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We propose an approach to fully-automated and sensor-based 3D reconstruction of grape cluster archi-
tecture followed by a precise, objective, and reproducible derivation of phenotypic traits. Current
approaches to sensor-based phenotyping often show interactive processing steps and analyze only those
parts of a plant that can be sensed by the given sensor system. Our approach employs an explicit com-
ponent-based model of the architecture of grape clusters, i.e., the interconnectivity of a grape cluster’s
components, the geometry of the components, and the structural and geometrical constraints of their
mutual connections. Based on this model, our approach can derive in a fully automated way complete
3D reconstructions of sensed grape clusters even for cases of partial occlusions in the process of sensor
data acquisition. Given a complete 3D reconstruction of a grape cluster, we can derive on the one hand
well known phenotypic traits of grape clusters. On the other hand, this approach facilitates measuring
and evaluating new phenotypic traits. Therefore, our approach is of interest for monitoring and yield
estimations in vineyards as well as for grapevine breeders. We developed and implemented our approach
within a grapevine phenotyping project. First evaluations of reconstruction results and derived phenoty-
pic traits show a potential of this approach for automated high-throughput phenotyping. We discuss the
opportunities to apply our approach to other plants and with other sensor systems.

� 2015 Elsevier B.V. All rights reserved.
1. Introduction

1.1. Motivation

Phenotyping addresses two major objectives in plant breeding.
First, phenotyping is used for the early identification of traits deter-
mining yield potential, stress resistance, and crop quality. Second,
phenotyping is used to ascertain phenotype from interactions
between genotype and environment. But phenotyping is widely
recognized as being labor-intensive and of costly nature resulting
in the so-called ‘phenotyping bottleneck’ (Furbank and Tester,
2011) in crop breeding. The phenotyping bottleneck can now be
addressed by employing innovative technologies such as non-inva-
sive sensor technology, robotics and high-throughput computing.

Within an interdisciplinary research network CROP.SENSe.net
of Bonn University, Germany, and the research centre Jülich,
Germany, several subprojects worked together on non-invasive
and quantitative screening of plant phenotype throughout plants’
lifecycles (CROP.SENSe.net, 2015). The different subprojects
worked on different target plants. The target plant of subproject
D2 – on which we report here – was grapevine (Vitis vinifera l.
subsp. vinifera) and plant samples were provided by subproject
partners of the Julius-Kühn Institute for Grapevine Breeding (JKI,
2015).

For comparing different grapevine cultivars there are mainly
three institutes that work on a set of common descriptors for
grapevine in its different growth stages and for different plant
organs. These are: (1) Organisation Internationale de la Vigne et du
Vin (OIV, 2015), (2) International Union for the Protection of New
Varieties of Plants (UPOV, 2015), (3) International Plant Genetic
Resources Institute (IPGRI, 2015), recently renamed to Bioversity
International. OIV released their own catalogue of descriptors
(OIV, 2009), but there is also a joint release of all three institutes
(IPGRI et al., 1997). Development stages of grapevine are classified
and categorized by the BBCH (Biological Institute of Agriculture
and Forestry, Federal Organisation for Plant Varieties, and
Chemical Industry (Lorenz et al., 1995). The OIV descriptor list
(OIV, 2009) summarizes all established phenotypic traits of grape-
vine plants in general and grape clusters in particular, such as
length, width and density of grape clusters (OIV descriptors 202,
203, and 204, respectively), the uniformity of berry sizes (OIV
descriptor 222), and the average length of pedicels (OIV descriptor
238). In grapevine breeding, especially low density of grape
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clusters (OIV descriptor 204) is an important breeding objective
with respect to better yield quality and higher disease resistance,
especially to Botrytis cinerea (Vail and Marois, 1991).

Therefore, the objective of this subproject was the development
of a sensor-based method for the automated 3D reconstruction of
grape cluster architecture followed by a precise, objective, and
reproducible derivation of phenotypic traits of grape clusters with
special interest on the density descriptor. Additionally, the devel-
oped approach to automated 3D reconstruction and phenotyping
of grape clusters should be applicable to different growth stages
of the vine plant.

1.2. Approaches to 3D reconstruction of plants

In the context of biology, agronomy and phenotyping, acquisi-
tion of accurate models of real plants is still a difficult, cumber-
some and expensive task and therefore a major bottleneck for
the construction of quantitative models of plant development.
Recently, 3D laser scanning has become a powerful and common
approach to 3D measurements with high accuracy, spatial
resolution and speed on nearly every scale range. These 3D mea-
surements result in a multitude of 3D points – a so-called point
cloud – representing a sampling of the surfaces of the scanned
objects that require processing and analysis.

A variety of specific methods has been proposed to reconstruct
plausible branching plant architecture from laser data, especially of
trees (Raumonen et al., 2013; Livny et al., 2010; Preuksakarn et al.,
2010; Côté et al., 2009; Runions et al., 2007; Xu et al., 2007).
Mostly, these methods work in a bottom–up strategy, i.e., points
are first grouped into larger components using methods of point
set topology, graph theory, principal component analysis,
optimization, etc. These more comprehensive components are then
arranged and re-arranged using heuristic repair functions or
optimization. All these steps are controlled by some specific
heuristic parameters that are – at least partially – difficult to inter-
pret since their semantics are defined as a mixture of domain
specific knowledge of plant geometry and topology (i.e., shape, ori-
entation, and connectivity parameters of plant components) on the
one hand but also from pure technical necessities given by the
mathematical concepts of the employed bottom–up segmentation
methods on the other hand.

In contrast to these bottom–up plant reconstruction methods,
top–down oriented approaches employ explicit generative plant
models to guide the reconstruction process. For example, Huang
and Mayer (2007) reconstruct 3D models of tree branch structure
from image data using a generative model that describes the archi-
tecture of trees by an L-system (Prusinkiewicz and Lindenmayer,
1990). A Lindenmayer-, or in short L-system, is a parallel string
rewriting system where a set of rules is used to generate structures
of plants. Their reconstruction process employs a stochastic sam-
pling to generate reconstruction hypotheses. They use Markov
chain Monte Carlo sampling (MCMC). Given triplets or quadruples
of images from single unfoliaged trees, they extract the trunk and
the first two levels of the main branching system by multi-view
image analysis and the generation of branches is controlled by
the L-system. MCMC is used to propose size and orientation
parameters of each new branch. That way several reconstruction
hypotheses are generated using the L-system and MCMC sampling.
The generated hypotheses are back-projected into the input
images, to select the best fitting hypothesis as the final reconstruc-
tion result. Binney and Sukhatme (2009) employ also a generative
approach. But while Huang and Mayer (2007) model branches by
single straight cylinders, Binney and Sukhatme (2009) model
branches as chains of fixed-length cylindrical segments.
Therefore, they can represent and reconstruct curved branches.
Their approach is working with laser range data measured from
unfoliaged trees. The model-based approach of Shlyakhter et al.
(2001) also employs an L-system but uses images of foliaged trees.
Due to the large amounts of occlusions given in foliaged trees, their
objective is not to reconstruct the exact architecture of the given
tree, but a plausible approximation for visualization purposes. To
do so, they reconstruct the visible trunk of the tree as well as the
visual hull of the crown by means of multi-view image analysis.
The trunk is used as the axiom of an L-system. The rewriting rules
of the L-system are used to let the tree ‘‘grow’’ into the visual hull
of the crown. Thereby, the rules of the L-system assure that no
branch will grow out of the visual hull of the crown and simulate
the flow of photosynthates inside the tree’s branching structure
to achieve a plausible distribution of leaves. It is worth noting that
both approaches working on unfoliaged trees can validate branch-
ing points and branches using the likelihood of these part hypothe-
ses with respect to the sensor data. Therefore, their optimization
method can focus on parameter optimization of just these compo-
nents. In contrast, the approach of Shlyakhter et al. (2001) to the
reconstruction of foliaged trees has to deal with significant
amounts of occlusions. Therefore, they cannot use evidence from
sensor data to reconstruct the hidden interior branching structure.
In consequence, they aim not to reconstruct the exact complete
architecture of a scanned tree but just a plausible one. Thereby,
they avoid to include the process of model selection, i.e., to opti-
mize reconstruction results not only with respect to best fitting
parameters of a generated model but also with respect to the selec-
tion of the best fitting number and classes of model components.

Additionally, there are various approaches to extract phenoty-
pic traits of plant organs involving notations of plant models. But
these approaches focus on certain plant organs of interest like
leaves and stems (e.g., Dornbusch et al., 2007), need manual inter-
actions (e.g., Buck-Sorlin et al., 2008; Frasson and Krajewski, 2007)
or show no explicit modeling of interconnectivity (e.g. Paproki
et al., 2012; Hartmann et al., 2011).

With respect to grapevine – as Furbank and Tester (2011)
(Furbank and Tester, 2011), stated in their review on phenotyping
in general: ‘‘the bottleneck in field phenotyping has driven intense
interest over the past decade in applying remote sensing technolo-
gies to field crop monitoring and in this regard field phenomics is
more advanced in many respects than controlled-environment,
high-throughput analysis’’ – we can find several approaches to
mapping and characterization of vineyard canopy by aerial
multispectral imagery and satellite multispectral imagery
(Delenne et al., 2010; Zarco-Tejada et al., 2005; Hall et al., 2003;
Johnson et al., 2003). However, the availability of remotely sensed
data is constrained by weather conditions, re-visit frequency and
elaborate data processing. Emerging ground sensing technologies
are attractive to get around the problem of availability and promise
to deliver data of high spatial resolution to facilitate real-time
applications. Therefore, several new studies of employing ground
sensing technologies for an improved management of vineyards
in practical viticulture have been conducted in recent years
(Fuentes et al., 2014; Mazzetto et al., 2011; Llorens et al., 2011;
Longo et al., 2010; Braun et al., 2010; Berenstein et al., 2010;
Möller et al., 2007). Yield estimation is one of the most important
issues in precision viticulture and several studies aimed to improve
yield estimation by detecting grape clusters, berries (Kicherer et al.,
2015; Roscher et al., 2014; Nuske et al., 2014; Font et al., 2014; Liu
et al., 2013; Diago et al., 2012) or inflorescences (Diago et al., 2014)
in images. Due to the importance of the density of grape clusters
(OIV descriptor 204) with respect to grape and wine quality, there
are also new studies aiming for an automated estimation of the
density of grape clusters by evaluating indexes for density estima-
tion (Tello and Ibánez, 2014) and applying image analysis to terres-
trial field imagery or lab imagery to automate density estimation.
This estimation can be done by measuring the proportion of pixels
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in a bunch corresponding to berries, rachis, and holes (Cubero
et al., 2015) or the difference between the convex hull of a cluster
and its berries derived by a stereo approach (Ivorra et al., 2015).

While all of these studies show impressive results in detecting
berries, grape clusters, or inflorescences to derive accurate models
of grapevine for estimating yield, health status and quality of
grapes and wine, all these studies focus mainly on vineyard man-
agement. In contrast, grapevine breeding aims at the phenotyping
of single grapevines, where plants of different genotypes showing
distinct phenotypes need to be assessed individually with high
precision.

Therefore, we advocate enhancing the current quality of grape-
vine models by modeling and reconstructing their explicit, com-
plete and detailed 3D architecture to derive from such
reconstructions a rich set of phenotypic descriptors with high pre-
cision. The precise reconstruction of the complete 3D architecture
can be done by employing sensor-based reconstruction approaches
using generative models as shown within the approaches to 3D
tree reconstruction already sketched in this section (Huang and
Mayer, 2007; Binney and Sukhatme, 2009; Shlyakhter et al.,
2001). With respect to grapevine, such an approach is reported
by Huang et al. (2013). They describe a rule-based approach to
the modeling of grape clusters using an L-system with the objec-
tive to create realistic renderings of several types of grape clusters.
However, their approach relies heavily on user interaction to con-
trol the overall shape of the grape cluster and to determine
parameter values. Therefore, it is not an approach to fully auto-
mated and sensor-based 3D reconstruction and automated
phenotyping of grape clusters at all. Pallas et al. (2009) propose a
stochastic growth model of grapevine that models interaction
between environment, trophic competition and plant develop-
ment. Thereby, this functional–structural growth model is focusing
on the pure topology of grapevine and less on geometry. Therefore,
3D reconstruction and phenotyping is again not the objective of
their work.

In conclusion, one can see that research on the sensor-based
generation of accurate plant models and plant architecture in gen-
eral shows considerable progress. Incomplete sensor data due to
occlusions or just partial measurement of a plant as well as inter-
leaving and closely neighbored plant organs and branches give rise
to employ generative plant models. Explicit generative plant mod-
els also allow for meaningful parameterizations and user interfaces
of automated approaches to plant reconstruction. For phenotyping
of grapevine, there exists – to the best of our knowledge – no
approach to sensor-based generation of detailed and accurate
structural models of plants and plant organs. Additionally, there
is no model-based approach to the reconstruction of plants that
combines model selection (i.e., optimizing the number and inter-
connectivity of plant components) with parameter optimization
(i.e., adjustment of geometrical and topological parameters of the
plant components and their interconnectivity) to handle signifi-
cant occlusions and interleaving branches.

From the methodological point of view, our work is most simi-
lar to the approaches described by Huang et al. (2013), Binney
and Sukhatme (2009), Huang and Mayer (2007) and Shlyakhter
et al. (2001). Their approaches also employ generative models
to control the reconstruction process. However, Binney and
Sukhatme (2009) and Huang and Mayer (2007) work on unfo-
liaged trees. Therefore, they can assume that they are able to
detect and reconstruct the correct number of plant components,
i.e., the correct number of relevant branches. Therefore, their
optimization focuses on parameter adjustment and need not deal
with the automated determination of the number of components,
i.e., the so-called model selection. Unlike these approaches, our
optimization problem is a trans-dimensional optimization prob-
lem, i.e., we have to determine automatically the number of
components of a grape cluster and we have to optimize the
parameterization of these components. In principle, Shlyakhter
et al. (2001) also have to solve a trans-dimensional optimization
problem since they work on foliaged trees with significant
amounts of occlusions. But they avoid its explicit solution,
because they are only interested in the reconstruction of ‘‘a plau-
sible branching structure [that] suffices to preserve the overall
impression of the original’’ (Shlyakhter et al., 2001: p. 53) while
we are aiming for the exact structural reconstruction of a grape
cluster to facilitate phenotyping. Finally, Huang et al. (2013) work
exactly on the same topic as we do, but they aim for realistic ren-
derings of several types of grape clusters instead of precise recon-
struction and phenotyping. Therefore, they allow multiple user
interactions to control the overall shape of the grape cluster
and to determine parameter values, whereas we are aiming for
a fully automated approach that is potentially suited for high
throughput phenotyping. Additionally, they do not have to solve
the optimization problem due to interactive parameter selection
by the user.
1.3. Contributions and overview

The contribution of this study is the conceptual design, imple-
mentation, and evaluation of a complete processing chain that
uses 3D point clouds of grape clusters produced by a laser range
sensor and that employs an explicit generative model of grape
cluster architecture to enable a fully automated 3D reconstruc-
tion and phenotyping of grape clusters sensed by laser scanning.
The reconstruction procedure thereby combines model selection
(i.e., optimizing the number and interconnectivity of plant com-
ponents) with parameter optimization (i.e., adjustment of geo-
metrical and topological parameters of the components of grape
clusters and their interconnectivity). The results of the recon-
struction procedure are complete, detailed and accurate struc-
tural models of the sensed grape cluster architectures allowing
the derivation of phenotypic traits in an automated, precise,
and objective way.

The plant material and sensor are introduced in Sections 2.1 and
2.2. In Section 2.3 the proposed reconstruction and phenotyping
framework and its processing steps is introduced. Section 2.4
describes the design and implementation of the generative model
of grape cluster architectures. Section 2.5 explains the processing
steps of the reconstruction and phenotyping framework in more
detail. The experiments and the obtained results are presented in
Section 3 and discussed in Section 4. Section 5 summarizes and
concludes this study with avenues for future work.
2. Materials and methods

2.1. Plant material

We selected three development stages of grapevine grape clus-
ters of the cultivar Riesling (Vitis vinifera L. ‘Rieslinǵ). According to
the BBCH classification these have been:

� BBCH73: Berries are groat-sized. Berries are still growing; most
of the stem system is visible.
� BBCH81: Berries are at the beginning of ripening. Berries have

almost gained their maximum size and weight. Depending on
the density of the specific cultivar’s grape clusters, the interior –
the stem system –is mostly occluded by the berries.
� BBCH89: Berries are ripe for harvest. Berries have gained their

maximum size and weight. Depending on the density of the
specific cultivar’s grape clusters, the stem system can be com-
pletely occluded by the berries.
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From these three development stages of grapevine, BBCH89 is
the most challenging with respect to the objective of deriving a
complete 3D reconstruction of a grape cluster’s architecture. In this
stage, especially the interior stem system of this architecture is
highly occluded by the exterior fully developed berries. Even
development stage BBCH81 shows significant occlusions of the
interior stem system. In the ongoing argumentation, we refer
mainly to our experiments with the most challenging development
stages of grapevine, namely BBCH89. In the following discussion
we will include the other two development stages BBCH73 and
BBCH81. We had a total of 20 grape clusters available for each of
the three stages. The grape clusters are between 9.5 cm and
13 cm long and between 5.8 cm and 8.5 cm wide.

2.2. Sensor

We used the Perceptron ScanWorks V5 (Perceptron Inc., 2015)
attached to a Romer Infinite 2.0 articulated arm (Hexagon
Metrology, 2015) as sensor. The sensor produces lines of 7640
point measurements at a frequency of 60 Hz with an accuracy of
0.024 mm. When moving the sensor around the object, consecutive
line measurements are aggregated into a single coordinate frame
by the software that comes with the sensor. The results are highly
dense 3D point clouds. Fig. 1 depicts such a 3D point cloud gener-
ated from a grape cluster.

For our experiments we scanned the grape clusters twice. First,
we generated laser scans of the complete grape clusters. Second,
we scanned their stem systems, i.e., scans of the same grape clus-
ters after having removed their berries.

2.3. Reconstruction and phenotyping framework

A four-step framework was developed in order to reconstruct a
grapevine cluster and to estimate its phenotypic descriptors from
point clouds derived by laser scanning of the grapevine cluster.

Step 1: Automatic detection and reconstruction of berries and
peduncle. Given grape clusters of development stage
BBCH89, the berries are ripe for harvest and cause
maximum occlusion to the interior branching architec-
ture of the grape cluster. Therefore, the berries will
represent together with the peduncle the exterior
and visible components of the grape cluster and are
used as data-driven anchor points for the complete
reconstruction.

Step 2: First guess of the complete architecture of the grape cluster.
This initial reconstruction hypothesis need not be
Fig. 1. Left: Sensor setup. A Perceptron ScanWorks V5 is mounted onto a Romer
Infinite 2.0 articulated arm. Right: An example point cloud depicting a scanned
grape cluster with 251,348 points.
perfect! A less accurate initial hypothesis simply means
that more intermediate hypotheses will be generated in
the following optimization step in order to achieve a
good result. Ideally, the initial guess is a model of a
grape cluster that is sufficiently specific for being a good
starting point for the following optimization process.
Therefore, topology and geometry of such an initial
guess model will be chosen from previous reconstruc-
tion results.

Step 3: Optimization of the complete architecture. The optimiza-
tion process generates iteratively new reconstruction
hypotheses of the complete grape cluster. In every step
of this process a new hypothesis is generated by a local
modification of the last hypothesis. Local modifications,
so-called jumps, can change parameter values of given
components of the grape cluster’s reconstruction
hypothesis but can also modify the number of the com-
ponents by adding or removing berries, branches, twigs,
etc. The acceptance of a new hypothesis depends on
how well it complies with the sensor data in terms of
likelihood.

Step 4: Derivation of phenotypic descriptors. Given the recon-
struction of the complete architecture of a grape clus-
ter, the derivation of phenotypic descriptors of grape
cluster can be done in a precise, objective, and repro-
ducible way. It is important to note that this can be
done for well-known descriptors (e.g. from the OIV list
of descriptors) as well as for newly formalized descrip-
tors, which enables the design and evaluation of novel
descriptors in grapevine breeding research.

All the steps of the reconstruction and phenotyping framework
are guided by a generative model. The generative model describes
by rules and parameter value distributions how every specific
reconstruction result of an individual grape cluster is built up
and how probable the parameter values (numbers of components,
sizes of components, etc.) are. Therefore, the generative model first
has to be specified based on expert knowledge and/or training
data. Training data consist of a representative set of grape clusters
and sensor data derived from these. Here, we used point clouds
generated from grape clusters and their stem systems. The genera-
tion of the generative model comprises two aspects.

First, the generative model must provide entities to represent
every grape cluster in its complete architecture with all its compo-
nents. This includes the representation of every hypothesis that is
generated in the steps of the reconstruction process, i.e., the recon-
structed berries, the first guess, every intermediate and final recon-
struction result. The rules of the generative model define
elementary construction steps for building a grape cluster’s archi-
tecture. This includes all jumps that are used in the optimization
procedure. The rules define thereby also topological constraints
on the architecture of possible instances of the generative model
in specifying what kinds of components are allowed to be con-
nected to what other kinds of components.

Second, the generative model must provide additional geo-
metrical and numerical constraints on the components of grape
clusters. Therefore, the rules are parameterized. Parameter values
specify values of size (e.g., diameter of a berry, length and thick-
ness of a branch, etc.), values of orientation (e.g., angles between
branches, etc.), and values of quantities (e.g., number of berries
per berry group, numbers of pedicels per pedicel origin, etc.). For
every parameter a value distribution has to specify what values
are how probable with respect to ‘‘real-world’’ experience given
by an expert and/or by learning from training examples.

Fig. 2 summarizes all processing steps of the reconstruction and
phenotyping framework. The bottom part of the figure depicts the



Fig. 2. Processing steps of the reconstruction and phenotyping framework. The bottom part shows the generation of the generative model based on training data. After having
built the generative model, it is used to control the four steps of reconstruction and phenotyping of newly sensed grape clusters.

Fig. 3. Principal example of a grape cluster’s architecture. Typically, a grape cluster
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generation of the generative model that is based on a training data
set of sensor data scanned from representative grape clusters. The
first part of model generation is the design and implementation in
terms of a rule-based system (cf. Section 2.4.1). The second part of
model generation is the learning of value distributions of the
parameters of the model (cf. Section 2.4.2). After having built the
generative model, it is used to control the four steps of reconstruc-
tion and phenotyping of newly sensed grape clusters. These steps
are depicted in the top part of the figure. Starting with the detec-
tion and reconstruction of the visible and therefore well sensed
exterior components (for fully ripe grape clusters: exterior berries
and peduncle) as step 1 (cf. Section 2.5.1), a first coarse reconstruc-
tion hypothesis is generated in step 2 (cf. Section 2.5.2). This initial
hypothesis is iteratively optimized in step 3 (cf. Section 2.5.3).
After optimization of the reconstruction hypothesis, phenotypic
descriptors are derived in step 4 (cf. Section 2.5.4).
has three different types of twigs (branch-twig, sub-twig, terminal pedicel twig), all of
which are connected to the rachis. Berries are attached to the twigs and the rachis by
pedicels.
2.4. Generative model

Fig. 3 depicts the components of a grape cluster, their parame-
ters and their interconnectivity. The position and orientation
parameters of the peduncle are specified with respect to a
Cartesian coordinate system that is automatically established with
the scanning process. Angles are specified with respect to their pre-
ceding component.

The central axis of a grape cluster consists of the peduncle on the
top and the rachis, which holds different twigs, showing different
types. A so-called terminal pedicel twig branches off the rachis
and has further branches only at the end (hence: terminal) into
the pedicels. So-called branch-twigs also branch off the rachis and
differ from terminal pedicel twigs, because branch-twigs also bear
further twigs, the so-called sub-twigs. All twig types and the rachis
end in a set of pedicels. We call such a set of pedicels a berry group
and they branch off the same pedicel origin. The twigs and the rachis
are specified by the length and the radius of their internodes and by
the angles of the internodes relative to the parent component.

It is important to note that this informal description specifies
implicitly hard constraints on the possible interconnections in a
grape cluster. These constraints become explicit in the formaliza-
tion of the rules of the rule-based generative model and their
parameters. For example, each berry is directly connected only to
exactly one pedicel. In the reconstruction process it is disallowed
to connect a berry directly with the rachis or any kind of twig.

2.4.1. Rule-based model of grape clusters
To formalize and implement the generative model and its con-

straints, we employ a relational growth grammar. The concept of



Fig. 5. Example of the reconstruction of the visible components, i.e., the berries and
the peduncle, represented as spheres and a frustum, respectively.
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relational growth grammar (RGG) was introduced in Kniemeyer
(2008), Kniemeyer et al. (2008) and Hemmerling et al. (2008). An
RGG works similar to an L-system: A data structure representing
a description of the state of a plant is iteratively modified by
rewriting rules. For an RGG this data structure is a graph, consist-
ing of nodes, which are also called modules, and edges. The mod-
ules represent plant components and the edges represent
relations between them. Relations can be of different kind: physi-
cal connectivity, nutrition flow, relative shadowing effects, etc. In
an RGG it is allowed to not only rewrite a single module, but also
a subgraph or even a set of subgraphs within just one rewriting
rule. Since the whole graph can be inspected, also the context of
a rewriting rule can be a set of subgraphs. The RGG formalism
was developed with the concepts of L-systems in mind.
Therefore, while all important extensions of the L-system formal-
ism are captured, relational growth grammars grant much more
explicit modeling power. Simultaneously with the RGG concept
the software GroIMP (Growth Grammar related Interactive
Modeling Platform) was developed to implement RGGs. GroIMP
comes along with features such as a compiler for the special pur-
pose language XL and 3D rendering via OpenGL. It also provides
a simple plug-in interface that allows users to write their own
additions for GroIMP. For example, we added a plug-in for reading
and processing of 3D point clouds for our experiments. GroIMP is
constantly extended, for example, for specifying differential equa-
tions (Hemmerling et al., 2013).

2.4.2. Learning of parameter value distributions
Having formalized the generative model of a grape cluster’s

components and their relations, the value distributions of the mod-
el’s parameters have to be determined. To derive the parameter
value distributions of the branching architecture, we apply an
automatic Skeletonization method (Balfer et al., 2013) to point
clouds that were scanned from the stem systems of our training
examples after berries from the grape clusters were removed
(Schöler et al., 2013). Fig. 4 shows in the left part the point cloud
of a scanned stem system and in the right part the derived skele-
ton. For each stem system we derive values for the components’
lengths, angles, and frequencies. The statistics of these values are
used to estimate the value distributions of the model’s parameters.
For the size parameters of the berry, we proceed analogously on
the berries of our sensed grape clusters.

2.5. Reconstruction and phenotyping

2.5.1. Step 1: Detection of berries and peduncle
Besides the exterior berries, the peduncle of a grape cluster –

even in the development stage of full ripeness – is always
Fig. 4. An example of a point cloud of a stem system (left) and its computed
skeleton (right) with semantic annotations for distinguishing between components.
Here different semantic labels (rachis, branch twigs, terminal pedicel twigs) are
depicted by different colors. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
observable. Geometrically, we approximate the shape of a pedun-
cle by a frustum (see Fig. 5). For the given grape clusters of the cul-
tivar Riesling in our experiments, we can approximate the shape of
berries by spheres (for other cultivars of grapevine, ellipsoidal
shapes might be a more appropriate approximation). Therefore,
we implement the detection of berries by a RANSAC-based detec-
tion of spheres in point clouds proposed by Schnabel et al.
(2007). They also show that their approach to sphere detection in
point clouds is applicable to the detection of other simple geo-
metrical shape approximations like cones, cylinders, and frusta,
and therefore can be directly extended to other types of berries.
2.5.2. Step 2: Initial guess of the complete reconstruction
The initial reconstruction guess is derived heuristically. First,

the berries are grouped in berry groups, then the rachis is inserted,
and finally the berry groups are connected to the rachis. Fig. 6 illus-
trates these three steps.

For the grouping of berries, we use k-means clustering
(MacQueen, 1967) applied to the berries’ centers, with a fixed
k = 20. This heuristic parameter is the average number of berry
groups that is estimated from our training data. The centers of
these clusters define the initial positions of pedicel origins and are
then connected to the corresponding berries by pedicels. In the next
step, detailed in the following paragraph, the rachis is inserted,
which is then used to connect the pedicel origins in the simplest
way, i.e. directly via terminal pedicel twigs.

The insertion of the rachis is done in several steps. Fig. 7 illus-
trates this process. During the scanning process, the grape clusters
were fixated in such a way that the peduncle forms the uppermost
part of the grape cluster which itself is hanging downwards. To
insert a first guess of the rachis, we divide the distance between
the bottom end of the peduncle and the farthest pedicel origin into
r = 2 equidistant planes. The heuristic parameter r is derived
empirically by inspection of our training data set. For each plane
we compute the intersections of that plane with the detected ber-
ries. These intersections result in a set of circles for each plane. The
circles’ centers are used to define the corner points of a convex
polygon in every plane. Finally, the centers of these convex poly-
gons are interpreted as rachis internodes. Between the peduncle,
these internodes, and the farthest pedicel origin, frusta are inserted
to form the complete initial guess of the rachis.

It must be stressed again: this heuristic approach to the con-
struction of the initial reconstruction guess must not yield a very
good or even perfect model. A less accurate initial model simply
implies that in the following optimization process more local
refinements will be applied to achieve the final optimal result.



Fig. 6. Illustration of the reconstruction completion. Berries are reduced in size for the visualizations, while computations were done with the original sizes (a). After
grouping of berries (b), the rachis is inserted (c). Finally, the berry groups are connected to the rachis via terminal pedicel twigs (d).

Fig. 7. Illustration for the insertion of a rachis into the detected berries. Based on the detected berries (a), for equidistant planes the intersections with the berries are
computed (b). For each plane’s intersections the convex polygon (c) is used to determine its center of mass (d). These centers are then used to insert the rachis internodes (e).
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2.5.3. Step 3: Optimization of the complete reconstruction
The initial guess represents the first reconstruction hypothesis

of the scanned grape cluster. Different hypotheses show different
numbers of components and/or different parameterizations of
their components. In general, the complete space of reconstruction
hypotheses is infinite. Therefore, an exhaustive search for the
hypothesis that fits the sensor data best is illusory.

Instead, we employ a probabilistic sampling approach that aims
to terminate with the hypothesis that maximizes the likelihood
with respect to the sensor data. To this end, we reformulate our
reconstruction problem as a Bayesian decision problem with:

� D, the set of sensor data: a laser point cloud, i.e., a finite subset
of the 3-dimensional real-valued coordinate space R3,
� S, the state space, i.e., the space of reconstruction hypotheses,
� x, an element of the state space representing a reconstruction

hypothesis.

We consider a random variable X distributed in S where X fol-
lows a probability distribution that is the posterior distribution p
(x|D) of a reconstruction hypothesis x given sensor data D. In a
Bayesian framework, this posterior distribution function can be
obtained from:
pðxjDÞ / pðxÞ � LðDjxÞ:
The likelihood L(D|x) represents the probability of observing sensor
data D, given reconstruction hypothesis x. The prior distribution p
(x) favors reconstruction hypotheses x that are compatible with
the generative model. Based on this Bayesian formulation, the
objective is to find the reconstruction hypothesis x that maximizes
the posterior distribution function, i.e. the maximum a posteriori
(MAP) estimator xMAP. This is a non-convex optimization problem
in a high-dimensional state space S. Additionally, this optimization
problem is a so-called trans-dimensional optimization problem, since
the state space S shows varying dimensions as different reconstruc-
tion hypotheses show different numbers of components and there-
fore different numbers of parameters.

The Reversible Jump Markov Chain Monte Carlo (RJMCMC)
algorithm (Green, 2003, 1995) is well adapted to such an optimiza-
tion problem as RJMCMC allows the simulation of the posterior
distribution on spaces of varying dimensions. Like standard
Markov Chain Monte Carlo (MCMC) algorithms, RJMCMC simulates
a random walk on the hypotheses, i.e., on the state space by itera-
tively proposing follow-up hypotheses and then accepting or
rejecting these proposals as the new current step of the random
walk. Each new step updates a series ðpðtÞðXðtÞÞÞt2N of probability
distributions p(t)(X(t)) on the state space S with stationary dis-
tribution p(X(t)) such that the stationary distribution pð�Þ ¼ pð�Þ,
where pð�Þ is the distribution of probabilities of the hypotheses
with respect to the data D. Therefore, samples are drawn only after
having reached the stationary distribution and the maximum of



170 F. Schöler, V. Steinhage / Computers and Electronics in Agriculture 114 (2015) 163–177
this stationary distribution is what must be found as the optimal
reconstruction result.

In contrast to standard MCMC, RJMCMC allows to jump dimen-
sions. This is accomplished by defining a set of state transitions,
known as jumps. In this scheme, any state transition must be rever-
sible, i.e. it must be possible to revert back to the previous state in a
later move (Green, 1995: p. 713 ff.).

2.5.3.1. Jumps. In our framework for grape cluster reconstruction,
the jumps are implemented by rewriting rules of the rule-based
generative plant grammar. This means, there are rules that add
or delete components (like twigs, pedicels, berries, etc.) to jump
from one hypothesis to another. The selection and design of jump
types is the crucial aspect in composing an RJMCMC sampler. There
has to be a balance between jumps proposing large state changes
for exploring the hypothesis space and jumps proposing small
state changes for refining a given hypothesis. The jump types also
have to cover all plant components. Finally, we want to have a
minimal number of jump types preventing too many iterations of
the sampler. We propose a set of jump types that shows on the
one hand trans-dimensional jumps that add or delete components.
For example, we can combine two terminal pedicel twigs into a
single new one or we can add new berries in the occluded interior
of the cluster. On the other hand, there are jumps for the refine-
ment of a hypothesis by modifying size, position or orientation of
some components. Fig. 8 shows two examples.

Our implementation of the RJMCMC sampler shows 14 different
types of jumps that cover all components of a grape cluster. For
example, the jump type Combine terminal pedicel twigs selects at
random two terminal pedicel twigs and replaces these by a new
single terminal pedicel twig that inherits all pedicels and berries
of the two former terminal pedicel twigs. The random selection
is constrained such that the given input twigs are sufficiently close
to each other and have in total less than the maximum allowed
number of attached berries per berry group. The reverse jump type
is called Split terminal pedicel twigs.

2.5.3.2. Drawing samples. Now, RJMCMC implements the maximum
a posteriori estimator xMAP by iteratively proposing follow-up
hypotheses and accepting or rejecting these proposals. Given
x(t) = x at iteration t, RJMCMC shows three steps according to
Green (1995):

(1) Choose a jump with proposal probability qj(x|.).
(2) According to qj(x|.), propose a new state x0.
(3) Accept x(t+1) = x0 with probability
Fig. 8.
position
min 1;
pðx0 j DÞ
pðx j DÞ �

qj0 ðxx0Þ
qjðx0xÞ

 !

and take x(t+1) = x otherwise.
Illustration of two jump types. Left: jump type Insert new berry that will have ano
of branch-twig that has itself as reverse jump type.
According to Green (1995) the acceptance probability given as
second argument of the minimization function in the acceptance
step is generally a product of four fractions. But given a specific
application, a careful design of the jumps and their distributions
can reduce this to tractable expressions as explained in more detail
by Schöler (2014) and Smith (2007). The decision of acceptance is
based on a comparison with the current state x (i.e., the current
reconstruction hypothesis). The transition T ðx0jxÞ from state x to
follow-up state x0 shows two components: first, the application
of a jump with a proposal probability q(x0|x), i.e., how likely is this
proposal of state x0 given state x. Second, the probability of accep-
tance Aðx0jxÞ; i.e., how much better is the proposed state x0 com-
pared to the given state x. Therefore the transition probability
becomes T ðx0jxÞ ¼ qðx0jxÞ � Aðx0jxÞ. Given the stationary distribution
p(�) = p(�), the detailed balance condition holds. The detailed bal-
ance condition states that for any pair of states x and x0 the proba-
bility of being in x and transitioning to x0 is the same as being in x0

and transitioning to x, i.e., pðxÞ � T ðx0jxÞ ¼ pðx0Þ � T ðxjx0Þ for all x and
x0 of S. The detailed balance condition can be rewritten as follows:
ther
pðx jDÞ � T ðx0jxÞ ¼ pðx0 jDÞ � T ðxjx0Þ
()pðx jDÞ �qðx0jxÞ �Aðx0jxÞ¼ pðx0 jDÞ �qðxjx0Þ �Aðxjx0Þ

() Aðx
0jxÞ

Aðxjx0Þ ¼pðx0 jDÞ �qðxjx0Þ
pðx jDÞ �qðx0jxÞ :
One common option is the Metropolis choice to choose an accep-
tance that satisfies detailed balance !
jump type Re
Aðx0jxÞ ¼min 1;
pðx0 j DÞ
pðx j DÞ �

qj0 ðxx0Þ
qjðx0xÞ

;

i.e., one accepts x0 as the new state with acceptance probability
Aðx0jxÞ. In the extreme cases of Aðx0jxÞ ¼ 1 and Aðx0jxÞ ¼ 0, it is
always accepted or rejected, respectively. Since RJMCMC demands
for reversible jumps, we will have for every transition from x to x0

with proposal probability qj(x0|x) a reverse transition from x0 to x
with proposal probability q0jðxjx0Þ.

2.5.3.3. Simulated annealing. To direct the RJMCMC sampling
toward an optimum, we combine RJMCMC with Simulated
Annealing (Kirkpatrick et al., 1983) which introduces a sequence
of decreasing temperatures ti. With decreasing temperature, less
and less jump proposals get accepted. Simulated annealing is inte-
grated in RJMCMC by replacing in the acceptance step both occur-

rences of p(�) in the fraction with pð�Þ1=ti . Theoretically, simulated
annealing ensures convergence to the global optimum for any ini-
tial configuration using a logarithmic temperature decrease. In our
experiments, we used geometric annealing where the new tem-
perature ti+1 is calculated by multiplying the current temperature
ti with a constant annealing factor cs 2 (0,1): ti+1 = cs � ti. The start
temperature t0 was set to 1.0 and the annealing factor cs was set
move berry as its reverse jump type. Right: jump type Move start
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to 0.99 yielding about 7000–9000 iterations per grape cluster
reconstruction.
2.5.3.4. Priors and likelihood. The posterior probabilities used in the
acceptance step of RJMCMC provide the opportunity to define the
data-driven and model-driven constraints of the optimization prob-
lem. In general, the posterior probability can be formulated as the
product of two terms pðxjDÞ / pðxÞ � LðDjxÞ by using Bayes’ formula.

The likelihood L (D|x) represents the constraints enforced by
the sensor data D in terms of the probability of observing sensor
data D, given reconstruction hypothesis x. In the development
stages BBCH81 and BBCH89 of beginning and full ripeness, we
encounter significant occlusions. Thus, the points of the input point
cloud have been interpreted completely in terms of the observable
components, i.e., the exterior berries and the peduncle. Therefore,
we fix these components after the first reconstruction step and
interpret them as ‘‘pre-processed sensor data’’. Thereby, we
enforce data fitting by connecting the overall architecture of the
grape cluster’s reconstruction to these exterior components
according to the rules of the generative model. In consequence,
we can set the likelihood term equal to one in the iterative sam-
pling process. For development stage BBCH73, where almost all
components can be sensed by the laser scanner, the likelihood L
(D|x) can be expressed using the sum over all distances between
the reconstructed components of hypothesis and the points of
the point cloud.

The prior distribution p(x) represents the constraints by the
generative model, i.e., the prior distribution p(x) favors reconstruc-
tion hypotheses x that are compatible with the generative model.
But the space of reconstruction hypotheses shows hypotheses with
different numbers of components. Therefore, the prior p(x) must be
rewritten as the product of two subcomponents p(k) � p(hk|k) yield-
ing the following formulation of the posterior probability
Pðk; hkjDÞ / LðDjk; hkÞ � pðkjhkÞ � pðkÞ.

The model prior p(k) specifies the probability of the currently

chosen hypothesis characteristic, i.e., the number and arrangement
of plant components. In our implementation, it is calculated as the
product of several prior-subcomponents for the numbers of the dif-
ferent plant components. Every subcomponent of the model prior
evaluates for one class of components (branch-twigs, sub-twigs,
pedicels, etc.) how probable the actual number of components of
this class in a hypothesis is with respect to the value distribution
of this component class that was learned in the learning step (cf.
Section 2.4.2) of our reconstruction approach based on the training
data set. We employed seven prior-subcomponents with their
value distributions learned in the learning step: the number of ber-
ries (equal to the number of pedicels), the number of nodes on the
rachis, the number of twigs branching from the rachis, the number
of branch-twigs, the number of sub-twigs, the number of terminal
pedicel twigs, and the number of pedicel origins.

The parameter prior p(hk j k) models the probability of the cur-
rently chosen parameters for the currently chosen hypothesis. In
our implementation, it is also calculated as the product of seven
prior-subcomponents with their value distributions learned in
the learning step (cf. Section 2.4.2): the angles of twigs (all twig
types), the lengths of branch-twigs, the lengths of sub- twigs, the
lengths of terminal pedicel twigs, the lengths of pedicels, the angles
of pedicels, and the sizes of berry groups.
2.5.4. Step 4: Derivation of phenotypic descriptors
Given the final and complete reconstruction of a grape cluster

the derivation of phenotypic descriptors of the grape cluster can
be done in a precise, objective, and reproducible way. The pheno-
typic descriptors can be derived by taking arbitrary components
of a reconstructed grape cluster and all attributes and relations
of these components into account.

That way well-known descriptors (e.g. from the OIV list of
descriptors) can be derived. Some of these descriptors like the
length and width of grape clusters (OIV descriptors 202 and 203,
respectively) are well defined and the benefit of applying our
approach is just the automation of these measurements.

Some other descriptors are defined originally by means of visual
categorizations that might entail problems of rating with respect to
subjectivity and comparability. For example, the OIV descriptor
204 categorizes grape clusters with respect to their density into
five classes, named as categories 1 (‘‘very loose’’), 3 (‘‘loose’’), 5
(‘‘medium’’), 7 (‘‘dense’’), and 9 (‘‘very dense’’). The instructions
how to derive OIV descriptor 204 of grape cluster’s density is given
as follows. ‘‘Examination of the largest bunches of 10 shoots. 1 = ber-
ries clearly separated, many visible pedicels; 3berries in loose contact
with each other with some visible pedicels; 5 = densely distributed ber-
ries, pedicels not visible, berries are movable; 7berries not readily
movable; 9 = berries deformed by compression.’’ Here, the benefit of
applying our approach might not only be the automation of this
classification but also the opportunity to derive the categorization
in a precise, objective, and reproducible way by employing an
appropriate formula. An additional benefit of such automation
might also be the potential to define more categories of grape clus-
ter density, i.e., an arbitrary number of degrees of grape cluster’s
density. In our experiments, we propose the following formula
for deriving the density of grape clusters:P
n

i¼1volðberryiÞ
100 �

Pm
i¼1lenðtwigiÞ þ lenðrachisÞ

� � ;

i.e., the sum of volumes of all berries divided by the sum of lengths
of all twigs and the rachis. The density grows with more berry vol-
ume. But it decreases with longer twigs as the berries get more
separated. Hence, the density grows with a higher berry volume
and decreases with longer twigs and rachis.

Finally, our approach facilitates the design of novel descriptors
in research and their experimental evaluation to derive new valu-
able descriptors for grapevine breeding.
3. Results

3.1. Reconstruction results

For a quantitative evaluation of our approach, we investigated
results on four fully ripe Riesling grape clusters. These clusters
are named according to the number of the grapevine in the field
and an identifier of the grape cluster on that plant. Here, we use
clusters named 51_B, 52_A, 52_B, and 56_B. Moreover, we manu-
ally created ground truth data of the stem systems of all four grape
clusters. Due to the probabilistic nature of the overall reconstruc-
tion process, we computed 100 results for each grape cluster and
show distributions of the according values.

Fig. 9 illustrates qualitatively row by row for each of the evalu-
ated grape clusters (1) the point cloud derived by laser scanning,
(2) one of the final and complete reconstruction result with berries,
and (3) the reconstructed stem architecture of the final reconstruc-
tion by removing the berries. The rachis is central, the outer form is
well adapted by the twig lengths, and the berry group sizes are rea-
sonable. The point clouds show about 250,000 points in average.
The amount of occlusion ranges from around 47% to 64% (volume
of occluded interior branching system/volume of grape cluster).

For a quantitative analysis, we evaluated the numbers, lengths,
and distances of reconstructed components. This evaluation was
performed on 100 reconstruction runs applied to the sensor data
of each of the four grape clusters 51_B, 52_A, 52_B, and 56_B.



51_B:

52_A:

52_B: 

56_B: 

Fig. 9. Experimental results of the reconstruction approach on four fully ripe Riesling grape clusters. Left: The input point cloud generated by laser scanning. Middle: The final
complete reconstruction result with berries. Right: the branching architecture of the final result.
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Table 1 summarizes the evaluation with respect to the numbers
of reconstructed components by comparing the respective quanti-
ties of automatically reconstructed components with the
corresponding reference values of components derived from the
manual reconstructions.

Table 2 summarizes the evaluation with respect to the positions
of reconstructed components by comparing positions of the
automatically reconstructed components with the positions of
components measured in the reference data set. For this part of
the evaluation, we established correspondences between the posi-
tions of components in the reference data and the positions of
components in the automatically generated reconstructions by
employing the Hungarian method (Munkres, 1957; Kuhn, 1956,
1955). As input to the Hungarian method, we used for each compo-
nent type the Euclidean distances between any two components
and computed the assignment with the minimal overall distance,
i.e., minimal sum of positioning errors.

Table 3 summarizes the evaluation part on comparing for differ-
ent component types the sum of lengths of all reconstructed
instances of the respective component type with the correspond-
ing sum of lengths given in the reference data. For a comparison
we include the absolute reference values, i.e., the sum of lengths
of the respective component type in the reference stem system.

3.2. Phenotyping

Fig. 10 depicts the results for one of the most important pheno-
typic traits for grapevine in our project, i.e., the density of grape
clusters, as a representative example. The grape cluster density is
derived by using the formula given in Section 2.5.4, i.e., the sum
of volumes of all berries divided by the sum of lengths of all twigs
and the rachis. Therefore, the unit of the density is [mm3/mm].

3.3. Development stages BBCH73 and BBCH81

We also applied our approach to grape clusters of the other two
development stages of Riesling and present here one qualitative
reconstruction result for each.



Table 1
Estimated numbers of components compared to the reference values derived from
ground truth data. The values are derived over the four grape clusters 51_B, 52_A,
52_B, and 56_B where every grape cluster was evaluated for 100 reconstruction runs
applied to its sensor data.

Component type Reference
number

Mean of estimated
number

Standard
deviation of
estimated
number

Grape cluster 51_B
Rachis nodes 13 9.47 1.08
Branch-twigs 3 2.52 0.54
Sub-twigs 6 2.77 0.66
Terminal pedicel twigs 12 8.51 0.95
Berry groups 22 14.80 0.91
Berries 105 92.50 10.02

Grape cluster 52_A
Rachis nodes 11 10.79 0.97
Branch-twigs 3 4.13 0.58
Sub-twigs 8 4.51 0.69
Terminal pedicel twigs 10 10.19 1.12
Berry groups 23 19.83 0.40
Berries 123 142.84 13.55

Grape cluster 52_B
Rachis nodes 7 7.53 1.18
Branch-twigs 4 3.06 0.56
Sub-twigs 6 3.29 0.65
Terminal pedicel twigs 6 7.45 1.17
Berry groups 17 14.80 1.06
Berries 96 110.57 11.66

Grape cluster 56_B
Rachis nodes 14 7.00 0.97
Branch-twigs 3 2.18 0.38
Sub-twigs 6 2.31 0.50
Terminal pedicel twigs 10 6.21 0.86
Berry groups 20 11.70 0.64
Berries 83 77.85 4.57

Table 2
Overall positioning errors per component type estimated as the sum of distances
between positions of corresponding components in reference data and automatically
generated reconstructions. The values are derived for the four grape clusters 51_B,
52_A, 52_B, and 56_B where every grape cluster was evaluated over 100 reconstruc-
tion runs applied to its sensor data.

Component
type/grape cluster

Dimensions of grape
cluster: length
(cm) �width (cm)

Mean of
overall
positioning
error (cm)

Stand.
deviation of
overall
positioning
error (cm)

Grape cluster 51_B 10.49 � 5.94
Rachis nodes 1.0386 0.1994
Branch-twig nodes 0.8476 0.0438
Pedicel origins 0.6262 0.0542
Berries 0.8672 0.0501

Grape cluster
52_A

12.94 � 8.31

Rachis nodes 0.4006 0.0331
Branch-twig nodes 0.8201 0.0939
Pedicel origins 0.8006 0.0132
Berries 0.8373 0.1199

Grape cluster 52_B 10.88 � 7.74
Rachis nodes 0.6371 0.0883
Branch-twig nodes 0.7564 0.0212
Pedicel origins 0.7796 0.0763
Berries 0.7660 0.0271

Grape cluster 56_B 9.56 � 5.79
Rachis nodes 0.8010 0.1065
Branch-twig nodes 0.7946 0.0159
Pedicel origins 0.5094 0.0598
Berries 0.8508 0.0080

Table 3
Overall length errors estimated as differences between sums of component lengths of
reference data and automatically derived reconstructions, respectively. The values are
derived for the four grape clusters 51_B, 52_A, 52_B, and 56_B where every grape
cluster was evaluated over 100 reconstruction runs applied to its sensor data.

Component type Reference
sum of
lengths (cm)

Mean of
overall length
error (cm)

Standard deviation
of overall length
error (cm)

Grape cluster 51_B
Branch-twigs 4.20 0.2065 1.1918
Sub-twigs 1.95 �0.6093 0.7301
Terminal pedicel twigs 5.75 0.6707 1.1490
Pedicels 92.55 �6.1820 11.1247

Grape cluster 52_A
Branch-twigs 6.60 1.7320 1.3053
Sub-twigs 2.60 1.1629 0.5982
Terminal pedicel twigs 6.70 4.9509 1.9781
Pedicels 119.95 62.2428 42.0734

Grape cluster 52_B
Branch-twigs 7.25 �0.6103 1.0910
Sub-twigs 1.90 �0.3336 0.7648
Terminal pedicel twigs 3.30 4.1801 1.8862
Pedicels 106.0 27.1801 30.6428

Grape cluster 56_B
Branch-twigs 2.65 0.5245 0.5552
Sub-twigs 1.30 �0.5238 0.3244
Terminal pedicel twigs 2.85 0.8758 0.7569
Pedicels 61.25 8.8431 4.0117

Fig. 10. Results of the automated derivation of the densities of the four grape
clusters 51_B, 52_A, 52_B, and 56_B. For each grape cluster, we performed 100
reconstruction runs and determined the density for each of them.
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3.3.1. BBCH81: Beginning of ripening
In this development stage, the berries are of almost the same

size as in the state of full ripeness. Therefore, the interior is also
significantly occluded. Fig. 11 shows an example input point cloud
and the according reconstruction result with and without the
berries.
3.3.2. BBCH73: Groat-sized berries
In this development stage, the berries are much smaller than in

full ripeness, which allows the sensor to capture almost the com-
plete interior of the stem system. Fig. 12 depicts a qualitative
example.
3.4. Evaluation of experimental results

Our experimental results show qualitatively that our recon-
struction framework of employing an explicit rule-based plant
model to control a trans-dimensional probabilistic sampling



Fig. 11. Example reconstruction result of the development stage beginning of ripening. Left: Input point cloud. Middle: Reconstructed architecture with berries. Right:
Reconstructed architecture without berries.

Fig. 12. Example result of a reconstruction given a point cloud of a grape cluster
with groat-sized berries.
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algorithm is a promising avenue. However, our quantitative
results show that we still have not reached the end of this road.
Therefore, we discuss here the current state and future work of
our reconstruction procedure with respect to the experimental
results.

With respect to the number of reconstructed components, we
have estimation errors (|mean of estimated numbers – true num-
bers|) averaged over the four grape cluster experiments of 2.82
for the number of rachis nodes, 0.84 for the number of branch-
twigs, 3.28 for the number of sub-twigs, 2.23 for the number of
terminal pedicel twigs, 5.22 for the number of berry groups,
and 13.02 for the number of berries. Since the berries are
together with the peduncle often the only observable anchor fea-
tures of our complete reconstruction procedure the relatively
high averages mean estimation error and the averaged high vari-
ance (10.0 compared to values around 1.0 for the other compo-
nents) of their detection rate suggests improving the
reconstruction of the berries in future work. As given in more
detail in Section 4.1, our RANSAC-based approach to berry detec-
tion itself was shown to be robust with respect to noise and accu-
racy. However, volume and weight of each berry itself will
change position and shape of other berries by pushing and colli-
sions between berries when growing. Therefore, we will use in
future work more accurate physical models of the berries that
include deformations of the berry surface to have a more realistic
model of the surface SðbiÞ of a berry bi as a result of environmen-
tal interactions instead of using spheres. Additionally, we will
also include the reconstructed exterior berries of the initial
hypothesis into the iterative optimization process to adjust their
parameters of position and shape iteratively with respect to the
sensor data, i.e., the points of the point cloud. This will yield an
explicit likelihood term LðDjxÞ / exp ð�
P

bi2BkN ðbiÞ � SðbiÞk2Þ
that corresponds to the sum of the Euclidian distances between
the points of the point cloud in a neighborhood NðbiÞ of berry bi-
to the surface SðbiÞ of berry bi in a given reconstruction hypothe-
sis. Finally, we will enhance the information content of the 3D
points of a point cloud by using optical sensors to provide depth
and color information (cf. Section 4.1) and by deriving local fea-
tures like orientation and curvature that are characteristic with
respect to the types of components (twigs, pedicels, berries,
etc.) (Paulus et al., 2013; Behley et al., 2012).

With respect to the position accuracy, a normalization by the
averaged reference numbers of Table 1 (where the reference num-
ber of sub-twigs is equal to the reference number of branch-twig
nodes in Table 2) results in averaged positioning errors of approxi-
mately 3 mm for the branch-twig nodes and of less than 1 mm for
rachis nodes, pedicel origins, and berries. Compared to the grape
clusters’ sizes, the positioning errors are about two orders of mag-
nitude smaller. But future work could improve these results fur-
ther. First, the improved berry reconstruction should also yield
higher location accuracy for berries and for the interior compo-
nents. Second, the jump type that inserts new interior berries
can be improved by optimizing first the diameter of a new berry
before optimizing its location.

With respect to the determination of the components’ lengths,
normalization by the averaged reference numbers of Table 1
(where the reference number of berries is equal to the reference
number of pedicels in Table 3) shows length errors of about 2–
3 mm per component in average. Compared to the grape clusters’
sizes, the length errors are again about two orders of magnitude
smaller. However, we plan to improve these results. First, the
improved berry reconstruction should again yield also a higher
accuracy in the length estimation of the twigs. Second, a more
flexible jump type for geometrical modifications of the rachis can
also improve length estimations.

With respect to phenotyping, the presented example of the for-
malized variant of the OIV descriptor 204 of grape cluster density
shows that the derived median values are in a small range between
5.8 and 6.1 and the boxes containing 50% of all values are in a range
between 4.5 and 6.4. Similar results were obtained for other phe-
notypic descriptors. But of course, these results must be aligned
in a representative way with phenotyping results that are derived
in the conventional way. This will be part of an upcoming follow-
up project.

This up-coming project will also include a representative and
accurate analysis of our approach applied to the development stage
BBCH73 with groat-sized berries while the results here show only
by some first qualitative examples that our approach has the
potential to work also on other development stages of grape clus-
ters like BBCH73 and BBCH81 and is therefore promising for moni-
toring and phenotyping over complete growth periods.
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4. Discussion

Our approach to automated 3D reconstruction and phenotyping
of grape clusters is based on several assumptions that are dis-
cussed here with respect to different aspects of generalization of
our approach and with respect to future work.
4.1. Sensors and noise

In our project setting, we used sensor data generated with a
Perceptron ScanWorks V5 laser scanner (Perceptron Inc., 2015)
mounted on a Romer Infinite 2.0 articulated arm (Hexagon
Metrology, 2015) producing 3D point clouds with high accuracy
of 0.024 mm and high spatial resolution of 0.0137 mm. This raises
the question of what will happen (1) if a lower cost sensor with
lower precision is used, and (2) if the measurements are noisy.
For computational reasons, we first sub-sampled the original 3D
point cloud uniformly resulting in approximately 250,000 points
per grape cluster. This corresponds to an average point-to-point
resolution of 0.19 mm, but nevertheless the high position accuracy
of 0.024 mm. Since our reconstruction procedure starts with the
detection and reconstruction of the observable exterior compo-
nents, the robustness of our complete procedure heavily relies on
the robustness of the detection of these components. The peduncle
is geometrically approximated as a frustum. Frusta are also used to
model the geometries of the twigs, the rachis, and the pedicels. For
the Riesling cultivar, the berries are geometrically modeled as
spheres, for other cultivars other simple geometric approximations
like ellipsoids might be used. For the detection of these compo-
nents, especially the berries, we employ a RANSAC-based method
proposed by Schnabel et al. (2007). They evaluated the robustness
of their method with respect to position and radius determination
experimentally by introducing synthetic position inaccuracy and
noise. Applying their evaluation results to our concern of detection
and reconstruction of grape clusters’ components with the smallest
diameters of the smallest pedicels with 1–2 mm and largest
diameters of fully ripe berries up to 15 mm, a sensor accuracy of
0.4 mm results in deviations of positioning and size determination
of 0.04 mm and 0.05 mm, respectively – even up to a signal-to-
noise ratio of 2. This accuracy can be achieved with a semi-profes-
sional optical sensor like Artec EVA (accuracy up to 0.1 mm, spatial
resolution up to 0.5 mm) and Artec Spider (accuracy up to 0.05 mm,
spatial resolution up to 0.1 mm) (RSI 3D-Systems, 2015). Both sen-
sors are relatively small and lightweight, making them portable
and moveable around the object to be measured. Low-cost
motion-sensing devices like the Kinect are reported to be accurate
to within 1–2 mm for distances from 50 cm to 100 cm in most
situations (Shin et al., 2013). Also the new Kinect 2.0 should show
accuracy close to 1 mm. Therefore, the current state of low-cost
sensors seems not appropriate to deliver sufficiently accurate mea-
surements. In future work, we would like to explore the usage of
such a semi-professional optical sensor, because its handling is
superior to that of the laser sensor. Additionally, the optical sensor
provides intensity and color information that will improve the
detection and reconstruction process. For example, the com-
bination of color and depth information is of special interest for
the reconstruction of grape clusters of development stage
BBCH73, where the diameters of the berries are similar to the
diameters of the twigs and therefore more difficult to detect within
point clouds without color information.
4.2. Completeness of sensor data

Currently, we are using complete 360� scans of the grape clus-
ters exterior. Therefore, incompleteness of the sensor data is only
given due to occlusions of the interior components of a grape clus-
ter caused by its exterior components. In practice, there might be
applications where complete 360� scans are not possible or too
costly, for example, when aiming to collect sensor data by mobile
farm vehicles driving along the vineyard rows. Therefore, future
work will include investigations of automated phenotyping based
on partial reconstructions of grape clusters.

4.3. Other cultivars and other plants

Our current implementation is tailored to the automated recon-
struction and phenotyping of grape clusters. Our experimental
evaluation was done with the Riesling cultivar and only with sin-
gle-winged grape clusters, i.e., grape clusters showing exactly
one rachis. Generalization to other grapevine cultivars and dou-
ble-winged grape clusters are possible, but demand for some feasi-
ble adaptations of the berry detector and the generative model’s
rule set. First, the berry detector has to be generalized to cope with
the shape types of grape berries that are listed in the OIV descriptor
223 and can be modeled with simple geometric approximations
(i.e., small numbers of shape parameters): globose (spherical),
obloid, ovoid, cylindrical, ellipsoid, horn shaped, etc. Second, the
rules of the generative modeler must be enriched with rules to
model double winged grape clusters.

The generalization to other plant organs and plants will defi-
nitely demand for more or less severe adaptations. For example,
if leaves need to be modeled explicitly as plant components, they
demand for sophisticated modeling approaches. A generative
model of leaves must be parsimonious with respect to the number
of parameters, but as accurate as possible for the purpose of auto-
mated 3D reconstruction and phenotyping. Recently, Henke et al.
(2014) presented a model of leaf shapes with polynomials deter-
mined by a minimal set of 5–13 real-valued parameters.
Additionally, advanced processing algorithms are needed with
more complex shaped plant organs and a growing number of
parameters. For example, one might use instead of the standard
RANSAC approach, improved RANSAC algorithms like R-RANSAC
and Preemptive RANSAC. An overview on the performance of differ-
ent RANSAC variants is given by Choi et al. (2009).

In general, we can say that the more complex the plant compo-
nents with respect to shape, appearance and interactions will be,
the more sophisticated the design and the implementation of mod-
eling and reconstruction of the plant must be to keep the balance
between computational complexity and robustness of
reconstruction.

4.4. Scale space and functional modeling

The generalization from 3D structural modeling to an overall
modeling that includes functional modeling in terms of environ-
mental interaction, nutrition flow, photosynthesis, etc. is one
strength of the relational growth grammar approach that we have
chosen for our generative modeling (Smoleňová et al., 2012). In
future work, we intend to include functional aspects to model com-
petition for sunlight and space and the flow of photosynthates.

Multi-scale modeling is known as one of the current challenges
in the research field of functional–structural plant modeling
(FSPM) (Hanan, 2013) and aims for the integration of structures
and dynamics at different spatial and temporal scales. There are
various reasons for adopting such an approach. From the theoreti-
cal perspective, there is the existence of scientific data at multiple
scales. From the practical perspective, there are different scales of
screening and monitoring, for example for the purpose of disease
and yield estimation. An up-to-date overview and current results
in using growth grammars for multi-scale modeling is given by
Ong et al. (2014). We are considering this approach to multi-scale
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modeling with growth grammars at least with the two scales of
single plants and populations in our future work.

4.5. On evaluation

Our current experimental evaluation relies only on 100 recon-
struction runs applied to four grape clusters and compares the
reconstruction results with ground truth data only in terms of
numbers, lengths, and positions of components of the grape clus-
ters. We plan to address this limitation of our current experimental
analysis by investigating more grape clusters, i.e., about hundreds
of grape clusters, and will evaluate results more explicitly with
respect to geometry and structure. For this more comprehensive
evaluation, we currently implement and adapt an approach to
compare complete branching structures based on a similarity mea-
sure between their graph-based representations presented by
Boudon et al. (2014).
5. Conclusion

Automated 3D reconstruction is of high importance for efficient
plant phenotyping in general. Within a project on grapevine
phenotyping, we demonstrated that this can be realized based on
the analysis of grape cluster architecture. We developed and
implemented a complete processing chain that uses 3D point
clouds of grape clusters generated by a laser range sensor and that
employs an explicit rule-based generative model of grape cluster
architecture. Based on the sensor data and the presented genera-
tive model, the processing chain consists of four steps: first, the
reconstruction of all visible components of a grape cluster; second,
the generation of a first initial 3D reconstruction hypothesis of the
complete grape cluster; third, the iterative optimization of the ini-
tial 3D reconstruction hypothesis to derive an optimal fitting to the
given sensor data thereby complying with the constraints given by
the generative model; fourth, the automated derivation of pheno-
typic descriptors of grape clusters. Due to the usage of the knowl-
edge encoded in the generative model, we are able to derive
complete reconstructions even in cases of severe occlusions. Our
approach can be used for monitoring and yield estimation in vine-
yards. The strength of our approach lies in its flexibility in deriving
well known phenotypic descriptors as well as the prospects to
design new approaches for phenotypic description. Therefore, our
approach is suited for grapevine breeding and research on grape-
vine breeding. First promising experimental results show that
our approach could become a new high-throughput and high-res-
olution phenotyping tool for grapevine breeding. Future work will
include different aspects of generalization. First, our approach sug-
gests a paradigm of a model-based processing chain for the auto-
mated 3D reconstruction and the automated phenotyping that is
capable to deal with occlusions in the sensor data acquisition
and is able to extract phenotypic traits in an objective and repeat-
able way. This paradigm is worth to be investigated with respect to
applications on other plant organs, whole plants, and other differ-
ent plants. Second, our approach will be investigated with respect
to other classes of sensor data. Especially, we plan to employ opti-
cal sensors and combinations of different sensor modes by fusion
of sensor data. Third, future work also includes coherent applica-
tions on different scales, e.g., scales of plant organs, whole plants,
populations, field, etc. in terms of a multi-scale approach to 3D
reconstruction for phenotyping and field monitoring.
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