVE3D-II [45]) are adopted in this work for the
performance measure. LIVE3D-I includes 20 reference stereo-
scopic images and the associated 365 distorted stereoscopic
pairs. Five types of distortions, including JPEG, JPEG2000,
blur, noise and fastfading, are symmetrically exerted on the
original left- and right-views at different levels. LIVE3D-II
consists of 120 symmetrically distorted stereoscopic pairs and
240 asymmetrically pairs generated from 8 source pairs. The
same five distortion types are symmetrically and asymmetri-
cally applied to the reference left- and right-eye images at
various degradation levels. In this work we consider the blur
image sets in the aforesaid two databases. Three performance
indices (SRCC, PLCC and RMSE) are used to quantify the
correlation performance of the proposed SARISM model.
As listed in Table VI, we can observe from the results that
our approach has attained fairly high performance accuracy.

A comparison of our model with seven competitive
quality metrics, including FR PSNR, SSIM [1], You [34],
RR Hewage [33], and NR/blind Akhter [32], BRISQUE [26],
Chen [45] is given in Table VI. In the LIVE3D-I database
which is composed of symmetrically stereoscopic image pairs,
our SARISM has obtained the top performance, and this is
also due to the superiority of the proposed 2D image sharpness
metric. In the LIVE3D-II database consisting of asymmet-
rically stereoscopic image pairs, there exist substantial
differences across various methods in the correlation
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Fig. 10. Scatter plots of DMOS versus FR PSNR, SSIM and the
proposed SARISM metrics (after the nonlinear regression) on blur subsets
from LIVE3D-I and LIVE3D-II databases.

performance with human opinions. First, without access to
the original 3D image, our blind sharpness measure is superior
to the four testing FR and RR-IQA metrics that need the help
of reference information for predicting visual quality. Second,
between the two training-free NR algorithms, the proposed
SARISM is remarkably better than the Akhter model. Third,
in comparison to the two training-based BRISQUE and Chen
methods, our metric outperforms BRISQUE while is a little
inferior to Chen in the measure of monotonicity but superior
to it in the measure of prediction accuracy. This phenomenon
is possibly because the Chen method has a complicated
binocular rivalry model that encompasses a SSIM-based
stereo algorithm for estimating disparity map and a set of
multi-scale Gabor filters. In contrast, our SARISM only
uses some intermediate results as weights to combine the
sharpness measures of the left- and right-views with basic
matrix operations. The average performance indices are also
shown in Table VI, which confirms the effectiveness of the
proposed metric over all the tested algorithms.

The F-test is further applied to the statistical significance
comparison of the proposed SARISM and testing metrics, as
listed in Table VII. Although it is statistically equivalent to
BRISQUE on LIVE3D-I and to Chen on LIVE3D-II, overall,
the proposed method is statistically better than all approaches
considered. Fig. 10 further illustrates a visualized comparison
of the scatter plots between DMOS versus PSNR, SSIM and
our SARISM model on LIVE3D-I and LIVE3D-II databases.
The proposed technique generally presents reasonable quality
predictions, where the sample points tend to be clustered closer
to the black diagonal lines (meaning perfect prediction) as
compared to other metrics under comparison.

VI. CONCLUSION

In this paper, we have proposed a new simple yet effective
blind sharpness measure via parameter analysis of classical
autoregressive (AR) image model. Our method is established
upon the assumption that higher resemblance of the locally
estimated AR model coefficients means lower sharpness.
We further extend ARISM to the simple and widely used YIQ
color space, and thus introduce ARISMc taking into account
the color effect on the image sharpness assessment. Results of
experiments conducted on blur data sets from four large-size
monoscopic image databases have demonstrated that the
proposed ARISM and ARISMc enjoy superior performance
relative to mainstream NR IQA metrics, state-of-the-art blind
sharpness/blurriness evaluators, and FR quality evaluations.
We also extend the proposed model to the sharpness assess-
ment of stereoscope images with a few small modifications.
In contrast to related popular quality methods, our developed
stereoscopic sharpness measure performs effectively on
two recently released 3D image databases.

Furthermore, we want to highlight two points: 1) this paper
explores a new framework based on the free energy principle
and the AR model, introducing remarkable performance gain
with respective to the previous NFEQM metric; 2) we only
design a simple and empirical scheme via the analysis of
AR model parameters while other advanced technologies
based on machine learning will be researched in the future.
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