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Brain age can be predicted in indivi-
duals based on neuroimaging data
using machine learning approaches
to model trajectories of healthy brain
ageing.

The predicted brain age for a new indi-
vidual can differ from his or her chron-
ological age; this difference appears to
reflect advanced or delayed brain
ageing.

Brain age has been shown to relate to
cognitive ageing and multiple aspects
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The brain changes as we age and these changes are associated with functional
deterioration and neurodegenerative disease. It is vital that we better under-
stand individual differences in the brain ageing process; hence, techniques for
making individualised predictions of brain ageing have been developed. We
present evidence supporting the use of neuroimaging-based ‘brain age’ as a
biomarker of an individual’s brain health. Increasingly, research is showing how
brain disease or poor physical health negatively impacts brain age. Importantly,
recent evidence shows that having an ‘older’-appearing brain relates to
advanced physiological and cognitive ageing and the risk of mortality. We
discuss controversies surrounding brain age and highlight emerging trends
such as the use of multimodality neuroimaging and the employment of ‘deep
learning’ methods.
of physiological ageing and to predict
the risk of neurodegenerative diseases
and mortality in older adults.

Various diseases, including HIV, schi-
zophrenia, and diabetes, have been
shown to make the brain appear older.
Further, brain age is being used to iden-
tify possible protective or deleterious
factors for brain health as people age.

Brain age is being actively developed
to combine multiple measures of brain
structure and function, capturing
increasing amounts of detail on the
ageing brain.
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Brain Scans Can Be Used to Predict Age
As the global population ages, the burden of age-associated functional decline and disease is
increasing [1]. Methods are required to predict who is at higher risk of age-associated
deterioration, how this decline will progress, and which treatments are most appropriate.
The ageing process is biologically complex [2], and despite the generally negative effects of
ageing there is pronounced variation among people in the timing of manifestation of ageing
effects (Figure 1). This variation in brain aging may contribute to the enormous variation in
human lifespan and in the varying ages at which people develop age-related diseases.
Potentially, a person’s underlying biological age (see Glossary) may differ from his or her
chronological age and could be a better indicator of future risk of experiencing age-associated
health issues.

Ageing results in marked changes to the structure and function of the brain. Cognitive decline
and an increased risk of neurodegenerative diseases are a key source of the burden caused by
ageing. However, pronounced individual differences are also seen in measures of the brain as
people age [3]. While the average age-driven trajectories of brain volume, cortical thickness,
and white matter microstructure have been characterised in healthy people [4–6], a single
person may differ considerably from the average. Potentially, the extent to which someone
deviates from healthy brain-ageing trajectories could indicate underlying problems in outwardly
healthy people and relate to the risk of cognitive ageing or age-associated brain disease.
Hence, reliable biomarkers of brain ageing could be of great neuroscientific and clinical value.

Using structural or functional neuroimaging data, it is now possible to predict age [7,8]. The
most effective approaches to age prediction have used data from MRI scans of the brain and
run a type of statistical analysis on the images called machine learning. By ‘learning’ the
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Glossary
Ageing biomarker: a biological
measurement that gives an estimate
of an organism’s biological age
based on the biological age of an
organ, tissue, or cell.
Biological age: the hypothetical
underlying age of an organism,
defined by measuring some aspect
of the organism’s biology. Biological
age may differ from the organism’s
chronological age and be a better
indicator of residual lifespan,
functional capacity, and risk of age-
associated changes.
Brain age (or brain-predicted
age): the predicted age of an
individual derived using high-
dimensional neuroimaging data in a
machine learning framework. Brain
age potentially represents a
biomarker of the underlying ‘age’ of
the brain, whereby an ‘older’ brain in
adults indicates increased risks of
neurodegenerative diseases and
mortality.
Brain ageing: changes to the
human brain that generally
accompany ageing. These changes
occur at molecular, cellular, and
tissue levels and have characteristic
functional and behavioural
consequences (Box 1).
Deep learning: an extension of
machine learning based on artificial
neural networks. ‘Deep’ refers to the
multiple layers of neural networks
used, including one or more ‘hidden’
layers. Each layer is used to
transform input data into a different
format that encodes something
salient about the features contained
in the data.
Feature: a variable used in a
machine learning algorithm or an
aspect of a dataset that is of some
relevance. In the context of brain
age, features are local measures of
brain structure or function (e.g., grey
matter volume).
Gerontology: the scientific study of
the old and the ageing process.
Machine learning: a statistical
approach derived from the study of
artificial intelligence based on the
concept that statistical models
should be able to make accurate
predictions from new ‘unseen’ data
(either categorical, e.g., group
membership, or continuous, e.g.,
age, IQ).
Magnetic resonance imaging
(MRI): a medical imaging technique
that capitalises on the inherent

Age (years)

Ri
sk

 o
f c

og
ni

�v
e 

de
cl

in
e 

an
d 

di
se

as
e

20 30 40 50 60 70 8010

Environmental insult

Symptoma�c threshold

Hea
lth

y a
ge

in
g

Figure 1. Trajectories of Biological Ageing. As chronological age increases, there is a trend towards a higher risk of
diseases and the onset of cognitive decline. This trend is thought to have a biological basis relating to the cumulative
damage to cells and tissues acquired over time. While people who are generally healthy (grey arrow) reach the threshold for
symptoms to appear at approximately similar ages, other people may follow different trajectories of biological ageing. This
could be due to genetic differences or exposure to environmental effects that subtly increase the rate at which age-
associated damage accumulates (blue arrow). Potentially, people may experience pronounced environmental influences,
such as a brain injury or cerebral infection, leading to a marked acceleration of the rate of biological ageing (red line). In the
current context, brain age may represent a measure of the underlying biological age of the brain. By measuring how far an
individual is from the healthy brain ageing trajectory, researchers hope to be able to quantify advanced and decelerated
brain ageing and use this to predict individuals’ future trajectories and subsequent risk of age-associated health
deterioration.
relationship between patterns of data from brain scans and chronological age in a training
dataset of healthy people, age predictions can be made using brain images from people not
included in the initial training. The most accurate measures in adults have reported a mean
absolute error (MAE) of <5 years [8–12], which can be measured with high test–retest reliability
[9,13]. Moreover, in studies covering age ranges between early childhood and young adulthood
the most accurate predictions result in MAEs of approximately only 1 year [14–16].

While using neuroimaging to predict age may be seen as an interesting academic exercise, it is
also an important proof of concept, showing that the information extracted from a single MRI
scan relates strongly to chronological age and that it can be used to make accurate age
estimations from new scans. Furthermore, a growing body of research is demonstrating that
so-called brain age has both clinical and broader scientific relevance. This paradigm has
provided a new way to explore how the brain changes during ageing and how brain diseases
interact with ‘normal’ brain ageing. Potentially, brain age could be used as a personalised
biomarker of brain health during ageing, and this individual-specific nature is particularly
important. The extensive study of group-mean differences in case-control studies of brain
diseases has yielded few clinical applications. Conversely, brain age locates an individual
within a normative ageing distribution. If this location can be shown to be relevant for health
outcomes, brain age presents a framework for the application of neuroimaging clinically to
characterise brain health. Here we outline the methods for predicting brain age, evaluate
evidence for its use as an ageing biomarker, and discuss trends in the ongoing develop-
ment of the paradigm.
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physical properties of biological
tissues when inside powerful
magnetic fields. Particularly,
hydrogen atoms contained in water
within biological tissue behave in
characteristic ways when the
magnetic fields are manipulated and
release energy in the form of
radiofrequency (RF) pulses that can
be recorded. These RF pulses can
be transformed into 3D images that
give information on brain volume,
blood flow, brain function, and white
matter microstructure, to name but a
few biological characteristics.
Voxel: a volume element, the 3D
equivalent of a pixel. Voxels are the
unit of resolution for MRI scans of
the brain.
Weight maps: voxel-wise maps of
the brain where each voxel contains
a numeric representation of the
statistical model learned by a
machine learning algorithm.
How Does Neuroimaging-Based Brain Age Prediction Work?
The accuracy of brain age prediction relies on the fact that the brain changes as we age (Box 1)
and that these changes are reasonably consistent between different people. Neuroimaging
provides a unique window into the brain ageing process, allowing precise and reliable mea-
surement of many aspects of brain structure and function. Recent advances in computing and
the increasing availability of large neuroimaging datasets mean that researchers are now able to
apply machine learning to the problem of age prediction (Figure 2, Key Figure and Box 2).

How Does Brain Age Relate to Other Ageing Measures?
The brain can be affected by peripheral physiological changes and having a healthy brain is
essential for overall health. Therefore, measuring brain age could provide a window on general
biological ageing as a potential ageing biomarker. To that end it is useful to consider whether brain
age relates to other known facets of ageing. Measures of ageing typically used in gerontology
include physiological, cognitive, and biological components. Physiological measurements of
hand-grip strength, lung function, and walking speed are used to characterise general physical
health as well as to predict risk of mortality in older adults [17–19]. Evidently, by using robust
measurement techniques as proxies for underlying physiological variability, information about
general health and residual lifespan can be obtained. Brain age appears to meet these criteria, as
a recent large-scale study in 73-year-olds found a significant relationship between brain age and
mortality risk, ascertained up to 7 years after scanning [20]. For every year that an individual’s brain
was predicted to be older than their chronological age, there was a 6% increased risk of death.
This study also showed that lower grip strength, lower forced expiratory volume, and slower
walking time were all significantly associated with brain age, as was a composite measure of fluid
cognition. This supports the idea that the brain is sensitive to general declines in health and
suggests that brain age could be used as an ageing biomarker to make individualised predictions
about mortality risk in older adults. The abovementioned study also compared brain age with
other putative ageing biomarkers. Brain age did not correlate with either leukocyte telomere length
or DNA-methylation age. Interestingly, brain age was a stronger predictor of mortality than the
other measures, although a combined model of brain age with DNA-methylation age was the best
predictor, illustrating the benefits of combining distinct ageing biomarkers.

Brain Diseases and Brain Age
If brain age can provide information about future health outcomes in the general population, this
motivates research into potential causes of deviations from healthy brain ageing. Thus,
Box 1. Brain Ageing and Its Consequences

Age-related changes in the human brain are characterised by region-specific and nonlinear patterns of highly
coordinated and sequenced events of progressive (e.g., cell growth, myelination) and regressive (e.g., synaptic pruning)
processes during development [55] and widespread atrophy during ageing [56]. Grey matter volume decreases steadily
throughout adulthood while white matter volume follows an inverted ‘U-shape’ curve peaking in midlife [56,57].
Underlying these macroscopic atrophic changes is a host of molecular and cellular events. These include altered
calcium signalling, genomic alterations, reductions of synaptogenesis and neurite outgrowth, demyelination, microglial
activation and subsequent inflammatory responses, changes to cellular metabolism and mitochondrial dysfunction, and
eventual astrocytic hypertrophy and reduced neuronal activity [58]. These biological changes have behavioural
consequences. Most characteristic is the decline in cognitive function commonly observed across adulthood (i.e.,
cognitive ageing). While memory impairments are most recognised, performance decrements are seen in the majority of
cognitive domains with only crystallised intelligence spared [59]. While the precise relationship between cognitive ageing
and the neurophysiological changes in the brain remains unclear, the presence of some link between the two is intuitive
[60]. Beyond cognitive ageing, advanced brain ageing is also associated with an increased prevalence of brain diseases,
particularly neurodegenerative diseases, including Alzheimer’s disease, Parkinson’s disease, and amyotrophic lateral
sclerosis. Age is the largest risk factor for many of these diseases and the progressive nature of these conditions means
that severity worsens with age. The dementia that results from many of these diseases causes a high burden on society
and on individuals, both financially and socially. Currently, there are limited options for modification or treatment of these
diseases and even the evaluation of potential therapeutics is difficult as the relatively slow rates of disease progression
make long-term interventional studies challenging.
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Key Figure

How Brain Age Prediction Works
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Figure 2. Overview of the brain age prediction process using ‘supervised’ machine learning. (A) Neuroimaging data, usually T1-weighted structural MRI scans, from
healthy individuals (training set) are labelled with the participants’ chronological age and put into a machine learning regression model. (B) To validate the accuracy of the
model, a proportion of the participants’ images are left out of the model. For example, tenfold cross-validation involves training the model on 90% of participants and
predicting age values on the left-out 10%. This is then iterated through all participants and predicted values are compared with real values (i.e., chronological age) to
assess the accuracy. (C) Assuming that the model is sufficiently accurate, the model is trained using the entire training set and the resulting model coefficients are
applied to new participants’ brain scans (test set) to generate unbiased individual brain age predictions; in this example, 61.7 years. (D) The predicted brain age can then
be compared with the chronological age of test-set participants, with ‘older’-appearing brains assumed to reflect advanced brain ageing and ‘younger’-appearing
brains to reflect decelerated or healthy brain ageing. The discrepancy between brain age and chronological age (brain-predicted age difference) can then be used as a
metric to statistically relate to other measured characteristics of the participants.
considering how specific diseases relate to brain age may help to isolate deleterious influences
on brain health in later life. Understanding how variability in brain age within diverse clinical
samples relates to other facets of non-communicable and age-related diseases could help to
identify individuals at risk of poor health outcomes as ageing and disease processes interact.
Potentially, diseases result in increases of brain ageing as a one-off ‘hit’ or a progressive
acceleration of the process. Alternatively, the presence of a disease may not cause brain ageing
per se but occurs on top of underlying individual differences in normal brain ageing. This could
mean that the effects of that disease are exacerbated in those with ‘older’- as opposed to
‘younger’-appearing brains. Either way, measuring brain age in disease groups could be fruitful
in quantifying some of the heterogeneity within a disease, improving the identification of
individuals at higher risk of poor health outcomes. Consequently, brain age could be used
as general marker of poorer brain health to help stratify the enrolment of individuals into clinical
trials of therapies aimed at improving brain health in older adults who may not have observable
clinical or cognitive impairments.
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Box 2. How Brain Age Prediction Works

The general analytic ‘pipeline’ for predicting the biological age of individual brains uses structural neuroimaging from a
large sample of healthy people screened to exclude those with neuropsychiatric or physical health conditions. The
chronological age of these individuals is known and they should represent the adult lifespan. These individuals comprise
the so-called ‘training set’. The following stages are conducted. (i) Neuroimaging data from the training set then usually
undergoes image pre-processing to derive meaningful features that relate to ageing – for example, spatial registration to
a template – to quantify brain volume at each voxel. (ii) These features are then used as predictors or independent
variables in a regression model with chronological age as the outcome or dependent variable. This is the inverse of
conventional statistical approaches that aim to understand which brain regions may have a linear relationship with age,
as in voxel-based morphometry. Ordinary least-squares (OLS) regression models are inappropriate for such high-
dimensional neuroimaging datasets where each individual is characterised by several hundred or thousand data points.
Hence, multivariate machine learning methods (e.g., support vector, relevance vector, Gaussian processes regression)
are used, as they were designed to cope with high-dimensional types of data. (iii) The accuracy of the machine learning
regression model is assessed using a cross-validation procedure. Popular variations of this include k-fold and split-half
cross-validation. The idea behind cross-validation is that some proportion of the individuals in the training set is left out of
the initial ‘learning’ stage. The parameters of the learned model (analogous to OLS beta estimates) are then applied to
the pre-processed data of the left-out individuals resulting in brain-derived predictions of age. This age prediction is then
compared with the known chronological age of each left-out individual. Accuracy metrics, including Pearson correlation
between the predicted and chronological ages, the R2 (i.e., variance explained) of the prediction model, and the MAE,
are then generated to evaluate the specific age prediction model. (iv) Assuming that the brain age prediction model
reaches a desired level of accuracy, entirely new individuals (‘test set’) can now be run through the model, generating
individual predictions of brain age. The difference between predicted and chronological age quantifies the acceleration
or deceleration of individual brain ageing. For example, if the brain age of a 70-year-old results in a difference of +5 years,
this individual shows the typical atrophy pattern of a 75-year-old.
While aetiologically and pathophysiologically distinct, many diseases seem to have
common, secondary effects on the brain. For example, brain injury, multiple sclerosis, major
depressive disorder, and Alzheimer’s disease are all associated with a heightened immune
response, neuroinflammation, oxidative stress, mitochondrial dysfunction, and epigenetic
alterations [21–30]. Notably, all of these phenomena are also implicated in the biology of
‘normal’ ageing [2]. Furthermore, a number of diseases have been proposed to exacerbate
biological ageing, including Down’s syndrome, HIV and traumatic brain injury [31–33]. Given
the relationship between ageing and disease risk, it is unsurprising that common underlying
mechanisms may be present. However, the availability of ageing biomarkers now allows
researchers to evaluate evidence of abnormal ageing in specific diseases, and in the context
of brain diseases brain age is likely to be a particularly relevant measure. It is hoped that
combining ageing-related biomarkers with more disease-specific biomarkers will lead to
further improvements in diagnostic and prognostic modelling, moving closer to clinical
applications of neuroimaging.

A growing number of neuropsychiatric diseases have been associated with increases in brain
age (Table 1). These include traumatic brain injury [34], schizophrenia [12,35,36], epilepsy [37],
Down’s syndrome [38], HIV infection [39], mild cognitive impairment, and Alzheimer’s disease
[13,40–42]. Similar results have also been seen in peripheral conditions and non-communica-
ble diseases, such as mid-life obesity [43] and diabetes [44], suggesting again that the brain is
also sensitive to deteriorations in general physical health. These outwardly disparate conditions
may share some common pathological neurobiological components – effects secondary to the
disparate primary pathological processes – that result in an increase in age-associated loss of
brain volume. Interestingly, brain age was more sensitive in showing differences between
groups than total and regional brain volumes [40]. Methodologically, the variance in brain age is
largely explained by a composite of brain volume, age, and sex, although it also contains unique
variance not captured by commonly used measures. Thus, analysing brain age in these
contexts provides a novel way to capture individual differences within the general population
as well as disease groups that relate to additional facets of various diseases or even predict
future outcomes. For example, increased brain age in people with mild cognitive impairment
has been associated with greater risk of developing Alzheimer’s disease within 3 years [40,42].
Trends in Neurosciences, December 2017, Vol. 40, No. 12 685



Table 1. Studies Assessing Brain Age in Neurological and Psychiatric Diseases

Clinical group n Age mean (SD) Features for brain age Mean brain age difference (years) Refs

Alzheimer’s disease 102 76 (8) GM 10.0 [8]

Alzheimer’s disease 150 75 (8) GM Baseline: 6.7
Follow up (2 years): 9.0

[13]

Alzheimer’s disease (APOE e4 carriers/
non-carriers)

101/49 74 (7)/76 (9) GM Baseline: 5.8/6.2
Follow up (2 years): 8.3/7.7

[42]

Alzheimer’s disease 411 75 (7) Hippocampus 7 [61]

At risk mental state for psychosis 89 25 (6) GM 1.7 [35]

Bipolar disorder 22 38 (11) GM �1.3 (males: �1.9/females: �0.8) [36]

Borderline personality disorder 57 26 (7) GM 3.1 [35]

Diabetes mellitus type 2 98 65 (8) GM 4.6 [44]

Diabetes mellitus type 2 12 63 (7) GM Baseline: 5.1
Follow up (4 years): 5.9

[44]

Down’s syndrome 46 42 (9) Whole brain 2.5 [38]

Epilepsy (medically refractory/newly
diagnosed)

94/42 32 (14)/31 (11) Whole brain 4.5/0.9 [37]

HIV 162 56 Whole brain 2.2 [39]

Major depression 104 42 (8) GM 4.0 [35]

Mild cognitive impairment, progressive 112 74 (7) GM Baseline: 6.2
Follow up (3 years): 9.0

[13]

Mild cognitive impairment, progressive
(early/late)

58/75 74 (7)/75 (7) GM 8.7/5.6 [40]

Mild cognitive impairment, progressive
(APOE e4 carriers/non-carriers)

78/34 74 (6)/75 (9) GM Baseline: 5.8/5.5
Follow up (3 years): 8.7/7.3

[42]

Mild cognitive impairment, stable 36 77 (6) GM Baseline: �0.5
Follow up (3 years): �0.4

Franke,
2012 [13]

Mild cognitive impairment, stable (APOE
e4 carriers/non-carriers)

14/22 77 (6)/77 (6) GM Baseline: �0.9/�0.9
Follow up (3 years): 0.0/�0.6

[42]

Obesity 227 58 (17) WM 10 [43]

Objective cognitive impairment (mild/
major)

632/251 58 (15)/58 (16) Whole brain (multimodal) 0.7/1.7 [10]

Schizophrenia 141 28 (12) GM 5.5 [35]

Schizophrenia 341 34 (12) GM Baseline: 3.4
Follow up (4 years): 4.3

[12]

Schizophrenia 45 34 (10) GM 2.6 (males: 3.4/females: 1.1) [36]

Traumatic brain injury 99 38 (12) GM/WM 4.7/6.0 [34]

Features for brain age are reported as the aspects of brain structure used as predictors in the brain-age model. GM, grey matter; WM, white matter. Data formats include
voxel-wise 3D images and summary measures of cortical thickness and subcortical volumes. Multimodal refers to a combination of structural and functional MRI.
Despite the many different causes of neuropathology, the response mechanisms of the brain
seem to be relatively limited, whether the cause is infectious, traumatic, or genetic. Hence, the
brain age studies can be seen as evidence that common secondary mechanisms, observed
across diseases, may relate to those seen in healthy ageing and may be important for some of
the neurological, cognitive, and behavioural consequences of brain diseases. In line with this,
cognitive performance has also been assessed in studies of brain age. In general, there are
significant relationships between global cognitive performance and brain age, these being more
pronounced in disease samples [10,13,15,20,34,39,40,42]. This supports the idea that brain
ageing and cognitive ageing are linked, although the modest strength of these associations
686 Trends in Neurosciences, December 2017, Vol. 40, No. 12



suggests that further method development is needed to better capture the variation in brain
structure and cognitive performance.

Improving Individual Brain Health
While there may be many deleterious influences on brain age, there is also evidence of
protective factors. Significant associations with decreased brain age and markers of good
health in cognitively healthy elderly [45] and the general population [46] have been reported.
Furthermore, the number of years of education and a self-reported measure of physical activity
(number of stairs climbed daily) were reported to be significantly associated with a lower brain
age in individuals aged 19–79 years [47]. Alongside this, recent studies have observed a
reduction in brain age in long-term practitioners of meditation [48] and in amateur musicians
[49].

Although only cross-sectional, such results are promising. They suggest that interventions
could be effective in slowing or potentially even reversing brain ageing, reducing the risk of
future cognitive decline and age-associated disease. However, prospective longitudinal studies
of positive influences on brain age remain to be conducted. This represents the next, and
crucial, step in developing a framework for the evaluation of potential treatments for age-
associated brain deterioration.

Controversies around Brain Age
While the brain age paradigm offers a powerful approach to the investigation of brain ageing, it
has attracted some criticisms, either technical or philosophical. For instance, some consider
the only factor that affects age to be time; thus, ageing per se cannot deviate from its
chronological course. This criticism applies to all potential ageing biomarkers, instead suggest-
ing that there is limited biological variability in ageing and that deviations are due to specific
pathological processes, not reflecting an extension of normal ageing. However, there is strong
support for the hypothesis that ageing results from cumulative biological damage [50]. It follows
from this that variable exposure to the causes of this cumulative damage would result in
individual differences in rates of underlying biological damage. Furthermore, the fact that ageing
is the major risk for numerous diseases strongly suggests that biological ageing and disease are
intrinsically linked. Beyond this, we argue that whether or not an increased brain age indicates
that a brain is actually ‘older’ is not the chief consideration. If brain age (or other biologically
predicted ages, for that matter) can be a useful neuroscientific and clinical tool, it warrants
further exploration.

Another criticism of brain age is that by condensing whole-brain voxel-wise information into a
single number, it is overly ‘black box’. By not scrutinising exactly which features of a brain scan
are used to predict age, important neuroscientific information may be disregarded and it is
unclear precisely what information age prediction is based on. However, there are several
important reasons why interpreting the ‘weight maps’ derived from machine learning is
complicated and does not offer a straightforward interpretation in the context of brain ageing
[51]. First, no one part of the brain is the sole driver of ageing; brain ageing is a global
phenomenon. Second, age-related changes to the brain are subtle, nonlinear, and spatially
distributed and vary between individuals [4,6,52]. The advantage of the brain age paradigm is
that, by using machine learning, the model can learn a range of different brain structures that
may be healthy. This avoids reductively focusing on the average, which is likely to be unrepre-
sentative of any single individual.

A final criticism of brain age is that it relies on using the resulting error in prediction (i.e., the
difference between the predicted age and the chronological age) as a metric for further analysis.
Statistically, this is equivalent to using the residuals for an individual from a linear regression
Trends in Neurosciences, December 2017, Vol. 40, No. 12 687



Outstanding Questions
Does the brain age uniformly across
different cell populations and tissues
types? Or do different parts of the brain
age at different rates? If so, how does
this vary across individuals? Will brain
age prediction models including multi-
modalities capture these variations
more accurately?

To what extent do participant motion
and type of MRI scanner influence pre-
dictions of brain age? This is increas-
ingly important with larger datasets
pooling data from multiple sources.

How much more informative is struc-
tural brain age compared with MRI-
derived measures of total or regional
brain volume? While it is clear that the
high-dimensional nature of brain age
allows substantially more accurate
predictions of age and thus qualifies
more as an ageing biomarker, the
added value for prediction of out-
comes needs to be assessed on a
case-by-case basis.

Can brain age be used as an outcome
measure in a clinical trial of neuropro-
tective or antiageing interventions? A
link between increased brain age, cog-
nitive decline, and mortality has already
been demonstrated, as has the test–
retest reliability of the measure. Never-
theless, further research is necessary
to validate whether neuroimaging
markers of brain ageing are amenable
to intervention and have specific clini-
cal relevance.

Can brain age be used to predict the
onset and individual trajectory of pro-
gression in specific neurodegenerative
diseases? Brain age has been shown
to be sensitive in indicating subtle and
widespread changes of individual brain
structure in a variety of clinical and
population-based samples. However,
further development of the method
and research in various disease sam-
ples are required to enable the use of
brain age for disease-specific
predictions.
model. Basing clinical or neuroscientific interpretations on error may be semantically dubious,
as in theory more accurate models would reduce this error. Crucially, however, the key to
determining the validity of brain age lies in external validation with other characteristics
measured in the same individuals. For example, the fact that the error metric (e.g., brain-
predicted age difference) relates to cognitive performance, ageing fitness and, subsequent
survival [13,15,20,40,42,47] strongly supports the idea that, by quantifying this error, clinically
and biologically meaningful insights can be derived.

Concluding Remarks
The emerging field of brain age prediction is evolving rapidly and an increasing number of
researchers are employing brain age analysis to explore brain ageing in health and disease. A
number of promising trends are developing. These include the combination of multiple neuro-
imaging modalities; for example, combining structural and functional MRI data or multiple
structural MRI modalities (T2*, diffusion MRI) resulting in improved prediction performance
[10,53]. Combined predictors potentially better capture the various facets of brain ageing,
including brain atrophy, iron deposition, and alterations of white matter microstructure (see
Outstanding Questions).

Another development is the increasing availability of large datasets. Key to accurate machine
learning is having a sufficient number of examples to learn from. Initiatives such as the
International Neuroimaging Data-Sharing Initiative (INDI) (http://fcon_1000.projects.nitrc.org/
) and NeuGrid4U (https://neugrid4you.eu/) encourage the sharing of existing datasets.
Groundbreaking projects like the Human Connectome Project and UK Biobank have been
explicitly designed to share data and are making unprecedented amounts of neuroimaging
data accessible.

Important for leveraging these larger and more complex datasets is innovation in computational
statistics, to optimise algorithms for the prediction of brain age [54]. In particular, deep
learning methods show considerable promise [9]. The ‘hidden’ layers in deep learning allow
data-driven representation of various global and local data features, meaning that hitherto
unknown relationships can be more accurately identified. One benefit of deep learning particu-
lar to neuroimaging is the removal the reliance on data pre-processing to extract meaningful
features. Such features can be automatically encoded by deep neural networks, avoiding the
model-dependent decisions used in image pre-processing (e.g., registration algorithm, tem-
plate selection). While the computational demands for deep learning are high, the added
benefits are likely to outweigh the costs, and deep learning might enjoy increasing interest in
brain age analysis as in other neuroimaging research.

The ability to predict a person’s brain age using neuroimaging data is increasingly providing
insights into both positive and negative effects on age-associated brain changes and is
shedding new light on how diseases affect the ageing brain. Furthermore, brain age has
the potential to identify individuals at risk of experiencing advanced biological ageing and thus
could provide a biomarker of age-associated health problems. As the technical aspects of brain
age analysis are further developed, the possibility that neuroimaging-based measures of brain
age could be used to evaluate neuroprotective preventions and therapeutics comes closer to
being realised.

Acknowledgments
The authors thank Drs Rob Leech, Romy Lorenz, and Ines Violante for their insightful and instructive comments on drafts of this

Opinion article. This work was supported by the German Research Foundation (DFG) (Project FR 3709/1-1 to K.F.). The

sponsors had no role in the design and conduct of the study; collection, management, analysis, and interpretation of the data;

and preparation, review, or approval of the manuscript.
688 Trends in Neurosciences, December 2017, Vol. 40, No. 12

http://fcon_1000.projects.nitrc.org/
https://neugrid4you.eu/


References

1. Vos, T. et al. (2012) Years lived with disability (YLDs) for 1160

sequelae of 289 diseases and injuries 1990-2010: a systematic
analysis for the Global Burden of Disease Study 2010. Lancet
380, 2163–2196

2. Lopez-Otin, C. et al. (2013) The hallmarks of aging. Cell 153,
1194–1217

3. Raz, N. et al. (2005) Regional brain changes in aging healthy
adults: general trends, individual differences and modifiers.
Cereb. Cortex 15, 1676–1689

4. Raz, N. et al. (2010) Trajectories of brain aging in middle-aged and
older adults: regional and individual differences. Neuroimage 51,
501–511

5. Salat, D.H. et al. (2005) Age-related alterations in white matter
microstructure measured by diffusion tensor imaging. Neurobiol.
Aging 26, 1215–1227

6. Storsve, A.B. et al. (2014) Differential longitudinal changes in
cortical thickness, surface area and volume across the adult life
span: regions of accelerating and decelerating change. J. Neuro-
sci. 34, 8488–8498

7. Dosenbach, N.U.F. et al. (2010) Prediction of individual brain
maturity using fMRI. Science 329, 1358–1361

8. Franke, K. et al. (2010) Estimating the age of healthy
subjects from T1-weighted MRI scans using kernel methods:
exploring the influence of various parameters. Neuroimage 50,
883–892

9. Cole, J.H. et al. (2017) Predicting brain age with deep learning
from raw imaging data results in a reliable and heritable bio-
marker. Neuroimage 163C, 115–124

10. Liem, F. et al. (2017) Predicting brain-age from multimodal imag-
ing data captures cognitive impairment. Neuroimage 148,
179–188

11. Lin, L. et al. (2016) Predicting healthy older adult’s brain age
based on structural connectivity networks using artificial neural
networks. Comput. Methods Programs Biomed. 125, 8–17

12. Schnack, H.G. et al. (2016) Accelerated brain aging in schizo-
phrenia: a longitudinal pattern recognition study. Am. J. Psychia-
try 173, 607–616

13. Franke, K. and Gaser, C. (2012) Longitudinal changes in individual
BrainAGE in healthy aging, mild cognitive impairment, and Alz-
heimer’s disease. GeroPsych 25, 235–245

14. Brown, T. et al. (2012) Neuroanatomical assessment of biological
maturity. Curr. Biol. 22, 1693–1698

15. Erus, G. et al. (2015) Imaging patterns of brain development and
their relationship to cognition. Cereb. Cortex 25, 1676–1684

16. Franke, K. et al. (2012) Brain maturation: predicting individual
BrainAGE in children and adolescents using structural MRI. Neu-
roimage 63, 1305–1312

17. Leong, D.P. et al. (2015) Prognostic value of grip strength: find-
ings from the Prospective Urban Rural Epidemiology (PURE)
study. Lancet 386, 266–273

18. Studenski, S. et al. (2011) Gait speed and survival in older adults.
JAMA 305, 50–58

19. Schunemann, H.J. et al. (2000) Pulmonary function is a long-term
predictor of mortality in the general population: 29-year follow-up
of the Buffalo Health Study. Chest 118, 656–664

20. Cole, J.H. et al. (2017) Brain age predicts mortality. Mol. Psychi-
atry Published online April 25, 2017. http://dx.doi.org/10.1038/
mp.2017.62

21. Herrup, K. (2010) Reimagining Alzheimer’s disease – an age-
based hypothesis. J. Neurosci. 30, 16755–16762

22. Lin, M.T. and Beal, M.F. (2006) Mitochondrial dysfunction and
oxidative stress in neurodegenerative diseases. Nature 443, 787–
795

23. Ramlackhansingh, A.F. et al. (2011) Inflammation after trauma:
microglial activation and traumatic brain injury. Ann. Neurol. 70,
374–383

24. Lassmann, H. et al. (2012) Progressive multiple sclerosis: pathol-
ogy and pathogenesis. Nat. Rev. Neurol. 8, 647–656
25. Lu, F. et al. (2000) Oxidative damage to mitochondrial DNA and
activity of mitochondrial enzymes in chronic active lesions of
multiple sclerosis. J. Neurol. Sci. 177, 95–103

26. Leonard, B. and Maes, M. (2012) Mechanistic explanations how
cell-mediated immune activation, inflammation and oxidative and
nitrosative stress pathways and their sequels and concomitants
play a role in the pathophysiology of unipolar depression. Neuro-
sci. Biobehav. Rev. 36, 764–785

27. Lardenoije, R. et al. (2015) The epigenetics of aging and neuro-
degeneration. Prog. Neurobiol. 131, 21–64

28. Koch, M.W. et al. (2013) Epigenetic changes in patients with
multiple sclerosis. Nat. Rev. Neurol. 9, 35–43

29. Lewén, A. et al. (2000) Free radical pathways in CNS injury. J.
Neurotrauma 17, 871–890

30. Mill, J. and Petronis, A. (2007) Molecular studies of major depres-
sive disorder: the epigenetic perspective. Mol. Psychiatry 12,
799–814

31. Zigman, W.B. (2013) Atypical aging in Down syndrome. Dev.
Disabil. Res. Rev. 18, 51–67

32. Moretti, L. et al. (2012) Cognitive decline in older adults with a
history of traumatic brain injury. Lancet Neurol. 11, 1103–1112

33. Smith, R.L. et al. (2013) Premature and accelerated aging: HIV or
HAART? Front. Genet. 3, 328

34. Cole, J.H. et al. (2015) Prediction of brain age suggests acceler-
ated atrophy after traumatic brain injury. Ann. Neurol. 77,
571–581

35. Koutsouleris, N. et al. (2013) Accelerated brain aging in schizo-
phrenia and beyond: a neuroanatomical marker of psychiatric
disorders. Schizophr. Bull. 40, 1140–1153

36. Nenadic, I. et al. (2017) BrainAGE score indicates accelerated
brain aging in schizophrenia, but not bipolar disorder. Psychiatry
Res. 266, 86–89

37. Pardoe, H.R. et al. (2017) Structural brain changes in medically
refractory focal epilepsy resemble premature brain aging. Epi-
lepsy Res. 133, 28–32

38. Cole, J.H. et al. (2017) Brain-predicted age in Down syndrome is
associated with b-amyloid deposition and cognitive decline. Neu-
robiol. Aging 56, 41–49

39. Cole, J.H. et al. (2017) Increased brain-predicted aging in treated
HIV disease. Neurology 88, 1349–1357

40. Gaser, C. et al. (2013) BrainAGE in mild cognitive impaired
patients: predicting the conversion to Alzheimer’s disease. PLoS
One 8, e67346

41. Habes, M. et al. (2016) Advanced brain aging: relationship with
epidemiologic and genetic risk factors, and overlap with Alz-
heimer disease atrophy patterns. Transl. Psychiatry 6, e775

42. Löwe, L.C. et al. (2016) The effect of the APOE genotype on
individual BrainAGE in normal aging, mild cognitive impairment,
and Alzheimer’s disease. PLoS One 11, e0157514

43. Ronan, L. et al. (2016) Obesity associated with increased brain
age from midlife. Neurobiol. Aging 47, 63–70

44. Franke, K. et al. (2013) Advanced BrainAGE in older adults with
type 2 diabetes mellitus. Front. Aging Neurosci. 5, 90

45. Franke, K. et al. (2014) Gender-specific impact of personal health
parameters on individual brain aging in cognitively unimpaired
elderly subjects. Front. Aging Neurosci. 6, 94

46. Habes, M. et al. (2016) White matter hyperintensities and imaging
patterns of brain ageing in the general population. Brain 139,
1164–1179

47. Steffener, J. et al. (2016) Differences between chronological and
brain age are related to education and self-reported physical
activity. Neurobiol. Aging 40, 138–144

48. Luders, E. et al. (2016) Estimating brain age using high-resolution
pattern recognition: younger brains in long-term meditation prac-
titioners. Neuroimage 134, 508–513

49. Rogenmoser, L. et al. (2017) Keeping brains young with making
music. Brain Struct. Funct. Published online August 16, 2017.
http://dx.doi.org/10.1007/s00429-017-1491-2
Trends in Neurosciences, December 2017, Vol. 40, No. 12 689

http://refhub.elsevier.com/S0166-2236(17)30187-X/sbref0005
http://refhub.elsevier.com/S0166-2236(17)30187-X/sbref0005
http://refhub.elsevier.com/S0166-2236(17)30187-X/sbref0005
http://refhub.elsevier.com/S0166-2236(17)30187-X/sbref0005
http://refhub.elsevier.com/S0166-2236(17)30187-X/sbref0010
http://refhub.elsevier.com/S0166-2236(17)30187-X/sbref0010
http://refhub.elsevier.com/S0166-2236(17)30187-X/sbref0015
http://refhub.elsevier.com/S0166-2236(17)30187-X/sbref0015
http://refhub.elsevier.com/S0166-2236(17)30187-X/sbref0015
http://refhub.elsevier.com/S0166-2236(17)30187-X/sbref0020
http://refhub.elsevier.com/S0166-2236(17)30187-X/sbref0020
http://refhub.elsevier.com/S0166-2236(17)30187-X/sbref0020
http://refhub.elsevier.com/S0166-2236(17)30187-X/sbref0025
http://refhub.elsevier.com/S0166-2236(17)30187-X/sbref0025
http://refhub.elsevier.com/S0166-2236(17)30187-X/sbref0025
http://refhub.elsevier.com/S0166-2236(17)30187-X/sbref0030
http://refhub.elsevier.com/S0166-2236(17)30187-X/sbref0030
http://refhub.elsevier.com/S0166-2236(17)30187-X/sbref0030
http://refhub.elsevier.com/S0166-2236(17)30187-X/sbref0030
http://refhub.elsevier.com/S0166-2236(17)30187-X/sbref0035
http://refhub.elsevier.com/S0166-2236(17)30187-X/sbref0035
http://refhub.elsevier.com/S0166-2236(17)30187-X/sbref0040
http://refhub.elsevier.com/S0166-2236(17)30187-X/sbref0040
http://refhub.elsevier.com/S0166-2236(17)30187-X/sbref0040
http://refhub.elsevier.com/S0166-2236(17)30187-X/sbref0040
http://refhub.elsevier.com/S0166-2236(17)30187-X/sbref0045
http://refhub.elsevier.com/S0166-2236(17)30187-X/sbref0045
http://refhub.elsevier.com/S0166-2236(17)30187-X/sbref0045
http://refhub.elsevier.com/S0166-2236(17)30187-X/sbref0050
http://refhub.elsevier.com/S0166-2236(17)30187-X/sbref0050
http://refhub.elsevier.com/S0166-2236(17)30187-X/sbref0050
http://refhub.elsevier.com/S0166-2236(17)30187-X/sbref0055
http://refhub.elsevier.com/S0166-2236(17)30187-X/sbref0055
http://refhub.elsevier.com/S0166-2236(17)30187-X/sbref0055
http://refhub.elsevier.com/S0166-2236(17)30187-X/sbref0060
http://refhub.elsevier.com/S0166-2236(17)30187-X/sbref0060
http://refhub.elsevier.com/S0166-2236(17)30187-X/sbref0060
http://refhub.elsevier.com/S0166-2236(17)30187-X/sbref0065
http://refhub.elsevier.com/S0166-2236(17)30187-X/sbref0065
http://refhub.elsevier.com/S0166-2236(17)30187-X/sbref0065
http://refhub.elsevier.com/S0166-2236(17)30187-X/sbref0070
http://refhub.elsevier.com/S0166-2236(17)30187-X/sbref0070
http://refhub.elsevier.com/S0166-2236(17)30187-X/sbref0075
http://refhub.elsevier.com/S0166-2236(17)30187-X/sbref0075
http://refhub.elsevier.com/S0166-2236(17)30187-X/sbref0080
http://refhub.elsevier.com/S0166-2236(17)30187-X/sbref0080
http://refhub.elsevier.com/S0166-2236(17)30187-X/sbref0080
http://refhub.elsevier.com/S0166-2236(17)30187-X/sbref0085
http://refhub.elsevier.com/S0166-2236(17)30187-X/sbref0085
http://refhub.elsevier.com/S0166-2236(17)30187-X/sbref0085
http://refhub.elsevier.com/S0166-2236(17)30187-X/sbref0090
http://refhub.elsevier.com/S0166-2236(17)30187-X/sbref0090
http://refhub.elsevier.com/S0166-2236(17)30187-X/sbref0095
http://refhub.elsevier.com/S0166-2236(17)30187-X/sbref0095
http://refhub.elsevier.com/S0166-2236(17)30187-X/sbref0095
http://dx.doi.org/10.1038/mp.2017.62
http://dx.doi.org/10.1038/mp.2017.62
http://refhub.elsevier.com/S0166-2236(17)30187-X/sbref0105
http://refhub.elsevier.com/S0166-2236(17)30187-X/sbref0105
http://refhub.elsevier.com/S0166-2236(17)30187-X/sbref0110
http://refhub.elsevier.com/S0166-2236(17)30187-X/sbref0110
http://refhub.elsevier.com/S0166-2236(17)30187-X/sbref0110
http://refhub.elsevier.com/S0166-2236(17)30187-X/sbref0115
http://refhub.elsevier.com/S0166-2236(17)30187-X/sbref0115
http://refhub.elsevier.com/S0166-2236(17)30187-X/sbref0115
http://refhub.elsevier.com/S0166-2236(17)30187-X/sbref0120
http://refhub.elsevier.com/S0166-2236(17)30187-X/sbref0120
http://refhub.elsevier.com/S0166-2236(17)30187-X/sbref0125
http://refhub.elsevier.com/S0166-2236(17)30187-X/sbref0125
http://refhub.elsevier.com/S0166-2236(17)30187-X/sbref0125
http://refhub.elsevier.com/S0166-2236(17)30187-X/sbref0130
http://refhub.elsevier.com/S0166-2236(17)30187-X/sbref0130
http://refhub.elsevier.com/S0166-2236(17)30187-X/sbref0130
http://refhub.elsevier.com/S0166-2236(17)30187-X/sbref0130
http://refhub.elsevier.com/S0166-2236(17)30187-X/sbref0130
http://refhub.elsevier.com/S0166-2236(17)30187-X/sbref0135
http://refhub.elsevier.com/S0166-2236(17)30187-X/sbref0135
http://refhub.elsevier.com/S0166-2236(17)30187-X/sbref0140
http://refhub.elsevier.com/S0166-2236(17)30187-X/sbref0140
http://refhub.elsevier.com/S0166-2236(17)30187-X/sbref0145
http://refhub.elsevier.com/S0166-2236(17)30187-X/sbref0145
http://refhub.elsevier.com/S0166-2236(17)30187-X/sbref0150
http://refhub.elsevier.com/S0166-2236(17)30187-X/sbref0150
http://refhub.elsevier.com/S0166-2236(17)30187-X/sbref0150
http://refhub.elsevier.com/S0166-2236(17)30187-X/sbref0155
http://refhub.elsevier.com/S0166-2236(17)30187-X/sbref0155
http://refhub.elsevier.com/S0166-2236(17)30187-X/sbref0160
http://refhub.elsevier.com/S0166-2236(17)30187-X/sbref0160
http://refhub.elsevier.com/S0166-2236(17)30187-X/sbref0165
http://refhub.elsevier.com/S0166-2236(17)30187-X/sbref0165
http://refhub.elsevier.com/S0166-2236(17)30187-X/sbref0170
http://refhub.elsevier.com/S0166-2236(17)30187-X/sbref0170
http://refhub.elsevier.com/S0166-2236(17)30187-X/sbref0170
http://refhub.elsevier.com/S0166-2236(17)30187-X/sbref0175
http://refhub.elsevier.com/S0166-2236(17)30187-X/sbref0175
http://refhub.elsevier.com/S0166-2236(17)30187-X/sbref0175
http://refhub.elsevier.com/S0166-2236(17)30187-X/sbref0180
http://refhub.elsevier.com/S0166-2236(17)30187-X/sbref0180
http://refhub.elsevier.com/S0166-2236(17)30187-X/sbref0180
http://refhub.elsevier.com/S0166-2236(17)30187-X/sbref0185
http://refhub.elsevier.com/S0166-2236(17)30187-X/sbref0185
http://refhub.elsevier.com/S0166-2236(17)30187-X/sbref0185
http://refhub.elsevier.com/S0166-2236(17)30187-X/sbref0190
http://refhub.elsevier.com/S0166-2236(17)30187-X/sbref0190
http://refhub.elsevier.com/S0166-2236(17)30187-X/sbref0190
http://refhub.elsevier.com/S0166-2236(17)30187-X/sbref0195
http://refhub.elsevier.com/S0166-2236(17)30187-X/sbref0195
http://refhub.elsevier.com/S0166-2236(17)30187-X/sbref0200
http://refhub.elsevier.com/S0166-2236(17)30187-X/sbref0200
http://refhub.elsevier.com/S0166-2236(17)30187-X/sbref0200
http://refhub.elsevier.com/S0166-2236(17)30187-X/sbref0205
http://refhub.elsevier.com/S0166-2236(17)30187-X/sbref0205
http://refhub.elsevier.com/S0166-2236(17)30187-X/sbref0205
http://refhub.elsevier.com/S0166-2236(17)30187-X/sbref0210
http://refhub.elsevier.com/S0166-2236(17)30187-X/sbref0210
http://refhub.elsevier.com/S0166-2236(17)30187-X/sbref0210
http://refhub.elsevier.com/S0166-2236(17)30187-X/sbref0215
http://refhub.elsevier.com/S0166-2236(17)30187-X/sbref0215
http://refhub.elsevier.com/S0166-2236(17)30187-X/sbref0220
http://refhub.elsevier.com/S0166-2236(17)30187-X/sbref0220
http://refhub.elsevier.com/S0166-2236(17)30187-X/sbref0225
http://refhub.elsevier.com/S0166-2236(17)30187-X/sbref0225
http://refhub.elsevier.com/S0166-2236(17)30187-X/sbref0225
http://refhub.elsevier.com/S0166-2236(17)30187-X/sbref0230
http://refhub.elsevier.com/S0166-2236(17)30187-X/sbref0230
http://refhub.elsevier.com/S0166-2236(17)30187-X/sbref0230
http://refhub.elsevier.com/S0166-2236(17)30187-X/sbref0235
http://refhub.elsevier.com/S0166-2236(17)30187-X/sbref0235
http://refhub.elsevier.com/S0166-2236(17)30187-X/sbref0235
http://refhub.elsevier.com/S0166-2236(17)30187-X/sbref0240
http://refhub.elsevier.com/S0166-2236(17)30187-X/sbref0240
http://refhub.elsevier.com/S0166-2236(17)30187-X/sbref0240
http://dx.doi.org/10.1007/s00429-017-1491-2


50. Hayflick, L. (2007) Biological aging is no longer an unsolved
problem. Ann. N. Y. Acad. Sci. 1100, 1–13

51. Haufe, S. et al. (2014) On the interpretation of weight vectors of
linear models in multivariate neuroimaging. Neuroimage 87,
96–110

52. Fjell, A.M. et al. (2013) Critical ages in the life course of the adult
brain: nonlinear subcortical aging. Neurobiol. Aging 34,
2239–2247

53. Cherubini, A. et al. (2016) Importance of multimodal MRI in
characterizing brain tissue and its potential application for indi-
vidual age prediction. IEEE J. Biomed. Health Inform. 20,
1232–1239

54. Valizadeh, S.A. et al. (2017) Age prediction on the basis of brain
anatomical measures. Hum. Brain Mapp. 38, 997–1008

55. Silk, T.J. and Wood, A.G. (2011) Lessons about neurodevelop-
ment from anatomical magnetic resonance imaging. J. Dev.
Behav. Pediatr. 32, 158–168
690 Trends in Neurosciences, December 2017, Vol. 40, No. 12
56. Resnick, S.M. et al. (2003) Longitudinal magnetic resonance
imaging studies of older adults: a shrinking brain. J. Neurosci.
23, 3295–3301

57. Good, C.D. et al. (2001) A voxel-based morphometric study of
ageing in 465 normal adult human brains. Neuroimage 14, 21–36

58. Blalock, E.M. et al. (2003) Gene microarrays in hippocampal
aging: statistical profiling identifies novel processes correlated
with cognitive impairment. J. Neurosci. 23, 3807–3819

59. Horn, J.L. and Cattell, R.B. (1967) Age differences in fluid and
crystallized intelligence. Acta Psychol. (Amst.) 26, 107–129

60. Hedden, T. and Gabrieli, J.D.E. (2004) Insights into the ageing
mind: a view from cognitive neuroscience. Nat. Rev. Neurosci. 5,
87–96

61. Li, Y. et al. (2017) Dependency criterion based brain pathological
age estimation of Alzheimer’s disease patients with MR scans.
Biomed. Eng. Online 16, 50

http://refhub.elsevier.com/S0166-2236(17)30187-X/sbref0250
http://refhub.elsevier.com/S0166-2236(17)30187-X/sbref0250
http://refhub.elsevier.com/S0166-2236(17)30187-X/sbref0255
http://refhub.elsevier.com/S0166-2236(17)30187-X/sbref0255
http://refhub.elsevier.com/S0166-2236(17)30187-X/sbref0255
http://refhub.elsevier.com/S0166-2236(17)30187-X/sbref0260
http://refhub.elsevier.com/S0166-2236(17)30187-X/sbref0260
http://refhub.elsevier.com/S0166-2236(17)30187-X/sbref0260
http://refhub.elsevier.com/S0166-2236(17)30187-X/sbref0265
http://refhub.elsevier.com/S0166-2236(17)30187-X/sbref0265
http://refhub.elsevier.com/S0166-2236(17)30187-X/sbref0265
http://refhub.elsevier.com/S0166-2236(17)30187-X/sbref0265
http://refhub.elsevier.com/S0166-2236(17)30187-X/sbref0270
http://refhub.elsevier.com/S0166-2236(17)30187-X/sbref0270
http://refhub.elsevier.com/S0166-2236(17)30187-X/sbref0275
http://refhub.elsevier.com/S0166-2236(17)30187-X/sbref0275
http://refhub.elsevier.com/S0166-2236(17)30187-X/sbref0275
http://refhub.elsevier.com/S0166-2236(17)30187-X/sbref0280
http://refhub.elsevier.com/S0166-2236(17)30187-X/sbref0280
http://refhub.elsevier.com/S0166-2236(17)30187-X/sbref0280
http://refhub.elsevier.com/S0166-2236(17)30187-X/sbref0285
http://refhub.elsevier.com/S0166-2236(17)30187-X/sbref0285
http://refhub.elsevier.com/S0166-2236(17)30187-X/sbref0290
http://refhub.elsevier.com/S0166-2236(17)30187-X/sbref0290
http://refhub.elsevier.com/S0166-2236(17)30187-X/sbref0290
http://refhub.elsevier.com/S0166-2236(17)30187-X/sbref0295
http://refhub.elsevier.com/S0166-2236(17)30187-X/sbref0295
http://refhub.elsevier.com/S0166-2236(17)30187-X/sbref0300
http://refhub.elsevier.com/S0166-2236(17)30187-X/sbref0300
http://refhub.elsevier.com/S0166-2236(17)30187-X/sbref0300
http://refhub.elsevier.com/S0166-2236(17)30187-X/sbref0305
http://refhub.elsevier.com/S0166-2236(17)30187-X/sbref0305
http://refhub.elsevier.com/S0166-2236(17)30187-X/sbref0305

	Predicting Age Using Neuroimaging: Innovative Brain Ageing Biomarkers
	Brain Scans Can Be Used to Predict Age
	How Does Neuroimaging-Based Brain Age Prediction Work?
	How Does Brain Age Relate to Other Ageing Measures?
	Brain Diseases and Brain Age
	Improving Individual Brain Health
	Controversies around Brain Age
	Concluding Remarks
	Acknowledgments
	References


