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a b s t r a c t 

Deep learning has huge potential for accurate disease prediction with neuroimaging data, but the pre- 

diction performance is often limited by training-dataset size and computing memory requirements. To 

address this, we propose a deep convolutional neural network model, Simple Fully Convolutional Net- 

work (SFCN), for accurate prediction of brain age using T1-weighted structural MRI data. Compared with 

other popular deep network architectures, SFCN has fewer parameters, so is more compatible with small 

dataset size and 3D volume data. The network architecture was combined with several techniques for 

boosting performance, including data augmentation, pre-training, model regularization, model ensemble 

and prediction bias correction. We compared our overall SFCN approach with several widely-used ma- 

chine learning models. It achieved state-of-the-art performance in UK Biobank data (N = 14,503), with 

mean absolute error (MAE) = 2.14y in brain age prediction and 99.5% in sex classification. SFCN also won 

(both parts of) the 2019 Predictive Analysis Challenge for brain age prediction, involving 79 competing 

teams (N = 2,638, MAE = 2.90y). We describe here the details of our approach, and its optimisation and 

validation. Our approach can easily be generalised to other tasks using different image modalities, and is 

released on GitHub. 

© 2020 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

The emergence of machine learning techniques has made au- 

omatic disease prediction from medical imaging data possible. 

he recent development of deep learning pushes prediction accu- 

acy beyond human performance in some scenarios, and is able 

o assist clinical diagnosis/treatment decisions ( De Fauw et al., 

018 ; Kohl et al., 2018 ; LeCun et al., 2015 ). In neuroimaging, deep

earning has had successes in several applications in predictive 

nd diagnostic analysis, such as brain age prediction and mod- 

lling ( Cole et al., 2017 ; Kawahara et al., 2017 ), sex classification

 Arslan et al., 2018 ), disease prediction ( Baumgartner et al., 2018 ;

orolev et al., 2017 ; Liu et al., 2018 ) and brain lesion segmenta-

ion ( Kamnitsas et al., 2017 ), yet still faces several challenges. For 

xample, 3D neuroimaging data requires much more GPU memory 
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han most 2D images, meaning that models successful in 2D data 

e.g., ImageNet classification ( Krizhevsky et al., 2012 ; Simonyan and 

isserman, 2014 )) are infeasible in the 3D scenario. There are sev- 

ral researches mitigating this issue (e.g.) by downsampling the in- 

ut ( Korolev et al., 2017 ), taking patches ( Kamnitsas et al., 2017 ;

iu et al., 2018 ) or 2D slices ( Bashyam et al., 2020 ; Lin et al.,

018 ) as input instead of the 3D full brain, or using a reversible

rchitecture ( Brügger et al., 2019 ), yet involving trade-offs between 

he GPU memory restriction and the information/performance loss. 

urther, deep networks usually require a large sample size for 

odel fitting, but neuroimaging datasets often have relatively 

ew samples compared to existing million-sample natural image 

atasets ( Raghu et al., 2019 ; Russakovsky et al., 2015 ), which could 

imit the ability to learn image features effectively, and result in 

verfitting problems. New model architecture design is needed to 

ddress these challenges for neuroimaging applications. 

Predicting chronological age based on structural brain magnetic 

esonance imaging (MRI) data shares common challenges with 

any other neuroimaging applications, and can be used to de- 
nder the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 

https://doi.org/10.1016/j.media.2020.101871
http://www.ScienceDirect.com
http://www.elsevier.com/locate/media
http://crossmark.crossref.org/dialog/?doi=10.1016/j.media.2020.101871&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:han.peng@ndcn.ox.ac.uk
https://doi.org/10.1016/j.media.2020.101871
http://creativecommons.org/licenses/by/4.0/


H. Peng, W. Gong, C.F. Beckmann et al. Medical Image Analysis 68 (2021) 101871 

v

f

B  

D  

G  

2

a

A

d

a

i

i

i

f

i

t

i

b

m

c

(

m  

2

d

i

p

(  

p

i

b

d

m

c

b

i

h

F

d

(  

m

(

f

e

i

P

c

t

n

c

(

i

s

s

f

t

e

d

w

r

b

t

t

t

e

T

2

p

M

t

b

2

2

e

o

v

l

a

i

C

o

l

p  

1

t

w

5  

3

t

a

r

m

l

4

a

B

2

t

a

s

p

t

i

t

1 PAC 2019 website archive: https://web.archive.org/web/2020 021410160 0/https: 

//www.photon-ai.com/pac2019 
elop and test deep learning algorithms. It also receives attention 

or its potential clinical and biological relevance ( Ashburner, 2007 ; 

rown et al., 2012 ; Cole et al., 2018 ; Cole and Franke, 2017 ;

avatzikos et al., 2009 ; Franke et al., 2014 , 2010 ; Franke and

aser, 2019 ; Habes et al., 2016 ; Kaufmann et al., 2019 ; Neeb et al.,

006 ). The predicted age can be considered to be the “brain 

ge”, because it is derived purely from the brain imaging data. 

fter estimating brain age, a further quantity of interest is the 

ifference between the predicted age (brain age) and the actual 

ge, sometimes referred to as the brain-age delta. Positive delta 

mplies that a subject’s brain looks older than their actual age, 

.e., they are experiencing accelerated ageing. For example, ex- 

sting studies have observed that the brain-age delta is an ef- 

ective biomarker that shows differences between different clin- 

cal groups ( Kaufmann et al., 2019 ) and is predictive for mor- 

ality ( Cole et al., 2018 ). Achieving accurate brain age prediction 

s an essential pre-requisite for optimising brain-age delta as a 

iomarker. To reach this goal, many studies have used different 

odels, such as regularized linear regression, support vector ma- 

hines and Gaussian process regression, for brain age prediction 

 Franke and Gaser, 2019 ). Some studies have used deep learning 

ethods ( Cole et al., 2017 ; Feng et al., 2019 ; Kolbeinsson et al.,

019 ). However, challenges exist for further improvement of pre- 

iction accuracy, especially on small datasets, and some stud- 

es have shown that deep learning performs no better than sim- 

ler machine learning models in typical neuroimaging datasets 

 He et al., 2020 ; Schulz et al., 2019 ). It has not yet, for exam-

le, been clearly established whether more complex deep learn- 

ng models perform better than simpler models (for the task of 

rain age prediction using structural MRI data). In addition, pre- 

icted brain age is often systematically biased towards the group 

ean value, resulting in a correlation between the delta and the 

hronological age, which weakens the validity of the delta as a 

iomarker ( Smith et al., 2019 ). Therefore, it is both methodolog- 

cally interesting and scientifically important to develop unbiased 

igh-performance deep learning strategies for brain age prediction. 

In this paper, a lightweight deep learning architecture, Simple 

ully Convolutional Network (SFCN), is presented for brain age pre- 

iction. Its architecture is based on the fully convolutional network 

FCN) ( Long et al., 2015 ) and the VGG net ( Simonyan and Zisser-

an, 2014 ) and takes 3D minimally-preprocessed T1 brain images 

and/or preprocessed segmentation outputs) as input. The success- 

ul CNN architecture VGG net and its variant with BatchNorm lay- 

rs ( Ioffe and Szegedy, 2015 ) provide a deep architecture consist- 

ng of a sequence of basic blocks: (Conv-BatchNorm-Activation)xN- 

ooling. To reduce memory requirements, SFCN keeps only one 

onv-layer before each MaxPool layer. In addition, we remove all 

he fully-connected layers, which not only greatly reduces the 

umber of parameters, but also provides a fully convolutional ar- 

hitecture that is versatile for accommodating different input sizes 

 Long et al., 2015 ). Using proper data augmentation and regular- 

zation techniques, the model achieved state-of-the-art mean ab- 

olute error (MAE) of 2.14 years in the UK Biobank dataset (14,503 

ubjects, of which 12,949 are used for training). This model per- 

orms better than several widely-used machine learning models in 

he literature. In addition, we propose a model ensemble strat- 

gy that averages the outputs of deep learning models based on 

ifferent kinds of preprocessing applied to the T1 data, namely, 

hite matter segmentation, grey matter segmentation, linearly- 

egistered raw T1 and nonlinearly registered raw T1; this further 

oosts the accuracy of brain age prediction. Finally, we extended 

he bias correction techniques proposed by ( Smith et al., 2019 ) 

o greatly reduce the correlation between the brain-age delta and 

he chronological age, with very little compromise of performance, 

ven when the true ages of test (validation) subjects are unknown. 

he ensemble SFCN came first in the Predictive Analysis Challenge 
2 
019 in brain age prediction (MAE = 2.90 years) among the 79 

articipating teams 1 . With bias correction, our model achieved an 

AE of 2.95 years, thereby ranking first also in the other part of 

he competition (most accurate age prediction while minimising 

ias). The trained model is available in the GitHub repository: 

https://github.com/ha- ha- ha- han/UKBiobank _ deep _ pretrain/ 

Our main contributions in this paper are: 

1. We propose a novel lightweight 3D CNN architecture, Simple 

Fully Convolutional Network, which performances better than 

deeper CNNs and is even more data efficient than simpler linear 

models in brain age and sex prediction. 

2. We demonstrate that combining complementary information 

from different preprocessing pipelines improve age prediction 

accuracy (even by simply averaging the outputs using different 

modalities). 

3. We propose a novel bias correction method for brain age 

prediction which can be applied to new unknown-label test 

datasets. 

. Methods 

.1. Model: Simple Fully Convolutional Network (SFCN) 

We use a convolutional neural network (CNN) architecture to 

stimate brain age using 3D T1 images. The architecture is based 

n VGGNet ( Simonyan and Zisserman, 2014 ) and uses a fully con- 

olutional structure ( Long et al., 2015 ), but we keep the number of 

ayers as small as possible to reduce the number of parameters to 

bout 3 million, and therefore to reduce computational complex- 

ty and memory cost. We name this model structure “Simple Fully 

onvolutional Neural Network” (SFCN) to reflect its simplicity. 

The model consists of seven blocks, as shown in Figure 1 . Each 

f the first five blocks contains a 3-by-3-by-3 3D convolutional 

ayer, a batch normalisation layer ( Ioffe and Szegedy, 2015 ), a max 

ooling layer and a ReLU activation layer ( LeCun et al., 2015 ). The

mm-input-resolution 160 × 192 × 160 3D input image (with lit- 

le or no brain tissue loss) goes through each block sequentially, 

ith its feature map generated and spatial dimension reduced to 

 × 6 × 5 after the fifth block. The sixth block contains a 1 × 1 × 1

D convolutional layer, a batch normalisation layer and a ReLU ac- 

ivation layer. The seventh block contains an average pooling layer, 

 dropout layer (only used for training, with 50% random dropout 

ate) ( Srivastava et al., 2014 ), a fully connected layer and a soft- 

ax output layer. The channel numbers used in each convolution 

ayer are [32, 64, 128, 256, 256, 64, 40]. The output layer contains 

0 digits that represent the predicted probability that the subject’s 

ge falls into a one-year age interval between 42 to 82 (for UK 

iobank) or a two-year age interval between 14 to 94 (for PAC 

019). A weighted average of each age bin is calculated to make 

he final prediction: 

pred = 

40 ∑ 

c 

x c · ag e c 

x c stands for the probability predicted for the c th age bin and 

g e c stands for the bin centre for the age interval. 

The internal process of the model can be interpreted as three 

tages: 1) The first five blocks extract feature maps from each in- 

ut image. 2) The sixth block further increases the nonlinearity of 

he model by adding one extra nonlinear layer but without chang- 

ng the output size of feature maps. 3) The seventh block maps 

he generated features to the predicted age probability distribution. 

https://github.com/ha-ha-ha-han/UKBiobank_deep_pretrain/
https://web.archive.org/web/20200214101600/https://www.photon-ai.com/pac2019
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Fig. 1. Illustration of the core network for the Simple Fully Convolutional Neural Network (SFCN) model. A) SFCN. The model takes 3D brain image data and contains 

7 blocks. Each of the first 5 consecutive blocks consists of a 3 × 3 × 3 3D convolution layer, a Batch Norm layer, a Max Pooling layer and a ReLU activation. The 6 th block 

contains one 1 × 1 × 1 3D convolution layer, a Batch Norm layer and a ReLU activation. The 7 th block contains an average pooling layer, a dropout layer, an 1 × 1 × 1 3D 

convolution layer and a softmax layer. B) An example of soft labels and output probabilities. The soft label is a probability distribution centered around the ground-truth 

age, and is used to compute the KL-divergence loss, enabling a smooth decrease in the loss function when the prediction improves during the training phase. 
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he first two stages encode the input image to a feature vector, 

nd the third stage can be viewed as a classifier based on the deep

eature. At the first stage, the spatial information is maintained and 

akes most of the memory. To reduce the overall GPU memory con- 

umption, we limited the channel numbers of the first layer to 32 

nd put only one convolutional layer in every block. To compare, a 

GGnet usually has two convolutional layers inside a block and has 

4 channels in the first layer ( Simonyan and Zisserman, 2014 ). At 

he later stages (higher-level layers) of deep learning models, fully 

onnected (FC) layers usually have the largest number of learn- 

ble parameters. For example, the penultimate layer of VGGnet 

FC-4096) consists of about 16 million parameters. By removing 

ost of the FC layers and keeping the number of channels small 

n the last two stages in SFCN, the number of learnable parame- 

ers is greatly reduced. Although reducing the number of FC lay- 

rs can potentially reduce the nonlinearities learnt by the model, 

n most neuroimaging classification tasks, the number of classes is 

maller than that for natural images. For example, there are only 

0 “classes” (age bins) for brain age prediction, which is a very 

mall number compared to 10 0 0 classes in the ImageNet classifi- 

ation task. In this case, the small parameter number and the lack 

f FC layers do not harm the testing (validation) performance. 

To compare SFCN with a popular CNN architecture, we imple- 

ented a 3D version of ResNet ( He et al., 2016 ). The architec-

ure of 3D-ResNet follows the literature but the convolution filters 

re changed to 3D. For the experiments, the SFCN and the ResNet 

hare the same training parameters and both achieve successful 

erformance in the training set. (Comparison against a broader set 

f alternative approaches is provided via the results from the PAC 

019 competition.) 

SFCN contains only 3.0 million parameters, which is less than 

ne tenth of the 33.2 million for 3D ResNet-18, 46.2 million for 

D ResNet50 and 133 million for 2D VGGnet ( Simonyan and Zis- 

erman, 2014 ). 

.2. Regression models: Elastic Net 

We compared our deep learning model with simpler ma- 

hine learning models using T1 MRI derived features as inputs 

 Schulz et al., 2019 ). We choose Elastic Net for our comparison, 

ecause it has been shown to be a high-performance and sta- 

le machine learning model for neuroimaging data ( Jollans et al., 

019 ). Three forms of the T1 data from UKB were (separately) 

sed for age prediction: (1) Voxel-level linearly registered “raw”
3 
1 images; (2) Voxel-level grey matter partial-volume estimated by 

SLVBM voxel-based morphometry; (3) T1-image derived region- 

evel phenotypes ( Miller et al., 2016 ). In the training set, we used 

rincipal component analysis (PCA) to reduce the data into an L- 

imensional space (L = 50 0 0 for (1) and (2), no PCA for (3)), and

hen used Pearson correlation to select the top k features (from 

 = 10 to all features) that correlate with age, and finally used elas- 

ic net regression (implemented in the glmnet package) to predict 

ge ( Friedman et al., 2010 ). All model parameters were optimised 

ia internal cross-validation within the validation set. The selected 

est model was applied to the test set and performance reported. 

esides age prediction, the logistic version of elastic net is also im- 

lemented with the scikit-learn package ( Pedregosa et al., 2011 ) for 

ex classification on the T1-image derived region-level phenotype 

eatures. We also implemented a widely-used support vector ma- 

hine for brain age prediction, but did not find better performance 

ompared with the above model. 

.3. Bias correction 

We used the linear bias correction method described in 

 Smith et al., 2019 ) for bias correction for the delta. Such a bias

orrection is valuable for most brain-age prediction studies, as 

here is normally an underfitting of the prediction, due to prob- 

ems such as regression dilution and non-Gaussian age distribution. 

efining y to be chronological age and x the predicted age, we fitted 

 linear regression x = ay + bto the left-out validation set (with la- 

els). The corrected predicted age is estimated by 

ˆ 
 = ( x − b ) /a 

This method requires (at the point of estimating a and b from x 

nd y) that the chronological ages are known. For the label-missing 

final evaluation) test set, we assumed that a and bare generalis- 

ble, and used the coefficients previously fitted in the left-out val- 

dation set to estimate the corrected brain-age delta. 

. Experiments 

.1. Datasets and preprocessing 

.1.1. UK Biobank 

UK Biobank is collecting a large-cohort of brain imaging data 

rom predominantly healthy participants ( Miller et al., 2016 ). In 

his study, we used the T1 data from 14,503 subjects (mean 
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Table 1 

Performance of different deep learning models in UK Biobank data. The training set size is 12,949. The input data are T1 

MRI images which are linearly registered to a standard space. After the training is done, the epoch with the best validation 

MAE is selected to be evaluated on the test set. The test results are bootstrapped 10 0 0 times to compute the mean test MAE 

and the standard deviation. Epochs 95 to 110 are selected to compute the train MAE, standard deviation of the train MAE and 

the mean validation-train MAE gap (the difference between the validation MAE and the train MAE). All models used the same 

regularization techniques (dropout, voxel shifting, and mirroring) except for the first row (SFCN without regularization). All 

models are trained with SGD (except for the second row with ADAM). 

Model Test MAE (years) Validation MAE (yrs) Train MAE (yrs) Val-Train MAE gap (yrs) 

SFCN without regularization 2.60 ±0.06 2.62 ±0.03 0.337 ±0.012 2.30 ±0.03 

SFCN (ADAM) 2.39 ±0.06 2.604 ±0.009 1.610 ±0.011 0.993 ±0.015 

SFCN (SGD) 2.14 ±0.05 2.18 ±0.04 1.36 ±0.03 0.83 ±0.06 

3D ResNet18 2.50 ±0.06 2.38 ±0.03 0.40 ±0.04 1.98 ±0.05 

3D ResNet50 2.32 ±0.05 2.33 ±0.03 0.88 ±0.05 1.45 ±0.05 

3D ResNet101 2.41 ±0.06 2.43 ±0.02 0.85 ±0.04 1.59 ±0.04 

3D ResNet152 2.38 ±0.06 2.38 ±0.03 1.06 ±0.05 1.32 ±0.06 
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ge 52.7 years, standard deviation 7.5 years, range 44-80 years), 

f which 12,949 were used for training, 518 for validation and 

,036 for testing. The image preprocessing pipeline is described in 

 Alfaro-Almagro et al., 2018 ). We used data as preprocessed already 

by our laboratory on behalf of UK Biobank), and as available to all 

esearchers who have been granted access to UKB data. The input 

ata to the deep neural network model was brain extracted, bias 

orrected and linearly registered to MNI152 standard space (unless 

therwise specified). The head size of subjects is normalized as a 

esult of the linear registration. 

.1.2. PAC 2019 

As part of testing the performance of our method objectively, 

e participated in the Predictive Analytic Challenge (PAC) 2019. 

his competition was broken down into two parts: a) to achieve 

he lowest mean absolute error ( MAE = 

1 
N 

N ∑ 

i =1 

| pre d i − ag e i | ) for 

rain age prediction; and b) to achieve the lowest MAE while 

eeping the Spearman correlation between the brain-age delta and 

he chronological age under 0.1 (because in general, ideally delta 

ould have no bias or age dependence). The dataset contains T1 

tructural MRI brain images from 2,638 subjects (mean age 35.9 

ears, standard deviation 16.2 years, range 17-90 years). 2 We used 

,199 subjects for training, and 439 subjects as a left-out validation 

et. In addition, there were 660 subjects whose labels were un- 

nown to the challenge participants, forming a test set for bench- 

arking (i.e., the results on this test set determined the final chal- 

enge scores). 

.2. Training and testing 

During the training process, we use a Stochastic Gradient De- 

cent (SGD) optimiser ( Sutskever et al., 2013 ) for the UKB dataset 

o minimise a Kullback–Leibler divergence loss function between 

he predicted probability and a Gaussian distribution (the mean is 

he true age, and the distribution sigma is 1 year for UKB) for each 

raining subject. This soft-classification loss encourages the model 

o predict age as accurately as possible. To reduce over-fitting, two 

ata augmentation methods are applied during the training phase. 

n every epoch, the training input is 1) randomly shifted by 0, 1 or 

 voxels along every axis; 2) has a probability of 50% to be mir- 

ored about the sagittal plane. 

The performance of the model can be evaluated by Mean Ab- 

olute Error (MAE) and Pearson correlation coefficient (r-value) in 
he validation and test sets. 

2 This information is publicly available in the challenge website: https://web. 

rchive.org/web/2020 021410160 0/https://www.photon-ai.com/pac2019 

S

o

U

m

4 
All the models were trained with two NVIDIA P100 GPUs. The 

raining time was approximately 0.5 hour to go through each of 

he 12,949 training subjects once (i.e., one training epoch). The 

2 weight decay coefficient was 0.001. The batch size was 8. The 

earning rate for the SGD optimiser was initialized as 0.01, then 

ultiplied by 0.3 every 30 epochs unless otherwise specified. The 

otal epoch number is 130 for the 12,949 training subjects. The 

poch number is adjusted accordingly for the experiments with 

maller training sets so that the training steps are roughly the 

ame. The epoch with the best validation MAE is used for testing. 

he deep learning models are trained with the same hyperparam- 

ters, as we found that model performance is stable against small 

hanges of hyperparameters. 

For the ensemble strategy, we randomly initialised and trained 

0 models; 5 (identical network structure but randomly-initialised 

arameters) models were trained on each of the four input data 

ypes: linearly registered GM and WM, non-linearly registered T1 

nd linearly registered T1. The ensemble experiments use 2,590 

ubjects for training to reduce the overall computation time. The 

rediction is made by averaging the results of all 20 models. 

.3. Sex classification 

To show the generalisability of SFCN to other tasks, we also 

ested the performance for sex classification. The input brain is 

inearly registered to standard space (same as the age prediction 

xperiments) so that the overall brain size is the same for all sub- 

ects of both sexes. The architecture of the model and the train- 

ng setting remains mostly the same as for age prediction, with 

ifferences now described. With all other model parameters un- 

hanged, the number of classes is set to two and the loss func- 

ion is changed to cross entropy. The learning rate for the SGD 

ptimiser was initialized as 0.01, then multiplied by 0.3 every 30 

pochs. The total epoch number is 220 for the experiments with 

00 training subjects, and 150 for all other experiments (1036, 

662, 9841 training subjects, respectively). 

. Results 

.1. The performance of SFCN in UK Biobank data 

Table 1 shows the performance of the SFCN in the UKB dataset 

ith 12,949 training subjects. SFCN with data augmentation and 

ropout achieved an MAE of 2.14 years, which is 0.46 years better 

han that without these regularizations. 

With the same regularization techniques, we then compared 

FCN with other popular CNN architectures, namely the 3D version 

f ResNet18, ResNet50, ResNet101 and ResNet152 ( He et al., 2016 ). 

nlike in the ImageNet classification task ( He et al., 2016 ), deeper 

odels do not perform better than the shallow ones in brain age 

https://web.archive.org/web/20200214101600/https://www.photon-ai.com/pac2019
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Table 2 

Performance of SFCN with different regularisation and data augmentation methods. DP = Dropout, VS = Voxel Shifting, 

MR = Mirroring, 1FC = SFCN with one extra fully connected layer. The training set size is 2,072. The input data are T1 MRI images 

which are linearly registered to a standard space. After the training is done, the epoch with the best validation MAE is selected to 

be evaluated on the test set. The test results are bootstrapped 10 0 0 times to compute the mean test MAE and the standard devia- 

tion. Epochs 185 to 200 are selected to compute the train MAE, standard deviation of the train MAE and the mean validation-train 

MAE gap (the difference between the validation MAE and the train MAE). 

Data Augmentation 

and Regularisation Test MAE (yrs) Validation MAE (yrs) Train MAE (yrs) Val-Train MAE gap (yrs) 

None 3.67 ±0.09 3.59 ±0.02 0.305 ±0.007 3.29 ±0.03 

DP 3.59 ±0.08 3.67 ±0.04 0.92 ±0.02 2.76 ±0.05 

VS 3.05 ±0.07 3.14 ±0.03 0.59 ±0.01 2.56 ±0.03 

MR 3.13 ±0.08 3.25 ±0.02 0.47 ±0.01 2.78 ±0.03 

DP + VS + MR 2.82 ±0.07 2.73 ±0.03 1.51 ±0.03 1.22 ±0.04 

DP + VS + MR + 1FC 3.59 ±0.08 3.6 ±0.3 1.49 ±0.05 2.1 ±0.3 

DP + VS + MR + 

InstanceNorm 

2.86 ±0.07 2.83 ±0.02 1.70 ±0.02 1.13 ±0.03 
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rediction: ResNet50 presents the best MAE among the four mod- 

ls (MAE = 2.32 years), rather than the deeper ones with the same 

asic units (ResNet101, MAE = 2.41 years; ResNet152, MAE = 2.38 

ears). Yet, SFCN is 0.18 years better than the best ResNet model. 

During the hyperparameter tuning phase, we noted that the 

hoice of optimizer may affect the model performance. To demon- 

trate this, we train an SFCN model with 12,949 subjects using 

DAM optimizer ( Kingma and Ba, 2014 ). The model converges to a 

ess optimal point with test MAE = 2.39 years, which is 0.15 years 

orse than its SGD counterpart, and has a larger validation-train 

AE gap. 

Among all the tested architectures, the most lightweight model, 

FCN, achieves the best performance. As shown in Table 1 , the 

FCN with regularizations achieved the best test performance but 

y far the worst in the training set, suggesting a significant differ- 

nce (between models) in levels of over-fitting. The gap (a measure 

f over-fitting) between the validation MAE and the train MAE is 

.83 years for the SFCN, which is the smallest among all the mod- 

ls. 

The SFCN model trained with a dropout layer and data aug- 

entation achieves the best MAE. To study the effect of the reg- 

larisation techniques, we trained models each with one of the 

hree techniques, namely, dropout, voxel shifting and mirroring, 

nd show the test results in Table 2 , with 2,072 training subjects 

hence the worse overall results compared with the above). When 

pplied to each of these 3 techniques individually during training, 

ach of the regularisation methods reduces over-fitting and im- 

roves the test MAE by about 0.1-0.5 years. Combining all the three 

ethods together, the model achieves the best test performance 

iven this number of training subjects (MAE = 2.82 years), show- 

ng a large improvement of 0.85 years compared with the unreg- 

larized model. We also experimented replacing BatchNorm layers 

 Ioffe and Szegedy, 2015 ) with InstanceNorm layers ( Ulyanov et al., 

016 ), which achieves comparable MAE. Finally, we added one fully 

onnected layer with 64 channels (together with batch normali- 

ation) before the final layer. While giving similar training MAE, 

he added layer reduces the generalisability to the test set (test 

AE = 3.59y). Our results clearly show that the regularisation tech- 

iques improve the model performance and the lightweight model 

tructure outperforms the tested deep models. These observations 

an be used for future reference to design deep learning strategy 

n neuroimage datasets. 

Our presented strategy achieves state-of-the-art results in brain 

ge prediction. Table 3 shows a summary of previously re- 

orted brain age prediction MAE results ( Kolbeinsson et al., 2019 ; 

ing et al., 2018 ; Smith et al., 2020 ). To eliminate the effect

f sample size differences (i.e., to make these comparisons as 

eaningful as possible), we trained SFCN with comparable train- 

ng set sizes as the previous studies, and compared performance 
p

5 
ith those. With about 2600 training subjects, SFCN achieves 

n MAE of 2.76 years, while linear regression achieves MAE 3.5 

ears ( Ning et al., 2018 ). With about 50 0 0 training subjects, SFCN

chieves 2.28 years MAE while 3D-ResNet with tensor regression 

chieves 2.58 years ( Kolbeinsson et al., 2019 ). For the larger train- 

ng set with more than 10,0 0 0 subjects, linear regression with 

ulti-modality IDPs (including fMRI and DTI features) achieves an 

AE of 2.9 years ( Smith et al., 2020 , 2019 ), whereas SFCN obtains

he best MAE in UK Biobank with an MAE of 2.14 years. 

Besides the state-of-the-art brain age MAE performance among 

ll the reported studies in UK Biobank, our model and strategy 

lso achieved 99.5% accuracy in the hold-out test set for sex clas- 

ification (0.5% error rate) based on T1 images, as summarized 

n Table 4 . This result is a considerate improvement compared 

o the previously reported results (classification accuracies vary- 

ng from 69% to 93%, with or without head size regressed out) 

 Chekroud et al., 2016 ; Giudice et al., 2016 ; Joel et al., 2016 , 2015 ;

osenblatta, 2016 ). This result suggests that SFCN is generalisable 

o other tasks for neuroimaging research. 

.2. Comparing the learning curves of SFCN with simpler regression 

odels 

There are controversies regarding whether a deep learning 

odel can perform better than linear models to predict pheno- 

ypic and behavioural variables using neuroimaging data ( He et al., 

020 ; Schulz et al., 2019 ). For the task brain age prediction using 

1 structural MRI data, two questions remain to be answered: 1. 

o DL models surpass the performance of simpler regression mod- 

ls? 2. How many training samples do DL or simpler regression 

odels need for good performance? 

We compared our deep learning model and a well-tuned re- 

ression model, elastic net, for brain age prediction. We also ex- 

lored the effect of the training dataset size (from 50 to 12,949 

ubjects) on the performance of the two models. As summarised 

n Fig. 2 , we find that the SFCN outperforms elastic net regardless 

f the training set size. Even with as few as 50 training subjects, 

he DL model achieves better performance. 

The same data-efficiency is also seen in the sex classifica- 

ion task. As summarized in Table 4 , in all the four training set- 

ings (small dataset: 100 training subjects, medium dataset: 1036 

raining subjects, large dataset: 4662/9841 training subjects), deep 

earning methods achieve higher sex classification accuracy than 

he elastic net. 

MAE decreases with the increase of training set size, and ap- 

roximately follows a linear-log relationship for all methods. If the 

raining set size doubles, the MAE decreases by about 0.3 to 0.4 

ears. In our experiment setup, there is no conclusive signature of 

erformance saturation for the large dataset size, although the last 
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Table 3 

A summary of the reported UK Biobank study in brain age prediction. 

Training set size Model 

Performance 

MAE (yrs) 

2590 SFCN 2.76 ±0.06 

2679 Linear regression Ning et al. 2019 bioRxiv 3.5 

5180 SFCN 2.28 ±0.05 

5700 3D-ResNet + Tensor Regression Kolbeinsson et 

al. 2019 arxiv 

2.58 

12949 SFCN 2.14 ±0.05 

18707 IDP + ICA + Linear regression Smith et al. 2020 

eLife 

2.9 

Table 4 

Sex prediction accuracy of different deep learning models in UK Biobank data with different numbers of train- 

ing subjects. The input data are T1 MRI images which are linearly registered to a standard space. After the training 

is completed, the final epoch is used to be evaluated on the test set. For SFCN and ResNet-50, last 20 epochs are 

used to compute the validation/train accuracy and the standard deviations, and every 5 out of the last 20 epochs 

are used to compute test accuracy. For elastic net, 10 0 0-fold bootstrapping is used to compute the mean and the 

standard deviation of the test/validation/train accuracy. 

Number of training subjects Model Test accuracy Validation accuracy Train accuracy 

100 Elastic net + T1 IDP 0.830 ±0.011 0.824 ±0.017 0.990 ±0.010 

ResNet-50 0.862 ±0.005 0.869 ±0.008 0.951 ±0.024 

SFCN 0.907 ±0.005 0.918 ±0.006 0.926 ±0.017 

1036 Elastic net + T1 IDP 0.862 ±0.011 0.878 ±0.014 0.922 ±0.008 

ResNet-50 0.951 ±0.000 0.951 ±0.002 1.000 ±0.000 

SFCN 0.977 ±0.000 0.985 ±0.002 0.997 ±0.002 

4662 Elastic net + T1 IDP 0.878 ±0.010 0.875 ±0.014 0.896 ±0.004 

ResNet-50 0.977 ±0.001 0.982 ±0.001 1.000 ±0.000 

SFCN 0.989 ±0.000 0.993 ±0.001 1.000 ±0.000 

9841 Elastic net + T1 IDP 0.884 ±0.010 0.872 ±0.015 0.893 ±0.003 

ResNet-50 0.984 ±0.001 0.996 ±0.001 1.000 ±0.000 

SFCN 0.995 ±0.000 0.997 ±0.001 1.000 ±0.000 

Fig. 2. Learning curve for SFCN in UK Biobank data. The methods include SFCN, 

Elastic nets (glmnet) with different input features, and existing studies. The error 

bars show the standard deviation by 10 0 0 bootstrap samples. The dashed lines 

show the log-linear relationship between the training set size and the testing MAE. 

This shows that as the dataset size doubles, the MAE decrease by around 0.3 to 0.4 

years for the linear and the deep learning models. The horizontal dark solid line 

indicates the MAE when using the population mean age as the predicted age for 

every testing subject. 
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ew data points do deviate from the simple linear-log relationship. 

ith the increasing size of UK Biobank and other datasets, we can 

xpect even better performance in future studies. 

.3. Semi-multimodal model ensemble improves the performance 

ith limited number of training subjects 

In previous sections, we trained our SFCN model using only one 

odality, namely raw T1 data linearly registered to the MNI space 

Lin). To test whether adding other modalities (here “modalities”

efers to different kinds of preprocessing of the T1 data) can fur- 
6 
her boost performance, we trained SFCN using three other modal- 

ties derived from T1 image data: raw T1 data nonlinearly regis- 

ered to the MNI space (NonLin), segmented grey matter (GM) and 

hite matter (WM) volumes. 

For each of the above 4 modalities, we trained 5 models using 

ifferent random parameter initializations. To prove the effective- 

ess of the ensemble strategy without greatly increasing the com- 

uting time, we choose a training dataset size of 2,590 subjects for 

ll the models used in this section. 

Models trained with different modalities achieve comparable 

erformance with small differences in MAE. NonLin achieved the 

est MAE (2.73 years), while the Lin and GM achieved comparable 

AE of 2.80 years. These modalities are all better than the MAE 

or WM (2.86 years), as shown in Table 5 . 

Even though different modalities may result in similar MAEs, 

he trained models (and deltas) may contain distinct information. 

his is shown in the correlation matrix of deltas predicted by each 

f the 20 models in the test sets in Fig. 3 A (these correlations are

etween any two estimates of the N subjects x 1 vector of deltas). 

odels with the same modalities show higher correlation for the 

rain-age delta prediction. 

To better utilise the information contained within different 

odalities, we used all four modalities to form an ensemble. For 

very subject, the 20 models predicted 20 brain ages. The final 

rediction for the subject was made using the mean of all the pre- 

icted ages. This strategy achieved an MAE of 2.58 years, which is 

.22 years better than single model prediction, with 2,590 training 

ubjects. 

The success of the ensemble strategy is not only owing to the 

arge number of models, but also due to the independent infor- 

ation gathered from different modalities. To illustrate this, we 

ombined every pair of models and plotted the MAE improvement 

fter ensemble averaging against the delta correlation coefficient 

n Fig. 3 B. The result clearly shows that the less correlated two 
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Table 5 

Performance of models trained/tested with different modalities in the test set of the UK 

Biobank dataset. 5 models were trained for each modality and used to predict brain age in- 

dividually. The mean and the standard deviation of the single model performances were com- 

puted within each modality. For the ensemble performance, 5 models are randomly selected 

(with duplications allowed) and the predictions were averaged to give the ensemble predic- 

tion. This process is repeated for 10 0 0 times to compute the mean test MAE and the standard 

deviation. For the final ensemble with all modalities, 5 models are randomly selected (with 

duplications allowed) within each modality and the 20 selected models were used to make the 

final prediction. This process is repeated for 10 0 0 times to compute the mean test MAE and 

the standard deviation. 

Modality 

Performance 

Single Model Ensemble 

MAE (yrs) r value MAE (yrs) r value 

Raw, linearly registered 2.80 ±0.03 0.883 ±0.003 2.71 ±0.03 0.892 ±0.002 

Raw, non-linearly registered 2.73 ±0.02 0.890 ±0.002 2.62 ±0.03 0.900 ±0.002 

Grey matter 2.80 ±0.04 0.881 ±0.003 2.72 ±0.02 0.888 ±0.002 

White matter 2.86 ±0.04 0.878 ±0.003 2.78 ±0.02 0.887 ±0.002 

All models 2.80 ±0.06 0.883 ±0.005 2.58 ±0.01 0.904 ±0.001 

Fig. 3. Model ensemble. A) Correlations of brain-age delta predictions between models trained and tested with different modalities. The color coding shows the correlation 

r-value. For each modality, the training subjects are split into 5 folds, and each model is trained with one-fold being left-out. The delta estimation is made in the common 

validation set. Any two models trained with the same modality show stronger correlation (between their respective delta estimates) than the models trained with different 

modalities. The bottom row shows the correlation between individual models and the ensemble prediction. B) Scatter plot: ensemble performance improvement versus delta 

correlation of any two models. Purple dots represent for ensembles with different modalities. Red dots are for ensembles with the same modality. Normalized histograms of 

performance improvement and delta correlation of the two-model combinations are plotted alongside. The combination of two models with smaller correlation shows better 

improvement for the ensemble performance. 
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3 Link to the results: https://web.archive.org/web/2020 021410160 0/https:/www. 

photon-ai.com/pac2019#results Team: BrainAgeDifference 
odels are, the better performance the ensemble will produce. It 

as been shown that models trained from different modalities tend 

o be less correlated. Therefore, combining models from different 

odalities with complementary information gives the greatest per- 

ormance enhancement. 

.4. Bias correction 

The next challenge is bias correction. We illustrate the age pre- 

iction results of SFCN trained with 12,949 subjects in Fig. 4 . The 

redictions tend to bias towards the mean age of the cohort, which 

eans that younger subjects will be predicted to be older and 

ice versa. This is due to regression dilution ( MacMahon et al., 

990 ) and other factors such as model regularization and non- 

aussian distribution of the labels (true ages) ( Smith et al., 2019 ), 

nd results in a high correlation between brain-age delta (predic- 

ion – age) and chronological age (Spearman’s r = -0.39). We fol- 

owed ( Smith et al., 2019 ) to regress age out of the delta. In the

AC 2019 competition framework, we do not know the label of the 

est set. In this case, we regressed out age in the 518-subject val- 

dation set and then used the estimated bias correction regression 

oefficients for bias removal in the test set. This process assumes 
7 
hat the bias distribution is the same for both the validation and 

he test set, and does not require any knowledge of the age labels 

n the test set. As summarized in Table 6 , this technique reduced 

he bias Spearman’s r-value from -0.37 to 0.03, with an increase of 

ust 0.15 years in the MAE for the validation set. The generalised 

trategy (for unlabelled data) reduced the r-value from -0.39 to 

.01, with a small increase (0.11 years) in the MAE for the test set. 

Finally, we tested our methods of SFCN, data augmentation, en- 

emble and bias correction in the PAC 2019 brain age prediction 

hallenge and achieved first places in both goals of the challenge: 

. to achieve the smallest MAE and 2. To achieve the smallest 

AE with bias Spearman’s r-value under 0.1. For the first objective, 

e achieved MAE = 2.90 years, which was 0.18/0.42 years better 

han the second/third places. For the second objective, we achieved 

AE = 2.95 years, and this result was 0.85/0.97 years better than 

he second/third places, i.e., a significant improvement (over the 

ther best approaches) of almost one year. These results are avail- 

ble in the challenge website 3 . 

https://web.archive.org/web/20200214101600/https:/www.photon-ai.com/pac2019#results


H. Peng, W. Gong, C.F. Beckmann et al. Medical Image Analysis 68 (2021) 101871 

Fig. 4. Bias correction. (Left panel) Results of brain age prediction for the UK Biobank test set, SFCN trained with the full training set. (Middle) Results of delta without 

correction. (Right) Results of delta with correction. 

Table 6 

Performance of the ensemble model with and without bias correction. The UK Biobank validation set is used to 

estimate the slope and intercept from a linear fitting, which is then used to generalized in the unseen UK Biobank 

test set. This strategy, together with SFCN and the ensemble, was used to take first place in the PAC 2019 Brain Age 

Prediction Challenge. 

Dataset 

Performance Performance with Bias Correction 

MAE (years) 

Spearman 

Correlationdelta vs 

age MAE (years) 

Spearman 

Correlationdelta vs 

age 

UK Biobank 

validation set 

2.10 -0.37 2.25 0.03 

UK Biobank 

test set 

2.14 -0.39 2.25 0.01 

PAC 2019 Brain 

Age Prediction 

Challenge 

2.90 -0.39 2.95 -0.03 
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. Discussion 

We have demonstrated that with a well-trained model, deep 

earning method can achieve better performance than the simpler 

egression models tested even in a training set size as small as 50 

ubjects. While a few studies have shown the opposite conclusion 

that linear regression outperforms deep learning in neuroimag- 

ng data ( Schulz et al., 2019 ), we argue that DL method is a large

amily of algorithms and techniques, some more suitable than oth- 

rs for neuroimaging. Different choices of model architectures and 

raining strategies can result in very different results. 

Compared to the simpler regularized regression methods, one 

f the potential limitations of our method is the training resource 

onsumption. Although the inference time is about a few millisec- 

nds per subject once the model is trained, the training time takes 

ore than 50 hours using 2 ∗P100 GPUs with 14K subjects for one 

ingle model and one single modality. As the UK Biobank dataset 

s still expanding and even larger datasets may appear in the fu- 

ure, the resource requirement will increase as well, and this may 

imit the ability of fast explorational research. Thus, it is impor- 

ant to develop fast training strategies and/or to test the feasibility 

f transfer learning to reuse pretrained weights for deep learning 

odels in neuroscience research. 

In our study, we have successfully demonstrated the effec- 

iveness of the lightweight model SFCN as an example of a DL 

ethod. We have shown that the lightweight architecture with- 

ut a fully connected layer achieves less overfitting and better re- 

ults than deeper models in brain age and sex prediction tasks. 

his observation is in line with the recent study by Raghu et al. 

 Raghu et al., 2019 ) which shows that, while deep ImageNet ar- 

hitectures achieve state-of-the-art performance in natural images, 

mall models can achieve comparable (if not better) performance 

han deeper nets in 2D retina images and chest X-ray images. It 
8 
s intriguing why the lightweight model performs better than the 

eeper ones. One insight is that in medical imaging (and neu- 

oimaging) applications, the classification tasks involve only a few 

lasses and thus there is no need for a wide FC layer or large over-

arameterization ( Raghu et al., 2019 ). However, it remains an open 

uestion how the representations learnt by the lightweight mod- 

ls differ from the deep ones, and what is the general principle 

o optimally design a minimum architecture for medical imaging 

pplications. 

We have also demonstrated the performance gain by includ- 

ng different ‘modalities’ in the model ensemble, rather than us- 

ng a single modality only. Due to the limitation of the comput- 

ng power, we use the simplest method (averaging the predictions) 

nd recognise there are more effective ways to combine the infor- 

ation from multi-modality inputs. For example, both Cole et al. 

 Cole et al., 2017 ) and Jonsson et al. ( Jonsson et al., 2019 ) trained

odels with different modalities. Cole et al. concatenated the en- 

odings of different modalities in the FC layer, and Jonsson et al. 

sed a majority voting strategy to form the final prediction, and 

oth received performance gain through multimodal inputs. 

We have extended the bias correction method by Smith et al. 

 Smith et al., 2019 ) to be able to correct bias in new data where

he age is not known, and successfully removed Spearman’s rank 

orrelation between the brain age delta and the true age. However, 

imple linear regression does not remove nonlinear bias effects. 

olynomial regression could be used where supported by (and re- 

uired by) the data in question, as proposed in ( Smith et al., 2019 ),

nd using the same extension to new data described in our work. 

To conclude, we proposed SFCN, a lightweight deep neural net- 

ork architecture, which achieved state-of-the-art brain age pre- 

iction and sex classification using T1-weighted structural MRI im- 

ges. We investigated different approaches for boosting the perfor- 

ance of the deep learning model, and tested three factors that 
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re valuable for improving the performance of a single deep learn- 

ng model in a neuroimaging dataset through a series of controlled 

xperiments: (1) the lightweight model structure (summarised in 

able 1 ), (2) data augmentation and regularisation techniques (e.g., 

ropout, voxel shifting and mirroring, as summarised in Table 2 ), 

3) large dataset size (summarised in Fig. 2 ). For semi-multimodal 

ata (i.e., data from a single modality but which has been through 

everal distinct processing steps), we presented an ensemble strat- 

gy that improved single modality results by utilising the (some- 

hat) independent information from different modalities. Finally, 

e showed that regressing the true age out of brain-age delta (pre- 

icted age minus actual age) can effectively correct bias, and the 

tted slope and intercept can be directly transferred to the un- 

nown test set in UK Biobank, one of the largest neuroimaging 

atasets. We also showed that, SFCN can outperform simpler re- 

ression models even with small training set sizes. These results 

re successful explorations of the application of DL in the neu- 

oimaging data. 
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