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Several properties of the human brain cortex, e.g., cortical thickness and gyrification, have been found to cor-
relate with the progress of neuropsychiatric disorders. The relationship between brain structure and function
harbors a broad range of potential uses, particularly in clinical contexts, provided that robust methods for the
extraction of suitable representations of the brain cortex from neuroimaging data are available. One such rep-
resentation is the computationally defined central surface (CS) of the brain cortex. Previous approaches to
semi-automated reconstruction of this surface relied on image segmentation procedures that required man-
ual interaction, thereby rendering them error-prone and complicating the analysis of brains that were not
from healthy human adults. Validation of these approaches and thickness measures is often done only for
simple artificial phantoms that cover just a few standard cases. Here, we present a new fully automated
method that allows for measurement of cortical thickness and reconstructions of the CS in one step. It uses
a tissue segmentation to estimate the WM distance, then projects the local maxima (which is equal to the
cortical thickness) to other GM voxels by using a neighbor relationship described by the WM distance. This
projection-based thickness (PBT) allows the handling of partial volume information, sulcal blurring, and
sulcal asymmetries without explicit sulcus reconstruction via skeleton or thinning methods. Furthermore,
we introduce a validation framework using spherical and brain phantoms that confirms accurate CS construc-
tion and cortical thickness measurement under a wide set of parameters for several thickness levels. The re-
sults indicate that both the quality and computational cost of our method are comparable, and may be
superior in certain respects, to existing approaches.

© 2012 Elsevier Inc. All rights reserved.
Introduction

The cerebral cortex is a highly folded sheet of graymatter (GM) that
lies inside the cerebrospinal fluid (CSF) and surrounds a core of white
matter (WM). Besides the separation into two hemispheres, the cortex
is macroscopically structured into outwardly folded gyri and inwardly
folded sulci (Fig. 1). The cortex can be described by the outer surface
(or boundary) between GM and CSF, the inner surface (or boundary)
between GM and WM, and the central surface (CS) (Fig. 1). Cortical
structure and thickness were found to be an important biomarker for
normal development and aging (Fjell et al., 2006; Sowell et al., 2004,
2007) and pathological changes (Kuperberg et al., 2003; Rosas et al.,
2008; Sailer et al., 2003; Thompson et al., 2004) in not only humans,
but also other mammals (Hofman, 1989; Zhang and Sejnowski, 2000).

Although MR images allow in vivo measurements of the human
brain, data is often limited by its sampling resolution that is usually
around 1 mm3. At this resolution, the CSF is often hard to detect in
sulcal areas due to the partial volume effect (PVE). The PVE comes
into effect for voxels that contain more than one tissue type and have
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an intensity gradient that lies somewhere between that of the pure tis-
sue classes. Normally, the PVE describes the boundary with a sub-voxel
accuracy, but within a sulcus the CSF volume is small and affected by
noise, rendering it difficult to describe the outer boundary in this region
(blurred sulcus, Fig. 2). Thus, to obtain an accurate thickness measure-
ment, an explicit reconstruction of the outer boundary based on the
inner boundary is necessary. This can be done by skeleton (or thinning)
methods or alternatively by model-based deformation of the inner sur-
face. Skeleton-based reconstruction of the outer boundary is used by
CLASP (Kim et al., 2005; Lee et al., 2006a,2006b; Lerch and Evans,
2005), CRUISE (Han et al., 2004; Tosun et al., 2004; Xu et al., 1999),
Caret (Van Essen et al., 2001), the Laplacian approach (Acosta et al.,
2009; Haidar and Soul, 2006; Hutton et al., 2008; Jones et al., 2000;
Rocha et al., 2007; Yezzi and Prince, 2003), and other volumetric
methods (Eskildsen and Ostergaard, 2006, 2007; Hutton et al., 2008;
Lohmann et al., 2003). Methods without sulcal modeling will tend to
overestimate thickness in blurred regions (Jones et al., 2000;
Lohmann et al., 2003) or must concentrate exclusively on non-blurred
gyral regions (Sowell et al., 2004). Alternatively, cortical thickness
may be estimated via deformation of the inner surface (FreeSurfer
(Dale et al., 1999; Fischl and Dale, 2000), DiReCT (Das et al., 2009),
Brainvoyager (Kriegeskorte and Goebel, 2001), Brainsuite (Shattuck
and Leahy, 2001; Zeng et al., 1999) or coupled surfaces (ASP (Kabani
et al., 2001; MacDonald et al., 2000). Considering that the accuracy of
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Fig. 1. The cortex: Shown is an illustration of the cortical macro- and microstructure.
The cerebral cortex is a highly folded sheet of gray matter (GM) that lies inside the ce-
rebrospinal fluid (CSF) and surrounds a core of white matter (WM). Inwardly folded
regions are called sulci whereas outwardly folded areas are denoted as gyri. There
are three common surfaces to describe this sheet: the outer surface, the inner surface,
and the central surface (CS). The CS allows a better representation of the cortical GM
sheet and improved accuracy of cortical surface measurements. Cortical thickness de-
scribes the distance between the inner surface and the outer surface and is related to
cortical development and diseases such as Alzheimer's.
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themeasurement depends strongly upon the precision of cortical surface
reconstruction at the inner and outer boundaries, and that the computa-
tion time is often related to the anatomical accuracy of the reconstruction,
such measurements may require intensive computational resources in
order to achieve the final measurement.

Here, we present a new volume-based algorithm, PBT (Projection
Based Thickness), that uses a projection scheme which considers
blurred sulci to create a correct cortical thickness map. For validation,
we compare PBT to the volumetric Laplacian approach and the
surface-based approach included in the FreeSurfer (v 4.5) software
package. If the results from PBT are approximately the same as that
achieved by FreeSurfer and a significant improvement over the
Laplacian approach, it may be concluded that PBT is a highly accurate
volume-based method for measuring cortical thickness. For situations
Fig. 2. Main flow diagram: Shown is a flow diagram of the pre-processing steps of the
CS and thickness estimation. A tissue segmentation algorithm (from VBM8) is used to
create a segmentation image SEG from an anatomical image. This segmentation image
is used for (manual) separation of the cortex into two hemispheres and removal of the
cerebellum with hindbrain, resulting in a map SEP. This map creates the map SEGPF’, a
masked version of SEG with filled ventricular and subcortical regions. Both approaches
used an interpolated version of the map SEGPF’ to create a CS with a cortical thickness
value of each vertex. The red subfigure shows blurred sulcal regions, where CSF voxels
were detected as GM due to noise removal included in the segmentation algorithm.
These blurred regions need an explicit reconstruction of the outer surface for the
Laplacian approach (Fig. 4), whereas PBT uses an inherent scheme to account for
these regions (Fig. 3).
in which extensive surface analysis is not required, PBT would allow
the exclusion of cortical surface reconstruction steps with no loss of
accuracy for cortical thickness measurements.

We also propose a suite of test cases using a variety of phantoms
with different parameters as a suggestion for how a cortical thickness
measurement approach could be rigorously tested for validity and
stability. Previously published validation approaches that used a
spherical phantom (Acosta et al., 2009; Das et al., 2009) often
addressed only one thickness and curvature (radii) of the inner and
outer boundary. The problem is that the measure may work well for
this special combination of parameters, but performance can change
for different radii. Another limitation is that this phantom describes
only areas where the CSF intensity is high enough, but most sulcal
areas (that comprise over half of the human cortex) are blurred.
Our test suite directly addresses these concerns.

The cortical thickness map may also be subsequently used to gen-
erate a reconstruction of the CS. Compared to the inner or outer sur-
face, the CS allows a better representation of the cortical sheet (Van
Essen et al., 2001), since neither sulcal or gyral regions are over- or
underestimated (Scott and Thacker, 2005). As the average of two
boundaries, it is less error-prone to noise and it allows a better map-
ping of volumetric data (Liu et al., 2008; Van Essen et al., 2001). Gen-
erally, a surface reconstruction allows surface-based analysis that is
not restricted to the grid and allows metrics, such as the gyrification
index (Schaer et al., 2008) or other convolution measurements
(Luders et al., 2006; Mietchen and Gaser, 2009; Rodriguez-Carranza
et al., 2008; Toro et al., 2008), that can only be measured using sur-
face meshes (Dale et al., 1999). It provides surface-based smoothing
that gives results superior to that obtained from volumetric smooth-
ing (Lerch and Evans, 2005). Furthermore, surface meshes allow a
better visualization of structural and functional data, especially
when they are inflated (Fischl et al., 1999) or flattened (Van Essen
and Drury, 1997). Due to these considerations, we have explored
the quality of the cortical surface reconstructions.
Material and methods

We start with a short overview about the main steps of our meth-
od and the Laplacian approach; algorithmic details are separately de-
scribed in the following subchapters.

MRI images are first segmented into different tissue classes using
VBM82(Fig. 2; see Segmentation). This segmentation is used for
(manual) separation of the hemispheres and removal of the cerebel-
lum with hindbrain, resulting in a map SEP. This map creates the map
SEGPF, a masked version of SEG with filled ventricular and subcortical
regions. To take into account the small sulci with thicknesses of
around 1 mm, SEGPF was linearly interpolated to 0.5×0.5×0.5 mm3

(Hutton et al., 2008; Jones et al., 2000).
For each GM voxel, the distance from the inner boundary was esti-

mated within the GM using a voxel-based distance method (see
Distance measure). The result is a WM distance map WMD, whose
values at the outer GM boundary represent the GM thickness. These
values at the outer boundary were then projected back to the inner
boundary, resulting in a GM thickness map GMT. The relation between
theWMDandGMTmaps creates the percentage positionmap PP that is
used to create the CS at the 50% level (see Projection-based thickness).

As a basis of comparison, we constructed another CS using the
Laplacian-based thickness measure (Jones et al., 2000) on the filled
tissue segmentation map to create another set of GMT and PP maps.
This method requires an explicit sulcal reconstruction step (Bouix
and Kaleem, 2000) (see Laplacian-based thickness).
2 http://dbm.neuro.uni-jena.de/vbm/
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A topology correction based on spherical harmonics was used to
correct the topology of the surfaces generated with the PBT and the
Laplacian approach (Yotter et al., 2011).

For validation, a set of spherical (SP; see Spherical phantoms) and
brain phantoms (BP; see Brain phantoms) with uniform thickness
were used to simulate different curvature, thickness, noise, and resolu-
tion levels. Since thickness and the location of the cortical surfaces were
known, the twodata sets could be directly compared. For thickness RMS
error, the measured thickness was reduced by the expected thickness.

In addition to the spherical phantomswith equal thickness, we used
the Collins brain phantom with different noise levels3(Collins et al.,
1998) and a real data set of 12 scans of the same subject of our database
(see Real data) to compare our results to FreeSurfer 4.5. Because the real
thickness of both data sets is unknown, we compare the results of each
tested surface to the results of a surface that was generated on an aver-
aged scan. RMS error was calculated for all vertices of a surface, includ-
ing vertices of the filled subcortical regions and the corpus callosum. For
these data sets, we evaluated the number of topological errors using
Caret. To count the number of defects, the uncorrected CS was used
for PBT and Laplacian, whereas for FreeSurfer the uncorrected WM
surface was used. The CS of FreeSurfer was generated via Caret, where
the positions of CS vertices were given by the mean positions of corre-
sponding vertices of the inner and outer surface. Thickness RMS error
was estimated based on the original FreeSurfer thickness results.

Segmentation

To achieve exact and stable results for thickness measures, the seg-
mentation plays an important role. In principle, any segmentation for
GM, WM, and CSF can be used. The segmentation could be binary
maps, but to achieve more stable and exact results, it is important to
use probability maps that are able to describe the boundary positions
with sub-voxel accuracy (Hutton et al., 2008). Furthermore, inclusion
of an additional noise removal step increases the accuracy and stability
of the thickness measurements (Coupe et al., 2008). We used the
VBM84toolbox (revision 388) for SPM85(Ashburner and Friston,
2005) (revision 4290) for segmentation of all T1 images, which in-
cludes an optimized Rician non-local mean (ORNLM) (Coupe et al.,
2008) and a Gaussian Hidden Markov Random Field (GHMRF)
(Cuadra et al., 2005) filter for noise reduction (NR). The probability
tissue maps CSF, GM, and WM are combined in one probability
image SEG (Tohka et al., 2004). Pure tissue voxels are coded with in-
tegers (background=0, CSF=1, GM=2, WM=3), whereas values
between integers describe the percentile relation between the tis-
sues. For example, a voxel with an intensity of 2.56 contains 44%
GM and 56% WM and a value of 1.92 contains 92% GM and 8% CSF.
Hence, tissue boundaries are at 0.5 between background and CSF,
1.5 between CSF and GM and 2.5 between GM and WM. Note that
this map is only able to describe two tissue classes per voxel. Howev-
er, this does not degrade our analyses, because most anatomical im-
ages do not provide more information for the segmentation.
Furthermore, most regions with no GM layer, such as the brainstem
or the near the ventricles, are cut or filled and thus are not included
in the analysis.

Distance measure

To take into account the asymmetrical structures, we used the
Eikonal equation with a non-uniform speed function F(x) to find the
closest boundary voxel B(x) of a GM voxel x without passing a differ-
ent boundary. To allow sub-voxel accuracy, the normalized vector
3 http://mouldy.bic.mni.mcgill.ca/brainweb/
4 http://dbm.neuro.uni-jena.de/vbm/
5 http://www.fil.ion.ucl.ac.uk/spm/
between B(x) and x is used to find a point G(x) between x and B(x).
The intensity gradient between B(x) and G(x) allows a precise estima-
tion of the boundary point P(x), which is used to estimate the dis-
tance of x to the boundary.

In a more formal way, we solved the following Eikonal equation:

F xð Þt∇DEi xð Þt ¼ 1; f or x∈Ω;

DEi xð Þ ¼ 0; f or x∈Γ;
ð1Þ

where x is a voxel, Ω is given by the GM, Γ is the object (the WM or
the CSF and background), DEi is the Eikonal distance map, and F(x)
is the non-uniform speed map (FWM(x) for the WM distance and
FCSF(x) for the CSF distance) that is given by the image intensity of
SEGPF:

FWM xð Þ ¼ min 1; max 0; SEGPF xð Þ−1ð Þð Þ;
FCSF xð Þ ¼ min 1; max 0;3−SEGPF xð Þð Þð Þ: ð2Þ

In GM areas, FWM(x) has a high “speed” which results in shorter
distances, whereas in CSF areas the “speed” is very low and thus re-
sults in longer distances, whereas FCSF(x) allows high speeds in GM
and CSF areas, but not in WM regions. Because the distance map DEi

contains distortions, it is only used to find the closest object voxel
for each GM voxel x∈Ω:

BEi x;Ω; Γ; Fð Þ; ð3Þ

and to calculate the Euclidean distance DEu between the GM voxel x
and its nearest WM voxel BEi(x, Ω, Γ, F):

DEu x;Ω; Γ; Fð Þ ¼ tx;BEi x;Ω; Γ; Fð Þt2: ð4Þ

We solve the above equations as follows: By solving the Eikonal equa-
tion withinΩ, we also note the closest WM voxel BEi. To allow sub-voxel
accuracy, the normalized vector between x and BEi(x,Ω, Γ, F) is used to es-
timate a pointG(BEi(x,Ω, Γ, F)) within one voxel distance to BEi(x,Ω, Γ, F).
The intensity gradient between BEi(x, Ω, Γ, F) and G(BEi(x, Ω, Γ, F)) can
then be used to estimate the exact boundary of Γ.

Projection-based thickness

For simplification we will use the terms of the GM, WM, and CSF
probability maps for the operations, even though only the map
SEGPF is used. Cortical thickness can be described as the sum of the
inner (WMD, Fig. 3b2) and outer (CSFD, Fig. 3b3) boundary distance.
Blurring of the outer boundary in sulcal regions due to the PVE leads
to an overestimation of the CSFD. To avoid the explicit reconstruction
of the outer boundary by a skeleton, we focus on the information
given by theWMD. At the outer boundary, and also within blurred re-
gions, the GMT is fully described by the WMD, because the CSFD is
zero (Lohmann et al., 2003; Sowell et al., 2004). In other words, the
highest local WMD within the GM is identical to the GMT of this
area, and it is only necessary to project this information to other
GM voxels.

This can be done using the successor relationship of the WMD. A
neighbor voxel v2 of a voxel v1 is a successor of v1, if the WMD of v2
is around one voxel greater than the WMD of v1. Similarly, if the
WMD of v2 is around one voxel smaller than v1, v2 is labeled as the
parent voxel. In this case, v1 gets the thickness value of v2. Neighbor
voxels with a WMD similar to v1 that are too close to be either a par-
ent or a successor are called siblings, and their thicknesses remain
unrelated to v1. If v1 has no successor, then it is a local maximum
that is located at the CSF boundary and its GMT is given by its WMD.

http://mouldy.bic.mni.mcgill.ca/brainweb/
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Fig. 3. PBT: Subfigure (a) shows a flow diagram of the PBT approach, whereas subfigure (b1–b8 with simplified titles) shows 2D illustrations of the volume maps of (a). In subfigure
(c), we illustrate the most relevant cases of our PBT method— a gyral and a blurred sulcal case with initialization and projection step. For distance calculations, the Eikonal equation
is solved to account for partial volume information. PBT starts with the (interpolated) masked segmentation image SEGPF shown in Fig. 2 and estimates the distance to the inner
(b2) and outer (b3) boundary. The blurring of outer boundary in sulcal regions leads to strong overestimation of the real distance and finally to an overestimation of the cortical
thickness. To get the correct values in these regions, PBT uses a modified version GMTI (b4) of the WMD, in which the local maximum describes the position of the outer boundary
and the correct thickness. It now uses the successor relation succ(v) of a voxel v (Eq. (8)), given by the WM distance WMD (b2), to project thickness values from the outer boundary
(b4) over the whole GM (b5). PBT additionally uses the direct GM thickness GMTD (b6) –which is overestimated in blurred areas, but helps to reduce artifacts such as blood vessels – to
create a final map GMTF (b7) of the minimum thickness from both thickness maps. After estimation of cortical thickness, a percentage position map PP is generated to create the CS and
map cortical thickness onto it. The projection scheme shown in subfigure (c) uses theWMdistancemap to project themaximum localWMdistance that is equivalent to the local thickness
to other voxels. The WM distance map allows the definition of successors (neighbors of a voxel v with a slightly larger distance than v) and siblings (neighboring voxel with a similar
distance to v), and a voxel v gets the mean thickness of its successors. If a voxel has no successors, then it is located at the outer boundary and its WM distance is related to its size.
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We now want to describe this process in a more formal way,
starting with the WMD:

WMD vð Þ ¼ DEu v;GM > 0;WM; FWMð Þ ; if GM vð Þ > 0
0 ; otherwise

;

�
ð5Þ

where DEu gives the Euclidean distance of a voxel v to the nearestWM
boundary that was found by solving the Eikonal equation for the
speed map FWM (Eq. (2)). The distance to the CSF boundary is now
given by:

CSFD vð Þ ¼
−DEu v;CSF & GM;CSF; & BG;1ð Þ ; if GM vð Þ > 0 & CSF vð Þ > 0
DEu v;GM > 0;CSF&BG; FCSFð Þ ; if GM vð Þ > 0

0 ; otherwise
;

8<
:

ð6Þ

where BG (background) describes all voxels that contain no tissue.
The cortical thickness map GMTI is initialized as a modified version
of the WMD, because the WMD describes the distance only to the
center of a GM voxel. GM voxels with more than 50% CSF need addi-
tional correction by the CSFD, in which the minimum correction is
half of the voxel resolution res:

GMTI vð Þ ¼ WMD vð Þ þ min CSFD vð Þ; res=2ð Þ: ð7Þ

Let N26 be the 26-neighborhood of a voxel v, and D26 the associat-
ed distance of v to its neighbors. A voxel n∈N26(v) is a successor of
the voxel v if the WM distance of s meets the following conditional:

succ v;nð Þ¼ 1 ; if WMD vð Þ þ a1 � D26 nð Þð ÞbWMD nð Þb WMD vð Þ þ a2 � D26 nð Þð Þ
0 ; otherwise

�

ð8Þ

where 0ba1≤1≤a2b2 are weights depending on the used distance
metric; these weights allow the inclusion of more thickness informa-
tion from neighboring voxels to achieve a smoother thickness map. If
there are no successors, then v is a border voxel and the WM distance

image of Fig.�3
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sets its thickness. The lower threshold a1 defines the boundary be-
tween siblings and successors, whereas the higher threshold a2 is a
limit for direct successors. An a1 threshold that is too low will create
too many siblings and lead to smoother results, while an a1 threshold
that is too high will lead to coarser results. Likewise, an a2 threshold
that is too low will exclude more neighbors of v from the successor
relationship and lead to less smooth images and in the worst-case
to a breaking of the projection because all possible successors are ex-
cluded, whereas an a2 threshold that is too high will lead to
oversmoothed results with overestimation in gyral regions. For a
quasi-Euclidean metric, which is not useful for cortical thickness but
acceptable for the PP map, a1 and a2 are equal and can be set by the
distance of v to its neighbors. Good results with minimal smoothing
were achieved using a1=0.5 and a2=1.25. If there are no successors,
then v is a border point and the WM distance sets its thickness, else it
uses the mean of all successors:

pt vð Þ ¼ ∑n∈N26 vð Þsucc v;nð Þ�GMTI nð Þ
∑n∈N26 vð Þsucc v;nð Þ : ð9Þ

The initial thickness GMTI can now be used to estimate the final
projection-based thickness map GMTP, by projecting the values over
the GM region:

GMTP vð Þ ¼ max GMTI vð Þ; pt vð Þð Þ; ð10Þ

This mapping can be done in O(n) time using the same principle
described for voxel-based distance calculation (Rosenfeld and John,
1966). To reduce overestimations in the GMTP map due to GM frag-
ments such as blood vessels or dura mater, the direct thickness map:

GMTD vð Þ ¼ CSFD vð Þ þWMD vð Þ; ð11Þ

is used to create the final thickness map:

GMTF vð Þ ¼ min GMTP vð Þ;GMTD vð Þð Þ=res; ð12Þ

that is corrected for the voxel resolution res. The percentage position
map PP can now be described as:

PP vð Þ ¼ GMTF vð Þ−WMD vð Þ=resð ÞÞ=GMTF vð Þ þ SEGPF vð Þ≥2:5ð Þ: ð13Þ

Finally, the CS is generated from the PP map and reduced to
around 300,000 nodes using standard Matlab functions. Each vertex
of the mesh is assigned a thickness value via linear interpolation of
the closest GM thickness map values. Fig. 3 shows the flow diagram
of our method and illustrates the idea for most relevant examples in
2D.

PBT was used to reconstruct problematic regions in an additional
preprocessing step that estimates the cortical thickness in the GM
with flipped boundaries. These problematic regions are those that
are highly susceptible to errors due to the PVE, which creates prob-
lems in both gyral and sulcal regions. In the gyral case, thin WM
structures are blurred rather than the CSF blurring that occurs in nar-
row sulcal regions. This occurs most frequently in the superior tem-
poral gyrus, the cingulate gyrus, and the insula, and may be
addressed similarly to the idea proposed in (Cardoso et al., 2011)
for segmentation refinement. If a voxel of the inverse thickness map
has lower thickness than the original thickness map and if the thick-
ness of both is larger than 2 mm while SSEG>2.0, we expect that the
inverse thickness map has identified a gyrus that is blurred by the
PVE. For these blurred regions, the thickness and percentage position
of the inverse maps are used.
Laplacian-based thickness

The Laplacian approach requires an explicit sulcal reconstruction
step (Jones et al., 2000; Tosun et al., 2004) that uses a skeleton map
to reconstruct the outer boundary in blurred regions of the segment
image SEGPF (Fig. 4b2) by changing the tissue class of the re-
constructed boundary voxels from GM to CSF resulting in a map SEGPFS

(Figs. 4b3, 4a). To create the skeleton map S, we first generate WM and
CSF distance maps with the same distance measure used for PBT to
allowasymmetrical structures.We thenfind areaswith high divergence
of the gradientfield, resulting in amap SR. Thismap is normalizedwith-
in a low and a high boundary slow=0.5 and shigh=1.0 resulting in the
skeleton map S (Bouix and Kaleem, 2000), with & as a logical AND op-
erator:

SR ¼ ∇Δ WMDð Þ
S ¼ SR � SR > slowð Þ& SRbshigh

� �� �
−slow

� �
� shigh−slow
� �

þ SR≥shigh
� �

:

ð14Þ

The skeleton map accurately represents the sulci that have been
blurred in the tissue segmentation process. We correct all voxels of
SEG≥1 by:

SEGPFS ¼ SEGPF−max 1;2−Sð Þ� SEGPF≥1ð ÞÞ ð15Þ

(Fig. 4b3). The changing of GM voxels to CSF voxels leads to an un-
derestimation of the GM volume and local thickness, which will be
considered later. The corrected segment map SEGPFS can now be
used to solve the Laplace equation between the GM/WM and GM/CSF
boundary:

∇2ψ ¼ ∂ψ
∂x2

þ ∂ψ
∂y2

þ ∂ψ
∂z2

¼ 0: ð16Þ

The above equation is solved iteratively using an initial potential
image with Dirichlet boundary conditions. The WM (SEGPFS≥2.5)
forms the higher potential boundary with values of 1, whereas the
CSF (SEGPFS≤1.5) represents the lower potential boundary with
values of 0. To accelerate convergence, all GM voxels are initialized
with a potential of 0.5. Eq. (17) is applied only to GM voxels
(SEGPFS>1.5 and SEGPFSb2.5) and simply describes the mean of the
six direct neighbors of a voxel:

ψi þ 1 x; y; zð Þ ¼ 1
6
�

ψi xþ Δx; y; zð Þ þ ψi x−Δx; y; zð Þþ
ψi x; yþ Δy; zð Þ þ ψi x; y−Δy; zð Þþ
ψi x; y; zþ Δzð Þ þ ψi x; y; z−Δzð Þ

2
4

3
5: ð17Þ

The solution has converged when the error ε=(ψi−1−ψi)/ψi−1 is
below a threshold value of 10−3. After generating the potential
image, we calculate the gradient field N of the Laplace map as the
simple normalized two-point difference for each dimension. For ex-
ample, along the x-direction the normalized potential difference Nx

is calculated as follows:

Nx ¼ Δψ=Δxð Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δψ=Δxð Þ2 þ Δψ=Δyð Þ2 þ Δψ=Δzð Þ2;

q
ð18Þ

Δψ x; y; zð Þ=Δx ¼ ψ xþ Δx; y; zð Þ−ψ x−Δx; y; zð Þ½ �=2: ð19Þ

Three normalized potential difference maps are then created: Nx,
Ny, and Nz (Fig. 4b3 — blue vectors). From these maps, we calculate
gradient streamlines for every GM voxel. A streamline s is a vector
of points s1,…,sn that describes the path from the starting point s1 to



Fig. 4. Subfigure (a) shows a flow diagram of the Laplacian approach, where subfigure (b1–b8 with simplified titles) shows 2D illustrations of the volume maps of subfigure (a). First, a
skeleton based on the WM distance map (see Fig. 3b2) is used to reconstruct blurred sulcal regions (b1–b3). Next, the Laplace equation is solved in the GM area and a vector field N is
generated (b3). This vector field allows the creation of streamlines that follow the vectors to each boundary to measure the distance (b4–b6). To avoid an underestimation due to sulcus
reconstruction (b5), the CSF distance L(sCSF(v)) was corrected for changes from the sulcus reconstruction (Eq. (22)). The addition of both distance maps gives the cortical thickness map
GMT that allows the creation of the percentage position map PP, which in turn is used to create the CS and map cortical thickness onto the surface.
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a border. The following point, si+1, of si is estimated by using the
Euler's method, or by adding the weighted normalized gradient
N(si) to si:

siþ1 ¼ si þ hNx sið Þ þ hNy sið Þ þ hNz sið Þ: ð20Þ

The weight h describes the step size of the streamline calculation
and was set to 0.1 mm as a compromise between speed and quality.
For every GM voxel v, we calculate the streamline sWM(v) starting at
the position of v to the WM boundary and other streamline sCSF(v)
from v to the CSF boundary. To calculate sCSF(v), it is necessary to
use the inverse gradient field. The length of a streamline L(s) can be
found by summing the Euclidean distance of all points si to their suc-
cessor si+1:

L sð Þ ¼ ∑n−1
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
siþ1;x−si;x

� �2 þ siþ1;y−si;y
� �2 þ siþ1;z−si;z

� �2
r

: ð21Þ
We correct for errors introduced by the skeleton S using the vol-

ume difference between the uncorrected tissue segment SEGPF and
the corrected tissue segment SEGPFC.

LC sð Þ ¼ L sð Þ þ SEGPF sn;x; sn;y; sn;z
� �

−SEGPFC sn;x; sn;y; sn;z
� �

: ð22Þ

The summation of the length of both streamlines sWM(v) and
sCSF(v) gives the GM thickness at voxel v (Figs. 4b5 and b6). The
RPM can also be calculated using the values for the lengths of
sWM(v) and sCSF(v), with all WM voxels set to one:

GMT vð Þ ¼ L sWM vð Þ
� �

þ LC sCSF vð Þ
� �

; ð23Þ

PP vð Þ ¼ LC sCSF vð Þ
� �

=GMT vð Þ þ SEGPFC vð Þ > 2:5ð Þ: ð24Þ

(Figs. 4b7 and b8). Finally, the CS surface is generated at a resolution
of 0.5 mm from the PP map and reduced to around 300,000 nodes
using standard Matlab functions. Each vertex of the mesh is assigned
a thickness value via a linear interpolation of the closest GMT map
values.

Spherical phantoms

A variety of spherical phantoms were used for validation. For the
standard gyral case, the spherical phantom consisted of a cortical
GM ribbon around a WM sphere in the center of the tissue map
(Fig. 5). To explore the ability to reconstruct blurred sulcal regions,
a second spherical phantom was constructed such that it contained
a cortical GM ribbon sandwiched in between two WM regions: the
center sphere and an outer shell. Between the ribbon boundaries, a
small gap allows testing of the influence of the presence of CSF. To
simulate asymmetrical structures, the size of the second ribbon was
defined as a ratio of the size of the first GM ribbon. To realize this
phantom with PVE, a distance map SPD that measures the distance
from the center of the volume at a resolution of 1×1×1 mm3 is
used to create the tissue map TS:

TPVE v; rð Þ ¼
1 ; if SPD vð Þ≤ r−0:5ð Þ

r þ 0:5−SPD vð Þ ; if SPD vð Þ > r−0:5ð Þ & SPD vð Þb r þ 0:5ð Þ;
0 ; if SPD vð Þ≥ r þ 0:5ð Þ

8<
:

ð25Þ

TSPVE v; r; t; sw; rspð Þ ¼ inner�WM� sphereþ inner� GM� sphereþ CSF� sphereþ
outer� GM� sphereþ outer�WM� sphere
¼ TPVE v; rð Þ þ TPVE v; r þ tð Þ þ 1
þ 1−TPVE v; r þ t þ swð Þð Þþ
1−TPVE v; r þ t þ swþ t=rspð Þ � 1−rspð Þð Þð Þð Þ

ð26Þ
where v is voxel of TS, r gives the inner boundary radius, t describes the
thickness, sw is the sulcus width, and rsp is the relative sulcus position.
Thickness is only evaluated for the inner ribbon because for asymmetri-
cal structure the outer ribbon has a different thickness and curvature.

Table 1 shows the values of each parameter to be tested. To test
one parameter, all other parameters were fixed to standard values.

image of Fig.�4


Fig. 5. Spherical phantom validation matrix: Two spherical phantom types – one for the gyral case (CGW) and one for the blurred sulcal case (WGW) – were used with different
parameters for each method. The rows and columns are used to describe curvature (given by inner radius) and thickness values under varying conditions (see Table 1 and Fig. 7).
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The range of values chosen for the parameters was based on anatom-
ical and technical considerations.
Brain phantoms

To ensure an equal thickness for the brain phantom, it is necessary
to expand sulcal regions such that they are able to achieve full thick-
ness without intersections. To accomplish this, a CS of a healthy adult
test subject was generated with Caret (Van Essen et al., 2001) and
manually corrected for geometrical and topological errors (Fig. 6b).
Twenty iterations of weighted nearest neighbor surface-based
smoothing (included in the Caret package) were used to remove
high frequency structures that can lead to problems in later ma-
nipulation steps (Figs. 6c, a1). A graph-based distance measure
Dgb is used to create a distance map that describes the distance
with sub-voxel accuracy to a given iso-surface that was generated
via Matlab iso-surface functions. The initial surface was linearly in-
terpolated once to reduce missed measurements. This distance
map allows finding the new inner boundary at half distance
(Fig. 6a2). From this new inner boundary, we estimated the new
outer boundary based on the distance map generated from the
inner boundary. If a sulcus is too small to allow increased thick-
ness without intersections, then it is blurred (Fig. 6a3). From this
Table 1
Overview of parameters for the brain phantom test cases. For each test case, the anatomica
constant. The bracketed values give the number of test cases for each parameter. In most ca
and non-blurred (WGW) regions, both cases were tested. When testing sulcal width and pos
example, a symmetrical sulcus will produce better results than an asymmetric sulcus.

Parameter Curvature Thickness PVE vs no PVE

Ranges 1.0:0.01:5.0 (401) 0.0:0.01:5.0 (501) 0 1 (2)
Defaults 2.5 (1) 2.5 (1) 1 (1)
new outer boundary, a new distance map allows the creation of
the final central boundary (Fig. 6a4). The distance map BPD from
the central boundary now allows the creation of a segment image
with WM, GM, and CSF (Fig. 5a5) (for a resolution of 0.5×0.5×
0.5 mm3):

TBPVE v; rð Þ ¼

3 ; if BPD vð Þ≥ −t=2−0:25ð Þ
−t=2−0:25þ BPD vð Þ ; if BPD vð Þb −t=2−0:25ð Þ & BPD vð Þ > −t=2þ 0:25ð Þ

2 ; if BPD vð Þ≤ −t=2þ 0:25ð Þ & BPD vð Þ≥ t=2−0:25ð Þ
t=2þ 0:25−BPD vð Þ ; if BPD vð Þb t=2−0:25ð Þ & BPD vð Þ > t=2þ 0:25ð Þ

1 ; if BPD vð Þ≤ t=2þ 0:25ð Þ

:

8>>>><
>>>>:

ð27Þ

The default parameters (2.5 mm thickness, 1×1×1 mm3 resolu-
tion, 0% noise) were modified individually, resulting in 14 thickness
levels, 9 noise degrees, and 7 isotropic and 7 anisotropic grid resolu-
tions. The dataset is available under http://dbm.neuro.uni-jena.de/
phantom/.

Collins phantoms

To test different thickness levels on one surface and stability for
images interferences, 6 BrainWeb T1-weighted phantom datasets
(1-mmresolution)with 1%, 3%, 5%, 7%, 9%noise and 20% inhomogeneity
lly expected range of each parameter was tested while all other parameters remained
ses, only one default value was used. Because the cortex contains both blurred (CGW)
ition, more than one default value was necessary due to high variance in the results. For

V vs. S Type Sulcus width rel. sulcus pos

V S (2) CGW WGW (2) 0.0:0.01:2.0 (200) 0.2:0.001:0.8 (601)
S (1) CGW WGW (2) 0.0:0.50:1.0 (3) 0.3:0.2:0.7 (3)

http://dbm.neuro.uni-jena.de/phantom/
http://dbm.neuro.uni-jena.de/phantom/
image of Fig.�5


Fig. 6. Brain phantom generation: Subfigure (a) illustrates the generation process for
the brain phantom, the difference between the original and final surface (a.I), and
problems for higher thickness levels (a.II), whereas (b) to (f) show the changes from
the individual surface to the brain phantom. A smoothed individual surface of a healthy
adult (a.1) is transformed by distance operations to a surface that allows the creation of a
t-mm thick cortical ribbon (a.5). This process removes high-frequency WM structures
(a.2) and enlarges sulcal regions (a.3) to ensure an actual thickness level between 0.5
and 4.0 mm. Larger thicknesses destroy most of sulcal structures of a normally folded
brain (a.II).

Fig. 7. Spherical phantom: PBT results in lower RMS error for all test categories, compared
to the Laplacian approach (a). Below sampling resolution, both methods show a predict-
able increase of thickness measurement error due to the sampling theorem (c),
whereas the position error stays stable (b). Most errors happen for sulcal cases with
low sulcus width (d) and higher asymmetries (e).

343R. Dahnke et al. / NeuroImage 65 (2013) 336–348
were compared to a dataset without noise and inhomogeneity (Collins
et al., 1998).

Real data

The sample data set included 12 brain scans of the same healthy
adult subject performed on two different 1.5 T Siemens Vision scanners
within one year. Both scanners used 3Dmagnetization prepared gradient
echo (MP-RAGE) T1-weighted sequences of 160 sagittal slices with voxel
dimensions 1×1×1 mm and FOV=256 mm. Scanner 1 parameters
were TR/TE/FA=11.4 ms/4.4 ms/15°, and Scanner 2 parameters were
TR/TE/FA=15 ms/5 ms/30°.

Each reconstructed surface of the 12 scanswas compared to an aver-
age scan to estimate the surface reconstruction and thickness errors,
similar to the analysis used for the Collins phantom. Ideally, all recon-
structions should be identical, and they should produce identical thick-
ness measurements.

Results

Four different test matrices were used to validate PBT; these re-
sults were then compared to the Laplacian approach and, wherever
applicable, to FreeSurfer. The first test consisted of the set of spherical
phantoms, which were used to test the approaches over a wide set of
parameters under simple but precise conditions. The second test,
consisting of the brain phantoms, was used to explore the performance
of the approaches under the more realistic condition of a highly convo-
luted surfacewith equal thickness. For the third test,weused the Collins
phantomwith different noise levels, both to addmore realism and to di-
rectly compare the results to the FreeSurfer software package. Finally,
we used real MR data of one subject for a test–retest of all three
methods.

Spherical phantoms

Over all test parameters, PBT shows better results than the Laplacian
approach for both thickness estimation and surface generation (Fig. 7a).
As expected, both methods have higher RMS error for thickness estima-
tion than for surface generation, both produce better results with PVE,
and both perform better for the simpler gyral case compared to the sulcal
case. The voxel-based results of the Laplacian approach are much worse
than after projection to the surface, whereas PBT produced equally
accurate results due to the smoothness parameter of the projection.
Compared to gyral regions, sulcal regions show higher RMS error,
which is strongly related to the width of the sulcal gap and its relative
position.

Predicted by the sampling theorem, both show a strong increase of
RMS error below sampling resolution for thickness measurements,
but not for surface generation (Figs. 7b and c).

Furthermore, the Laplacian approach had larger fluctuations of error
across the test cases. Relatively small variations of the test parameters
led to vastly different error values (Fig. 7c above 2.5 mm). This strong
variation can only be found if the step size of the parameter is very
small — around 0.01 mm. Especially, asymmetrical structures (Fig. 7d)
and small sulcal gaps (Fig. 7e) vastly increase the RMS error of the
Laplacian approach.

For the Laplacian approach, we were able to produce good results
such as those published in the literature only for cases with relatively
large CSF regions and low asymmetry, whereas PBT produced more
exact and stable results over the full range of test parameters.

Brain phantoms

For the brain phantoms, if the two approaches are compared, the PBT
method has much lower RMS error for the thickness measurements and
similar RMS error for the surface position compared to the Laplacian
method (Fig. 8). The errors occur mostly in sulcal regions where the sul-
cus reconstruction step cut strongly into the fundi of the sulci such that
that a complete correction was not possible (Fig. 8a). However, using
a weaker sulcus reconstruction step or stronger corrections led to thick-
ness overestimation, more defects, and greater RMS errors, thus it was
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6 https://surfer.nmr.mgh.harvard.edu/fswiki/ReconAllRunTimes
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impossible to circumvent this problem. Generally, the largest errors oc-
curred for anisotropic resolutions, thickness levels below the sampling
resolution, and higher noise levels. It can be assumed that these factors
would apply to any cortical data set, and thus should be considered before
applying any cortical reconstruction method.

Collins phantom

The advantage of using an additional Collins phantom is that the
two approaches described here (PBT and Laplacian) can be compared
to a commonly used approach for both reconstructing cortical surfaces
and measuring thickness, e.g., FreeSurfer. To summarize the findings,
the PBT approach had comparable or lower RMS error compared to
both the Laplacian and FreeSurfer approaches (Fig. 7, Supplementary
Fig. A1). If the noise level is increased, all thickness measures also
had increasing error. A two-sample unpaired t-test showed no signifi-
cant differences of the RMS position error between PBT and Laplacian
(t=−0.048, df=8, p=0.963) and PBT and FreeSurfer (t=1.348,
df=8, p=0.215). A significant difference in thickness between PBT
and Laplacian was found (t=−2.95, df=8, p=0.019), but not for
PBT vs. FreeSurfer (t=−0.944, df=8, p=0.374). Furthermore, the
PBT method provides an advantage in terms of reduced numbers of to-
pological defects (an average of 15.1 for PBT, compared to 28.2 for
Laplacian and 18.5 for FreeSurfer). PBT had significantly fewer defects
compared to the Laplacian approach (t=−8.656, df=10, pb0.001),
but not compared to FreeSurfer (t=−1.481, df=10, p=0.182). The
defects associated with the Laplacian and PBT approaches were mostly
bridges between two gyri and were removed by the topology correc-
tion. These results were highly dependent upon the quality of the ini-
tial tissue segmentation, the implications of which are discussed
more fully in the Discussion section (Fig. 9).

Inline supplementary Fig. A1 can be found online at http://dx.doi.
org/10.1016/j.neuroimage.2012.09.050.

Twelve scans of one subject

As a final approach for quantifying the performance of three ap-
proaches (PBT, Laplacian, FreeSurfer), we analyzed twelve separate
scans of a single brain, then compared the results to an averaged scan
of the same brain. Since the elapsed time between scans was less than
one year, cortical thickness should be unchanged. Again, the PBT ap-
proach provided some advantages over the other methods (Fig. 10, Sup-
plementary Fig. A2). First, the PBT approach is comparable to or better
than other approaches in terms of the RMS thickness measurement er-
rors (Fig. 10c; PBT: 0.39±0.02 mm; Laplacian: 0.64±0.02 mm;
FreeSurfer: 0.53±0.05 mm), and the RMS position error of the CS re-
constructions was similar to the other two approaches (Fig. 10d; PBT:
0.50±0.05 mm; Laplacian: 0.54±0.05 mm; FreeSurfer: 0.60±
0.23 mm). There was no significant difference in the RMS position
error between PBT and the Laplacian approach (t=−1.922, df=22,
p=0.067) and PBT and FreeSurfer (t=−1.409, df=22, p=0.172),
whereas the difference of the RMS thickness error was significant
(t=−8.177, df=22, pb0.001). A major difference between the PBT
and Laplacian approaches compared to FreeSurfer is a general underes-
timation of thickness in the motor cortex (Fig. 10b). Finally, the PBT ap-
proach produced far fewer topological defects per hemisphere
compared to Laplacian (t=−6.036, df=24, pb0.001) and FreeSurfer
(t=−4.030, df=24, pb0.001) (Fig. 10a; PBT: 21.5; Laplacian: 34.6;
FreeSurfer: 54.6).

Inline supplementary Fig. A2 can be found online at http://dx.doi.
org/10.1016/j.neuroimage.2012.09.050.

All calculations were done on an iMac 3.4 GHz Intel Core i7 with
8 GB RAM and Matlab 7.12. For both hemispheres with a resolution
of 0.5 mm and with topology error correction, PBT needed around
20 min, whereas the Laplacian approach takes around 2 h. Although
the FreeSurfer processing pipeline is structured differently than the
PBT and Laplacian approaches, rendering comparison difficult, an es-
timate of the time to perform cortical reconstruction and thickness
measurement is several hours.6
Discussion

For nearly all test cases, PBT had much lower thickness and position
errors than the Laplacian approach, because PBTuses an inherentmodel
that detects sulci, whereas the Laplacian method requires an explicit
sulcus reconstruction step that changes the tissue class of sulcal voxels
and may lead to the introduction of additional errors, even if these tis-
sue class changes are compensated for within the algorithm. The differ-
ent tests of the spherical phantom clearly show that the strong errors of
the Laplacian approach only happen in asymmetric sulcal regions, al-
though both methods are based on the same Eikonal distance measure
that accounts for the sulcal gap. Because the real cortex also contains
asymmetrical structures, it is important that the thickness measure is
able to accurately evaluate these asymmetries (Das et al., 2009; Fischl
and Dale, 2000; Kim et al., 2005). In addition, the brain phantoms indi-
cate errors on the fundi of the sulci for the Laplacian method, whereas
the continuous model of PBT allows a stable estimation over the whole
cortex.

The correct reconstruction of blurred sulci is still a challenging
process, since the result depends strongly on the used method and
its parameters (Acosta et al., 2008, 2009; Cardoso et al., 2011; Dale
et al., 1999; Das et al., 2009; Han et al., 2004; Hutton et al., 2008;
Kim et al., 2005; MacDonald et al., 2000; Scott and Thacker, 2005).
The shown results of the different methods allow only a rough im-
pression about the quality of the sulcus reconstruction step, by show-
ing that the modeling of sulcal blurring leads to results that are closer
to the simulated cortical thickness. Most differences in these methods
are visible especially on the fundi of the sulci, which is where some ap-
proaches have thickness over- or underestimation. Although other au-
thors, i.e. (Das et al., 2009; Hutton et al., 2008; Kim et al., 2005),
illustrate the reconstruction of blurred regions for principle examples,
this is the first paper that introduces a way to numerically validate an
algorithm using not only simple cases with well-known parameters
and without fundi, but also for highly convoluted surfaces with fundi.

Compared to surface-based approaches, PBT does not need exten-
sive surface deformation or self-intersection tests, which are necessary
for both Freesurfer (Dale et al., 1999) and CLASP (Kim et al., 2005). In
contrast to FreeSurfer, PBT is able to use tissue segmentation images
produced using any segmentation approach, allowing a separate devel-
opment of the segmentation algorithms and thus making this process
more transparent. Furthermore, this allows the use of segmentation im-
ages for other imaging modalities such as T2, PD (Ashburner and
Friston, 2005; Zhang et al., 2001), DTI (Liu et al., 2007), and other
methods that take account of special contrast properties in disease
states such as multiple sclerosis (Khayati et al., 2008; Wu et al., 2006),
white matter hyper-intensities (Admiraal-Behloul et al., 2005; Gibson
et al., 2010), or tumors (Kaus et al., 2001; Prastawa et al., 2004), or for
other species (Andersen et al., 2002). As a result, the input of PBT and
other segment-based methods depends strongly on the results of
the segmentation. The tests with the spherical and brain phantoms
were independent from the segmentation process, because the seg-
mentation images were directly simulated, whereas the Collins phan-
tom and the real dataset include a segmentation step. Evidence of the
strong influence of the segmentation algorithm on results may be
seen with the Collins phantom. Since the tissue boundaries are simu-
lated, these phantoms included artificially precise tissue classification
and resulted in much more similar thickness measurements for all
methods than for the real data set (especially in the motor cortex).

http://dx.doi.org/10.1016/j.neuroimage.2012.09.050
http://dx.doi.org/10.1016/j.neuroimage.2012.09.050
http://dx.doi.org/10.1016/j.neuroimage.2012.09.050
http://dx.doi.org/10.1016/j.neuroimage.2012.09.050
https://surfer.nmr.mgh.harvard.edu/fswiki/ReconAllRunTimes


Fig. 8. Brain phantom: Subfigure (a) shows the resulting surfaces for a simulated thickness of 2.5 mm, with an isotropic resolution of 1×1×1 mm3 and no noise. PBT produced
overall good results (left), whereas the Laplacian approach showed strong underestimation in sulcal regions due to the sulcus reconstruction step (right), even if sulcus error cor-
rection was used (middle). The Laplacian approach (b — red) produced much higher thickness RMS errors than PBT (b — blue). Low sample resolution, anisotropic resolutions, and
noise may increase the RMS error for both thickness measurements as well as CS position (c–e).
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Furthermore, PBT allows a direct voxel-based analysis, potentially
in combination with other voxel-based data (Hutton et al., 2009), and
it may also be used to measure the thickness of the WM and CSF
[HBM2010]. The voxel-based thickness estimation of PBT and other
methods allows the easy creation of the central surface, which has
better properties than the WM or pial surface. Previous approaches
generally reconstruct a surface at a tissue boundary, which is either
the WM surface or the pial surface. In one sense, such a reconstruc-
tion makes sense, since the intensity gradient in these regions can
be used to estimate the position of the surface. However, due to the
PVE, the boundaries often contain voxels with more than one tissue
class and thus render it impossible to determine the precise location
of the surface within that voxel. In the approach suggested here, the
effect of PVE is somewhat reduced, since the central surface is
reconstructed simply at the 50% distance boundary between the
GM/WM and GM/CSF boundaries. This effect is responsible for the
constant RMS position error below the sampling resolution, whereas
thickness errors grow much stronger, because the PVE and neighbor
information can only code the exact position of one boundary. For in-
stance, for the 1D case of a voxel v and its left and right neighbors vl
and vr, where v=2.25, vl=2, and vr=3, the WM boundary is exactly
described between v and vr, but if vl=1, then there are two bound-
aries within v and it is unclear howmuch GM is within v. It is possible
that there is only GM and WM in v, the WM boundary is at the same
position, and the CSF boundary is exactly between v and vl. But it is also
possible that there is some CSF in v, and v contains three tissue classes
and both boundaries. As a result, thickness RMS errors grow strongly
for thickness levels below the sampling resolution.

Independent of the chosen reconstruction method, the general
structure of the CS lends advantages that do not exist in the other surface
reconstructions. First, the CS has a lower “frequency” content, or fewer
finely detailed regions, since it is the average of the WM structure with
its strong gyri and the pial surface with its deep sulci. Due to this charac-
teristic of the CS, itmay have fewer topological defects and it tends to lose
less anatomical detail when smoothed. Since brain surfaces usually must
be smoothed to remove stair artifacts and noise, the CS provides a distinct
advantage over the other reconstructions. Secondly, another advantage
of the CS is that it may be directly reconstructed from the data and thus
leads to a more uniform distribution of vertices across the surface,
which may be perturbed in a method that uses a deformation process
to reconstruct a surface at a tissue boundary.

Before performing intersubject comparisons, the brain surface
meshesmust usually be free of topological defects, and there are several
approaches available to retrospectively correct topological errors either
in volume space or directly on the surface (Kriegeskorte and Goebel,
2001; Segonne et al., 2007; Shattuck and Leahy, 2001; Yotter et al.,
2009, 2011). Despite the availability of these correction methods, it is
desirable to minimize both the size and number of topological defects,
since non-idealities in the correction step can often introduce errors.
In this respect, the PBT approach is the best choice, since it produced
the lowest number of defects, and the defects were also relatively
small. Despite using the same segmentation images, the Laplacian
approach resulted in a large number of defects, mostly due to
overestimation of thickness in sulcal regions and thus the formation of
bridges. A detailed discussion of the corrections of topology defects
via spherical harmonics can be found in (Yotter et al., 2011).

Necessity of a full phantom test suite

Comparing different software packages is never easy, because there
will always remain some differences in processing the data, i.e. the re-
striction of FreeSurfer to 1.0 mm resolution for all volumes whereas
PBT and the Laplacian approach can also use higher resolutions (here
0.5 mm). Especially, the different segmentation routines limited the
comparison between FreeSurfer and both other approaches. Further-
more, all methods based on different thickness definitions can also
lead to slightly different results (Lerch and Evans, 2005; MacDonald et
al., 2000).
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Fig. 9. Collins phantom: Diagram (a) shows the mean number of defects per hemisphere for PBT (blue), Laplacian (red), and FreeSurfer (green). Subfigures (b–d) show the ground
truth surface of the Collins phantom noise test for PBT (left surface), Laplacian (middle surface), and FreeSurfer (right surface), in which the color map codes the cortical thickness of
the ground truth surface (b), the mean thickness RMS error of all noise levels compared to the ground truth surface (c), and the mean distance RMS error of all noise levels to the
ground truth surface (d). A supplementary figure, including medial and lateral views of both hemispheres, is available online.
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Because visual inspection of surfaces gives only subjective, badly
reproducible, and often limited impressions of the reconstruction
quality (Kabani et al., 2001; Xu et al., 1999), we developed a complete
test suite containing several parameters that could be varied to fully
characterize both surface reconstruction and thickness measurement
approaches. Although previous approaches tested a small number of
phantom objects (Acosta et al., 2009; Das et al., 2009; Miller et al.,
2000), it is apparent from our results that it is necessary to test several
parameters to gain information about an algorithm's performance,
especially for special cases such as sulcal blurring. It could be further
argued that simple geometrical objects provide only limited infor-
mation about performance that cannot be extrapolated to cortical
surfaces, thus it is appropriate to include pseudo-cortical surfaces
with constant thickness over the whole cortex in the test suite. Unlike
the previous methods (Liu et al., 2008), our cortical ribbon has an
equal thickness and a more realistic structure. This constant thickness
theoretically allows a direct comparison between different thickness
measurement algorithms.

Using phantoms with equal thickness has the fundamental advan-
tage that an equal ribbon allows theoretically similar thickness mea-
surements, independent of the definition of the thickness measure.
An illustration may clarify this point. Let t be the simulated thickness
of a convoluted brain-like ribbon with equal thickness. First, for
nearest-neighbor-based methods (i.e. Tnear (MacDonald et al., 2000)
for surface-based methods or nearest voxel for voxel-based
methods), it is obvious that the nearest connection between both
sides is given by the defined thickness t. Second, the Tnormal

(MacDonald et al., 2000) metric that measures the distance between
both sides of the ribbon via the surface normal will measure the same
thickness t, because of the well-defined structure of this ribbon, i.e.,
both boundaries have the same curvature by definition. Third, the
streamline of the Laplacian approach will be equal to the surface nor-
mal, because they depend on the vector field given by the Laplace fil-
ter, which in turn depends on the curvature of both boundaries that are
equal by definition. Fourth, the Tlink (MacDonald et al., 2000) metric is
defined for surfaces with equal numbers of vertices. Here, one surface
is the result of a deformation of the other surface. The deformation is
mostly based upon a field given by the intensity and/or by the surface
normal or another Laplace vectorfield (Kim et al., 2005). Because the in-
tensity is equal within the ribbon, only the surface normal or the vector
field can be used for the deformation. As a result, the deformation is
similar to the streamlines of the Laplacian approach that are similar to
the surface normal.

The PVE approximation of the phantom generation based on dis-
tance maps leads to errors that depend on the resolution, the intensi-
ty (given by the distance), and the angles of the voxel to the
coordinate system. The highest possible error for a resolution of
1×1×1 mm3 happens for a diagonal voxel within the middle slice,
and is, with a volume error below 0.05 mm3, comparable to other ap-
proximationmethods (Acosta et al., 2009) in which the object is ren-
dered first to 0.1×0.1×0.1 mm3 and then down-sampled back to
1×1×1 mm3. The advantage of using distance maps is the much
lower memory demand and faster computation.

In the approach used here, segmentation images were directly
simulated to avoid influences from the segmentation algorithm.
However, it is possible to simulate a T1 image based on the tissue
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Fig. 10. Real data: Diagram (a) show the mean number of defects per hemisphere for PBT (blue), Laplacian (red), and FreeSurfer (green). Shown in (b–d) are PBT (left column),
Laplacian (middle column), and FreeSurfer (right column) surfaces with (b) cortical thickness calculated for the average surface, (c) mean thickness RMS error of all scans com-
pared to the thickness of the average surface, and (d) mean distance RMS error of all scans to the average surface. Strong differences are visible in the thickness measurements
for the motor cortex, which depended mostly on the segmentation algorithm (VBM8) and thus was similar for PBT and Laplacian, whereas FreeSurfer used internal routines. A sup-
plementary figure, including medial and lateral views of both hemispheres, is available online.
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maps (Aubert-Broche et al., 2006), which would be useful for testing
other methodological approaches using this test suite.

Conclusion

In this paper, we have presented a newmethod that allows for the
simultaneous reconstruction of the CS and measurement of cortical
thickness. Our PBTmethod is based on (probability) maps of a standard
CSF–GM–WM tissue segmentation and has several advantages over the
previous methods, such as direct estimation of the CS, comparable or
lower errors, and fewer topological defects. We introduce a framework
for thoroughly validatingmethods developed for surface reconstruction
and thickness estimation, which quantifies the performance of the
methods over a wide range of thickness levels and other parameters
such as sampling resolution, noise, curvature, and PVE. The test frame-
work explores performance both for the simple case of a sphere and
also for nearly normal folded cortices with uniform thickness. Finally,
we used real MR images from several scans of the same subject to com-
pare bothmethods to FreeSurfer. The results indicate that the quality of
our CS reconstructions and thickness estimations is comparable, and
may be superior in certain respects, to other methods.
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